Version:  2.0.40 2.2.26 2.4.37 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Linux/net/wireless/util.c

  1 /*
  2  * Wireless utility functions
  3  *
  4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2013-2014  Intel Mobile Communications GmbH
  6  */
  7 #include <linux/export.h>
  8 #include <linux/bitops.h>
  9 #include <linux/etherdevice.h>
 10 #include <linux/slab.h>
 11 #include <net/cfg80211.h>
 12 #include <net/ip.h>
 13 #include <net/dsfield.h>
 14 #include <linux/if_vlan.h>
 15 #include <linux/mpls.h>
 16 #include "core.h"
 17 #include "rdev-ops.h"
 18 
 19 
 20 struct ieee80211_rate *
 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
 22                             u32 basic_rates, int bitrate)
 23 {
 24         struct ieee80211_rate *result = &sband->bitrates[0];
 25         int i;
 26 
 27         for (i = 0; i < sband->n_bitrates; i++) {
 28                 if (!(basic_rates & BIT(i)))
 29                         continue;
 30                 if (sband->bitrates[i].bitrate > bitrate)
 31                         continue;
 32                 result = &sband->bitrates[i];
 33         }
 34 
 35         return result;
 36 }
 37 EXPORT_SYMBOL(ieee80211_get_response_rate);
 38 
 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
 40                               enum nl80211_bss_scan_width scan_width)
 41 {
 42         struct ieee80211_rate *bitrates;
 43         u32 mandatory_rates = 0;
 44         enum ieee80211_rate_flags mandatory_flag;
 45         int i;
 46 
 47         if (WARN_ON(!sband))
 48                 return 1;
 49 
 50         if (sband->band == IEEE80211_BAND_2GHZ) {
 51                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
 52                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
 53                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
 54                 else
 55                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
 56         } else {
 57                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 58         }
 59 
 60         bitrates = sband->bitrates;
 61         for (i = 0; i < sband->n_bitrates; i++)
 62                 if (bitrates[i].flags & mandatory_flag)
 63                         mandatory_rates |= BIT(i);
 64         return mandatory_rates;
 65 }
 66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
 67 
 68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
 69 {
 70         /* see 802.11 17.3.8.3.2 and Annex J
 71          * there are overlapping channel numbers in 5GHz and 2GHz bands */
 72         if (chan <= 0)
 73                 return 0; /* not supported */
 74         switch (band) {
 75         case IEEE80211_BAND_2GHZ:
 76                 if (chan == 14)
 77                         return 2484;
 78                 else if (chan < 14)
 79                         return 2407 + chan * 5;
 80                 break;
 81         case IEEE80211_BAND_5GHZ:
 82                 if (chan >= 182 && chan <= 196)
 83                         return 4000 + chan * 5;
 84                 else
 85                         return 5000 + chan * 5;
 86                 break;
 87         case IEEE80211_BAND_60GHZ:
 88                 if (chan < 5)
 89                         return 56160 + chan * 2160;
 90                 break;
 91         default:
 92                 ;
 93         }
 94         return 0; /* not supported */
 95 }
 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 97 
 98 int ieee80211_frequency_to_channel(int freq)
 99 {
100         /* see 802.11 17.3.8.3.2 and Annex J */
101         if (freq == 2484)
102                 return 14;
103         else if (freq < 2484)
104                 return (freq - 2407) / 5;
105         else if (freq >= 4910 && freq <= 4980)
106                 return (freq - 4000) / 5;
107         else if (freq <= 45000) /* DMG band lower limit */
108                 return (freq - 5000) / 5;
109         else if (freq >= 58320 && freq <= 64800)
110                 return (freq - 56160) / 2160;
111         else
112                 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117                                                   int freq)
118 {
119         enum ieee80211_band band;
120         struct ieee80211_supported_band *sband;
121         int i;
122 
123         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124                 sband = wiphy->bands[band];
125 
126                 if (!sband)
127                         continue;
128 
129                 for (i = 0; i < sband->n_channels; i++) {
130                         if (sband->channels[i].center_freq == freq)
131                                 return &sband->channels[i];
132                 }
133         }
134 
135         return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140                                      enum ieee80211_band band)
141 {
142         int i, want;
143 
144         switch (band) {
145         case IEEE80211_BAND_5GHZ:
146                 want = 3;
147                 for (i = 0; i < sband->n_bitrates; i++) {
148                         if (sband->bitrates[i].bitrate == 60 ||
149                             sband->bitrates[i].bitrate == 120 ||
150                             sband->bitrates[i].bitrate == 240) {
151                                 sband->bitrates[i].flags |=
152                                         IEEE80211_RATE_MANDATORY_A;
153                                 want--;
154                         }
155                 }
156                 WARN_ON(want);
157                 break;
158         case IEEE80211_BAND_2GHZ:
159                 want = 7;
160                 for (i = 0; i < sband->n_bitrates; i++) {
161                         if (sband->bitrates[i].bitrate == 10) {
162                                 sband->bitrates[i].flags |=
163                                         IEEE80211_RATE_MANDATORY_B |
164                                         IEEE80211_RATE_MANDATORY_G;
165                                 want--;
166                         }
167 
168                         if (sband->bitrates[i].bitrate == 20 ||
169                             sband->bitrates[i].bitrate == 55 ||
170                             sband->bitrates[i].bitrate == 110 ||
171                             sband->bitrates[i].bitrate == 60 ||
172                             sband->bitrates[i].bitrate == 120 ||
173                             sband->bitrates[i].bitrate == 240) {
174                                 sband->bitrates[i].flags |=
175                                         IEEE80211_RATE_MANDATORY_G;
176                                 want--;
177                         }
178 
179                         if (sband->bitrates[i].bitrate != 10 &&
180                             sband->bitrates[i].bitrate != 20 &&
181                             sband->bitrates[i].bitrate != 55 &&
182                             sband->bitrates[i].bitrate != 110)
183                                 sband->bitrates[i].flags |=
184                                         IEEE80211_RATE_ERP_G;
185                 }
186                 WARN_ON(want != 0 && want != 3 && want != 6);
187                 break;
188         case IEEE80211_BAND_60GHZ:
189                 /* check for mandatory HT MCS 1..4 */
190                 WARN_ON(!sband->ht_cap.ht_supported);
191                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192                 break;
193         case IEEE80211_NUM_BANDS:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum ieee80211_band band;
202 
203         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx > 5)
222                 return -EINVAL;
223 
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226 
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229 
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 break;
253         default:
254                 break;
255         }
256 
257         switch (params->cipher) {
258         case WLAN_CIPHER_SUITE_WEP40:
259                 if (params->key_len != WLAN_KEY_LEN_WEP40)
260                         return -EINVAL;
261                 break;
262         case WLAN_CIPHER_SUITE_TKIP:
263                 if (params->key_len != WLAN_KEY_LEN_TKIP)
264                         return -EINVAL;
265                 break;
266         case WLAN_CIPHER_SUITE_CCMP:
267                 if (params->key_len != WLAN_KEY_LEN_CCMP)
268                         return -EINVAL;
269                 break;
270         case WLAN_CIPHER_SUITE_CCMP_256:
271                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272                         return -EINVAL;
273                 break;
274         case WLAN_CIPHER_SUITE_GCMP:
275                 if (params->key_len != WLAN_KEY_LEN_GCMP)
276                         return -EINVAL;
277                 break;
278         case WLAN_CIPHER_SUITE_GCMP_256:
279                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280                         return -EINVAL;
281                 break;
282         case WLAN_CIPHER_SUITE_WEP104:
283                 if (params->key_len != WLAN_KEY_LEN_WEP104)
284                         return -EINVAL;
285                 break;
286         case WLAN_CIPHER_SUITE_AES_CMAC:
287                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288                         return -EINVAL;
289                 break;
290         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292                         return -EINVAL;
293                 break;
294         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296                         return -EINVAL;
297                 break;
298         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300                         return -EINVAL;
301                 break;
302         default:
303                 /*
304                  * We don't know anything about this algorithm,
305                  * allow using it -- but the driver must check
306                  * all parameters! We still check below whether
307                  * or not the driver supports this algorithm,
308                  * of course.
309                  */
310                 break;
311         }
312 
313         if (params->seq) {
314                 switch (params->cipher) {
315                 case WLAN_CIPHER_SUITE_WEP40:
316                 case WLAN_CIPHER_SUITE_WEP104:
317                         /* These ciphers do not use key sequence */
318                         return -EINVAL;
319                 case WLAN_CIPHER_SUITE_TKIP:
320                 case WLAN_CIPHER_SUITE_CCMP:
321                 case WLAN_CIPHER_SUITE_CCMP_256:
322                 case WLAN_CIPHER_SUITE_GCMP:
323                 case WLAN_CIPHER_SUITE_GCMP_256:
324                 case WLAN_CIPHER_SUITE_AES_CMAC:
325                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328                         if (params->seq_len != 6)
329                                 return -EINVAL;
330                         break;
331                 }
332         }
333 
334         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335                 return -EINVAL;
336 
337         return 0;
338 }
339 
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342         unsigned int hdrlen = 24;
343 
344         if (ieee80211_is_data(fc)) {
345                 if (ieee80211_has_a4(fc))
346                         hdrlen = 30;
347                 if (ieee80211_is_data_qos(fc)) {
348                         hdrlen += IEEE80211_QOS_CTL_LEN;
349                         if (ieee80211_has_order(fc))
350                                 hdrlen += IEEE80211_HT_CTL_LEN;
351                 }
352                 goto out;
353         }
354 
355         if (ieee80211_is_mgmt(fc)) {
356                 if (ieee80211_has_order(fc))
357                         hdrlen += IEEE80211_HT_CTL_LEN;
358                 goto out;
359         }
360 
361         if (ieee80211_is_ctl(fc)) {
362                 /*
363                  * ACK and CTS are 10 bytes, all others 16. To see how
364                  * to get this condition consider
365                  *   subtype mask:   0b0000000011110000 (0x00F0)
366                  *   ACK subtype:    0b0000000011010000 (0x00D0)
367                  *   CTS subtype:    0b0000000011000000 (0x00C0)
368                  *   bits that matter:         ^^^      (0x00E0)
369                  *   value of those: 0b0000000011000000 (0x00C0)
370                  */
371                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372                         hdrlen = 10;
373                 else
374                         hdrlen = 16;
375         }
376 out:
377         return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380 
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383         const struct ieee80211_hdr *hdr =
384                         (const struct ieee80211_hdr *)skb->data;
385         unsigned int hdrlen;
386 
387         if (unlikely(skb->len < 10))
388                 return 0;
389         hdrlen = ieee80211_hdrlen(hdr->frame_control);
390         if (unlikely(hdrlen > skb->len))
391                 return 0;
392         return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395 
396 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
397 {
398         int ae = flags & MESH_FLAGS_AE;
399         /* 802.11-2012, 8.2.4.7.3 */
400         switch (ae) {
401         default:
402         case 0:
403                 return 6;
404         case MESH_FLAGS_AE_A4:
405                 return 12;
406         case MESH_FLAGS_AE_A5_A6:
407                 return 18;
408         }
409 }
410 
411 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
412 {
413         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
414 }
415 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
416 
417 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
418                                     const u8 *addr, enum nl80211_iftype iftype)
419 {
420         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
421         struct {
422                 u8 hdr[ETH_ALEN] __aligned(2);
423                 __be16 proto;
424         } payload;
425         struct ethhdr tmp;
426         u16 hdrlen;
427         u8 mesh_flags = 0;
428 
429         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
430                 return -1;
431 
432         hdrlen = ieee80211_hdrlen(hdr->frame_control);
433         if (skb->len < hdrlen + 8)
434                 return -1;
435 
436         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
437          * header
438          * IEEE 802.11 address fields:
439          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
440          *   0     0   DA    SA    BSSID n/a
441          *   0     1   DA    BSSID SA    n/a
442          *   1     0   BSSID SA    DA    n/a
443          *   1     1   RA    TA    DA    SA
444          */
445         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
446         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
447 
448         if (iftype == NL80211_IFTYPE_MESH_POINT)
449                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
450 
451         switch (hdr->frame_control &
452                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
453         case cpu_to_le16(IEEE80211_FCTL_TODS):
454                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
455                              iftype != NL80211_IFTYPE_AP_VLAN &&
456                              iftype != NL80211_IFTYPE_P2P_GO))
457                         return -1;
458                 break;
459         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
460                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
461                              iftype != NL80211_IFTYPE_MESH_POINT &&
462                              iftype != NL80211_IFTYPE_AP_VLAN &&
463                              iftype != NL80211_IFTYPE_STATION))
464                         return -1;
465                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
466                         if (mesh_flags & MESH_FLAGS_AE_A4)
467                                 return -1;
468                         if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
469                                 skb_copy_bits(skb, hdrlen +
470                                         offsetof(struct ieee80211s_hdr, eaddr1),
471                                         tmp.h_dest, 2 * ETH_ALEN);
472                         }
473                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
474                 }
475                 break;
476         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
477                 if ((iftype != NL80211_IFTYPE_STATION &&
478                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
479                      iftype != NL80211_IFTYPE_MESH_POINT) ||
480                     (is_multicast_ether_addr(tmp.h_dest) &&
481                      ether_addr_equal(tmp.h_source, addr)))
482                         return -1;
483                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
484                         if (mesh_flags & MESH_FLAGS_AE_A5_A6)
485                                 return -1;
486                         if (mesh_flags & MESH_FLAGS_AE_A4)
487                                 skb_copy_bits(skb, hdrlen +
488                                         offsetof(struct ieee80211s_hdr, eaddr1),
489                                         tmp.h_source, ETH_ALEN);
490                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
491                 }
492                 break;
493         case cpu_to_le16(0):
494                 if (iftype != NL80211_IFTYPE_ADHOC &&
495                     iftype != NL80211_IFTYPE_STATION &&
496                     iftype != NL80211_IFTYPE_OCB)
497                                 return -1;
498                 break;
499         }
500 
501         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
502         tmp.h_proto = payload.proto;
503 
504         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
505                     tmp.h_proto != htons(ETH_P_AARP) &&
506                     tmp.h_proto != htons(ETH_P_IPX)) ||
507                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
508                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
509                  * replace EtherType */
510                 hdrlen += ETH_ALEN + 2;
511         else
512                 tmp.h_proto = htons(skb->len);
513 
514         pskb_pull(skb, hdrlen);
515 
516         if (!ehdr)
517                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
518         memcpy(ehdr, &tmp, sizeof(tmp));
519 
520         return 0;
521 }
522 
523 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
524                            enum nl80211_iftype iftype)
525 {
526         return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531                              enum nl80211_iftype iftype,
532                              const u8 *bssid, bool qos)
533 {
534         struct ieee80211_hdr hdr;
535         u16 hdrlen, ethertype;
536         __le16 fc;
537         const u8 *encaps_data;
538         int encaps_len, skip_header_bytes;
539         int nh_pos, h_pos;
540         int head_need;
541 
542         if (unlikely(skb->len < ETH_HLEN))
543                 return -EINVAL;
544 
545         nh_pos = skb_network_header(skb) - skb->data;
546         h_pos = skb_transport_header(skb) - skb->data;
547 
548         /* convert Ethernet header to proper 802.11 header (based on
549          * operation mode) */
550         ethertype = (skb->data[12] << 8) | skb->data[13];
551         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553         switch (iftype) {
554         case NL80211_IFTYPE_AP:
555         case NL80211_IFTYPE_AP_VLAN:
556         case NL80211_IFTYPE_P2P_GO:
557                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558                 /* DA BSSID SA */
559                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560                 memcpy(hdr.addr2, addr, ETH_ALEN);
561                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562                 hdrlen = 24;
563                 break;
564         case NL80211_IFTYPE_STATION:
565         case NL80211_IFTYPE_P2P_CLIENT:
566                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567                 /* BSSID SA DA */
568                 memcpy(hdr.addr1, bssid, ETH_ALEN);
569                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571                 hdrlen = 24;
572                 break;
573         case NL80211_IFTYPE_OCB:
574         case NL80211_IFTYPE_ADHOC:
575                 /* DA SA BSSID */
576                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578                 memcpy(hdr.addr3, bssid, ETH_ALEN);
579                 hdrlen = 24;
580                 break;
581         default:
582                 return -EOPNOTSUPP;
583         }
584 
585         if (qos) {
586                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587                 hdrlen += 2;
588         }
589 
590         hdr.frame_control = fc;
591         hdr.duration_id = 0;
592         hdr.seq_ctrl = 0;
593 
594         skip_header_bytes = ETH_HLEN;
595         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596                 encaps_data = bridge_tunnel_header;
597                 encaps_len = sizeof(bridge_tunnel_header);
598                 skip_header_bytes -= 2;
599         } else if (ethertype >= ETH_P_802_3_MIN) {
600                 encaps_data = rfc1042_header;
601                 encaps_len = sizeof(rfc1042_header);
602                 skip_header_bytes -= 2;
603         } else {
604                 encaps_data = NULL;
605                 encaps_len = 0;
606         }
607 
608         skb_pull(skb, skip_header_bytes);
609         nh_pos -= skip_header_bytes;
610         h_pos -= skip_header_bytes;
611 
612         head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614         if (head_need > 0 || skb_cloned(skb)) {
615                 head_need = max(head_need, 0);
616                 if (head_need)
617                         skb_orphan(skb);
618 
619                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620                         return -ENOMEM;
621 
622                 skb->truesize += head_need;
623         }
624 
625         if (encaps_data) {
626                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627                 nh_pos += encaps_len;
628                 h_pos += encaps_len;
629         }
630 
631         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632 
633         nh_pos += hdrlen;
634         h_pos += hdrlen;
635 
636         /* Update skb pointers to various headers since this modified frame
637          * is going to go through Linux networking code that may potentially
638          * need things like pointer to IP header. */
639         skb_reset_mac_header(skb);
640         skb_set_network_header(skb, nh_pos);
641         skb_set_transport_header(skb, h_pos);
642 
643         return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646 
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649                  void *ptr, int len, int size)
650 {
651         struct skb_shared_info *sh = skb_shinfo(skb);
652         int page_offset;
653 
654         atomic_inc(&page->_count);
655         page_offset = ptr - page_address(page);
656         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658 
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661                             int offset, int len)
662 {
663         struct skb_shared_info *sh = skb_shinfo(skb);
664         const skb_frag_t *frag = &sh->frags[-1];
665         struct page *frag_page;
666         void *frag_ptr;
667         int frag_len, frag_size;
668         int head_size = skb->len - skb->data_len;
669         int cur_len;
670 
671         frag_page = virt_to_head_page(skb->head);
672         frag_ptr = skb->data;
673         frag_size = head_size;
674 
675         while (offset >= frag_size) {
676                 offset -= frag_size;
677                 frag++;
678                 frag_page = skb_frag_page(frag);
679                 frag_ptr = skb_frag_address(frag);
680                 frag_size = skb_frag_size(frag);
681         }
682 
683         frag_ptr += offset;
684         frag_len = frag_size - offset;
685 
686         cur_len = min(len, frag_len);
687 
688         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689         len -= cur_len;
690 
691         while (len > 0) {
692                 frag++;
693                 frag_len = skb_frag_size(frag);
694                 cur_len = min(len, frag_len);
695                 __frame_add_frag(frame, skb_frag_page(frag),
696                                  skb_frag_address(frag), cur_len, frag_len);
697                 len -= cur_len;
698         }
699 }
700 
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703                        int offset, int len, bool reuse_frag)
704 {
705         struct sk_buff *frame;
706         int cur_len = len;
707 
708         if (skb->len - offset < len)
709                 return NULL;
710 
711         /*
712          * When reusing framents, copy some data to the head to simplify
713          * ethernet header handling and speed up protocol header processing
714          * in the stack later.
715          */
716         if (reuse_frag)
717                 cur_len = min_t(int, len, 32);
718 
719         /*
720          * Allocate and reserve two bytes more for payload
721          * alignment since sizeof(struct ethhdr) is 14.
722          */
723         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724 
725         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727 
728         len -= cur_len;
729         if (!len)
730                 return frame;
731 
732         offset += cur_len;
733         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734 
735         return frame;
736 }
737 
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739                               const u8 *addr, enum nl80211_iftype iftype,
740                               const unsigned int extra_headroom,
741                               bool has_80211_header)
742 {
743         unsigned int hlen = ALIGN(extra_headroom, 4);
744         struct sk_buff *frame = NULL;
745         u16 ethertype;
746         u8 *payload;
747         int offset = 0, remaining, err;
748         struct ethhdr eth;
749         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750         bool reuse_skb = false;
751         bool last = false;
752 
753         if (has_80211_header) {
754                 err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
755                 if (err)
756                         goto out;
757         }
758 
759         while (!last) {
760                 unsigned int subframe_len;
761                 int len;
762                 u8 padding;
763 
764                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
765                 len = ntohs(eth.h_proto);
766                 subframe_len = sizeof(struct ethhdr) + len;
767                 padding = (4 - subframe_len) & 0x3;
768 
769                 /* the last MSDU has no padding */
770                 remaining = skb->len - offset;
771                 if (subframe_len > remaining)
772                         goto purge;
773 
774                 offset += sizeof(struct ethhdr);
775                 /* reuse skb for the last subframe */
776                 last = remaining <= subframe_len + padding;
777                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
778                         skb_pull(skb, offset);
779                         frame = skb;
780                         reuse_skb = true;
781                 } else {
782                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
783                                                        reuse_frag);
784                         if (!frame)
785                                 goto purge;
786 
787                         offset += len + padding;
788                 }
789 
790                 skb_reset_network_header(frame);
791                 frame->dev = skb->dev;
792                 frame->priority = skb->priority;
793 
794                 payload = frame->data;
795                 ethertype = (payload[6] << 8) | payload[7];
796                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
797                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
798                            ether_addr_equal(payload, bridge_tunnel_header))) {
799                         eth.h_proto = htons(ethertype);
800                         skb_pull(frame, ETH_ALEN + 2);
801                 }
802 
803                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
804                 __skb_queue_tail(list, frame);
805         }
806 
807         if (!reuse_skb)
808                 dev_kfree_skb(skb);
809 
810         return;
811 
812  purge:
813         __skb_queue_purge(list);
814  out:
815         dev_kfree_skb(skb);
816 }
817 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
818 
819 /* Given a data frame determine the 802.1p/1d tag to use. */
820 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
821                                     struct cfg80211_qos_map *qos_map)
822 {
823         unsigned int dscp;
824         unsigned char vlan_priority;
825 
826         /* skb->priority values from 256->263 are magic values to
827          * directly indicate a specific 802.1d priority.  This is used
828          * to allow 802.1d priority to be passed directly in from VLAN
829          * tags, etc.
830          */
831         if (skb->priority >= 256 && skb->priority <= 263)
832                 return skb->priority - 256;
833 
834         if (skb_vlan_tag_present(skb)) {
835                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
836                         >> VLAN_PRIO_SHIFT;
837                 if (vlan_priority > 0)
838                         return vlan_priority;
839         }
840 
841         switch (skb->protocol) {
842         case htons(ETH_P_IP):
843                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
844                 break;
845         case htons(ETH_P_IPV6):
846                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
847                 break;
848         case htons(ETH_P_MPLS_UC):
849         case htons(ETH_P_MPLS_MC): {
850                 struct mpls_label mpls_tmp, *mpls;
851 
852                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
853                                           sizeof(*mpls), &mpls_tmp);
854                 if (!mpls)
855                         return 0;
856 
857                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
858                         >> MPLS_LS_TC_SHIFT;
859         }
860         case htons(ETH_P_80221):
861                 /* 802.21 is always network control traffic */
862                 return 7;
863         default:
864                 return 0;
865         }
866 
867         if (qos_map) {
868                 unsigned int i, tmp_dscp = dscp >> 2;
869 
870                 for (i = 0; i < qos_map->num_des; i++) {
871                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
872                                 return qos_map->dscp_exception[i].up;
873                 }
874 
875                 for (i = 0; i < 8; i++) {
876                         if (tmp_dscp >= qos_map->up[i].low &&
877                             tmp_dscp <= qos_map->up[i].high)
878                                 return i;
879                 }
880         }
881 
882         return dscp >> 5;
883 }
884 EXPORT_SYMBOL(cfg80211_classify8021d);
885 
886 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
887 {
888         const struct cfg80211_bss_ies *ies;
889 
890         ies = rcu_dereference(bss->ies);
891         if (!ies)
892                 return NULL;
893 
894         return cfg80211_find_ie(ie, ies->data, ies->len);
895 }
896 EXPORT_SYMBOL(ieee80211_bss_get_ie);
897 
898 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
899 {
900         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
901         struct net_device *dev = wdev->netdev;
902         int i;
903 
904         if (!wdev->connect_keys)
905                 return;
906 
907         for (i = 0; i < 6; i++) {
908                 if (!wdev->connect_keys->params[i].cipher)
909                         continue;
910                 if (rdev_add_key(rdev, dev, i, false, NULL,
911                                  &wdev->connect_keys->params[i])) {
912                         netdev_err(dev, "failed to set key %d\n", i);
913                         continue;
914                 }
915                 if (wdev->connect_keys->def == i)
916                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
917                                 netdev_err(dev, "failed to set defkey %d\n", i);
918                                 continue;
919                         }
920                 if (wdev->connect_keys->defmgmt == i)
921                         if (rdev_set_default_mgmt_key(rdev, dev, i))
922                                 netdev_err(dev, "failed to set mgtdef %d\n", i);
923         }
924 
925         kzfree(wdev->connect_keys);
926         wdev->connect_keys = NULL;
927 }
928 
929 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
930 {
931         struct cfg80211_event *ev;
932         unsigned long flags;
933         const u8 *bssid = NULL;
934 
935         spin_lock_irqsave(&wdev->event_lock, flags);
936         while (!list_empty(&wdev->event_list)) {
937                 ev = list_first_entry(&wdev->event_list,
938                                       struct cfg80211_event, list);
939                 list_del(&ev->list);
940                 spin_unlock_irqrestore(&wdev->event_lock, flags);
941 
942                 wdev_lock(wdev);
943                 switch (ev->type) {
944                 case EVENT_CONNECT_RESULT:
945                         if (!is_zero_ether_addr(ev->cr.bssid))
946                                 bssid = ev->cr.bssid;
947                         __cfg80211_connect_result(
948                                 wdev->netdev, bssid,
949                                 ev->cr.req_ie, ev->cr.req_ie_len,
950                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
951                                 ev->cr.status,
952                                 ev->cr.status == WLAN_STATUS_SUCCESS,
953                                 NULL);
954                         break;
955                 case EVENT_ROAMED:
956                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
957                                           ev->rm.req_ie_len, ev->rm.resp_ie,
958                                           ev->rm.resp_ie_len);
959                         break;
960                 case EVENT_DISCONNECTED:
961                         __cfg80211_disconnected(wdev->netdev,
962                                                 ev->dc.ie, ev->dc.ie_len,
963                                                 ev->dc.reason,
964                                                 !ev->dc.locally_generated);
965                         break;
966                 case EVENT_IBSS_JOINED:
967                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
968                                                ev->ij.channel);
969                         break;
970                 case EVENT_STOPPED:
971                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
972                         break;
973                 }
974                 wdev_unlock(wdev);
975 
976                 kfree(ev);
977 
978                 spin_lock_irqsave(&wdev->event_lock, flags);
979         }
980         spin_unlock_irqrestore(&wdev->event_lock, flags);
981 }
982 
983 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
984 {
985         struct wireless_dev *wdev;
986 
987         ASSERT_RTNL();
988 
989         list_for_each_entry(wdev, &rdev->wdev_list, list)
990                 cfg80211_process_wdev_events(wdev);
991 }
992 
993 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
994                           struct net_device *dev, enum nl80211_iftype ntype,
995                           u32 *flags, struct vif_params *params)
996 {
997         int err;
998         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
999 
1000         ASSERT_RTNL();
1001 
1002         /* don't support changing VLANs, you just re-create them */
1003         if (otype == NL80211_IFTYPE_AP_VLAN)
1004                 return -EOPNOTSUPP;
1005 
1006         /* cannot change into P2P device type */
1007         if (ntype == NL80211_IFTYPE_P2P_DEVICE)
1008                 return -EOPNOTSUPP;
1009 
1010         if (!rdev->ops->change_virtual_intf ||
1011             !(rdev->wiphy.interface_modes & (1 << ntype)))
1012                 return -EOPNOTSUPP;
1013 
1014         /* if it's part of a bridge, reject changing type to station/ibss */
1015         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016             (ntype == NL80211_IFTYPE_ADHOC ||
1017              ntype == NL80211_IFTYPE_STATION ||
1018              ntype == NL80211_IFTYPE_P2P_CLIENT))
1019                 return -EBUSY;
1020 
1021         if (ntype != otype) {
1022                 dev->ieee80211_ptr->use_4addr = false;
1023                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1024                 wdev_lock(dev->ieee80211_ptr);
1025                 rdev_set_qos_map(rdev, dev, NULL);
1026                 wdev_unlock(dev->ieee80211_ptr);
1027 
1028                 switch (otype) {
1029                 case NL80211_IFTYPE_AP:
1030                         cfg80211_stop_ap(rdev, dev, true);
1031                         break;
1032                 case NL80211_IFTYPE_ADHOC:
1033                         cfg80211_leave_ibss(rdev, dev, false);
1034                         break;
1035                 case NL80211_IFTYPE_STATION:
1036                 case NL80211_IFTYPE_P2P_CLIENT:
1037                         wdev_lock(dev->ieee80211_ptr);
1038                         cfg80211_disconnect(rdev, dev,
1039                                             WLAN_REASON_DEAUTH_LEAVING, true);
1040                         wdev_unlock(dev->ieee80211_ptr);
1041                         break;
1042                 case NL80211_IFTYPE_MESH_POINT:
1043                         /* mesh should be handled? */
1044                         break;
1045                 default:
1046                         break;
1047                 }
1048 
1049                 cfg80211_process_rdev_events(rdev);
1050         }
1051 
1052         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1053 
1054         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1055 
1056         if (!err && params && params->use_4addr != -1)
1057                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1058 
1059         if (!err) {
1060                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061                 switch (ntype) {
1062                 case NL80211_IFTYPE_STATION:
1063                         if (dev->ieee80211_ptr->use_4addr)
1064                                 break;
1065                         /* fall through */
1066                 case NL80211_IFTYPE_OCB:
1067                 case NL80211_IFTYPE_P2P_CLIENT:
1068                 case NL80211_IFTYPE_ADHOC:
1069                         dev->priv_flags |= IFF_DONT_BRIDGE;
1070                         break;
1071                 case NL80211_IFTYPE_P2P_GO:
1072                 case NL80211_IFTYPE_AP:
1073                 case NL80211_IFTYPE_AP_VLAN:
1074                 case NL80211_IFTYPE_WDS:
1075                 case NL80211_IFTYPE_MESH_POINT:
1076                         /* bridging OK */
1077                         break;
1078                 case NL80211_IFTYPE_MONITOR:
1079                         /* monitor can't bridge anyway */
1080                         break;
1081                 case NL80211_IFTYPE_UNSPECIFIED:
1082                 case NUM_NL80211_IFTYPES:
1083                         /* not happening */
1084                         break;
1085                 case NL80211_IFTYPE_P2P_DEVICE:
1086                         WARN_ON(1);
1087                         break;
1088                 }
1089         }
1090 
1091         if (!err && ntype != otype && netif_running(dev)) {
1092                 cfg80211_update_iface_num(rdev, ntype, 1);
1093                 cfg80211_update_iface_num(rdev, otype, -1);
1094         }
1095 
1096         return err;
1097 }
1098 
1099 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1100 {
1101         static const u32 __mcs2bitrate[] = {
1102                 /* control PHY */
1103                 [0] =   275,
1104                 /* SC PHY */
1105                 [1] =  3850,
1106                 [2] =  7700,
1107                 [3] =  9625,
1108                 [4] = 11550,
1109                 [5] = 12512, /* 1251.25 mbps */
1110                 [6] = 15400,
1111                 [7] = 19250,
1112                 [8] = 23100,
1113                 [9] = 25025,
1114                 [10] = 30800,
1115                 [11] = 38500,
1116                 [12] = 46200,
1117                 /* OFDM PHY */
1118                 [13] =  6930,
1119                 [14] =  8662, /* 866.25 mbps */
1120                 [15] = 13860,
1121                 [16] = 17325,
1122                 [17] = 20790,
1123                 [18] = 27720,
1124                 [19] = 34650,
1125                 [20] = 41580,
1126                 [21] = 45045,
1127                 [22] = 51975,
1128                 [23] = 62370,
1129                 [24] = 67568, /* 6756.75 mbps */
1130                 /* LP-SC PHY */
1131                 [25] =  6260,
1132                 [26] =  8340,
1133                 [27] = 11120,
1134                 [28] = 12510,
1135                 [29] = 16680,
1136                 [30] = 22240,
1137                 [31] = 25030,
1138         };
1139 
1140         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1141                 return 0;
1142 
1143         return __mcs2bitrate[rate->mcs];
1144 }
1145 
1146 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1147 {
1148         static const u32 base[4][10] = {
1149                 {   6500000,
1150                    13000000,
1151                    19500000,
1152                    26000000,
1153                    39000000,
1154                    52000000,
1155                    58500000,
1156                    65000000,
1157                    78000000,
1158                    0,
1159                 },
1160                 {  13500000,
1161                    27000000,
1162                    40500000,
1163                    54000000,
1164                    81000000,
1165                   108000000,
1166                   121500000,
1167                   135000000,
1168                   162000000,
1169                   180000000,
1170                 },
1171                 {  29300000,
1172                    58500000,
1173                    87800000,
1174                   117000000,
1175                   175500000,
1176                   234000000,
1177                   263300000,
1178                   292500000,
1179                   351000000,
1180                   390000000,
1181                 },
1182                 {  58500000,
1183                   117000000,
1184                   175500000,
1185                   234000000,
1186                   351000000,
1187                   468000000,
1188                   526500000,
1189                   585000000,
1190                   702000000,
1191                   780000000,
1192                 },
1193         };
1194         u32 bitrate;
1195         int idx;
1196 
1197         if (WARN_ON_ONCE(rate->mcs > 9))
1198                 return 0;
1199 
1200         switch (rate->bw) {
1201         case RATE_INFO_BW_160:
1202                 idx = 3;
1203                 break;
1204         case RATE_INFO_BW_80:
1205                 idx = 2;
1206                 break;
1207         case RATE_INFO_BW_40:
1208                 idx = 1;
1209                 break;
1210         case RATE_INFO_BW_5:
1211         case RATE_INFO_BW_10:
1212         default:
1213                 WARN_ON(1);
1214                 /* fall through */
1215         case RATE_INFO_BW_20:
1216                 idx = 0;
1217         }
1218 
1219         bitrate = base[idx][rate->mcs];
1220         bitrate *= rate->nss;
1221 
1222         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1223                 bitrate = (bitrate / 9) * 10;
1224 
1225         /* do NOT round down here */
1226         return (bitrate + 50000) / 100000;
1227 }
1228 
1229 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1230 {
1231         int modulation, streams, bitrate;
1232 
1233         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1234             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1235                 return rate->legacy;
1236         if (rate->flags & RATE_INFO_FLAGS_60G)
1237                 return cfg80211_calculate_bitrate_60g(rate);
1238         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1239                 return cfg80211_calculate_bitrate_vht(rate);
1240 
1241         /* the formula below does only work for MCS values smaller than 32 */
1242         if (WARN_ON_ONCE(rate->mcs >= 32))
1243                 return 0;
1244 
1245         modulation = rate->mcs & 7;
1246         streams = (rate->mcs >> 3) + 1;
1247 
1248         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1249 
1250         if (modulation < 4)
1251                 bitrate *= (modulation + 1);
1252         else if (modulation == 4)
1253                 bitrate *= (modulation + 2);
1254         else
1255                 bitrate *= (modulation + 3);
1256 
1257         bitrate *= streams;
1258 
1259         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1260                 bitrate = (bitrate / 9) * 10;
1261 
1262         /* do NOT round down here */
1263         return (bitrate + 50000) / 100000;
1264 }
1265 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1266 
1267 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1268                           enum ieee80211_p2p_attr_id attr,
1269                           u8 *buf, unsigned int bufsize)
1270 {
1271         u8 *out = buf;
1272         u16 attr_remaining = 0;
1273         bool desired_attr = false;
1274         u16 desired_len = 0;
1275 
1276         while (len > 0) {
1277                 unsigned int iedatalen;
1278                 unsigned int copy;
1279                 const u8 *iedata;
1280 
1281                 if (len < 2)
1282                         return -EILSEQ;
1283                 iedatalen = ies[1];
1284                 if (iedatalen + 2 > len)
1285                         return -EILSEQ;
1286 
1287                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1288                         goto cont;
1289 
1290                 if (iedatalen < 4)
1291                         goto cont;
1292 
1293                 iedata = ies + 2;
1294 
1295                 /* check WFA OUI, P2P subtype */
1296                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1297                     iedata[2] != 0x9a || iedata[3] != 0x09)
1298                         goto cont;
1299 
1300                 iedatalen -= 4;
1301                 iedata += 4;
1302 
1303                 /* check attribute continuation into this IE */
1304                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1305                 if (copy && desired_attr) {
1306                         desired_len += copy;
1307                         if (out) {
1308                                 memcpy(out, iedata, min(bufsize, copy));
1309                                 out += min(bufsize, copy);
1310                                 bufsize -= min(bufsize, copy);
1311                         }
1312 
1313 
1314                         if (copy == attr_remaining)
1315                                 return desired_len;
1316                 }
1317 
1318                 attr_remaining -= copy;
1319                 if (attr_remaining)
1320                         goto cont;
1321 
1322                 iedatalen -= copy;
1323                 iedata += copy;
1324 
1325                 while (iedatalen > 0) {
1326                         u16 attr_len;
1327 
1328                         /* P2P attribute ID & size must fit */
1329                         if (iedatalen < 3)
1330                                 return -EILSEQ;
1331                         desired_attr = iedata[0] == attr;
1332                         attr_len = get_unaligned_le16(iedata + 1);
1333                         iedatalen -= 3;
1334                         iedata += 3;
1335 
1336                         copy = min_t(unsigned int, attr_len, iedatalen);
1337 
1338                         if (desired_attr) {
1339                                 desired_len += copy;
1340                                 if (out) {
1341                                         memcpy(out, iedata, min(bufsize, copy));
1342                                         out += min(bufsize, copy);
1343                                         bufsize -= min(bufsize, copy);
1344                                 }
1345 
1346                                 if (copy == attr_len)
1347                                         return desired_len;
1348                         }
1349 
1350                         iedata += copy;
1351                         iedatalen -= copy;
1352                         attr_remaining = attr_len - copy;
1353                 }
1354 
1355  cont:
1356                 len -= ies[1] + 2;
1357                 ies += ies[1] + 2;
1358         }
1359 
1360         if (attr_remaining && desired_attr)
1361                 return -EILSEQ;
1362 
1363         return -ENOENT;
1364 }
1365 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1366 
1367 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1368 {
1369         int i;
1370 
1371         for (i = 0; i < n_ids; i++)
1372                 if (ids[i] == id)
1373                         return true;
1374         return false;
1375 }
1376 
1377 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1378                               const u8 *ids, int n_ids,
1379                               const u8 *after_ric, int n_after_ric,
1380                               size_t offset)
1381 {
1382         size_t pos = offset;
1383 
1384         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1385                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1386                         pos += 2 + ies[pos + 1];
1387 
1388                         while (pos < ielen &&
1389                                !ieee80211_id_in_list(after_ric, n_after_ric,
1390                                                      ies[pos]))
1391                                 pos += 2 + ies[pos + 1];
1392                 } else {
1393                         pos += 2 + ies[pos + 1];
1394                 }
1395         }
1396 
1397         return pos;
1398 }
1399 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1400 
1401 bool ieee80211_operating_class_to_band(u8 operating_class,
1402                                        enum ieee80211_band *band)
1403 {
1404         switch (operating_class) {
1405         case 112:
1406         case 115 ... 127:
1407         case 128 ... 130:
1408                 *band = IEEE80211_BAND_5GHZ;
1409                 return true;
1410         case 81:
1411         case 82:
1412         case 83:
1413         case 84:
1414                 *band = IEEE80211_BAND_2GHZ;
1415                 return true;
1416         case 180:
1417                 *band = IEEE80211_BAND_60GHZ;
1418                 return true;
1419         }
1420 
1421         return false;
1422 }
1423 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1424 
1425 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1426                                           u8 *op_class)
1427 {
1428         u8 vht_opclass;
1429         u16 freq = chandef->center_freq1;
1430 
1431         if (freq >= 2412 && freq <= 2472) {
1432                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1433                         return false;
1434 
1435                 /* 2.407 GHz, channels 1..13 */
1436                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1437                         if (freq > chandef->chan->center_freq)
1438                                 *op_class = 83; /* HT40+ */
1439                         else
1440                                 *op_class = 84; /* HT40- */
1441                 } else {
1442                         *op_class = 81;
1443                 }
1444 
1445                 return true;
1446         }
1447 
1448         if (freq == 2484) {
1449                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1450                         return false;
1451 
1452                 *op_class = 82; /* channel 14 */
1453                 return true;
1454         }
1455 
1456         switch (chandef->width) {
1457         case NL80211_CHAN_WIDTH_80:
1458                 vht_opclass = 128;
1459                 break;
1460         case NL80211_CHAN_WIDTH_160:
1461                 vht_opclass = 129;
1462                 break;
1463         case NL80211_CHAN_WIDTH_80P80:
1464                 vht_opclass = 130;
1465                 break;
1466         case NL80211_CHAN_WIDTH_10:
1467         case NL80211_CHAN_WIDTH_5:
1468                 return false; /* unsupported for now */
1469         default:
1470                 vht_opclass = 0;
1471                 break;
1472         }
1473 
1474         /* 5 GHz, channels 36..48 */
1475         if (freq >= 5180 && freq <= 5240) {
1476                 if (vht_opclass) {
1477                         *op_class = vht_opclass;
1478                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1479                         if (freq > chandef->chan->center_freq)
1480                                 *op_class = 116;
1481                         else
1482                                 *op_class = 117;
1483                 } else {
1484                         *op_class = 115;
1485                 }
1486 
1487                 return true;
1488         }
1489 
1490         /* 5 GHz, channels 52..64 */
1491         if (freq >= 5260 && freq <= 5320) {
1492                 if (vht_opclass) {
1493                         *op_class = vht_opclass;
1494                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1495                         if (freq > chandef->chan->center_freq)
1496                                 *op_class = 119;
1497                         else
1498                                 *op_class = 120;
1499                 } else {
1500                         *op_class = 118;
1501                 }
1502 
1503                 return true;
1504         }
1505 
1506         /* 5 GHz, channels 100..144 */
1507         if (freq >= 5500 && freq <= 5720) {
1508                 if (vht_opclass) {
1509                         *op_class = vht_opclass;
1510                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1511                         if (freq > chandef->chan->center_freq)
1512                                 *op_class = 122;
1513                         else
1514                                 *op_class = 123;
1515                 } else {
1516                         *op_class = 121;
1517                 }
1518 
1519                 return true;
1520         }
1521 
1522         /* 5 GHz, channels 149..169 */
1523         if (freq >= 5745 && freq <= 5845) {
1524                 if (vht_opclass) {
1525                         *op_class = vht_opclass;
1526                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1527                         if (freq > chandef->chan->center_freq)
1528                                 *op_class = 126;
1529                         else
1530                                 *op_class = 127;
1531                 } else if (freq <= 5805) {
1532                         *op_class = 124;
1533                 } else {
1534                         *op_class = 125;
1535                 }
1536 
1537                 return true;
1538         }
1539 
1540         /* 56.16 GHz, channel 1..4 */
1541         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1542                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1543                         return false;
1544 
1545                 *op_class = 180;
1546                 return true;
1547         }
1548 
1549         /* not supported yet */
1550         return false;
1551 }
1552 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1553 
1554 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1555                                  u32 beacon_int)
1556 {
1557         struct wireless_dev *wdev;
1558         int res = 0;
1559 
1560         if (!beacon_int)
1561                 return -EINVAL;
1562 
1563         list_for_each_entry(wdev, &rdev->wdev_list, list) {
1564                 if (!wdev->beacon_interval)
1565                         continue;
1566                 if (wdev->beacon_interval != beacon_int) {
1567                         res = -EINVAL;
1568                         break;
1569                 }
1570         }
1571 
1572         return res;
1573 }
1574 
1575 int cfg80211_iter_combinations(struct wiphy *wiphy,
1576                                const int num_different_channels,
1577                                const u8 radar_detect,
1578                                const int iftype_num[NUM_NL80211_IFTYPES],
1579                                void (*iter)(const struct ieee80211_iface_combination *c,
1580                                             void *data),
1581                                void *data)
1582 {
1583         const struct ieee80211_regdomain *regdom;
1584         enum nl80211_dfs_regions region = 0;
1585         int i, j, iftype;
1586         int num_interfaces = 0;
1587         u32 used_iftypes = 0;
1588 
1589         if (radar_detect) {
1590                 rcu_read_lock();
1591                 regdom = rcu_dereference(cfg80211_regdomain);
1592                 if (regdom)
1593                         region = regdom->dfs_region;
1594                 rcu_read_unlock();
1595         }
1596 
1597         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1598                 num_interfaces += iftype_num[iftype];
1599                 if (iftype_num[iftype] > 0 &&
1600                     !(wiphy->software_iftypes & BIT(iftype)))
1601                         used_iftypes |= BIT(iftype);
1602         }
1603 
1604         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1605                 const struct ieee80211_iface_combination *c;
1606                 struct ieee80211_iface_limit *limits;
1607                 u32 all_iftypes = 0;
1608 
1609                 c = &wiphy->iface_combinations[i];
1610 
1611                 if (num_interfaces > c->max_interfaces)
1612                         continue;
1613                 if (num_different_channels > c->num_different_channels)
1614                         continue;
1615 
1616                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1617                                  GFP_KERNEL);
1618                 if (!limits)
1619                         return -ENOMEM;
1620 
1621                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1622                         if (wiphy->software_iftypes & BIT(iftype))
1623                                 continue;
1624                         for (j = 0; j < c->n_limits; j++) {
1625                                 all_iftypes |= limits[j].types;
1626                                 if (!(limits[j].types & BIT(iftype)))
1627                                         continue;
1628                                 if (limits[j].max < iftype_num[iftype])
1629                                         goto cont;
1630                                 limits[j].max -= iftype_num[iftype];
1631                         }
1632                 }
1633 
1634                 if (radar_detect != (c->radar_detect_widths & radar_detect))
1635                         goto cont;
1636 
1637                 if (radar_detect && c->radar_detect_regions &&
1638                     !(c->radar_detect_regions & BIT(region)))
1639                         goto cont;
1640 
1641                 /* Finally check that all iftypes that we're currently
1642                  * using are actually part of this combination. If they
1643                  * aren't then we can't use this combination and have
1644                  * to continue to the next.
1645                  */
1646                 if ((all_iftypes & used_iftypes) != used_iftypes)
1647                         goto cont;
1648 
1649                 /* This combination covered all interface types and
1650                  * supported the requested numbers, so we're good.
1651                  */
1652 
1653                 (*iter)(c, data);
1654  cont:
1655                 kfree(limits);
1656         }
1657 
1658         return 0;
1659 }
1660 EXPORT_SYMBOL(cfg80211_iter_combinations);
1661 
1662 static void
1663 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1664                           void *data)
1665 {
1666         int *num = data;
1667         (*num)++;
1668 }
1669 
1670 int cfg80211_check_combinations(struct wiphy *wiphy,
1671                                 const int num_different_channels,
1672                                 const u8 radar_detect,
1673                                 const int iftype_num[NUM_NL80211_IFTYPES])
1674 {
1675         int err, num = 0;
1676 
1677         err = cfg80211_iter_combinations(wiphy, num_different_channels,
1678                                          radar_detect, iftype_num,
1679                                          cfg80211_iter_sum_ifcombs, &num);
1680         if (err)
1681                 return err;
1682         if (num == 0)
1683                 return -EBUSY;
1684 
1685         return 0;
1686 }
1687 EXPORT_SYMBOL(cfg80211_check_combinations);
1688 
1689 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1690                            const u8 *rates, unsigned int n_rates,
1691                            u32 *mask)
1692 {
1693         int i, j;
1694 
1695         if (!sband)
1696                 return -EINVAL;
1697 
1698         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1699                 return -EINVAL;
1700 
1701         *mask = 0;
1702 
1703         for (i = 0; i < n_rates; i++) {
1704                 int rate = (rates[i] & 0x7f) * 5;
1705                 bool found = false;
1706 
1707                 for (j = 0; j < sband->n_bitrates; j++) {
1708                         if (sband->bitrates[j].bitrate == rate) {
1709                                 found = true;
1710                                 *mask |= BIT(j);
1711                                 break;
1712                         }
1713                 }
1714                 if (!found)
1715                         return -EINVAL;
1716         }
1717 
1718         /*
1719          * mask must have at least one bit set here since we
1720          * didn't accept a 0-length rates array nor allowed
1721          * entries in the array that didn't exist
1722          */
1723 
1724         return 0;
1725 }
1726 
1727 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1728 {
1729         enum ieee80211_band band;
1730         unsigned int n_channels = 0;
1731 
1732         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1733                 if (wiphy->bands[band])
1734                         n_channels += wiphy->bands[band]->n_channels;
1735 
1736         return n_channels;
1737 }
1738 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1739 
1740 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1741                          struct station_info *sinfo)
1742 {
1743         struct cfg80211_registered_device *rdev;
1744         struct wireless_dev *wdev;
1745 
1746         wdev = dev->ieee80211_ptr;
1747         if (!wdev)
1748                 return -EOPNOTSUPP;
1749 
1750         rdev = wiphy_to_rdev(wdev->wiphy);
1751         if (!rdev->ops->get_station)
1752                 return -EOPNOTSUPP;
1753 
1754         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1755 }
1756 EXPORT_SYMBOL(cfg80211_get_station);
1757 
1758 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1759 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1760 const unsigned char rfc1042_header[] __aligned(2) =
1761         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1762 EXPORT_SYMBOL(rfc1042_header);
1763 
1764 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1765 const unsigned char bridge_tunnel_header[] __aligned(2) =
1766         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1767 EXPORT_SYMBOL(bridge_tunnel_header);
1768 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us