Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/net/wireless/util.c

  1 /*
  2  * Wireless utility functions
  3  *
  4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
  5  * Copyright 2013-2014  Intel Mobile Communications GmbH
  6  */
  7 #include <linux/export.h>
  8 #include <linux/bitops.h>
  9 #include <linux/etherdevice.h>
 10 #include <linux/slab.h>
 11 #include <net/cfg80211.h>
 12 #include <net/ip.h>
 13 #include <net/dsfield.h>
 14 #include <linux/if_vlan.h>
 15 #include <linux/mpls.h>
 16 #include "core.h"
 17 #include "rdev-ops.h"
 18 
 19 
 20 struct ieee80211_rate *
 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
 22                             u32 basic_rates, int bitrate)
 23 {
 24         struct ieee80211_rate *result = &sband->bitrates[0];
 25         int i;
 26 
 27         for (i = 0; i < sband->n_bitrates; i++) {
 28                 if (!(basic_rates & BIT(i)))
 29                         continue;
 30                 if (sband->bitrates[i].bitrate > bitrate)
 31                         continue;
 32                 result = &sband->bitrates[i];
 33         }
 34 
 35         return result;
 36 }
 37 EXPORT_SYMBOL(ieee80211_get_response_rate);
 38 
 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
 40                               enum nl80211_bss_scan_width scan_width)
 41 {
 42         struct ieee80211_rate *bitrates;
 43         u32 mandatory_rates = 0;
 44         enum ieee80211_rate_flags mandatory_flag;
 45         int i;
 46 
 47         if (WARN_ON(!sband))
 48                 return 1;
 49 
 50         if (sband->band == IEEE80211_BAND_2GHZ) {
 51                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
 52                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
 53                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
 54                 else
 55                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
 56         } else {
 57                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
 58         }
 59 
 60         bitrates = sband->bitrates;
 61         for (i = 0; i < sband->n_bitrates; i++)
 62                 if (bitrates[i].flags & mandatory_flag)
 63                         mandatory_rates |= BIT(i);
 64         return mandatory_rates;
 65 }
 66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
 67 
 68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
 69 {
 70         /* see 802.11 17.3.8.3.2 and Annex J
 71          * there are overlapping channel numbers in 5GHz and 2GHz bands */
 72         if (chan <= 0)
 73                 return 0; /* not supported */
 74         switch (band) {
 75         case IEEE80211_BAND_2GHZ:
 76                 if (chan == 14)
 77                         return 2484;
 78                 else if (chan < 14)
 79                         return 2407 + chan * 5;
 80                 break;
 81         case IEEE80211_BAND_5GHZ:
 82                 if (chan >= 182 && chan <= 196)
 83                         return 4000 + chan * 5;
 84                 else
 85                         return 5000 + chan * 5;
 86                 break;
 87         case IEEE80211_BAND_60GHZ:
 88                 if (chan < 5)
 89                         return 56160 + chan * 2160;
 90                 break;
 91         default:
 92                 ;
 93         }
 94         return 0; /* not supported */
 95 }
 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
 97 
 98 int ieee80211_frequency_to_channel(int freq)
 99 {
100         /* see 802.11 17.3.8.3.2 and Annex J */
101         if (freq == 2484)
102                 return 14;
103         else if (freq < 2484)
104                 return (freq - 2407) / 5;
105         else if (freq >= 4910 && freq <= 4980)
106                 return (freq - 4000) / 5;
107         else if (freq <= 45000) /* DMG band lower limit */
108                 return (freq - 5000) / 5;
109         else if (freq >= 58320 && freq <= 64800)
110                 return (freq - 56160) / 2160;
111         else
112                 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117                                                   int freq)
118 {
119         enum ieee80211_band band;
120         struct ieee80211_supported_band *sband;
121         int i;
122 
123         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124                 sband = wiphy->bands[band];
125 
126                 if (!sband)
127                         continue;
128 
129                 for (i = 0; i < sband->n_channels; i++) {
130                         if (sband->channels[i].center_freq == freq)
131                                 return &sband->channels[i];
132                 }
133         }
134 
135         return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140                                      enum ieee80211_band band)
141 {
142         int i, want;
143 
144         switch (band) {
145         case IEEE80211_BAND_5GHZ:
146                 want = 3;
147                 for (i = 0; i < sband->n_bitrates; i++) {
148                         if (sband->bitrates[i].bitrate == 60 ||
149                             sband->bitrates[i].bitrate == 120 ||
150                             sband->bitrates[i].bitrate == 240) {
151                                 sband->bitrates[i].flags |=
152                                         IEEE80211_RATE_MANDATORY_A;
153                                 want--;
154                         }
155                 }
156                 WARN_ON(want);
157                 break;
158         case IEEE80211_BAND_2GHZ:
159                 want = 7;
160                 for (i = 0; i < sband->n_bitrates; i++) {
161                         if (sband->bitrates[i].bitrate == 10) {
162                                 sband->bitrates[i].flags |=
163                                         IEEE80211_RATE_MANDATORY_B |
164                                         IEEE80211_RATE_MANDATORY_G;
165                                 want--;
166                         }
167 
168                         if (sband->bitrates[i].bitrate == 20 ||
169                             sband->bitrates[i].bitrate == 55 ||
170                             sband->bitrates[i].bitrate == 110 ||
171                             sband->bitrates[i].bitrate == 60 ||
172                             sband->bitrates[i].bitrate == 120 ||
173                             sband->bitrates[i].bitrate == 240) {
174                                 sband->bitrates[i].flags |=
175                                         IEEE80211_RATE_MANDATORY_G;
176                                 want--;
177                         }
178 
179                         if (sband->bitrates[i].bitrate != 10 &&
180                             sband->bitrates[i].bitrate != 20 &&
181                             sband->bitrates[i].bitrate != 55 &&
182                             sband->bitrates[i].bitrate != 110)
183                                 sband->bitrates[i].flags |=
184                                         IEEE80211_RATE_ERP_G;
185                 }
186                 WARN_ON(want != 0 && want != 3 && want != 6);
187                 break;
188         case IEEE80211_BAND_60GHZ:
189                 /* check for mandatory HT MCS 1..4 */
190                 WARN_ON(!sband->ht_cap.ht_supported);
191                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192                 break;
193         case IEEE80211_NUM_BANDS:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum ieee80211_band band;
202 
203         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx > 5)
222                 return -EINVAL;
223 
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226 
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229 
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 break;
253         default:
254                 break;
255         }
256 
257         switch (params->cipher) {
258         case WLAN_CIPHER_SUITE_WEP40:
259                 if (params->key_len != WLAN_KEY_LEN_WEP40)
260                         return -EINVAL;
261                 break;
262         case WLAN_CIPHER_SUITE_TKIP:
263                 if (params->key_len != WLAN_KEY_LEN_TKIP)
264                         return -EINVAL;
265                 break;
266         case WLAN_CIPHER_SUITE_CCMP:
267                 if (params->key_len != WLAN_KEY_LEN_CCMP)
268                         return -EINVAL;
269                 break;
270         case WLAN_CIPHER_SUITE_CCMP_256:
271                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272                         return -EINVAL;
273                 break;
274         case WLAN_CIPHER_SUITE_GCMP:
275                 if (params->key_len != WLAN_KEY_LEN_GCMP)
276                         return -EINVAL;
277                 break;
278         case WLAN_CIPHER_SUITE_GCMP_256:
279                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280                         return -EINVAL;
281                 break;
282         case WLAN_CIPHER_SUITE_WEP104:
283                 if (params->key_len != WLAN_KEY_LEN_WEP104)
284                         return -EINVAL;
285                 break;
286         case WLAN_CIPHER_SUITE_AES_CMAC:
287                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288                         return -EINVAL;
289                 break;
290         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292                         return -EINVAL;
293                 break;
294         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296                         return -EINVAL;
297                 break;
298         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300                         return -EINVAL;
301                 break;
302         default:
303                 /*
304                  * We don't know anything about this algorithm,
305                  * allow using it -- but the driver must check
306                  * all parameters! We still check below whether
307                  * or not the driver supports this algorithm,
308                  * of course.
309                  */
310                 break;
311         }
312 
313         if (params->seq) {
314                 switch (params->cipher) {
315                 case WLAN_CIPHER_SUITE_WEP40:
316                 case WLAN_CIPHER_SUITE_WEP104:
317                         /* These ciphers do not use key sequence */
318                         return -EINVAL;
319                 case WLAN_CIPHER_SUITE_TKIP:
320                 case WLAN_CIPHER_SUITE_CCMP:
321                 case WLAN_CIPHER_SUITE_CCMP_256:
322                 case WLAN_CIPHER_SUITE_GCMP:
323                 case WLAN_CIPHER_SUITE_GCMP_256:
324                 case WLAN_CIPHER_SUITE_AES_CMAC:
325                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328                         if (params->seq_len != 6)
329                                 return -EINVAL;
330                         break;
331                 }
332         }
333 
334         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335                 return -EINVAL;
336 
337         return 0;
338 }
339 
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342         unsigned int hdrlen = 24;
343 
344         if (ieee80211_is_data(fc)) {
345                 if (ieee80211_has_a4(fc))
346                         hdrlen = 30;
347                 if (ieee80211_is_data_qos(fc)) {
348                         hdrlen += IEEE80211_QOS_CTL_LEN;
349                         if (ieee80211_has_order(fc))
350                                 hdrlen += IEEE80211_HT_CTL_LEN;
351                 }
352                 goto out;
353         }
354 
355         if (ieee80211_is_mgmt(fc)) {
356                 if (ieee80211_has_order(fc))
357                         hdrlen += IEEE80211_HT_CTL_LEN;
358                 goto out;
359         }
360 
361         if (ieee80211_is_ctl(fc)) {
362                 /*
363                  * ACK and CTS are 10 bytes, all others 16. To see how
364                  * to get this condition consider
365                  *   subtype mask:   0b0000000011110000 (0x00F0)
366                  *   ACK subtype:    0b0000000011010000 (0x00D0)
367                  *   CTS subtype:    0b0000000011000000 (0x00C0)
368                  *   bits that matter:         ^^^      (0x00E0)
369                  *   value of those: 0b0000000011000000 (0x00C0)
370                  */
371                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372                         hdrlen = 10;
373                 else
374                         hdrlen = 16;
375         }
376 out:
377         return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380 
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383         const struct ieee80211_hdr *hdr =
384                         (const struct ieee80211_hdr *)skb->data;
385         unsigned int hdrlen;
386 
387         if (unlikely(skb->len < 10))
388                 return 0;
389         hdrlen = ieee80211_hdrlen(hdr->frame_control);
390         if (unlikely(hdrlen > skb->len))
391                 return 0;
392         return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395 
396 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
397 {
398         int ae = meshhdr->flags & MESH_FLAGS_AE;
399         /* 802.11-2012, 8.2.4.7.3 */
400         switch (ae) {
401         default:
402         case 0:
403                 return 6;
404         case MESH_FLAGS_AE_A4:
405                 return 12;
406         case MESH_FLAGS_AE_A5_A6:
407                 return 18;
408         }
409 }
410 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
411 
412 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
413                            enum nl80211_iftype iftype)
414 {
415         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
416         u16 hdrlen, ethertype;
417         u8 *payload;
418         u8 dst[ETH_ALEN];
419         u8 src[ETH_ALEN] __aligned(2);
420 
421         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
422                 return -1;
423 
424         hdrlen = ieee80211_hdrlen(hdr->frame_control);
425 
426         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
427          * header
428          * IEEE 802.11 address fields:
429          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
430          *   0     0   DA    SA    BSSID n/a
431          *   0     1   DA    BSSID SA    n/a
432          *   1     0   BSSID SA    DA    n/a
433          *   1     1   RA    TA    DA    SA
434          */
435         memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
436         memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
437 
438         switch (hdr->frame_control &
439                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
440         case cpu_to_le16(IEEE80211_FCTL_TODS):
441                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
442                              iftype != NL80211_IFTYPE_AP_VLAN &&
443                              iftype != NL80211_IFTYPE_P2P_GO))
444                         return -1;
445                 break;
446         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
447                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
448                              iftype != NL80211_IFTYPE_MESH_POINT &&
449                              iftype != NL80211_IFTYPE_AP_VLAN &&
450                              iftype != NL80211_IFTYPE_STATION))
451                         return -1;
452                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
453                         struct ieee80211s_hdr *meshdr =
454                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
455                         /* make sure meshdr->flags is on the linear part */
456                         if (!pskb_may_pull(skb, hdrlen + 1))
457                                 return -1;
458                         if (meshdr->flags & MESH_FLAGS_AE_A4)
459                                 return -1;
460                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
461                                 skb_copy_bits(skb, hdrlen +
462                                         offsetof(struct ieee80211s_hdr, eaddr1),
463                                         dst, ETH_ALEN);
464                                 skb_copy_bits(skb, hdrlen +
465                                         offsetof(struct ieee80211s_hdr, eaddr2),
466                                         src, ETH_ALEN);
467                         }
468                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
469                 }
470                 break;
471         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
472                 if ((iftype != NL80211_IFTYPE_STATION &&
473                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
474                      iftype != NL80211_IFTYPE_MESH_POINT) ||
475                     (is_multicast_ether_addr(dst) &&
476                      ether_addr_equal(src, addr)))
477                         return -1;
478                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
479                         struct ieee80211s_hdr *meshdr =
480                                 (struct ieee80211s_hdr *) (skb->data + hdrlen);
481                         /* make sure meshdr->flags is on the linear part */
482                         if (!pskb_may_pull(skb, hdrlen + 1))
483                                 return -1;
484                         if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
485                                 return -1;
486                         if (meshdr->flags & MESH_FLAGS_AE_A4)
487                                 skb_copy_bits(skb, hdrlen +
488                                         offsetof(struct ieee80211s_hdr, eaddr1),
489                                         src, ETH_ALEN);
490                         hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
491                 }
492                 break;
493         case cpu_to_le16(0):
494                 if (iftype != NL80211_IFTYPE_ADHOC &&
495                     iftype != NL80211_IFTYPE_STATION &&
496                     iftype != NL80211_IFTYPE_OCB)
497                                 return -1;
498                 break;
499         }
500 
501         if (!pskb_may_pull(skb, hdrlen + 8))
502                 return -1;
503 
504         payload = skb->data + hdrlen;
505         ethertype = (payload[6] << 8) | payload[7];
506 
507         if (likely((ether_addr_equal(payload, rfc1042_header) &&
508                     ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
509                    ether_addr_equal(payload, bridge_tunnel_header))) {
510                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
511                  * replace EtherType */
512                 skb_pull(skb, hdrlen + 6);
513                 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
514                 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
515         } else {
516                 struct ethhdr *ehdr;
517                 __be16 len;
518 
519                 skb_pull(skb, hdrlen);
520                 len = htons(skb->len);
521                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
522                 memcpy(ehdr->h_dest, dst, ETH_ALEN);
523                 memcpy(ehdr->h_source, src, ETH_ALEN);
524                 ehdr->h_proto = len;
525         }
526         return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531                              enum nl80211_iftype iftype,
532                              const u8 *bssid, bool qos)
533 {
534         struct ieee80211_hdr hdr;
535         u16 hdrlen, ethertype;
536         __le16 fc;
537         const u8 *encaps_data;
538         int encaps_len, skip_header_bytes;
539         int nh_pos, h_pos;
540         int head_need;
541 
542         if (unlikely(skb->len < ETH_HLEN))
543                 return -EINVAL;
544 
545         nh_pos = skb_network_header(skb) - skb->data;
546         h_pos = skb_transport_header(skb) - skb->data;
547 
548         /* convert Ethernet header to proper 802.11 header (based on
549          * operation mode) */
550         ethertype = (skb->data[12] << 8) | skb->data[13];
551         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553         switch (iftype) {
554         case NL80211_IFTYPE_AP:
555         case NL80211_IFTYPE_AP_VLAN:
556         case NL80211_IFTYPE_P2P_GO:
557                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558                 /* DA BSSID SA */
559                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560                 memcpy(hdr.addr2, addr, ETH_ALEN);
561                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562                 hdrlen = 24;
563                 break;
564         case NL80211_IFTYPE_STATION:
565         case NL80211_IFTYPE_P2P_CLIENT:
566                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567                 /* BSSID SA DA */
568                 memcpy(hdr.addr1, bssid, ETH_ALEN);
569                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571                 hdrlen = 24;
572                 break;
573         case NL80211_IFTYPE_OCB:
574         case NL80211_IFTYPE_ADHOC:
575                 /* DA SA BSSID */
576                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578                 memcpy(hdr.addr3, bssid, ETH_ALEN);
579                 hdrlen = 24;
580                 break;
581         default:
582                 return -EOPNOTSUPP;
583         }
584 
585         if (qos) {
586                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587                 hdrlen += 2;
588         }
589 
590         hdr.frame_control = fc;
591         hdr.duration_id = 0;
592         hdr.seq_ctrl = 0;
593 
594         skip_header_bytes = ETH_HLEN;
595         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596                 encaps_data = bridge_tunnel_header;
597                 encaps_len = sizeof(bridge_tunnel_header);
598                 skip_header_bytes -= 2;
599         } else if (ethertype >= ETH_P_802_3_MIN) {
600                 encaps_data = rfc1042_header;
601                 encaps_len = sizeof(rfc1042_header);
602                 skip_header_bytes -= 2;
603         } else {
604                 encaps_data = NULL;
605                 encaps_len = 0;
606         }
607 
608         skb_pull(skb, skip_header_bytes);
609         nh_pos -= skip_header_bytes;
610         h_pos -= skip_header_bytes;
611 
612         head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614         if (head_need > 0 || skb_cloned(skb)) {
615                 head_need = max(head_need, 0);
616                 if (head_need)
617                         skb_orphan(skb);
618 
619                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620                         return -ENOMEM;
621 
622                 skb->truesize += head_need;
623         }
624 
625         if (encaps_data) {
626                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627                 nh_pos += encaps_len;
628                 h_pos += encaps_len;
629         }
630 
631         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632 
633         nh_pos += hdrlen;
634         h_pos += hdrlen;
635 
636         /* Update skb pointers to various headers since this modified frame
637          * is going to go through Linux networking code that may potentially
638          * need things like pointer to IP header. */
639         skb_set_mac_header(skb, 0);
640         skb_set_network_header(skb, nh_pos);
641         skb_set_transport_header(skb, h_pos);
642 
643         return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646 
647 
648 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
649                               const u8 *addr, enum nl80211_iftype iftype,
650                               const unsigned int extra_headroom,
651                               bool has_80211_header)
652 {
653         struct sk_buff *frame = NULL;
654         u16 ethertype;
655         u8 *payload;
656         const struct ethhdr *eth;
657         int remaining, err;
658         u8 dst[ETH_ALEN], src[ETH_ALEN];
659 
660         if (has_80211_header) {
661                 err = ieee80211_data_to_8023(skb, addr, iftype);
662                 if (err)
663                         goto out;
664 
665                 /* skip the wrapping header */
666                 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
667                 if (!eth)
668                         goto out;
669         } else {
670                 eth = (struct ethhdr *) skb->data;
671         }
672 
673         while (skb != frame) {
674                 u8 padding;
675                 __be16 len = eth->h_proto;
676                 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
677 
678                 remaining = skb->len;
679                 memcpy(dst, eth->h_dest, ETH_ALEN);
680                 memcpy(src, eth->h_source, ETH_ALEN);
681 
682                 padding = (4 - subframe_len) & 0x3;
683                 /* the last MSDU has no padding */
684                 if (subframe_len > remaining)
685                         goto purge;
686 
687                 skb_pull(skb, sizeof(struct ethhdr));
688                 /* reuse skb for the last subframe */
689                 if (remaining <= subframe_len + padding)
690                         frame = skb;
691                 else {
692                         unsigned int hlen = ALIGN(extra_headroom, 4);
693                         /*
694                          * Allocate and reserve two bytes more for payload
695                          * alignment since sizeof(struct ethhdr) is 14.
696                          */
697                         frame = dev_alloc_skb(hlen + subframe_len + 2);
698                         if (!frame)
699                                 goto purge;
700 
701                         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
702                         memcpy(skb_put(frame, ntohs(len)), skb->data,
703                                 ntohs(len));
704 
705                         eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
706                                                         padding);
707                         if (!eth) {
708                                 dev_kfree_skb(frame);
709                                 goto purge;
710                         }
711                 }
712 
713                 skb_reset_network_header(frame);
714                 frame->dev = skb->dev;
715                 frame->priority = skb->priority;
716 
717                 payload = frame->data;
718                 ethertype = (payload[6] << 8) | payload[7];
719 
720                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
721                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
722                            ether_addr_equal(payload, bridge_tunnel_header))) {
723                         /* remove RFC1042 or Bridge-Tunnel
724                          * encapsulation and replace EtherType */
725                         skb_pull(frame, 6);
726                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
727                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
728                 } else {
729                         memcpy(skb_push(frame, sizeof(__be16)), &len,
730                                 sizeof(__be16));
731                         memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
732                         memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
733                 }
734                 __skb_queue_tail(list, frame);
735         }
736 
737         return;
738 
739  purge:
740         __skb_queue_purge(list);
741  out:
742         dev_kfree_skb(skb);
743 }
744 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
745 
746 /* Given a data frame determine the 802.1p/1d tag to use. */
747 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
748                                     struct cfg80211_qos_map *qos_map)
749 {
750         unsigned int dscp;
751         unsigned char vlan_priority;
752 
753         /* skb->priority values from 256->263 are magic values to
754          * directly indicate a specific 802.1d priority.  This is used
755          * to allow 802.1d priority to be passed directly in from VLAN
756          * tags, etc.
757          */
758         if (skb->priority >= 256 && skb->priority <= 263)
759                 return skb->priority - 256;
760 
761         if (skb_vlan_tag_present(skb)) {
762                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
763                         >> VLAN_PRIO_SHIFT;
764                 if (vlan_priority > 0)
765                         return vlan_priority;
766         }
767 
768         switch (skb->protocol) {
769         case htons(ETH_P_IP):
770                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
771                 break;
772         case htons(ETH_P_IPV6):
773                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
774                 break;
775         case htons(ETH_P_MPLS_UC):
776         case htons(ETH_P_MPLS_MC): {
777                 struct mpls_label mpls_tmp, *mpls;
778 
779                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
780                                           sizeof(*mpls), &mpls_tmp);
781                 if (!mpls)
782                         return 0;
783 
784                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
785                         >> MPLS_LS_TC_SHIFT;
786         }
787         case htons(ETH_P_80221):
788                 /* 802.21 is always network control traffic */
789                 return 7;
790         default:
791                 return 0;
792         }
793 
794         if (qos_map) {
795                 unsigned int i, tmp_dscp = dscp >> 2;
796 
797                 for (i = 0; i < qos_map->num_des; i++) {
798                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
799                                 return qos_map->dscp_exception[i].up;
800                 }
801 
802                 for (i = 0; i < 8; i++) {
803                         if (tmp_dscp >= qos_map->up[i].low &&
804                             tmp_dscp <= qos_map->up[i].high)
805                                 return i;
806                 }
807         }
808 
809         return dscp >> 5;
810 }
811 EXPORT_SYMBOL(cfg80211_classify8021d);
812 
813 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
814 {
815         const struct cfg80211_bss_ies *ies;
816 
817         ies = rcu_dereference(bss->ies);
818         if (!ies)
819                 return NULL;
820 
821         return cfg80211_find_ie(ie, ies->data, ies->len);
822 }
823 EXPORT_SYMBOL(ieee80211_bss_get_ie);
824 
825 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
826 {
827         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
828         struct net_device *dev = wdev->netdev;
829         int i;
830 
831         if (!wdev->connect_keys)
832                 return;
833 
834         for (i = 0; i < 6; i++) {
835                 if (!wdev->connect_keys->params[i].cipher)
836                         continue;
837                 if (rdev_add_key(rdev, dev, i, false, NULL,
838                                  &wdev->connect_keys->params[i])) {
839                         netdev_err(dev, "failed to set key %d\n", i);
840                         continue;
841                 }
842                 if (wdev->connect_keys->def == i)
843                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
844                                 netdev_err(dev, "failed to set defkey %d\n", i);
845                                 continue;
846                         }
847                 if (wdev->connect_keys->defmgmt == i)
848                         if (rdev_set_default_mgmt_key(rdev, dev, i))
849                                 netdev_err(dev, "failed to set mgtdef %d\n", i);
850         }
851 
852         kzfree(wdev->connect_keys);
853         wdev->connect_keys = NULL;
854 }
855 
856 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
857 {
858         struct cfg80211_event *ev;
859         unsigned long flags;
860         const u8 *bssid = NULL;
861 
862         spin_lock_irqsave(&wdev->event_lock, flags);
863         while (!list_empty(&wdev->event_list)) {
864                 ev = list_first_entry(&wdev->event_list,
865                                       struct cfg80211_event, list);
866                 list_del(&ev->list);
867                 spin_unlock_irqrestore(&wdev->event_lock, flags);
868 
869                 wdev_lock(wdev);
870                 switch (ev->type) {
871                 case EVENT_CONNECT_RESULT:
872                         if (!is_zero_ether_addr(ev->cr.bssid))
873                                 bssid = ev->cr.bssid;
874                         __cfg80211_connect_result(
875                                 wdev->netdev, bssid,
876                                 ev->cr.req_ie, ev->cr.req_ie_len,
877                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
878                                 ev->cr.status,
879                                 ev->cr.status == WLAN_STATUS_SUCCESS,
880                                 NULL);
881                         break;
882                 case EVENT_ROAMED:
883                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
884                                           ev->rm.req_ie_len, ev->rm.resp_ie,
885                                           ev->rm.resp_ie_len);
886                         break;
887                 case EVENT_DISCONNECTED:
888                         __cfg80211_disconnected(wdev->netdev,
889                                                 ev->dc.ie, ev->dc.ie_len,
890                                                 ev->dc.reason, true);
891                         break;
892                 case EVENT_IBSS_JOINED:
893                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
894                                                ev->ij.channel);
895                         break;
896                 case EVENT_STOPPED:
897                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
898                         break;
899                 }
900                 wdev_unlock(wdev);
901 
902                 kfree(ev);
903 
904                 spin_lock_irqsave(&wdev->event_lock, flags);
905         }
906         spin_unlock_irqrestore(&wdev->event_lock, flags);
907 }
908 
909 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
910 {
911         struct wireless_dev *wdev;
912 
913         ASSERT_RTNL();
914 
915         list_for_each_entry(wdev, &rdev->wdev_list, list)
916                 cfg80211_process_wdev_events(wdev);
917 }
918 
919 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
920                           struct net_device *dev, enum nl80211_iftype ntype,
921                           u32 *flags, struct vif_params *params)
922 {
923         int err;
924         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
925 
926         ASSERT_RTNL();
927 
928         /* don't support changing VLANs, you just re-create them */
929         if (otype == NL80211_IFTYPE_AP_VLAN)
930                 return -EOPNOTSUPP;
931 
932         /* cannot change into P2P device type */
933         if (ntype == NL80211_IFTYPE_P2P_DEVICE)
934                 return -EOPNOTSUPP;
935 
936         if (!rdev->ops->change_virtual_intf ||
937             !(rdev->wiphy.interface_modes & (1 << ntype)))
938                 return -EOPNOTSUPP;
939 
940         /* if it's part of a bridge, reject changing type to station/ibss */
941         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
942             (ntype == NL80211_IFTYPE_ADHOC ||
943              ntype == NL80211_IFTYPE_STATION ||
944              ntype == NL80211_IFTYPE_P2P_CLIENT))
945                 return -EBUSY;
946 
947         if (ntype != otype && netif_running(dev)) {
948                 dev->ieee80211_ptr->use_4addr = false;
949                 dev->ieee80211_ptr->mesh_id_up_len = 0;
950                 wdev_lock(dev->ieee80211_ptr);
951                 rdev_set_qos_map(rdev, dev, NULL);
952                 wdev_unlock(dev->ieee80211_ptr);
953 
954                 switch (otype) {
955                 case NL80211_IFTYPE_AP:
956                         cfg80211_stop_ap(rdev, dev, true);
957                         break;
958                 case NL80211_IFTYPE_ADHOC:
959                         cfg80211_leave_ibss(rdev, dev, false);
960                         break;
961                 case NL80211_IFTYPE_STATION:
962                 case NL80211_IFTYPE_P2P_CLIENT:
963                         wdev_lock(dev->ieee80211_ptr);
964                         cfg80211_disconnect(rdev, dev,
965                                             WLAN_REASON_DEAUTH_LEAVING, true);
966                         wdev_unlock(dev->ieee80211_ptr);
967                         break;
968                 case NL80211_IFTYPE_MESH_POINT:
969                         /* mesh should be handled? */
970                         break;
971                 default:
972                         break;
973                 }
974 
975                 cfg80211_process_rdev_events(rdev);
976         }
977 
978         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
979 
980         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
981 
982         if (!err && params && params->use_4addr != -1)
983                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
984 
985         if (!err) {
986                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
987                 switch (ntype) {
988                 case NL80211_IFTYPE_STATION:
989                         if (dev->ieee80211_ptr->use_4addr)
990                                 break;
991                         /* fall through */
992                 case NL80211_IFTYPE_OCB:
993                 case NL80211_IFTYPE_P2P_CLIENT:
994                 case NL80211_IFTYPE_ADHOC:
995                         dev->priv_flags |= IFF_DONT_BRIDGE;
996                         break;
997                 case NL80211_IFTYPE_P2P_GO:
998                 case NL80211_IFTYPE_AP:
999                 case NL80211_IFTYPE_AP_VLAN:
1000                 case NL80211_IFTYPE_WDS:
1001                 case NL80211_IFTYPE_MESH_POINT:
1002                         /* bridging OK */
1003                         break;
1004                 case NL80211_IFTYPE_MONITOR:
1005                         /* monitor can't bridge anyway */
1006                         break;
1007                 case NL80211_IFTYPE_UNSPECIFIED:
1008                 case NUM_NL80211_IFTYPES:
1009                         /* not happening */
1010                         break;
1011                 case NL80211_IFTYPE_P2P_DEVICE:
1012                         WARN_ON(1);
1013                         break;
1014                 }
1015         }
1016 
1017         if (!err && ntype != otype && netif_running(dev)) {
1018                 cfg80211_update_iface_num(rdev, ntype, 1);
1019                 cfg80211_update_iface_num(rdev, otype, -1);
1020         }
1021 
1022         return err;
1023 }
1024 
1025 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1026 {
1027         static const u32 __mcs2bitrate[] = {
1028                 /* control PHY */
1029                 [0] =   275,
1030                 /* SC PHY */
1031                 [1] =  3850,
1032                 [2] =  7700,
1033                 [3] =  9625,
1034                 [4] = 11550,
1035                 [5] = 12512, /* 1251.25 mbps */
1036                 [6] = 15400,
1037                 [7] = 19250,
1038                 [8] = 23100,
1039                 [9] = 25025,
1040                 [10] = 30800,
1041                 [11] = 38500,
1042                 [12] = 46200,
1043                 /* OFDM PHY */
1044                 [13] =  6930,
1045                 [14] =  8662, /* 866.25 mbps */
1046                 [15] = 13860,
1047                 [16] = 17325,
1048                 [17] = 20790,
1049                 [18] = 27720,
1050                 [19] = 34650,
1051                 [20] = 41580,
1052                 [21] = 45045,
1053                 [22] = 51975,
1054                 [23] = 62370,
1055                 [24] = 67568, /* 6756.75 mbps */
1056                 /* LP-SC PHY */
1057                 [25] =  6260,
1058                 [26] =  8340,
1059                 [27] = 11120,
1060                 [28] = 12510,
1061                 [29] = 16680,
1062                 [30] = 22240,
1063                 [31] = 25030,
1064         };
1065 
1066         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1067                 return 0;
1068 
1069         return __mcs2bitrate[rate->mcs];
1070 }
1071 
1072 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1073 {
1074         static const u32 base[4][10] = {
1075                 {   6500000,
1076                    13000000,
1077                    19500000,
1078                    26000000,
1079                    39000000,
1080                    52000000,
1081                    58500000,
1082                    65000000,
1083                    78000000,
1084                    0,
1085                 },
1086                 {  13500000,
1087                    27000000,
1088                    40500000,
1089                    54000000,
1090                    81000000,
1091                   108000000,
1092                   121500000,
1093                   135000000,
1094                   162000000,
1095                   180000000,
1096                 },
1097                 {  29300000,
1098                    58500000,
1099                    87800000,
1100                   117000000,
1101                   175500000,
1102                   234000000,
1103                   263300000,
1104                   292500000,
1105                   351000000,
1106                   390000000,
1107                 },
1108                 {  58500000,
1109                   117000000,
1110                   175500000,
1111                   234000000,
1112                   351000000,
1113                   468000000,
1114                   526500000,
1115                   585000000,
1116                   702000000,
1117                   780000000,
1118                 },
1119         };
1120         u32 bitrate;
1121         int idx;
1122 
1123         if (WARN_ON_ONCE(rate->mcs > 9))
1124                 return 0;
1125 
1126         switch (rate->bw) {
1127         case RATE_INFO_BW_160:
1128                 idx = 3;
1129                 break;
1130         case RATE_INFO_BW_80:
1131                 idx = 2;
1132                 break;
1133         case RATE_INFO_BW_40:
1134                 idx = 1;
1135                 break;
1136         case RATE_INFO_BW_5:
1137         case RATE_INFO_BW_10:
1138         default:
1139                 WARN_ON(1);
1140                 /* fall through */
1141         case RATE_INFO_BW_20:
1142                 idx = 0;
1143         }
1144 
1145         bitrate = base[idx][rate->mcs];
1146         bitrate *= rate->nss;
1147 
1148         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1149                 bitrate = (bitrate / 9) * 10;
1150 
1151         /* do NOT round down here */
1152         return (bitrate + 50000) / 100000;
1153 }
1154 
1155 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1156 {
1157         int modulation, streams, bitrate;
1158 
1159         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1160             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1161                 return rate->legacy;
1162         if (rate->flags & RATE_INFO_FLAGS_60G)
1163                 return cfg80211_calculate_bitrate_60g(rate);
1164         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1165                 return cfg80211_calculate_bitrate_vht(rate);
1166 
1167         /* the formula below does only work for MCS values smaller than 32 */
1168         if (WARN_ON_ONCE(rate->mcs >= 32))
1169                 return 0;
1170 
1171         modulation = rate->mcs & 7;
1172         streams = (rate->mcs >> 3) + 1;
1173 
1174         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1175 
1176         if (modulation < 4)
1177                 bitrate *= (modulation + 1);
1178         else if (modulation == 4)
1179                 bitrate *= (modulation + 2);
1180         else
1181                 bitrate *= (modulation + 3);
1182 
1183         bitrate *= streams;
1184 
1185         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1186                 bitrate = (bitrate / 9) * 10;
1187 
1188         /* do NOT round down here */
1189         return (bitrate + 50000) / 100000;
1190 }
1191 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1192 
1193 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1194                           enum ieee80211_p2p_attr_id attr,
1195                           u8 *buf, unsigned int bufsize)
1196 {
1197         u8 *out = buf;
1198         u16 attr_remaining = 0;
1199         bool desired_attr = false;
1200         u16 desired_len = 0;
1201 
1202         while (len > 0) {
1203                 unsigned int iedatalen;
1204                 unsigned int copy;
1205                 const u8 *iedata;
1206 
1207                 if (len < 2)
1208                         return -EILSEQ;
1209                 iedatalen = ies[1];
1210                 if (iedatalen + 2 > len)
1211                         return -EILSEQ;
1212 
1213                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1214                         goto cont;
1215 
1216                 if (iedatalen < 4)
1217                         goto cont;
1218 
1219                 iedata = ies + 2;
1220 
1221                 /* check WFA OUI, P2P subtype */
1222                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1223                     iedata[2] != 0x9a || iedata[3] != 0x09)
1224                         goto cont;
1225 
1226                 iedatalen -= 4;
1227                 iedata += 4;
1228 
1229                 /* check attribute continuation into this IE */
1230                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1231                 if (copy && desired_attr) {
1232                         desired_len += copy;
1233                         if (out) {
1234                                 memcpy(out, iedata, min(bufsize, copy));
1235                                 out += min(bufsize, copy);
1236                                 bufsize -= min(bufsize, copy);
1237                         }
1238 
1239 
1240                         if (copy == attr_remaining)
1241                                 return desired_len;
1242                 }
1243 
1244                 attr_remaining -= copy;
1245                 if (attr_remaining)
1246                         goto cont;
1247 
1248                 iedatalen -= copy;
1249                 iedata += copy;
1250 
1251                 while (iedatalen > 0) {
1252                         u16 attr_len;
1253 
1254                         /* P2P attribute ID & size must fit */
1255                         if (iedatalen < 3)
1256                                 return -EILSEQ;
1257                         desired_attr = iedata[0] == attr;
1258                         attr_len = get_unaligned_le16(iedata + 1);
1259                         iedatalen -= 3;
1260                         iedata += 3;
1261 
1262                         copy = min_t(unsigned int, attr_len, iedatalen);
1263 
1264                         if (desired_attr) {
1265                                 desired_len += copy;
1266                                 if (out) {
1267                                         memcpy(out, iedata, min(bufsize, copy));
1268                                         out += min(bufsize, copy);
1269                                         bufsize -= min(bufsize, copy);
1270                                 }
1271 
1272                                 if (copy == attr_len)
1273                                         return desired_len;
1274                         }
1275 
1276                         iedata += copy;
1277                         iedatalen -= copy;
1278                         attr_remaining = attr_len - copy;
1279                 }
1280 
1281  cont:
1282                 len -= ies[1] + 2;
1283                 ies += ies[1] + 2;
1284         }
1285 
1286         if (attr_remaining && desired_attr)
1287                 return -EILSEQ;
1288 
1289         return -ENOENT;
1290 }
1291 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1292 
1293 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1294 {
1295         int i;
1296 
1297         for (i = 0; i < n_ids; i++)
1298                 if (ids[i] == id)
1299                         return true;
1300         return false;
1301 }
1302 
1303 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1304                               const u8 *ids, int n_ids,
1305                               const u8 *after_ric, int n_after_ric,
1306                               size_t offset)
1307 {
1308         size_t pos = offset;
1309 
1310         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1311                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1312                         pos += 2 + ies[pos + 1];
1313 
1314                         while (pos < ielen &&
1315                                !ieee80211_id_in_list(after_ric, n_after_ric,
1316                                                      ies[pos]))
1317                                 pos += 2 + ies[pos + 1];
1318                 } else {
1319                         pos += 2 + ies[pos + 1];
1320                 }
1321         }
1322 
1323         return pos;
1324 }
1325 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1326 
1327 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1328                           const u8 *ids, int n_ids, size_t offset)
1329 {
1330         return ieee80211_ie_split_ric(ies, ielen, ids, n_ids, NULL, 0, offset);
1331 }
1332 EXPORT_SYMBOL(ieee80211_ie_split);
1333 
1334 bool ieee80211_operating_class_to_band(u8 operating_class,
1335                                        enum ieee80211_band *band)
1336 {
1337         switch (operating_class) {
1338         case 112:
1339         case 115 ... 127:
1340         case 128 ... 130:
1341                 *band = IEEE80211_BAND_5GHZ;
1342                 return true;
1343         case 81:
1344         case 82:
1345         case 83:
1346         case 84:
1347                 *band = IEEE80211_BAND_2GHZ;
1348                 return true;
1349         case 180:
1350                 *band = IEEE80211_BAND_60GHZ;
1351                 return true;
1352         }
1353 
1354         return false;
1355 }
1356 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1357 
1358 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1359                                           u8 *op_class)
1360 {
1361         u8 vht_opclass;
1362         u16 freq = chandef->center_freq1;
1363 
1364         if (freq >= 2412 && freq <= 2472) {
1365                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1366                         return false;
1367 
1368                 /* 2.407 GHz, channels 1..13 */
1369                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1370                         if (freq > chandef->chan->center_freq)
1371                                 *op_class = 83; /* HT40+ */
1372                         else
1373                                 *op_class = 84; /* HT40- */
1374                 } else {
1375                         *op_class = 81;
1376                 }
1377 
1378                 return true;
1379         }
1380 
1381         if (freq == 2484) {
1382                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1383                         return false;
1384 
1385                 *op_class = 82; /* channel 14 */
1386                 return true;
1387         }
1388 
1389         switch (chandef->width) {
1390         case NL80211_CHAN_WIDTH_80:
1391                 vht_opclass = 128;
1392                 break;
1393         case NL80211_CHAN_WIDTH_160:
1394                 vht_opclass = 129;
1395                 break;
1396         case NL80211_CHAN_WIDTH_80P80:
1397                 vht_opclass = 130;
1398                 break;
1399         case NL80211_CHAN_WIDTH_10:
1400         case NL80211_CHAN_WIDTH_5:
1401                 return false; /* unsupported for now */
1402         default:
1403                 vht_opclass = 0;
1404                 break;
1405         }
1406 
1407         /* 5 GHz, channels 36..48 */
1408         if (freq >= 5180 && freq <= 5240) {
1409                 if (vht_opclass) {
1410                         *op_class = vht_opclass;
1411                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1412                         if (freq > chandef->chan->center_freq)
1413                                 *op_class = 116;
1414                         else
1415                                 *op_class = 117;
1416                 } else {
1417                         *op_class = 115;
1418                 }
1419 
1420                 return true;
1421         }
1422 
1423         /* 5 GHz, channels 52..64 */
1424         if (freq >= 5260 && freq <= 5320) {
1425                 if (vht_opclass) {
1426                         *op_class = vht_opclass;
1427                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1428                         if (freq > chandef->chan->center_freq)
1429                                 *op_class = 119;
1430                         else
1431                                 *op_class = 120;
1432                 } else {
1433                         *op_class = 118;
1434                 }
1435 
1436                 return true;
1437         }
1438 
1439         /* 5 GHz, channels 100..144 */
1440         if (freq >= 5500 && freq <= 5720) {
1441                 if (vht_opclass) {
1442                         *op_class = vht_opclass;
1443                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1444                         if (freq > chandef->chan->center_freq)
1445                                 *op_class = 122;
1446                         else
1447                                 *op_class = 123;
1448                 } else {
1449                         *op_class = 121;
1450                 }
1451 
1452                 return true;
1453         }
1454 
1455         /* 5 GHz, channels 149..169 */
1456         if (freq >= 5745 && freq <= 5845) {
1457                 if (vht_opclass) {
1458                         *op_class = vht_opclass;
1459                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1460                         if (freq > chandef->chan->center_freq)
1461                                 *op_class = 126;
1462                         else
1463                                 *op_class = 127;
1464                 } else if (freq <= 5805) {
1465                         *op_class = 124;
1466                 } else {
1467                         *op_class = 125;
1468                 }
1469 
1470                 return true;
1471         }
1472 
1473         /* 56.16 GHz, channel 1..4 */
1474         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1475                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1476                         return false;
1477 
1478                 *op_class = 180;
1479                 return true;
1480         }
1481 
1482         /* not supported yet */
1483         return false;
1484 }
1485 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1486 
1487 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1488                                  u32 beacon_int)
1489 {
1490         struct wireless_dev *wdev;
1491         int res = 0;
1492 
1493         if (!beacon_int)
1494                 return -EINVAL;
1495 
1496         list_for_each_entry(wdev, &rdev->wdev_list, list) {
1497                 if (!wdev->beacon_interval)
1498                         continue;
1499                 if (wdev->beacon_interval != beacon_int) {
1500                         res = -EINVAL;
1501                         break;
1502                 }
1503         }
1504 
1505         return res;
1506 }
1507 
1508 int cfg80211_iter_combinations(struct wiphy *wiphy,
1509                                const int num_different_channels,
1510                                const u8 radar_detect,
1511                                const int iftype_num[NUM_NL80211_IFTYPES],
1512                                void (*iter)(const struct ieee80211_iface_combination *c,
1513                                             void *data),
1514                                void *data)
1515 {
1516         const struct ieee80211_regdomain *regdom;
1517         enum nl80211_dfs_regions region = 0;
1518         int i, j, iftype;
1519         int num_interfaces = 0;
1520         u32 used_iftypes = 0;
1521 
1522         if (radar_detect) {
1523                 rcu_read_lock();
1524                 regdom = rcu_dereference(cfg80211_regdomain);
1525                 if (regdom)
1526                         region = regdom->dfs_region;
1527                 rcu_read_unlock();
1528         }
1529 
1530         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1531                 num_interfaces += iftype_num[iftype];
1532                 if (iftype_num[iftype] > 0 &&
1533                     !(wiphy->software_iftypes & BIT(iftype)))
1534                         used_iftypes |= BIT(iftype);
1535         }
1536 
1537         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1538                 const struct ieee80211_iface_combination *c;
1539                 struct ieee80211_iface_limit *limits;
1540                 u32 all_iftypes = 0;
1541 
1542                 c = &wiphy->iface_combinations[i];
1543 
1544                 if (num_interfaces > c->max_interfaces)
1545                         continue;
1546                 if (num_different_channels > c->num_different_channels)
1547                         continue;
1548 
1549                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1550                                  GFP_KERNEL);
1551                 if (!limits)
1552                         return -ENOMEM;
1553 
1554                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1555                         if (wiphy->software_iftypes & BIT(iftype))
1556                                 continue;
1557                         for (j = 0; j < c->n_limits; j++) {
1558                                 all_iftypes |= limits[j].types;
1559                                 if (!(limits[j].types & BIT(iftype)))
1560                                         continue;
1561                                 if (limits[j].max < iftype_num[iftype])
1562                                         goto cont;
1563                                 limits[j].max -= iftype_num[iftype];
1564                         }
1565                 }
1566 
1567                 if (radar_detect != (c->radar_detect_widths & radar_detect))
1568                         goto cont;
1569 
1570                 if (radar_detect && c->radar_detect_regions &&
1571                     !(c->radar_detect_regions & BIT(region)))
1572                         goto cont;
1573 
1574                 /* Finally check that all iftypes that we're currently
1575                  * using are actually part of this combination. If they
1576                  * aren't then we can't use this combination and have
1577                  * to continue to the next.
1578                  */
1579                 if ((all_iftypes & used_iftypes) != used_iftypes)
1580                         goto cont;
1581 
1582                 /* This combination covered all interface types and
1583                  * supported the requested numbers, so we're good.
1584                  */
1585 
1586                 (*iter)(c, data);
1587  cont:
1588                 kfree(limits);
1589         }
1590 
1591         return 0;
1592 }
1593 EXPORT_SYMBOL(cfg80211_iter_combinations);
1594 
1595 static void
1596 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1597                           void *data)
1598 {
1599         int *num = data;
1600         (*num)++;
1601 }
1602 
1603 int cfg80211_check_combinations(struct wiphy *wiphy,
1604                                 const int num_different_channels,
1605                                 const u8 radar_detect,
1606                                 const int iftype_num[NUM_NL80211_IFTYPES])
1607 {
1608         int err, num = 0;
1609 
1610         err = cfg80211_iter_combinations(wiphy, num_different_channels,
1611                                          radar_detect, iftype_num,
1612                                          cfg80211_iter_sum_ifcombs, &num);
1613         if (err)
1614                 return err;
1615         if (num == 0)
1616                 return -EBUSY;
1617 
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(cfg80211_check_combinations);
1621 
1622 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1623                                  struct wireless_dev *wdev,
1624                                  enum nl80211_iftype iftype,
1625                                  struct ieee80211_channel *chan,
1626                                  enum cfg80211_chan_mode chanmode,
1627                                  u8 radar_detect)
1628 {
1629         struct wireless_dev *wdev_iter;
1630         int num[NUM_NL80211_IFTYPES];
1631         struct ieee80211_channel
1632                         *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1633         struct ieee80211_channel *ch;
1634         enum cfg80211_chan_mode chmode;
1635         int num_different_channels = 0;
1636         int total = 1;
1637         int i;
1638 
1639         ASSERT_RTNL();
1640 
1641         if (WARN_ON(hweight32(radar_detect) > 1))
1642                 return -EINVAL;
1643 
1644         if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
1645                 return -EINVAL;
1646 
1647         /* Always allow software iftypes */
1648         if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1649                 if (radar_detect)
1650                         return -EINVAL;
1651                 return 0;
1652         }
1653 
1654         memset(num, 0, sizeof(num));
1655         memset(used_channels, 0, sizeof(used_channels));
1656 
1657         num[iftype] = 1;
1658 
1659         /* TODO: We'll probably not need this anymore, since this
1660          * should only be called with CHAN_MODE_UNDEFINED. There are
1661          * still a couple of pending calls where other chanmodes are
1662          * used, but we should get rid of them.
1663          */
1664         switch (chanmode) {
1665         case CHAN_MODE_UNDEFINED:
1666                 break;
1667         case CHAN_MODE_SHARED:
1668                 WARN_ON(!chan);
1669                 used_channels[0] = chan;
1670                 num_different_channels++;
1671                 break;
1672         case CHAN_MODE_EXCLUSIVE:
1673                 num_different_channels++;
1674                 break;
1675         }
1676 
1677         list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1678                 if (wdev_iter == wdev)
1679                         continue;
1680                 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1681                         if (!wdev_iter->p2p_started)
1682                                 continue;
1683                 } else if (wdev_iter->netdev) {
1684                         if (!netif_running(wdev_iter->netdev))
1685                                 continue;
1686                 } else {
1687                         WARN_ON(1);
1688                 }
1689 
1690                 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1691                         continue;
1692 
1693                 /*
1694                  * We may be holding the "wdev" mutex, but now need to lock
1695                  * wdev_iter. This is OK because once we get here wdev_iter
1696                  * is not wdev (tested above), but we need to use the nested
1697                  * locking for lockdep.
1698                  */
1699                 mutex_lock_nested(&wdev_iter->mtx, 1);
1700                 __acquire(wdev_iter->mtx);
1701                 cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect);
1702                 wdev_unlock(wdev_iter);
1703 
1704                 switch (chmode) {
1705                 case CHAN_MODE_UNDEFINED:
1706                         break;
1707                 case CHAN_MODE_SHARED:
1708                         for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1709                                 if (!used_channels[i] || used_channels[i] == ch)
1710                                         break;
1711 
1712                         if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1713                                 return -EBUSY;
1714 
1715                         if (used_channels[i] == NULL) {
1716                                 used_channels[i] = ch;
1717                                 num_different_channels++;
1718                         }
1719                         break;
1720                 case CHAN_MODE_EXCLUSIVE:
1721                         num_different_channels++;
1722                         break;
1723                 }
1724 
1725                 num[wdev_iter->iftype]++;
1726                 total++;
1727         }
1728 
1729         if (total == 1 && !radar_detect)
1730                 return 0;
1731 
1732         return cfg80211_check_combinations(&rdev->wiphy, num_different_channels,
1733                                            radar_detect, num);
1734 }
1735 
1736 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1737                            const u8 *rates, unsigned int n_rates,
1738                            u32 *mask)
1739 {
1740         int i, j;
1741 
1742         if (!sband)
1743                 return -EINVAL;
1744 
1745         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1746                 return -EINVAL;
1747 
1748         *mask = 0;
1749 
1750         for (i = 0; i < n_rates; i++) {
1751                 int rate = (rates[i] & 0x7f) * 5;
1752                 bool found = false;
1753 
1754                 for (j = 0; j < sband->n_bitrates; j++) {
1755                         if (sband->bitrates[j].bitrate == rate) {
1756                                 found = true;
1757                                 *mask |= BIT(j);
1758                                 break;
1759                         }
1760                 }
1761                 if (!found)
1762                         return -EINVAL;
1763         }
1764 
1765         /*
1766          * mask must have at least one bit set here since we
1767          * didn't accept a 0-length rates array nor allowed
1768          * entries in the array that didn't exist
1769          */
1770 
1771         return 0;
1772 }
1773 
1774 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1775 {
1776         enum ieee80211_band band;
1777         unsigned int n_channels = 0;
1778 
1779         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1780                 if (wiphy->bands[band])
1781                         n_channels += wiphy->bands[band]->n_channels;
1782 
1783         return n_channels;
1784 }
1785 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1786 
1787 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1788                          struct station_info *sinfo)
1789 {
1790         struct cfg80211_registered_device *rdev;
1791         struct wireless_dev *wdev;
1792 
1793         wdev = dev->ieee80211_ptr;
1794         if (!wdev)
1795                 return -EOPNOTSUPP;
1796 
1797         rdev = wiphy_to_rdev(wdev->wiphy);
1798         if (!rdev->ops->get_station)
1799                 return -EOPNOTSUPP;
1800 
1801         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1802 }
1803 EXPORT_SYMBOL(cfg80211_get_station);
1804 
1805 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1806 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1807 const unsigned char rfc1042_header[] __aligned(2) =
1808         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1809 EXPORT_SYMBOL(rfc1042_header);
1810 
1811 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1812 const unsigned char bridge_tunnel_header[] __aligned(2) =
1813         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1814 EXPORT_SYMBOL(bridge_tunnel_header);
1815 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us