Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/net/wireless/util.c

  1 /*
  2  * Wireless utility functions
  3  *
  4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2013-2014  Intel Mobile Communications GmbH
  6  */
  7 #include <linux/export.h>
  8 #include <linux/bitops.h>
  9 #include <linux/etherdevice.h>
 10 #include <linux/slab.h>
 11 #include <net/cfg80211.h>
 12 #include <net/ip.h>
 13 #include <net/dsfield.h>
 14 #include <linux/if_vlan.h>
 15 #include <linux/mpls.h>
 16 #include <linux/gcd.h>
 17 #include "core.h"
 18 #include "rdev-ops.h"
 19 
 20 
 21 struct ieee80211_rate *
 22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
 23                             u32 basic_rates, int bitrate)
 24 {
 25         struct ieee80211_rate *result = &sband->bitrates[0];
 26         int i;
 27 
 28         for (i = 0; i < sband->n_bitrates; i++) {
 29                 if (!(basic_rates & BIT(i)))
 30                         continue;
 31                 if (sband->bitrates[i].bitrate > bitrate)
 32                         continue;
 33                 result = &sband->bitrates[i];
 34         }
 35 
 36         return result;
 37 }
 38 EXPORT_SYMBOL(ieee80211_get_response_rate);
 39 
 40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
 41                               enum nl80211_bss_scan_width scan_width)
 42 {
 43         struct ieee80211_rate *bitrates;
 44         u32 mandatory_rates = 0;
 45         enum ieee80211_rate_flags mandatory_flag;
 46         int i;
 47 
 48         if (WARN_ON(!sband))
 49                 return 1;
 50 
 51         if (sband->band == NL80211_BAND_2GHZ) {
 52                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
 53                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
 54                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
 55                 else
 56                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
 57         } else {
 58                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 59         }
 60 
 61         bitrates = sband->bitrates;
 62         for (i = 0; i < sband->n_bitrates; i++)
 63                 if (bitrates[i].flags & mandatory_flag)
 64                         mandatory_rates |= BIT(i);
 65         return mandatory_rates;
 66 }
 67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
 68 
 69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
 70 {
 71         /* see 802.11 17.3.8.3.2 and Annex J
 72          * there are overlapping channel numbers in 5GHz and 2GHz bands */
 73         if (chan <= 0)
 74                 return 0; /* not supported */
 75         switch (band) {
 76         case NL80211_BAND_2GHZ:
 77                 if (chan == 14)
 78                         return 2484;
 79                 else if (chan < 14)
 80                         return 2407 + chan * 5;
 81                 break;
 82         case NL80211_BAND_5GHZ:
 83                 if (chan >= 182 && chan <= 196)
 84                         return 4000 + chan * 5;
 85                 else
 86                         return 5000 + chan * 5;
 87                 break;
 88         case NL80211_BAND_60GHZ:
 89                 if (chan < 5)
 90                         return 56160 + chan * 2160;
 91                 break;
 92         default:
 93                 ;
 94         }
 95         return 0; /* not supported */
 96 }
 97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 98 
 99 int ieee80211_frequency_to_channel(int freq)
100 {
101         /* see 802.11 17.3.8.3.2 and Annex J */
102         if (freq == 2484)
103                 return 14;
104         else if (freq < 2484)
105                 return (freq - 2407) / 5;
106         else if (freq >= 4910 && freq <= 4980)
107                 return (freq - 4000) / 5;
108         else if (freq <= 45000) /* DMG band lower limit */
109                 return (freq - 5000) / 5;
110         else if (freq >= 58320 && freq <= 64800)
111                 return (freq - 56160) / 2160;
112         else
113                 return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116 
117 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
118                                                   int freq)
119 {
120         enum nl80211_band band;
121         struct ieee80211_supported_band *sband;
122         int i;
123 
124         for (band = 0; band < NUM_NL80211_BANDS; band++) {
125                 sband = wiphy->bands[band];
126 
127                 if (!sband)
128                         continue;
129 
130                 for (i = 0; i < sband->n_channels; i++) {
131                         if (sband->channels[i].center_freq == freq)
132                                 return &sband->channels[i];
133                 }
134         }
135 
136         return NULL;
137 }
138 EXPORT_SYMBOL(__ieee80211_get_channel);
139 
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
141                                      enum nl80211_band band)
142 {
143         int i, want;
144 
145         switch (band) {
146         case NL80211_BAND_5GHZ:
147                 want = 3;
148                 for (i = 0; i < sband->n_bitrates; i++) {
149                         if (sband->bitrates[i].bitrate == 60 ||
150                             sband->bitrates[i].bitrate == 120 ||
151                             sband->bitrates[i].bitrate == 240) {
152                                 sband->bitrates[i].flags |=
153                                         IEEE80211_RATE_MANDATORY_A;
154                                 want--;
155                         }
156                 }
157                 WARN_ON(want);
158                 break;
159         case NL80211_BAND_2GHZ:
160                 want = 7;
161                 for (i = 0; i < sband->n_bitrates; i++) {
162                         if (sband->bitrates[i].bitrate == 10) {
163                                 sband->bitrates[i].flags |=
164                                         IEEE80211_RATE_MANDATORY_B |
165                                         IEEE80211_RATE_MANDATORY_G;
166                                 want--;
167                         }
168 
169                         if (sband->bitrates[i].bitrate == 20 ||
170                             sband->bitrates[i].bitrate == 55 ||
171                             sband->bitrates[i].bitrate == 110 ||
172                             sband->bitrates[i].bitrate == 60 ||
173                             sband->bitrates[i].bitrate == 120 ||
174                             sband->bitrates[i].bitrate == 240) {
175                                 sband->bitrates[i].flags |=
176                                         IEEE80211_RATE_MANDATORY_G;
177                                 want--;
178                         }
179 
180                         if (sband->bitrates[i].bitrate != 10 &&
181                             sband->bitrates[i].bitrate != 20 &&
182                             sband->bitrates[i].bitrate != 55 &&
183                             sband->bitrates[i].bitrate != 110)
184                                 sband->bitrates[i].flags |=
185                                         IEEE80211_RATE_ERP_G;
186                 }
187                 WARN_ON(want != 0 && want != 3 && want != 6);
188                 break;
189         case NL80211_BAND_60GHZ:
190                 /* check for mandatory HT MCS 1..4 */
191                 WARN_ON(!sband->ht_cap.ht_supported);
192                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
193                 break;
194         case NUM_NL80211_BANDS:
195                 WARN_ON(1);
196                 break;
197         }
198 }
199 
200 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201 {
202         enum nl80211_band band;
203 
204         for (band = 0; band < NUM_NL80211_BANDS; band++)
205                 if (wiphy->bands[band])
206                         set_mandatory_flags_band(wiphy->bands[band], band);
207 }
208 
209 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210 {
211         int i;
212         for (i = 0; i < wiphy->n_cipher_suites; i++)
213                 if (cipher == wiphy->cipher_suites[i])
214                         return true;
215         return false;
216 }
217 
218 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
219                                    struct key_params *params, int key_idx,
220                                    bool pairwise, const u8 *mac_addr)
221 {
222         if (key_idx < 0 || key_idx > 5)
223                 return -EINVAL;
224 
225         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
226                 return -EINVAL;
227 
228         if (pairwise && !mac_addr)
229                 return -EINVAL;
230 
231         switch (params->cipher) {
232         case WLAN_CIPHER_SUITE_TKIP:
233         case WLAN_CIPHER_SUITE_CCMP:
234         case WLAN_CIPHER_SUITE_CCMP_256:
235         case WLAN_CIPHER_SUITE_GCMP:
236         case WLAN_CIPHER_SUITE_GCMP_256:
237                 /* Disallow pairwise keys with non-zero index unless it's WEP
238                  * or a vendor specific cipher (because current deployments use
239                  * pairwise WEP keys with non-zero indices and for vendor
240                  * specific ciphers this should be validated in the driver or
241                  * hardware level - but 802.11i clearly specifies to use zero)
242                  */
243                 if (pairwise && key_idx)
244                         return -EINVAL;
245                 break;
246         case WLAN_CIPHER_SUITE_AES_CMAC:
247         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
249         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
250                 /* Disallow BIP (group-only) cipher as pairwise cipher */
251                 if (pairwise)
252                         return -EINVAL;
253                 if (key_idx < 4)
254                         return -EINVAL;
255                 break;
256         case WLAN_CIPHER_SUITE_WEP40:
257         case WLAN_CIPHER_SUITE_WEP104:
258                 if (key_idx > 3)
259                         return -EINVAL;
260         default:
261                 break;
262         }
263 
264         switch (params->cipher) {
265         case WLAN_CIPHER_SUITE_WEP40:
266                 if (params->key_len != WLAN_KEY_LEN_WEP40)
267                         return -EINVAL;
268                 break;
269         case WLAN_CIPHER_SUITE_TKIP:
270                 if (params->key_len != WLAN_KEY_LEN_TKIP)
271                         return -EINVAL;
272                 break;
273         case WLAN_CIPHER_SUITE_CCMP:
274                 if (params->key_len != WLAN_KEY_LEN_CCMP)
275                         return -EINVAL;
276                 break;
277         case WLAN_CIPHER_SUITE_CCMP_256:
278                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
279                         return -EINVAL;
280                 break;
281         case WLAN_CIPHER_SUITE_GCMP:
282                 if (params->key_len != WLAN_KEY_LEN_GCMP)
283                         return -EINVAL;
284                 break;
285         case WLAN_CIPHER_SUITE_GCMP_256:
286                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
287                         return -EINVAL;
288                 break;
289         case WLAN_CIPHER_SUITE_WEP104:
290                 if (params->key_len != WLAN_KEY_LEN_WEP104)
291                         return -EINVAL;
292                 break;
293         case WLAN_CIPHER_SUITE_AES_CMAC:
294                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
295                         return -EINVAL;
296                 break;
297         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
298                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
299                         return -EINVAL;
300                 break;
301         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
302                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
303                         return -EINVAL;
304                 break;
305         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
306                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
307                         return -EINVAL;
308                 break;
309         default:
310                 /*
311                  * We don't know anything about this algorithm,
312                  * allow using it -- but the driver must check
313                  * all parameters! We still check below whether
314                  * or not the driver supports this algorithm,
315                  * of course.
316                  */
317                 break;
318         }
319 
320         if (params->seq) {
321                 switch (params->cipher) {
322                 case WLAN_CIPHER_SUITE_WEP40:
323                 case WLAN_CIPHER_SUITE_WEP104:
324                         /* These ciphers do not use key sequence */
325                         return -EINVAL;
326                 case WLAN_CIPHER_SUITE_TKIP:
327                 case WLAN_CIPHER_SUITE_CCMP:
328                 case WLAN_CIPHER_SUITE_CCMP_256:
329                 case WLAN_CIPHER_SUITE_GCMP:
330                 case WLAN_CIPHER_SUITE_GCMP_256:
331                 case WLAN_CIPHER_SUITE_AES_CMAC:
332                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
333                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
334                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
335                         if (params->seq_len != 6)
336                                 return -EINVAL;
337                         break;
338                 }
339         }
340 
341         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
342                 return -EINVAL;
343 
344         return 0;
345 }
346 
347 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
348 {
349         unsigned int hdrlen = 24;
350 
351         if (ieee80211_is_data(fc)) {
352                 if (ieee80211_has_a4(fc))
353                         hdrlen = 30;
354                 if (ieee80211_is_data_qos(fc)) {
355                         hdrlen += IEEE80211_QOS_CTL_LEN;
356                         if (ieee80211_has_order(fc))
357                                 hdrlen += IEEE80211_HT_CTL_LEN;
358                 }
359                 goto out;
360         }
361 
362         if (ieee80211_is_mgmt(fc)) {
363                 if (ieee80211_has_order(fc))
364                         hdrlen += IEEE80211_HT_CTL_LEN;
365                 goto out;
366         }
367 
368         if (ieee80211_is_ctl(fc)) {
369                 /*
370                  * ACK and CTS are 10 bytes, all others 16. To see how
371                  * to get this condition consider
372                  *   subtype mask:   0b0000000011110000 (0x00F0)
373                  *   ACK subtype:    0b0000000011010000 (0x00D0)
374                  *   CTS subtype:    0b0000000011000000 (0x00C0)
375                  *   bits that matter:         ^^^      (0x00E0)
376                  *   value of those: 0b0000000011000000 (0x00C0)
377                  */
378                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
379                         hdrlen = 10;
380                 else
381                         hdrlen = 16;
382         }
383 out:
384         return hdrlen;
385 }
386 EXPORT_SYMBOL(ieee80211_hdrlen);
387 
388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
389 {
390         const struct ieee80211_hdr *hdr =
391                         (const struct ieee80211_hdr *)skb->data;
392         unsigned int hdrlen;
393 
394         if (unlikely(skb->len < 10))
395                 return 0;
396         hdrlen = ieee80211_hdrlen(hdr->frame_control);
397         if (unlikely(hdrlen > skb->len))
398                 return 0;
399         return hdrlen;
400 }
401 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
402 
403 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
404 {
405         int ae = flags & MESH_FLAGS_AE;
406         /* 802.11-2012, 8.2.4.7.3 */
407         switch (ae) {
408         default:
409         case 0:
410                 return 6;
411         case MESH_FLAGS_AE_A4:
412                 return 12;
413         case MESH_FLAGS_AE_A5_A6:
414                 return 18;
415         }
416 }
417 
418 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
419 {
420         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
421 }
422 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
423 
424 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
425                                   const u8 *addr, enum nl80211_iftype iftype)
426 {
427         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428         struct {
429                 u8 hdr[ETH_ALEN] __aligned(2);
430                 __be16 proto;
431         } payload;
432         struct ethhdr tmp;
433         u16 hdrlen;
434         u8 mesh_flags = 0;
435 
436         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437                 return -1;
438 
439         hdrlen = ieee80211_hdrlen(hdr->frame_control);
440         if (skb->len < hdrlen + 8)
441                 return -1;
442 
443         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444          * header
445          * IEEE 802.11 address fields:
446          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447          *   0     0   DA    SA    BSSID n/a
448          *   0     1   DA    BSSID SA    n/a
449          *   1     0   BSSID SA    DA    n/a
450          *   1     1   RA    TA    DA    SA
451          */
452         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454 
455         if (iftype == NL80211_IFTYPE_MESH_POINT)
456                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457 
458         switch (hdr->frame_control &
459                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
460         case cpu_to_le16(IEEE80211_FCTL_TODS):
461                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
462                              iftype != NL80211_IFTYPE_AP_VLAN &&
463                              iftype != NL80211_IFTYPE_P2P_GO))
464                         return -1;
465                 break;
466         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
467                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
468                              iftype != NL80211_IFTYPE_MESH_POINT &&
469                              iftype != NL80211_IFTYPE_AP_VLAN &&
470                              iftype != NL80211_IFTYPE_STATION))
471                         return -1;
472                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
473                         if (mesh_flags & MESH_FLAGS_AE_A4)
474                                 return -1;
475                         if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
476                                 skb_copy_bits(skb, hdrlen +
477                                         offsetof(struct ieee80211s_hdr, eaddr1),
478                                         tmp.h_dest, 2 * ETH_ALEN);
479                         }
480                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
481                 }
482                 break;
483         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
484                 if ((iftype != NL80211_IFTYPE_STATION &&
485                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
486                      iftype != NL80211_IFTYPE_MESH_POINT) ||
487                     (is_multicast_ether_addr(tmp.h_dest) &&
488                      ether_addr_equal(tmp.h_source, addr)))
489                         return -1;
490                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
491                         if (mesh_flags & MESH_FLAGS_AE_A5_A6)
492                                 return -1;
493                         if (mesh_flags & MESH_FLAGS_AE_A4)
494                                 skb_copy_bits(skb, hdrlen +
495                                         offsetof(struct ieee80211s_hdr, eaddr1),
496                                         tmp.h_source, ETH_ALEN);
497                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
498                 }
499                 break;
500         case cpu_to_le16(0):
501                 if (iftype != NL80211_IFTYPE_ADHOC &&
502                     iftype != NL80211_IFTYPE_STATION &&
503                     iftype != NL80211_IFTYPE_OCB)
504                                 return -1;
505                 break;
506         }
507 
508         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
509         tmp.h_proto = payload.proto;
510 
511         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
512                     tmp.h_proto != htons(ETH_P_AARP) &&
513                     tmp.h_proto != htons(ETH_P_IPX)) ||
514                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
515                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
516                  * replace EtherType */
517                 hdrlen += ETH_ALEN + 2;
518         else
519                 tmp.h_proto = htons(skb->len - hdrlen);
520 
521         pskb_pull(skb, hdrlen);
522 
523         if (!ehdr)
524                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
525         memcpy(ehdr, &tmp, sizeof(tmp));
526 
527         return 0;
528 }
529 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
530 
531 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
532                              enum nl80211_iftype iftype,
533                              const u8 *bssid, bool qos)
534 {
535         struct ieee80211_hdr hdr;
536         u16 hdrlen, ethertype;
537         __le16 fc;
538         const u8 *encaps_data;
539         int encaps_len, skip_header_bytes;
540         int nh_pos, h_pos;
541         int head_need;
542 
543         if (unlikely(skb->len < ETH_HLEN))
544                 return -EINVAL;
545 
546         nh_pos = skb_network_header(skb) - skb->data;
547         h_pos = skb_transport_header(skb) - skb->data;
548 
549         /* convert Ethernet header to proper 802.11 header (based on
550          * operation mode) */
551         ethertype = (skb->data[12] << 8) | skb->data[13];
552         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
553 
554         switch (iftype) {
555         case NL80211_IFTYPE_AP:
556         case NL80211_IFTYPE_AP_VLAN:
557         case NL80211_IFTYPE_P2P_GO:
558                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
559                 /* DA BSSID SA */
560                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
561                 memcpy(hdr.addr2, addr, ETH_ALEN);
562                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
563                 hdrlen = 24;
564                 break;
565         case NL80211_IFTYPE_STATION:
566         case NL80211_IFTYPE_P2P_CLIENT:
567                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
568                 /* BSSID SA DA */
569                 memcpy(hdr.addr1, bssid, ETH_ALEN);
570                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
571                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
572                 hdrlen = 24;
573                 break;
574         case NL80211_IFTYPE_OCB:
575         case NL80211_IFTYPE_ADHOC:
576                 /* DA SA BSSID */
577                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
578                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
579                 memcpy(hdr.addr3, bssid, ETH_ALEN);
580                 hdrlen = 24;
581                 break;
582         default:
583                 return -EOPNOTSUPP;
584         }
585 
586         if (qos) {
587                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
588                 hdrlen += 2;
589         }
590 
591         hdr.frame_control = fc;
592         hdr.duration_id = 0;
593         hdr.seq_ctrl = 0;
594 
595         skip_header_bytes = ETH_HLEN;
596         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
597                 encaps_data = bridge_tunnel_header;
598                 encaps_len = sizeof(bridge_tunnel_header);
599                 skip_header_bytes -= 2;
600         } else if (ethertype >= ETH_P_802_3_MIN) {
601                 encaps_data = rfc1042_header;
602                 encaps_len = sizeof(rfc1042_header);
603                 skip_header_bytes -= 2;
604         } else {
605                 encaps_data = NULL;
606                 encaps_len = 0;
607         }
608 
609         skb_pull(skb, skip_header_bytes);
610         nh_pos -= skip_header_bytes;
611         h_pos -= skip_header_bytes;
612 
613         head_need = hdrlen + encaps_len - skb_headroom(skb);
614 
615         if (head_need > 0 || skb_cloned(skb)) {
616                 head_need = max(head_need, 0);
617                 if (head_need)
618                         skb_orphan(skb);
619 
620                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
621                         return -ENOMEM;
622 
623                 skb->truesize += head_need;
624         }
625 
626         if (encaps_data) {
627                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
628                 nh_pos += encaps_len;
629                 h_pos += encaps_len;
630         }
631 
632         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
633 
634         nh_pos += hdrlen;
635         h_pos += hdrlen;
636 
637         /* Update skb pointers to various headers since this modified frame
638          * is going to go through Linux networking code that may potentially
639          * need things like pointer to IP header. */
640         skb_reset_mac_header(skb);
641         skb_set_network_header(skb, nh_pos);
642         skb_set_transport_header(skb, h_pos);
643 
644         return 0;
645 }
646 EXPORT_SYMBOL(ieee80211_data_from_8023);
647 
648 static void
649 __frame_add_frag(struct sk_buff *skb, struct page *page,
650                  void *ptr, int len, int size)
651 {
652         struct skb_shared_info *sh = skb_shinfo(skb);
653         int page_offset;
654 
655         page_ref_inc(page);
656         page_offset = ptr - page_address(page);
657         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
658 }
659 
660 static void
661 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
662                             int offset, int len)
663 {
664         struct skb_shared_info *sh = skb_shinfo(skb);
665         const skb_frag_t *frag = &sh->frags[-1];
666         struct page *frag_page;
667         void *frag_ptr;
668         int frag_len, frag_size;
669         int head_size = skb->len - skb->data_len;
670         int cur_len;
671 
672         frag_page = virt_to_head_page(skb->head);
673         frag_ptr = skb->data;
674         frag_size = head_size;
675 
676         while (offset >= frag_size) {
677                 offset -= frag_size;
678                 frag++;
679                 frag_page = skb_frag_page(frag);
680                 frag_ptr = skb_frag_address(frag);
681                 frag_size = skb_frag_size(frag);
682         }
683 
684         frag_ptr += offset;
685         frag_len = frag_size - offset;
686 
687         cur_len = min(len, frag_len);
688 
689         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
690         len -= cur_len;
691 
692         while (len > 0) {
693                 frag++;
694                 frag_len = skb_frag_size(frag);
695                 cur_len = min(len, frag_len);
696                 __frame_add_frag(frame, skb_frag_page(frag),
697                                  skb_frag_address(frag), cur_len, frag_len);
698                 len -= cur_len;
699         }
700 }
701 
702 static struct sk_buff *
703 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
704                        int offset, int len, bool reuse_frag)
705 {
706         struct sk_buff *frame;
707         int cur_len = len;
708 
709         if (skb->len - offset < len)
710                 return NULL;
711 
712         /*
713          * When reusing framents, copy some data to the head to simplify
714          * ethernet header handling and speed up protocol header processing
715          * in the stack later.
716          */
717         if (reuse_frag)
718                 cur_len = min_t(int, len, 32);
719 
720         /*
721          * Allocate and reserve two bytes more for payload
722          * alignment since sizeof(struct ethhdr) is 14.
723          */
724         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
725         if (!frame)
726                 return NULL;
727 
728         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
729         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
730 
731         len -= cur_len;
732         if (!len)
733                 return frame;
734 
735         offset += cur_len;
736         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
737 
738         return frame;
739 }
740 
741 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
742                               const u8 *addr, enum nl80211_iftype iftype,
743                               const unsigned int extra_headroom,
744                               const u8 *check_da, const u8 *check_sa)
745 {
746         unsigned int hlen = ALIGN(extra_headroom, 4);
747         struct sk_buff *frame = NULL;
748         u16 ethertype;
749         u8 *payload;
750         int offset = 0, remaining;
751         struct ethhdr eth;
752         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
753         bool reuse_skb = false;
754         bool last = false;
755 
756         while (!last) {
757                 unsigned int subframe_len;
758                 int len;
759                 u8 padding;
760 
761                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
762                 len = ntohs(eth.h_proto);
763                 subframe_len = sizeof(struct ethhdr) + len;
764                 padding = (4 - subframe_len) & 0x3;
765 
766                 /* the last MSDU has no padding */
767                 remaining = skb->len - offset;
768                 if (subframe_len > remaining)
769                         goto purge;
770 
771                 offset += sizeof(struct ethhdr);
772                 last = remaining <= subframe_len + padding;
773 
774                 /* FIXME: should we really accept multicast DA? */
775                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
776                      !ether_addr_equal(check_da, eth.h_dest)) ||
777                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
778                         offset += len + padding;
779                         continue;
780                 }
781 
782                 /* reuse skb for the last subframe */
783                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
784                         skb_pull(skb, offset);
785                         frame = skb;
786                         reuse_skb = true;
787                 } else {
788                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
789                                                        reuse_frag);
790                         if (!frame)
791                                 goto purge;
792 
793                         offset += len + padding;
794                 }
795 
796                 skb_reset_network_header(frame);
797                 frame->dev = skb->dev;
798                 frame->priority = skb->priority;
799 
800                 payload = frame->data;
801                 ethertype = (payload[6] << 8) | payload[7];
802                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
803                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
804                            ether_addr_equal(payload, bridge_tunnel_header))) {
805                         eth.h_proto = htons(ethertype);
806                         skb_pull(frame, ETH_ALEN + 2);
807                 }
808 
809                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
810                 __skb_queue_tail(list, frame);
811         }
812 
813         if (!reuse_skb)
814                 dev_kfree_skb(skb);
815 
816         return;
817 
818  purge:
819         __skb_queue_purge(list);
820         dev_kfree_skb(skb);
821 }
822 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
823 
824 /* Given a data frame determine the 802.1p/1d tag to use. */
825 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
826                                     struct cfg80211_qos_map *qos_map)
827 {
828         unsigned int dscp;
829         unsigned char vlan_priority;
830 
831         /* skb->priority values from 256->263 are magic values to
832          * directly indicate a specific 802.1d priority.  This is used
833          * to allow 802.1d priority to be passed directly in from VLAN
834          * tags, etc.
835          */
836         if (skb->priority >= 256 && skb->priority <= 263)
837                 return skb->priority - 256;
838 
839         if (skb_vlan_tag_present(skb)) {
840                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
841                         >> VLAN_PRIO_SHIFT;
842                 if (vlan_priority > 0)
843                         return vlan_priority;
844         }
845 
846         switch (skb->protocol) {
847         case htons(ETH_P_IP):
848                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
849                 break;
850         case htons(ETH_P_IPV6):
851                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
852                 break;
853         case htons(ETH_P_MPLS_UC):
854         case htons(ETH_P_MPLS_MC): {
855                 struct mpls_label mpls_tmp, *mpls;
856 
857                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
858                                           sizeof(*mpls), &mpls_tmp);
859                 if (!mpls)
860                         return 0;
861 
862                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
863                         >> MPLS_LS_TC_SHIFT;
864         }
865         case htons(ETH_P_80221):
866                 /* 802.21 is always network control traffic */
867                 return 7;
868         default:
869                 return 0;
870         }
871 
872         if (qos_map) {
873                 unsigned int i, tmp_dscp = dscp >> 2;
874 
875                 for (i = 0; i < qos_map->num_des; i++) {
876                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
877                                 return qos_map->dscp_exception[i].up;
878                 }
879 
880                 for (i = 0; i < 8; i++) {
881                         if (tmp_dscp >= qos_map->up[i].low &&
882                             tmp_dscp <= qos_map->up[i].high)
883                                 return i;
884                 }
885         }
886 
887         return dscp >> 5;
888 }
889 EXPORT_SYMBOL(cfg80211_classify8021d);
890 
891 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
892 {
893         const struct cfg80211_bss_ies *ies;
894 
895         ies = rcu_dereference(bss->ies);
896         if (!ies)
897                 return NULL;
898 
899         return cfg80211_find_ie(ie, ies->data, ies->len);
900 }
901 EXPORT_SYMBOL(ieee80211_bss_get_ie);
902 
903 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
904 {
905         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
906         struct net_device *dev = wdev->netdev;
907         int i;
908 
909         if (!wdev->connect_keys)
910                 return;
911 
912         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
913                 if (!wdev->connect_keys->params[i].cipher)
914                         continue;
915                 if (rdev_add_key(rdev, dev, i, false, NULL,
916                                  &wdev->connect_keys->params[i])) {
917                         netdev_err(dev, "failed to set key %d\n", i);
918                         continue;
919                 }
920                 if (wdev->connect_keys->def == i)
921                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
922                                 netdev_err(dev, "failed to set defkey %d\n", i);
923                                 continue;
924                         }
925         }
926 
927         kzfree(wdev->connect_keys);
928         wdev->connect_keys = NULL;
929 }
930 
931 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932 {
933         struct cfg80211_event *ev;
934         unsigned long flags;
935         const u8 *bssid = NULL;
936 
937         spin_lock_irqsave(&wdev->event_lock, flags);
938         while (!list_empty(&wdev->event_list)) {
939                 ev = list_first_entry(&wdev->event_list,
940                                       struct cfg80211_event, list);
941                 list_del(&ev->list);
942                 spin_unlock_irqrestore(&wdev->event_lock, flags);
943 
944                 wdev_lock(wdev);
945                 switch (ev->type) {
946                 case EVENT_CONNECT_RESULT:
947                         if (!is_zero_ether_addr(ev->cr.bssid))
948                                 bssid = ev->cr.bssid;
949                         __cfg80211_connect_result(
950                                 wdev->netdev, bssid,
951                                 ev->cr.req_ie, ev->cr.req_ie_len,
952                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
953                                 ev->cr.status,
954                                 ev->cr.status == WLAN_STATUS_SUCCESS,
955                                 ev->cr.bss);
956                         break;
957                 case EVENT_ROAMED:
958                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
959                                           ev->rm.req_ie_len, ev->rm.resp_ie,
960                                           ev->rm.resp_ie_len);
961                         break;
962                 case EVENT_DISCONNECTED:
963                         __cfg80211_disconnected(wdev->netdev,
964                                                 ev->dc.ie, ev->dc.ie_len,
965                                                 ev->dc.reason,
966                                                 !ev->dc.locally_generated);
967                         break;
968                 case EVENT_IBSS_JOINED:
969                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
970                                                ev->ij.channel);
971                         break;
972                 case EVENT_STOPPED:
973                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
974                         break;
975                 }
976                 wdev_unlock(wdev);
977 
978                 kfree(ev);
979 
980                 spin_lock_irqsave(&wdev->event_lock, flags);
981         }
982         spin_unlock_irqrestore(&wdev->event_lock, flags);
983 }
984 
985 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
986 {
987         struct wireless_dev *wdev;
988 
989         ASSERT_RTNL();
990 
991         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
992                 cfg80211_process_wdev_events(wdev);
993 }
994 
995 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
996                           struct net_device *dev, enum nl80211_iftype ntype,
997                           u32 *flags, struct vif_params *params)
998 {
999         int err;
1000         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001 
1002         ASSERT_RTNL();
1003 
1004         /* don't support changing VLANs, you just re-create them */
1005         if (otype == NL80211_IFTYPE_AP_VLAN)
1006                 return -EOPNOTSUPP;
1007 
1008         /* cannot change into P2P device or NAN */
1009         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010             ntype == NL80211_IFTYPE_NAN)
1011                 return -EOPNOTSUPP;
1012 
1013         if (!rdev->ops->change_virtual_intf ||
1014             !(rdev->wiphy.interface_modes & (1 << ntype)))
1015                 return -EOPNOTSUPP;
1016 
1017         /* if it's part of a bridge, reject changing type to station/ibss */
1018         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019             (ntype == NL80211_IFTYPE_ADHOC ||
1020              ntype == NL80211_IFTYPE_STATION ||
1021              ntype == NL80211_IFTYPE_P2P_CLIENT))
1022                 return -EBUSY;
1023 
1024         if (ntype != otype) {
1025                 dev->ieee80211_ptr->use_4addr = false;
1026                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1027                 wdev_lock(dev->ieee80211_ptr);
1028                 rdev_set_qos_map(rdev, dev, NULL);
1029                 wdev_unlock(dev->ieee80211_ptr);
1030 
1031                 switch (otype) {
1032                 case NL80211_IFTYPE_AP:
1033                         cfg80211_stop_ap(rdev, dev, true);
1034                         break;
1035                 case NL80211_IFTYPE_ADHOC:
1036                         cfg80211_leave_ibss(rdev, dev, false);
1037                         break;
1038                 case NL80211_IFTYPE_STATION:
1039                 case NL80211_IFTYPE_P2P_CLIENT:
1040                         wdev_lock(dev->ieee80211_ptr);
1041                         cfg80211_disconnect(rdev, dev,
1042                                             WLAN_REASON_DEAUTH_LEAVING, true);
1043                         wdev_unlock(dev->ieee80211_ptr);
1044                         break;
1045                 case NL80211_IFTYPE_MESH_POINT:
1046                         /* mesh should be handled? */
1047                         break;
1048                 default:
1049                         break;
1050                 }
1051 
1052                 cfg80211_process_rdev_events(rdev);
1053         }
1054 
1055         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056 
1057         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058 
1059         if (!err && params && params->use_4addr != -1)
1060                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061 
1062         if (!err) {
1063                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064                 switch (ntype) {
1065                 case NL80211_IFTYPE_STATION:
1066                         if (dev->ieee80211_ptr->use_4addr)
1067                                 break;
1068                         /* fall through */
1069                 case NL80211_IFTYPE_OCB:
1070                 case NL80211_IFTYPE_P2P_CLIENT:
1071                 case NL80211_IFTYPE_ADHOC:
1072                         dev->priv_flags |= IFF_DONT_BRIDGE;
1073                         break;
1074                 case NL80211_IFTYPE_P2P_GO:
1075                 case NL80211_IFTYPE_AP:
1076                 case NL80211_IFTYPE_AP_VLAN:
1077                 case NL80211_IFTYPE_WDS:
1078                 case NL80211_IFTYPE_MESH_POINT:
1079                         /* bridging OK */
1080                         break;
1081                 case NL80211_IFTYPE_MONITOR:
1082                         /* monitor can't bridge anyway */
1083                         break;
1084                 case NL80211_IFTYPE_UNSPECIFIED:
1085                 case NUM_NL80211_IFTYPES:
1086                         /* not happening */
1087                         break;
1088                 case NL80211_IFTYPE_P2P_DEVICE:
1089                 case NL80211_IFTYPE_NAN:
1090                         WARN_ON(1);
1091                         break;
1092                 }
1093         }
1094 
1095         if (!err && ntype != otype && netif_running(dev)) {
1096                 cfg80211_update_iface_num(rdev, ntype, 1);
1097                 cfg80211_update_iface_num(rdev, otype, -1);
1098         }
1099 
1100         return err;
1101 }
1102 
1103 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1104 {
1105         static const u32 __mcs2bitrate[] = {
1106                 /* control PHY */
1107                 [0] =   275,
1108                 /* SC PHY */
1109                 [1] =  3850,
1110                 [2] =  7700,
1111                 [3] =  9625,
1112                 [4] = 11550,
1113                 [5] = 12512, /* 1251.25 mbps */
1114                 [6] = 15400,
1115                 [7] = 19250,
1116                 [8] = 23100,
1117                 [9] = 25025,
1118                 [10] = 30800,
1119                 [11] = 38500,
1120                 [12] = 46200,
1121                 /* OFDM PHY */
1122                 [13] =  6930,
1123                 [14] =  8662, /* 866.25 mbps */
1124                 [15] = 13860,
1125                 [16] = 17325,
1126                 [17] = 20790,
1127                 [18] = 27720,
1128                 [19] = 34650,
1129                 [20] = 41580,
1130                 [21] = 45045,
1131                 [22] = 51975,
1132                 [23] = 62370,
1133                 [24] = 67568, /* 6756.75 mbps */
1134                 /* LP-SC PHY */
1135                 [25] =  6260,
1136                 [26] =  8340,
1137                 [27] = 11120,
1138                 [28] = 12510,
1139                 [29] = 16680,
1140                 [30] = 22240,
1141                 [31] = 25030,
1142         };
1143 
1144         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145                 return 0;
1146 
1147         return __mcs2bitrate[rate->mcs];
1148 }
1149 
1150 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151 {
1152         static const u32 base[4][10] = {
1153                 {   6500000,
1154                    13000000,
1155                    19500000,
1156                    26000000,
1157                    39000000,
1158                    52000000,
1159                    58500000,
1160                    65000000,
1161                    78000000,
1162                 /* not in the spec, but some devices use this: */
1163                    86500000,
1164                 },
1165                 {  13500000,
1166                    27000000,
1167                    40500000,
1168                    54000000,
1169                    81000000,
1170                   108000000,
1171                   121500000,
1172                   135000000,
1173                   162000000,
1174                   180000000,
1175                 },
1176                 {  29300000,
1177                    58500000,
1178                    87800000,
1179                   117000000,
1180                   175500000,
1181                   234000000,
1182                   263300000,
1183                   292500000,
1184                   351000000,
1185                   390000000,
1186                 },
1187                 {  58500000,
1188                   117000000,
1189                   175500000,
1190                   234000000,
1191                   351000000,
1192                   468000000,
1193                   526500000,
1194                   585000000,
1195                   702000000,
1196                   780000000,
1197                 },
1198         };
1199         u32 bitrate;
1200         int idx;
1201 
1202         if (WARN_ON_ONCE(rate->mcs > 9))
1203                 return 0;
1204 
1205         switch (rate->bw) {
1206         case RATE_INFO_BW_160:
1207                 idx = 3;
1208                 break;
1209         case RATE_INFO_BW_80:
1210                 idx = 2;
1211                 break;
1212         case RATE_INFO_BW_40:
1213                 idx = 1;
1214                 break;
1215         case RATE_INFO_BW_5:
1216         case RATE_INFO_BW_10:
1217         default:
1218                 WARN_ON(1);
1219                 /* fall through */
1220         case RATE_INFO_BW_20:
1221                 idx = 0;
1222         }
1223 
1224         bitrate = base[idx][rate->mcs];
1225         bitrate *= rate->nss;
1226 
1227         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228                 bitrate = (bitrate / 9) * 10;
1229 
1230         /* do NOT round down here */
1231         return (bitrate + 50000) / 100000;
1232 }
1233 
1234 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235 {
1236         int modulation, streams, bitrate;
1237 
1238         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240                 return rate->legacy;
1241         if (rate->flags & RATE_INFO_FLAGS_60G)
1242                 return cfg80211_calculate_bitrate_60g(rate);
1243         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244                 return cfg80211_calculate_bitrate_vht(rate);
1245 
1246         /* the formula below does only work for MCS values smaller than 32 */
1247         if (WARN_ON_ONCE(rate->mcs >= 32))
1248                 return 0;
1249 
1250         modulation = rate->mcs & 7;
1251         streams = (rate->mcs >> 3) + 1;
1252 
1253         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1254 
1255         if (modulation < 4)
1256                 bitrate *= (modulation + 1);
1257         else if (modulation == 4)
1258                 bitrate *= (modulation + 2);
1259         else
1260                 bitrate *= (modulation + 3);
1261 
1262         bitrate *= streams;
1263 
1264         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265                 bitrate = (bitrate / 9) * 10;
1266 
1267         /* do NOT round down here */
1268         return (bitrate + 50000) / 100000;
1269 }
1270 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271 
1272 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273                           enum ieee80211_p2p_attr_id attr,
1274                           u8 *buf, unsigned int bufsize)
1275 {
1276         u8 *out = buf;
1277         u16 attr_remaining = 0;
1278         bool desired_attr = false;
1279         u16 desired_len = 0;
1280 
1281         while (len > 0) {
1282                 unsigned int iedatalen;
1283                 unsigned int copy;
1284                 const u8 *iedata;
1285 
1286                 if (len < 2)
1287                         return -EILSEQ;
1288                 iedatalen = ies[1];
1289                 if (iedatalen + 2 > len)
1290                         return -EILSEQ;
1291 
1292                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293                         goto cont;
1294 
1295                 if (iedatalen < 4)
1296                         goto cont;
1297 
1298                 iedata = ies + 2;
1299 
1300                 /* check WFA OUI, P2P subtype */
1301                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302                     iedata[2] != 0x9a || iedata[3] != 0x09)
1303                         goto cont;
1304 
1305                 iedatalen -= 4;
1306                 iedata += 4;
1307 
1308                 /* check attribute continuation into this IE */
1309                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1310                 if (copy && desired_attr) {
1311                         desired_len += copy;
1312                         if (out) {
1313                                 memcpy(out, iedata, min(bufsize, copy));
1314                                 out += min(bufsize, copy);
1315                                 bufsize -= min(bufsize, copy);
1316                         }
1317 
1318 
1319                         if (copy == attr_remaining)
1320                                 return desired_len;
1321                 }
1322 
1323                 attr_remaining -= copy;
1324                 if (attr_remaining)
1325                         goto cont;
1326 
1327                 iedatalen -= copy;
1328                 iedata += copy;
1329 
1330                 while (iedatalen > 0) {
1331                         u16 attr_len;
1332 
1333                         /* P2P attribute ID & size must fit */
1334                         if (iedatalen < 3)
1335                                 return -EILSEQ;
1336                         desired_attr = iedata[0] == attr;
1337                         attr_len = get_unaligned_le16(iedata + 1);
1338                         iedatalen -= 3;
1339                         iedata += 3;
1340 
1341                         copy = min_t(unsigned int, attr_len, iedatalen);
1342 
1343                         if (desired_attr) {
1344                                 desired_len += copy;
1345                                 if (out) {
1346                                         memcpy(out, iedata, min(bufsize, copy));
1347                                         out += min(bufsize, copy);
1348                                         bufsize -= min(bufsize, copy);
1349                                 }
1350 
1351                                 if (copy == attr_len)
1352                                         return desired_len;
1353                         }
1354 
1355                         iedata += copy;
1356                         iedatalen -= copy;
1357                         attr_remaining = attr_len - copy;
1358                 }
1359 
1360  cont:
1361                 len -= ies[1] + 2;
1362                 ies += ies[1] + 2;
1363         }
1364 
1365         if (attr_remaining && desired_attr)
1366                 return -EILSEQ;
1367 
1368         return -ENOENT;
1369 }
1370 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371 
1372 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373 {
1374         int i;
1375 
1376         for (i = 0; i < n_ids; i++)
1377                 if (ids[i] == id)
1378                         return true;
1379         return false;
1380 }
1381 
1382 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383 {
1384         /* we assume a validly formed IEs buffer */
1385         u8 len = ies[pos + 1];
1386 
1387         pos += 2 + len;
1388 
1389         /* the IE itself must have 255 bytes for fragments to follow */
1390         if (len < 255)
1391                 return pos;
1392 
1393         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394                 len = ies[pos + 1];
1395                 pos += 2 + len;
1396         }
1397 
1398         return pos;
1399 }
1400 
1401 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402                               const u8 *ids, int n_ids,
1403                               const u8 *after_ric, int n_after_ric,
1404                               size_t offset)
1405 {
1406         size_t pos = offset;
1407 
1408         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1409                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410                         pos = skip_ie(ies, ielen, pos);
1411 
1412                         while (pos < ielen &&
1413                                !ieee80211_id_in_list(after_ric, n_after_ric,
1414                                                      ies[pos]))
1415                                 pos = skip_ie(ies, ielen, pos);
1416                 } else {
1417                         pos = skip_ie(ies, ielen, pos);
1418                 }
1419         }
1420 
1421         return pos;
1422 }
1423 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424 
1425 bool ieee80211_operating_class_to_band(u8 operating_class,
1426                                        enum nl80211_band *band)
1427 {
1428         switch (operating_class) {
1429         case 112:
1430         case 115 ... 127:
1431         case 128 ... 130:
1432                 *band = NL80211_BAND_5GHZ;
1433                 return true;
1434         case 81:
1435         case 82:
1436         case 83:
1437         case 84:
1438                 *band = NL80211_BAND_2GHZ;
1439                 return true;
1440         case 180:
1441                 *band = NL80211_BAND_60GHZ;
1442                 return true;
1443         }
1444 
1445         return false;
1446 }
1447 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448 
1449 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450                                           u8 *op_class)
1451 {
1452         u8 vht_opclass;
1453         u16 freq = chandef->center_freq1;
1454 
1455         if (freq >= 2412 && freq <= 2472) {
1456                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1457                         return false;
1458 
1459                 /* 2.407 GHz, channels 1..13 */
1460                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461                         if (freq > chandef->chan->center_freq)
1462                                 *op_class = 83; /* HT40+ */
1463                         else
1464                                 *op_class = 84; /* HT40- */
1465                 } else {
1466                         *op_class = 81;
1467                 }
1468 
1469                 return true;
1470         }
1471 
1472         if (freq == 2484) {
1473                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1474                         return false;
1475 
1476                 *op_class = 82; /* channel 14 */
1477                 return true;
1478         }
1479 
1480         switch (chandef->width) {
1481         case NL80211_CHAN_WIDTH_80:
1482                 vht_opclass = 128;
1483                 break;
1484         case NL80211_CHAN_WIDTH_160:
1485                 vht_opclass = 129;
1486                 break;
1487         case NL80211_CHAN_WIDTH_80P80:
1488                 vht_opclass = 130;
1489                 break;
1490         case NL80211_CHAN_WIDTH_10:
1491         case NL80211_CHAN_WIDTH_5:
1492                 return false; /* unsupported for now */
1493         default:
1494                 vht_opclass = 0;
1495                 break;
1496         }
1497 
1498         /* 5 GHz, channels 36..48 */
1499         if (freq >= 5180 && freq <= 5240) {
1500                 if (vht_opclass) {
1501                         *op_class = vht_opclass;
1502                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503                         if (freq > chandef->chan->center_freq)
1504                                 *op_class = 116;
1505                         else
1506                                 *op_class = 117;
1507                 } else {
1508                         *op_class = 115;
1509                 }
1510 
1511                 return true;
1512         }
1513 
1514         /* 5 GHz, channels 52..64 */
1515         if (freq >= 5260 && freq <= 5320) {
1516                 if (vht_opclass) {
1517                         *op_class = vht_opclass;
1518                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519                         if (freq > chandef->chan->center_freq)
1520                                 *op_class = 119;
1521                         else
1522                                 *op_class = 120;
1523                 } else {
1524                         *op_class = 118;
1525                 }
1526 
1527                 return true;
1528         }
1529 
1530         /* 5 GHz, channels 100..144 */
1531         if (freq >= 5500 && freq <= 5720) {
1532                 if (vht_opclass) {
1533                         *op_class = vht_opclass;
1534                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535                         if (freq > chandef->chan->center_freq)
1536                                 *op_class = 122;
1537                         else
1538                                 *op_class = 123;
1539                 } else {
1540                         *op_class = 121;
1541                 }
1542 
1543                 return true;
1544         }
1545 
1546         /* 5 GHz, channels 149..169 */
1547         if (freq >= 5745 && freq <= 5845) {
1548                 if (vht_opclass) {
1549                         *op_class = vht_opclass;
1550                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551                         if (freq > chandef->chan->center_freq)
1552                                 *op_class = 126;
1553                         else
1554                                 *op_class = 127;
1555                 } else if (freq <= 5805) {
1556                         *op_class = 124;
1557                 } else {
1558                         *op_class = 125;
1559                 }
1560 
1561                 return true;
1562         }
1563 
1564         /* 56.16 GHz, channel 1..4 */
1565         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567                         return false;
1568 
1569                 *op_class = 180;
1570                 return true;
1571         }
1572 
1573         /* not supported yet */
1574         return false;
1575 }
1576 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577 
1578 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579                                        u32 *beacon_int_gcd,
1580                                        bool *beacon_int_different)
1581 {
1582         struct wireless_dev *wdev;
1583 
1584         *beacon_int_gcd = 0;
1585         *beacon_int_different = false;
1586 
1587         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588                 if (!wdev->beacon_interval)
1589                         continue;
1590 
1591                 if (!*beacon_int_gcd) {
1592                         *beacon_int_gcd = wdev->beacon_interval;
1593                         continue;
1594                 }
1595 
1596                 if (wdev->beacon_interval == *beacon_int_gcd)
1597                         continue;
1598 
1599                 *beacon_int_different = true;
1600                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601         }
1602 
1603         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604                 if (*beacon_int_gcd)
1605                         *beacon_int_different = true;
1606                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607         }
1608 }
1609 
1610 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611                                  enum nl80211_iftype iftype, u32 beacon_int)
1612 {
1613         /*
1614          * This is just a basic pre-condition check; if interface combinations
1615          * are possible the driver must already be checking those with a call
1616          * to cfg80211_check_combinations(), in which case we'll validate more
1617          * through the cfg80211_calculate_bi_data() call and code in
1618          * cfg80211_iter_combinations().
1619          */
1620 
1621         if (beacon_int < 10 || beacon_int > 10000)
1622                 return -EINVAL;
1623 
1624         return 0;
1625 }
1626 
1627 int cfg80211_iter_combinations(struct wiphy *wiphy,
1628                                struct iface_combination_params *params,
1629                                void (*iter)(const struct ieee80211_iface_combination *c,
1630                                             void *data),
1631                                void *data)
1632 {
1633         const struct ieee80211_regdomain *regdom;
1634         enum nl80211_dfs_regions region = 0;
1635         int i, j, iftype;
1636         int num_interfaces = 0;
1637         u32 used_iftypes = 0;
1638         u32 beacon_int_gcd;
1639         bool beacon_int_different;
1640 
1641         /*
1642          * This is a bit strange, since the iteration used to rely only on
1643          * the data given by the driver, but here it now relies on context,
1644          * in form of the currently operating interfaces.
1645          * This is OK for all current users, and saves us from having to
1646          * push the GCD calculations into all the drivers.
1647          * In the future, this should probably rely more on data that's in
1648          * cfg80211 already - the only thing not would appear to be any new
1649          * interfaces (while being brought up) and channel/radar data.
1650          */
1651         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652                                    &beacon_int_gcd, &beacon_int_different);
1653 
1654         if (params->radar_detect) {
1655                 rcu_read_lock();
1656                 regdom = rcu_dereference(cfg80211_regdomain);
1657                 if (regdom)
1658                         region = regdom->dfs_region;
1659                 rcu_read_unlock();
1660         }
1661 
1662         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663                 num_interfaces += params->iftype_num[iftype];
1664                 if (params->iftype_num[iftype] > 0 &&
1665                     !(wiphy->software_iftypes & BIT(iftype)))
1666                         used_iftypes |= BIT(iftype);
1667         }
1668 
1669         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670                 const struct ieee80211_iface_combination *c;
1671                 struct ieee80211_iface_limit *limits;
1672                 u32 all_iftypes = 0;
1673 
1674                 c = &wiphy->iface_combinations[i];
1675 
1676                 if (num_interfaces > c->max_interfaces)
1677                         continue;
1678                 if (params->num_different_channels > c->num_different_channels)
1679                         continue;
1680 
1681                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682                                  GFP_KERNEL);
1683                 if (!limits)
1684                         return -ENOMEM;
1685 
1686                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687                         if (wiphy->software_iftypes & BIT(iftype))
1688                                 continue;
1689                         for (j = 0; j < c->n_limits; j++) {
1690                                 all_iftypes |= limits[j].types;
1691                                 if (!(limits[j].types & BIT(iftype)))
1692                                         continue;
1693                                 if (limits[j].max < params->iftype_num[iftype])
1694                                         goto cont;
1695                                 limits[j].max -= params->iftype_num[iftype];
1696                         }
1697                 }
1698 
1699                 if (params->radar_detect !=
1700                         (c->radar_detect_widths & params->radar_detect))
1701                         goto cont;
1702 
1703                 if (params->radar_detect && c->radar_detect_regions &&
1704                     !(c->radar_detect_regions & BIT(region)))
1705                         goto cont;
1706 
1707                 /* Finally check that all iftypes that we're currently
1708                  * using are actually part of this combination. If they
1709                  * aren't then we can't use this combination and have
1710                  * to continue to the next.
1711                  */
1712                 if ((all_iftypes & used_iftypes) != used_iftypes)
1713                         goto cont;
1714 
1715                 if (beacon_int_gcd) {
1716                         if (c->beacon_int_min_gcd &&
1717                             beacon_int_gcd < c->beacon_int_min_gcd)
1718                                 goto cont;
1719                         if (!c->beacon_int_min_gcd && beacon_int_different)
1720                                 goto cont;
1721                 }
1722 
1723                 /* This combination covered all interface types and
1724                  * supported the requested numbers, so we're good.
1725                  */
1726 
1727                 (*iter)(c, data);
1728  cont:
1729                 kfree(limits);
1730         }
1731 
1732         return 0;
1733 }
1734 EXPORT_SYMBOL(cfg80211_iter_combinations);
1735 
1736 static void
1737 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738                           void *data)
1739 {
1740         int *num = data;
1741         (*num)++;
1742 }
1743 
1744 int cfg80211_check_combinations(struct wiphy *wiphy,
1745                                 struct iface_combination_params *params)
1746 {
1747         int err, num = 0;
1748 
1749         err = cfg80211_iter_combinations(wiphy, params,
1750                                          cfg80211_iter_sum_ifcombs, &num);
1751         if (err)
1752                 return err;
1753         if (num == 0)
1754                 return -EBUSY;
1755 
1756         return 0;
1757 }
1758 EXPORT_SYMBOL(cfg80211_check_combinations);
1759 
1760 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761                            const u8 *rates, unsigned int n_rates,
1762                            u32 *mask)
1763 {
1764         int i, j;
1765 
1766         if (!sband)
1767                 return -EINVAL;
1768 
1769         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770                 return -EINVAL;
1771 
1772         *mask = 0;
1773 
1774         for (i = 0; i < n_rates; i++) {
1775                 int rate = (rates[i] & 0x7f) * 5;
1776                 bool found = false;
1777 
1778                 for (j = 0; j < sband->n_bitrates; j++) {
1779                         if (sband->bitrates[j].bitrate == rate) {
1780                                 found = true;
1781                                 *mask |= BIT(j);
1782                                 break;
1783                         }
1784                 }
1785                 if (!found)
1786                         return -EINVAL;
1787         }
1788 
1789         /*
1790          * mask must have at least one bit set here since we
1791          * didn't accept a 0-length rates array nor allowed
1792          * entries in the array that didn't exist
1793          */
1794 
1795         return 0;
1796 }
1797 
1798 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799 {
1800         enum nl80211_band band;
1801         unsigned int n_channels = 0;
1802 
1803         for (band = 0; band < NUM_NL80211_BANDS; band++)
1804                 if (wiphy->bands[band])
1805                         n_channels += wiphy->bands[band]->n_channels;
1806 
1807         return n_channels;
1808 }
1809 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810 
1811 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812                          struct station_info *sinfo)
1813 {
1814         struct cfg80211_registered_device *rdev;
1815         struct wireless_dev *wdev;
1816 
1817         wdev = dev->ieee80211_ptr;
1818         if (!wdev)
1819                 return -EOPNOTSUPP;
1820 
1821         rdev = wiphy_to_rdev(wdev->wiphy);
1822         if (!rdev->ops->get_station)
1823                 return -EOPNOTSUPP;
1824 
1825         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826 }
1827 EXPORT_SYMBOL(cfg80211_get_station);
1828 
1829 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830 {
1831         int i;
1832 
1833         if (!f)
1834                 return;
1835 
1836         kfree(f->serv_spec_info);
1837         kfree(f->srf_bf);
1838         kfree(f->srf_macs);
1839         for (i = 0; i < f->num_rx_filters; i++)
1840                 kfree(f->rx_filters[i].filter);
1841 
1842         for (i = 0; i < f->num_tx_filters; i++)
1843                 kfree(f->tx_filters[i].filter);
1844 
1845         kfree(f->rx_filters);
1846         kfree(f->tx_filters);
1847         kfree(f);
1848 }
1849 EXPORT_SYMBOL(cfg80211_free_nan_func);
1850 
1851 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853 const unsigned char rfc1042_header[] __aligned(2) =
1854         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855 EXPORT_SYMBOL(rfc1042_header);
1856 
1857 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858 const unsigned char bridge_tunnel_header[] __aligned(2) =
1859         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860 EXPORT_SYMBOL(bridge_tunnel_header);
1861 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us