Version:  2.6.34 2.6.35 2.6.36 2.6.37 2.6.38 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14

Linux/net/ipv4/ipmr.c

  1 /*
  2  *      IP multicast routing support for mrouted 3.6/3.8
  3  *
  4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5  *        Linux Consultancy and Custom Driver Development
  6  *
  7  *      This program is free software; you can redistribute it and/or
  8  *      modify it under the terms of the GNU General Public License
  9  *      as published by the Free Software Foundation; either version
 10  *      2 of the License, or (at your option) any later version.
 11  *
 12  *      Fixes:
 13  *      Michael Chastain        :       Incorrect size of copying.
 14  *      Alan Cox                :       Added the cache manager code
 15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
 16  *      Mike McLagan            :       Routing by source
 17  *      Malcolm Beattie         :       Buffer handling fixes.
 18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
 19  *      SVR Anand               :       Fixed several multicast bugs and problems.
 20  *      Alexey Kuznetsov        :       Status, optimisations and more.
 21  *      Brad Parker             :       Better behaviour on mrouted upcall
 22  *                                      overflow.
 23  *      Carlos Picoto           :       PIMv1 Support
 24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
 25  *                                      Relax this requirement to work with older peers.
 26  *
 27  */
 28 
 29 #include <asm/uaccess.h>
 30 #include <linux/types.h>
 31 #include <linux/capability.h>
 32 #include <linux/errno.h>
 33 #include <linux/timer.h>
 34 #include <linux/mm.h>
 35 #include <linux/kernel.h>
 36 #include <linux/fcntl.h>
 37 #include <linux/stat.h>
 38 #include <linux/socket.h>
 39 #include <linux/in.h>
 40 #include <linux/inet.h>
 41 #include <linux/netdevice.h>
 42 #include <linux/inetdevice.h>
 43 #include <linux/igmp.h>
 44 #include <linux/proc_fs.h>
 45 #include <linux/seq_file.h>
 46 #include <linux/mroute.h>
 47 #include <linux/init.h>
 48 #include <linux/if_ether.h>
 49 #include <linux/slab.h>
 50 #include <net/net_namespace.h>
 51 #include <net/ip.h>
 52 #include <net/protocol.h>
 53 #include <linux/skbuff.h>
 54 #include <net/route.h>
 55 #include <net/sock.h>
 56 #include <net/icmp.h>
 57 #include <net/udp.h>
 58 #include <net/raw.h>
 59 #include <linux/notifier.h>
 60 #include <linux/if_arp.h>
 61 #include <linux/netfilter_ipv4.h>
 62 #include <linux/compat.h>
 63 #include <linux/export.h>
 64 #include <net/ip_tunnels.h>
 65 #include <net/checksum.h>
 66 #include <net/netlink.h>
 67 #include <net/fib_rules.h>
 68 #include <linux/netconf.h>
 69 
 70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 71 #define CONFIG_IP_PIMSM 1
 72 #endif
 73 
 74 struct mr_table {
 75         struct list_head        list;
 76 #ifdef CONFIG_NET_NS
 77         struct net              *net;
 78 #endif
 79         u32                     id;
 80         struct sock __rcu       *mroute_sk;
 81         struct timer_list       ipmr_expire_timer;
 82         struct list_head        mfc_unres_queue;
 83         struct list_head        mfc_cache_array[MFC_LINES];
 84         struct vif_device       vif_table[MAXVIFS];
 85         int                     maxvif;
 86         atomic_t                cache_resolve_queue_len;
 87         bool                    mroute_do_assert;
 88         bool                    mroute_do_pim;
 89 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 90         int                     mroute_reg_vif_num;
 91 #endif
 92 };
 93 
 94 struct ipmr_rule {
 95         struct fib_rule         common;
 96 };
 97 
 98 struct ipmr_result {
 99         struct mr_table         *mrt;
100 };
101 
102 /* Big lock, protecting vif table, mrt cache and mroute socket state.
103  * Note that the changes are semaphored via rtnl_lock.
104  */
105 
106 static DEFINE_RWLOCK(mrt_lock);
107 
108 /*
109  *      Multicast router control variables
110  */
111 
112 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
113 
114 /* Special spinlock for queue of unresolved entries */
115 static DEFINE_SPINLOCK(mfc_unres_lock);
116 
117 /* We return to original Alan's scheme. Hash table of resolved
118  * entries is changed only in process context and protected
119  * with weak lock mrt_lock. Queue of unresolved entries is protected
120  * with strong spinlock mfc_unres_lock.
121  *
122  * In this case data path is free of exclusive locks at all.
123  */
124 
125 static struct kmem_cache *mrt_cachep __read_mostly;
126 
127 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
128 static void ipmr_free_table(struct mr_table *mrt);
129 
130 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
131                           struct sk_buff *skb, struct mfc_cache *cache,
132                           int local);
133 static int ipmr_cache_report(struct mr_table *mrt,
134                              struct sk_buff *pkt, vifi_t vifi, int assert);
135 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
136                               struct mfc_cache *c, struct rtmsg *rtm);
137 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
138                                  int cmd);
139 static void mroute_clean_tables(struct mr_table *mrt);
140 static void ipmr_expire_process(unsigned long arg);
141 
142 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
143 #define ipmr_for_each_table(mrt, net) \
144         list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
145 
146 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
147 {
148         struct mr_table *mrt;
149 
150         ipmr_for_each_table(mrt, net) {
151                 if (mrt->id == id)
152                         return mrt;
153         }
154         return NULL;
155 }
156 
157 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
158                            struct mr_table **mrt)
159 {
160         int err;
161         struct ipmr_result res;
162         struct fib_lookup_arg arg = {
163                 .result = &res,
164                 .flags = FIB_LOOKUP_NOREF,
165         };
166 
167         err = fib_rules_lookup(net->ipv4.mr_rules_ops,
168                                flowi4_to_flowi(flp4), 0, &arg);
169         if (err < 0)
170                 return err;
171         *mrt = res.mrt;
172         return 0;
173 }
174 
175 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
176                             int flags, struct fib_lookup_arg *arg)
177 {
178         struct ipmr_result *res = arg->result;
179         struct mr_table *mrt;
180 
181         switch (rule->action) {
182         case FR_ACT_TO_TBL:
183                 break;
184         case FR_ACT_UNREACHABLE:
185                 return -ENETUNREACH;
186         case FR_ACT_PROHIBIT:
187                 return -EACCES;
188         case FR_ACT_BLACKHOLE:
189         default:
190                 return -EINVAL;
191         }
192 
193         mrt = ipmr_get_table(rule->fr_net, rule->table);
194         if (mrt == NULL)
195                 return -EAGAIN;
196         res->mrt = mrt;
197         return 0;
198 }
199 
200 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
201 {
202         return 1;
203 }
204 
205 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
206         FRA_GENERIC_POLICY,
207 };
208 
209 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
210                                struct fib_rule_hdr *frh, struct nlattr **tb)
211 {
212         return 0;
213 }
214 
215 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
216                              struct nlattr **tb)
217 {
218         return 1;
219 }
220 
221 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
222                           struct fib_rule_hdr *frh)
223 {
224         frh->dst_len = 0;
225         frh->src_len = 0;
226         frh->tos     = 0;
227         return 0;
228 }
229 
230 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
231         .family         = RTNL_FAMILY_IPMR,
232         .rule_size      = sizeof(struct ipmr_rule),
233         .addr_size      = sizeof(u32),
234         .action         = ipmr_rule_action,
235         .match          = ipmr_rule_match,
236         .configure      = ipmr_rule_configure,
237         .compare        = ipmr_rule_compare,
238         .default_pref   = fib_default_rule_pref,
239         .fill           = ipmr_rule_fill,
240         .nlgroup        = RTNLGRP_IPV4_RULE,
241         .policy         = ipmr_rule_policy,
242         .owner          = THIS_MODULE,
243 };
244 
245 static int __net_init ipmr_rules_init(struct net *net)
246 {
247         struct fib_rules_ops *ops;
248         struct mr_table *mrt;
249         int err;
250 
251         ops = fib_rules_register(&ipmr_rules_ops_template, net);
252         if (IS_ERR(ops))
253                 return PTR_ERR(ops);
254 
255         INIT_LIST_HEAD(&net->ipv4.mr_tables);
256 
257         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
258         if (mrt == NULL) {
259                 err = -ENOMEM;
260                 goto err1;
261         }
262 
263         err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
264         if (err < 0)
265                 goto err2;
266 
267         net->ipv4.mr_rules_ops = ops;
268         return 0;
269 
270 err2:
271         kfree(mrt);
272 err1:
273         fib_rules_unregister(ops);
274         return err;
275 }
276 
277 static void __net_exit ipmr_rules_exit(struct net *net)
278 {
279         struct mr_table *mrt, *next;
280 
281         list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
282                 list_del(&mrt->list);
283                 ipmr_free_table(mrt);
284         }
285         fib_rules_unregister(net->ipv4.mr_rules_ops);
286 }
287 #else
288 #define ipmr_for_each_table(mrt, net) \
289         for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
290 
291 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
292 {
293         return net->ipv4.mrt;
294 }
295 
296 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
297                            struct mr_table **mrt)
298 {
299         *mrt = net->ipv4.mrt;
300         return 0;
301 }
302 
303 static int __net_init ipmr_rules_init(struct net *net)
304 {
305         net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
306         return net->ipv4.mrt ? 0 : -ENOMEM;
307 }
308 
309 static void __net_exit ipmr_rules_exit(struct net *net)
310 {
311         ipmr_free_table(net->ipv4.mrt);
312 }
313 #endif
314 
315 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
316 {
317         struct mr_table *mrt;
318         unsigned int i;
319 
320         mrt = ipmr_get_table(net, id);
321         if (mrt != NULL)
322                 return mrt;
323 
324         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
325         if (mrt == NULL)
326                 return NULL;
327         write_pnet(&mrt->net, net);
328         mrt->id = id;
329 
330         /* Forwarding cache */
331         for (i = 0; i < MFC_LINES; i++)
332                 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
333 
334         INIT_LIST_HEAD(&mrt->mfc_unres_queue);
335 
336         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
337                     (unsigned long)mrt);
338 
339 #ifdef CONFIG_IP_PIMSM
340         mrt->mroute_reg_vif_num = -1;
341 #endif
342 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
343         list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
344 #endif
345         return mrt;
346 }
347 
348 static void ipmr_free_table(struct mr_table *mrt)
349 {
350         del_timer_sync(&mrt->ipmr_expire_timer);
351         mroute_clean_tables(mrt);
352         kfree(mrt);
353 }
354 
355 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
356 
357 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
358 {
359         struct net *net = dev_net(dev);
360 
361         dev_close(dev);
362 
363         dev = __dev_get_by_name(net, "tunl0");
364         if (dev) {
365                 const struct net_device_ops *ops = dev->netdev_ops;
366                 struct ifreq ifr;
367                 struct ip_tunnel_parm p;
368 
369                 memset(&p, 0, sizeof(p));
370                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
371                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
372                 p.iph.version = 4;
373                 p.iph.ihl = 5;
374                 p.iph.protocol = IPPROTO_IPIP;
375                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
376                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
377 
378                 if (ops->ndo_do_ioctl) {
379                         mm_segment_t oldfs = get_fs();
380 
381                         set_fs(KERNEL_DS);
382                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
383                         set_fs(oldfs);
384                 }
385         }
386 }
387 
388 static
389 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
390 {
391         struct net_device  *dev;
392 
393         dev = __dev_get_by_name(net, "tunl0");
394 
395         if (dev) {
396                 const struct net_device_ops *ops = dev->netdev_ops;
397                 int err;
398                 struct ifreq ifr;
399                 struct ip_tunnel_parm p;
400                 struct in_device  *in_dev;
401 
402                 memset(&p, 0, sizeof(p));
403                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
404                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
405                 p.iph.version = 4;
406                 p.iph.ihl = 5;
407                 p.iph.protocol = IPPROTO_IPIP;
408                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
409                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
410 
411                 if (ops->ndo_do_ioctl) {
412                         mm_segment_t oldfs = get_fs();
413 
414                         set_fs(KERNEL_DS);
415                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
416                         set_fs(oldfs);
417                 } else {
418                         err = -EOPNOTSUPP;
419                 }
420                 dev = NULL;
421 
422                 if (err == 0 &&
423                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
424                         dev->flags |= IFF_MULTICAST;
425 
426                         in_dev = __in_dev_get_rtnl(dev);
427                         if (in_dev == NULL)
428                                 goto failure;
429 
430                         ipv4_devconf_setall(in_dev);
431                         neigh_parms_data_state_setall(in_dev->arp_parms);
432                         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
433 
434                         if (dev_open(dev))
435                                 goto failure;
436                         dev_hold(dev);
437                 }
438         }
439         return dev;
440 
441 failure:
442         /* allow the register to be completed before unregistering. */
443         rtnl_unlock();
444         rtnl_lock();
445 
446         unregister_netdevice(dev);
447         return NULL;
448 }
449 
450 #ifdef CONFIG_IP_PIMSM
451 
452 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
453 {
454         struct net *net = dev_net(dev);
455         struct mr_table *mrt;
456         struct flowi4 fl4 = {
457                 .flowi4_oif     = dev->ifindex,
458                 .flowi4_iif     = skb->skb_iif,
459                 .flowi4_mark    = skb->mark,
460         };
461         int err;
462 
463         err = ipmr_fib_lookup(net, &fl4, &mrt);
464         if (err < 0) {
465                 kfree_skb(skb);
466                 return err;
467         }
468 
469         read_lock(&mrt_lock);
470         dev->stats.tx_bytes += skb->len;
471         dev->stats.tx_packets++;
472         ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
473         read_unlock(&mrt_lock);
474         kfree_skb(skb);
475         return NETDEV_TX_OK;
476 }
477 
478 static const struct net_device_ops reg_vif_netdev_ops = {
479         .ndo_start_xmit = reg_vif_xmit,
480 };
481 
482 static void reg_vif_setup(struct net_device *dev)
483 {
484         dev->type               = ARPHRD_PIMREG;
485         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
486         dev->flags              = IFF_NOARP;
487         dev->netdev_ops         = &reg_vif_netdev_ops,
488         dev->destructor         = free_netdev;
489         dev->features           |= NETIF_F_NETNS_LOCAL;
490 }
491 
492 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
493 {
494         struct net_device *dev;
495         struct in_device *in_dev;
496         char name[IFNAMSIZ];
497 
498         if (mrt->id == RT_TABLE_DEFAULT)
499                 sprintf(name, "pimreg");
500         else
501                 sprintf(name, "pimreg%u", mrt->id);
502 
503         dev = alloc_netdev(0, name, reg_vif_setup);
504 
505         if (dev == NULL)
506                 return NULL;
507 
508         dev_net_set(dev, net);
509 
510         if (register_netdevice(dev)) {
511                 free_netdev(dev);
512                 return NULL;
513         }
514         dev->iflink = 0;
515 
516         rcu_read_lock();
517         in_dev = __in_dev_get_rcu(dev);
518         if (!in_dev) {
519                 rcu_read_unlock();
520                 goto failure;
521         }
522 
523         ipv4_devconf_setall(in_dev);
524         neigh_parms_data_state_setall(in_dev->arp_parms);
525         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
526         rcu_read_unlock();
527 
528         if (dev_open(dev))
529                 goto failure;
530 
531         dev_hold(dev);
532 
533         return dev;
534 
535 failure:
536         /* allow the register to be completed before unregistering. */
537         rtnl_unlock();
538         rtnl_lock();
539 
540         unregister_netdevice(dev);
541         return NULL;
542 }
543 #endif
544 
545 /**
546  *      vif_delete - Delete a VIF entry
547  *      @notify: Set to 1, if the caller is a notifier_call
548  */
549 
550 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
551                       struct list_head *head)
552 {
553         struct vif_device *v;
554         struct net_device *dev;
555         struct in_device *in_dev;
556 
557         if (vifi < 0 || vifi >= mrt->maxvif)
558                 return -EADDRNOTAVAIL;
559 
560         v = &mrt->vif_table[vifi];
561 
562         write_lock_bh(&mrt_lock);
563         dev = v->dev;
564         v->dev = NULL;
565 
566         if (!dev) {
567                 write_unlock_bh(&mrt_lock);
568                 return -EADDRNOTAVAIL;
569         }
570 
571 #ifdef CONFIG_IP_PIMSM
572         if (vifi == mrt->mroute_reg_vif_num)
573                 mrt->mroute_reg_vif_num = -1;
574 #endif
575 
576         if (vifi + 1 == mrt->maxvif) {
577                 int tmp;
578 
579                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
580                         if (VIF_EXISTS(mrt, tmp))
581                                 break;
582                 }
583                 mrt->maxvif = tmp+1;
584         }
585 
586         write_unlock_bh(&mrt_lock);
587 
588         dev_set_allmulti(dev, -1);
589 
590         in_dev = __in_dev_get_rtnl(dev);
591         if (in_dev) {
592                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
593                 inet_netconf_notify_devconf(dev_net(dev),
594                                             NETCONFA_MC_FORWARDING,
595                                             dev->ifindex, &in_dev->cnf);
596                 ip_rt_multicast_event(in_dev);
597         }
598 
599         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
600                 unregister_netdevice_queue(dev, head);
601 
602         dev_put(dev);
603         return 0;
604 }
605 
606 static void ipmr_cache_free_rcu(struct rcu_head *head)
607 {
608         struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
609 
610         kmem_cache_free(mrt_cachep, c);
611 }
612 
613 static inline void ipmr_cache_free(struct mfc_cache *c)
614 {
615         call_rcu(&c->rcu, ipmr_cache_free_rcu);
616 }
617 
618 /* Destroy an unresolved cache entry, killing queued skbs
619  * and reporting error to netlink readers.
620  */
621 
622 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
623 {
624         struct net *net = read_pnet(&mrt->net);
625         struct sk_buff *skb;
626         struct nlmsgerr *e;
627 
628         atomic_dec(&mrt->cache_resolve_queue_len);
629 
630         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
631                 if (ip_hdr(skb)->version == 0) {
632                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
633                         nlh->nlmsg_type = NLMSG_ERROR;
634                         nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
635                         skb_trim(skb, nlh->nlmsg_len);
636                         e = nlmsg_data(nlh);
637                         e->error = -ETIMEDOUT;
638                         memset(&e->msg, 0, sizeof(e->msg));
639 
640                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
641                 } else {
642                         kfree_skb(skb);
643                 }
644         }
645 
646         ipmr_cache_free(c);
647 }
648 
649 
650 /* Timer process for the unresolved queue. */
651 
652 static void ipmr_expire_process(unsigned long arg)
653 {
654         struct mr_table *mrt = (struct mr_table *)arg;
655         unsigned long now;
656         unsigned long expires;
657         struct mfc_cache *c, *next;
658 
659         if (!spin_trylock(&mfc_unres_lock)) {
660                 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
661                 return;
662         }
663 
664         if (list_empty(&mrt->mfc_unres_queue))
665                 goto out;
666 
667         now = jiffies;
668         expires = 10*HZ;
669 
670         list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
671                 if (time_after(c->mfc_un.unres.expires, now)) {
672                         unsigned long interval = c->mfc_un.unres.expires - now;
673                         if (interval < expires)
674                                 expires = interval;
675                         continue;
676                 }
677 
678                 list_del(&c->list);
679                 mroute_netlink_event(mrt, c, RTM_DELROUTE);
680                 ipmr_destroy_unres(mrt, c);
681         }
682 
683         if (!list_empty(&mrt->mfc_unres_queue))
684                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
685 
686 out:
687         spin_unlock(&mfc_unres_lock);
688 }
689 
690 /* Fill oifs list. It is called under write locked mrt_lock. */
691 
692 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
693                                    unsigned char *ttls)
694 {
695         int vifi;
696 
697         cache->mfc_un.res.minvif = MAXVIFS;
698         cache->mfc_un.res.maxvif = 0;
699         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
700 
701         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
702                 if (VIF_EXISTS(mrt, vifi) &&
703                     ttls[vifi] && ttls[vifi] < 255) {
704                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
705                         if (cache->mfc_un.res.minvif > vifi)
706                                 cache->mfc_un.res.minvif = vifi;
707                         if (cache->mfc_un.res.maxvif <= vifi)
708                                 cache->mfc_un.res.maxvif = vifi + 1;
709                 }
710         }
711 }
712 
713 static int vif_add(struct net *net, struct mr_table *mrt,
714                    struct vifctl *vifc, int mrtsock)
715 {
716         int vifi = vifc->vifc_vifi;
717         struct vif_device *v = &mrt->vif_table[vifi];
718         struct net_device *dev;
719         struct in_device *in_dev;
720         int err;
721 
722         /* Is vif busy ? */
723         if (VIF_EXISTS(mrt, vifi))
724                 return -EADDRINUSE;
725 
726         switch (vifc->vifc_flags) {
727 #ifdef CONFIG_IP_PIMSM
728         case VIFF_REGISTER:
729                 /*
730                  * Special Purpose VIF in PIM
731                  * All the packets will be sent to the daemon
732                  */
733                 if (mrt->mroute_reg_vif_num >= 0)
734                         return -EADDRINUSE;
735                 dev = ipmr_reg_vif(net, mrt);
736                 if (!dev)
737                         return -ENOBUFS;
738                 err = dev_set_allmulti(dev, 1);
739                 if (err) {
740                         unregister_netdevice(dev);
741                         dev_put(dev);
742                         return err;
743                 }
744                 break;
745 #endif
746         case VIFF_TUNNEL:
747                 dev = ipmr_new_tunnel(net, vifc);
748                 if (!dev)
749                         return -ENOBUFS;
750                 err = dev_set_allmulti(dev, 1);
751                 if (err) {
752                         ipmr_del_tunnel(dev, vifc);
753                         dev_put(dev);
754                         return err;
755                 }
756                 break;
757 
758         case VIFF_USE_IFINDEX:
759         case 0:
760                 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
761                         dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
762                         if (dev && __in_dev_get_rtnl(dev) == NULL) {
763                                 dev_put(dev);
764                                 return -EADDRNOTAVAIL;
765                         }
766                 } else {
767                         dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
768                 }
769                 if (!dev)
770                         return -EADDRNOTAVAIL;
771                 err = dev_set_allmulti(dev, 1);
772                 if (err) {
773                         dev_put(dev);
774                         return err;
775                 }
776                 break;
777         default:
778                 return -EINVAL;
779         }
780 
781         in_dev = __in_dev_get_rtnl(dev);
782         if (!in_dev) {
783                 dev_put(dev);
784                 return -EADDRNOTAVAIL;
785         }
786         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
787         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
788                                     &in_dev->cnf);
789         ip_rt_multicast_event(in_dev);
790 
791         /* Fill in the VIF structures */
792 
793         v->rate_limit = vifc->vifc_rate_limit;
794         v->local = vifc->vifc_lcl_addr.s_addr;
795         v->remote = vifc->vifc_rmt_addr.s_addr;
796         v->flags = vifc->vifc_flags;
797         if (!mrtsock)
798                 v->flags |= VIFF_STATIC;
799         v->threshold = vifc->vifc_threshold;
800         v->bytes_in = 0;
801         v->bytes_out = 0;
802         v->pkt_in = 0;
803         v->pkt_out = 0;
804         v->link = dev->ifindex;
805         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
806                 v->link = dev->iflink;
807 
808         /* And finish update writing critical data */
809         write_lock_bh(&mrt_lock);
810         v->dev = dev;
811 #ifdef CONFIG_IP_PIMSM
812         if (v->flags & VIFF_REGISTER)
813                 mrt->mroute_reg_vif_num = vifi;
814 #endif
815         if (vifi+1 > mrt->maxvif)
816                 mrt->maxvif = vifi+1;
817         write_unlock_bh(&mrt_lock);
818         return 0;
819 }
820 
821 /* called with rcu_read_lock() */
822 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
823                                          __be32 origin,
824                                          __be32 mcastgrp)
825 {
826         int line = MFC_HASH(mcastgrp, origin);
827         struct mfc_cache *c;
828 
829         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
830                 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
831                         return c;
832         }
833         return NULL;
834 }
835 
836 /* Look for a (*,*,oif) entry */
837 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
838                                                     int vifi)
839 {
840         int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
841         struct mfc_cache *c;
842 
843         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
844                 if (c->mfc_origin == htonl(INADDR_ANY) &&
845                     c->mfc_mcastgrp == htonl(INADDR_ANY) &&
846                     c->mfc_un.res.ttls[vifi] < 255)
847                         return c;
848 
849         return NULL;
850 }
851 
852 /* Look for a (*,G) entry */
853 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
854                                              __be32 mcastgrp, int vifi)
855 {
856         int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
857         struct mfc_cache *c, *proxy;
858 
859         if (mcastgrp == htonl(INADDR_ANY))
860                 goto skip;
861 
862         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
863                 if (c->mfc_origin == htonl(INADDR_ANY) &&
864                     c->mfc_mcastgrp == mcastgrp) {
865                         if (c->mfc_un.res.ttls[vifi] < 255)
866                                 return c;
867 
868                         /* It's ok if the vifi is part of the static tree */
869                         proxy = ipmr_cache_find_any_parent(mrt,
870                                                            c->mfc_parent);
871                         if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
872                                 return c;
873                 }
874 
875 skip:
876         return ipmr_cache_find_any_parent(mrt, vifi);
877 }
878 
879 /*
880  *      Allocate a multicast cache entry
881  */
882 static struct mfc_cache *ipmr_cache_alloc(void)
883 {
884         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
885 
886         if (c)
887                 c->mfc_un.res.minvif = MAXVIFS;
888         return c;
889 }
890 
891 static struct mfc_cache *ipmr_cache_alloc_unres(void)
892 {
893         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
894 
895         if (c) {
896                 skb_queue_head_init(&c->mfc_un.unres.unresolved);
897                 c->mfc_un.unres.expires = jiffies + 10*HZ;
898         }
899         return c;
900 }
901 
902 /*
903  *      A cache entry has gone into a resolved state from queued
904  */
905 
906 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
907                                struct mfc_cache *uc, struct mfc_cache *c)
908 {
909         struct sk_buff *skb;
910         struct nlmsgerr *e;
911 
912         /* Play the pending entries through our router */
913 
914         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
915                 if (ip_hdr(skb)->version == 0) {
916                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
917 
918                         if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
919                                 nlh->nlmsg_len = skb_tail_pointer(skb) -
920                                                  (u8 *)nlh;
921                         } else {
922                                 nlh->nlmsg_type = NLMSG_ERROR;
923                                 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
924                                 skb_trim(skb, nlh->nlmsg_len);
925                                 e = nlmsg_data(nlh);
926                                 e->error = -EMSGSIZE;
927                                 memset(&e->msg, 0, sizeof(e->msg));
928                         }
929 
930                         rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
931                 } else {
932                         ip_mr_forward(net, mrt, skb, c, 0);
933                 }
934         }
935 }
936 
937 /*
938  *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
939  *      expects the following bizarre scheme.
940  *
941  *      Called under mrt_lock.
942  */
943 
944 static int ipmr_cache_report(struct mr_table *mrt,
945                              struct sk_buff *pkt, vifi_t vifi, int assert)
946 {
947         struct sk_buff *skb;
948         const int ihl = ip_hdrlen(pkt);
949         struct igmphdr *igmp;
950         struct igmpmsg *msg;
951         struct sock *mroute_sk;
952         int ret;
953 
954 #ifdef CONFIG_IP_PIMSM
955         if (assert == IGMPMSG_WHOLEPKT)
956                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
957         else
958 #endif
959                 skb = alloc_skb(128, GFP_ATOMIC);
960 
961         if (!skb)
962                 return -ENOBUFS;
963 
964 #ifdef CONFIG_IP_PIMSM
965         if (assert == IGMPMSG_WHOLEPKT) {
966                 /* Ugly, but we have no choice with this interface.
967                  * Duplicate old header, fix ihl, length etc.
968                  * And all this only to mangle msg->im_msgtype and
969                  * to set msg->im_mbz to "mbz" :-)
970                  */
971                 skb_push(skb, sizeof(struct iphdr));
972                 skb_reset_network_header(skb);
973                 skb_reset_transport_header(skb);
974                 msg = (struct igmpmsg *)skb_network_header(skb);
975                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
976                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
977                 msg->im_mbz = 0;
978                 msg->im_vif = mrt->mroute_reg_vif_num;
979                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
980                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
981                                              sizeof(struct iphdr));
982         } else
983 #endif
984         {
985 
986         /* Copy the IP header */
987 
988         skb_set_network_header(skb, skb->len);
989         skb_put(skb, ihl);
990         skb_copy_to_linear_data(skb, pkt->data, ihl);
991         ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
992         msg = (struct igmpmsg *)skb_network_header(skb);
993         msg->im_vif = vifi;
994         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
995 
996         /* Add our header */
997 
998         igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
999         igmp->type      =
1000         msg->im_msgtype = assert;
1001         igmp->code      = 0;
1002         ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
1003         skb->transport_header = skb->network_header;
1004         }
1005 
1006         rcu_read_lock();
1007         mroute_sk = rcu_dereference(mrt->mroute_sk);
1008         if (mroute_sk == NULL) {
1009                 rcu_read_unlock();
1010                 kfree_skb(skb);
1011                 return -EINVAL;
1012         }
1013 
1014         /* Deliver to mrouted */
1015 
1016         ret = sock_queue_rcv_skb(mroute_sk, skb);
1017         rcu_read_unlock();
1018         if (ret < 0) {
1019                 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1020                 kfree_skb(skb);
1021         }
1022 
1023         return ret;
1024 }
1025 
1026 /*
1027  *      Queue a packet for resolution. It gets locked cache entry!
1028  */
1029 
1030 static int
1031 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1032 {
1033         bool found = false;
1034         int err;
1035         struct mfc_cache *c;
1036         const struct iphdr *iph = ip_hdr(skb);
1037 
1038         spin_lock_bh(&mfc_unres_lock);
1039         list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1040                 if (c->mfc_mcastgrp == iph->daddr &&
1041                     c->mfc_origin == iph->saddr) {
1042                         found = true;
1043                         break;
1044                 }
1045         }
1046 
1047         if (!found) {
1048                 /* Create a new entry if allowable */
1049 
1050                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1051                     (c = ipmr_cache_alloc_unres()) == NULL) {
1052                         spin_unlock_bh(&mfc_unres_lock);
1053 
1054                         kfree_skb(skb);
1055                         return -ENOBUFS;
1056                 }
1057 
1058                 /* Fill in the new cache entry */
1059 
1060                 c->mfc_parent   = -1;
1061                 c->mfc_origin   = iph->saddr;
1062                 c->mfc_mcastgrp = iph->daddr;
1063 
1064                 /* Reflect first query at mrouted. */
1065 
1066                 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1067                 if (err < 0) {
1068                         /* If the report failed throw the cache entry
1069                            out - Brad Parker
1070                          */
1071                         spin_unlock_bh(&mfc_unres_lock);
1072 
1073                         ipmr_cache_free(c);
1074                         kfree_skb(skb);
1075                         return err;
1076                 }
1077 
1078                 atomic_inc(&mrt->cache_resolve_queue_len);
1079                 list_add(&c->list, &mrt->mfc_unres_queue);
1080                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1081 
1082                 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1083                         mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1084         }
1085 
1086         /* See if we can append the packet */
1087 
1088         if (c->mfc_un.unres.unresolved.qlen > 3) {
1089                 kfree_skb(skb);
1090                 err = -ENOBUFS;
1091         } else {
1092                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1093                 err = 0;
1094         }
1095 
1096         spin_unlock_bh(&mfc_unres_lock);
1097         return err;
1098 }
1099 
1100 /*
1101  *      MFC cache manipulation by user space mroute daemon
1102  */
1103 
1104 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1105 {
1106         int line;
1107         struct mfc_cache *c, *next;
1108 
1109         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1110 
1111         list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1112                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1113                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1114                     (parent == -1 || parent == c->mfc_parent)) {
1115                         list_del_rcu(&c->list);
1116                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1117                         ipmr_cache_free(c);
1118                         return 0;
1119                 }
1120         }
1121         return -ENOENT;
1122 }
1123 
1124 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1125                         struct mfcctl *mfc, int mrtsock, int parent)
1126 {
1127         bool found = false;
1128         int line;
1129         struct mfc_cache *uc, *c;
1130 
1131         if (mfc->mfcc_parent >= MAXVIFS)
1132                 return -ENFILE;
1133 
1134         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1135 
1136         list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1137                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1138                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1139                     (parent == -1 || parent == c->mfc_parent)) {
1140                         found = true;
1141                         break;
1142                 }
1143         }
1144 
1145         if (found) {
1146                 write_lock_bh(&mrt_lock);
1147                 c->mfc_parent = mfc->mfcc_parent;
1148                 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1149                 if (!mrtsock)
1150                         c->mfc_flags |= MFC_STATIC;
1151                 write_unlock_bh(&mrt_lock);
1152                 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1153                 return 0;
1154         }
1155 
1156         if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1157             !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1158                 return -EINVAL;
1159 
1160         c = ipmr_cache_alloc();
1161         if (c == NULL)
1162                 return -ENOMEM;
1163 
1164         c->mfc_origin = mfc->mfcc_origin.s_addr;
1165         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1166         c->mfc_parent = mfc->mfcc_parent;
1167         ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1168         if (!mrtsock)
1169                 c->mfc_flags |= MFC_STATIC;
1170 
1171         list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1172 
1173         /*
1174          *      Check to see if we resolved a queued list. If so we
1175          *      need to send on the frames and tidy up.
1176          */
1177         found = false;
1178         spin_lock_bh(&mfc_unres_lock);
1179         list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1180                 if (uc->mfc_origin == c->mfc_origin &&
1181                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1182                         list_del(&uc->list);
1183                         atomic_dec(&mrt->cache_resolve_queue_len);
1184                         found = true;
1185                         break;
1186                 }
1187         }
1188         if (list_empty(&mrt->mfc_unres_queue))
1189                 del_timer(&mrt->ipmr_expire_timer);
1190         spin_unlock_bh(&mfc_unres_lock);
1191 
1192         if (found) {
1193                 ipmr_cache_resolve(net, mrt, uc, c);
1194                 ipmr_cache_free(uc);
1195         }
1196         mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1197         return 0;
1198 }
1199 
1200 /*
1201  *      Close the multicast socket, and clear the vif tables etc
1202  */
1203 
1204 static void mroute_clean_tables(struct mr_table *mrt)
1205 {
1206         int i;
1207         LIST_HEAD(list);
1208         struct mfc_cache *c, *next;
1209 
1210         /* Shut down all active vif entries */
1211 
1212         for (i = 0; i < mrt->maxvif; i++) {
1213                 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1214                         vif_delete(mrt, i, 0, &list);
1215         }
1216         unregister_netdevice_many(&list);
1217 
1218         /* Wipe the cache */
1219 
1220         for (i = 0; i < MFC_LINES; i++) {
1221                 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222                         if (c->mfc_flags & MFC_STATIC)
1223                                 continue;
1224                         list_del_rcu(&c->list);
1225                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226                         ipmr_cache_free(c);
1227                 }
1228         }
1229 
1230         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231                 spin_lock_bh(&mfc_unres_lock);
1232                 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233                         list_del(&c->list);
1234                         mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235                         ipmr_destroy_unres(mrt, c);
1236                 }
1237                 spin_unlock_bh(&mfc_unres_lock);
1238         }
1239 }
1240 
1241 /* called from ip_ra_control(), before an RCU grace period,
1242  * we dont need to call synchronize_rcu() here
1243  */
1244 static void mrtsock_destruct(struct sock *sk)
1245 {
1246         struct net *net = sock_net(sk);
1247         struct mr_table *mrt;
1248 
1249         rtnl_lock();
1250         ipmr_for_each_table(mrt, net) {
1251                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253                         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1254                                                     NETCONFA_IFINDEX_ALL,
1255                                                     net->ipv4.devconf_all);
1256                         RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257                         mroute_clean_tables(mrt);
1258                 }
1259         }
1260         rtnl_unlock();
1261 }
1262 
1263 /*
1264  *      Socket options and virtual interface manipulation. The whole
1265  *      virtual interface system is a complete heap, but unfortunately
1266  *      that's how BSD mrouted happens to think. Maybe one day with a proper
1267  *      MOSPF/PIM router set up we can clean this up.
1268  */
1269 
1270 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1271 {
1272         int ret, parent = 0;
1273         struct vifctl vif;
1274         struct mfcctl mfc;
1275         struct net *net = sock_net(sk);
1276         struct mr_table *mrt;
1277 
1278         if (sk->sk_type != SOCK_RAW ||
1279             inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280                 return -EOPNOTSUPP;
1281 
1282         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283         if (mrt == NULL)
1284                 return -ENOENT;
1285 
1286         if (optname != MRT_INIT) {
1287                 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288                     !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289                         return -EACCES;
1290         }
1291 
1292         switch (optname) {
1293         case MRT_INIT:
1294                 if (optlen != sizeof(int))
1295                         return -EINVAL;
1296 
1297                 rtnl_lock();
1298                 if (rtnl_dereference(mrt->mroute_sk)) {
1299                         rtnl_unlock();
1300                         return -EADDRINUSE;
1301                 }
1302 
1303                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304                 if (ret == 0) {
1305                         rcu_assign_pointer(mrt->mroute_sk, sk);
1306                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307                         inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1308                                                     NETCONFA_IFINDEX_ALL,
1309                                                     net->ipv4.devconf_all);
1310                 }
1311                 rtnl_unlock();
1312                 return ret;
1313         case MRT_DONE:
1314                 if (sk != rcu_access_pointer(mrt->mroute_sk))
1315                         return -EACCES;
1316                 return ip_ra_control(sk, 0, NULL);
1317         case MRT_ADD_VIF:
1318         case MRT_DEL_VIF:
1319                 if (optlen != sizeof(vif))
1320                         return -EINVAL;
1321                 if (copy_from_user(&vif, optval, sizeof(vif)))
1322                         return -EFAULT;
1323                 if (vif.vifc_vifi >= MAXVIFS)
1324                         return -ENFILE;
1325                 rtnl_lock();
1326                 if (optname == MRT_ADD_VIF) {
1327                         ret = vif_add(net, mrt, &vif,
1328                                       sk == rtnl_dereference(mrt->mroute_sk));
1329                 } else {
1330                         ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331                 }
1332                 rtnl_unlock();
1333                 return ret;
1334 
1335                 /*
1336                  *      Manipulate the forwarding caches. These live
1337                  *      in a sort of kernel/user symbiosis.
1338                  */
1339         case MRT_ADD_MFC:
1340         case MRT_DEL_MFC:
1341                 parent = -1;
1342         case MRT_ADD_MFC_PROXY:
1343         case MRT_DEL_MFC_PROXY:
1344                 if (optlen != sizeof(mfc))
1345                         return -EINVAL;
1346                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347                         return -EFAULT;
1348                 if (parent == 0)
1349                         parent = mfc.mfcc_parent;
1350                 rtnl_lock();
1351                 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352                         ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353                 else
1354                         ret = ipmr_mfc_add(net, mrt, &mfc,
1355                                            sk == rtnl_dereference(mrt->mroute_sk),
1356                                            parent);
1357                 rtnl_unlock();
1358                 return ret;
1359                 /*
1360                  *      Control PIM assert.
1361                  */
1362         case MRT_ASSERT:
1363         {
1364                 int v;
1365                 if (optlen != sizeof(v))
1366                         return -EINVAL;
1367                 if (get_user(v, (int __user *)optval))
1368                         return -EFAULT;
1369                 mrt->mroute_do_assert = v;
1370                 return 0;
1371         }
1372 #ifdef CONFIG_IP_PIMSM
1373         case MRT_PIM:
1374         {
1375                 int v;
1376 
1377                 if (optlen != sizeof(v))
1378                         return -EINVAL;
1379                 if (get_user(v, (int __user *)optval))
1380                         return -EFAULT;
1381                 v = !!v;
1382 
1383                 rtnl_lock();
1384                 ret = 0;
1385                 if (v != mrt->mroute_do_pim) {
1386                         mrt->mroute_do_pim = v;
1387                         mrt->mroute_do_assert = v;
1388                 }
1389                 rtnl_unlock();
1390                 return ret;
1391         }
1392 #endif
1393 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394         case MRT_TABLE:
1395         {
1396                 u32 v;
1397 
1398                 if (optlen != sizeof(u32))
1399                         return -EINVAL;
1400                 if (get_user(v, (u32 __user *)optval))
1401                         return -EFAULT;
1402 
1403                 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404                 if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405                         return -EINVAL;
1406 
1407                 rtnl_lock();
1408                 ret = 0;
1409                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410                         ret = -EBUSY;
1411                 } else {
1412                         if (!ipmr_new_table(net, v))
1413                                 ret = -ENOMEM;
1414                         else
1415                                 raw_sk(sk)->ipmr_table = v;
1416                 }
1417                 rtnl_unlock();
1418                 return ret;
1419         }
1420 #endif
1421         /*
1422          *      Spurious command, or MRT_VERSION which you cannot
1423          *      set.
1424          */
1425         default:
1426                 return -ENOPROTOOPT;
1427         }
1428 }
1429 
1430 /*
1431  *      Getsock opt support for the multicast routing system.
1432  */
1433 
1434 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1435 {
1436         int olr;
1437         int val;
1438         struct net *net = sock_net(sk);
1439         struct mr_table *mrt;
1440 
1441         if (sk->sk_type != SOCK_RAW ||
1442             inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443                 return -EOPNOTSUPP;
1444 
1445         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446         if (mrt == NULL)
1447                 return -ENOENT;
1448 
1449         if (optname != MRT_VERSION &&
1450 #ifdef CONFIG_IP_PIMSM
1451            optname != MRT_PIM &&
1452 #endif
1453            optname != MRT_ASSERT)
1454                 return -ENOPROTOOPT;
1455 
1456         if (get_user(olr, optlen))
1457                 return -EFAULT;
1458 
1459         olr = min_t(unsigned int, olr, sizeof(int));
1460         if (olr < 0)
1461                 return -EINVAL;
1462 
1463         if (put_user(olr, optlen))
1464                 return -EFAULT;
1465         if (optname == MRT_VERSION)
1466                 val = 0x0305;
1467 #ifdef CONFIG_IP_PIMSM
1468         else if (optname == MRT_PIM)
1469                 val = mrt->mroute_do_pim;
1470 #endif
1471         else
1472                 val = mrt->mroute_do_assert;
1473         if (copy_to_user(optval, &val, olr))
1474                 return -EFAULT;
1475         return 0;
1476 }
1477 
1478 /*
1479  *      The IP multicast ioctl support routines.
1480  */
1481 
1482 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483 {
1484         struct sioc_sg_req sr;
1485         struct sioc_vif_req vr;
1486         struct vif_device *vif;
1487         struct mfc_cache *c;
1488         struct net *net = sock_net(sk);
1489         struct mr_table *mrt;
1490 
1491         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492         if (mrt == NULL)
1493                 return -ENOENT;
1494 
1495         switch (cmd) {
1496         case SIOCGETVIFCNT:
1497                 if (copy_from_user(&vr, arg, sizeof(vr)))
1498                         return -EFAULT;
1499                 if (vr.vifi >= mrt->maxvif)
1500                         return -EINVAL;
1501                 read_lock(&mrt_lock);
1502                 vif = &mrt->vif_table[vr.vifi];
1503                 if (VIF_EXISTS(mrt, vr.vifi)) {
1504                         vr.icount = vif->pkt_in;
1505                         vr.ocount = vif->pkt_out;
1506                         vr.ibytes = vif->bytes_in;
1507                         vr.obytes = vif->bytes_out;
1508                         read_unlock(&mrt_lock);
1509 
1510                         if (copy_to_user(arg, &vr, sizeof(vr)))
1511                                 return -EFAULT;
1512                         return 0;
1513                 }
1514                 read_unlock(&mrt_lock);
1515                 return -EADDRNOTAVAIL;
1516         case SIOCGETSGCNT:
1517                 if (copy_from_user(&sr, arg, sizeof(sr)))
1518                         return -EFAULT;
1519 
1520                 rcu_read_lock();
1521                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522                 if (c) {
1523                         sr.pktcnt = c->mfc_un.res.pkt;
1524                         sr.bytecnt = c->mfc_un.res.bytes;
1525                         sr.wrong_if = c->mfc_un.res.wrong_if;
1526                         rcu_read_unlock();
1527 
1528                         if (copy_to_user(arg, &sr, sizeof(sr)))
1529                                 return -EFAULT;
1530                         return 0;
1531                 }
1532                 rcu_read_unlock();
1533                 return -EADDRNOTAVAIL;
1534         default:
1535                 return -ENOIOCTLCMD;
1536         }
1537 }
1538 
1539 #ifdef CONFIG_COMPAT
1540 struct compat_sioc_sg_req {
1541         struct in_addr src;
1542         struct in_addr grp;
1543         compat_ulong_t pktcnt;
1544         compat_ulong_t bytecnt;
1545         compat_ulong_t wrong_if;
1546 };
1547 
1548 struct compat_sioc_vif_req {
1549         vifi_t  vifi;           /* Which iface */
1550         compat_ulong_t icount;
1551         compat_ulong_t ocount;
1552         compat_ulong_t ibytes;
1553         compat_ulong_t obytes;
1554 };
1555 
1556 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557 {
1558         struct compat_sioc_sg_req sr;
1559         struct compat_sioc_vif_req vr;
1560         struct vif_device *vif;
1561         struct mfc_cache *c;
1562         struct net *net = sock_net(sk);
1563         struct mr_table *mrt;
1564 
1565         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566         if (mrt == NULL)
1567                 return -ENOENT;
1568 
1569         switch (cmd) {
1570         case SIOCGETVIFCNT:
1571                 if (copy_from_user(&vr, arg, sizeof(vr)))
1572                         return -EFAULT;
1573                 if (vr.vifi >= mrt->maxvif)
1574                         return -EINVAL;
1575                 read_lock(&mrt_lock);
1576                 vif = &mrt->vif_table[vr.vifi];
1577                 if (VIF_EXISTS(mrt, vr.vifi)) {
1578                         vr.icount = vif->pkt_in;
1579                         vr.ocount = vif->pkt_out;
1580                         vr.ibytes = vif->bytes_in;
1581                         vr.obytes = vif->bytes_out;
1582                         read_unlock(&mrt_lock);
1583 
1584                         if (copy_to_user(arg, &vr, sizeof(vr)))
1585                                 return -EFAULT;
1586                         return 0;
1587                 }
1588                 read_unlock(&mrt_lock);
1589                 return -EADDRNOTAVAIL;
1590         case SIOCGETSGCNT:
1591                 if (copy_from_user(&sr, arg, sizeof(sr)))
1592                         return -EFAULT;
1593 
1594                 rcu_read_lock();
1595                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596                 if (c) {
1597                         sr.pktcnt = c->mfc_un.res.pkt;
1598                         sr.bytecnt = c->mfc_un.res.bytes;
1599                         sr.wrong_if = c->mfc_un.res.wrong_if;
1600                         rcu_read_unlock();
1601 
1602                         if (copy_to_user(arg, &sr, sizeof(sr)))
1603                                 return -EFAULT;
1604                         return 0;
1605                 }
1606                 rcu_read_unlock();
1607                 return -EADDRNOTAVAIL;
1608         default:
1609                 return -ENOIOCTLCMD;
1610         }
1611 }
1612 #endif
1613 
1614 
1615 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616 {
1617         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618         struct net *net = dev_net(dev);
1619         struct mr_table *mrt;
1620         struct vif_device *v;
1621         int ct;
1622 
1623         if (event != NETDEV_UNREGISTER)
1624                 return NOTIFY_DONE;
1625 
1626         ipmr_for_each_table(mrt, net) {
1627                 v = &mrt->vif_table[0];
1628                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629                         if (v->dev == dev)
1630                                 vif_delete(mrt, ct, 1, NULL);
1631                 }
1632         }
1633         return NOTIFY_DONE;
1634 }
1635 
1636 
1637 static struct notifier_block ip_mr_notifier = {
1638         .notifier_call = ipmr_device_event,
1639 };
1640 
1641 /*
1642  *      Encapsulate a packet by attaching a valid IPIP header to it.
1643  *      This avoids tunnel drivers and other mess and gives us the speed so
1644  *      important for multicast video.
1645  */
1646 
1647 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1648 {
1649         struct iphdr *iph;
1650         const struct iphdr *old_iph = ip_hdr(skb);
1651 
1652         skb_push(skb, sizeof(struct iphdr));
1653         skb->transport_header = skb->network_header;
1654         skb_reset_network_header(skb);
1655         iph = ip_hdr(skb);
1656 
1657         iph->version    =       4;
1658         iph->tos        =       old_iph->tos;
1659         iph->ttl        =       old_iph->ttl;
1660         iph->frag_off   =       0;
1661         iph->daddr      =       daddr;
1662         iph->saddr      =       saddr;
1663         iph->protocol   =       IPPROTO_IPIP;
1664         iph->ihl        =       5;
1665         iph->tot_len    =       htons(skb->len);
1666         ip_select_ident(skb, skb_dst(skb), NULL);
1667         ip_send_check(iph);
1668 
1669         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1670         nf_reset(skb);
1671 }
1672 
1673 static inline int ipmr_forward_finish(struct sk_buff *skb)
1674 {
1675         struct ip_options *opt = &(IPCB(skb)->opt);
1676 
1677         IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1678         IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1679 
1680         if (unlikely(opt->optlen))
1681                 ip_forward_options(skb);
1682 
1683         return dst_output(skb);
1684 }
1685 
1686 /*
1687  *      Processing handlers for ipmr_forward
1688  */
1689 
1690 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1691                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
1692 {
1693         const struct iphdr *iph = ip_hdr(skb);
1694         struct vif_device *vif = &mrt->vif_table[vifi];
1695         struct net_device *dev;
1696         struct rtable *rt;
1697         struct flowi4 fl4;
1698         int    encap = 0;
1699 
1700         if (vif->dev == NULL)
1701                 goto out_free;
1702 
1703 #ifdef CONFIG_IP_PIMSM
1704         if (vif->flags & VIFF_REGISTER) {
1705                 vif->pkt_out++;
1706                 vif->bytes_out += skb->len;
1707                 vif->dev->stats.tx_bytes += skb->len;
1708                 vif->dev->stats.tx_packets++;
1709                 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1710                 goto out_free;
1711         }
1712 #endif
1713 
1714         if (vif->flags & VIFF_TUNNEL) {
1715                 rt = ip_route_output_ports(net, &fl4, NULL,
1716                                            vif->remote, vif->local,
1717                                            0, 0,
1718                                            IPPROTO_IPIP,
1719                                            RT_TOS(iph->tos), vif->link);
1720                 if (IS_ERR(rt))
1721                         goto out_free;
1722                 encap = sizeof(struct iphdr);
1723         } else {
1724                 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1725                                            0, 0,
1726                                            IPPROTO_IPIP,
1727                                            RT_TOS(iph->tos), vif->link);
1728                 if (IS_ERR(rt))
1729                         goto out_free;
1730         }
1731 
1732         dev = rt->dst.dev;
1733 
1734         if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1735                 /* Do not fragment multicasts. Alas, IPv4 does not
1736                  * allow to send ICMP, so that packets will disappear
1737                  * to blackhole.
1738                  */
1739 
1740                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1741                 ip_rt_put(rt);
1742                 goto out_free;
1743         }
1744 
1745         encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1746 
1747         if (skb_cow(skb, encap)) {
1748                 ip_rt_put(rt);
1749                 goto out_free;
1750         }
1751 
1752         vif->pkt_out++;
1753         vif->bytes_out += skb->len;
1754 
1755         skb_dst_drop(skb);
1756         skb_dst_set(skb, &rt->dst);
1757         ip_decrease_ttl(ip_hdr(skb));
1758 
1759         /* FIXME: forward and output firewalls used to be called here.
1760          * What do we do with netfilter? -- RR
1761          */
1762         if (vif->flags & VIFF_TUNNEL) {
1763                 ip_encap(skb, vif->local, vif->remote);
1764                 /* FIXME: extra output firewall step used to be here. --RR */
1765                 vif->dev->stats.tx_packets++;
1766                 vif->dev->stats.tx_bytes += skb->len;
1767         }
1768 
1769         IPCB(skb)->flags |= IPSKB_FORWARDED;
1770 
1771         /*
1772          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1773          * not only before forwarding, but after forwarding on all output
1774          * interfaces. It is clear, if mrouter runs a multicasting
1775          * program, it should receive packets not depending to what interface
1776          * program is joined.
1777          * If we will not make it, the program will have to join on all
1778          * interfaces. On the other hand, multihoming host (or router, but
1779          * not mrouter) cannot join to more than one interface - it will
1780          * result in receiving multiple packets.
1781          */
1782         NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1783                 ipmr_forward_finish);
1784         return;
1785 
1786 out_free:
1787         kfree_skb(skb);
1788 }
1789 
1790 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1791 {
1792         int ct;
1793 
1794         for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1795                 if (mrt->vif_table[ct].dev == dev)
1796                         break;
1797         }
1798         return ct;
1799 }
1800 
1801 /* "local" means that we should preserve one skb (for local delivery) */
1802 
1803 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1804                           struct sk_buff *skb, struct mfc_cache *cache,
1805                           int local)
1806 {
1807         int psend = -1;
1808         int vif, ct;
1809         int true_vifi = ipmr_find_vif(mrt, skb->dev);
1810 
1811         vif = cache->mfc_parent;
1812         cache->mfc_un.res.pkt++;
1813         cache->mfc_un.res.bytes += skb->len;
1814 
1815         if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1816                 struct mfc_cache *cache_proxy;
1817 
1818                 /* For an (*,G) entry, we only check that the incomming
1819                  * interface is part of the static tree.
1820                  */
1821                 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1822                 if (cache_proxy &&
1823                     cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1824                         goto forward;
1825         }
1826 
1827         /*
1828          * Wrong interface: drop packet and (maybe) send PIM assert.
1829          */
1830         if (mrt->vif_table[vif].dev != skb->dev) {
1831                 if (rt_is_output_route(skb_rtable(skb))) {
1832                         /* It is our own packet, looped back.
1833                          * Very complicated situation...
1834                          *
1835                          * The best workaround until routing daemons will be
1836                          * fixed is not to redistribute packet, if it was
1837                          * send through wrong interface. It means, that
1838                          * multicast applications WILL NOT work for
1839                          * (S,G), which have default multicast route pointing
1840                          * to wrong oif. In any case, it is not a good
1841                          * idea to use multicasting applications on router.
1842                          */
1843                         goto dont_forward;
1844                 }
1845 
1846                 cache->mfc_un.res.wrong_if++;
1847 
1848                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1849                     /* pimsm uses asserts, when switching from RPT to SPT,
1850                      * so that we cannot check that packet arrived on an oif.
1851                      * It is bad, but otherwise we would need to move pretty
1852                      * large chunk of pimd to kernel. Ough... --ANK
1853                      */
1854                     (mrt->mroute_do_pim ||
1855                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1856                     time_after(jiffies,
1857                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1858                         cache->mfc_un.res.last_assert = jiffies;
1859                         ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1860                 }
1861                 goto dont_forward;
1862         }
1863 
1864 forward:
1865         mrt->vif_table[vif].pkt_in++;
1866         mrt->vif_table[vif].bytes_in += skb->len;
1867 
1868         /*
1869          *      Forward the frame
1870          */
1871         if (cache->mfc_origin == htonl(INADDR_ANY) &&
1872             cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1873                 if (true_vifi >= 0 &&
1874                     true_vifi != cache->mfc_parent &&
1875                     ip_hdr(skb)->ttl >
1876                                 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1877                         /* It's an (*,*) entry and the packet is not coming from
1878                          * the upstream: forward the packet to the upstream
1879                          * only.
1880                          */
1881                         psend = cache->mfc_parent;
1882                         goto last_forward;
1883                 }
1884                 goto dont_forward;
1885         }
1886         for (ct = cache->mfc_un.res.maxvif - 1;
1887              ct >= cache->mfc_un.res.minvif; ct--) {
1888                 /* For (*,G) entry, don't forward to the incoming interface */
1889                 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1890                      ct != true_vifi) &&
1891                     ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1892                         if (psend != -1) {
1893                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1894 
1895                                 if (skb2)
1896                                         ipmr_queue_xmit(net, mrt, skb2, cache,
1897                                                         psend);
1898                         }
1899                         psend = ct;
1900                 }
1901         }
1902 last_forward:
1903         if (psend != -1) {
1904                 if (local) {
1905                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1906 
1907                         if (skb2)
1908                                 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1909                 } else {
1910                         ipmr_queue_xmit(net, mrt, skb, cache, psend);
1911                         return;
1912                 }
1913         }
1914 
1915 dont_forward:
1916         if (!local)
1917                 kfree_skb(skb);
1918 }
1919 
1920 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1921 {
1922         struct rtable *rt = skb_rtable(skb);
1923         struct iphdr *iph = ip_hdr(skb);
1924         struct flowi4 fl4 = {
1925                 .daddr = iph->daddr,
1926                 .saddr = iph->saddr,
1927                 .flowi4_tos = RT_TOS(iph->tos),
1928                 .flowi4_oif = (rt_is_output_route(rt) ?
1929                                skb->dev->ifindex : 0),
1930                 .flowi4_iif = (rt_is_output_route(rt) ?
1931                                LOOPBACK_IFINDEX :
1932                                skb->dev->ifindex),
1933                 .flowi4_mark = skb->mark,
1934         };
1935         struct mr_table *mrt;
1936         int err;
1937 
1938         err = ipmr_fib_lookup(net, &fl4, &mrt);
1939         if (err)
1940                 return ERR_PTR(err);
1941         return mrt;
1942 }
1943 
1944 /*
1945  *      Multicast packets for forwarding arrive here
1946  *      Called with rcu_read_lock();
1947  */
1948 
1949 int ip_mr_input(struct sk_buff *skb)
1950 {
1951         struct mfc_cache *cache;
1952         struct net *net = dev_net(skb->dev);
1953         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1954         struct mr_table *mrt;
1955 
1956         /* Packet is looped back after forward, it should not be
1957          * forwarded second time, but still can be delivered locally.
1958          */
1959         if (IPCB(skb)->flags & IPSKB_FORWARDED)
1960                 goto dont_forward;
1961 
1962         mrt = ipmr_rt_fib_lookup(net, skb);
1963         if (IS_ERR(mrt)) {
1964                 kfree_skb(skb);
1965                 return PTR_ERR(mrt);
1966         }
1967         if (!local) {
1968                 if (IPCB(skb)->opt.router_alert) {
1969                         if (ip_call_ra_chain(skb))
1970                                 return 0;
1971                 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1972                         /* IGMPv1 (and broken IGMPv2 implementations sort of
1973                          * Cisco IOS <= 11.2(8)) do not put router alert
1974                          * option to IGMP packets destined to routable
1975                          * groups. It is very bad, because it means
1976                          * that we can forward NO IGMP messages.
1977                          */
1978                         struct sock *mroute_sk;
1979 
1980                         mroute_sk = rcu_dereference(mrt->mroute_sk);
1981                         if (mroute_sk) {
1982                                 nf_reset(skb);
1983                                 raw_rcv(mroute_sk, skb);
1984                                 return 0;
1985                         }
1986                     }
1987         }
1988 
1989         /* already under rcu_read_lock() */
1990         cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1991         if (cache == NULL) {
1992                 int vif = ipmr_find_vif(mrt, skb->dev);
1993 
1994                 if (vif >= 0)
1995                         cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1996                                                     vif);
1997         }
1998 
1999         /*
2000          *      No usable cache entry
2001          */
2002         if (cache == NULL) {
2003                 int vif;
2004 
2005                 if (local) {
2006                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2007                         ip_local_deliver(skb);
2008                         if (skb2 == NULL)
2009                                 return -ENOBUFS;
2010                         skb = skb2;
2011                 }
2012 
2013                 read_lock(&mrt_lock);
2014                 vif = ipmr_find_vif(mrt, skb->dev);
2015                 if (vif >= 0) {
2016                         int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2017                         read_unlock(&mrt_lock);
2018 
2019                         return err2;
2020                 }
2021                 read_unlock(&mrt_lock);
2022                 kfree_skb(skb);
2023                 return -ENODEV;
2024         }
2025 
2026         read_lock(&mrt_lock);
2027         ip_mr_forward(net, mrt, skb, cache, local);
2028         read_unlock(&mrt_lock);
2029 
2030         if (local)
2031                 return ip_local_deliver(skb);
2032 
2033         return 0;
2034 
2035 dont_forward:
2036         if (local)
2037                 return ip_local_deliver(skb);
2038         kfree_skb(skb);
2039         return 0;
2040 }
2041 
2042 #ifdef CONFIG_IP_PIMSM
2043 /* called with rcu_read_lock() */
2044 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2045                      unsigned int pimlen)
2046 {
2047         struct net_device *reg_dev = NULL;
2048         struct iphdr *encap;
2049 
2050         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2051         /*
2052          * Check that:
2053          * a. packet is really sent to a multicast group
2054          * b. packet is not a NULL-REGISTER
2055          * c. packet is not truncated
2056          */
2057         if (!ipv4_is_multicast(encap->daddr) ||
2058             encap->tot_len == 0 ||
2059             ntohs(encap->tot_len) + pimlen > skb->len)
2060                 return 1;
2061 
2062         read_lock(&mrt_lock);
2063         if (mrt->mroute_reg_vif_num >= 0)
2064                 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2065         read_unlock(&mrt_lock);
2066 
2067         if (reg_dev == NULL)
2068                 return 1;
2069 
2070         skb->mac_header = skb->network_header;
2071         skb_pull(skb, (u8 *)encap - skb->data);
2072         skb_reset_network_header(skb);
2073         skb->protocol = htons(ETH_P_IP);
2074         skb->ip_summed = CHECKSUM_NONE;
2075 
2076         skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2077 
2078         netif_rx(skb);
2079 
2080         return NET_RX_SUCCESS;
2081 }
2082 #endif
2083 
2084 #ifdef CONFIG_IP_PIMSM_V1
2085 /*
2086  * Handle IGMP messages of PIMv1
2087  */
2088 
2089 int pim_rcv_v1(struct sk_buff *skb)
2090 {
2091         struct igmphdr *pim;
2092         struct net *net = dev_net(skb->dev);
2093         struct mr_table *mrt;
2094 
2095         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2096                 goto drop;
2097 
2098         pim = igmp_hdr(skb);
2099 
2100         mrt = ipmr_rt_fib_lookup(net, skb);
2101         if (IS_ERR(mrt))
2102                 goto drop;
2103         if (!mrt->mroute_do_pim ||
2104             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2105                 goto drop;
2106 
2107         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2108 drop:
2109                 kfree_skb(skb);
2110         }
2111         return 0;
2112 }
2113 #endif
2114 
2115 #ifdef CONFIG_IP_PIMSM_V2
2116 static int pim_rcv(struct sk_buff *skb)
2117 {
2118         struct pimreghdr *pim;
2119         struct net *net = dev_net(skb->dev);
2120         struct mr_table *mrt;
2121 
2122         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2123                 goto drop;
2124 
2125         pim = (struct pimreghdr *)skb_transport_header(skb);
2126         if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2127             (pim->flags & PIM_NULL_REGISTER) ||
2128             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2129              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2130                 goto drop;
2131 
2132         mrt = ipmr_rt_fib_lookup(net, skb);
2133         if (IS_ERR(mrt))
2134                 goto drop;
2135         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2136 drop:
2137                 kfree_skb(skb);
2138         }
2139         return 0;
2140 }
2141 #endif
2142 
2143 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2144                               struct mfc_cache *c, struct rtmsg *rtm)
2145 {
2146         int ct;
2147         struct rtnexthop *nhp;
2148         struct nlattr *mp_attr;
2149         struct rta_mfc_stats mfcs;
2150 
2151         /* If cache is unresolved, don't try to parse IIF and OIF */
2152         if (c->mfc_parent >= MAXVIFS)
2153                 return -ENOENT;
2154 
2155         if (VIF_EXISTS(mrt, c->mfc_parent) &&
2156             nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2157                 return -EMSGSIZE;
2158 
2159         if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2160                 return -EMSGSIZE;
2161 
2162         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2163                 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2164                         if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2165                                 nla_nest_cancel(skb, mp_attr);
2166                                 return -EMSGSIZE;
2167                         }
2168 
2169                         nhp->rtnh_flags = 0;
2170                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2171                         nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2172                         nhp->rtnh_len = sizeof(*nhp);
2173                 }
2174         }
2175 
2176         nla_nest_end(skb, mp_attr);
2177 
2178         mfcs.mfcs_packets = c->mfc_un.res.pkt;
2179         mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2180         mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2181         if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2182                 return -EMSGSIZE;
2183 
2184         rtm->rtm_type = RTN_MULTICAST;
2185         return 1;
2186 }
2187 
2188 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2189                    __be32 saddr, __be32 daddr,
2190                    struct rtmsg *rtm, int nowait)
2191 {
2192         struct mfc_cache *cache;
2193         struct mr_table *mrt;
2194         int err;
2195 
2196         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2197         if (mrt == NULL)
2198                 return -ENOENT;
2199 
2200         rcu_read_lock();
2201         cache = ipmr_cache_find(mrt, saddr, daddr);
2202         if (cache == NULL && skb->dev) {
2203                 int vif = ipmr_find_vif(mrt, skb->dev);
2204 
2205                 if (vif >= 0)
2206                         cache = ipmr_cache_find_any(mrt, daddr, vif);
2207         }
2208         if (cache == NULL) {
2209                 struct sk_buff *skb2;
2210                 struct iphdr *iph;
2211                 struct net_device *dev;
2212                 int vif = -1;
2213 
2214                 if (nowait) {
2215                         rcu_read_unlock();
2216                         return -EAGAIN;
2217                 }
2218 
2219                 dev = skb->dev;
2220                 read_lock(&mrt_lock);
2221                 if (dev)
2222                         vif = ipmr_find_vif(mrt, dev);
2223                 if (vif < 0) {
2224                         read_unlock(&mrt_lock);
2225                         rcu_read_unlock();
2226                         return -ENODEV;
2227                 }
2228                 skb2 = skb_clone(skb, GFP_ATOMIC);
2229                 if (!skb2) {
2230                         read_unlock(&mrt_lock);
2231                         rcu_read_unlock();
2232                         return -ENOMEM;
2233                 }
2234 
2235                 skb_push(skb2, sizeof(struct iphdr));
2236                 skb_reset_network_header(skb2);
2237                 iph = ip_hdr(skb2);
2238                 iph->ihl = sizeof(struct iphdr) >> 2;
2239                 iph->saddr = saddr;
2240                 iph->daddr = daddr;
2241                 iph->version = 0;
2242                 err = ipmr_cache_unresolved(mrt, vif, skb2);
2243                 read_unlock(&mrt_lock);
2244                 rcu_read_unlock();
2245                 return err;
2246         }
2247 
2248         read_lock(&mrt_lock);
2249         if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2250                 cache->mfc_flags |= MFC_NOTIFY;
2251         err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2252         read_unlock(&mrt_lock);
2253         rcu_read_unlock();
2254         return err;
2255 }
2256 
2257 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2258                             u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2259                             int flags)
2260 {
2261         struct nlmsghdr *nlh;
2262         struct rtmsg *rtm;
2263         int err;
2264 
2265         nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2266         if (nlh == NULL)
2267                 return -EMSGSIZE;
2268 
2269         rtm = nlmsg_data(nlh);
2270         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2271         rtm->rtm_dst_len  = 32;
2272         rtm->rtm_src_len  = 32;
2273         rtm->rtm_tos      = 0;
2274         rtm->rtm_table    = mrt->id;
2275         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2276                 goto nla_put_failure;
2277         rtm->rtm_type     = RTN_MULTICAST;
2278         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2279         if (c->mfc_flags & MFC_STATIC)
2280                 rtm->rtm_protocol = RTPROT_STATIC;
2281         else
2282                 rtm->rtm_protocol = RTPROT_MROUTED;
2283         rtm->rtm_flags    = 0;
2284 
2285         if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2286             nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2287                 goto nla_put_failure;
2288         err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2289         /* do not break the dump if cache is unresolved */
2290         if (err < 0 && err != -ENOENT)
2291                 goto nla_put_failure;
2292 
2293         return nlmsg_end(skb, nlh);
2294 
2295 nla_put_failure:
2296         nlmsg_cancel(skb, nlh);
2297         return -EMSGSIZE;
2298 }
2299 
2300 static size_t mroute_msgsize(bool unresolved, int maxvif)
2301 {
2302         size_t len =
2303                 NLMSG_ALIGN(sizeof(struct rtmsg))
2304                 + nla_total_size(4)     /* RTA_TABLE */
2305                 + nla_total_size(4)     /* RTA_SRC */
2306                 + nla_total_size(4)     /* RTA_DST */
2307                 ;
2308 
2309         if (!unresolved)
2310                 len = len
2311                       + nla_total_size(4)       /* RTA_IIF */
2312                       + nla_total_size(0)       /* RTA_MULTIPATH */
2313                       + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2314                                                 /* RTA_MFC_STATS */
2315                       + nla_total_size(sizeof(struct rta_mfc_stats))
2316                 ;
2317 
2318         return len;
2319 }
2320 
2321 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2322                                  int cmd)
2323 {
2324         struct net *net = read_pnet(&mrt->net);
2325         struct sk_buff *skb;
2326         int err = -ENOBUFS;
2327 
2328         skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2329                         GFP_ATOMIC);
2330         if (skb == NULL)
2331                 goto errout;
2332 
2333         err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2334         if (err < 0)
2335                 goto errout;
2336 
2337         rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2338         return;
2339 
2340 errout:
2341         kfree_skb(skb);
2342         if (err < 0)
2343                 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2344 }
2345 
2346 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2347 {
2348         struct net *net = sock_net(skb->sk);
2349         struct mr_table *mrt;
2350         struct mfc_cache *mfc;
2351         unsigned int t = 0, s_t;
2352         unsigned int h = 0, s_h;
2353         unsigned int e = 0, s_e;
2354 
2355         s_t = cb->args[0];
2356         s_h = cb->args[1];
2357         s_e = cb->args[2];
2358 
2359         rcu_read_lock();
2360         ipmr_for_each_table(mrt, net) {
2361                 if (t < s_t)
2362                         goto next_table;
2363                 if (t > s_t)
2364                         s_h = 0;
2365                 for (h = s_h; h < MFC_LINES; h++) {
2366                         list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2367                                 if (e < s_e)
2368                                         goto next_entry;
2369                                 if (ipmr_fill_mroute(mrt, skb,
2370                                                      NETLINK_CB(cb->skb).portid,
2371                                                      cb->nlh->nlmsg_seq,
2372                                                      mfc, RTM_NEWROUTE,
2373                                                      NLM_F_MULTI) < 0)
2374                                         goto done;
2375 next_entry:
2376                                 e++;
2377                         }
2378                         e = s_e = 0;
2379                 }
2380                 spin_lock_bh(&mfc_unres_lock);
2381                 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2382                         if (e < s_e)
2383                                 goto next_entry2;
2384                         if (ipmr_fill_mroute(mrt, skb,
2385                                              NETLINK_CB(cb->skb).portid,
2386                                              cb->nlh->nlmsg_seq,
2387                                              mfc, RTM_NEWROUTE,
2388                                              NLM_F_MULTI) < 0) {
2389                                 spin_unlock_bh(&mfc_unres_lock);
2390                                 goto done;
2391                         }
2392 next_entry2:
2393                         e++;
2394                 }
2395                 spin_unlock_bh(&mfc_unres_lock);
2396                 e = s_e = 0;
2397                 s_h = 0;
2398 next_table:
2399                 t++;
2400         }
2401 done:
2402         rcu_read_unlock();
2403 
2404         cb->args[2] = e;
2405         cb->args[1] = h;
2406         cb->args[0] = t;
2407 
2408         return skb->len;
2409 }
2410 
2411 #ifdef CONFIG_PROC_FS
2412 /*
2413  *      The /proc interfaces to multicast routing :
2414  *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2415  */
2416 struct ipmr_vif_iter {
2417         struct seq_net_private p;
2418         struct mr_table *mrt;
2419         int ct;
2420 };
2421 
2422 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2423                                            struct ipmr_vif_iter *iter,
2424                                            loff_t pos)
2425 {
2426         struct mr_table *mrt = iter->mrt;
2427 
2428         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2429                 if (!VIF_EXISTS(mrt, iter->ct))
2430                         continue;
2431                 if (pos-- == 0)
2432                         return &mrt->vif_table[iter->ct];
2433         }
2434         return NULL;
2435 }
2436 
2437 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2438         __acquires(mrt_lock)
2439 {
2440         struct ipmr_vif_iter *iter = seq->private;
2441         struct net *net = seq_file_net(seq);
2442         struct mr_table *mrt;
2443 
2444         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2445         if (mrt == NULL)
2446                 return ERR_PTR(-ENOENT);
2447 
2448         iter->mrt = mrt;
2449 
2450         read_lock(&mrt_lock);
2451         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2452                 : SEQ_START_TOKEN;
2453 }
2454 
2455 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456 {
2457         struct ipmr_vif_iter *iter = seq->private;
2458         struct net *net = seq_file_net(seq);
2459         struct mr_table *mrt = iter->mrt;
2460 
2461         ++*pos;
2462         if (v == SEQ_START_TOKEN)
2463                 return ipmr_vif_seq_idx(net, iter, 0);
2464 
2465         while (++iter->ct < mrt->maxvif) {
2466                 if (!VIF_EXISTS(mrt, iter->ct))
2467                         continue;
2468                 return &mrt->vif_table[iter->ct];
2469         }
2470         return NULL;
2471 }
2472 
2473 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2474         __releases(mrt_lock)
2475 {
2476         read_unlock(&mrt_lock);
2477 }
2478 
2479 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2480 {
2481         struct ipmr_vif_iter *iter = seq->private;
2482         struct mr_table *mrt = iter->mrt;
2483 
2484         if (v == SEQ_START_TOKEN) {
2485                 seq_puts(seq,
2486                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2487         } else {
2488                 const struct vif_device *vif = v;
2489                 const char *name =  vif->dev ? vif->dev->name : "none";
2490 
2491                 seq_printf(seq,
2492                            "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2493                            vif - mrt->vif_table,
2494                            name, vif->bytes_in, vif->pkt_in,
2495                            vif->bytes_out, vif->pkt_out,
2496                            vif->flags, vif->local, vif->remote);
2497         }
2498         return 0;
2499 }
2500 
2501 static const struct seq_operations ipmr_vif_seq_ops = {
2502         .start = ipmr_vif_seq_start,
2503         .next  = ipmr_vif_seq_next,
2504         .stop  = ipmr_vif_seq_stop,
2505         .show  = ipmr_vif_seq_show,
2506 };
2507 
2508 static int ipmr_vif_open(struct inode *inode, struct file *file)
2509 {
2510         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2511                             sizeof(struct ipmr_vif_iter));
2512 }
2513 
2514 static const struct file_operations ipmr_vif_fops = {
2515         .owner   = THIS_MODULE,
2516         .open    = ipmr_vif_open,
2517         .read    = seq_read,
2518         .llseek  = seq_lseek,
2519         .release = seq_release_net,
2520 };
2521 
2522 struct ipmr_mfc_iter {
2523         struct seq_net_private p;
2524         struct mr_table *mrt;
2525         struct list_head *cache;
2526         int ct;
2527 };
2528 
2529 
2530 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2531                                           struct ipmr_mfc_iter *it, loff_t pos)
2532 {
2533         struct mr_table *mrt = it->mrt;
2534         struct mfc_cache *mfc;
2535 
2536         rcu_read_lock();
2537         for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2538                 it->cache = &mrt->mfc_cache_array[it->ct];
2539                 list_for_each_entry_rcu(mfc, it->cache, list)
2540                         if (pos-- == 0)
2541                                 return mfc;
2542         }
2543         rcu_read_unlock();
2544 
2545         spin_lock_bh(&mfc_unres_lock);
2546         it->cache = &mrt->mfc_unres_queue;
2547         list_for_each_entry(mfc, it->cache, list)
2548                 if (pos-- == 0)
2549                         return mfc;
2550         spin_unlock_bh(&mfc_unres_lock);
2551 
2552         it->cache = NULL;
2553         return NULL;
2554 }
2555 
2556 
2557 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2558 {
2559         struct ipmr_mfc_iter *it = seq->private;
2560         struct net *net = seq_file_net(seq);
2561         struct mr_table *mrt;
2562 
2563         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2564         if (mrt == NULL)
2565                 return ERR_PTR(-ENOENT);
2566 
2567         it->mrt = mrt;
2568         it->cache = NULL;
2569         it->ct = 0;
2570         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2571                 : SEQ_START_TOKEN;
2572 }
2573 
2574 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2575 {
2576         struct mfc_cache *mfc = v;
2577         struct ipmr_mfc_iter *it = seq->private;
2578         struct net *net = seq_file_net(seq);
2579         struct mr_table *mrt = it->mrt;
2580 
2581         ++*pos;
2582 
2583         if (v == SEQ_START_TOKEN)
2584                 return ipmr_mfc_seq_idx(net, seq->private, 0);
2585 
2586         if (mfc->list.next != it->cache)
2587                 return list_entry(mfc->list.next, struct mfc_cache, list);
2588 
2589         if (it->cache == &mrt->mfc_unres_queue)
2590                 goto end_of_list;
2591 
2592         BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2593 
2594         while (++it->ct < MFC_LINES) {
2595                 it->cache = &mrt->mfc_cache_array[it->ct];
2596                 if (list_empty(it->cache))
2597                         continue;
2598                 return list_first_entry(it->cache, struct mfc_cache, list);
2599         }
2600 
2601         /* exhausted cache_array, show unresolved */
2602         rcu_read_unlock();
2603         it->cache = &mrt->mfc_unres_queue;
2604         it->ct = 0;
2605 
2606         spin_lock_bh(&mfc_unres_lock);
2607         if (!list_empty(it->cache))
2608                 return list_first_entry(it->cache, struct mfc_cache, list);
2609 
2610 end_of_list:
2611         spin_unlock_bh(&mfc_unres_lock);
2612         it->cache = NULL;
2613 
2614         return NULL;
2615 }
2616 
2617 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2618 {
2619         struct ipmr_mfc_iter *it = seq->private;
2620         struct mr_table *mrt = it->mrt;
2621 
2622         if (it->cache == &mrt->mfc_unres_queue)
2623                 spin_unlock_bh(&mfc_unres_lock);
2624         else if (it->cache == &mrt->mfc_cache_array[it->ct])
2625                 rcu_read_unlock();
2626 }
2627 
2628 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2629 {
2630         int n;
2631 
2632         if (v == SEQ_START_TOKEN) {
2633                 seq_puts(seq,
2634                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2635         } else {
2636                 const struct mfc_cache *mfc = v;
2637                 const struct ipmr_mfc_iter *it = seq->private;
2638                 const struct mr_table *mrt = it->mrt;
2639 
2640                 seq_printf(seq, "%08X %08X %-3hd",
2641                            (__force u32) mfc->mfc_mcastgrp,
2642                            (__force u32) mfc->mfc_origin,
2643                            mfc->mfc_parent);
2644 
2645                 if (it->cache != &mrt->mfc_unres_queue) {
2646                         seq_printf(seq, " %8lu %8lu %8lu",
2647                                    mfc->mfc_un.res.pkt,
2648                                    mfc->mfc_un.res.bytes,
2649                                    mfc->mfc_un.res.wrong_if);
2650                         for (n = mfc->mfc_un.res.minvif;
2651                              n < mfc->mfc_un.res.maxvif; n++) {
2652                                 if (VIF_EXISTS(mrt, n) &&
2653                                     mfc->mfc_un.res.ttls[n] < 255)
2654                                         seq_printf(seq,
2655                                            " %2d:%-3d",
2656                                            n, mfc->mfc_un.res.ttls[n]);
2657                         }
2658                 } else {
2659                         /* unresolved mfc_caches don't contain
2660                          * pkt, bytes and wrong_if values
2661                          */
2662                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2663                 }
2664                 seq_putc(seq, '\n');
2665         }
2666         return 0;
2667 }
2668 
2669 static const struct seq_operations ipmr_mfc_seq_ops = {
2670         .start = ipmr_mfc_seq_start,
2671         .next  = ipmr_mfc_seq_next,
2672         .stop  = ipmr_mfc_seq_stop,
2673         .show  = ipmr_mfc_seq_show,
2674 };
2675 
2676 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2677 {
2678         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2679                             sizeof(struct ipmr_mfc_iter));
2680 }
2681 
2682 static const struct file_operations ipmr_mfc_fops = {
2683         .owner   = THIS_MODULE,
2684         .open    = ipmr_mfc_open,
2685         .read    = seq_read,
2686         .llseek  = seq_lseek,
2687         .release = seq_release_net,
2688 };
2689 #endif
2690 
2691 #ifdef CONFIG_IP_PIMSM_V2
2692 static const struct net_protocol pim_protocol = {
2693         .handler        =       pim_rcv,
2694         .netns_ok       =       1,
2695 };
2696 #endif
2697 
2698 
2699 /*
2700  *      Setup for IP multicast routing
2701  */
2702 static int __net_init ipmr_net_init(struct net *net)
2703 {
2704         int err;
2705 
2706         err = ipmr_rules_init(net);
2707         if (err < 0)
2708                 goto fail;
2709 
2710 #ifdef CONFIG_PROC_FS
2711         err = -ENOMEM;
2712         if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2713                 goto proc_vif_fail;
2714         if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2715                 goto proc_cache_fail;
2716 #endif
2717         return 0;
2718 
2719 #ifdef CONFIG_PROC_FS
2720 proc_cache_fail:
2721         remove_proc_entry("ip_mr_vif", net->proc_net);
2722 proc_vif_fail:
2723         ipmr_rules_exit(net);
2724 #endif
2725 fail:
2726         return err;
2727 }
2728 
2729 static void __net_exit ipmr_net_exit(struct net *net)
2730 {
2731 #ifdef CONFIG_PROC_FS
2732         remove_proc_entry("ip_mr_cache", net->proc_net);
2733         remove_proc_entry("ip_mr_vif", net->proc_net);
2734 #endif
2735         ipmr_rules_exit(net);
2736 }
2737 
2738 static struct pernet_operations ipmr_net_ops = {
2739         .init = ipmr_net_init,
2740         .exit = ipmr_net_exit,
2741 };
2742 
2743 int __init ip_mr_init(void)
2744 {
2745         int err;
2746 
2747         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2748                                        sizeof(struct mfc_cache),
2749                                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2750                                        NULL);
2751         if (!mrt_cachep)
2752                 return -ENOMEM;
2753 
2754         err = register_pernet_subsys(&ipmr_net_ops);
2755         if (err)
2756                 goto reg_pernet_fail;
2757 
2758         err = register_netdevice_notifier(&ip_mr_notifier);
2759         if (err)
2760                 goto reg_notif_fail;
2761 #ifdef CONFIG_IP_PIMSM_V2
2762         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2763                 pr_err("%s: can't add PIM protocol\n", __func__);
2764                 err = -EAGAIN;
2765                 goto add_proto_fail;
2766         }
2767 #endif
2768         rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2769                       NULL, ipmr_rtm_dumproute, NULL);
2770         return 0;
2771 
2772 #ifdef CONFIG_IP_PIMSM_V2
2773 add_proto_fail:
2774         unregister_netdevice_notifier(&ip_mr_notifier);
2775 #endif
2776 reg_notif_fail:
2777         unregister_pernet_subsys(&ipmr_net_ops);
2778 reg_pernet_fail:
2779         kmem_cache_destroy(mrt_cachep);
2780         return err;
2781 }
2782 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us