Version:  2.0.40 2.2.26 2.4.37 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Linux/net/wireless/util.c

  1 /*
  2  * Wireless utility functions
  3  *
  4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2013-2014  Intel Mobile Communications GmbH
  6  */
  7 #include <linux/export.h>
  8 #include <linux/bitops.h>
  9 #include <linux/etherdevice.h>
 10 #include <linux/slab.h>
 11 #include <net/cfg80211.h>
 12 #include <net/ip.h>
 13 #include <net/dsfield.h>
 14 #include <linux/if_vlan.h>
 15 #include <linux/mpls.h>
 16 #include "core.h"
 17 #include "rdev-ops.h"
 18 
 19 
 20 struct ieee80211_rate *
 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
 22                             u32 basic_rates, int bitrate)
 23 {
 24         struct ieee80211_rate *result = &sband->bitrates[0];
 25         int i;
 26 
 27         for (i = 0; i < sband->n_bitrates; i++) {
 28                 if (!(basic_rates & BIT(i)))
 29                         continue;
 30                 if (sband->bitrates[i].bitrate > bitrate)
 31                         continue;
 32                 result = &sband->bitrates[i];
 33         }
 34 
 35         return result;
 36 }
 37 EXPORT_SYMBOL(ieee80211_get_response_rate);
 38 
 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
 40                               enum nl80211_bss_scan_width scan_width)
 41 {
 42         struct ieee80211_rate *bitrates;
 43         u32 mandatory_rates = 0;
 44         enum ieee80211_rate_flags mandatory_flag;
 45         int i;
 46 
 47         if (WARN_ON(!sband))
 48                 return 1;
 49 
 50         if (sband->band == NL80211_BAND_2GHZ) {
 51                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
 52                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
 53                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
 54                 else
 55                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
 56         } else {
 57                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 58         }
 59 
 60         bitrates = sband->bitrates;
 61         for (i = 0; i < sband->n_bitrates; i++)
 62                 if (bitrates[i].flags & mandatory_flag)
 63                         mandatory_rates |= BIT(i);
 64         return mandatory_rates;
 65 }
 66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
 67 
 68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
 69 {
 70         /* see 802.11 17.3.8.3.2 and Annex J
 71          * there are overlapping channel numbers in 5GHz and 2GHz bands */
 72         if (chan <= 0)
 73                 return 0; /* not supported */
 74         switch (band) {
 75         case NL80211_BAND_2GHZ:
 76                 if (chan == 14)
 77                         return 2484;
 78                 else if (chan < 14)
 79                         return 2407 + chan * 5;
 80                 break;
 81         case NL80211_BAND_5GHZ:
 82                 if (chan >= 182 && chan <= 196)
 83                         return 4000 + chan * 5;
 84                 else
 85                         return 5000 + chan * 5;
 86                 break;
 87         case NL80211_BAND_60GHZ:
 88                 if (chan < 5)
 89                         return 56160 + chan * 2160;
 90                 break;
 91         default:
 92                 ;
 93         }
 94         return 0; /* not supported */
 95 }
 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 97 
 98 int ieee80211_frequency_to_channel(int freq)
 99 {
100         /* see 802.11 17.3.8.3.2 and Annex J */
101         if (freq == 2484)
102                 return 14;
103         else if (freq < 2484)
104                 return (freq - 2407) / 5;
105         else if (freq >= 4910 && freq <= 4980)
106                 return (freq - 4000) / 5;
107         else if (freq <= 45000) /* DMG band lower limit */
108                 return (freq - 5000) / 5;
109         else if (freq >= 58320 && freq <= 64800)
110                 return (freq - 56160) / 2160;
111         else
112                 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117                                                   int freq)
118 {
119         enum nl80211_band band;
120         struct ieee80211_supported_band *sband;
121         int i;
122 
123         for (band = 0; band < NUM_NL80211_BANDS; band++) {
124                 sband = wiphy->bands[band];
125 
126                 if (!sband)
127                         continue;
128 
129                 for (i = 0; i < sband->n_channels; i++) {
130                         if (sband->channels[i].center_freq == freq)
131                                 return &sband->channels[i];
132                 }
133         }
134 
135         return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140                                      enum nl80211_band band)
141 {
142         int i, want;
143 
144         switch (band) {
145         case NL80211_BAND_5GHZ:
146                 want = 3;
147                 for (i = 0; i < sband->n_bitrates; i++) {
148                         if (sband->bitrates[i].bitrate == 60 ||
149                             sband->bitrates[i].bitrate == 120 ||
150                             sband->bitrates[i].bitrate == 240) {
151                                 sband->bitrates[i].flags |=
152                                         IEEE80211_RATE_MANDATORY_A;
153                                 want--;
154                         }
155                 }
156                 WARN_ON(want);
157                 break;
158         case NL80211_BAND_2GHZ:
159                 want = 7;
160                 for (i = 0; i < sband->n_bitrates; i++) {
161                         if (sband->bitrates[i].bitrate == 10) {
162                                 sband->bitrates[i].flags |=
163                                         IEEE80211_RATE_MANDATORY_B |
164                                         IEEE80211_RATE_MANDATORY_G;
165                                 want--;
166                         }
167 
168                         if (sband->bitrates[i].bitrate == 20 ||
169                             sband->bitrates[i].bitrate == 55 ||
170                             sband->bitrates[i].bitrate == 110 ||
171                             sband->bitrates[i].bitrate == 60 ||
172                             sband->bitrates[i].bitrate == 120 ||
173                             sband->bitrates[i].bitrate == 240) {
174                                 sband->bitrates[i].flags |=
175                                         IEEE80211_RATE_MANDATORY_G;
176                                 want--;
177                         }
178 
179                         if (sband->bitrates[i].bitrate != 10 &&
180                             sband->bitrates[i].bitrate != 20 &&
181                             sband->bitrates[i].bitrate != 55 &&
182                             sband->bitrates[i].bitrate != 110)
183                                 sband->bitrates[i].flags |=
184                                         IEEE80211_RATE_ERP_G;
185                 }
186                 WARN_ON(want != 0 && want != 3 && want != 6);
187                 break;
188         case NL80211_BAND_60GHZ:
189                 /* check for mandatory HT MCS 1..4 */
190                 WARN_ON(!sband->ht_cap.ht_supported);
191                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192                 break;
193         case NUM_NL80211_BANDS:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum nl80211_band band;
202 
203         for (band = 0; band < NUM_NL80211_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx < 0 || key_idx > 5)
222                 return -EINVAL;
223 
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226 
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229 
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 if (key_idx < 4)
253                         return -EINVAL;
254                 break;
255         case WLAN_CIPHER_SUITE_WEP40:
256         case WLAN_CIPHER_SUITE_WEP104:
257                 if (key_idx > 3)
258                         return -EINVAL;
259         default:
260                 break;
261         }
262 
263         switch (params->cipher) {
264         case WLAN_CIPHER_SUITE_WEP40:
265                 if (params->key_len != WLAN_KEY_LEN_WEP40)
266                         return -EINVAL;
267                 break;
268         case WLAN_CIPHER_SUITE_TKIP:
269                 if (params->key_len != WLAN_KEY_LEN_TKIP)
270                         return -EINVAL;
271                 break;
272         case WLAN_CIPHER_SUITE_CCMP:
273                 if (params->key_len != WLAN_KEY_LEN_CCMP)
274                         return -EINVAL;
275                 break;
276         case WLAN_CIPHER_SUITE_CCMP_256:
277                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278                         return -EINVAL;
279                 break;
280         case WLAN_CIPHER_SUITE_GCMP:
281                 if (params->key_len != WLAN_KEY_LEN_GCMP)
282                         return -EINVAL;
283                 break;
284         case WLAN_CIPHER_SUITE_GCMP_256:
285                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286                         return -EINVAL;
287                 break;
288         case WLAN_CIPHER_SUITE_WEP104:
289                 if (params->key_len != WLAN_KEY_LEN_WEP104)
290                         return -EINVAL;
291                 break;
292         case WLAN_CIPHER_SUITE_AES_CMAC:
293                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294                         return -EINVAL;
295                 break;
296         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298                         return -EINVAL;
299                 break;
300         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302                         return -EINVAL;
303                 break;
304         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306                         return -EINVAL;
307                 break;
308         default:
309                 /*
310                  * We don't know anything about this algorithm,
311                  * allow using it -- but the driver must check
312                  * all parameters! We still check below whether
313                  * or not the driver supports this algorithm,
314                  * of course.
315                  */
316                 break;
317         }
318 
319         if (params->seq) {
320                 switch (params->cipher) {
321                 case WLAN_CIPHER_SUITE_WEP40:
322                 case WLAN_CIPHER_SUITE_WEP104:
323                         /* These ciphers do not use key sequence */
324                         return -EINVAL;
325                 case WLAN_CIPHER_SUITE_TKIP:
326                 case WLAN_CIPHER_SUITE_CCMP:
327                 case WLAN_CIPHER_SUITE_CCMP_256:
328                 case WLAN_CIPHER_SUITE_GCMP:
329                 case WLAN_CIPHER_SUITE_GCMP_256:
330                 case WLAN_CIPHER_SUITE_AES_CMAC:
331                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334                         if (params->seq_len != 6)
335                                 return -EINVAL;
336                         break;
337                 }
338         }
339 
340         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341                 return -EINVAL;
342 
343         return 0;
344 }
345 
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348         unsigned int hdrlen = 24;
349 
350         if (ieee80211_is_data(fc)) {
351                 if (ieee80211_has_a4(fc))
352                         hdrlen = 30;
353                 if (ieee80211_is_data_qos(fc)) {
354                         hdrlen += IEEE80211_QOS_CTL_LEN;
355                         if (ieee80211_has_order(fc))
356                                 hdrlen += IEEE80211_HT_CTL_LEN;
357                 }
358                 goto out;
359         }
360 
361         if (ieee80211_is_mgmt(fc)) {
362                 if (ieee80211_has_order(fc))
363                         hdrlen += IEEE80211_HT_CTL_LEN;
364                 goto out;
365         }
366 
367         if (ieee80211_is_ctl(fc)) {
368                 /*
369                  * ACK and CTS are 10 bytes, all others 16. To see how
370                  * to get this condition consider
371                  *   subtype mask:   0b0000000011110000 (0x00F0)
372                  *   ACK subtype:    0b0000000011010000 (0x00D0)
373                  *   CTS subtype:    0b0000000011000000 (0x00C0)
374                  *   bits that matter:         ^^^      (0x00E0)
375                  *   value of those: 0b0000000011000000 (0x00C0)
376                  */
377                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378                         hdrlen = 10;
379                 else
380                         hdrlen = 16;
381         }
382 out:
383         return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389         const struct ieee80211_hdr *hdr =
390                         (const struct ieee80211_hdr *)skb->data;
391         unsigned int hdrlen;
392 
393         if (unlikely(skb->len < 10))
394                 return 0;
395         hdrlen = ieee80211_hdrlen(hdr->frame_control);
396         if (unlikely(hdrlen > skb->len))
397                 return 0;
398         return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404         int ae = flags & MESH_FLAGS_AE;
405         /* 802.11-2012, 8.2.4.7.3 */
406         switch (ae) {
407         default:
408         case 0:
409                 return 6;
410         case MESH_FLAGS_AE_A4:
411                 return 12;
412         case MESH_FLAGS_AE_A5_A6:
413                 return 18;
414         }
415 }
416 
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424                                   const u8 *addr, enum nl80211_iftype iftype)
425 {
426         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427         struct {
428                 u8 hdr[ETH_ALEN] __aligned(2);
429                 __be16 proto;
430         } payload;
431         struct ethhdr tmp;
432         u16 hdrlen;
433         u8 mesh_flags = 0;
434 
435         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436                 return -1;
437 
438         hdrlen = ieee80211_hdrlen(hdr->frame_control);
439         if (skb->len < hdrlen + 8)
440                 return -1;
441 
442         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443          * header
444          * IEEE 802.11 address fields:
445          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446          *   0     0   DA    SA    BSSID n/a
447          *   0     1   DA    BSSID SA    n/a
448          *   1     0   BSSID SA    DA    n/a
449          *   1     1   RA    TA    DA    SA
450          */
451         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454         if (iftype == NL80211_IFTYPE_MESH_POINT)
455                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457         switch (hdr->frame_control &
458                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459         case cpu_to_le16(IEEE80211_FCTL_TODS):
460                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
461                              iftype != NL80211_IFTYPE_AP_VLAN &&
462                              iftype != NL80211_IFTYPE_P2P_GO))
463                         return -1;
464                 break;
465         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467                              iftype != NL80211_IFTYPE_MESH_POINT &&
468                              iftype != NL80211_IFTYPE_AP_VLAN &&
469                              iftype != NL80211_IFTYPE_STATION))
470                         return -1;
471                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
472                         if (mesh_flags & MESH_FLAGS_AE_A4)
473                                 return -1;
474                         if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475                                 skb_copy_bits(skb, hdrlen +
476                                         offsetof(struct ieee80211s_hdr, eaddr1),
477                                         tmp.h_dest, 2 * ETH_ALEN);
478                         }
479                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480                 }
481                 break;
482         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483                 if ((iftype != NL80211_IFTYPE_STATION &&
484                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
485                      iftype != NL80211_IFTYPE_MESH_POINT) ||
486                     (is_multicast_ether_addr(tmp.h_dest) &&
487                      ether_addr_equal(tmp.h_source, addr)))
488                         return -1;
489                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
490                         if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491                                 return -1;
492                         if (mesh_flags & MESH_FLAGS_AE_A4)
493                                 skb_copy_bits(skb, hdrlen +
494                                         offsetof(struct ieee80211s_hdr, eaddr1),
495                                         tmp.h_source, ETH_ALEN);
496                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497                 }
498                 break;
499         case cpu_to_le16(0):
500                 if (iftype != NL80211_IFTYPE_ADHOC &&
501                     iftype != NL80211_IFTYPE_STATION &&
502                     iftype != NL80211_IFTYPE_OCB)
503                                 return -1;
504                 break;
505         }
506 
507         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508         tmp.h_proto = payload.proto;
509 
510         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511                     tmp.h_proto != htons(ETH_P_AARP) &&
512                     tmp.h_proto != htons(ETH_P_IPX)) ||
513                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
515                  * replace EtherType */
516                 hdrlen += ETH_ALEN + 2;
517         else
518                 tmp.h_proto = htons(skb->len - hdrlen);
519 
520         pskb_pull(skb, hdrlen);
521 
522         if (!ehdr)
523                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524         memcpy(ehdr, &tmp, sizeof(tmp));
525 
526         return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531                              enum nl80211_iftype iftype,
532                              const u8 *bssid, bool qos)
533 {
534         struct ieee80211_hdr hdr;
535         u16 hdrlen, ethertype;
536         __le16 fc;
537         const u8 *encaps_data;
538         int encaps_len, skip_header_bytes;
539         int nh_pos, h_pos;
540         int head_need;
541 
542         if (unlikely(skb->len < ETH_HLEN))
543                 return -EINVAL;
544 
545         nh_pos = skb_network_header(skb) - skb->data;
546         h_pos = skb_transport_header(skb) - skb->data;
547 
548         /* convert Ethernet header to proper 802.11 header (based on
549          * operation mode) */
550         ethertype = (skb->data[12] << 8) | skb->data[13];
551         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553         switch (iftype) {
554         case NL80211_IFTYPE_AP:
555         case NL80211_IFTYPE_AP_VLAN:
556         case NL80211_IFTYPE_P2P_GO:
557                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558                 /* DA BSSID SA */
559                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560                 memcpy(hdr.addr2, addr, ETH_ALEN);
561                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562                 hdrlen = 24;
563                 break;
564         case NL80211_IFTYPE_STATION:
565         case NL80211_IFTYPE_P2P_CLIENT:
566                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567                 /* BSSID SA DA */
568                 memcpy(hdr.addr1, bssid, ETH_ALEN);
569                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571                 hdrlen = 24;
572                 break;
573         case NL80211_IFTYPE_OCB:
574         case NL80211_IFTYPE_ADHOC:
575                 /* DA SA BSSID */
576                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578                 memcpy(hdr.addr3, bssid, ETH_ALEN);
579                 hdrlen = 24;
580                 break;
581         default:
582                 return -EOPNOTSUPP;
583         }
584 
585         if (qos) {
586                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587                 hdrlen += 2;
588         }
589 
590         hdr.frame_control = fc;
591         hdr.duration_id = 0;
592         hdr.seq_ctrl = 0;
593 
594         skip_header_bytes = ETH_HLEN;
595         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596                 encaps_data = bridge_tunnel_header;
597                 encaps_len = sizeof(bridge_tunnel_header);
598                 skip_header_bytes -= 2;
599         } else if (ethertype >= ETH_P_802_3_MIN) {
600                 encaps_data = rfc1042_header;
601                 encaps_len = sizeof(rfc1042_header);
602                 skip_header_bytes -= 2;
603         } else {
604                 encaps_data = NULL;
605                 encaps_len = 0;
606         }
607 
608         skb_pull(skb, skip_header_bytes);
609         nh_pos -= skip_header_bytes;
610         h_pos -= skip_header_bytes;
611 
612         head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614         if (head_need > 0 || skb_cloned(skb)) {
615                 head_need = max(head_need, 0);
616                 if (head_need)
617                         skb_orphan(skb);
618 
619                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620                         return -ENOMEM;
621 
622                 skb->truesize += head_need;
623         }
624 
625         if (encaps_data) {
626                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627                 nh_pos += encaps_len;
628                 h_pos += encaps_len;
629         }
630 
631         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632 
633         nh_pos += hdrlen;
634         h_pos += hdrlen;
635 
636         /* Update skb pointers to various headers since this modified frame
637          * is going to go through Linux networking code that may potentially
638          * need things like pointer to IP header. */
639         skb_reset_mac_header(skb);
640         skb_set_network_header(skb, nh_pos);
641         skb_set_transport_header(skb, h_pos);
642 
643         return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646 
647 static void
648 __frame_add_frag(struct sk_buff *skb, struct page *page,
649                  void *ptr, int len, int size)
650 {
651         struct skb_shared_info *sh = skb_shinfo(skb);
652         int page_offset;
653 
654         page_ref_inc(page);
655         page_offset = ptr - page_address(page);
656         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
657 }
658 
659 static void
660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
661                             int offset, int len)
662 {
663         struct skb_shared_info *sh = skb_shinfo(skb);
664         const skb_frag_t *frag = &sh->frags[-1];
665         struct page *frag_page;
666         void *frag_ptr;
667         int frag_len, frag_size;
668         int head_size = skb->len - skb->data_len;
669         int cur_len;
670 
671         frag_page = virt_to_head_page(skb->head);
672         frag_ptr = skb->data;
673         frag_size = head_size;
674 
675         while (offset >= frag_size) {
676                 offset -= frag_size;
677                 frag++;
678                 frag_page = skb_frag_page(frag);
679                 frag_ptr = skb_frag_address(frag);
680                 frag_size = skb_frag_size(frag);
681         }
682 
683         frag_ptr += offset;
684         frag_len = frag_size - offset;
685 
686         cur_len = min(len, frag_len);
687 
688         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
689         len -= cur_len;
690 
691         while (len > 0) {
692                 frag++;
693                 frag_len = skb_frag_size(frag);
694                 cur_len = min(len, frag_len);
695                 __frame_add_frag(frame, skb_frag_page(frag),
696                                  skb_frag_address(frag), cur_len, frag_len);
697                 len -= cur_len;
698         }
699 }
700 
701 static struct sk_buff *
702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
703                        int offset, int len, bool reuse_frag)
704 {
705         struct sk_buff *frame;
706         int cur_len = len;
707 
708         if (skb->len - offset < len)
709                 return NULL;
710 
711         /*
712          * When reusing framents, copy some data to the head to simplify
713          * ethernet header handling and speed up protocol header processing
714          * in the stack later.
715          */
716         if (reuse_frag)
717                 cur_len = min_t(int, len, 32);
718 
719         /*
720          * Allocate and reserve two bytes more for payload
721          * alignment since sizeof(struct ethhdr) is 14.
722          */
723         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
724         if (!frame)
725                 return NULL;
726 
727         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
728         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
729 
730         len -= cur_len;
731         if (!len)
732                 return frame;
733 
734         offset += cur_len;
735         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
736 
737         return frame;
738 }
739 
740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
741                               const u8 *addr, enum nl80211_iftype iftype,
742                               const unsigned int extra_headroom,
743                               const u8 *check_da, const u8 *check_sa)
744 {
745         unsigned int hlen = ALIGN(extra_headroom, 4);
746         struct sk_buff *frame = NULL;
747         u16 ethertype;
748         u8 *payload;
749         int offset = 0, remaining;
750         struct ethhdr eth;
751         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
752         bool reuse_skb = false;
753         bool last = false;
754 
755         while (!last) {
756                 unsigned int subframe_len;
757                 int len;
758                 u8 padding;
759 
760                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
761                 len = ntohs(eth.h_proto);
762                 subframe_len = sizeof(struct ethhdr) + len;
763                 padding = (4 - subframe_len) & 0x3;
764 
765                 /* the last MSDU has no padding */
766                 remaining = skb->len - offset;
767                 if (subframe_len > remaining)
768                         goto purge;
769 
770                 offset += sizeof(struct ethhdr);
771                 last = remaining <= subframe_len + padding;
772 
773                 /* FIXME: should we really accept multicast DA? */
774                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
775                      !ether_addr_equal(check_da, eth.h_dest)) ||
776                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
777                         offset += len + padding;
778                         continue;
779                 }
780 
781                 /* reuse skb for the last subframe */
782                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
783                         skb_pull(skb, offset);
784                         frame = skb;
785                         reuse_skb = true;
786                 } else {
787                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
788                                                        reuse_frag);
789                         if (!frame)
790                                 goto purge;
791 
792                         offset += len + padding;
793                 }
794 
795                 skb_reset_network_header(frame);
796                 frame->dev = skb->dev;
797                 frame->priority = skb->priority;
798 
799                 payload = frame->data;
800                 ethertype = (payload[6] << 8) | payload[7];
801                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
802                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
803                            ether_addr_equal(payload, bridge_tunnel_header))) {
804                         eth.h_proto = htons(ethertype);
805                         skb_pull(frame, ETH_ALEN + 2);
806                 }
807 
808                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
809                 __skb_queue_tail(list, frame);
810         }
811 
812         if (!reuse_skb)
813                 dev_kfree_skb(skb);
814 
815         return;
816 
817  purge:
818         __skb_queue_purge(list);
819         dev_kfree_skb(skb);
820 }
821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
822 
823 /* Given a data frame determine the 802.1p/1d tag to use. */
824 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
825                                     struct cfg80211_qos_map *qos_map)
826 {
827         unsigned int dscp;
828         unsigned char vlan_priority;
829 
830         /* skb->priority values from 256->263 are magic values to
831          * directly indicate a specific 802.1d priority.  This is used
832          * to allow 802.1d priority to be passed directly in from VLAN
833          * tags, etc.
834          */
835         if (skb->priority >= 256 && skb->priority <= 263)
836                 return skb->priority - 256;
837 
838         if (skb_vlan_tag_present(skb)) {
839                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
840                         >> VLAN_PRIO_SHIFT;
841                 if (vlan_priority > 0)
842                         return vlan_priority;
843         }
844 
845         switch (skb->protocol) {
846         case htons(ETH_P_IP):
847                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
848                 break;
849         case htons(ETH_P_IPV6):
850                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
851                 break;
852         case htons(ETH_P_MPLS_UC):
853         case htons(ETH_P_MPLS_MC): {
854                 struct mpls_label mpls_tmp, *mpls;
855 
856                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
857                                           sizeof(*mpls), &mpls_tmp);
858                 if (!mpls)
859                         return 0;
860 
861                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
862                         >> MPLS_LS_TC_SHIFT;
863         }
864         case htons(ETH_P_80221):
865                 /* 802.21 is always network control traffic */
866                 return 7;
867         default:
868                 return 0;
869         }
870 
871         if (qos_map) {
872                 unsigned int i, tmp_dscp = dscp >> 2;
873 
874                 for (i = 0; i < qos_map->num_des; i++) {
875                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
876                                 return qos_map->dscp_exception[i].up;
877                 }
878 
879                 for (i = 0; i < 8; i++) {
880                         if (tmp_dscp >= qos_map->up[i].low &&
881                             tmp_dscp <= qos_map->up[i].high)
882                                 return i;
883                 }
884         }
885 
886         return dscp >> 5;
887 }
888 EXPORT_SYMBOL(cfg80211_classify8021d);
889 
890 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
891 {
892         const struct cfg80211_bss_ies *ies;
893 
894         ies = rcu_dereference(bss->ies);
895         if (!ies)
896                 return NULL;
897 
898         return cfg80211_find_ie(ie, ies->data, ies->len);
899 }
900 EXPORT_SYMBOL(ieee80211_bss_get_ie);
901 
902 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
903 {
904         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
905         struct net_device *dev = wdev->netdev;
906         int i;
907 
908         if (!wdev->connect_keys)
909                 return;
910 
911         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
912                 if (!wdev->connect_keys->params[i].cipher)
913                         continue;
914                 if (rdev_add_key(rdev, dev, i, false, NULL,
915                                  &wdev->connect_keys->params[i])) {
916                         netdev_err(dev, "failed to set key %d\n", i);
917                         continue;
918                 }
919                 if (wdev->connect_keys->def == i)
920                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
921                                 netdev_err(dev, "failed to set defkey %d\n", i);
922                                 continue;
923                         }
924         }
925 
926         kzfree(wdev->connect_keys);
927         wdev->connect_keys = NULL;
928 }
929 
930 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
931 {
932         struct cfg80211_event *ev;
933         unsigned long flags;
934         const u8 *bssid = NULL;
935 
936         spin_lock_irqsave(&wdev->event_lock, flags);
937         while (!list_empty(&wdev->event_list)) {
938                 ev = list_first_entry(&wdev->event_list,
939                                       struct cfg80211_event, list);
940                 list_del(&ev->list);
941                 spin_unlock_irqrestore(&wdev->event_lock, flags);
942 
943                 wdev_lock(wdev);
944                 switch (ev->type) {
945                 case EVENT_CONNECT_RESULT:
946                         if (!is_zero_ether_addr(ev->cr.bssid))
947                                 bssid = ev->cr.bssid;
948                         __cfg80211_connect_result(
949                                 wdev->netdev, bssid,
950                                 ev->cr.req_ie, ev->cr.req_ie_len,
951                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
952                                 ev->cr.status,
953                                 ev->cr.status == WLAN_STATUS_SUCCESS,
954                                 ev->cr.bss);
955                         break;
956                 case EVENT_ROAMED:
957                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
958                                           ev->rm.req_ie_len, ev->rm.resp_ie,
959                                           ev->rm.resp_ie_len);
960                         break;
961                 case EVENT_DISCONNECTED:
962                         __cfg80211_disconnected(wdev->netdev,
963                                                 ev->dc.ie, ev->dc.ie_len,
964                                                 ev->dc.reason,
965                                                 !ev->dc.locally_generated);
966                         break;
967                 case EVENT_IBSS_JOINED:
968                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
969                                                ev->ij.channel);
970                         break;
971                 case EVENT_STOPPED:
972                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
973                         break;
974                 }
975                 wdev_unlock(wdev);
976 
977                 kfree(ev);
978 
979                 spin_lock_irqsave(&wdev->event_lock, flags);
980         }
981         spin_unlock_irqrestore(&wdev->event_lock, flags);
982 }
983 
984 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
985 {
986         struct wireless_dev *wdev;
987 
988         ASSERT_RTNL();
989 
990         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
991                 cfg80211_process_wdev_events(wdev);
992 }
993 
994 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
995                           struct net_device *dev, enum nl80211_iftype ntype,
996                           u32 *flags, struct vif_params *params)
997 {
998         int err;
999         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1000 
1001         ASSERT_RTNL();
1002 
1003         /* don't support changing VLANs, you just re-create them */
1004         if (otype == NL80211_IFTYPE_AP_VLAN)
1005                 return -EOPNOTSUPP;
1006 
1007         /* cannot change into P2P device or NAN */
1008         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1009             ntype == NL80211_IFTYPE_NAN)
1010                 return -EOPNOTSUPP;
1011 
1012         if (!rdev->ops->change_virtual_intf ||
1013             !(rdev->wiphy.interface_modes & (1 << ntype)))
1014                 return -EOPNOTSUPP;
1015 
1016         /* if it's part of a bridge, reject changing type to station/ibss */
1017         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1018             (ntype == NL80211_IFTYPE_ADHOC ||
1019              ntype == NL80211_IFTYPE_STATION ||
1020              ntype == NL80211_IFTYPE_P2P_CLIENT))
1021                 return -EBUSY;
1022 
1023         if (ntype != otype) {
1024                 dev->ieee80211_ptr->use_4addr = false;
1025                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1026                 wdev_lock(dev->ieee80211_ptr);
1027                 rdev_set_qos_map(rdev, dev, NULL);
1028                 wdev_unlock(dev->ieee80211_ptr);
1029 
1030                 switch (otype) {
1031                 case NL80211_IFTYPE_AP:
1032                         cfg80211_stop_ap(rdev, dev, true);
1033                         break;
1034                 case NL80211_IFTYPE_ADHOC:
1035                         cfg80211_leave_ibss(rdev, dev, false);
1036                         break;
1037                 case NL80211_IFTYPE_STATION:
1038                 case NL80211_IFTYPE_P2P_CLIENT:
1039                         wdev_lock(dev->ieee80211_ptr);
1040                         cfg80211_disconnect(rdev, dev,
1041                                             WLAN_REASON_DEAUTH_LEAVING, true);
1042                         wdev_unlock(dev->ieee80211_ptr);
1043                         break;
1044                 case NL80211_IFTYPE_MESH_POINT:
1045                         /* mesh should be handled? */
1046                         break;
1047                 default:
1048                         break;
1049                 }
1050 
1051                 cfg80211_process_rdev_events(rdev);
1052         }
1053 
1054         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1055 
1056         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1057 
1058         if (!err && params && params->use_4addr != -1)
1059                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1060 
1061         if (!err) {
1062                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1063                 switch (ntype) {
1064                 case NL80211_IFTYPE_STATION:
1065                         if (dev->ieee80211_ptr->use_4addr)
1066                                 break;
1067                         /* fall through */
1068                 case NL80211_IFTYPE_OCB:
1069                 case NL80211_IFTYPE_P2P_CLIENT:
1070                 case NL80211_IFTYPE_ADHOC:
1071                         dev->priv_flags |= IFF_DONT_BRIDGE;
1072                         break;
1073                 case NL80211_IFTYPE_P2P_GO:
1074                 case NL80211_IFTYPE_AP:
1075                 case NL80211_IFTYPE_AP_VLAN:
1076                 case NL80211_IFTYPE_WDS:
1077                 case NL80211_IFTYPE_MESH_POINT:
1078                         /* bridging OK */
1079                         break;
1080                 case NL80211_IFTYPE_MONITOR:
1081                         /* monitor can't bridge anyway */
1082                         break;
1083                 case NL80211_IFTYPE_UNSPECIFIED:
1084                 case NUM_NL80211_IFTYPES:
1085                         /* not happening */
1086                         break;
1087                 case NL80211_IFTYPE_P2P_DEVICE:
1088                 case NL80211_IFTYPE_NAN:
1089                         WARN_ON(1);
1090                         break;
1091                 }
1092         }
1093 
1094         if (!err && ntype != otype && netif_running(dev)) {
1095                 cfg80211_update_iface_num(rdev, ntype, 1);
1096                 cfg80211_update_iface_num(rdev, otype, -1);
1097         }
1098 
1099         return err;
1100 }
1101 
1102 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1103 {
1104         static const u32 __mcs2bitrate[] = {
1105                 /* control PHY */
1106                 [0] =   275,
1107                 /* SC PHY */
1108                 [1] =  3850,
1109                 [2] =  7700,
1110                 [3] =  9625,
1111                 [4] = 11550,
1112                 [5] = 12512, /* 1251.25 mbps */
1113                 [6] = 15400,
1114                 [7] = 19250,
1115                 [8] = 23100,
1116                 [9] = 25025,
1117                 [10] = 30800,
1118                 [11] = 38500,
1119                 [12] = 46200,
1120                 /* OFDM PHY */
1121                 [13] =  6930,
1122                 [14] =  8662, /* 866.25 mbps */
1123                 [15] = 13860,
1124                 [16] = 17325,
1125                 [17] = 20790,
1126                 [18] = 27720,
1127                 [19] = 34650,
1128                 [20] = 41580,
1129                 [21] = 45045,
1130                 [22] = 51975,
1131                 [23] = 62370,
1132                 [24] = 67568, /* 6756.75 mbps */
1133                 /* LP-SC PHY */
1134                 [25] =  6260,
1135                 [26] =  8340,
1136                 [27] = 11120,
1137                 [28] = 12510,
1138                 [29] = 16680,
1139                 [30] = 22240,
1140                 [31] = 25030,
1141         };
1142 
1143         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1144                 return 0;
1145 
1146         return __mcs2bitrate[rate->mcs];
1147 }
1148 
1149 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1150 {
1151         static const u32 base[4][10] = {
1152                 {   6500000,
1153                    13000000,
1154                    19500000,
1155                    26000000,
1156                    39000000,
1157                    52000000,
1158                    58500000,
1159                    65000000,
1160                    78000000,
1161                 /* not in the spec, but some devices use this: */
1162                    86500000,
1163                 },
1164                 {  13500000,
1165                    27000000,
1166                    40500000,
1167                    54000000,
1168                    81000000,
1169                   108000000,
1170                   121500000,
1171                   135000000,
1172                   162000000,
1173                   180000000,
1174                 },
1175                 {  29300000,
1176                    58500000,
1177                    87800000,
1178                   117000000,
1179                   175500000,
1180                   234000000,
1181                   263300000,
1182                   292500000,
1183                   351000000,
1184                   390000000,
1185                 },
1186                 {  58500000,
1187                   117000000,
1188                   175500000,
1189                   234000000,
1190                   351000000,
1191                   468000000,
1192                   526500000,
1193                   585000000,
1194                   702000000,
1195                   780000000,
1196                 },
1197         };
1198         u32 bitrate;
1199         int idx;
1200 
1201         if (WARN_ON_ONCE(rate->mcs > 9))
1202                 return 0;
1203 
1204         switch (rate->bw) {
1205         case RATE_INFO_BW_160:
1206                 idx = 3;
1207                 break;
1208         case RATE_INFO_BW_80:
1209                 idx = 2;
1210                 break;
1211         case RATE_INFO_BW_40:
1212                 idx = 1;
1213                 break;
1214         case RATE_INFO_BW_5:
1215         case RATE_INFO_BW_10:
1216         default:
1217                 WARN_ON(1);
1218                 /* fall through */
1219         case RATE_INFO_BW_20:
1220                 idx = 0;
1221         }
1222 
1223         bitrate = base[idx][rate->mcs];
1224         bitrate *= rate->nss;
1225 
1226         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1227                 bitrate = (bitrate / 9) * 10;
1228 
1229         /* do NOT round down here */
1230         return (bitrate + 50000) / 100000;
1231 }
1232 
1233 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1234 {
1235         int modulation, streams, bitrate;
1236 
1237         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1238             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1239                 return rate->legacy;
1240         if (rate->flags & RATE_INFO_FLAGS_60G)
1241                 return cfg80211_calculate_bitrate_60g(rate);
1242         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1243                 return cfg80211_calculate_bitrate_vht(rate);
1244 
1245         /* the formula below does only work for MCS values smaller than 32 */
1246         if (WARN_ON_ONCE(rate->mcs >= 32))
1247                 return 0;
1248 
1249         modulation = rate->mcs & 7;
1250         streams = (rate->mcs >> 3) + 1;
1251 
1252         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1253 
1254         if (modulation < 4)
1255                 bitrate *= (modulation + 1);
1256         else if (modulation == 4)
1257                 bitrate *= (modulation + 2);
1258         else
1259                 bitrate *= (modulation + 3);
1260 
1261         bitrate *= streams;
1262 
1263         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1264                 bitrate = (bitrate / 9) * 10;
1265 
1266         /* do NOT round down here */
1267         return (bitrate + 50000) / 100000;
1268 }
1269 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1270 
1271 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1272                           enum ieee80211_p2p_attr_id attr,
1273                           u8 *buf, unsigned int bufsize)
1274 {
1275         u8 *out = buf;
1276         u16 attr_remaining = 0;
1277         bool desired_attr = false;
1278         u16 desired_len = 0;
1279 
1280         while (len > 0) {
1281                 unsigned int iedatalen;
1282                 unsigned int copy;
1283                 const u8 *iedata;
1284 
1285                 if (len < 2)
1286                         return -EILSEQ;
1287                 iedatalen = ies[1];
1288                 if (iedatalen + 2 > len)
1289                         return -EILSEQ;
1290 
1291                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1292                         goto cont;
1293 
1294                 if (iedatalen < 4)
1295                         goto cont;
1296 
1297                 iedata = ies + 2;
1298 
1299                 /* check WFA OUI, P2P subtype */
1300                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1301                     iedata[2] != 0x9a || iedata[3] != 0x09)
1302                         goto cont;
1303 
1304                 iedatalen -= 4;
1305                 iedata += 4;
1306 
1307                 /* check attribute continuation into this IE */
1308                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1309                 if (copy && desired_attr) {
1310                         desired_len += copy;
1311                         if (out) {
1312                                 memcpy(out, iedata, min(bufsize, copy));
1313                                 out += min(bufsize, copy);
1314                                 bufsize -= min(bufsize, copy);
1315                         }
1316 
1317 
1318                         if (copy == attr_remaining)
1319                                 return desired_len;
1320                 }
1321 
1322                 attr_remaining -= copy;
1323                 if (attr_remaining)
1324                         goto cont;
1325 
1326                 iedatalen -= copy;
1327                 iedata += copy;
1328 
1329                 while (iedatalen > 0) {
1330                         u16 attr_len;
1331 
1332                         /* P2P attribute ID & size must fit */
1333                         if (iedatalen < 3)
1334                                 return -EILSEQ;
1335                         desired_attr = iedata[0] == attr;
1336                         attr_len = get_unaligned_le16(iedata + 1);
1337                         iedatalen -= 3;
1338                         iedata += 3;
1339 
1340                         copy = min_t(unsigned int, attr_len, iedatalen);
1341 
1342                         if (desired_attr) {
1343                                 desired_len += copy;
1344                                 if (out) {
1345                                         memcpy(out, iedata, min(bufsize, copy));
1346                                         out += min(bufsize, copy);
1347                                         bufsize -= min(bufsize, copy);
1348                                 }
1349 
1350                                 if (copy == attr_len)
1351                                         return desired_len;
1352                         }
1353 
1354                         iedata += copy;
1355                         iedatalen -= copy;
1356                         attr_remaining = attr_len - copy;
1357                 }
1358 
1359  cont:
1360                 len -= ies[1] + 2;
1361                 ies += ies[1] + 2;
1362         }
1363 
1364         if (attr_remaining && desired_attr)
1365                 return -EILSEQ;
1366 
1367         return -ENOENT;
1368 }
1369 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1370 
1371 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1372 {
1373         int i;
1374 
1375         for (i = 0; i < n_ids; i++)
1376                 if (ids[i] == id)
1377                         return true;
1378         return false;
1379 }
1380 
1381 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1382                               const u8 *ids, int n_ids,
1383                               const u8 *after_ric, int n_after_ric,
1384                               size_t offset)
1385 {
1386         size_t pos = offset;
1387 
1388         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1389                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1390                         pos += 2 + ies[pos + 1];
1391 
1392                         while (pos < ielen &&
1393                                !ieee80211_id_in_list(after_ric, n_after_ric,
1394                                                      ies[pos]))
1395                                 pos += 2 + ies[pos + 1];
1396                 } else {
1397                         pos += 2 + ies[pos + 1];
1398                 }
1399         }
1400 
1401         return pos;
1402 }
1403 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1404 
1405 bool ieee80211_operating_class_to_band(u8 operating_class,
1406                                        enum nl80211_band *band)
1407 {
1408         switch (operating_class) {
1409         case 112:
1410         case 115 ... 127:
1411         case 128 ... 130:
1412                 *band = NL80211_BAND_5GHZ;
1413                 return true;
1414         case 81:
1415         case 82:
1416         case 83:
1417         case 84:
1418                 *band = NL80211_BAND_2GHZ;
1419                 return true;
1420         case 180:
1421                 *band = NL80211_BAND_60GHZ;
1422                 return true;
1423         }
1424 
1425         return false;
1426 }
1427 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1428 
1429 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1430                                           u8 *op_class)
1431 {
1432         u8 vht_opclass;
1433         u16 freq = chandef->center_freq1;
1434 
1435         if (freq >= 2412 && freq <= 2472) {
1436                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1437                         return false;
1438 
1439                 /* 2.407 GHz, channels 1..13 */
1440                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1441                         if (freq > chandef->chan->center_freq)
1442                                 *op_class = 83; /* HT40+ */
1443                         else
1444                                 *op_class = 84; /* HT40- */
1445                 } else {
1446                         *op_class = 81;
1447                 }
1448 
1449                 return true;
1450         }
1451 
1452         if (freq == 2484) {
1453                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1454                         return false;
1455 
1456                 *op_class = 82; /* channel 14 */
1457                 return true;
1458         }
1459 
1460         switch (chandef->width) {
1461         case NL80211_CHAN_WIDTH_80:
1462                 vht_opclass = 128;
1463                 break;
1464         case NL80211_CHAN_WIDTH_160:
1465                 vht_opclass = 129;
1466                 break;
1467         case NL80211_CHAN_WIDTH_80P80:
1468                 vht_opclass = 130;
1469                 break;
1470         case NL80211_CHAN_WIDTH_10:
1471         case NL80211_CHAN_WIDTH_5:
1472                 return false; /* unsupported for now */
1473         default:
1474                 vht_opclass = 0;
1475                 break;
1476         }
1477 
1478         /* 5 GHz, channels 36..48 */
1479         if (freq >= 5180 && freq <= 5240) {
1480                 if (vht_opclass) {
1481                         *op_class = vht_opclass;
1482                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1483                         if (freq > chandef->chan->center_freq)
1484                                 *op_class = 116;
1485                         else
1486                                 *op_class = 117;
1487                 } else {
1488                         *op_class = 115;
1489                 }
1490 
1491                 return true;
1492         }
1493 
1494         /* 5 GHz, channels 52..64 */
1495         if (freq >= 5260 && freq <= 5320) {
1496                 if (vht_opclass) {
1497                         *op_class = vht_opclass;
1498                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1499                         if (freq > chandef->chan->center_freq)
1500                                 *op_class = 119;
1501                         else
1502                                 *op_class = 120;
1503                 } else {
1504                         *op_class = 118;
1505                 }
1506 
1507                 return true;
1508         }
1509 
1510         /* 5 GHz, channels 100..144 */
1511         if (freq >= 5500 && freq <= 5720) {
1512                 if (vht_opclass) {
1513                         *op_class = vht_opclass;
1514                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1515                         if (freq > chandef->chan->center_freq)
1516                                 *op_class = 122;
1517                         else
1518                                 *op_class = 123;
1519                 } else {
1520                         *op_class = 121;
1521                 }
1522 
1523                 return true;
1524         }
1525 
1526         /* 5 GHz, channels 149..169 */
1527         if (freq >= 5745 && freq <= 5845) {
1528                 if (vht_opclass) {
1529                         *op_class = vht_opclass;
1530                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1531                         if (freq > chandef->chan->center_freq)
1532                                 *op_class = 126;
1533                         else
1534                                 *op_class = 127;
1535                 } else if (freq <= 5805) {
1536                         *op_class = 124;
1537                 } else {
1538                         *op_class = 125;
1539                 }
1540 
1541                 return true;
1542         }
1543 
1544         /* 56.16 GHz, channel 1..4 */
1545         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1546                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1547                         return false;
1548 
1549                 *op_class = 180;
1550                 return true;
1551         }
1552 
1553         /* not supported yet */
1554         return false;
1555 }
1556 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1557 
1558 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1559                                  u32 beacon_int)
1560 {
1561         struct wireless_dev *wdev;
1562         int res = 0;
1563 
1564         if (beacon_int < 10 || beacon_int > 10000)
1565                 return -EINVAL;
1566 
1567         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1568                 if (!wdev->beacon_interval)
1569                         continue;
1570                 if (wdev->beacon_interval != beacon_int) {
1571                         res = -EINVAL;
1572                         break;
1573                 }
1574         }
1575 
1576         return res;
1577 }
1578 
1579 int cfg80211_iter_combinations(struct wiphy *wiphy,
1580                                const int num_different_channels,
1581                                const u8 radar_detect,
1582                                const int iftype_num[NUM_NL80211_IFTYPES],
1583                                void (*iter)(const struct ieee80211_iface_combination *c,
1584                                             void *data),
1585                                void *data)
1586 {
1587         const struct ieee80211_regdomain *regdom;
1588         enum nl80211_dfs_regions region = 0;
1589         int i, j, iftype;
1590         int num_interfaces = 0;
1591         u32 used_iftypes = 0;
1592 
1593         if (radar_detect) {
1594                 rcu_read_lock();
1595                 regdom = rcu_dereference(cfg80211_regdomain);
1596                 if (regdom)
1597                         region = regdom->dfs_region;
1598                 rcu_read_unlock();
1599         }
1600 
1601         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1602                 num_interfaces += iftype_num[iftype];
1603                 if (iftype_num[iftype] > 0 &&
1604                     !(wiphy->software_iftypes & BIT(iftype)))
1605                         used_iftypes |= BIT(iftype);
1606         }
1607 
1608         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1609                 const struct ieee80211_iface_combination *c;
1610                 struct ieee80211_iface_limit *limits;
1611                 u32 all_iftypes = 0;
1612 
1613                 c = &wiphy->iface_combinations[i];
1614 
1615                 if (num_interfaces > c->max_interfaces)
1616                         continue;
1617                 if (num_different_channels > c->num_different_channels)
1618                         continue;
1619 
1620                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1621                                  GFP_KERNEL);
1622                 if (!limits)
1623                         return -ENOMEM;
1624 
1625                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1626                         if (wiphy->software_iftypes & BIT(iftype))
1627                                 continue;
1628                         for (j = 0; j < c->n_limits; j++) {
1629                                 all_iftypes |= limits[j].types;
1630                                 if (!(limits[j].types & BIT(iftype)))
1631                                         continue;
1632                                 if (limits[j].max < iftype_num[iftype])
1633                                         goto cont;
1634                                 limits[j].max -= iftype_num[iftype];
1635                         }
1636                 }
1637 
1638                 if (radar_detect != (c->radar_detect_widths & radar_detect))
1639                         goto cont;
1640 
1641                 if (radar_detect && c->radar_detect_regions &&
1642                     !(c->radar_detect_regions & BIT(region)))
1643                         goto cont;
1644 
1645                 /* Finally check that all iftypes that we're currently
1646                  * using are actually part of this combination. If they
1647                  * aren't then we can't use this combination and have
1648                  * to continue to the next.
1649                  */
1650                 if ((all_iftypes & used_iftypes) != used_iftypes)
1651                         goto cont;
1652 
1653                 /* This combination covered all interface types and
1654                  * supported the requested numbers, so we're good.
1655                  */
1656 
1657                 (*iter)(c, data);
1658  cont:
1659                 kfree(limits);
1660         }
1661 
1662         return 0;
1663 }
1664 EXPORT_SYMBOL(cfg80211_iter_combinations);
1665 
1666 static void
1667 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1668                           void *data)
1669 {
1670         int *num = data;
1671         (*num)++;
1672 }
1673 
1674 int cfg80211_check_combinations(struct wiphy *wiphy,
1675                                 const int num_different_channels,
1676                                 const u8 radar_detect,
1677                                 const int iftype_num[NUM_NL80211_IFTYPES])
1678 {
1679         int err, num = 0;
1680 
1681         err = cfg80211_iter_combinations(wiphy, num_different_channels,
1682                                          radar_detect, iftype_num,
1683                                          cfg80211_iter_sum_ifcombs, &num);
1684         if (err)
1685                 return err;
1686         if (num == 0)
1687                 return -EBUSY;
1688 
1689         return 0;
1690 }
1691 EXPORT_SYMBOL(cfg80211_check_combinations);
1692 
1693 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1694                            const u8 *rates, unsigned int n_rates,
1695                            u32 *mask)
1696 {
1697         int i, j;
1698 
1699         if (!sband)
1700                 return -EINVAL;
1701 
1702         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1703                 return -EINVAL;
1704 
1705         *mask = 0;
1706 
1707         for (i = 0; i < n_rates; i++) {
1708                 int rate = (rates[i] & 0x7f) * 5;
1709                 bool found = false;
1710 
1711                 for (j = 0; j < sband->n_bitrates; j++) {
1712                         if (sband->bitrates[j].bitrate == rate) {
1713                                 found = true;
1714                                 *mask |= BIT(j);
1715                                 break;
1716                         }
1717                 }
1718                 if (!found)
1719                         return -EINVAL;
1720         }
1721 
1722         /*
1723          * mask must have at least one bit set here since we
1724          * didn't accept a 0-length rates array nor allowed
1725          * entries in the array that didn't exist
1726          */
1727 
1728         return 0;
1729 }
1730 
1731 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1732 {
1733         enum nl80211_band band;
1734         unsigned int n_channels = 0;
1735 
1736         for (band = 0; band < NUM_NL80211_BANDS; band++)
1737                 if (wiphy->bands[band])
1738                         n_channels += wiphy->bands[band]->n_channels;
1739 
1740         return n_channels;
1741 }
1742 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1743 
1744 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1745                          struct station_info *sinfo)
1746 {
1747         struct cfg80211_registered_device *rdev;
1748         struct wireless_dev *wdev;
1749 
1750         wdev = dev->ieee80211_ptr;
1751         if (!wdev)
1752                 return -EOPNOTSUPP;
1753 
1754         rdev = wiphy_to_rdev(wdev->wiphy);
1755         if (!rdev->ops->get_station)
1756                 return -EOPNOTSUPP;
1757 
1758         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1759 }
1760 EXPORT_SYMBOL(cfg80211_get_station);
1761 
1762 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1763 {
1764         int i;
1765 
1766         if (!f)
1767                 return;
1768 
1769         kfree(f->serv_spec_info);
1770         kfree(f->srf_bf);
1771         kfree(f->srf_macs);
1772         for (i = 0; i < f->num_rx_filters; i++)
1773                 kfree(f->rx_filters[i].filter);
1774 
1775         for (i = 0; i < f->num_tx_filters; i++)
1776                 kfree(f->tx_filters[i].filter);
1777 
1778         kfree(f->rx_filters);
1779         kfree(f->tx_filters);
1780         kfree(f);
1781 }
1782 EXPORT_SYMBOL(cfg80211_free_nan_func);
1783 
1784 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1785 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1786 const unsigned char rfc1042_header[] __aligned(2) =
1787         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1788 EXPORT_SYMBOL(rfc1042_header);
1789 
1790 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1791 const unsigned char bridge_tunnel_header[] __aligned(2) =
1792         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1793 EXPORT_SYMBOL(bridge_tunnel_header);
1794 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us