Version:  2.0.40 2.2.26 2.4.37 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19

Linux/net/dsa/dsa.c

  1 /*
  2  * net/dsa/dsa.c - Hardware switch handling
  3  * Copyright (c) 2008-2009 Marvell Semiconductor
  4  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
  5  *
  6  * This program is free software; you can redistribute it and/or modify
  7  * it under the terms of the GNU General Public License as published by
  8  * the Free Software Foundation; either version 2 of the License, or
  9  * (at your option) any later version.
 10  */
 11 
 12 #include <linux/ctype.h>
 13 #include <linux/device.h>
 14 #include <linux/hwmon.h>
 15 #include <linux/list.h>
 16 #include <linux/platform_device.h>
 17 #include <linux/slab.h>
 18 #include <linux/module.h>
 19 #include <net/dsa.h>
 20 #include <linux/of.h>
 21 #include <linux/of_mdio.h>
 22 #include <linux/of_platform.h>
 23 #include <linux/sysfs.h>
 24 #include "dsa_priv.h"
 25 
 26 char dsa_driver_version[] = "0.1";
 27 
 28 
 29 /* switch driver registration ***********************************************/
 30 static DEFINE_MUTEX(dsa_switch_drivers_mutex);
 31 static LIST_HEAD(dsa_switch_drivers);
 32 
 33 void register_switch_driver(struct dsa_switch_driver *drv)
 34 {
 35         mutex_lock(&dsa_switch_drivers_mutex);
 36         list_add_tail(&drv->list, &dsa_switch_drivers);
 37         mutex_unlock(&dsa_switch_drivers_mutex);
 38 }
 39 EXPORT_SYMBOL_GPL(register_switch_driver);
 40 
 41 void unregister_switch_driver(struct dsa_switch_driver *drv)
 42 {
 43         mutex_lock(&dsa_switch_drivers_mutex);
 44         list_del_init(&drv->list);
 45         mutex_unlock(&dsa_switch_drivers_mutex);
 46 }
 47 EXPORT_SYMBOL_GPL(unregister_switch_driver);
 48 
 49 static struct dsa_switch_driver *
 50 dsa_switch_probe(struct device *host_dev, int sw_addr, char **_name)
 51 {
 52         struct dsa_switch_driver *ret;
 53         struct list_head *list;
 54         char *name;
 55 
 56         ret = NULL;
 57         name = NULL;
 58 
 59         mutex_lock(&dsa_switch_drivers_mutex);
 60         list_for_each(list, &dsa_switch_drivers) {
 61                 struct dsa_switch_driver *drv;
 62 
 63                 drv = list_entry(list, struct dsa_switch_driver, list);
 64 
 65                 name = drv->probe(host_dev, sw_addr);
 66                 if (name != NULL) {
 67                         ret = drv;
 68                         break;
 69                 }
 70         }
 71         mutex_unlock(&dsa_switch_drivers_mutex);
 72 
 73         *_name = name;
 74 
 75         return ret;
 76 }
 77 
 78 /* hwmon support ************************************************************/
 79 
 80 #ifdef CONFIG_NET_DSA_HWMON
 81 
 82 static ssize_t temp1_input_show(struct device *dev,
 83                                 struct device_attribute *attr, char *buf)
 84 {
 85         struct dsa_switch *ds = dev_get_drvdata(dev);
 86         int temp, ret;
 87 
 88         ret = ds->drv->get_temp(ds, &temp);
 89         if (ret < 0)
 90                 return ret;
 91 
 92         return sprintf(buf, "%d\n", temp * 1000);
 93 }
 94 static DEVICE_ATTR_RO(temp1_input);
 95 
 96 static ssize_t temp1_max_show(struct device *dev,
 97                               struct device_attribute *attr, char *buf)
 98 {
 99         struct dsa_switch *ds = dev_get_drvdata(dev);
100         int temp, ret;
101 
102         ret = ds->drv->get_temp_limit(ds, &temp);
103         if (ret < 0)
104                 return ret;
105 
106         return sprintf(buf, "%d\n", temp * 1000);
107 }
108 
109 static ssize_t temp1_max_store(struct device *dev,
110                                struct device_attribute *attr, const char *buf,
111                                size_t count)
112 {
113         struct dsa_switch *ds = dev_get_drvdata(dev);
114         int temp, ret;
115 
116         ret = kstrtoint(buf, 0, &temp);
117         if (ret < 0)
118                 return ret;
119 
120         ret = ds->drv->set_temp_limit(ds, DIV_ROUND_CLOSEST(temp, 1000));
121         if (ret < 0)
122                 return ret;
123 
124         return count;
125 }
126 static DEVICE_ATTR(temp1_max, S_IRUGO, temp1_max_show, temp1_max_store);
127 
128 static ssize_t temp1_max_alarm_show(struct device *dev,
129                                     struct device_attribute *attr, char *buf)
130 {
131         struct dsa_switch *ds = dev_get_drvdata(dev);
132         bool alarm;
133         int ret;
134 
135         ret = ds->drv->get_temp_alarm(ds, &alarm);
136         if (ret < 0)
137                 return ret;
138 
139         return sprintf(buf, "%d\n", alarm);
140 }
141 static DEVICE_ATTR_RO(temp1_max_alarm);
142 
143 static struct attribute *dsa_hwmon_attrs[] = {
144         &dev_attr_temp1_input.attr,     /* 0 */
145         &dev_attr_temp1_max.attr,       /* 1 */
146         &dev_attr_temp1_max_alarm.attr, /* 2 */
147         NULL
148 };
149 
150 static umode_t dsa_hwmon_attrs_visible(struct kobject *kobj,
151                                        struct attribute *attr, int index)
152 {
153         struct device *dev = container_of(kobj, struct device, kobj);
154         struct dsa_switch *ds = dev_get_drvdata(dev);
155         struct dsa_switch_driver *drv = ds->drv;
156         umode_t mode = attr->mode;
157 
158         if (index == 1) {
159                 if (!drv->get_temp_limit)
160                         mode = 0;
161                 else if (drv->set_temp_limit)
162                         mode |= S_IWUSR;
163         } else if (index == 2 && !drv->get_temp_alarm) {
164                 mode = 0;
165         }
166         return mode;
167 }
168 
169 static const struct attribute_group dsa_hwmon_group = {
170         .attrs = dsa_hwmon_attrs,
171         .is_visible = dsa_hwmon_attrs_visible,
172 };
173 __ATTRIBUTE_GROUPS(dsa_hwmon);
174 
175 #endif /* CONFIG_NET_DSA_HWMON */
176 
177 /* basic switch operations **************************************************/
178 static struct dsa_switch *
179 dsa_switch_setup(struct dsa_switch_tree *dst, int index,
180                  struct device *parent, struct device *host_dev)
181 {
182         struct dsa_chip_data *pd = dst->pd->chip + index;
183         struct dsa_switch_driver *drv;
184         struct dsa_switch *ds;
185         int ret;
186         char *name;
187         int i;
188         bool valid_name_found = false;
189 
190         /*
191          * Probe for switch model.
192          */
193         drv = dsa_switch_probe(host_dev, pd->sw_addr, &name);
194         if (drv == NULL) {
195                 netdev_err(dst->master_netdev, "[%d]: could not detect attached switch\n",
196                            index);
197                 return ERR_PTR(-EINVAL);
198         }
199         netdev_info(dst->master_netdev, "[%d]: detected a %s switch\n",
200                     index, name);
201 
202 
203         /*
204          * Allocate and initialise switch state.
205          */
206         ds = kzalloc(sizeof(*ds) + drv->priv_size, GFP_KERNEL);
207         if (ds == NULL)
208                 return ERR_PTR(-ENOMEM);
209 
210         ds->dst = dst;
211         ds->index = index;
212         ds->pd = dst->pd->chip + index;
213         ds->drv = drv;
214         ds->master_dev = host_dev;
215 
216         /*
217          * Validate supplied switch configuration.
218          */
219         for (i = 0; i < DSA_MAX_PORTS; i++) {
220                 char *name;
221 
222                 name = pd->port_names[i];
223                 if (name == NULL)
224                         continue;
225 
226                 if (!strcmp(name, "cpu")) {
227                         if (dst->cpu_switch != -1) {
228                                 netdev_err(dst->master_netdev,
229                                            "multiple cpu ports?!\n");
230                                 ret = -EINVAL;
231                                 goto out;
232                         }
233                         dst->cpu_switch = index;
234                         dst->cpu_port = i;
235                 } else if (!strcmp(name, "dsa")) {
236                         ds->dsa_port_mask |= 1 << i;
237                 } else {
238                         ds->phys_port_mask |= 1 << i;
239                 }
240                 valid_name_found = true;
241         }
242 
243         if (!valid_name_found && i == DSA_MAX_PORTS) {
244                 ret = -EINVAL;
245                 goto out;
246         }
247 
248         /* Make the built-in MII bus mask match the number of ports,
249          * switch drivers can override this later
250          */
251         ds->phys_mii_mask = ds->phys_port_mask;
252 
253         /*
254          * If the CPU connects to this switch, set the switch tree
255          * tagging protocol to the preferred tagging format of this
256          * switch.
257          */
258         if (dst->cpu_switch == index) {
259                 switch (drv->tag_protocol) {
260 #ifdef CONFIG_NET_DSA_TAG_DSA
261                 case DSA_TAG_PROTO_DSA:
262                         dst->rcv = dsa_netdev_ops.rcv;
263                         break;
264 #endif
265 #ifdef CONFIG_NET_DSA_TAG_EDSA
266                 case DSA_TAG_PROTO_EDSA:
267                         dst->rcv = edsa_netdev_ops.rcv;
268                         break;
269 #endif
270 #ifdef CONFIG_NET_DSA_TAG_TRAILER
271                 case DSA_TAG_PROTO_TRAILER:
272                         dst->rcv = trailer_netdev_ops.rcv;
273                         break;
274 #endif
275 #ifdef CONFIG_NET_DSA_TAG_BRCM
276                 case DSA_TAG_PROTO_BRCM:
277                         dst->rcv = brcm_netdev_ops.rcv;
278                         break;
279 #endif
280                 case DSA_TAG_PROTO_NONE:
281                         break;
282                 default:
283                         ret = -ENOPROTOOPT;
284                         goto out;
285                 }
286 
287                 dst->tag_protocol = drv->tag_protocol;
288         }
289 
290         /*
291          * Do basic register setup.
292          */
293         ret = drv->setup(ds);
294         if (ret < 0)
295                 goto out;
296 
297         ret = drv->set_addr(ds, dst->master_netdev->dev_addr);
298         if (ret < 0)
299                 goto out;
300 
301         ds->slave_mii_bus = mdiobus_alloc();
302         if (ds->slave_mii_bus == NULL) {
303                 ret = -ENOMEM;
304                 goto out;
305         }
306         dsa_slave_mii_bus_init(ds);
307 
308         ret = mdiobus_register(ds->slave_mii_bus);
309         if (ret < 0)
310                 goto out_free;
311 
312 
313         /*
314          * Create network devices for physical switch ports.
315          */
316         for (i = 0; i < DSA_MAX_PORTS; i++) {
317                 struct net_device *slave_dev;
318 
319                 if (!(ds->phys_port_mask & (1 << i)))
320                         continue;
321 
322                 slave_dev = dsa_slave_create(ds, parent, i, pd->port_names[i]);
323                 if (slave_dev == NULL) {
324                         netdev_err(dst->master_netdev, "[%d]: can't create dsa slave device for port %d(%s)\n",
325                                    index, i, pd->port_names[i]);
326                         continue;
327                 }
328 
329                 ds->ports[i] = slave_dev;
330         }
331 
332 #ifdef CONFIG_NET_DSA_HWMON
333         /* If the switch provides a temperature sensor,
334          * register with hardware monitoring subsystem.
335          * Treat registration error as non-fatal and ignore it.
336          */
337         if (drv->get_temp) {
338                 const char *netname = netdev_name(dst->master_netdev);
339                 char hname[IFNAMSIZ + 1];
340                 int i, j;
341 
342                 /* Create valid hwmon 'name' attribute */
343                 for (i = j = 0; i < IFNAMSIZ && netname[i]; i++) {
344                         if (isalnum(netname[i]))
345                                 hname[j++] = netname[i];
346                 }
347                 hname[j] = '\0';
348                 scnprintf(ds->hwmon_name, sizeof(ds->hwmon_name), "%s_dsa%d",
349                           hname, index);
350                 ds->hwmon_dev = hwmon_device_register_with_groups(NULL,
351                                         ds->hwmon_name, ds, dsa_hwmon_groups);
352                 if (IS_ERR(ds->hwmon_dev))
353                         ds->hwmon_dev = NULL;
354         }
355 #endif /* CONFIG_NET_DSA_HWMON */
356 
357         return ds;
358 
359 out_free:
360         mdiobus_free(ds->slave_mii_bus);
361 out:
362         kfree(ds);
363         return ERR_PTR(ret);
364 }
365 
366 static void dsa_switch_destroy(struct dsa_switch *ds)
367 {
368 #ifdef CONFIG_NET_DSA_HWMON
369         if (ds->hwmon_dev)
370                 hwmon_device_unregister(ds->hwmon_dev);
371 #endif
372 }
373 
374 #ifdef CONFIG_PM_SLEEP
375 static int dsa_switch_suspend(struct dsa_switch *ds)
376 {
377         int i, ret = 0;
378 
379         /* Suspend slave network devices */
380         for (i = 0; i < DSA_MAX_PORTS; i++) {
381                 if (!(ds->phys_port_mask & (1 << i)))
382                         continue;
383 
384                 ret = dsa_slave_suspend(ds->ports[i]);
385                 if (ret)
386                         return ret;
387         }
388 
389         if (ds->drv->suspend)
390                 ret = ds->drv->suspend(ds);
391 
392         return ret;
393 }
394 
395 static int dsa_switch_resume(struct dsa_switch *ds)
396 {
397         int i, ret = 0;
398 
399         if (ds->drv->resume)
400                 ret = ds->drv->resume(ds);
401 
402         if (ret)
403                 return ret;
404 
405         /* Resume slave network devices */
406         for (i = 0; i < DSA_MAX_PORTS; i++) {
407                 if (!(ds->phys_port_mask & (1 << i)))
408                         continue;
409 
410                 ret = dsa_slave_resume(ds->ports[i]);
411                 if (ret)
412                         return ret;
413         }
414 
415         return 0;
416 }
417 #endif
418 
419 
420 /* link polling *************************************************************/
421 static void dsa_link_poll_work(struct work_struct *ugly)
422 {
423         struct dsa_switch_tree *dst;
424         int i;
425 
426         dst = container_of(ugly, struct dsa_switch_tree, link_poll_work);
427 
428         for (i = 0; i < dst->pd->nr_chips; i++) {
429                 struct dsa_switch *ds = dst->ds[i];
430 
431                 if (ds != NULL && ds->drv->poll_link != NULL)
432                         ds->drv->poll_link(ds);
433         }
434 
435         mod_timer(&dst->link_poll_timer, round_jiffies(jiffies + HZ));
436 }
437 
438 static void dsa_link_poll_timer(unsigned long _dst)
439 {
440         struct dsa_switch_tree *dst = (void *)_dst;
441 
442         schedule_work(&dst->link_poll_work);
443 }
444 
445 
446 /* platform driver init and cleanup *****************************************/
447 static int dev_is_class(struct device *dev, void *class)
448 {
449         if (dev->class != NULL && !strcmp(dev->class->name, class))
450                 return 1;
451 
452         return 0;
453 }
454 
455 static struct device *dev_find_class(struct device *parent, char *class)
456 {
457         if (dev_is_class(parent, class)) {
458                 get_device(parent);
459                 return parent;
460         }
461 
462         return device_find_child(parent, class, dev_is_class);
463 }
464 
465 struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev)
466 {
467         struct device *d;
468 
469         d = dev_find_class(dev, "mdio_bus");
470         if (d != NULL) {
471                 struct mii_bus *bus;
472 
473                 bus = to_mii_bus(d);
474                 put_device(d);
475 
476                 return bus;
477         }
478 
479         return NULL;
480 }
481 EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus);
482 
483 static struct net_device *dev_to_net_device(struct device *dev)
484 {
485         struct device *d;
486 
487         d = dev_find_class(dev, "net");
488         if (d != NULL) {
489                 struct net_device *nd;
490 
491                 nd = to_net_dev(d);
492                 dev_hold(nd);
493                 put_device(d);
494 
495                 return nd;
496         }
497 
498         return NULL;
499 }
500 
501 #ifdef CONFIG_OF
502 static int dsa_of_setup_routing_table(struct dsa_platform_data *pd,
503                                         struct dsa_chip_data *cd,
504                                         int chip_index,
505                                         struct device_node *link)
506 {
507         int ret;
508         const __be32 *reg;
509         int link_port_addr;
510         int link_sw_addr;
511         struct device_node *parent_sw;
512         int len;
513 
514         parent_sw = of_get_parent(link);
515         if (!parent_sw)
516                 return -EINVAL;
517 
518         reg = of_get_property(parent_sw, "reg", &len);
519         if (!reg || (len != sizeof(*reg) * 2))
520                 return -EINVAL;
521 
522         link_sw_addr = be32_to_cpup(reg + 1);
523 
524         if (link_sw_addr >= pd->nr_chips)
525                 return -EINVAL;
526 
527         /* First time routing table allocation */
528         if (!cd->rtable) {
529                 cd->rtable = kmalloc_array(pd->nr_chips, sizeof(s8),
530                                            GFP_KERNEL);
531                 if (!cd->rtable)
532                         return -ENOMEM;
533 
534                 /* default to no valid uplink/downlink */
535                 memset(cd->rtable, -1, pd->nr_chips * sizeof(s8));
536         }
537 
538         reg = of_get_property(link, "reg", NULL);
539         if (!reg) {
540                 ret = -EINVAL;
541                 goto out;
542         }
543 
544         link_port_addr = be32_to_cpup(reg);
545 
546         cd->rtable[link_sw_addr] = link_port_addr;
547 
548         return 0;
549 out:
550         kfree(cd->rtable);
551         return ret;
552 }
553 
554 static void dsa_of_free_platform_data(struct dsa_platform_data *pd)
555 {
556         int i;
557         int port_index;
558 
559         for (i = 0; i < pd->nr_chips; i++) {
560                 port_index = 0;
561                 while (port_index < DSA_MAX_PORTS) {
562                         kfree(pd->chip[i].port_names[port_index]);
563                         port_index++;
564                 }
565                 kfree(pd->chip[i].rtable);
566         }
567         kfree(pd->chip);
568 }
569 
570 static int dsa_of_probe(struct platform_device *pdev)
571 {
572         struct device_node *np = pdev->dev.of_node;
573         struct device_node *child, *mdio, *ethernet, *port, *link;
574         struct mii_bus *mdio_bus;
575         struct platform_device *ethernet_dev;
576         struct dsa_platform_data *pd;
577         struct dsa_chip_data *cd;
578         const char *port_name;
579         int chip_index, port_index;
580         const unsigned int *sw_addr, *port_reg;
581         u32 eeprom_len;
582         int ret;
583 
584         mdio = of_parse_phandle(np, "dsa,mii-bus", 0);
585         if (!mdio)
586                 return -EINVAL;
587 
588         mdio_bus = of_mdio_find_bus(mdio);
589         if (!mdio_bus)
590                 return -EINVAL;
591 
592         ethernet = of_parse_phandle(np, "dsa,ethernet", 0);
593         if (!ethernet)
594                 return -EINVAL;
595 
596         ethernet_dev = of_find_device_by_node(ethernet);
597         if (!ethernet_dev)
598                 return -ENODEV;
599 
600         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
601         if (!pd)
602                 return -ENOMEM;
603 
604         pdev->dev.platform_data = pd;
605         pd->netdev = &ethernet_dev->dev;
606         pd->nr_chips = of_get_child_count(np);
607         if (pd->nr_chips > DSA_MAX_SWITCHES)
608                 pd->nr_chips = DSA_MAX_SWITCHES;
609 
610         pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data),
611                            GFP_KERNEL);
612         if (!pd->chip) {
613                 ret = -ENOMEM;
614                 goto out_free;
615         }
616 
617         chip_index = -1;
618         for_each_available_child_of_node(np, child) {
619                 chip_index++;
620                 cd = &pd->chip[chip_index];
621 
622                 cd->of_node = child;
623                 cd->host_dev = &mdio_bus->dev;
624 
625                 sw_addr = of_get_property(child, "reg", NULL);
626                 if (!sw_addr)
627                         continue;
628 
629                 cd->sw_addr = be32_to_cpup(sw_addr);
630                 if (cd->sw_addr > PHY_MAX_ADDR)
631                         continue;
632 
633                 if (!of_property_read_u32(np, "eeprom-length", &eeprom_len))
634                         cd->eeprom_len = eeprom_len;
635 
636                 for_each_available_child_of_node(child, port) {
637                         port_reg = of_get_property(port, "reg", NULL);
638                         if (!port_reg)
639                                 continue;
640 
641                         port_index = be32_to_cpup(port_reg);
642 
643                         port_name = of_get_property(port, "label", NULL);
644                         if (!port_name)
645                                 continue;
646 
647                         cd->port_dn[port_index] = port;
648 
649                         cd->port_names[port_index] = kstrdup(port_name,
650                                         GFP_KERNEL);
651                         if (!cd->port_names[port_index]) {
652                                 ret = -ENOMEM;
653                                 goto out_free_chip;
654                         }
655 
656                         link = of_parse_phandle(port, "link", 0);
657 
658                         if (!strcmp(port_name, "dsa") && link &&
659                                         pd->nr_chips > 1) {
660                                 ret = dsa_of_setup_routing_table(pd, cd,
661                                                 chip_index, link);
662                                 if (ret)
663                                         goto out_free_chip;
664                         }
665 
666                         if (port_index == DSA_MAX_PORTS)
667                                 break;
668                 }
669         }
670 
671         return 0;
672 
673 out_free_chip:
674         dsa_of_free_platform_data(pd);
675 out_free:
676         kfree(pd);
677         pdev->dev.platform_data = NULL;
678         return ret;
679 }
680 
681 static void dsa_of_remove(struct platform_device *pdev)
682 {
683         struct dsa_platform_data *pd = pdev->dev.platform_data;
684 
685         if (!pdev->dev.of_node)
686                 return;
687 
688         dsa_of_free_platform_data(pd);
689         kfree(pd);
690 }
691 #else
692 static inline int dsa_of_probe(struct platform_device *pdev)
693 {
694         return 0;
695 }
696 
697 static inline void dsa_of_remove(struct platform_device *pdev)
698 {
699 }
700 #endif
701 
702 static int dsa_probe(struct platform_device *pdev)
703 {
704         struct dsa_platform_data *pd = pdev->dev.platform_data;
705         struct net_device *dev;
706         struct dsa_switch_tree *dst;
707         int i, ret;
708 
709         pr_notice_once("Distributed Switch Architecture driver version %s\n",
710                        dsa_driver_version);
711 
712         if (pdev->dev.of_node) {
713                 ret = dsa_of_probe(pdev);
714                 if (ret)
715                         return ret;
716 
717                 pd = pdev->dev.platform_data;
718         }
719 
720         if (pd == NULL || pd->netdev == NULL)
721                 return -EINVAL;
722 
723         dev = dev_to_net_device(pd->netdev);
724         if (dev == NULL) {
725                 ret = -EINVAL;
726                 goto out;
727         }
728 
729         if (dev->dsa_ptr != NULL) {
730                 dev_put(dev);
731                 ret = -EEXIST;
732                 goto out;
733         }
734 
735         dst = kzalloc(sizeof(*dst), GFP_KERNEL);
736         if (dst == NULL) {
737                 dev_put(dev);
738                 ret = -ENOMEM;
739                 goto out;
740         }
741 
742         platform_set_drvdata(pdev, dst);
743 
744         dst->pd = pd;
745         dst->master_netdev = dev;
746         dst->cpu_switch = -1;
747         dst->cpu_port = -1;
748 
749         for (i = 0; i < pd->nr_chips; i++) {
750                 struct dsa_switch *ds;
751 
752                 ds = dsa_switch_setup(dst, i, &pdev->dev, pd->chip[i].host_dev);
753                 if (IS_ERR(ds)) {
754                         netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n",
755                                    i, PTR_ERR(ds));
756                         continue;
757                 }
758 
759                 dst->ds[i] = ds;
760                 if (ds->drv->poll_link != NULL)
761                         dst->link_poll_needed = 1;
762         }
763 
764         /*
765          * If we use a tagging format that doesn't have an ethertype
766          * field, make sure that all packets from this point on get
767          * sent to the tag format's receive function.
768          */
769         wmb();
770         dev->dsa_ptr = (void *)dst;
771 
772         if (dst->link_poll_needed) {
773                 INIT_WORK(&dst->link_poll_work, dsa_link_poll_work);
774                 init_timer(&dst->link_poll_timer);
775                 dst->link_poll_timer.data = (unsigned long)dst;
776                 dst->link_poll_timer.function = dsa_link_poll_timer;
777                 dst->link_poll_timer.expires = round_jiffies(jiffies + HZ);
778                 add_timer(&dst->link_poll_timer);
779         }
780 
781         return 0;
782 
783 out:
784         dsa_of_remove(pdev);
785 
786         return ret;
787 }
788 
789 static int dsa_remove(struct platform_device *pdev)
790 {
791         struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
792         int i;
793 
794         if (dst->link_poll_needed)
795                 del_timer_sync(&dst->link_poll_timer);
796 
797         flush_work(&dst->link_poll_work);
798 
799         for (i = 0; i < dst->pd->nr_chips; i++) {
800                 struct dsa_switch *ds = dst->ds[i];
801 
802                 if (ds != NULL)
803                         dsa_switch_destroy(ds);
804         }
805 
806         dsa_of_remove(pdev);
807 
808         return 0;
809 }
810 
811 static void dsa_shutdown(struct platform_device *pdev)
812 {
813 }
814 
815 static int dsa_switch_rcv(struct sk_buff *skb, struct net_device *dev,
816                           struct packet_type *pt, struct net_device *orig_dev)
817 {
818         struct dsa_switch_tree *dst = dev->dsa_ptr;
819 
820         if (unlikely(dst == NULL)) {
821                 kfree_skb(skb);
822                 return 0;
823         }
824 
825         return dst->rcv(skb, dev, pt, orig_dev);
826 }
827 
828 static struct packet_type dsa_pack_type __read_mostly = {
829         .type   = cpu_to_be16(ETH_P_XDSA),
830         .func   = dsa_switch_rcv,
831 };
832 
833 #ifdef CONFIG_PM_SLEEP
834 static int dsa_suspend(struct device *d)
835 {
836         struct platform_device *pdev = to_platform_device(d);
837         struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
838         int i, ret = 0;
839 
840         for (i = 0; i < dst->pd->nr_chips; i++) {
841                 struct dsa_switch *ds = dst->ds[i];
842 
843                 if (ds != NULL)
844                         ret = dsa_switch_suspend(ds);
845         }
846 
847         return ret;
848 }
849 
850 static int dsa_resume(struct device *d)
851 {
852         struct platform_device *pdev = to_platform_device(d);
853         struct dsa_switch_tree *dst = platform_get_drvdata(pdev);
854         int i, ret = 0;
855 
856         for (i = 0; i < dst->pd->nr_chips; i++) {
857                 struct dsa_switch *ds = dst->ds[i];
858 
859                 if (ds != NULL)
860                         ret = dsa_switch_resume(ds);
861         }
862 
863         return ret;
864 }
865 #endif
866 
867 static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume);
868 
869 static const struct of_device_id dsa_of_match_table[] = {
870         { .compatible = "brcm,bcm7445-switch-v4.0" },
871         { .compatible = "marvell,dsa", },
872         {}
873 };
874 MODULE_DEVICE_TABLE(of, dsa_of_match_table);
875 
876 static struct platform_driver dsa_driver = {
877         .probe          = dsa_probe,
878         .remove         = dsa_remove,
879         .shutdown       = dsa_shutdown,
880         .driver = {
881                 .name   = "dsa",
882                 .of_match_table = dsa_of_match_table,
883                 .pm     = &dsa_pm_ops,
884         },
885 };
886 
887 static int __init dsa_init_module(void)
888 {
889         int rc;
890 
891         rc = platform_driver_register(&dsa_driver);
892         if (rc)
893                 return rc;
894 
895         dev_add_pack(&dsa_pack_type);
896 
897         return 0;
898 }
899 module_init(dsa_init_module);
900 
901 static void __exit dsa_cleanup_module(void)
902 {
903         dev_remove_pack(&dsa_pack_type);
904         platform_driver_unregister(&dsa_driver);
905 }
906 module_exit(dsa_cleanup_module);
907 
908 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
909 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
910 MODULE_LICENSE("GPL");
911 MODULE_ALIAS("platform:dsa");
912 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us