Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/tools/perf/builtin-timechart.c

  1 /*
  2  * builtin-timechart.c - make an svg timechart of system activity
  3  *
  4  * (C) Copyright 2009 Intel Corporation
  5  *
  6  * Authors:
  7  *     Arjan van de Ven <arjan@linux.intel.com>
  8  *
  9  * This program is free software; you can redistribute it and/or
 10  * modify it under the terms of the GNU General Public License
 11  * as published by the Free Software Foundation; version 2
 12  * of the License.
 13  */
 14 
 15 #include <traceevent/event-parse.h>
 16 
 17 #include "builtin.h"
 18 
 19 #include "util/util.h"
 20 
 21 #include "util/color.h"
 22 #include <linux/list.h>
 23 #include "util/cache.h"
 24 #include "util/evlist.h"
 25 #include "util/evsel.h"
 26 #include <linux/rbtree.h>
 27 #include "util/symbol.h"
 28 #include "util/callchain.h"
 29 #include "util/strlist.h"
 30 
 31 #include "perf.h"
 32 #include "util/header.h"
 33 #include "util/parse-options.h"
 34 #include "util/parse-events.h"
 35 #include "util/event.h"
 36 #include "util/session.h"
 37 #include "util/svghelper.h"
 38 #include "util/tool.h"
 39 #include "util/data.h"
 40 #include "util/debug.h"
 41 
 42 #define SUPPORT_OLD_POWER_EVENTS 1
 43 #define PWR_EVENT_EXIT -1
 44 
 45 struct per_pid;
 46 struct power_event;
 47 struct wake_event;
 48 
 49 struct timechart {
 50         struct perf_tool        tool;
 51         struct per_pid          *all_data;
 52         struct power_event      *power_events;
 53         struct wake_event       *wake_events;
 54         int                     proc_num;
 55         unsigned int            numcpus;
 56         u64                     min_freq,       /* Lowest CPU frequency seen */
 57                                 max_freq,       /* Highest CPU frequency seen */
 58                                 turbo_frequency,
 59                                 first_time, last_time;
 60         bool                    power_only,
 61                                 tasks_only,
 62                                 with_backtrace,
 63                                 topology;
 64         /* IO related settings */
 65         u64                     io_events;
 66         bool                    io_only,
 67                                 skip_eagain;
 68         u64                     min_time,
 69                                 merge_dist;
 70         bool                    force;
 71 };
 72 
 73 struct per_pidcomm;
 74 struct cpu_sample;
 75 struct io_sample;
 76 
 77 /*
 78  * Datastructure layout:
 79  * We keep an list of "pid"s, matching the kernels notion of a task struct.
 80  * Each "pid" entry, has a list of "comm"s.
 81  *      this is because we want to track different programs different, while
 82  *      exec will reuse the original pid (by design).
 83  * Each comm has a list of samples that will be used to draw
 84  * final graph.
 85  */
 86 
 87 struct per_pid {
 88         struct per_pid *next;
 89 
 90         int             pid;
 91         int             ppid;
 92 
 93         u64             start_time;
 94         u64             end_time;
 95         u64             total_time;
 96         u64             total_bytes;
 97         int             display;
 98 
 99         struct per_pidcomm *all;
100         struct per_pidcomm *current;
101 };
102 
103 
104 struct per_pidcomm {
105         struct per_pidcomm *next;
106 
107         u64             start_time;
108         u64             end_time;
109         u64             total_time;
110         u64             max_bytes;
111         u64             total_bytes;
112 
113         int             Y;
114         int             display;
115 
116         long            state;
117         u64             state_since;
118 
119         char            *comm;
120 
121         struct cpu_sample *samples;
122         struct io_sample  *io_samples;
123 };
124 
125 struct sample_wrapper {
126         struct sample_wrapper *next;
127 
128         u64             timestamp;
129         unsigned char   data[0];
130 };
131 
132 #define TYPE_NONE       0
133 #define TYPE_RUNNING    1
134 #define TYPE_WAITING    2
135 #define TYPE_BLOCKED    3
136 
137 struct cpu_sample {
138         struct cpu_sample *next;
139 
140         u64 start_time;
141         u64 end_time;
142         int type;
143         int cpu;
144         const char *backtrace;
145 };
146 
147 enum {
148         IOTYPE_READ,
149         IOTYPE_WRITE,
150         IOTYPE_SYNC,
151         IOTYPE_TX,
152         IOTYPE_RX,
153         IOTYPE_POLL,
154 };
155 
156 struct io_sample {
157         struct io_sample *next;
158 
159         u64 start_time;
160         u64 end_time;
161         u64 bytes;
162         int type;
163         int fd;
164         int err;
165         int merges;
166 };
167 
168 #define CSTATE 1
169 #define PSTATE 2
170 
171 struct power_event {
172         struct power_event *next;
173         int type;
174         int state;
175         u64 start_time;
176         u64 end_time;
177         int cpu;
178 };
179 
180 struct wake_event {
181         struct wake_event *next;
182         int waker;
183         int wakee;
184         u64 time;
185         const char *backtrace;
186 };
187 
188 struct process_filter {
189         char                    *name;
190         int                     pid;
191         struct process_filter   *next;
192 };
193 
194 static struct process_filter *process_filter;
195 
196 
197 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
198 {
199         struct per_pid *cursor = tchart->all_data;
200 
201         while (cursor) {
202                 if (cursor->pid == pid)
203                         return cursor;
204                 cursor = cursor->next;
205         }
206         cursor = zalloc(sizeof(*cursor));
207         assert(cursor != NULL);
208         cursor->pid = pid;
209         cursor->next = tchart->all_data;
210         tchart->all_data = cursor;
211         return cursor;
212 }
213 
214 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
215 {
216         struct per_pid *p;
217         struct per_pidcomm *c;
218         p = find_create_pid(tchart, pid);
219         c = p->all;
220         while (c) {
221                 if (c->comm && strcmp(c->comm, comm) == 0) {
222                         p->current = c;
223                         return;
224                 }
225                 if (!c->comm) {
226                         c->comm = strdup(comm);
227                         p->current = c;
228                         return;
229                 }
230                 c = c->next;
231         }
232         c = zalloc(sizeof(*c));
233         assert(c != NULL);
234         c->comm = strdup(comm);
235         p->current = c;
236         c->next = p->all;
237         p->all = c;
238 }
239 
240 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
241 {
242         struct per_pid *p, *pp;
243         p = find_create_pid(tchart, pid);
244         pp = find_create_pid(tchart, ppid);
245         p->ppid = ppid;
246         if (pp->current && pp->current->comm && !p->current)
247                 pid_set_comm(tchart, pid, pp->current->comm);
248 
249         p->start_time = timestamp;
250         if (p->current && !p->current->start_time) {
251                 p->current->start_time = timestamp;
252                 p->current->state_since = timestamp;
253         }
254 }
255 
256 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
257 {
258         struct per_pid *p;
259         p = find_create_pid(tchart, pid);
260         p->end_time = timestamp;
261         if (p->current)
262                 p->current->end_time = timestamp;
263 }
264 
265 static void pid_put_sample(struct timechart *tchart, int pid, int type,
266                            unsigned int cpu, u64 start, u64 end,
267                            const char *backtrace)
268 {
269         struct per_pid *p;
270         struct per_pidcomm *c;
271         struct cpu_sample *sample;
272 
273         p = find_create_pid(tchart, pid);
274         c = p->current;
275         if (!c) {
276                 c = zalloc(sizeof(*c));
277                 assert(c != NULL);
278                 p->current = c;
279                 c->next = p->all;
280                 p->all = c;
281         }
282 
283         sample = zalloc(sizeof(*sample));
284         assert(sample != NULL);
285         sample->start_time = start;
286         sample->end_time = end;
287         sample->type = type;
288         sample->next = c->samples;
289         sample->cpu = cpu;
290         sample->backtrace = backtrace;
291         c->samples = sample;
292 
293         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
294                 c->total_time += (end-start);
295                 p->total_time += (end-start);
296         }
297 
298         if (c->start_time == 0 || c->start_time > start)
299                 c->start_time = start;
300         if (p->start_time == 0 || p->start_time > start)
301                 p->start_time = start;
302 }
303 
304 #define MAX_CPUS 4096
305 
306 static u64 cpus_cstate_start_times[MAX_CPUS];
307 static int cpus_cstate_state[MAX_CPUS];
308 static u64 cpus_pstate_start_times[MAX_CPUS];
309 static u64 cpus_pstate_state[MAX_CPUS];
310 
311 static int process_comm_event(struct perf_tool *tool,
312                               union perf_event *event,
313                               struct perf_sample *sample __maybe_unused,
314                               struct machine *machine __maybe_unused)
315 {
316         struct timechart *tchart = container_of(tool, struct timechart, tool);
317         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
318         return 0;
319 }
320 
321 static int process_fork_event(struct perf_tool *tool,
322                               union perf_event *event,
323                               struct perf_sample *sample __maybe_unused,
324                               struct machine *machine __maybe_unused)
325 {
326         struct timechart *tchart = container_of(tool, struct timechart, tool);
327         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
328         return 0;
329 }
330 
331 static int process_exit_event(struct perf_tool *tool,
332                               union perf_event *event,
333                               struct perf_sample *sample __maybe_unused,
334                               struct machine *machine __maybe_unused)
335 {
336         struct timechart *tchart = container_of(tool, struct timechart, tool);
337         pid_exit(tchart, event->fork.pid, event->fork.time);
338         return 0;
339 }
340 
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events;
343 #endif
344 
345 static void c_state_start(int cpu, u64 timestamp, int state)
346 {
347         cpus_cstate_start_times[cpu] = timestamp;
348         cpus_cstate_state[cpu] = state;
349 }
350 
351 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
352 {
353         struct power_event *pwr = zalloc(sizeof(*pwr));
354 
355         if (!pwr)
356                 return;
357 
358         pwr->state = cpus_cstate_state[cpu];
359         pwr->start_time = cpus_cstate_start_times[cpu];
360         pwr->end_time = timestamp;
361         pwr->cpu = cpu;
362         pwr->type = CSTATE;
363         pwr->next = tchart->power_events;
364 
365         tchart->power_events = pwr;
366 }
367 
368 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
369 {
370         struct power_event *pwr;
371 
372         if (new_freq > 8000000) /* detect invalid data */
373                 return;
374 
375         pwr = zalloc(sizeof(*pwr));
376         if (!pwr)
377                 return;
378 
379         pwr->state = cpus_pstate_state[cpu];
380         pwr->start_time = cpus_pstate_start_times[cpu];
381         pwr->end_time = timestamp;
382         pwr->cpu = cpu;
383         pwr->type = PSTATE;
384         pwr->next = tchart->power_events;
385 
386         if (!pwr->start_time)
387                 pwr->start_time = tchart->first_time;
388 
389         tchart->power_events = pwr;
390 
391         cpus_pstate_state[cpu] = new_freq;
392         cpus_pstate_start_times[cpu] = timestamp;
393 
394         if ((u64)new_freq > tchart->max_freq)
395                 tchart->max_freq = new_freq;
396 
397         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
398                 tchart->min_freq = new_freq;
399 
400         if (new_freq == tchart->max_freq - 1000)
401                 tchart->turbo_frequency = tchart->max_freq;
402 }
403 
404 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
405                          int waker, int wakee, u8 flags, const char *backtrace)
406 {
407         struct per_pid *p;
408         struct wake_event *we = zalloc(sizeof(*we));
409 
410         if (!we)
411                 return;
412 
413         we->time = timestamp;
414         we->waker = waker;
415         we->backtrace = backtrace;
416 
417         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
418                 we->waker = -1;
419 
420         we->wakee = wakee;
421         we->next = tchart->wake_events;
422         tchart->wake_events = we;
423         p = find_create_pid(tchart, we->wakee);
424 
425         if (p && p->current && p->current->state == TYPE_NONE) {
426                 p->current->state_since = timestamp;
427                 p->current->state = TYPE_WAITING;
428         }
429         if (p && p->current && p->current->state == TYPE_BLOCKED) {
430                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
431                                p->current->state_since, timestamp, NULL);
432                 p->current->state_since = timestamp;
433                 p->current->state = TYPE_WAITING;
434         }
435 }
436 
437 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
438                          int prev_pid, int next_pid, u64 prev_state,
439                          const char *backtrace)
440 {
441         struct per_pid *p = NULL, *prev_p;
442 
443         prev_p = find_create_pid(tchart, prev_pid);
444 
445         p = find_create_pid(tchart, next_pid);
446 
447         if (prev_p->current && prev_p->current->state != TYPE_NONE)
448                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
449                                prev_p->current->state_since, timestamp,
450                                backtrace);
451         if (p && p->current) {
452                 if (p->current->state != TYPE_NONE)
453                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
454                                        p->current->state_since, timestamp,
455                                        backtrace);
456 
457                 p->current->state_since = timestamp;
458                 p->current->state = TYPE_RUNNING;
459         }
460 
461         if (prev_p->current) {
462                 prev_p->current->state = TYPE_NONE;
463                 prev_p->current->state_since = timestamp;
464                 if (prev_state & 2)
465                         prev_p->current->state = TYPE_BLOCKED;
466                 if (prev_state == 0)
467                         prev_p->current->state = TYPE_WAITING;
468         }
469 }
470 
471 static const char *cat_backtrace(union perf_event *event,
472                                  struct perf_sample *sample,
473                                  struct machine *machine)
474 {
475         struct addr_location al;
476         unsigned int i;
477         char *p = NULL;
478         size_t p_len;
479         u8 cpumode = PERF_RECORD_MISC_USER;
480         struct addr_location tal;
481         struct ip_callchain *chain = sample->callchain;
482         FILE *f = open_memstream(&p, &p_len);
483 
484         if (!f) {
485                 perror("open_memstream error");
486                 return NULL;
487         }
488 
489         if (!chain)
490                 goto exit;
491 
492         if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
493                 fprintf(stderr, "problem processing %d event, skipping it.\n",
494                         event->header.type);
495                 goto exit;
496         }
497 
498         for (i = 0; i < chain->nr; i++) {
499                 u64 ip;
500 
501                 if (callchain_param.order == ORDER_CALLEE)
502                         ip = chain->ips[i];
503                 else
504                         ip = chain->ips[chain->nr - i - 1];
505 
506                 if (ip >= PERF_CONTEXT_MAX) {
507                         switch (ip) {
508                         case PERF_CONTEXT_HV:
509                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
510                                 break;
511                         case PERF_CONTEXT_KERNEL:
512                                 cpumode = PERF_RECORD_MISC_KERNEL;
513                                 break;
514                         case PERF_CONTEXT_USER:
515                                 cpumode = PERF_RECORD_MISC_USER;
516                                 break;
517                         default:
518                                 pr_debug("invalid callchain context: "
519                                          "%"PRId64"\n", (s64) ip);
520 
521                                 /*
522                                  * It seems the callchain is corrupted.
523                                  * Discard all.
524                                  */
525                                 zfree(&p);
526                                 goto exit;
527                         }
528                         continue;
529                 }
530 
531                 tal.filtered = 0;
532                 thread__find_addr_location(al.thread, cpumode,
533                                            MAP__FUNCTION, ip, &tal);
534 
535                 if (tal.sym)
536                         fprintf(f, "..... %016" PRIx64 " %s\n", ip,
537                                 tal.sym->name);
538                 else
539                         fprintf(f, "..... %016" PRIx64 "\n", ip);
540         }
541 
542 exit:
543         fclose(f);
544 
545         return p;
546 }
547 
548 typedef int (*tracepoint_handler)(struct timechart *tchart,
549                                   struct perf_evsel *evsel,
550                                   struct perf_sample *sample,
551                                   const char *backtrace);
552 
553 static int process_sample_event(struct perf_tool *tool,
554                                 union perf_event *event,
555                                 struct perf_sample *sample,
556                                 struct perf_evsel *evsel,
557                                 struct machine *machine)
558 {
559         struct timechart *tchart = container_of(tool, struct timechart, tool);
560 
561         if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
562                 if (!tchart->first_time || tchart->first_time > sample->time)
563                         tchart->first_time = sample->time;
564                 if (tchart->last_time < sample->time)
565                         tchart->last_time = sample->time;
566         }
567 
568         if (evsel->handler != NULL) {
569                 tracepoint_handler f = evsel->handler;
570                 return f(tchart, evsel, sample,
571                          cat_backtrace(event, sample, machine));
572         }
573 
574         return 0;
575 }
576 
577 static int
578 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
579                         struct perf_evsel *evsel,
580                         struct perf_sample *sample,
581                         const char *backtrace __maybe_unused)
582 {
583         u32 state = perf_evsel__intval(evsel, sample, "state");
584         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
585 
586         if (state == (u32)PWR_EVENT_EXIT)
587                 c_state_end(tchart, cpu_id, sample->time);
588         else
589                 c_state_start(cpu_id, sample->time, state);
590         return 0;
591 }
592 
593 static int
594 process_sample_cpu_frequency(struct timechart *tchart,
595                              struct perf_evsel *evsel,
596                              struct perf_sample *sample,
597                              const char *backtrace __maybe_unused)
598 {
599         u32 state = perf_evsel__intval(evsel, sample, "state");
600         u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
601 
602         p_state_change(tchart, cpu_id, sample->time, state);
603         return 0;
604 }
605 
606 static int
607 process_sample_sched_wakeup(struct timechart *tchart,
608                             struct perf_evsel *evsel,
609                             struct perf_sample *sample,
610                             const char *backtrace)
611 {
612         u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
613         int waker = perf_evsel__intval(evsel, sample, "common_pid");
614         int wakee = perf_evsel__intval(evsel, sample, "pid");
615 
616         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
617         return 0;
618 }
619 
620 static int
621 process_sample_sched_switch(struct timechart *tchart,
622                             struct perf_evsel *evsel,
623                             struct perf_sample *sample,
624                             const char *backtrace)
625 {
626         int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
627         int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
628         u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
629 
630         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
631                      prev_state, backtrace);
632         return 0;
633 }
634 
635 #ifdef SUPPORT_OLD_POWER_EVENTS
636 static int
637 process_sample_power_start(struct timechart *tchart __maybe_unused,
638                            struct perf_evsel *evsel,
639                            struct perf_sample *sample,
640                            const char *backtrace __maybe_unused)
641 {
642         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
643         u64 value = perf_evsel__intval(evsel, sample, "value");
644 
645         c_state_start(cpu_id, sample->time, value);
646         return 0;
647 }
648 
649 static int
650 process_sample_power_end(struct timechart *tchart,
651                          struct perf_evsel *evsel __maybe_unused,
652                          struct perf_sample *sample,
653                          const char *backtrace __maybe_unused)
654 {
655         c_state_end(tchart, sample->cpu, sample->time);
656         return 0;
657 }
658 
659 static int
660 process_sample_power_frequency(struct timechart *tchart,
661                                struct perf_evsel *evsel,
662                                struct perf_sample *sample,
663                                const char *backtrace __maybe_unused)
664 {
665         u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
666         u64 value = perf_evsel__intval(evsel, sample, "value");
667 
668         p_state_change(tchart, cpu_id, sample->time, value);
669         return 0;
670 }
671 #endif /* SUPPORT_OLD_POWER_EVENTS */
672 
673 /*
674  * After the last sample we need to wrap up the current C/P state
675  * and close out each CPU for these.
676  */
677 static void end_sample_processing(struct timechart *tchart)
678 {
679         u64 cpu;
680         struct power_event *pwr;
681 
682         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
683                 /* C state */
684 #if 0
685                 pwr = zalloc(sizeof(*pwr));
686                 if (!pwr)
687                         return;
688 
689                 pwr->state = cpus_cstate_state[cpu];
690                 pwr->start_time = cpus_cstate_start_times[cpu];
691                 pwr->end_time = tchart->last_time;
692                 pwr->cpu = cpu;
693                 pwr->type = CSTATE;
694                 pwr->next = tchart->power_events;
695 
696                 tchart->power_events = pwr;
697 #endif
698                 /* P state */
699 
700                 pwr = zalloc(sizeof(*pwr));
701                 if (!pwr)
702                         return;
703 
704                 pwr->state = cpus_pstate_state[cpu];
705                 pwr->start_time = cpus_pstate_start_times[cpu];
706                 pwr->end_time = tchart->last_time;
707                 pwr->cpu = cpu;
708                 pwr->type = PSTATE;
709                 pwr->next = tchart->power_events;
710 
711                 if (!pwr->start_time)
712                         pwr->start_time = tchart->first_time;
713                 if (!pwr->state)
714                         pwr->state = tchart->min_freq;
715                 tchart->power_events = pwr;
716         }
717 }
718 
719 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
720                                u64 start, int fd)
721 {
722         struct per_pid *p = find_create_pid(tchart, pid);
723         struct per_pidcomm *c = p->current;
724         struct io_sample *sample;
725         struct io_sample *prev;
726 
727         if (!c) {
728                 c = zalloc(sizeof(*c));
729                 if (!c)
730                         return -ENOMEM;
731                 p->current = c;
732                 c->next = p->all;
733                 p->all = c;
734         }
735 
736         prev = c->io_samples;
737 
738         if (prev && prev->start_time && !prev->end_time) {
739                 pr_warning("Skip invalid start event: "
740                            "previous event already started!\n");
741 
742                 /* remove previous event that has been started,
743                  * we are not sure we will ever get an end for it */
744                 c->io_samples = prev->next;
745                 free(prev);
746                 return 0;
747         }
748 
749         sample = zalloc(sizeof(*sample));
750         if (!sample)
751                 return -ENOMEM;
752         sample->start_time = start;
753         sample->type = type;
754         sample->fd = fd;
755         sample->next = c->io_samples;
756         c->io_samples = sample;
757 
758         if (c->start_time == 0 || c->start_time > start)
759                 c->start_time = start;
760 
761         return 0;
762 }
763 
764 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
765                              u64 end, long ret)
766 {
767         struct per_pid *p = find_create_pid(tchart, pid);
768         struct per_pidcomm *c = p->current;
769         struct io_sample *sample, *prev;
770 
771         if (!c) {
772                 pr_warning("Invalid pidcomm!\n");
773                 return -1;
774         }
775 
776         sample = c->io_samples;
777 
778         if (!sample) /* skip partially captured events */
779                 return 0;
780 
781         if (sample->end_time) {
782                 pr_warning("Skip invalid end event: "
783                            "previous event already ended!\n");
784                 return 0;
785         }
786 
787         if (sample->type != type) {
788                 pr_warning("Skip invalid end event: invalid event type!\n");
789                 return 0;
790         }
791 
792         sample->end_time = end;
793         prev = sample->next;
794 
795         /* we want to be able to see small and fast transfers, so make them
796          * at least min_time long, but don't overlap them */
797         if (sample->end_time - sample->start_time < tchart->min_time)
798                 sample->end_time = sample->start_time + tchart->min_time;
799         if (prev && sample->start_time < prev->end_time) {
800                 if (prev->err) /* try to make errors more visible */
801                         sample->start_time = prev->end_time;
802                 else
803                         prev->end_time = sample->start_time;
804         }
805 
806         if (ret < 0) {
807                 sample->err = ret;
808         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
809                    type == IOTYPE_TX || type == IOTYPE_RX) {
810 
811                 if ((u64)ret > c->max_bytes)
812                         c->max_bytes = ret;
813 
814                 c->total_bytes += ret;
815                 p->total_bytes += ret;
816                 sample->bytes = ret;
817         }
818 
819         /* merge two requests to make svg smaller and render-friendly */
820         if (prev &&
821             prev->type == sample->type &&
822             prev->err == sample->err &&
823             prev->fd == sample->fd &&
824             prev->end_time + tchart->merge_dist >= sample->start_time) {
825 
826                 sample->bytes += prev->bytes;
827                 sample->merges += prev->merges + 1;
828 
829                 sample->start_time = prev->start_time;
830                 sample->next = prev->next;
831                 free(prev);
832 
833                 if (!sample->err && sample->bytes > c->max_bytes)
834                         c->max_bytes = sample->bytes;
835         }
836 
837         tchart->io_events++;
838 
839         return 0;
840 }
841 
842 static int
843 process_enter_read(struct timechart *tchart,
844                    struct perf_evsel *evsel,
845                    struct perf_sample *sample)
846 {
847         long fd = perf_evsel__intval(evsel, sample, "fd");
848         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
849                                    sample->time, fd);
850 }
851 
852 static int
853 process_exit_read(struct timechart *tchart,
854                   struct perf_evsel *evsel,
855                   struct perf_sample *sample)
856 {
857         long ret = perf_evsel__intval(evsel, sample, "ret");
858         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
859                                  sample->time, ret);
860 }
861 
862 static int
863 process_enter_write(struct timechart *tchart,
864                     struct perf_evsel *evsel,
865                     struct perf_sample *sample)
866 {
867         long fd = perf_evsel__intval(evsel, sample, "fd");
868         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
869                                    sample->time, fd);
870 }
871 
872 static int
873 process_exit_write(struct timechart *tchart,
874                    struct perf_evsel *evsel,
875                    struct perf_sample *sample)
876 {
877         long ret = perf_evsel__intval(evsel, sample, "ret");
878         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
879                                  sample->time, ret);
880 }
881 
882 static int
883 process_enter_sync(struct timechart *tchart,
884                    struct perf_evsel *evsel,
885                    struct perf_sample *sample)
886 {
887         long fd = perf_evsel__intval(evsel, sample, "fd");
888         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
889                                    sample->time, fd);
890 }
891 
892 static int
893 process_exit_sync(struct timechart *tchart,
894                   struct perf_evsel *evsel,
895                   struct perf_sample *sample)
896 {
897         long ret = perf_evsel__intval(evsel, sample, "ret");
898         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
899                                  sample->time, ret);
900 }
901 
902 static int
903 process_enter_tx(struct timechart *tchart,
904                  struct perf_evsel *evsel,
905                  struct perf_sample *sample)
906 {
907         long fd = perf_evsel__intval(evsel, sample, "fd");
908         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
909                                    sample->time, fd);
910 }
911 
912 static int
913 process_exit_tx(struct timechart *tchart,
914                 struct perf_evsel *evsel,
915                 struct perf_sample *sample)
916 {
917         long ret = perf_evsel__intval(evsel, sample, "ret");
918         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
919                                  sample->time, ret);
920 }
921 
922 static int
923 process_enter_rx(struct timechart *tchart,
924                  struct perf_evsel *evsel,
925                  struct perf_sample *sample)
926 {
927         long fd = perf_evsel__intval(evsel, sample, "fd");
928         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
929                                    sample->time, fd);
930 }
931 
932 static int
933 process_exit_rx(struct timechart *tchart,
934                 struct perf_evsel *evsel,
935                 struct perf_sample *sample)
936 {
937         long ret = perf_evsel__intval(evsel, sample, "ret");
938         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
939                                  sample->time, ret);
940 }
941 
942 static int
943 process_enter_poll(struct timechart *tchart,
944                    struct perf_evsel *evsel,
945                    struct perf_sample *sample)
946 {
947         long fd = perf_evsel__intval(evsel, sample, "fd");
948         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
949                                    sample->time, fd);
950 }
951 
952 static int
953 process_exit_poll(struct timechart *tchart,
954                   struct perf_evsel *evsel,
955                   struct perf_sample *sample)
956 {
957         long ret = perf_evsel__intval(evsel, sample, "ret");
958         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
959                                  sample->time, ret);
960 }
961 
962 /*
963  * Sort the pid datastructure
964  */
965 static void sort_pids(struct timechart *tchart)
966 {
967         struct per_pid *new_list, *p, *cursor, *prev;
968         /* sort by ppid first, then by pid, lowest to highest */
969 
970         new_list = NULL;
971 
972         while (tchart->all_data) {
973                 p = tchart->all_data;
974                 tchart->all_data = p->next;
975                 p->next = NULL;
976 
977                 if (new_list == NULL) {
978                         new_list = p;
979                         p->next = NULL;
980                         continue;
981                 }
982                 prev = NULL;
983                 cursor = new_list;
984                 while (cursor) {
985                         if (cursor->ppid > p->ppid ||
986                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
987                                 /* must insert before */
988                                 if (prev) {
989                                         p->next = prev->next;
990                                         prev->next = p;
991                                         cursor = NULL;
992                                         continue;
993                                 } else {
994                                         p->next = new_list;
995                                         new_list = p;
996                                         cursor = NULL;
997                                         continue;
998                                 }
999                         }
1000 
1001                         prev = cursor;
1002                         cursor = cursor->next;
1003                         if (!cursor)
1004                                 prev->next = p;
1005                 }
1006         }
1007         tchart->all_data = new_list;
1008 }
1009 
1010 
1011 static void draw_c_p_states(struct timechart *tchart)
1012 {
1013         struct power_event *pwr;
1014         pwr = tchart->power_events;
1015 
1016         /*
1017          * two pass drawing so that the P state bars are on top of the C state blocks
1018          */
1019         while (pwr) {
1020                 if (pwr->type == CSTATE)
1021                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1022                 pwr = pwr->next;
1023         }
1024 
1025         pwr = tchart->power_events;
1026         while (pwr) {
1027                 if (pwr->type == PSTATE) {
1028                         if (!pwr->state)
1029                                 pwr->state = tchart->min_freq;
1030                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1031                 }
1032                 pwr = pwr->next;
1033         }
1034 }
1035 
1036 static void draw_wakeups(struct timechart *tchart)
1037 {
1038         struct wake_event *we;
1039         struct per_pid *p;
1040         struct per_pidcomm *c;
1041 
1042         we = tchart->wake_events;
1043         while (we) {
1044                 int from = 0, to = 0;
1045                 char *task_from = NULL, *task_to = NULL;
1046 
1047                 /* locate the column of the waker and wakee */
1048                 p = tchart->all_data;
1049                 while (p) {
1050                         if (p->pid == we->waker || p->pid == we->wakee) {
1051                                 c = p->all;
1052                                 while (c) {
1053                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1054                                                 if (p->pid == we->waker && !from) {
1055                                                         from = c->Y;
1056                                                         task_from = strdup(c->comm);
1057                                                 }
1058                                                 if (p->pid == we->wakee && !to) {
1059                                                         to = c->Y;
1060                                                         task_to = strdup(c->comm);
1061                                                 }
1062                                         }
1063                                         c = c->next;
1064                                 }
1065                                 c = p->all;
1066                                 while (c) {
1067                                         if (p->pid == we->waker && !from) {
1068                                                 from = c->Y;
1069                                                 task_from = strdup(c->comm);
1070                                         }
1071                                         if (p->pid == we->wakee && !to) {
1072                                                 to = c->Y;
1073                                                 task_to = strdup(c->comm);
1074                                         }
1075                                         c = c->next;
1076                                 }
1077                         }
1078                         p = p->next;
1079                 }
1080 
1081                 if (!task_from) {
1082                         task_from = malloc(40);
1083                         sprintf(task_from, "[%i]", we->waker);
1084                 }
1085                 if (!task_to) {
1086                         task_to = malloc(40);
1087                         sprintf(task_to, "[%i]", we->wakee);
1088                 }
1089 
1090                 if (we->waker == -1)
1091                         svg_interrupt(we->time, to, we->backtrace);
1092                 else if (from && to && abs(from - to) == 1)
1093                         svg_wakeline(we->time, from, to, we->backtrace);
1094                 else
1095                         svg_partial_wakeline(we->time, from, task_from, to,
1096                                              task_to, we->backtrace);
1097                 we = we->next;
1098 
1099                 free(task_from);
1100                 free(task_to);
1101         }
1102 }
1103 
1104 static void draw_cpu_usage(struct timechart *tchart)
1105 {
1106         struct per_pid *p;
1107         struct per_pidcomm *c;
1108         struct cpu_sample *sample;
1109         p = tchart->all_data;
1110         while (p) {
1111                 c = p->all;
1112                 while (c) {
1113                         sample = c->samples;
1114                         while (sample) {
1115                                 if (sample->type == TYPE_RUNNING) {
1116                                         svg_process(sample->cpu,
1117                                                     sample->start_time,
1118                                                     sample->end_time,
1119                                                     p->pid,
1120                                                     c->comm,
1121                                                     sample->backtrace);
1122                                 }
1123 
1124                                 sample = sample->next;
1125                         }
1126                         c = c->next;
1127                 }
1128                 p = p->next;
1129         }
1130 }
1131 
1132 static void draw_io_bars(struct timechart *tchart)
1133 {
1134         const char *suf;
1135         double bytes;
1136         char comm[256];
1137         struct per_pid *p;
1138         struct per_pidcomm *c;
1139         struct io_sample *sample;
1140         int Y = 1;
1141 
1142         p = tchart->all_data;
1143         while (p) {
1144                 c = p->all;
1145                 while (c) {
1146                         if (!c->display) {
1147                                 c->Y = 0;
1148                                 c = c->next;
1149                                 continue;
1150                         }
1151 
1152                         svg_box(Y, c->start_time, c->end_time, "process3");
1153                         sample = c->io_samples;
1154                         for (sample = c->io_samples; sample; sample = sample->next) {
1155                                 double h = (double)sample->bytes / c->max_bytes;
1156 
1157                                 if (tchart->skip_eagain &&
1158                                     sample->err == -EAGAIN)
1159                                         continue;
1160 
1161                                 if (sample->err)
1162                                         h = 1;
1163 
1164                                 if (sample->type == IOTYPE_SYNC)
1165                                         svg_fbox(Y,
1166                                                 sample->start_time,
1167                                                 sample->end_time,
1168                                                 1,
1169                                                 sample->err ? "error" : "sync",
1170                                                 sample->fd,
1171                                                 sample->err,
1172                                                 sample->merges);
1173                                 else if (sample->type == IOTYPE_POLL)
1174                                         svg_fbox(Y,
1175                                                 sample->start_time,
1176                                                 sample->end_time,
1177                                                 1,
1178                                                 sample->err ? "error" : "poll",
1179                                                 sample->fd,
1180                                                 sample->err,
1181                                                 sample->merges);
1182                                 else if (sample->type == IOTYPE_READ)
1183                                         svg_ubox(Y,
1184                                                 sample->start_time,
1185                                                 sample->end_time,
1186                                                 h,
1187                                                 sample->err ? "error" : "disk",
1188                                                 sample->fd,
1189                                                 sample->err,
1190                                                 sample->merges);
1191                                 else if (sample->type == IOTYPE_WRITE)
1192                                         svg_lbox(Y,
1193                                                 sample->start_time,
1194                                                 sample->end_time,
1195                                                 h,
1196                                                 sample->err ? "error" : "disk",
1197                                                 sample->fd,
1198                                                 sample->err,
1199                                                 sample->merges);
1200                                 else if (sample->type == IOTYPE_RX)
1201                                         svg_ubox(Y,
1202                                                 sample->start_time,
1203                                                 sample->end_time,
1204                                                 h,
1205                                                 sample->err ? "error" : "net",
1206                                                 sample->fd,
1207                                                 sample->err,
1208                                                 sample->merges);
1209                                 else if (sample->type == IOTYPE_TX)
1210                                         svg_lbox(Y,
1211                                                 sample->start_time,
1212                                                 sample->end_time,
1213                                                 h,
1214                                                 sample->err ? "error" : "net",
1215                                                 sample->fd,
1216                                                 sample->err,
1217                                                 sample->merges);
1218                         }
1219 
1220                         suf = "";
1221                         bytes = c->total_bytes;
1222                         if (bytes > 1024) {
1223                                 bytes = bytes / 1024;
1224                                 suf = "K";
1225                         }
1226                         if (bytes > 1024) {
1227                                 bytes = bytes / 1024;
1228                                 suf = "M";
1229                         }
1230                         if (bytes > 1024) {
1231                                 bytes = bytes / 1024;
1232                                 suf = "G";
1233                         }
1234 
1235 
1236                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1237                         svg_text(Y, c->start_time, comm);
1238 
1239                         c->Y = Y;
1240                         Y++;
1241                         c = c->next;
1242                 }
1243                 p = p->next;
1244         }
1245 }
1246 
1247 static void draw_process_bars(struct timechart *tchart)
1248 {
1249         struct per_pid *p;
1250         struct per_pidcomm *c;
1251         struct cpu_sample *sample;
1252         int Y = 0;
1253 
1254         Y = 2 * tchart->numcpus + 2;
1255 
1256         p = tchart->all_data;
1257         while (p) {
1258                 c = p->all;
1259                 while (c) {
1260                         if (!c->display) {
1261                                 c->Y = 0;
1262                                 c = c->next;
1263                                 continue;
1264                         }
1265 
1266                         svg_box(Y, c->start_time, c->end_time, "process");
1267                         sample = c->samples;
1268                         while (sample) {
1269                                 if (sample->type == TYPE_RUNNING)
1270                                         svg_running(Y, sample->cpu,
1271                                                     sample->start_time,
1272                                                     sample->end_time,
1273                                                     sample->backtrace);
1274                                 if (sample->type == TYPE_BLOCKED)
1275                                         svg_blocked(Y, sample->cpu,
1276                                                     sample->start_time,
1277                                                     sample->end_time,
1278                                                     sample->backtrace);
1279                                 if (sample->type == TYPE_WAITING)
1280                                         svg_waiting(Y, sample->cpu,
1281                                                     sample->start_time,
1282                                                     sample->end_time,
1283                                                     sample->backtrace);
1284                                 sample = sample->next;
1285                         }
1286 
1287                         if (c->comm) {
1288                                 char comm[256];
1289                                 if (c->total_time > 5000000000) /* 5 seconds */
1290                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1291                                 else
1292                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1293 
1294                                 svg_text(Y, c->start_time, comm);
1295                         }
1296                         c->Y = Y;
1297                         Y++;
1298                         c = c->next;
1299                 }
1300                 p = p->next;
1301         }
1302 }
1303 
1304 static void add_process_filter(const char *string)
1305 {
1306         int pid = strtoull(string, NULL, 10);
1307         struct process_filter *filt = malloc(sizeof(*filt));
1308 
1309         if (!filt)
1310                 return;
1311 
1312         filt->name = strdup(string);
1313         filt->pid  = pid;
1314         filt->next = process_filter;
1315 
1316         process_filter = filt;
1317 }
1318 
1319 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1320 {
1321         struct process_filter *filt;
1322         if (!process_filter)
1323                 return 1;
1324 
1325         filt = process_filter;
1326         while (filt) {
1327                 if (filt->pid && p->pid == filt->pid)
1328                         return 1;
1329                 if (strcmp(filt->name, c->comm) == 0)
1330                         return 1;
1331                 filt = filt->next;
1332         }
1333         return 0;
1334 }
1335 
1336 static int determine_display_tasks_filtered(struct timechart *tchart)
1337 {
1338         struct per_pid *p;
1339         struct per_pidcomm *c;
1340         int count = 0;
1341 
1342         p = tchart->all_data;
1343         while (p) {
1344                 p->display = 0;
1345                 if (p->start_time == 1)
1346                         p->start_time = tchart->first_time;
1347 
1348                 /* no exit marker, task kept running to the end */
1349                 if (p->end_time == 0)
1350                         p->end_time = tchart->last_time;
1351 
1352                 c = p->all;
1353 
1354                 while (c) {
1355                         c->display = 0;
1356 
1357                         if (c->start_time == 1)
1358                                 c->start_time = tchart->first_time;
1359 
1360                         if (passes_filter(p, c)) {
1361                                 c->display = 1;
1362                                 p->display = 1;
1363                                 count++;
1364                         }
1365 
1366                         if (c->end_time == 0)
1367                                 c->end_time = tchart->last_time;
1368 
1369                         c = c->next;
1370                 }
1371                 p = p->next;
1372         }
1373         return count;
1374 }
1375 
1376 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1377 {
1378         struct per_pid *p;
1379         struct per_pidcomm *c;
1380         int count = 0;
1381 
1382         p = tchart->all_data;
1383         while (p) {
1384                 p->display = 0;
1385                 if (p->start_time == 1)
1386                         p->start_time = tchart->first_time;
1387 
1388                 /* no exit marker, task kept running to the end */
1389                 if (p->end_time == 0)
1390                         p->end_time = tchart->last_time;
1391                 if (p->total_time >= threshold)
1392                         p->display = 1;
1393 
1394                 c = p->all;
1395 
1396                 while (c) {
1397                         c->display = 0;
1398 
1399                         if (c->start_time == 1)
1400                                 c->start_time = tchart->first_time;
1401 
1402                         if (c->total_time >= threshold) {
1403                                 c->display = 1;
1404                                 count++;
1405                         }
1406 
1407                         if (c->end_time == 0)
1408                                 c->end_time = tchart->last_time;
1409 
1410                         c = c->next;
1411                 }
1412                 p = p->next;
1413         }
1414         return count;
1415 }
1416 
1417 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1418 {
1419         struct per_pid *p;
1420         struct per_pidcomm *c;
1421         int count = 0;
1422 
1423         p = timechart->all_data;
1424         while (p) {
1425                 /* no exit marker, task kept running to the end */
1426                 if (p->end_time == 0)
1427                         p->end_time = timechart->last_time;
1428 
1429                 c = p->all;
1430 
1431                 while (c) {
1432                         c->display = 0;
1433 
1434                         if (c->total_bytes >= threshold) {
1435                                 c->display = 1;
1436                                 count++;
1437                         }
1438 
1439                         if (c->end_time == 0)
1440                                 c->end_time = timechart->last_time;
1441 
1442                         c = c->next;
1443                 }
1444                 p = p->next;
1445         }
1446         return count;
1447 }
1448 
1449 #define BYTES_THRESH (1 * 1024 * 1024)
1450 #define TIME_THRESH 10000000
1451 
1452 static void write_svg_file(struct timechart *tchart, const char *filename)
1453 {
1454         u64 i;
1455         int count;
1456         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1457 
1458         if (tchart->power_only)
1459                 tchart->proc_num = 0;
1460 
1461         /* We'd like to show at least proc_num tasks;
1462          * be less picky if we have fewer */
1463         do {
1464                 if (process_filter)
1465                         count = determine_display_tasks_filtered(tchart);
1466                 else if (tchart->io_events)
1467                         count = determine_display_io_tasks(tchart, thresh);
1468                 else
1469                         count = determine_display_tasks(tchart, thresh);
1470                 thresh /= 10;
1471         } while (!process_filter && thresh && count < tchart->proc_num);
1472 
1473         if (!tchart->proc_num)
1474                 count = 0;
1475 
1476         if (tchart->io_events) {
1477                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1478 
1479                 svg_time_grid(0.5);
1480                 svg_io_legenda();
1481 
1482                 draw_io_bars(tchart);
1483         } else {
1484                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1485 
1486                 svg_time_grid(0);
1487 
1488                 svg_legenda();
1489 
1490                 for (i = 0; i < tchart->numcpus; i++)
1491                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1492 
1493                 draw_cpu_usage(tchart);
1494                 if (tchart->proc_num)
1495                         draw_process_bars(tchart);
1496                 if (!tchart->tasks_only)
1497                         draw_c_p_states(tchart);
1498                 if (tchart->proc_num)
1499                         draw_wakeups(tchart);
1500         }
1501 
1502         svg_close();
1503 }
1504 
1505 static int process_header(struct perf_file_section *section __maybe_unused,
1506                           struct perf_header *ph,
1507                           int feat,
1508                           int fd __maybe_unused,
1509                           void *data)
1510 {
1511         struct timechart *tchart = data;
1512 
1513         switch (feat) {
1514         case HEADER_NRCPUS:
1515                 tchart->numcpus = ph->env.nr_cpus_avail;
1516                 break;
1517 
1518         case HEADER_CPU_TOPOLOGY:
1519                 if (!tchart->topology)
1520                         break;
1521 
1522                 if (svg_build_topology_map(ph->env.sibling_cores,
1523                                            ph->env.nr_sibling_cores,
1524                                            ph->env.sibling_threads,
1525                                            ph->env.nr_sibling_threads))
1526                         fprintf(stderr, "problem building topology\n");
1527                 break;
1528 
1529         default:
1530                 break;
1531         }
1532 
1533         return 0;
1534 }
1535 
1536 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1537 {
1538         const struct perf_evsel_str_handler power_tracepoints[] = {
1539                 { "power:cpu_idle",             process_sample_cpu_idle },
1540                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1541                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1542                 { "sched:sched_switch",         process_sample_sched_switch },
1543 #ifdef SUPPORT_OLD_POWER_EVENTS
1544                 { "power:power_start",          process_sample_power_start },
1545                 { "power:power_end",            process_sample_power_end },
1546                 { "power:power_frequency",      process_sample_power_frequency },
1547 #endif
1548 
1549                 { "syscalls:sys_enter_read",            process_enter_read },
1550                 { "syscalls:sys_enter_pread64",         process_enter_read },
1551                 { "syscalls:sys_enter_readv",           process_enter_read },
1552                 { "syscalls:sys_enter_preadv",          process_enter_read },
1553                 { "syscalls:sys_enter_write",           process_enter_write },
1554                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1555                 { "syscalls:sys_enter_writev",          process_enter_write },
1556                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1557                 { "syscalls:sys_enter_sync",            process_enter_sync },
1558                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1559                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1560                 { "syscalls:sys_enter_msync",           process_enter_sync },
1561                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1562                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1563                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1564                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1565                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1566                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1567                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1568                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1569                 { "syscalls:sys_enter_poll",            process_enter_poll },
1570                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1571                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1572                 { "syscalls:sys_enter_select",          process_enter_poll },
1573 
1574                 { "syscalls:sys_exit_read",             process_exit_read },
1575                 { "syscalls:sys_exit_pread64",          process_exit_read },
1576                 { "syscalls:sys_exit_readv",            process_exit_read },
1577                 { "syscalls:sys_exit_preadv",           process_exit_read },
1578                 { "syscalls:sys_exit_write",            process_exit_write },
1579                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1580                 { "syscalls:sys_exit_writev",           process_exit_write },
1581                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1582                 { "syscalls:sys_exit_sync",             process_exit_sync },
1583                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1584                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1585                 { "syscalls:sys_exit_msync",            process_exit_sync },
1586                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1587                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1588                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1589                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1590                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1591                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1592                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1593                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1594                 { "syscalls:sys_exit_poll",             process_exit_poll },
1595                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1596                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1597                 { "syscalls:sys_exit_select",           process_exit_poll },
1598         };
1599         struct perf_data_file file = {
1600                 .path = input_name,
1601                 .mode = PERF_DATA_MODE_READ,
1602                 .force = tchart->force,
1603         };
1604 
1605         struct perf_session *session = perf_session__new(&file, false,
1606                                                          &tchart->tool);
1607         int ret = -EINVAL;
1608 
1609         if (session == NULL)
1610                 return -1;
1611 
1612         symbol__init(&session->header.env);
1613 
1614         (void)perf_header__process_sections(&session->header,
1615                                             perf_data_file__fd(session->file),
1616                                             tchart,
1617                                             process_header);
1618 
1619         if (!perf_session__has_traces(session, "timechart record"))
1620                 goto out_delete;
1621 
1622         if (perf_session__set_tracepoints_handlers(session,
1623                                                    power_tracepoints)) {
1624                 pr_err("Initializing session tracepoint handlers failed\n");
1625                 goto out_delete;
1626         }
1627 
1628         ret = perf_session__process_events(session);
1629         if (ret)
1630                 goto out_delete;
1631 
1632         end_sample_processing(tchart);
1633 
1634         sort_pids(tchart);
1635 
1636         write_svg_file(tchart, output_name);
1637 
1638         pr_info("Written %2.1f seconds of trace to %s.\n",
1639                 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1640 out_delete:
1641         perf_session__delete(session);
1642         return ret;
1643 }
1644 
1645 static int timechart__io_record(int argc, const char **argv)
1646 {
1647         unsigned int rec_argc, i;
1648         const char **rec_argv;
1649         const char **p;
1650         char *filter = NULL;
1651 
1652         const char * const common_args[] = {
1653                 "record", "-a", "-R", "-c", "1",
1654         };
1655         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1656 
1657         const char * const disk_events[] = {
1658                 "syscalls:sys_enter_read",
1659                 "syscalls:sys_enter_pread64",
1660                 "syscalls:sys_enter_readv",
1661                 "syscalls:sys_enter_preadv",
1662                 "syscalls:sys_enter_write",
1663                 "syscalls:sys_enter_pwrite64",
1664                 "syscalls:sys_enter_writev",
1665                 "syscalls:sys_enter_pwritev",
1666                 "syscalls:sys_enter_sync",
1667                 "syscalls:sys_enter_sync_file_range",
1668                 "syscalls:sys_enter_fsync",
1669                 "syscalls:sys_enter_msync",
1670 
1671                 "syscalls:sys_exit_read",
1672                 "syscalls:sys_exit_pread64",
1673                 "syscalls:sys_exit_readv",
1674                 "syscalls:sys_exit_preadv",
1675                 "syscalls:sys_exit_write",
1676                 "syscalls:sys_exit_pwrite64",
1677                 "syscalls:sys_exit_writev",
1678                 "syscalls:sys_exit_pwritev",
1679                 "syscalls:sys_exit_sync",
1680                 "syscalls:sys_exit_sync_file_range",
1681                 "syscalls:sys_exit_fsync",
1682                 "syscalls:sys_exit_msync",
1683         };
1684         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1685 
1686         const char * const net_events[] = {
1687                 "syscalls:sys_enter_recvfrom",
1688                 "syscalls:sys_enter_recvmmsg",
1689                 "syscalls:sys_enter_recvmsg",
1690                 "syscalls:sys_enter_sendto",
1691                 "syscalls:sys_enter_sendmsg",
1692                 "syscalls:sys_enter_sendmmsg",
1693 
1694                 "syscalls:sys_exit_recvfrom",
1695                 "syscalls:sys_exit_recvmmsg",
1696                 "syscalls:sys_exit_recvmsg",
1697                 "syscalls:sys_exit_sendto",
1698                 "syscalls:sys_exit_sendmsg",
1699                 "syscalls:sys_exit_sendmmsg",
1700         };
1701         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1702 
1703         const char * const poll_events[] = {
1704                 "syscalls:sys_enter_epoll_pwait",
1705                 "syscalls:sys_enter_epoll_wait",
1706                 "syscalls:sys_enter_poll",
1707                 "syscalls:sys_enter_ppoll",
1708                 "syscalls:sys_enter_pselect6",
1709                 "syscalls:sys_enter_select",
1710 
1711                 "syscalls:sys_exit_epoll_pwait",
1712                 "syscalls:sys_exit_epoll_wait",
1713                 "syscalls:sys_exit_poll",
1714                 "syscalls:sys_exit_ppoll",
1715                 "syscalls:sys_exit_pselect6",
1716                 "syscalls:sys_exit_select",
1717         };
1718         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1719 
1720         rec_argc = common_args_nr +
1721                 disk_events_nr * 4 +
1722                 net_events_nr * 4 +
1723                 poll_events_nr * 4 +
1724                 argc;
1725         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1726 
1727         if (rec_argv == NULL)
1728                 return -ENOMEM;
1729 
1730         if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1731                 return -ENOMEM;
1732 
1733         p = rec_argv;
1734         for (i = 0; i < common_args_nr; i++)
1735                 *p++ = strdup(common_args[i]);
1736 
1737         for (i = 0; i < disk_events_nr; i++) {
1738                 if (!is_valid_tracepoint(disk_events[i])) {
1739                         rec_argc -= 4;
1740                         continue;
1741                 }
1742 
1743                 *p++ = "-e";
1744                 *p++ = strdup(disk_events[i]);
1745                 *p++ = "--filter";
1746                 *p++ = filter;
1747         }
1748         for (i = 0; i < net_events_nr; i++) {
1749                 if (!is_valid_tracepoint(net_events[i])) {
1750                         rec_argc -= 4;
1751                         continue;
1752                 }
1753 
1754                 *p++ = "-e";
1755                 *p++ = strdup(net_events[i]);
1756                 *p++ = "--filter";
1757                 *p++ = filter;
1758         }
1759         for (i = 0; i < poll_events_nr; i++) {
1760                 if (!is_valid_tracepoint(poll_events[i])) {
1761                         rec_argc -= 4;
1762                         continue;
1763                 }
1764 
1765                 *p++ = "-e";
1766                 *p++ = strdup(poll_events[i]);
1767                 *p++ = "--filter";
1768                 *p++ = filter;
1769         }
1770 
1771         for (i = 0; i < (unsigned int)argc; i++)
1772                 *p++ = argv[i];
1773 
1774         return cmd_record(rec_argc, rec_argv, NULL);
1775 }
1776 
1777 
1778 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1779 {
1780         unsigned int rec_argc, i, j;
1781         const char **rec_argv;
1782         const char **p;
1783         unsigned int record_elems;
1784 
1785         const char * const common_args[] = {
1786                 "record", "-a", "-R", "-c", "1",
1787         };
1788         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1789 
1790         const char * const backtrace_args[] = {
1791                 "-g",
1792         };
1793         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1794 
1795         const char * const power_args[] = {
1796                 "-e", "power:cpu_frequency",
1797                 "-e", "power:cpu_idle",
1798         };
1799         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1800 
1801         const char * const old_power_args[] = {
1802 #ifdef SUPPORT_OLD_POWER_EVENTS
1803                 "-e", "power:power_start",
1804                 "-e", "power:power_end",
1805                 "-e", "power:power_frequency",
1806 #endif
1807         };
1808         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1809 
1810         const char * const tasks_args[] = {
1811                 "-e", "sched:sched_wakeup",
1812                 "-e", "sched:sched_switch",
1813         };
1814         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1815 
1816 #ifdef SUPPORT_OLD_POWER_EVENTS
1817         if (!is_valid_tracepoint("power:cpu_idle") &&
1818             is_valid_tracepoint("power:power_start")) {
1819                 use_old_power_events = 1;
1820                 power_args_nr = 0;
1821         } else {
1822                 old_power_args_nr = 0;
1823         }
1824 #endif
1825 
1826         if (tchart->power_only)
1827                 tasks_args_nr = 0;
1828 
1829         if (tchart->tasks_only) {
1830                 power_args_nr = 0;
1831                 old_power_args_nr = 0;
1832         }
1833 
1834         if (!tchart->with_backtrace)
1835                 backtrace_args_no = 0;
1836 
1837         record_elems = common_args_nr + tasks_args_nr +
1838                 power_args_nr + old_power_args_nr + backtrace_args_no;
1839 
1840         rec_argc = record_elems + argc;
1841         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1842 
1843         if (rec_argv == NULL)
1844                 return -ENOMEM;
1845 
1846         p = rec_argv;
1847         for (i = 0; i < common_args_nr; i++)
1848                 *p++ = strdup(common_args[i]);
1849 
1850         for (i = 0; i < backtrace_args_no; i++)
1851                 *p++ = strdup(backtrace_args[i]);
1852 
1853         for (i = 0; i < tasks_args_nr; i++)
1854                 *p++ = strdup(tasks_args[i]);
1855 
1856         for (i = 0; i < power_args_nr; i++)
1857                 *p++ = strdup(power_args[i]);
1858 
1859         for (i = 0; i < old_power_args_nr; i++)
1860                 *p++ = strdup(old_power_args[i]);
1861 
1862         for (j = 0; j < (unsigned int)argc; j++)
1863                 *p++ = argv[j];
1864 
1865         return cmd_record(rec_argc, rec_argv, NULL);
1866 }
1867 
1868 static int
1869 parse_process(const struct option *opt __maybe_unused, const char *arg,
1870               int __maybe_unused unset)
1871 {
1872         if (arg)
1873                 add_process_filter(arg);
1874         return 0;
1875 }
1876 
1877 static int
1878 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1879                 int __maybe_unused unset)
1880 {
1881         unsigned long duration = strtoul(arg, NULL, 0);
1882 
1883         if (svg_highlight || svg_highlight_name)
1884                 return -1;
1885 
1886         if (duration)
1887                 svg_highlight = duration;
1888         else
1889                 svg_highlight_name = strdup(arg);
1890 
1891         return 0;
1892 }
1893 
1894 static int
1895 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1896 {
1897         char unit = 'n';
1898         u64 *value = opt->value;
1899 
1900         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1901                 switch (unit) {
1902                 case 'm':
1903                         *value *= 1000000;
1904                         break;
1905                 case 'u':
1906                         *value *= 1000;
1907                         break;
1908                 case 'n':
1909                         break;
1910                 default:
1911                         return -1;
1912                 }
1913         }
1914 
1915         return 0;
1916 }
1917 
1918 int cmd_timechart(int argc, const char **argv,
1919                   const char *prefix __maybe_unused)
1920 {
1921         struct timechart tchart = {
1922                 .tool = {
1923                         .comm            = process_comm_event,
1924                         .fork            = process_fork_event,
1925                         .exit            = process_exit_event,
1926                         .sample          = process_sample_event,
1927                         .ordered_events  = true,
1928                 },
1929                 .proc_num = 15,
1930                 .min_time = 1000000,
1931                 .merge_dist = 1000,
1932         };
1933         const char *output_name = "output.svg";
1934         const struct option timechart_options[] = {
1935         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1936         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1937         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1938         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1939                       "highlight tasks. Pass duration in ns or process name.",
1940                        parse_highlight),
1941         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1942         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1943                     "output processes data only"),
1944         OPT_CALLBACK('p', "process", NULL, "process",
1945                       "process selector. Pass a pid or process name.",
1946                        parse_process),
1947         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1948                     "Look for files with symbols relative to this directory"),
1949         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1950                     "min. number of tasks to print"),
1951         OPT_BOOLEAN('t', "topology", &tchart.topology,
1952                     "sort CPUs according to topology"),
1953         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1954                     "skip EAGAIN errors"),
1955         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1956                      "all IO faster than min-time will visually appear longer",
1957                      parse_time),
1958         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1959                      "merge events that are merge-dist us apart",
1960                      parse_time),
1961         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1962         OPT_END()
1963         };
1964         const char * const timechart_subcommands[] = { "record", NULL };
1965         const char *timechart_usage[] = {
1966                 "perf timechart [<options>] {record}",
1967                 NULL
1968         };
1969 
1970         const struct option timechart_record_options[] = {
1971         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1972         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1973                     "output processes data only"),
1974         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1975                     "record only IO data"),
1976         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1977         OPT_END()
1978         };
1979         const char * const timechart_record_usage[] = {
1980                 "perf timechart record [<options>]",
1981                 NULL
1982         };
1983         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1984                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1985 
1986         if (tchart.power_only && tchart.tasks_only) {
1987                 pr_err("-P and -T options cannot be used at the same time.\n");
1988                 return -1;
1989         }
1990 
1991         if (argc && !strncmp(argv[0], "rec", 3)) {
1992                 argc = parse_options(argc, argv, timechart_record_options,
1993                                      timechart_record_usage,
1994                                      PARSE_OPT_STOP_AT_NON_OPTION);
1995 
1996                 if (tchart.power_only && tchart.tasks_only) {
1997                         pr_err("-P and -T options cannot be used at the same time.\n");
1998                         return -1;
1999                 }
2000 
2001                 if (tchart.io_only)
2002                         return timechart__io_record(argc, argv);
2003                 else
2004                         return timechart__record(&tchart, argc, argv);
2005         } else if (argc)
2006                 usage_with_options(timechart_usage, timechart_options);
2007 
2008         setup_pager();
2009 
2010         return __cmd_timechart(&tchart, output_name);
2011 }
2012 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us