Version:  2.0.40 2.2.26 2.4.37 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17

Linux/net/socket.c

  1 /*
  2  * NET          An implementation of the SOCKET network access protocol.
  3  *
  4  * Version:     @(#)socket.c    1.1.93  18/02/95
  5  *
  6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
  7  *              Ross Biro
  8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  9  *
 10  * Fixes:
 11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
 12  *                                      shutdown()
 13  *              Alan Cox        :       verify_area() fixes
 14  *              Alan Cox        :       Removed DDI
 15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
 16  *              Alan Cox        :       Moved a load of checks to the very
 17  *                                      top level.
 18  *              Alan Cox        :       Move address structures to/from user
 19  *                                      mode above the protocol layers.
 20  *              Rob Janssen     :       Allow 0 length sends.
 21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
 22  *                                      tty drivers).
 23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
 24  *              Jeff Uphoff     :       Made max number of sockets command-line
 25  *                                      configurable.
 26  *              Matti Aarnio    :       Made the number of sockets dynamic,
 27  *                                      to be allocated when needed, and mr.
 28  *                                      Uphoff's max is used as max to be
 29  *                                      allowed to allocate.
 30  *              Linus           :       Argh. removed all the socket allocation
 31  *                                      altogether: it's in the inode now.
 32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
 33  *                                      for NetROM and future kernel nfsd type
 34  *                                      stuff.
 35  *              Alan Cox        :       sendmsg/recvmsg basics.
 36  *              Tom Dyas        :       Export net symbols.
 37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
 38  *              Alan Cox        :       Added thread locking to sys_* calls
 39  *                                      for sockets. May have errors at the
 40  *                                      moment.
 41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
 42  *              Andi Kleen      :       Some small cleanups, optimizations,
 43  *                                      and fixed a copy_from_user() bug.
 44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
 45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
 46  *                                      protocol-independent
 47  *
 48  *
 49  *              This program is free software; you can redistribute it and/or
 50  *              modify it under the terms of the GNU General Public License
 51  *              as published by the Free Software Foundation; either version
 52  *              2 of the License, or (at your option) any later version.
 53  *
 54  *
 55  *      This module is effectively the top level interface to the BSD socket
 56  *      paradigm.
 57  *
 58  *      Based upon Swansea University Computer Society NET3.039
 59  */
 60 
 61 #include <linux/mm.h>
 62 #include <linux/socket.h>
 63 #include <linux/file.h>
 64 #include <linux/net.h>
 65 #include <linux/interrupt.h>
 66 #include <linux/thread_info.h>
 67 #include <linux/rcupdate.h>
 68 #include <linux/netdevice.h>
 69 #include <linux/proc_fs.h>
 70 #include <linux/seq_file.h>
 71 #include <linux/mutex.h>
 72 #include <linux/if_bridge.h>
 73 #include <linux/if_frad.h>
 74 #include <linux/if_vlan.h>
 75 #include <linux/ptp_classify.h>
 76 #include <linux/init.h>
 77 #include <linux/poll.h>
 78 #include <linux/cache.h>
 79 #include <linux/module.h>
 80 #include <linux/highmem.h>
 81 #include <linux/mount.h>
 82 #include <linux/security.h>
 83 #include <linux/syscalls.h>
 84 #include <linux/compat.h>
 85 #include <linux/kmod.h>
 86 #include <linux/audit.h>
 87 #include <linux/wireless.h>
 88 #include <linux/nsproxy.h>
 89 #include <linux/magic.h>
 90 #include <linux/slab.h>
 91 #include <linux/xattr.h>
 92 
 93 #include <asm/uaccess.h>
 94 #include <asm/unistd.h>
 95 
 96 #include <net/compat.h>
 97 #include <net/wext.h>
 98 #include <net/cls_cgroup.h>
 99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118                          unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120                           unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125                               struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129                               unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133                              int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135                                 struct pipe_inode_info *pipe, size_t len,
136                                 unsigned int flags);
137 
138 /*
139  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140  *      in the operation structures but are done directly via the socketcall() multiplexor.
141  */
142 
143 static const struct file_operations socket_file_ops = {
144         .owner =        THIS_MODULE,
145         .llseek =       no_llseek,
146         .aio_read =     sock_aio_read,
147         .aio_write =    sock_aio_write,
148         .poll =         sock_poll,
149         .unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151         .compat_ioctl = compat_sock_ioctl,
152 #endif
153         .mmap =         sock_mmap,
154         .open =         sock_no_open,   /* special open code to disallow open via /proc */
155         .release =      sock_close,
156         .fasync =       sock_fasync,
157         .sendpage =     sock_sendpage,
158         .splice_write = generic_splice_sendpage,
159         .splice_read =  sock_splice_read,
160 };
161 
162 /*
163  *      The protocol list. Each protocol is registered in here.
164  */
165 
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 
169 /*
170  *      Statistics counters of the socket lists
171  */
172 
173 static DEFINE_PER_CPU(int, sockets_in_use);
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *      move_addr_to_kernel     -       copy a socket address into kernel space
183  *      @uaddr: Address in user space
184  *      @kaddr: Address in kernel space
185  *      @ulen: Length in user space
186  *
187  *      The address is copied into kernel space. If the provided address is
188  *      too long an error code of -EINVAL is returned. If the copy gives
189  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195                 return -EINVAL;
196         if (ulen == 0)
197                 return 0;
198         if (copy_from_user(kaddr, uaddr, ulen))
199                 return -EFAULT;
200         return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *      move_addr_to_user       -       copy an address to user space
205  *      @kaddr: kernel space address
206  *      @klen: length of address in kernel
207  *      @uaddr: user space address
208  *      @ulen: pointer to user length field
209  *
210  *      The value pointed to by ulen on entry is the buffer length available.
211  *      This is overwritten with the buffer space used. -EINVAL is returned
212  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *      is returned if either the buffer or the length field are not
214  *      accessible.
215  *      After copying the data up to the limit the user specifies, the true
216  *      length of the data is written over the length limit the user
217  *      specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221                              void __user *uaddr, int __user *ulen)
222 {
223         int err;
224         int len;
225 
226         BUG_ON(klen > sizeof(struct sockaddr_storage));
227         err = get_user(len, ulen);
228         if (err)
229                 return err;
230         if (len > klen)
231                 len = klen;
232         if (len < 0)
233                 return -EINVAL;
234         if (len) {
235                 if (audit_sockaddr(klen, kaddr))
236                         return -ENOMEM;
237                 if (copy_to_user(uaddr, kaddr, len))
238                         return -EFAULT;
239         }
240         /*
241          *      "fromlen shall refer to the value before truncation.."
242          *                      1003.1g
243          */
244         return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251         struct socket_alloc *ei;
252         struct socket_wq *wq;
253 
254         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255         if (!ei)
256                 return NULL;
257         wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258         if (!wq) {
259                 kmem_cache_free(sock_inode_cachep, ei);
260                 return NULL;
261         }
262         init_waitqueue_head(&wq->wait);
263         wq->fasync_list = NULL;
264         RCU_INIT_POINTER(ei->socket.wq, wq);
265 
266         ei->socket.state = SS_UNCONNECTED;
267         ei->socket.flags = 0;
268         ei->socket.ops = NULL;
269         ei->socket.sk = NULL;
270         ei->socket.file = NULL;
271 
272         return &ei->vfs_inode;
273 }
274 
275 static void sock_destroy_inode(struct inode *inode)
276 {
277         struct socket_alloc *ei;
278         struct socket_wq *wq;
279 
280         ei = container_of(inode, struct socket_alloc, vfs_inode);
281         wq = rcu_dereference_protected(ei->socket.wq, 1);
282         kfree_rcu(wq, rcu);
283         kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
286 static void init_once(void *foo)
287 {
288         struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290         inode_init_once(&ei->vfs_inode);
291 }
292 
293 static int init_inodecache(void)
294 {
295         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296                                               sizeof(struct socket_alloc),
297                                               0,
298                                               (SLAB_HWCACHE_ALIGN |
299                                                SLAB_RECLAIM_ACCOUNT |
300                                                SLAB_MEM_SPREAD),
301                                               init_once);
302         if (sock_inode_cachep == NULL)
303                 return -ENOMEM;
304         return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308         .alloc_inode    = sock_alloc_inode,
309         .destroy_inode  = sock_destroy_inode,
310         .statfs         = simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319                                 dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323         .d_dname  = sockfs_dname,
324 };
325 
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327                          int flags, const char *dev_name, void *data)
328 {
329         return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330                 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336         .name =         "sockfs",
337         .mount =        sockfs_mount,
338         .kill_sb =      kill_anon_super,
339 };
340 
341 /*
342  *      Obtains the first available file descriptor and sets it up for use.
343  *
344  *      These functions create file structures and maps them to fd space
345  *      of the current process. On success it returns file descriptor
346  *      and file struct implicitly stored in sock->file.
347  *      Note that another thread may close file descriptor before we return
348  *      from this function. We use the fact that now we do not refer
349  *      to socket after mapping. If one day we will need it, this
350  *      function will increment ref. count on file by 1.
351  *
352  *      In any case returned fd MAY BE not valid!
353  *      This race condition is unavoidable
354  *      with shared fd spaces, we cannot solve it inside kernel,
355  *      but we take care of internal coherence yet.
356  */
357 
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360         struct qstr name = { .name = "" };
361         struct path path;
362         struct file *file;
363 
364         if (dname) {
365                 name.name = dname;
366                 name.len = strlen(name.name);
367         } else if (sock->sk) {
368                 name.name = sock->sk->sk_prot_creator->name;
369                 name.len = strlen(name.name);
370         }
371         path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372         if (unlikely(!path.dentry))
373                 return ERR_PTR(-ENOMEM);
374         path.mnt = mntget(sock_mnt);
375 
376         d_instantiate(path.dentry, SOCK_INODE(sock));
377         SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379         file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380                   &socket_file_ops);
381         if (unlikely(IS_ERR(file))) {
382                 /* drop dentry, keep inode */
383                 ihold(path.dentry->d_inode);
384                 path_put(&path);
385                 return file;
386         }
387 
388         sock->file = file;
389         file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390         file->private_data = sock;
391         return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394 
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397         struct file *newfile;
398         int fd = get_unused_fd_flags(flags);
399         if (unlikely(fd < 0))
400                 return fd;
401 
402         newfile = sock_alloc_file(sock, flags, NULL);
403         if (likely(!IS_ERR(newfile))) {
404                 fd_install(fd, newfile);
405                 return fd;
406         }
407 
408         put_unused_fd(fd);
409         return PTR_ERR(newfile);
410 }
411 
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414         if (file->f_op == &socket_file_ops)
415                 return file->private_data;      /* set in sock_map_fd */
416 
417         *err = -ENOTSOCK;
418         return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421 
422 /**
423  *      sockfd_lookup - Go from a file number to its socket slot
424  *      @fd: file handle
425  *      @err: pointer to an error code return
426  *
427  *      The file handle passed in is locked and the socket it is bound
428  *      too is returned. If an error occurs the err pointer is overwritten
429  *      with a negative errno code and NULL is returned. The function checks
430  *      for both invalid handles and passing a handle which is not a socket.
431  *
432  *      On a success the socket object pointer is returned.
433  */
434 
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437         struct file *file;
438         struct socket *sock;
439 
440         file = fget(fd);
441         if (!file) {
442                 *err = -EBADF;
443                 return NULL;
444         }
445 
446         sock = sock_from_file(file, err);
447         if (!sock)
448                 fput(file);
449         return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452 
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455         struct fd f = fdget(fd);
456         struct socket *sock;
457 
458         *err = -EBADF;
459         if (f.file) {
460                 sock = sock_from_file(f.file, err);
461                 if (likely(sock)) {
462                         *fput_needed = f.flags;
463                         return sock;
464                 }
465                 fdput(f);
466         }
467         return NULL;
468 }
469 
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474                                const char *name, void *value, size_t size)
475 {
476         const char *proto_name;
477         size_t proto_size;
478         int error;
479 
480         error = -ENODATA;
481         if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482                 proto_name = dentry->d_name.name;
483                 proto_size = strlen(proto_name);
484 
485                 if (value) {
486                         error = -ERANGE;
487                         if (proto_size + 1 > size)
488                                 goto out;
489 
490                         strncpy(value, proto_name, proto_size + 1);
491                 }
492                 error = proto_size + 1;
493         }
494 
495 out:
496         return error;
497 }
498 
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500                                 size_t size)
501 {
502         ssize_t len;
503         ssize_t used = 0;
504 
505         len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506         if (len < 0)
507                 return len;
508         used += len;
509         if (buffer) {
510                 if (size < used)
511                         return -ERANGE;
512                 buffer += len;
513         }
514 
515         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516         used += len;
517         if (buffer) {
518                 if (size < used)
519                         return -ERANGE;
520                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521                 buffer += len;
522         }
523 
524         return used;
525 }
526 
527 static const struct inode_operations sockfs_inode_ops = {
528         .getxattr = sockfs_getxattr,
529         .listxattr = sockfs_listxattr,
530 };
531 
532 /**
533  *      sock_alloc      -       allocate a socket
534  *
535  *      Allocate a new inode and socket object. The two are bound together
536  *      and initialised. The socket is then returned. If we are out of inodes
537  *      NULL is returned.
538  */
539 
540 static struct socket *sock_alloc(void)
541 {
542         struct inode *inode;
543         struct socket *sock;
544 
545         inode = new_inode_pseudo(sock_mnt->mnt_sb);
546         if (!inode)
547                 return NULL;
548 
549         sock = SOCKET_I(inode);
550 
551         kmemcheck_annotate_bitfield(sock, type);
552         inode->i_ino = get_next_ino();
553         inode->i_mode = S_IFSOCK | S_IRWXUGO;
554         inode->i_uid = current_fsuid();
555         inode->i_gid = current_fsgid();
556         inode->i_op = &sockfs_inode_ops;
557 
558         this_cpu_add(sockets_in_use, 1);
559         return sock;
560 }
561 
562 /*
563  *      In theory you can't get an open on this inode, but /proc provides
564  *      a back door. Remember to keep it shut otherwise you'll let the
565  *      creepy crawlies in.
566  */
567 
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570         return -ENXIO;
571 }
572 
573 const struct file_operations bad_sock_fops = {
574         .owner = THIS_MODULE,
575         .open = sock_no_open,
576         .llseek = noop_llseek,
577 };
578 
579 /**
580  *      sock_release    -       close a socket
581  *      @sock: socket to close
582  *
583  *      The socket is released from the protocol stack if it has a release
584  *      callback, and the inode is then released if the socket is bound to
585  *      an inode not a file.
586  */
587 
588 void sock_release(struct socket *sock)
589 {
590         if (sock->ops) {
591                 struct module *owner = sock->ops->owner;
592 
593                 sock->ops->release(sock);
594                 sock->ops = NULL;
595                 module_put(owner);
596         }
597 
598         if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599                 pr_err("%s: fasync list not empty!\n", __func__);
600 
601         if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602                 return;
603 
604         this_cpu_sub(sockets_in_use, 1);
605         if (!sock->file) {
606                 iput(SOCK_INODE(sock));
607                 return;
608         }
609         sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612 
613 void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615         u8 flags = *tx_flags;
616 
617         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618                 flags |= SKBTX_HW_TSTAMP;
619 
620         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621                 flags |= SKBTX_SW_TSTAMP;
622 
623         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624                 flags |= SKBTX_SCHED_TSTAMP;
625 
626         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627                 flags |= SKBTX_ACK_TSTAMP;
628 
629         if (sock_flag(sk, SOCK_WIFI_STATUS))
630                 flags |= SKBTX_WIFI_STATUS;
631 
632         *tx_flags = flags;
633 }
634 EXPORT_SYMBOL(sock_tx_timestamp);
635 
636 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
637                                        struct msghdr *msg, size_t size)
638 {
639         struct sock_iocb *si = kiocb_to_siocb(iocb);
640 
641         si->sock = sock;
642         si->scm = NULL;
643         si->msg = msg;
644         si->size = size;
645 
646         return sock->ops->sendmsg(iocb, sock, msg, size);
647 }
648 
649 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
650                                  struct msghdr *msg, size_t size)
651 {
652         int err = security_socket_sendmsg(sock, msg, size);
653 
654         return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
655 }
656 
657 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
658 {
659         struct kiocb iocb;
660         struct sock_iocb siocb;
661         int ret;
662 
663         init_sync_kiocb(&iocb, NULL);
664         iocb.private = &siocb;
665         ret = __sock_sendmsg(&iocb, sock, msg, size);
666         if (-EIOCBQUEUED == ret)
667                 ret = wait_on_sync_kiocb(&iocb);
668         return ret;
669 }
670 EXPORT_SYMBOL(sock_sendmsg);
671 
672 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
673 {
674         struct kiocb iocb;
675         struct sock_iocb siocb;
676         int ret;
677 
678         init_sync_kiocb(&iocb, NULL);
679         iocb.private = &siocb;
680         ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
681         if (-EIOCBQUEUED == ret)
682                 ret = wait_on_sync_kiocb(&iocb);
683         return ret;
684 }
685 
686 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
687                    struct kvec *vec, size_t num, size_t size)
688 {
689         mm_segment_t oldfs = get_fs();
690         int result;
691 
692         set_fs(KERNEL_DS);
693         /*
694          * the following is safe, since for compiler definitions of kvec and
695          * iovec are identical, yielding the same in-core layout and alignment
696          */
697         msg->msg_iov = (struct iovec *)vec;
698         msg->msg_iovlen = num;
699         result = sock_sendmsg(sock, msg, size);
700         set_fs(oldfs);
701         return result;
702 }
703 EXPORT_SYMBOL(kernel_sendmsg);
704 
705 /*
706  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
707  */
708 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
709         struct sk_buff *skb)
710 {
711         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
712         struct scm_timestamping tss;
713         int empty = 1;
714         struct skb_shared_hwtstamps *shhwtstamps =
715                 skb_hwtstamps(skb);
716 
717         /* Race occurred between timestamp enabling and packet
718            receiving.  Fill in the current time for now. */
719         if (need_software_tstamp && skb->tstamp.tv64 == 0)
720                 __net_timestamp(skb);
721 
722         if (need_software_tstamp) {
723                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
724                         struct timeval tv;
725                         skb_get_timestamp(skb, &tv);
726                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
727                                  sizeof(tv), &tv);
728                 } else {
729                         struct timespec ts;
730                         skb_get_timestampns(skb, &ts);
731                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
732                                  sizeof(ts), &ts);
733                 }
734         }
735 
736         memset(&tss, 0, sizeof(tss));
737         if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
738             ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
739                 empty = 0;
740         if (shhwtstamps &&
741             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
742             ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
743                 empty = 0;
744         if (!empty)
745                 put_cmsg(msg, SOL_SOCKET,
746                          SCM_TIMESTAMPING, sizeof(tss), &tss);
747 }
748 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
749 
750 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
751         struct sk_buff *skb)
752 {
753         int ack;
754 
755         if (!sock_flag(sk, SOCK_WIFI_STATUS))
756                 return;
757         if (!skb->wifi_acked_valid)
758                 return;
759 
760         ack = skb->wifi_acked;
761 
762         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
763 }
764 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
765 
766 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
767                                    struct sk_buff *skb)
768 {
769         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
770                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
771                         sizeof(__u32), &skb->dropcount);
772 }
773 
774 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
775         struct sk_buff *skb)
776 {
777         sock_recv_timestamp(msg, sk, skb);
778         sock_recv_drops(msg, sk, skb);
779 }
780 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
781 
782 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
783                                        struct msghdr *msg, size_t size, int flags)
784 {
785         struct sock_iocb *si = kiocb_to_siocb(iocb);
786 
787         si->sock = sock;
788         si->scm = NULL;
789         si->msg = msg;
790         si->size = size;
791         si->flags = flags;
792 
793         return sock->ops->recvmsg(iocb, sock, msg, size, flags);
794 }
795 
796 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
797                                  struct msghdr *msg, size_t size, int flags)
798 {
799         int err = security_socket_recvmsg(sock, msg, size, flags);
800 
801         return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
802 }
803 
804 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
805                  size_t size, int flags)
806 {
807         struct kiocb iocb;
808         struct sock_iocb siocb;
809         int ret;
810 
811         init_sync_kiocb(&iocb, NULL);
812         iocb.private = &siocb;
813         ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
814         if (-EIOCBQUEUED == ret)
815                 ret = wait_on_sync_kiocb(&iocb);
816         return ret;
817 }
818 EXPORT_SYMBOL(sock_recvmsg);
819 
820 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
821                               size_t size, int flags)
822 {
823         struct kiocb iocb;
824         struct sock_iocb siocb;
825         int ret;
826 
827         init_sync_kiocb(&iocb, NULL);
828         iocb.private = &siocb;
829         ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
830         if (-EIOCBQUEUED == ret)
831                 ret = wait_on_sync_kiocb(&iocb);
832         return ret;
833 }
834 
835 /**
836  * kernel_recvmsg - Receive a message from a socket (kernel space)
837  * @sock:       The socket to receive the message from
838  * @msg:        Received message
839  * @vec:        Input s/g array for message data
840  * @num:        Size of input s/g array
841  * @size:       Number of bytes to read
842  * @flags:      Message flags (MSG_DONTWAIT, etc...)
843  *
844  * On return the msg structure contains the scatter/gather array passed in the
845  * vec argument. The array is modified so that it consists of the unfilled
846  * portion of the original array.
847  *
848  * The returned value is the total number of bytes received, or an error.
849  */
850 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
851                    struct kvec *vec, size_t num, size_t size, int flags)
852 {
853         mm_segment_t oldfs = get_fs();
854         int result;
855 
856         set_fs(KERNEL_DS);
857         /*
858          * the following is safe, since for compiler definitions of kvec and
859          * iovec are identical, yielding the same in-core layout and alignment
860          */
861         msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
862         result = sock_recvmsg(sock, msg, size, flags);
863         set_fs(oldfs);
864         return result;
865 }
866 EXPORT_SYMBOL(kernel_recvmsg);
867 
868 static ssize_t sock_sendpage(struct file *file, struct page *page,
869                              int offset, size_t size, loff_t *ppos, int more)
870 {
871         struct socket *sock;
872         int flags;
873 
874         sock = file->private_data;
875 
876         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
877         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
878         flags |= more;
879 
880         return kernel_sendpage(sock, page, offset, size, flags);
881 }
882 
883 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
884                                 struct pipe_inode_info *pipe, size_t len,
885                                 unsigned int flags)
886 {
887         struct socket *sock = file->private_data;
888 
889         if (unlikely(!sock->ops->splice_read))
890                 return -EINVAL;
891 
892         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
893 }
894 
895 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
896                                          struct sock_iocb *siocb)
897 {
898         if (!is_sync_kiocb(iocb))
899                 BUG();
900 
901         siocb->kiocb = iocb;
902         iocb->private = siocb;
903         return siocb;
904 }
905 
906 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
907                 struct file *file, const struct iovec *iov,
908                 unsigned long nr_segs)
909 {
910         struct socket *sock = file->private_data;
911         size_t size = 0;
912         int i;
913 
914         for (i = 0; i < nr_segs; i++)
915                 size += iov[i].iov_len;
916 
917         msg->msg_name = NULL;
918         msg->msg_namelen = 0;
919         msg->msg_control = NULL;
920         msg->msg_controllen = 0;
921         msg->msg_iov = (struct iovec *)iov;
922         msg->msg_iovlen = nr_segs;
923         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
924 
925         return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
926 }
927 
928 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
929                                 unsigned long nr_segs, loff_t pos)
930 {
931         struct sock_iocb siocb, *x;
932 
933         if (pos != 0)
934                 return -ESPIPE;
935 
936         if (iocb->ki_nbytes == 0)       /* Match SYS5 behaviour */
937                 return 0;
938 
939 
940         x = alloc_sock_iocb(iocb, &siocb);
941         if (!x)
942                 return -ENOMEM;
943         return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
944 }
945 
946 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
947                         struct file *file, const struct iovec *iov,
948                         unsigned long nr_segs)
949 {
950         struct socket *sock = file->private_data;
951         size_t size = 0;
952         int i;
953 
954         for (i = 0; i < nr_segs; i++)
955                 size += iov[i].iov_len;
956 
957         msg->msg_name = NULL;
958         msg->msg_namelen = 0;
959         msg->msg_control = NULL;
960         msg->msg_controllen = 0;
961         msg->msg_iov = (struct iovec *)iov;
962         msg->msg_iovlen = nr_segs;
963         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
964         if (sock->type == SOCK_SEQPACKET)
965                 msg->msg_flags |= MSG_EOR;
966 
967         return __sock_sendmsg(iocb, sock, msg, size);
968 }
969 
970 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
971                           unsigned long nr_segs, loff_t pos)
972 {
973         struct sock_iocb siocb, *x;
974 
975         if (pos != 0)
976                 return -ESPIPE;
977 
978         x = alloc_sock_iocb(iocb, &siocb);
979         if (!x)
980                 return -ENOMEM;
981 
982         return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
983 }
984 
985 /*
986  * Atomic setting of ioctl hooks to avoid race
987  * with module unload.
988  */
989 
990 static DEFINE_MUTEX(br_ioctl_mutex);
991 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
992 
993 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
994 {
995         mutex_lock(&br_ioctl_mutex);
996         br_ioctl_hook = hook;
997         mutex_unlock(&br_ioctl_mutex);
998 }
999 EXPORT_SYMBOL(brioctl_set);
1000 
1001 static DEFINE_MUTEX(vlan_ioctl_mutex);
1002 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1003 
1004 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1005 {
1006         mutex_lock(&vlan_ioctl_mutex);
1007         vlan_ioctl_hook = hook;
1008         mutex_unlock(&vlan_ioctl_mutex);
1009 }
1010 EXPORT_SYMBOL(vlan_ioctl_set);
1011 
1012 static DEFINE_MUTEX(dlci_ioctl_mutex);
1013 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1014 
1015 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1016 {
1017         mutex_lock(&dlci_ioctl_mutex);
1018         dlci_ioctl_hook = hook;
1019         mutex_unlock(&dlci_ioctl_mutex);
1020 }
1021 EXPORT_SYMBOL(dlci_ioctl_set);
1022 
1023 static long sock_do_ioctl(struct net *net, struct socket *sock,
1024                                  unsigned int cmd, unsigned long arg)
1025 {
1026         int err;
1027         void __user *argp = (void __user *)arg;
1028 
1029         err = sock->ops->ioctl(sock, cmd, arg);
1030 
1031         /*
1032          * If this ioctl is unknown try to hand it down
1033          * to the NIC driver.
1034          */
1035         if (err == -ENOIOCTLCMD)
1036                 err = dev_ioctl(net, cmd, argp);
1037 
1038         return err;
1039 }
1040 
1041 /*
1042  *      With an ioctl, arg may well be a user mode pointer, but we don't know
1043  *      what to do with it - that's up to the protocol still.
1044  */
1045 
1046 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1047 {
1048         struct socket *sock;
1049         struct sock *sk;
1050         void __user *argp = (void __user *)arg;
1051         int pid, err;
1052         struct net *net;
1053 
1054         sock = file->private_data;
1055         sk = sock->sk;
1056         net = sock_net(sk);
1057         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1058                 err = dev_ioctl(net, cmd, argp);
1059         } else
1060 #ifdef CONFIG_WEXT_CORE
1061         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1062                 err = dev_ioctl(net, cmd, argp);
1063         } else
1064 #endif
1065                 switch (cmd) {
1066                 case FIOSETOWN:
1067                 case SIOCSPGRP:
1068                         err = -EFAULT;
1069                         if (get_user(pid, (int __user *)argp))
1070                                 break;
1071                         err = f_setown(sock->file, pid, 1);
1072                         break;
1073                 case FIOGETOWN:
1074                 case SIOCGPGRP:
1075                         err = put_user(f_getown(sock->file),
1076                                        (int __user *)argp);
1077                         break;
1078                 case SIOCGIFBR:
1079                 case SIOCSIFBR:
1080                 case SIOCBRADDBR:
1081                 case SIOCBRDELBR:
1082                         err = -ENOPKG;
1083                         if (!br_ioctl_hook)
1084                                 request_module("bridge");
1085 
1086                         mutex_lock(&br_ioctl_mutex);
1087                         if (br_ioctl_hook)
1088                                 err = br_ioctl_hook(net, cmd, argp);
1089                         mutex_unlock(&br_ioctl_mutex);
1090                         break;
1091                 case SIOCGIFVLAN:
1092                 case SIOCSIFVLAN:
1093                         err = -ENOPKG;
1094                         if (!vlan_ioctl_hook)
1095                                 request_module("8021q");
1096 
1097                         mutex_lock(&vlan_ioctl_mutex);
1098                         if (vlan_ioctl_hook)
1099                                 err = vlan_ioctl_hook(net, argp);
1100                         mutex_unlock(&vlan_ioctl_mutex);
1101                         break;
1102                 case SIOCADDDLCI:
1103                 case SIOCDELDLCI:
1104                         err = -ENOPKG;
1105                         if (!dlci_ioctl_hook)
1106                                 request_module("dlci");
1107 
1108                         mutex_lock(&dlci_ioctl_mutex);
1109                         if (dlci_ioctl_hook)
1110                                 err = dlci_ioctl_hook(cmd, argp);
1111                         mutex_unlock(&dlci_ioctl_mutex);
1112                         break;
1113                 default:
1114                         err = sock_do_ioctl(net, sock, cmd, arg);
1115                         break;
1116                 }
1117         return err;
1118 }
1119 
1120 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1121 {
1122         int err;
1123         struct socket *sock = NULL;
1124 
1125         err = security_socket_create(family, type, protocol, 1);
1126         if (err)
1127                 goto out;
1128 
1129         sock = sock_alloc();
1130         if (!sock) {
1131                 err = -ENOMEM;
1132                 goto out;
1133         }
1134 
1135         sock->type = type;
1136         err = security_socket_post_create(sock, family, type, protocol, 1);
1137         if (err)
1138                 goto out_release;
1139 
1140 out:
1141         *res = sock;
1142         return err;
1143 out_release:
1144         sock_release(sock);
1145         sock = NULL;
1146         goto out;
1147 }
1148 EXPORT_SYMBOL(sock_create_lite);
1149 
1150 /* No kernel lock held - perfect */
1151 static unsigned int sock_poll(struct file *file, poll_table *wait)
1152 {
1153         unsigned int busy_flag = 0;
1154         struct socket *sock;
1155 
1156         /*
1157          *      We can't return errors to poll, so it's either yes or no.
1158          */
1159         sock = file->private_data;
1160 
1161         if (sk_can_busy_loop(sock->sk)) {
1162                 /* this socket can poll_ll so tell the system call */
1163                 busy_flag = POLL_BUSY_LOOP;
1164 
1165                 /* once, only if requested by syscall */
1166                 if (wait && (wait->_key & POLL_BUSY_LOOP))
1167                         sk_busy_loop(sock->sk, 1);
1168         }
1169 
1170         return busy_flag | sock->ops->poll(file, sock, wait);
1171 }
1172 
1173 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1174 {
1175         struct socket *sock = file->private_data;
1176 
1177         return sock->ops->mmap(file, sock, vma);
1178 }
1179 
1180 static int sock_close(struct inode *inode, struct file *filp)
1181 {
1182         sock_release(SOCKET_I(inode));
1183         return 0;
1184 }
1185 
1186 /*
1187  *      Update the socket async list
1188  *
1189  *      Fasync_list locking strategy.
1190  *
1191  *      1. fasync_list is modified only under process context socket lock
1192  *         i.e. under semaphore.
1193  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1194  *         or under socket lock
1195  */
1196 
1197 static int sock_fasync(int fd, struct file *filp, int on)
1198 {
1199         struct socket *sock = filp->private_data;
1200         struct sock *sk = sock->sk;
1201         struct socket_wq *wq;
1202 
1203         if (sk == NULL)
1204                 return -EINVAL;
1205 
1206         lock_sock(sk);
1207         wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1208         fasync_helper(fd, filp, on, &wq->fasync_list);
1209 
1210         if (!wq->fasync_list)
1211                 sock_reset_flag(sk, SOCK_FASYNC);
1212         else
1213                 sock_set_flag(sk, SOCK_FASYNC);
1214 
1215         release_sock(sk);
1216         return 0;
1217 }
1218 
1219 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1220 
1221 int sock_wake_async(struct socket *sock, int how, int band)
1222 {
1223         struct socket_wq *wq;
1224 
1225         if (!sock)
1226                 return -1;
1227         rcu_read_lock();
1228         wq = rcu_dereference(sock->wq);
1229         if (!wq || !wq->fasync_list) {
1230                 rcu_read_unlock();
1231                 return -1;
1232         }
1233         switch (how) {
1234         case SOCK_WAKE_WAITD:
1235                 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1236                         break;
1237                 goto call_kill;
1238         case SOCK_WAKE_SPACE:
1239                 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1240                         break;
1241                 /* fall through */
1242         case SOCK_WAKE_IO:
1243 call_kill:
1244                 kill_fasync(&wq->fasync_list, SIGIO, band);
1245                 break;
1246         case SOCK_WAKE_URG:
1247                 kill_fasync(&wq->fasync_list, SIGURG, band);
1248         }
1249         rcu_read_unlock();
1250         return 0;
1251 }
1252 EXPORT_SYMBOL(sock_wake_async);
1253 
1254 int __sock_create(struct net *net, int family, int type, int protocol,
1255                          struct socket **res, int kern)
1256 {
1257         int err;
1258         struct socket *sock;
1259         const struct net_proto_family *pf;
1260 
1261         /*
1262          *      Check protocol is in range
1263          */
1264         if (family < 0 || family >= NPROTO)
1265                 return -EAFNOSUPPORT;
1266         if (type < 0 || type >= SOCK_MAX)
1267                 return -EINVAL;
1268 
1269         /* Compatibility.
1270 
1271            This uglymoron is moved from INET layer to here to avoid
1272            deadlock in module load.
1273          */
1274         if (family == PF_INET && type == SOCK_PACKET) {
1275                 static int warned;
1276                 if (!warned) {
1277                         warned = 1;
1278                         pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1279                                 current->comm);
1280                 }
1281                 family = PF_PACKET;
1282         }
1283 
1284         err = security_socket_create(family, type, protocol, kern);
1285         if (err)
1286                 return err;
1287 
1288         /*
1289          *      Allocate the socket and allow the family to set things up. if
1290          *      the protocol is 0, the family is instructed to select an appropriate
1291          *      default.
1292          */
1293         sock = sock_alloc();
1294         if (!sock) {
1295                 net_warn_ratelimited("socket: no more sockets\n");
1296                 return -ENFILE; /* Not exactly a match, but its the
1297                                    closest posix thing */
1298         }
1299 
1300         sock->type = type;
1301 
1302 #ifdef CONFIG_MODULES
1303         /* Attempt to load a protocol module if the find failed.
1304          *
1305          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1306          * requested real, full-featured networking support upon configuration.
1307          * Otherwise module support will break!
1308          */
1309         if (rcu_access_pointer(net_families[family]) == NULL)
1310                 request_module("net-pf-%d", family);
1311 #endif
1312 
1313         rcu_read_lock();
1314         pf = rcu_dereference(net_families[family]);
1315         err = -EAFNOSUPPORT;
1316         if (!pf)
1317                 goto out_release;
1318 
1319         /*
1320          * We will call the ->create function, that possibly is in a loadable
1321          * module, so we have to bump that loadable module refcnt first.
1322          */
1323         if (!try_module_get(pf->owner))
1324                 goto out_release;
1325 
1326         /* Now protected by module ref count */
1327         rcu_read_unlock();
1328 
1329         err = pf->create(net, sock, protocol, kern);
1330         if (err < 0)
1331                 goto out_module_put;
1332 
1333         /*
1334          * Now to bump the refcnt of the [loadable] module that owns this
1335          * socket at sock_release time we decrement its refcnt.
1336          */
1337         if (!try_module_get(sock->ops->owner))
1338                 goto out_module_busy;
1339 
1340         /*
1341          * Now that we're done with the ->create function, the [loadable]
1342          * module can have its refcnt decremented
1343          */
1344         module_put(pf->owner);
1345         err = security_socket_post_create(sock, family, type, protocol, kern);
1346         if (err)
1347                 goto out_sock_release;
1348         *res = sock;
1349 
1350         return 0;
1351 
1352 out_module_busy:
1353         err = -EAFNOSUPPORT;
1354 out_module_put:
1355         sock->ops = NULL;
1356         module_put(pf->owner);
1357 out_sock_release:
1358         sock_release(sock);
1359         return err;
1360 
1361 out_release:
1362         rcu_read_unlock();
1363         goto out_sock_release;
1364 }
1365 EXPORT_SYMBOL(__sock_create);
1366 
1367 int sock_create(int family, int type, int protocol, struct socket **res)
1368 {
1369         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1370 }
1371 EXPORT_SYMBOL(sock_create);
1372 
1373 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1374 {
1375         return __sock_create(&init_net, family, type, protocol, res, 1);
1376 }
1377 EXPORT_SYMBOL(sock_create_kern);
1378 
1379 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1380 {
1381         int retval;
1382         struct socket *sock;
1383         int flags;
1384 
1385         /* Check the SOCK_* constants for consistency.  */
1386         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1387         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1388         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1389         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1390 
1391         flags = type & ~SOCK_TYPE_MASK;
1392         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1393                 return -EINVAL;
1394         type &= SOCK_TYPE_MASK;
1395 
1396         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1397                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1398 
1399         retval = sock_create(family, type, protocol, &sock);
1400         if (retval < 0)
1401                 goto out;
1402 
1403         retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1404         if (retval < 0)
1405                 goto out_release;
1406 
1407 out:
1408         /* It may be already another descriptor 8) Not kernel problem. */
1409         return retval;
1410 
1411 out_release:
1412         sock_release(sock);
1413         return retval;
1414 }
1415 
1416 /*
1417  *      Create a pair of connected sockets.
1418  */
1419 
1420 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1421                 int __user *, usockvec)
1422 {
1423         struct socket *sock1, *sock2;
1424         int fd1, fd2, err;
1425         struct file *newfile1, *newfile2;
1426         int flags;
1427 
1428         flags = type & ~SOCK_TYPE_MASK;
1429         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1430                 return -EINVAL;
1431         type &= SOCK_TYPE_MASK;
1432 
1433         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1434                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1435 
1436         /*
1437          * Obtain the first socket and check if the underlying protocol
1438          * supports the socketpair call.
1439          */
1440 
1441         err = sock_create(family, type, protocol, &sock1);
1442         if (err < 0)
1443                 goto out;
1444 
1445         err = sock_create(family, type, protocol, &sock2);
1446         if (err < 0)
1447                 goto out_release_1;
1448 
1449         err = sock1->ops->socketpair(sock1, sock2);
1450         if (err < 0)
1451                 goto out_release_both;
1452 
1453         fd1 = get_unused_fd_flags(flags);
1454         if (unlikely(fd1 < 0)) {
1455                 err = fd1;
1456                 goto out_release_both;
1457         }
1458 
1459         fd2 = get_unused_fd_flags(flags);
1460         if (unlikely(fd2 < 0)) {
1461                 err = fd2;
1462                 goto out_put_unused_1;
1463         }
1464 
1465         newfile1 = sock_alloc_file(sock1, flags, NULL);
1466         if (unlikely(IS_ERR(newfile1))) {
1467                 err = PTR_ERR(newfile1);
1468                 goto out_put_unused_both;
1469         }
1470 
1471         newfile2 = sock_alloc_file(sock2, flags, NULL);
1472         if (IS_ERR(newfile2)) {
1473                 err = PTR_ERR(newfile2);
1474                 goto out_fput_1;
1475         }
1476 
1477         err = put_user(fd1, &usockvec[0]);
1478         if (err)
1479                 goto out_fput_both;
1480 
1481         err = put_user(fd2, &usockvec[1]);
1482         if (err)
1483                 goto out_fput_both;
1484 
1485         audit_fd_pair(fd1, fd2);
1486 
1487         fd_install(fd1, newfile1);
1488         fd_install(fd2, newfile2);
1489         /* fd1 and fd2 may be already another descriptors.
1490          * Not kernel problem.
1491          */
1492 
1493         return 0;
1494 
1495 out_fput_both:
1496         fput(newfile2);
1497         fput(newfile1);
1498         put_unused_fd(fd2);
1499         put_unused_fd(fd1);
1500         goto out;
1501 
1502 out_fput_1:
1503         fput(newfile1);
1504         put_unused_fd(fd2);
1505         put_unused_fd(fd1);
1506         sock_release(sock2);
1507         goto out;
1508 
1509 out_put_unused_both:
1510         put_unused_fd(fd2);
1511 out_put_unused_1:
1512         put_unused_fd(fd1);
1513 out_release_both:
1514         sock_release(sock2);
1515 out_release_1:
1516         sock_release(sock1);
1517 out:
1518         return err;
1519 }
1520 
1521 /*
1522  *      Bind a name to a socket. Nothing much to do here since it's
1523  *      the protocol's responsibility to handle the local address.
1524  *
1525  *      We move the socket address to kernel space before we call
1526  *      the protocol layer (having also checked the address is ok).
1527  */
1528 
1529 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1530 {
1531         struct socket *sock;
1532         struct sockaddr_storage address;
1533         int err, fput_needed;
1534 
1535         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1536         if (sock) {
1537                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1538                 if (err >= 0) {
1539                         err = security_socket_bind(sock,
1540                                                    (struct sockaddr *)&address,
1541                                                    addrlen);
1542                         if (!err)
1543                                 err = sock->ops->bind(sock,
1544                                                       (struct sockaddr *)
1545                                                       &address, addrlen);
1546                 }
1547                 fput_light(sock->file, fput_needed);
1548         }
1549         return err;
1550 }
1551 
1552 /*
1553  *      Perform a listen. Basically, we allow the protocol to do anything
1554  *      necessary for a listen, and if that works, we mark the socket as
1555  *      ready for listening.
1556  */
1557 
1558 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1559 {
1560         struct socket *sock;
1561         int err, fput_needed;
1562         int somaxconn;
1563 
1564         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565         if (sock) {
1566                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1567                 if ((unsigned int)backlog > somaxconn)
1568                         backlog = somaxconn;
1569 
1570                 err = security_socket_listen(sock, backlog);
1571                 if (!err)
1572                         err = sock->ops->listen(sock, backlog);
1573 
1574                 fput_light(sock->file, fput_needed);
1575         }
1576         return err;
1577 }
1578 
1579 /*
1580  *      For accept, we attempt to create a new socket, set up the link
1581  *      with the client, wake up the client, then return the new
1582  *      connected fd. We collect the address of the connector in kernel
1583  *      space and move it to user at the very end. This is unclean because
1584  *      we open the socket then return an error.
1585  *
1586  *      1003.1g adds the ability to recvmsg() to query connection pending
1587  *      status to recvmsg. We need to add that support in a way thats
1588  *      clean when we restucture accept also.
1589  */
1590 
1591 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1592                 int __user *, upeer_addrlen, int, flags)
1593 {
1594         struct socket *sock, *newsock;
1595         struct file *newfile;
1596         int err, len, newfd, fput_needed;
1597         struct sockaddr_storage address;
1598 
1599         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600                 return -EINVAL;
1601 
1602         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1603                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1604 
1605         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606         if (!sock)
1607                 goto out;
1608 
1609         err = -ENFILE;
1610         newsock = sock_alloc();
1611         if (!newsock)
1612                 goto out_put;
1613 
1614         newsock->type = sock->type;
1615         newsock->ops = sock->ops;
1616 
1617         /*
1618          * We don't need try_module_get here, as the listening socket (sock)
1619          * has the protocol module (sock->ops->owner) held.
1620          */
1621         __module_get(newsock->ops->owner);
1622 
1623         newfd = get_unused_fd_flags(flags);
1624         if (unlikely(newfd < 0)) {
1625                 err = newfd;
1626                 sock_release(newsock);
1627                 goto out_put;
1628         }
1629         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1630         if (unlikely(IS_ERR(newfile))) {
1631                 err = PTR_ERR(newfile);
1632                 put_unused_fd(newfd);
1633                 sock_release(newsock);
1634                 goto out_put;
1635         }
1636 
1637         err = security_socket_accept(sock, newsock);
1638         if (err)
1639                 goto out_fd;
1640 
1641         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1642         if (err < 0)
1643                 goto out_fd;
1644 
1645         if (upeer_sockaddr) {
1646                 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1647                                           &len, 2) < 0) {
1648                         err = -ECONNABORTED;
1649                         goto out_fd;
1650                 }
1651                 err = move_addr_to_user(&address,
1652                                         len, upeer_sockaddr, upeer_addrlen);
1653                 if (err < 0)
1654                         goto out_fd;
1655         }
1656 
1657         /* File flags are not inherited via accept() unlike another OSes. */
1658 
1659         fd_install(newfd, newfile);
1660         err = newfd;
1661 
1662 out_put:
1663         fput_light(sock->file, fput_needed);
1664 out:
1665         return err;
1666 out_fd:
1667         fput(newfile);
1668         put_unused_fd(newfd);
1669         goto out_put;
1670 }
1671 
1672 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1673                 int __user *, upeer_addrlen)
1674 {
1675         return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1676 }
1677 
1678 /*
1679  *      Attempt to connect to a socket with the server address.  The address
1680  *      is in user space so we verify it is OK and move it to kernel space.
1681  *
1682  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1683  *      break bindings
1684  *
1685  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1686  *      other SEQPACKET protocols that take time to connect() as it doesn't
1687  *      include the -EINPROGRESS status for such sockets.
1688  */
1689 
1690 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1691                 int, addrlen)
1692 {
1693         struct socket *sock;
1694         struct sockaddr_storage address;
1695         int err, fput_needed;
1696 
1697         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1698         if (!sock)
1699                 goto out;
1700         err = move_addr_to_kernel(uservaddr, addrlen, &address);
1701         if (err < 0)
1702                 goto out_put;
1703 
1704         err =
1705             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1706         if (err)
1707                 goto out_put;
1708 
1709         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1710                                  sock->file->f_flags);
1711 out_put:
1712         fput_light(sock->file, fput_needed);
1713 out:
1714         return err;
1715 }
1716 
1717 /*
1718  *      Get the local address ('name') of a socket object. Move the obtained
1719  *      name to user space.
1720  */
1721 
1722 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1723                 int __user *, usockaddr_len)
1724 {
1725         struct socket *sock;
1726         struct sockaddr_storage address;
1727         int len, err, fput_needed;
1728 
1729         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1730         if (!sock)
1731                 goto out;
1732 
1733         err = security_socket_getsockname(sock);
1734         if (err)
1735                 goto out_put;
1736 
1737         err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1738         if (err)
1739                 goto out_put;
1740         err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1741 
1742 out_put:
1743         fput_light(sock->file, fput_needed);
1744 out:
1745         return err;
1746 }
1747 
1748 /*
1749  *      Get the remote address ('name') of a socket object. Move the obtained
1750  *      name to user space.
1751  */
1752 
1753 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1754                 int __user *, usockaddr_len)
1755 {
1756         struct socket *sock;
1757         struct sockaddr_storage address;
1758         int len, err, fput_needed;
1759 
1760         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1761         if (sock != NULL) {
1762                 err = security_socket_getpeername(sock);
1763                 if (err) {
1764                         fput_light(sock->file, fput_needed);
1765                         return err;
1766                 }
1767 
1768                 err =
1769                     sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1770                                        1);
1771                 if (!err)
1772                         err = move_addr_to_user(&address, len, usockaddr,
1773                                                 usockaddr_len);
1774                 fput_light(sock->file, fput_needed);
1775         }
1776         return err;
1777 }
1778 
1779 /*
1780  *      Send a datagram to a given address. We move the address into kernel
1781  *      space and check the user space data area is readable before invoking
1782  *      the protocol.
1783  */
1784 
1785 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1786                 unsigned int, flags, struct sockaddr __user *, addr,
1787                 int, addr_len)
1788 {
1789         struct socket *sock;
1790         struct sockaddr_storage address;
1791         int err;
1792         struct msghdr msg;
1793         struct iovec iov;
1794         int fput_needed;
1795 
1796         if (len > INT_MAX)
1797                 len = INT_MAX;
1798         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1799         if (!sock)
1800                 goto out;
1801 
1802         iov.iov_base = buff;
1803         iov.iov_len = len;
1804         msg.msg_name = NULL;
1805         msg.msg_iov = &iov;
1806         msg.msg_iovlen = 1;
1807         msg.msg_control = NULL;
1808         msg.msg_controllen = 0;
1809         msg.msg_namelen = 0;
1810         if (addr) {
1811                 err = move_addr_to_kernel(addr, addr_len, &address);
1812                 if (err < 0)
1813                         goto out_put;
1814                 msg.msg_name = (struct sockaddr *)&address;
1815                 msg.msg_namelen = addr_len;
1816         }
1817         if (sock->file->f_flags & O_NONBLOCK)
1818                 flags |= MSG_DONTWAIT;
1819         msg.msg_flags = flags;
1820         err = sock_sendmsg(sock, &msg, len);
1821 
1822 out_put:
1823         fput_light(sock->file, fput_needed);
1824 out:
1825         return err;
1826 }
1827 
1828 /*
1829  *      Send a datagram down a socket.
1830  */
1831 
1832 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1833                 unsigned int, flags)
1834 {
1835         return sys_sendto(fd, buff, len, flags, NULL, 0);
1836 }
1837 
1838 /*
1839  *      Receive a frame from the socket and optionally record the address of the
1840  *      sender. We verify the buffers are writable and if needed move the
1841  *      sender address from kernel to user space.
1842  */
1843 
1844 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1845                 unsigned int, flags, struct sockaddr __user *, addr,
1846                 int __user *, addr_len)
1847 {
1848         struct socket *sock;
1849         struct iovec iov;
1850         struct msghdr msg;
1851         struct sockaddr_storage address;
1852         int err, err2;
1853         int fput_needed;
1854 
1855         if (size > INT_MAX)
1856                 size = INT_MAX;
1857         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1858         if (!sock)
1859                 goto out;
1860 
1861         msg.msg_control = NULL;
1862         msg.msg_controllen = 0;
1863         msg.msg_iovlen = 1;
1864         msg.msg_iov = &iov;
1865         iov.iov_len = size;
1866         iov.iov_base = ubuf;
1867         /* Save some cycles and don't copy the address if not needed */
1868         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1869         /* We assume all kernel code knows the size of sockaddr_storage */
1870         msg.msg_namelen = 0;
1871         if (sock->file->f_flags & O_NONBLOCK)
1872                 flags |= MSG_DONTWAIT;
1873         err = sock_recvmsg(sock, &msg, size, flags);
1874 
1875         if (err >= 0 && addr != NULL) {
1876                 err2 = move_addr_to_user(&address,
1877                                          msg.msg_namelen, addr, addr_len);
1878                 if (err2 < 0)
1879                         err = err2;
1880         }
1881 
1882         fput_light(sock->file, fput_needed);
1883 out:
1884         return err;
1885 }
1886 
1887 /*
1888  *      Receive a datagram from a socket.
1889  */
1890 
1891 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1892                 unsigned int, flags)
1893 {
1894         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1895 }
1896 
1897 /*
1898  *      Set a socket option. Because we don't know the option lengths we have
1899  *      to pass the user mode parameter for the protocols to sort out.
1900  */
1901 
1902 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1903                 char __user *, optval, int, optlen)
1904 {
1905         int err, fput_needed;
1906         struct socket *sock;
1907 
1908         if (optlen < 0)
1909                 return -EINVAL;
1910 
1911         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1912         if (sock != NULL) {
1913                 err = security_socket_setsockopt(sock, level, optname);
1914                 if (err)
1915                         goto out_put;
1916 
1917                 if (level == SOL_SOCKET)
1918                         err =
1919                             sock_setsockopt(sock, level, optname, optval,
1920                                             optlen);
1921                 else
1922                         err =
1923                             sock->ops->setsockopt(sock, level, optname, optval,
1924                                                   optlen);
1925 out_put:
1926                 fput_light(sock->file, fput_needed);
1927         }
1928         return err;
1929 }
1930 
1931 /*
1932  *      Get a socket option. Because we don't know the option lengths we have
1933  *      to pass a user mode parameter for the protocols to sort out.
1934  */
1935 
1936 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1937                 char __user *, optval, int __user *, optlen)
1938 {
1939         int err, fput_needed;
1940         struct socket *sock;
1941 
1942         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1943         if (sock != NULL) {
1944                 err = security_socket_getsockopt(sock, level, optname);
1945                 if (err)
1946                         goto out_put;
1947 
1948                 if (level == SOL_SOCKET)
1949                         err =
1950                             sock_getsockopt(sock, level, optname, optval,
1951                                             optlen);
1952                 else
1953                         err =
1954                             sock->ops->getsockopt(sock, level, optname, optval,
1955                                                   optlen);
1956 out_put:
1957                 fput_light(sock->file, fput_needed);
1958         }
1959         return err;
1960 }
1961 
1962 /*
1963  *      Shutdown a socket.
1964  */
1965 
1966 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1967 {
1968         int err, fput_needed;
1969         struct socket *sock;
1970 
1971         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1972         if (sock != NULL) {
1973                 err = security_socket_shutdown(sock, how);
1974                 if (!err)
1975                         err = sock->ops->shutdown(sock, how);
1976                 fput_light(sock->file, fput_needed);
1977         }
1978         return err;
1979 }
1980 
1981 /* A couple of helpful macros for getting the address of the 32/64 bit
1982  * fields which are the same type (int / unsigned) on our platforms.
1983  */
1984 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1985 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1986 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1987 
1988 struct used_address {
1989         struct sockaddr_storage name;
1990         unsigned int name_len;
1991 };
1992 
1993 static int copy_msghdr_from_user(struct msghdr *kmsg,
1994                                  struct msghdr __user *umsg)
1995 {
1996         if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1997                 return -EFAULT;
1998 
1999         if (kmsg->msg_name == NULL)
2000                 kmsg->msg_namelen = 0;
2001 
2002         if (kmsg->msg_namelen < 0)
2003                 return -EINVAL;
2004 
2005         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2006                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2007         return 0;
2008 }
2009 
2010 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2011                          struct msghdr *msg_sys, unsigned int flags,
2012                          struct used_address *used_address)
2013 {
2014         struct compat_msghdr __user *msg_compat =
2015             (struct compat_msghdr __user *)msg;
2016         struct sockaddr_storage address;
2017         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2018         unsigned char ctl[sizeof(struct cmsghdr) + 20]
2019             __attribute__ ((aligned(sizeof(__kernel_size_t))));
2020         /* 20 is size of ipv6_pktinfo */
2021         unsigned char *ctl_buf = ctl;
2022         int err, ctl_len, total_len;
2023 
2024         err = -EFAULT;
2025         if (MSG_CMSG_COMPAT & flags) {
2026                 if (get_compat_msghdr(msg_sys, msg_compat))
2027                         return -EFAULT;
2028         } else {
2029                 err = copy_msghdr_from_user(msg_sys, msg);
2030                 if (err)
2031                         return err;
2032         }
2033 
2034         if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2035                 err = -EMSGSIZE;
2036                 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2037                         goto out;
2038                 err = -ENOMEM;
2039                 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2040                               GFP_KERNEL);
2041                 if (!iov)
2042                         goto out;
2043         }
2044 
2045         /* This will also move the address data into kernel space */
2046         if (MSG_CMSG_COMPAT & flags) {
2047                 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2048         } else
2049                 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2050         if (err < 0)
2051                 goto out_freeiov;
2052         total_len = err;
2053 
2054         err = -ENOBUFS;
2055 
2056         if (msg_sys->msg_controllen > INT_MAX)
2057                 goto out_freeiov;
2058         ctl_len = msg_sys->msg_controllen;
2059         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2060                 err =
2061                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2062                                                      sizeof(ctl));
2063                 if (err)
2064                         goto out_freeiov;
2065                 ctl_buf = msg_sys->msg_control;
2066                 ctl_len = msg_sys->msg_controllen;
2067         } else if (ctl_len) {
2068                 if (ctl_len > sizeof(ctl)) {
2069                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2070                         if (ctl_buf == NULL)
2071                                 goto out_freeiov;
2072                 }
2073                 err = -EFAULT;
2074                 /*
2075                  * Careful! Before this, msg_sys->msg_control contains a user pointer.
2076                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2077                  * checking falls down on this.
2078                  */
2079                 if (copy_from_user(ctl_buf,
2080                                    (void __user __force *)msg_sys->msg_control,
2081                                    ctl_len))
2082                         goto out_freectl;
2083                 msg_sys->msg_control = ctl_buf;
2084         }
2085         msg_sys->msg_flags = flags;
2086 
2087         if (sock->file->f_flags & O_NONBLOCK)
2088                 msg_sys->msg_flags |= MSG_DONTWAIT;
2089         /*
2090          * If this is sendmmsg() and current destination address is same as
2091          * previously succeeded address, omit asking LSM's decision.
2092          * used_address->name_len is initialized to UINT_MAX so that the first
2093          * destination address never matches.
2094          */
2095         if (used_address && msg_sys->msg_name &&
2096             used_address->name_len == msg_sys->msg_namelen &&
2097             !memcmp(&used_address->name, msg_sys->msg_name,
2098                     used_address->name_len)) {
2099                 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2100                 goto out_freectl;
2101         }
2102         err = sock_sendmsg(sock, msg_sys, total_len);
2103         /*
2104          * If this is sendmmsg() and sending to current destination address was
2105          * successful, remember it.
2106          */
2107         if (used_address && err >= 0) {
2108                 used_address->name_len = msg_sys->msg_namelen;
2109                 if (msg_sys->msg_name)
2110                         memcpy(&used_address->name, msg_sys->msg_name,
2111                                used_address->name_len);
2112         }
2113 
2114 out_freectl:
2115         if (ctl_buf != ctl)
2116                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2117 out_freeiov:
2118         if (iov != iovstack)
2119                 kfree(iov);
2120 out:
2121         return err;
2122 }
2123 
2124 /*
2125  *      BSD sendmsg interface
2126  */
2127 
2128 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2129 {
2130         int fput_needed, err;
2131         struct msghdr msg_sys;
2132         struct socket *sock;
2133 
2134         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2135         if (!sock)
2136                 goto out;
2137 
2138         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2139 
2140         fput_light(sock->file, fput_needed);
2141 out:
2142         return err;
2143 }
2144 
2145 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2146 {
2147         if (flags & MSG_CMSG_COMPAT)
2148                 return -EINVAL;
2149         return __sys_sendmsg(fd, msg, flags);
2150 }
2151 
2152 /*
2153  *      Linux sendmmsg interface
2154  */
2155 
2156 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2157                    unsigned int flags)
2158 {
2159         int fput_needed, err, datagrams;
2160         struct socket *sock;
2161         struct mmsghdr __user *entry;
2162         struct compat_mmsghdr __user *compat_entry;
2163         struct msghdr msg_sys;
2164         struct used_address used_address;
2165 
2166         if (vlen > UIO_MAXIOV)
2167                 vlen = UIO_MAXIOV;
2168 
2169         datagrams = 0;
2170 
2171         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2172         if (!sock)
2173                 return err;
2174 
2175         used_address.name_len = UINT_MAX;
2176         entry = mmsg;
2177         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2178         err = 0;
2179 
2180         while (datagrams < vlen) {
2181                 if (MSG_CMSG_COMPAT & flags) {
2182                         err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2183                                              &msg_sys, flags, &used_address);
2184                         if (err < 0)
2185                                 break;
2186                         err = __put_user(err, &compat_entry->msg_len);
2187                         ++compat_entry;
2188                 } else {
2189                         err = ___sys_sendmsg(sock,
2190                                              (struct msghdr __user *)entry,
2191                                              &msg_sys, flags, &used_address);
2192                         if (err < 0)
2193                                 break;
2194                         err = put_user(err, &entry->msg_len);
2195                         ++entry;
2196                 }
2197 
2198                 if (err)
2199                         break;
2200                 ++datagrams;
2201         }
2202 
2203         fput_light(sock->file, fput_needed);
2204 
2205         /* We only return an error if no datagrams were able to be sent */
2206         if (datagrams != 0)
2207                 return datagrams;
2208 
2209         return err;
2210 }
2211 
2212 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2213                 unsigned int, vlen, unsigned int, flags)
2214 {
2215         if (flags & MSG_CMSG_COMPAT)
2216                 return -EINVAL;
2217         return __sys_sendmmsg(fd, mmsg, vlen, flags);
2218 }
2219 
2220 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2221                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2222 {
2223         struct compat_msghdr __user *msg_compat =
2224             (struct compat_msghdr __user *)msg;
2225         struct iovec iovstack[UIO_FASTIOV];
2226         struct iovec *iov = iovstack;
2227         unsigned long cmsg_ptr;
2228         int err, total_len, len;
2229 
2230         /* kernel mode address */
2231         struct sockaddr_storage addr;
2232 
2233         /* user mode address pointers */
2234         struct sockaddr __user *uaddr;
2235         int __user *uaddr_len;
2236 
2237         if (MSG_CMSG_COMPAT & flags) {
2238                 if (get_compat_msghdr(msg_sys, msg_compat))
2239                         return -EFAULT;
2240         } else {
2241                 err = copy_msghdr_from_user(msg_sys, msg);
2242                 if (err)
2243                         return err;
2244         }
2245 
2246         if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2247                 err = -EMSGSIZE;
2248                 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2249                         goto out;
2250                 err = -ENOMEM;
2251                 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2252                               GFP_KERNEL);
2253                 if (!iov)
2254                         goto out;
2255         }
2256 
2257         /* Save the user-mode address (verify_iovec will change the
2258          * kernel msghdr to use the kernel address space)
2259          */
2260         uaddr = (__force void __user *)msg_sys->msg_name;
2261         uaddr_len = COMPAT_NAMELEN(msg);
2262         if (MSG_CMSG_COMPAT & flags)
2263                 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264         else
2265                 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2266         if (err < 0)
2267                 goto out_freeiov;
2268         total_len = err;
2269 
2270         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2271         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2272 
2273         /* We assume all kernel code knows the size of sockaddr_storage */
2274         msg_sys->msg_namelen = 0;
2275 
2276         if (sock->file->f_flags & O_NONBLOCK)
2277                 flags |= MSG_DONTWAIT;
2278         err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2279                                                           total_len, flags);
2280         if (err < 0)
2281                 goto out_freeiov;
2282         len = err;
2283 
2284         if (uaddr != NULL) {
2285                 err = move_addr_to_user(&addr,
2286                                         msg_sys->msg_namelen, uaddr,
2287                                         uaddr_len);
2288                 if (err < 0)
2289                         goto out_freeiov;
2290         }
2291         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2292                          COMPAT_FLAGS(msg));
2293         if (err)
2294                 goto out_freeiov;
2295         if (MSG_CMSG_COMPAT & flags)
2296                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2297                                  &msg_compat->msg_controllen);
2298         else
2299                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2300                                  &msg->msg_controllen);
2301         if (err)
2302                 goto out_freeiov;
2303         err = len;
2304 
2305 out_freeiov:
2306         if (iov != iovstack)
2307                 kfree(iov);
2308 out:
2309         return err;
2310 }
2311 
2312 /*
2313  *      BSD recvmsg interface
2314  */
2315 
2316 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2317 {
2318         int fput_needed, err;
2319         struct msghdr msg_sys;
2320         struct socket *sock;
2321 
2322         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2323         if (!sock)
2324                 goto out;
2325 
2326         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2327 
2328         fput_light(sock->file, fput_needed);
2329 out:
2330         return err;
2331 }
2332 
2333 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2334                 unsigned int, flags)
2335 {
2336         if (flags & MSG_CMSG_COMPAT)
2337                 return -EINVAL;
2338         return __sys_recvmsg(fd, msg, flags);
2339 }
2340 
2341 /*
2342  *     Linux recvmmsg interface
2343  */
2344 
2345 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2346                    unsigned int flags, struct timespec *timeout)
2347 {
2348         int fput_needed, err, datagrams;
2349         struct socket *sock;
2350         struct mmsghdr __user *entry;
2351         struct compat_mmsghdr __user *compat_entry;
2352         struct msghdr msg_sys;
2353         struct timespec end_time;
2354 
2355         if (timeout &&
2356             poll_select_set_timeout(&end_time, timeout->tv_sec,
2357                                     timeout->tv_nsec))
2358                 return -EINVAL;
2359 
2360         datagrams = 0;
2361 
2362         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2363         if (!sock)
2364                 return err;
2365 
2366         err = sock_error(sock->sk);
2367         if (err)
2368                 goto out_put;
2369 
2370         entry = mmsg;
2371         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2372 
2373         while (datagrams < vlen) {
2374                 /*
2375                  * No need to ask LSM for more than the first datagram.
2376                  */
2377                 if (MSG_CMSG_COMPAT & flags) {
2378                         err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2379                                              &msg_sys, flags & ~MSG_WAITFORONE,
2380                                              datagrams);
2381                         if (err < 0)
2382                                 break;
2383                         err = __put_user(err, &compat_entry->msg_len);
2384                         ++compat_entry;
2385                 } else {
2386                         err = ___sys_recvmsg(sock,
2387                                              (struct msghdr __user *)entry,
2388                                              &msg_sys, flags & ~MSG_WAITFORONE,
2389                                              datagrams);
2390                         if (err < 0)
2391                                 break;
2392                         err = put_user(err, &entry->msg_len);
2393                         ++entry;
2394                 }
2395 
2396                 if (err)
2397                         break;
2398                 ++datagrams;
2399 
2400                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2401                 if (flags & MSG_WAITFORONE)
2402                         flags |= MSG_DONTWAIT;
2403 
2404                 if (timeout) {
2405                         ktime_get_ts(timeout);
2406                         *timeout = timespec_sub(end_time, *timeout);
2407                         if (timeout->tv_sec < 0) {
2408                                 timeout->tv_sec = timeout->tv_nsec = 0;
2409                                 break;
2410                         }
2411 
2412                         /* Timeout, return less than vlen datagrams */
2413                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2414                                 break;
2415                 }
2416 
2417                 /* Out of band data, return right away */
2418                 if (msg_sys.msg_flags & MSG_OOB)
2419                         break;
2420         }
2421 
2422 out_put:
2423         fput_light(sock->file, fput_needed);
2424 
2425         if (err == 0)
2426                 return datagrams;
2427 
2428         if (datagrams != 0) {
2429                 /*
2430                  * We may return less entries than requested (vlen) if the
2431                  * sock is non block and there aren't enough datagrams...
2432                  */
2433                 if (err != -EAGAIN) {
2434                         /*
2435                          * ... or  if recvmsg returns an error after we
2436                          * received some datagrams, where we record the
2437                          * error to return on the next call or if the
2438                          * app asks about it using getsockopt(SO_ERROR).
2439                          */
2440                         sock->sk->sk_err = -err;
2441                 }
2442 
2443                 return datagrams;
2444         }
2445 
2446         return err;
2447 }
2448 
2449 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2450                 unsigned int, vlen, unsigned int, flags,
2451                 struct timespec __user *, timeout)
2452 {
2453         int datagrams;
2454         struct timespec timeout_sys;
2455 
2456         if (flags & MSG_CMSG_COMPAT)
2457                 return -EINVAL;
2458 
2459         if (!timeout)
2460                 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2461 
2462         if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2463                 return -EFAULT;
2464 
2465         datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2466 
2467         if (datagrams > 0 &&
2468             copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2469                 datagrams = -EFAULT;
2470 
2471         return datagrams;
2472 }
2473 
2474 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2475 /* Argument list sizes for sys_socketcall */
2476 #define AL(x) ((x) * sizeof(unsigned long))
2477 static const unsigned char nargs[21] = {
2478         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2479         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2480         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2481         AL(4), AL(5), AL(4)
2482 };
2483 
2484 #undef AL
2485 
2486 /*
2487  *      System call vectors.
2488  *
2489  *      Argument checking cleaned up. Saved 20% in size.
2490  *  This function doesn't need to set the kernel lock because
2491  *  it is set by the callees.
2492  */
2493 
2494 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2495 {
2496         unsigned long a[AUDITSC_ARGS];
2497         unsigned long a0, a1;
2498         int err;
2499         unsigned int len;
2500 
2501         if (call < 1 || call > SYS_SENDMMSG)
2502                 return -EINVAL;
2503 
2504         len = nargs[call];
2505         if (len > sizeof(a))
2506                 return -EINVAL;
2507 
2508         /* copy_from_user should be SMP safe. */
2509         if (copy_from_user(a, args, len))
2510                 return -EFAULT;
2511 
2512         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2513         if (err)
2514                 return err;
2515 
2516         a0 = a[0];
2517         a1 = a[1];
2518 
2519         switch (call) {
2520         case SYS_SOCKET:
2521                 err = sys_socket(a0, a1, a[2]);
2522                 break;
2523         case SYS_BIND:
2524                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2525                 break;
2526         case SYS_CONNECT:
2527                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2528                 break;
2529         case SYS_LISTEN:
2530                 err = sys_listen(a0, a1);
2531                 break;
2532         case SYS_ACCEPT:
2533                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2534                                   (int __user *)a[2], 0);
2535                 break;
2536         case SYS_GETSOCKNAME:
2537                 err =
2538                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2539                                     (int __user *)a[2]);
2540                 break;
2541         case SYS_GETPEERNAME:
2542                 err =
2543                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2544                                     (int __user *)a[2]);
2545                 break;
2546         case SYS_SOCKETPAIR:
2547                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2548                 break;
2549         case SYS_SEND:
2550                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2551                 break;
2552         case SYS_SENDTO:
2553                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2554                                  (struct sockaddr __user *)a[4], a[5]);
2555                 break;
2556         case SYS_RECV:
2557                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2558                 break;
2559         case SYS_RECVFROM:
2560                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2561                                    (struct sockaddr __user *)a[4],
2562                                    (int __user *)a[5]);
2563                 break;
2564         case SYS_SHUTDOWN:
2565                 err = sys_shutdown(a0, a1);
2566                 break;
2567         case SYS_SETSOCKOPT:
2568                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2569                 break;
2570         case SYS_GETSOCKOPT:
2571                 err =
2572                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2573                                    (int __user *)a[4]);
2574                 break;
2575         case SYS_SENDMSG:
2576                 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2577                 break;
2578         case SYS_SENDMMSG:
2579                 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2580                 break;
2581         case SYS_RECVMSG:
2582                 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2583                 break;
2584         case SYS_RECVMMSG:
2585                 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2586                                    (struct timespec __user *)a[4]);
2587                 break;
2588         case SYS_ACCEPT4:
2589                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2590                                   (int __user *)a[2], a[3]);
2591                 break;
2592         default:
2593                 err = -EINVAL;
2594                 break;
2595         }
2596         return err;
2597 }
2598 
2599 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2600 
2601 /**
2602  *      sock_register - add a socket protocol handler
2603  *      @ops: description of protocol
2604  *
2605  *      This function is called by a protocol handler that wants to
2606  *      advertise its address family, and have it linked into the
2607  *      socket interface. The value ops->family corresponds to the
2608  *      socket system call protocol family.
2609  */
2610 int sock_register(const struct net_proto_family *ops)
2611 {
2612         int err;
2613 
2614         if (ops->family >= NPROTO) {
2615                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2616                 return -ENOBUFS;
2617         }
2618 
2619         spin_lock(&net_family_lock);
2620         if (rcu_dereference_protected(net_families[ops->family],
2621                                       lockdep_is_held(&net_family_lock)))
2622                 err = -EEXIST;
2623         else {
2624                 rcu_assign_pointer(net_families[ops->family], ops);
2625                 err = 0;
2626         }
2627         spin_unlock(&net_family_lock);
2628 
2629         pr_info("NET: Registered protocol family %d\n", ops->family);
2630         return err;
2631 }
2632 EXPORT_SYMBOL(sock_register);
2633 
2634 /**
2635  *      sock_unregister - remove a protocol handler
2636  *      @family: protocol family to remove
2637  *
2638  *      This function is called by a protocol handler that wants to
2639  *      remove its address family, and have it unlinked from the
2640  *      new socket creation.
2641  *
2642  *      If protocol handler is a module, then it can use module reference
2643  *      counts to protect against new references. If protocol handler is not
2644  *      a module then it needs to provide its own protection in
2645  *      the ops->create routine.
2646  */
2647 void sock_unregister(int family)
2648 {
2649         BUG_ON(family < 0 || family >= NPROTO);
2650 
2651         spin_lock(&net_family_lock);
2652         RCU_INIT_POINTER(net_families[family], NULL);
2653         spin_unlock(&net_family_lock);
2654 
2655         synchronize_rcu();
2656 
2657         pr_info("NET: Unregistered protocol family %d\n", family);
2658 }
2659 EXPORT_SYMBOL(sock_unregister);
2660 
2661 static int __init sock_init(void)
2662 {
2663         int err;
2664         /*
2665          *      Initialize the network sysctl infrastructure.
2666          */
2667         err = net_sysctl_init();
2668         if (err)
2669                 goto out;
2670 
2671         /*
2672          *      Initialize skbuff SLAB cache
2673          */
2674         skb_init();
2675 
2676         /*
2677          *      Initialize the protocols module.
2678          */
2679 
2680         init_inodecache();
2681 
2682         err = register_filesystem(&sock_fs_type);
2683         if (err)
2684                 goto out_fs;
2685         sock_mnt = kern_mount(&sock_fs_type);
2686         if (IS_ERR(sock_mnt)) {
2687                 err = PTR_ERR(sock_mnt);
2688                 goto out_mount;
2689         }
2690 
2691         /* The real protocol initialization is performed in later initcalls.
2692          */
2693 
2694 #ifdef CONFIG_NETFILTER
2695         err = netfilter_init();
2696         if (err)
2697                 goto out;
2698 #endif
2699 
2700         ptp_classifier_init();
2701 
2702 out:
2703         return err;
2704 
2705 out_mount:
2706         unregister_filesystem(&sock_fs_type);
2707 out_fs:
2708         goto out;
2709 }
2710 
2711 core_initcall(sock_init);       /* early initcall */
2712 
2713 #ifdef CONFIG_PROC_FS
2714 void socket_seq_show(struct seq_file *seq)
2715 {
2716         int cpu;
2717         int counter = 0;
2718 
2719         for_each_possible_cpu(cpu)
2720             counter += per_cpu(sockets_in_use, cpu);
2721 
2722         /* It can be negative, by the way. 8) */
2723         if (counter < 0)
2724                 counter = 0;
2725 
2726         seq_printf(seq, "sockets: used %d\n", counter);
2727 }
2728 #endif                          /* CONFIG_PROC_FS */
2729 
2730 #ifdef CONFIG_COMPAT
2731 static int do_siocgstamp(struct net *net, struct socket *sock,
2732                          unsigned int cmd, void __user *up)
2733 {
2734         mm_segment_t old_fs = get_fs();
2735         struct timeval ktv;
2736         int err;
2737 
2738         set_fs(KERNEL_DS);
2739         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2740         set_fs(old_fs);
2741         if (!err)
2742                 err = compat_put_timeval(&ktv, up);
2743 
2744         return err;
2745 }
2746 
2747 static int do_siocgstampns(struct net *net, struct socket *sock,
2748                            unsigned int cmd, void __user *up)
2749 {
2750         mm_segment_t old_fs = get_fs();
2751         struct timespec kts;
2752         int err;
2753 
2754         set_fs(KERNEL_DS);
2755         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2756         set_fs(old_fs);
2757         if (!err)
2758                 err = compat_put_timespec(&kts, up);
2759 
2760         return err;
2761 }
2762 
2763 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2764 {
2765         struct ifreq __user *uifr;
2766         int err;
2767 
2768         uifr = compat_alloc_user_space(sizeof(struct ifreq));
2769         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2770                 return -EFAULT;
2771 
2772         err = dev_ioctl(net, SIOCGIFNAME, uifr);
2773         if (err)
2774                 return err;
2775 
2776         if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2777                 return -EFAULT;
2778 
2779         return 0;
2780 }
2781 
2782 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2783 {
2784         struct compat_ifconf ifc32;
2785         struct ifconf ifc;
2786         struct ifconf __user *uifc;
2787         struct compat_ifreq __user *ifr32;
2788         struct ifreq __user *ifr;
2789         unsigned int i, j;
2790         int err;
2791 
2792         if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2793                 return -EFAULT;
2794 
2795         memset(&ifc, 0, sizeof(ifc));
2796         if (ifc32.ifcbuf == 0) {
2797                 ifc32.ifc_len = 0;
2798                 ifc.ifc_len = 0;
2799                 ifc.ifc_req = NULL;
2800                 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2801         } else {
2802                 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2803                         sizeof(struct ifreq);
2804                 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2805                 ifc.ifc_len = len;
2806                 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2807                 ifr32 = compat_ptr(ifc32.ifcbuf);
2808                 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2809                         if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2810                                 return -EFAULT;
2811                         ifr++;
2812                         ifr32++;
2813                 }
2814         }
2815         if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2816                 return -EFAULT;
2817 
2818         err = dev_ioctl(net, SIOCGIFCONF, uifc);
2819         if (err)
2820                 return err;
2821 
2822         if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2823                 return -EFAULT;
2824 
2825         ifr = ifc.ifc_req;
2826         ifr32 = compat_ptr(ifc32.ifcbuf);
2827         for (i = 0, j = 0;
2828              i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2829              i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2830                 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2831                         return -EFAULT;
2832                 ifr32++;
2833                 ifr++;
2834         }
2835 
2836         if (ifc32.ifcbuf == 0) {
2837                 /* Translate from 64-bit structure multiple to
2838                  * a 32-bit one.
2839                  */
2840                 i = ifc.ifc_len;
2841                 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2842                 ifc32.ifc_len = i;
2843         } else {
2844                 ifc32.ifc_len = i;
2845         }
2846         if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2847                 return -EFAULT;
2848 
2849         return 0;
2850 }
2851 
2852 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2853 {
2854         struct compat_ethtool_rxnfc __user *compat_rxnfc;
2855         bool convert_in = false, convert_out = false;
2856         size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2857         struct ethtool_rxnfc __user *rxnfc;
2858         struct ifreq __user *ifr;
2859         u32 rule_cnt = 0, actual_rule_cnt;
2860         u32 ethcmd;
2861         u32 data;
2862         int ret;
2863 
2864         if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2865                 return -EFAULT;
2866 
2867         compat_rxnfc = compat_ptr(data);
2868 
2869         if (get_user(ethcmd, &compat_rxnfc->cmd))
2870                 return -EFAULT;
2871 
2872         /* Most ethtool structures are defined without padding.
2873          * Unfortunately struct ethtool_rxnfc is an exception.
2874          */
2875         switch (ethcmd) {
2876         default:
2877                 break;
2878         case ETHTOOL_GRXCLSRLALL:
2879                 /* Buffer size is variable */
2880                 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2881                         return -EFAULT;
2882                 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2883                         return -ENOMEM;
2884                 buf_size += rule_cnt * sizeof(u32);
2885                 /* fall through */
2886         case ETHTOOL_GRXRINGS:
2887         case ETHTOOL_GRXCLSRLCNT:
2888         case ETHTOOL_GRXCLSRULE:
2889         case ETHTOOL_SRXCLSRLINS:
2890                 convert_out = true;
2891                 /* fall through */
2892         case ETHTOOL_SRXCLSRLDEL:
2893                 buf_size += sizeof(struct ethtool_rxnfc);
2894                 convert_in = true;
2895                 break;
2896         }
2897 
2898         ifr = compat_alloc_user_space(buf_size);
2899         rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2900 
2901         if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2902                 return -EFAULT;
2903 
2904         if (put_user(convert_in ? rxnfc : compat_ptr(data),
2905                      &ifr->ifr_ifru.ifru_data))
2906                 return -EFAULT;
2907 
2908         if (convert_in) {
2909                 /* We expect there to be holes between fs.m_ext and
2910                  * fs.ring_cookie and at the end of fs, but nowhere else.
2911                  */
2912                 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2913                              sizeof(compat_rxnfc->fs.m_ext) !=
2914                              offsetof(struct ethtool_rxnfc, fs.m_ext) +
2915                              sizeof(rxnfc->fs.m_ext));
2916                 BUILD_BUG_ON(
2917                         offsetof(struct compat_ethtool_rxnfc, fs.location) -
2918                         offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2919                         offsetof(struct ethtool_rxnfc, fs.location) -
2920                         offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2921 
2922                 if (copy_in_user(rxnfc, compat_rxnfc,
2923                                  (void __user *)(&rxnfc->fs.m_ext + 1) -
2924                                  (void __user *)rxnfc) ||
2925                     copy_in_user(&rxnfc->fs.ring_cookie,
2926                                  &compat_rxnfc->fs.ring_cookie,
2927                                  (void __user *)(&rxnfc->fs.location + 1) -
2928                                  (void __user *)&rxnfc->fs.ring_cookie) ||
2929                     copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2930                                  sizeof(rxnfc->rule_cnt)))
2931                         return -EFAULT;
2932         }
2933 
2934         ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2935         if (ret)
2936                 return ret;
2937 
2938         if (convert_out) {
2939                 if (copy_in_user(compat_rxnfc, rxnfc,
2940                                  (const void __user *)(&rxnfc->fs.m_ext + 1) -
2941                                  (const void __user *)rxnfc) ||
2942                     copy_in_user(&compat_rxnfc->fs.ring_cookie,
2943                                  &rxnfc->fs.ring_cookie,
2944                                  (const void __user *)(&rxnfc->fs.location + 1) -
2945                                  (const void __user *)&rxnfc->fs.ring_cookie) ||
2946                     copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2947                                  sizeof(rxnfc->rule_cnt)))
2948                         return -EFAULT;
2949 
2950                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2951                         /* As an optimisation, we only copy the actual
2952                          * number of rules that the underlying
2953                          * function returned.  Since Mallory might
2954                          * change the rule count in user memory, we
2955                          * check that it is less than the rule count
2956                          * originally given (as the user buffer size),
2957                          * which has been range-checked.
2958                          */
2959                         if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2960                                 return -EFAULT;
2961                         if (actual_rule_cnt < rule_cnt)
2962                                 rule_cnt = actual_rule_cnt;
2963                         if (copy_in_user(&compat_rxnfc->rule_locs[0],
2964                                          &rxnfc->rule_locs[0],
2965                                          rule_cnt * sizeof(u32)))
2966                                 return -EFAULT;
2967                 }
2968         }
2969 
2970         return 0;
2971 }
2972 
2973 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2974 {
2975         void __user *uptr;
2976         compat_uptr_t uptr32;
2977         struct ifreq __user *uifr;
2978 
2979         uifr = compat_alloc_user_space(sizeof(*uifr));
2980         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2981                 return -EFAULT;
2982 
2983         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2984                 return -EFAULT;
2985 
2986         uptr = compat_ptr(uptr32);
2987 
2988         if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2989                 return -EFAULT;
2990 
2991         return dev_ioctl(net, SIOCWANDEV, uifr);
2992 }
2993 
2994 static int bond_ioctl(struct net *net, unsigned int cmd,
2995                          struct compat_ifreq __user *ifr32)
2996 {
2997         struct ifreq kifr;
2998         mm_segment_t old_fs;
2999         int err;
3000 
3001         switch (cmd) {
3002         case SIOCBONDENSLAVE:
3003         case SIOCBONDRELEASE:
3004         case SIOCBONDSETHWADDR:
3005         case SIOCBONDCHANGEACTIVE:
3006                 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3007                         return -EFAULT;
3008 
3009                 old_fs = get_fs();
3010                 set_fs(KERNEL_DS);
3011                 err = dev_ioctl(net, cmd,
3012                                 (struct ifreq __user __force *) &kifr);
3013                 set_fs(old_fs);
3014 
3015                 return err;
3016         default:
3017                 return -ENOIOCTLCMD;
3018         }
3019 }
3020 
3021 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3022 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3023                                  struct compat_ifreq __user *u_ifreq32)
3024 {
3025         struct ifreq __user *u_ifreq64;
3026         char tmp_buf[IFNAMSIZ];
3027         void __user *data64;
3028         u32 data32;
3029 
3030         if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3031                            IFNAMSIZ))
3032                 return -EFAULT;
3033         if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3034                 return -EFAULT;
3035         data64 = compat_ptr(data32);
3036 
3037         u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3038 
3039         if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3040                          IFNAMSIZ))
3041                 return -EFAULT;
3042         if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3043                 return -EFAULT;
3044 
3045         return dev_ioctl(net, cmd, u_ifreq64);
3046 }
3047 
3048 static int dev_ifsioc(struct net *net, struct socket *sock,
3049                          unsigned int cmd, struct compat_ifreq __user *uifr32)
3050 {
3051         struct ifreq __user *uifr;
3052         int err;
3053 
3054         uifr = compat_alloc_user_space(sizeof(*uifr));
3055         if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3056                 return -EFAULT;
3057 
3058         err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3059 
3060         if (!err) {
3061                 switch (cmd) {
3062                 case SIOCGIFFLAGS:
3063                 case SIOCGIFMETRIC:
3064                 case SIOCGIFMTU:
3065                 case SIOCGIFMEM:
3066                 case SIOCGIFHWADDR:
3067                 case SIOCGIFINDEX:
3068                 case SIOCGIFADDR:
3069                 case SIOCGIFBRDADDR:
3070                 case SIOCGIFDSTADDR:
3071                 case SIOCGIFNETMASK:
3072                 case SIOCGIFPFLAGS:
3073                 case SIOCGIFTXQLEN:
3074                 case SIOCGMIIPHY:
3075                 case SIOCGMIIREG:
3076                         if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3077                                 err = -EFAULT;
3078                         break;
3079                 }
3080         }
3081         return err;
3082 }
3083 
3084 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3085                         struct compat_ifreq __user *uifr32)
3086 {
3087         struct ifreq ifr;
3088         struct compat_ifmap __user *uifmap32;
3089         mm_segment_t old_fs;
3090         int err;
3091 
3092         uifmap32 = &uifr32->ifr_ifru.ifru_map;
3093         err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3094         err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3095         err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3096         err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3097         err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3098         err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3099         err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3100         if (err)
3101                 return -EFAULT;
3102 
3103         old_fs = get_fs();
3104         set_fs(KERNEL_DS);
3105         err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3106         set_fs(old_fs);
3107 
3108         if (cmd == SIOCGIFMAP && !err) {
3109                 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3110                 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3111                 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3112                 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3113                 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3114                 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3115                 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3116                 if (err)
3117                         err = -EFAULT;
3118         }
3119         return err;
3120 }
3121 
3122 struct rtentry32 {
3123         u32             rt_pad1;
3124         struct sockaddr rt_dst;         /* target address               */
3125         struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3126         struct sockaddr rt_genmask;     /* target network mask (IP)     */
3127         unsigned short  rt_flags;
3128         short           rt_pad2;
3129         u32             rt_pad3;
3130         unsigned char   rt_tos;
3131         unsigned char   rt_class;
3132         short           rt_pad4;
3133         short           rt_metric;      /* +1 for binary compatibility! */
3134         /* char * */ u32 rt_dev;        /* forcing the device at add    */
3135         u32             rt_mtu;         /* per route MTU/Window         */
3136         u32             rt_window;      /* Window clamping              */
3137         unsigned short  rt_irtt;        /* Initial RTT                  */
3138 };
3139 
3140 struct in6_rtmsg32 {
3141         struct in6_addr         rtmsg_dst;
3142         struct in6_addr         rtmsg_src;
3143         struct in6_addr         rtmsg_gateway;
3144         u32                     rtmsg_type;
3145         u16                     rtmsg_dst_len;
3146         u16                     rtmsg_src_len;
3147         u32                     rtmsg_metric;
3148         u32                     rtmsg_info;
3149         u32                     rtmsg_flags;
3150         s32                     rtmsg_ifindex;
3151 };
3152 
3153 static int routing_ioctl(struct net *net, struct socket *sock,
3154                          unsigned int cmd, void __user *argp)
3155 {
3156         int ret;
3157         void *r = NULL;
3158         struct in6_rtmsg r6;
3159         struct rtentry r4;
3160         char devname[16];
3161         u32 rtdev;
3162         mm_segment_t old_fs = get_fs();
3163 
3164         if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3165                 struct in6_rtmsg32 __user *ur6 = argp;
3166                 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3167                         3 * sizeof(struct in6_addr));
3168                 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3169                 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3170                 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3171                 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3172                 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3173                 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3174                 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3175 
3176                 r = (void *) &r6;
3177         } else { /* ipv4 */
3178                 struct rtentry32 __user *ur4 = argp;
3179                 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3180                                         3 * sizeof(struct sockaddr));
3181                 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3182                 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3183                 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3184                 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3185                 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3186                 ret |= get_user(rtdev, &(ur4->rt_dev));
3187                 if (rtdev) {
3188                         ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3189                         r4.rt_dev = (char __user __force *)devname;
3190                         devname[15] = 0;
3191                 } else
3192                         r4.rt_dev = NULL;
3193 
3194                 r = (void *) &r4;
3195         }
3196 
3197         if (ret) {
3198                 ret = -EFAULT;
3199                 goto out;
3200         }
3201 
3202         set_fs(KERNEL_DS);
3203         ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3204         set_fs(old_fs);
3205 
3206 out:
3207         return ret;
3208 }
3209 
3210 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3211  * for some operations; this forces use of the newer bridge-utils that
3212  * use compatible ioctls
3213  */
3214 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3215 {
3216         compat_ulong_t tmp;
3217 
3218         if (get_user(tmp, argp))
3219                 return -EFAULT;
3220         if (tmp == BRCTL_GET_VERSION)
3221                 return BRCTL_VERSION + 1;
3222         return -EINVAL;
3223 }
3224 
3225 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3226                          unsigned int cmd, unsigned long arg)
3227 {
3228         void __user *argp = compat_ptr(arg);
3229         struct sock *sk = sock->sk;
3230         struct net *net = sock_net(sk);
3231 
3232         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3233                 return compat_ifr_data_ioctl(net, cmd, argp);
3234 
3235         switch (cmd) {
3236         case SIOCSIFBR:
3237         case SIOCGIFBR:
3238                 return old_bridge_ioctl(argp);
3239         case SIOCGIFNAME:
3240                 return dev_ifname32(net, argp);
3241         case SIOCGIFCONF:
3242                 return dev_ifconf(net, argp);
3243         case SIOCETHTOOL:
3244                 return ethtool_ioctl(net, argp);
3245         case SIOCWANDEV:
3246                 return compat_siocwandev(net, argp);
3247         case SIOCGIFMAP:
3248         case SIOCSIFMAP:
3249                 return compat_sioc_ifmap(net, cmd, argp);
3250         case SIOCBONDENSLAVE:
3251         case SIOCBONDRELEASE:
3252         case SIOCBONDSETHWADDR:
3253         case SIOCBONDCHANGEACTIVE:
3254                 return bond_ioctl(net, cmd, argp);
3255         case SIOCADDRT:
3256         case SIOCDELRT:
3257                 return routing_ioctl(net, sock, cmd, argp);
3258         case SIOCGSTAMP:
3259                 return do_siocgstamp(net, sock, cmd, argp);
3260         case SIOCGSTAMPNS:
3261                 return do_siocgstampns(net, sock, cmd, argp);
3262         case SIOCBONDSLAVEINFOQUERY:
3263         case SIOCBONDINFOQUERY:
3264         case SIOCSHWTSTAMP:
3265         case SIOCGHWTSTAMP:
3266                 return compat_ifr_data_ioctl(net, cmd, argp);
3267 
3268         case FIOSETOWN:
3269         case SIOCSPGRP:
3270         case FIOGETOWN:
3271         case SIOCGPGRP:
3272         case SIOCBRADDBR:
3273         case SIOCBRDELBR:
3274         case SIOCGIFVLAN:
3275         case SIOCSIFVLAN:
3276         case SIOCADDDLCI:
3277         case SIOCDELDLCI:
3278                 return sock_ioctl(file, cmd, arg);
3279 
3280         case SIOCGIFFLAGS:
3281         case SIOCSIFFLAGS:
3282         case SIOCGIFMETRIC:
3283         case SIOCSIFMETRIC:
3284         case SIOCGIFMTU:
3285         case SIOCSIFMTU:
3286         case SIOCGIFMEM:
3287         case SIOCSIFMEM:
3288         case SIOCGIFHWADDR:
3289         case SIOCSIFHWADDR:
3290         case SIOCADDMULTI:
3291         case SIOCDELMULTI:
3292         case SIOCGIFINDEX:
3293         case SIOCGIFADDR:
3294         case SIOCSIFADDR:
3295         case SIOCSIFHWBROADCAST:
3296         case SIOCDIFADDR:
3297         case SIOCGIFBRDADDR:
3298         case SIOCSIFBRDADDR:
3299         case SIOCGIFDSTADDR:
3300         case SIOCSIFDSTADDR:
3301         case SIOCGIFNETMASK:
3302         case SIOCSIFNETMASK:
3303         case SIOCSIFPFLAGS:
3304         case SIOCGIFPFLAGS:
3305         case SIOCGIFTXQLEN:
3306         case SIOCSIFTXQLEN:
3307         case SIOCBRADDIF:
3308         case SIOCBRDELIF:
3309         case SIOCSIFNAME:
3310         case SIOCGMIIPHY:
3311         case SIOCGMIIREG:
3312         case SIOCSMIIREG:
3313                 return dev_ifsioc(net, sock, cmd, argp);
3314 
3315         case SIOCSARP:
3316         case SIOCGARP:
3317         case SIOCDARP:
3318         case SIOCATMARK:
3319                 return sock_do_ioctl(net, sock, cmd, arg);
3320         }
3321 
3322         return -ENOIOCTLCMD;
3323 }
3324 
3325 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3326                               unsigned long arg)
3327 {
3328         struct socket *sock = file->private_data;
3329         int ret = -ENOIOCTLCMD;
3330         struct sock *sk;
3331         struct net *net;
3332 
3333         sk = sock->sk;
3334         net = sock_net(sk);
3335 
3336         if (sock->ops->compat_ioctl)
3337                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3338 
3339         if (ret == -ENOIOCTLCMD &&
3340             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3341                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3342 
3343         if (ret == -ENOIOCTLCMD)
3344                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3345 
3346         return ret;
3347 }
3348 #endif
3349 
3350 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3351 {
3352         return sock->ops->bind(sock, addr, addrlen);
3353 }
3354 EXPORT_SYMBOL(kernel_bind);
3355 
3356 int kernel_listen(struct socket *sock, int backlog)
3357 {
3358         return sock->ops->listen(sock, backlog);
3359 }
3360 EXPORT_SYMBOL(kernel_listen);
3361 
3362 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3363 {
3364         struct sock *sk = sock->sk;
3365         int err;
3366 
3367         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3368                                newsock);
3369         if (err < 0)
3370                 goto done;
3371 
3372         err = sock->ops->accept(sock, *newsock, flags);
3373         if (err < 0) {
3374                 sock_release(*newsock);
3375                 *newsock = NULL;
3376                 goto done;
3377         }
3378 
3379         (*newsock)->ops = sock->ops;
3380         __module_get((*newsock)->ops->owner);
3381 
3382 done:
3383         return err;
3384 }
3385 EXPORT_SYMBOL(kernel_accept);
3386 
3387 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3388                    int flags)
3389 {
3390         return sock->ops->connect(sock, addr, addrlen, flags);
3391 }
3392 EXPORT_SYMBOL(kernel_connect);
3393 
3394 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3395                          int *addrlen)
3396 {
3397         return sock->ops->getname(sock, addr, addrlen, 0);
3398 }
3399 EXPORT_SYMBOL(kernel_getsockname);
3400 
3401 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3402                          int *addrlen)
3403 {
3404         return sock->ops->getname(sock, addr, addrlen, 1);
3405 }
3406 EXPORT_SYMBOL(kernel_getpeername);
3407 
3408 int kernel_getsockopt(struct socket *sock, int level, int optname,
3409                         char *optval, int *optlen)
3410 {
3411         mm_segment_t oldfs = get_fs();
3412         char __user *uoptval;
3413         int __user *uoptlen;
3414         int err;
3415 
3416         uoptval = (char __user __force *) optval;
3417         uoptlen = (int __user __force *) optlen;
3418 
3419         set_fs(KERNEL_DS);
3420         if (level == SOL_SOCKET)
3421                 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3422         else
3423                 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3424                                             uoptlen);
3425         set_fs(oldfs);
3426         return err;
3427 }
3428 EXPORT_SYMBOL(kernel_getsockopt);
3429 
3430 int kernel_setsockopt(struct socket *sock, int level, int optname,
3431                         char *optval, unsigned int optlen)
3432 {
3433         mm_segment_t oldfs = get_fs();
3434         char __user *uoptval;
3435         int err;
3436 
3437         uoptval = (char __user __force *) optval;
3438 
3439         set_fs(KERNEL_DS);
3440         if (level == SOL_SOCKET)
3441                 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3442         else
3443                 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3444                                             optlen);
3445         set_fs(oldfs);
3446         return err;
3447 }
3448 EXPORT_SYMBOL(kernel_setsockopt);
3449 
3450 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3451                     size_t size, int flags)
3452 {
3453         if (sock->ops->sendpage)
3454                 return sock->ops->sendpage(sock, page, offset, size, flags);
3455 
3456         return sock_no_sendpage(sock, page, offset, size, flags);
3457 }
3458 EXPORT_SYMBOL(kernel_sendpage);
3459 
3460 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3461 {
3462         mm_segment_t oldfs = get_fs();
3463         int err;
3464 
3465         set_fs(KERNEL_DS);
3466         err = sock->ops->ioctl(sock, cmd, arg);
3467         set_fs(oldfs);
3468 
3469         return err;
3470 }
3471 EXPORT_SYMBOL(kernel_sock_ioctl);
3472 
3473 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3474 {
3475         return sock->ops->shutdown(sock, how);
3476 }
3477 EXPORT_SYMBOL(kernel_sock_shutdown);
3478 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us