Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/mm/khugepaged.c

  1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2 
  3 #include <linux/mm.h>
  4 #include <linux/sched.h>
  5 #include <linux/mmu_notifier.h>
  6 #include <linux/rmap.h>
  7 #include <linux/swap.h>
  8 #include <linux/mm_inline.h>
  9 #include <linux/kthread.h>
 10 #include <linux/khugepaged.h>
 11 #include <linux/freezer.h>
 12 #include <linux/mman.h>
 13 #include <linux/hashtable.h>
 14 #include <linux/userfaultfd_k.h>
 15 #include <linux/page_idle.h>
 16 #include <linux/swapops.h>
 17 #include <linux/shmem_fs.h>
 18 
 19 #include <asm/tlb.h>
 20 #include <asm/pgalloc.h>
 21 #include "internal.h"
 22 
 23 enum scan_result {
 24         SCAN_FAIL,
 25         SCAN_SUCCEED,
 26         SCAN_PMD_NULL,
 27         SCAN_EXCEED_NONE_PTE,
 28         SCAN_PTE_NON_PRESENT,
 29         SCAN_PAGE_RO,
 30         SCAN_LACK_REFERENCED_PAGE,
 31         SCAN_PAGE_NULL,
 32         SCAN_SCAN_ABORT,
 33         SCAN_PAGE_COUNT,
 34         SCAN_PAGE_LRU,
 35         SCAN_PAGE_LOCK,
 36         SCAN_PAGE_ANON,
 37         SCAN_PAGE_COMPOUND,
 38         SCAN_ANY_PROCESS,
 39         SCAN_VMA_NULL,
 40         SCAN_VMA_CHECK,
 41         SCAN_ADDRESS_RANGE,
 42         SCAN_SWAP_CACHE_PAGE,
 43         SCAN_DEL_PAGE_LRU,
 44         SCAN_ALLOC_HUGE_PAGE_FAIL,
 45         SCAN_CGROUP_CHARGE_FAIL,
 46         SCAN_EXCEED_SWAP_PTE,
 47         SCAN_TRUNCATED,
 48 };
 49 
 50 #define CREATE_TRACE_POINTS
 51 #include <trace/events/huge_memory.h>
 52 
 53 /* default scan 8*512 pte (or vmas) every 30 second */
 54 static unsigned int khugepaged_pages_to_scan __read_mostly;
 55 static unsigned int khugepaged_pages_collapsed;
 56 static unsigned int khugepaged_full_scans;
 57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
 58 /* during fragmentation poll the hugepage allocator once every minute */
 59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
 60 static unsigned long khugepaged_sleep_expire;
 61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
 62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
 63 /*
 64  * default collapse hugepages if there is at least one pte mapped like
 65  * it would have happened if the vma was large enough during page
 66  * fault.
 67  */
 68 static unsigned int khugepaged_max_ptes_none __read_mostly;
 69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
 70 
 71 #define MM_SLOTS_HASH_BITS 10
 72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 73 
 74 static struct kmem_cache *mm_slot_cache __read_mostly;
 75 
 76 /**
 77  * struct mm_slot - hash lookup from mm to mm_slot
 78  * @hash: hash collision list
 79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 80  * @mm: the mm that this information is valid for
 81  */
 82 struct mm_slot {
 83         struct hlist_node hash;
 84         struct list_head mm_node;
 85         struct mm_struct *mm;
 86 };
 87 
 88 /**
 89  * struct khugepaged_scan - cursor for scanning
 90  * @mm_head: the head of the mm list to scan
 91  * @mm_slot: the current mm_slot we are scanning
 92  * @address: the next address inside that to be scanned
 93  *
 94  * There is only the one khugepaged_scan instance of this cursor structure.
 95  */
 96 struct khugepaged_scan {
 97         struct list_head mm_head;
 98         struct mm_slot *mm_slot;
 99         unsigned long address;
100 };
101 
102 static struct khugepaged_scan khugepaged_scan = {
103         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 };
105 
106 #ifdef CONFIG_SYSFS
107 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
108                                          struct kobj_attribute *attr,
109                                          char *buf)
110 {
111         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
112 }
113 
114 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
115                                           struct kobj_attribute *attr,
116                                           const char *buf, size_t count)
117 {
118         unsigned long msecs;
119         int err;
120 
121         err = kstrtoul(buf, 10, &msecs);
122         if (err || msecs > UINT_MAX)
123                 return -EINVAL;
124 
125         khugepaged_scan_sleep_millisecs = msecs;
126         khugepaged_sleep_expire = 0;
127         wake_up_interruptible(&khugepaged_wait);
128 
129         return count;
130 }
131 static struct kobj_attribute scan_sleep_millisecs_attr =
132         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
133                scan_sleep_millisecs_store);
134 
135 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
136                                           struct kobj_attribute *attr,
137                                           char *buf)
138 {
139         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
140 }
141 
142 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
143                                            struct kobj_attribute *attr,
144                                            const char *buf, size_t count)
145 {
146         unsigned long msecs;
147         int err;
148 
149         err = kstrtoul(buf, 10, &msecs);
150         if (err || msecs > UINT_MAX)
151                 return -EINVAL;
152 
153         khugepaged_alloc_sleep_millisecs = msecs;
154         khugepaged_sleep_expire = 0;
155         wake_up_interruptible(&khugepaged_wait);
156 
157         return count;
158 }
159 static struct kobj_attribute alloc_sleep_millisecs_attr =
160         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
161                alloc_sleep_millisecs_store);
162 
163 static ssize_t pages_to_scan_show(struct kobject *kobj,
164                                   struct kobj_attribute *attr,
165                                   char *buf)
166 {
167         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
168 }
169 static ssize_t pages_to_scan_store(struct kobject *kobj,
170                                    struct kobj_attribute *attr,
171                                    const char *buf, size_t count)
172 {
173         int err;
174         unsigned long pages;
175 
176         err = kstrtoul(buf, 10, &pages);
177         if (err || !pages || pages > UINT_MAX)
178                 return -EINVAL;
179 
180         khugepaged_pages_to_scan = pages;
181 
182         return count;
183 }
184 static struct kobj_attribute pages_to_scan_attr =
185         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
186                pages_to_scan_store);
187 
188 static ssize_t pages_collapsed_show(struct kobject *kobj,
189                                     struct kobj_attribute *attr,
190                                     char *buf)
191 {
192         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
193 }
194 static struct kobj_attribute pages_collapsed_attr =
195         __ATTR_RO(pages_collapsed);
196 
197 static ssize_t full_scans_show(struct kobject *kobj,
198                                struct kobj_attribute *attr,
199                                char *buf)
200 {
201         return sprintf(buf, "%u\n", khugepaged_full_scans);
202 }
203 static struct kobj_attribute full_scans_attr =
204         __ATTR_RO(full_scans);
205 
206 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
207                                       struct kobj_attribute *attr, char *buf)
208 {
209         return single_hugepage_flag_show(kobj, attr, buf,
210                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
211 }
212 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
213                                        struct kobj_attribute *attr,
214                                        const char *buf, size_t count)
215 {
216         return single_hugepage_flag_store(kobj, attr, buf, count,
217                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
218 }
219 static struct kobj_attribute khugepaged_defrag_attr =
220         __ATTR(defrag, 0644, khugepaged_defrag_show,
221                khugepaged_defrag_store);
222 
223 /*
224  * max_ptes_none controls if khugepaged should collapse hugepages over
225  * any unmapped ptes in turn potentially increasing the memory
226  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227  * reduce the available free memory in the system as it
228  * runs. Increasing max_ptes_none will instead potentially reduce the
229  * free memory in the system during the khugepaged scan.
230  */
231 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
232                                              struct kobj_attribute *attr,
233                                              char *buf)
234 {
235         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
236 }
237 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
238                                               struct kobj_attribute *attr,
239                                               const char *buf, size_t count)
240 {
241         int err;
242         unsigned long max_ptes_none;
243 
244         err = kstrtoul(buf, 10, &max_ptes_none);
245         if (err || max_ptes_none > HPAGE_PMD_NR-1)
246                 return -EINVAL;
247 
248         khugepaged_max_ptes_none = max_ptes_none;
249 
250         return count;
251 }
252 static struct kobj_attribute khugepaged_max_ptes_none_attr =
253         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
254                khugepaged_max_ptes_none_store);
255 
256 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
257                                              struct kobj_attribute *attr,
258                                              char *buf)
259 {
260         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
261 }
262 
263 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
264                                               struct kobj_attribute *attr,
265                                               const char *buf, size_t count)
266 {
267         int err;
268         unsigned long max_ptes_swap;
269 
270         err  = kstrtoul(buf, 10, &max_ptes_swap);
271         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
272                 return -EINVAL;
273 
274         khugepaged_max_ptes_swap = max_ptes_swap;
275 
276         return count;
277 }
278 
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
280         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
281                khugepaged_max_ptes_swap_store);
282 
283 static struct attribute *khugepaged_attr[] = {
284         &khugepaged_defrag_attr.attr,
285         &khugepaged_max_ptes_none_attr.attr,
286         &pages_to_scan_attr.attr,
287         &pages_collapsed_attr.attr,
288         &full_scans_attr.attr,
289         &scan_sleep_millisecs_attr.attr,
290         &alloc_sleep_millisecs_attr.attr,
291         &khugepaged_max_ptes_swap_attr.attr,
292         NULL,
293 };
294 
295 struct attribute_group khugepaged_attr_group = {
296         .attrs = khugepaged_attr,
297         .name = "khugepaged",
298 };
299 #endif /* CONFIG_SYSFS */
300 
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
302 
303 int hugepage_madvise(struct vm_area_struct *vma,
304                      unsigned long *vm_flags, int advice)
305 {
306         switch (advice) {
307         case MADV_HUGEPAGE:
308 #ifdef CONFIG_S390
309                 /*
310                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311                  * can't handle this properly after s390_enable_sie, so we simply
312                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
313                  */
314                 if (mm_has_pgste(vma->vm_mm))
315                         return 0;
316 #endif
317                 *vm_flags &= ~VM_NOHUGEPAGE;
318                 *vm_flags |= VM_HUGEPAGE;
319                 /*
320                  * If the vma become good for khugepaged to scan,
321                  * register it here without waiting a page fault that
322                  * may not happen any time soon.
323                  */
324                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
325                                 khugepaged_enter_vma_merge(vma, *vm_flags))
326                         return -ENOMEM;
327                 break;
328         case MADV_NOHUGEPAGE:
329                 *vm_flags &= ~VM_HUGEPAGE;
330                 *vm_flags |= VM_NOHUGEPAGE;
331                 /*
332                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333                  * this vma even if we leave the mm registered in khugepaged if
334                  * it got registered before VM_NOHUGEPAGE was set.
335                  */
336                 break;
337         }
338 
339         return 0;
340 }
341 
342 int __init khugepaged_init(void)
343 {
344         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
345                                           sizeof(struct mm_slot),
346                                           __alignof__(struct mm_slot), 0, NULL);
347         if (!mm_slot_cache)
348                 return -ENOMEM;
349 
350         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
351         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
352         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
353 
354         return 0;
355 }
356 
357 void __init khugepaged_destroy(void)
358 {
359         kmem_cache_destroy(mm_slot_cache);
360 }
361 
362 static inline struct mm_slot *alloc_mm_slot(void)
363 {
364         if (!mm_slot_cache)     /* initialization failed */
365                 return NULL;
366         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
367 }
368 
369 static inline void free_mm_slot(struct mm_slot *mm_slot)
370 {
371         kmem_cache_free(mm_slot_cache, mm_slot);
372 }
373 
374 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
375 {
376         struct mm_slot *mm_slot;
377 
378         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
379                 if (mm == mm_slot->mm)
380                         return mm_slot;
381 
382         return NULL;
383 }
384 
385 static void insert_to_mm_slots_hash(struct mm_struct *mm,
386                                     struct mm_slot *mm_slot)
387 {
388         mm_slot->mm = mm;
389         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
390 }
391 
392 static inline int khugepaged_test_exit(struct mm_struct *mm)
393 {
394         return atomic_read(&mm->mm_users) == 0;
395 }
396 
397 int __khugepaged_enter(struct mm_struct *mm)
398 {
399         struct mm_slot *mm_slot;
400         int wakeup;
401 
402         mm_slot = alloc_mm_slot();
403         if (!mm_slot)
404                 return -ENOMEM;
405 
406         /* __khugepaged_exit() must not run from under us */
407         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
408         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
409                 free_mm_slot(mm_slot);
410                 return 0;
411         }
412 
413         spin_lock(&khugepaged_mm_lock);
414         insert_to_mm_slots_hash(mm, mm_slot);
415         /*
416          * Insert just behind the scanning cursor, to let the area settle
417          * down a little.
418          */
419         wakeup = list_empty(&khugepaged_scan.mm_head);
420         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
421         spin_unlock(&khugepaged_mm_lock);
422 
423         atomic_inc(&mm->mm_count);
424         if (wakeup)
425                 wake_up_interruptible(&khugepaged_wait);
426 
427         return 0;
428 }
429 
430 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
431                                unsigned long vm_flags)
432 {
433         unsigned long hstart, hend;
434         if (!vma->anon_vma)
435                 /*
436                  * Not yet faulted in so we will register later in the
437                  * page fault if needed.
438                  */
439                 return 0;
440         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
441                 /* khugepaged not yet working on file or special mappings */
442                 return 0;
443         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
444         hend = vma->vm_end & HPAGE_PMD_MASK;
445         if (hstart < hend)
446                 return khugepaged_enter(vma, vm_flags);
447         return 0;
448 }
449 
450 void __khugepaged_exit(struct mm_struct *mm)
451 {
452         struct mm_slot *mm_slot;
453         int free = 0;
454 
455         spin_lock(&khugepaged_mm_lock);
456         mm_slot = get_mm_slot(mm);
457         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
458                 hash_del(&mm_slot->hash);
459                 list_del(&mm_slot->mm_node);
460                 free = 1;
461         }
462         spin_unlock(&khugepaged_mm_lock);
463 
464         if (free) {
465                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
466                 free_mm_slot(mm_slot);
467                 mmdrop(mm);
468         } else if (mm_slot) {
469                 /*
470                  * This is required to serialize against
471                  * khugepaged_test_exit() (which is guaranteed to run
472                  * under mmap sem read mode). Stop here (after we
473                  * return all pagetables will be destroyed) until
474                  * khugepaged has finished working on the pagetables
475                  * under the mmap_sem.
476                  */
477                 down_write(&mm->mmap_sem);
478                 up_write(&mm->mmap_sem);
479         }
480 }
481 
482 static void release_pte_page(struct page *page)
483 {
484         /* 0 stands for page_is_file_cache(page) == false */
485         dec_node_page_state(page, NR_ISOLATED_ANON + 0);
486         unlock_page(page);
487         putback_lru_page(page);
488 }
489 
490 static void release_pte_pages(pte_t *pte, pte_t *_pte)
491 {
492         while (--_pte >= pte) {
493                 pte_t pteval = *_pte;
494                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
495                         release_pte_page(pte_page(pteval));
496         }
497 }
498 
499 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
500                                         unsigned long address,
501                                         pte_t *pte)
502 {
503         struct page *page = NULL;
504         pte_t *_pte;
505         int none_or_zero = 0, result = 0, referenced = 0;
506         bool writable = false;
507 
508         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
509              _pte++, address += PAGE_SIZE) {
510                 pte_t pteval = *_pte;
511                 if (pte_none(pteval) || (pte_present(pteval) &&
512                                 is_zero_pfn(pte_pfn(pteval)))) {
513                         if (!userfaultfd_armed(vma) &&
514                             ++none_or_zero <= khugepaged_max_ptes_none) {
515                                 continue;
516                         } else {
517                                 result = SCAN_EXCEED_NONE_PTE;
518                                 goto out;
519                         }
520                 }
521                 if (!pte_present(pteval)) {
522                         result = SCAN_PTE_NON_PRESENT;
523                         goto out;
524                 }
525                 page = vm_normal_page(vma, address, pteval);
526                 if (unlikely(!page)) {
527                         result = SCAN_PAGE_NULL;
528                         goto out;
529                 }
530 
531                 VM_BUG_ON_PAGE(PageCompound(page), page);
532                 VM_BUG_ON_PAGE(!PageAnon(page), page);
533                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
534 
535                 /*
536                  * We can do it before isolate_lru_page because the
537                  * page can't be freed from under us. NOTE: PG_lock
538                  * is needed to serialize against split_huge_page
539                  * when invoked from the VM.
540                  */
541                 if (!trylock_page(page)) {
542                         result = SCAN_PAGE_LOCK;
543                         goto out;
544                 }
545 
546                 /*
547                  * cannot use mapcount: can't collapse if there's a gup pin.
548                  * The page must only be referenced by the scanned process
549                  * and page swap cache.
550                  */
551                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
552                         unlock_page(page);
553                         result = SCAN_PAGE_COUNT;
554                         goto out;
555                 }
556                 if (pte_write(pteval)) {
557                         writable = true;
558                 } else {
559                         if (PageSwapCache(page) &&
560                             !reuse_swap_page(page, NULL)) {
561                                 unlock_page(page);
562                                 result = SCAN_SWAP_CACHE_PAGE;
563                                 goto out;
564                         }
565                         /*
566                          * Page is not in the swap cache. It can be collapsed
567                          * into a THP.
568                          */
569                 }
570 
571                 /*
572                  * Isolate the page to avoid collapsing an hugepage
573                  * currently in use by the VM.
574                  */
575                 if (isolate_lru_page(page)) {
576                         unlock_page(page);
577                         result = SCAN_DEL_PAGE_LRU;
578                         goto out;
579                 }
580                 /* 0 stands for page_is_file_cache(page) == false */
581                 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
582                 VM_BUG_ON_PAGE(!PageLocked(page), page);
583                 VM_BUG_ON_PAGE(PageLRU(page), page);
584 
585                 /* There should be enough young pte to collapse the page */
586                 if (pte_young(pteval) ||
587                     page_is_young(page) || PageReferenced(page) ||
588                     mmu_notifier_test_young(vma->vm_mm, address))
589                         referenced++;
590         }
591         if (likely(writable)) {
592                 if (likely(referenced)) {
593                         result = SCAN_SUCCEED;
594                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
595                                                             referenced, writable, result);
596                         return 1;
597                 }
598         } else {
599                 result = SCAN_PAGE_RO;
600         }
601 
602 out:
603         release_pte_pages(pte, _pte);
604         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
605                                             referenced, writable, result);
606         return 0;
607 }
608 
609 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
610                                       struct vm_area_struct *vma,
611                                       unsigned long address,
612                                       spinlock_t *ptl)
613 {
614         pte_t *_pte;
615         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
616                 pte_t pteval = *_pte;
617                 struct page *src_page;
618 
619                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
620                         clear_user_highpage(page, address);
621                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
622                         if (is_zero_pfn(pte_pfn(pteval))) {
623                                 /*
624                                  * ptl mostly unnecessary.
625                                  */
626                                 spin_lock(ptl);
627                                 /*
628                                  * paravirt calls inside pte_clear here are
629                                  * superfluous.
630                                  */
631                                 pte_clear(vma->vm_mm, address, _pte);
632                                 spin_unlock(ptl);
633                         }
634                 } else {
635                         src_page = pte_page(pteval);
636                         copy_user_highpage(page, src_page, address, vma);
637                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
638                         release_pte_page(src_page);
639                         /*
640                          * ptl mostly unnecessary, but preempt has to
641                          * be disabled to update the per-cpu stats
642                          * inside page_remove_rmap().
643                          */
644                         spin_lock(ptl);
645                         /*
646                          * paravirt calls inside pte_clear here are
647                          * superfluous.
648                          */
649                         pte_clear(vma->vm_mm, address, _pte);
650                         page_remove_rmap(src_page, false);
651                         spin_unlock(ptl);
652                         free_page_and_swap_cache(src_page);
653                 }
654 
655                 address += PAGE_SIZE;
656                 page++;
657         }
658 }
659 
660 static void khugepaged_alloc_sleep(void)
661 {
662         DEFINE_WAIT(wait);
663 
664         add_wait_queue(&khugepaged_wait, &wait);
665         freezable_schedule_timeout_interruptible(
666                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
667         remove_wait_queue(&khugepaged_wait, &wait);
668 }
669 
670 static int khugepaged_node_load[MAX_NUMNODES];
671 
672 static bool khugepaged_scan_abort(int nid)
673 {
674         int i;
675 
676         /*
677          * If node_reclaim_mode is disabled, then no extra effort is made to
678          * allocate memory locally.
679          */
680         if (!node_reclaim_mode)
681                 return false;
682 
683         /* If there is a count for this node already, it must be acceptable */
684         if (khugepaged_node_load[nid])
685                 return false;
686 
687         for (i = 0; i < MAX_NUMNODES; i++) {
688                 if (!khugepaged_node_load[i])
689                         continue;
690                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
691                         return true;
692         }
693         return false;
694 }
695 
696 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
697 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
698 {
699         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
700 }
701 
702 #ifdef CONFIG_NUMA
703 static int khugepaged_find_target_node(void)
704 {
705         static int last_khugepaged_target_node = NUMA_NO_NODE;
706         int nid, target_node = 0, max_value = 0;
707 
708         /* find first node with max normal pages hit */
709         for (nid = 0; nid < MAX_NUMNODES; nid++)
710                 if (khugepaged_node_load[nid] > max_value) {
711                         max_value = khugepaged_node_load[nid];
712                         target_node = nid;
713                 }
714 
715         /* do some balance if several nodes have the same hit record */
716         if (target_node <= last_khugepaged_target_node)
717                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
718                                 nid++)
719                         if (max_value == khugepaged_node_load[nid]) {
720                                 target_node = nid;
721                                 break;
722                         }
723 
724         last_khugepaged_target_node = target_node;
725         return target_node;
726 }
727 
728 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
729 {
730         if (IS_ERR(*hpage)) {
731                 if (!*wait)
732                         return false;
733 
734                 *wait = false;
735                 *hpage = NULL;
736                 khugepaged_alloc_sleep();
737         } else if (*hpage) {
738                 put_page(*hpage);
739                 *hpage = NULL;
740         }
741 
742         return true;
743 }
744 
745 static struct page *
746 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
747 {
748         VM_BUG_ON_PAGE(*hpage, *hpage);
749 
750         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
751         if (unlikely(!*hpage)) {
752                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
753                 *hpage = ERR_PTR(-ENOMEM);
754                 return NULL;
755         }
756 
757         prep_transhuge_page(*hpage);
758         count_vm_event(THP_COLLAPSE_ALLOC);
759         return *hpage;
760 }
761 #else
762 static int khugepaged_find_target_node(void)
763 {
764         return 0;
765 }
766 
767 static inline struct page *alloc_khugepaged_hugepage(void)
768 {
769         struct page *page;
770 
771         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
772                            HPAGE_PMD_ORDER);
773         if (page)
774                 prep_transhuge_page(page);
775         return page;
776 }
777 
778 static struct page *khugepaged_alloc_hugepage(bool *wait)
779 {
780         struct page *hpage;
781 
782         do {
783                 hpage = alloc_khugepaged_hugepage();
784                 if (!hpage) {
785                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
786                         if (!*wait)
787                                 return NULL;
788 
789                         *wait = false;
790                         khugepaged_alloc_sleep();
791                 } else
792                         count_vm_event(THP_COLLAPSE_ALLOC);
793         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
794 
795         return hpage;
796 }
797 
798 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
799 {
800         if (!*hpage)
801                 *hpage = khugepaged_alloc_hugepage(wait);
802 
803         if (unlikely(!*hpage))
804                 return false;
805 
806         return true;
807 }
808 
809 static struct page *
810 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
811 {
812         VM_BUG_ON(!*hpage);
813 
814         return  *hpage;
815 }
816 #endif
817 
818 static bool hugepage_vma_check(struct vm_area_struct *vma)
819 {
820         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
821             (vma->vm_flags & VM_NOHUGEPAGE))
822                 return false;
823         if (shmem_file(vma->vm_file)) {
824                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
825                         return false;
826                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
827                                 HPAGE_PMD_NR);
828         }
829         if (!vma->anon_vma || vma->vm_ops)
830                 return false;
831         if (is_vma_temporary_stack(vma))
832                 return false;
833         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
834 }
835 
836 /*
837  * If mmap_sem temporarily dropped, revalidate vma
838  * before taking mmap_sem.
839  * Return 0 if succeeds, otherwise return none-zero
840  * value (scan code).
841  */
842 
843 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
844                 struct vm_area_struct **vmap)
845 {
846         struct vm_area_struct *vma;
847         unsigned long hstart, hend;
848 
849         if (unlikely(khugepaged_test_exit(mm)))
850                 return SCAN_ANY_PROCESS;
851 
852         *vmap = vma = find_vma(mm, address);
853         if (!vma)
854                 return SCAN_VMA_NULL;
855 
856         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
857         hend = vma->vm_end & HPAGE_PMD_MASK;
858         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
859                 return SCAN_ADDRESS_RANGE;
860         if (!hugepage_vma_check(vma))
861                 return SCAN_VMA_CHECK;
862         return 0;
863 }
864 
865 /*
866  * Bring missing pages in from swap, to complete THP collapse.
867  * Only done if khugepaged_scan_pmd believes it is worthwhile.
868  *
869  * Called and returns without pte mapped or spinlocks held,
870  * but with mmap_sem held to protect against vma changes.
871  */
872 
873 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
874                                         struct vm_area_struct *vma,
875                                         unsigned long address, pmd_t *pmd,
876                                         int referenced)
877 {
878         int swapped_in = 0, ret = 0;
879         struct vm_fault vmf = {
880                 .vma = vma,
881                 .address = address,
882                 .flags = FAULT_FLAG_ALLOW_RETRY,
883                 .pmd = pmd,
884                 .pgoff = linear_page_index(vma, address),
885         };
886 
887         /* we only decide to swapin, if there is enough young ptes */
888         if (referenced < HPAGE_PMD_NR/2) {
889                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
890                 return false;
891         }
892         vmf.pte = pte_offset_map(pmd, address);
893         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
894                         vmf.pte++, vmf.address += PAGE_SIZE) {
895                 vmf.orig_pte = *vmf.pte;
896                 if (!is_swap_pte(vmf.orig_pte))
897                         continue;
898                 swapped_in++;
899                 ret = do_swap_page(&vmf);
900 
901                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
902                 if (ret & VM_FAULT_RETRY) {
903                         down_read(&mm->mmap_sem);
904                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
905                                 /* vma is no longer available, don't continue to swapin */
906                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
907                                 return false;
908                         }
909                         /* check if the pmd is still valid */
910                         if (mm_find_pmd(mm, address) != pmd)
911                                 return false;
912                 }
913                 if (ret & VM_FAULT_ERROR) {
914                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
915                         return false;
916                 }
917                 /* pte is unmapped now, we need to map it */
918                 vmf.pte = pte_offset_map(pmd, vmf.address);
919         }
920         vmf.pte--;
921         pte_unmap(vmf.pte);
922         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
923         return true;
924 }
925 
926 static void collapse_huge_page(struct mm_struct *mm,
927                                    unsigned long address,
928                                    struct page **hpage,
929                                    int node, int referenced)
930 {
931         pmd_t *pmd, _pmd;
932         pte_t *pte;
933         pgtable_t pgtable;
934         struct page *new_page;
935         spinlock_t *pmd_ptl, *pte_ptl;
936         int isolated = 0, result = 0;
937         struct mem_cgroup *memcg;
938         struct vm_area_struct *vma;
939         unsigned long mmun_start;       /* For mmu_notifiers */
940         unsigned long mmun_end;         /* For mmu_notifiers */
941         gfp_t gfp;
942 
943         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
944 
945         /* Only allocate from the target node */
946         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
947 
948         /*
949          * Before allocating the hugepage, release the mmap_sem read lock.
950          * The allocation can take potentially a long time if it involves
951          * sync compaction, and we do not need to hold the mmap_sem during
952          * that. We will recheck the vma after taking it again in write mode.
953          */
954         up_read(&mm->mmap_sem);
955         new_page = khugepaged_alloc_page(hpage, gfp, node);
956         if (!new_page) {
957                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
958                 goto out_nolock;
959         }
960 
961         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
962                 result = SCAN_CGROUP_CHARGE_FAIL;
963                 goto out_nolock;
964         }
965 
966         down_read(&mm->mmap_sem);
967         result = hugepage_vma_revalidate(mm, address, &vma);
968         if (result) {
969                 mem_cgroup_cancel_charge(new_page, memcg, true);
970                 up_read(&mm->mmap_sem);
971                 goto out_nolock;
972         }
973 
974         pmd = mm_find_pmd(mm, address);
975         if (!pmd) {
976                 result = SCAN_PMD_NULL;
977                 mem_cgroup_cancel_charge(new_page, memcg, true);
978                 up_read(&mm->mmap_sem);
979                 goto out_nolock;
980         }
981 
982         /*
983          * __collapse_huge_page_swapin always returns with mmap_sem locked.
984          * If it fails, we release mmap_sem and jump out_nolock.
985          * Continuing to collapse causes inconsistency.
986          */
987         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
988                 mem_cgroup_cancel_charge(new_page, memcg, true);
989                 up_read(&mm->mmap_sem);
990                 goto out_nolock;
991         }
992 
993         up_read(&mm->mmap_sem);
994         /*
995          * Prevent all access to pagetables with the exception of
996          * gup_fast later handled by the ptep_clear_flush and the VM
997          * handled by the anon_vma lock + PG_lock.
998          */
999         down_write(&mm->mmap_sem);
1000         result = hugepage_vma_revalidate(mm, address, &vma);
1001         if (result)
1002                 goto out;
1003         /* check if the pmd is still valid */
1004         if (mm_find_pmd(mm, address) != pmd)
1005                 goto out;
1006 
1007         anon_vma_lock_write(vma->anon_vma);
1008 
1009         pte = pte_offset_map(pmd, address);
1010         pte_ptl = pte_lockptr(mm, pmd);
1011 
1012         mmun_start = address;
1013         mmun_end   = address + HPAGE_PMD_SIZE;
1014         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1015         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1016         /*
1017          * After this gup_fast can't run anymore. This also removes
1018          * any huge TLB entry from the CPU so we won't allow
1019          * huge and small TLB entries for the same virtual address
1020          * to avoid the risk of CPU bugs in that area.
1021          */
1022         _pmd = pmdp_collapse_flush(vma, address, pmd);
1023         spin_unlock(pmd_ptl);
1024         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1025 
1026         spin_lock(pte_ptl);
1027         isolated = __collapse_huge_page_isolate(vma, address, pte);
1028         spin_unlock(pte_ptl);
1029 
1030         if (unlikely(!isolated)) {
1031                 pte_unmap(pte);
1032                 spin_lock(pmd_ptl);
1033                 BUG_ON(!pmd_none(*pmd));
1034                 /*
1035                  * We can only use set_pmd_at when establishing
1036                  * hugepmds and never for establishing regular pmds that
1037                  * points to regular pagetables. Use pmd_populate for that
1038                  */
1039                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1040                 spin_unlock(pmd_ptl);
1041                 anon_vma_unlock_write(vma->anon_vma);
1042                 result = SCAN_FAIL;
1043                 goto out;
1044         }
1045 
1046         /*
1047          * All pages are isolated and locked so anon_vma rmap
1048          * can't run anymore.
1049          */
1050         anon_vma_unlock_write(vma->anon_vma);
1051 
1052         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1053         pte_unmap(pte);
1054         __SetPageUptodate(new_page);
1055         pgtable = pmd_pgtable(_pmd);
1056 
1057         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1058         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1059 
1060         /*
1061          * spin_lock() below is not the equivalent of smp_wmb(), so
1062          * this is needed to avoid the copy_huge_page writes to become
1063          * visible after the set_pmd_at() write.
1064          */
1065         smp_wmb();
1066 
1067         spin_lock(pmd_ptl);
1068         BUG_ON(!pmd_none(*pmd));
1069         page_add_new_anon_rmap(new_page, vma, address, true);
1070         mem_cgroup_commit_charge(new_page, memcg, false, true);
1071         lru_cache_add_active_or_unevictable(new_page, vma);
1072         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1073         set_pmd_at(mm, address, pmd, _pmd);
1074         update_mmu_cache_pmd(vma, address, pmd);
1075         spin_unlock(pmd_ptl);
1076 
1077         *hpage = NULL;
1078 
1079         khugepaged_pages_collapsed++;
1080         result = SCAN_SUCCEED;
1081 out_up_write:
1082         up_write(&mm->mmap_sem);
1083 out_nolock:
1084         trace_mm_collapse_huge_page(mm, isolated, result);
1085         return;
1086 out:
1087         mem_cgroup_cancel_charge(new_page, memcg, true);
1088         goto out_up_write;
1089 }
1090 
1091 static int khugepaged_scan_pmd(struct mm_struct *mm,
1092                                struct vm_area_struct *vma,
1093                                unsigned long address,
1094                                struct page **hpage)
1095 {
1096         pmd_t *pmd;
1097         pte_t *pte, *_pte;
1098         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1099         struct page *page = NULL;
1100         unsigned long _address;
1101         spinlock_t *ptl;
1102         int node = NUMA_NO_NODE, unmapped = 0;
1103         bool writable = false;
1104 
1105         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1106 
1107         pmd = mm_find_pmd(mm, address);
1108         if (!pmd) {
1109                 result = SCAN_PMD_NULL;
1110                 goto out;
1111         }
1112 
1113         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1114         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1115         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1116              _pte++, _address += PAGE_SIZE) {
1117                 pte_t pteval = *_pte;
1118                 if (is_swap_pte(pteval)) {
1119                         if (++unmapped <= khugepaged_max_ptes_swap) {
1120                                 continue;
1121                         } else {
1122                                 result = SCAN_EXCEED_SWAP_PTE;
1123                                 goto out_unmap;
1124                         }
1125                 }
1126                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1127                         if (!userfaultfd_armed(vma) &&
1128                             ++none_or_zero <= khugepaged_max_ptes_none) {
1129                                 continue;
1130                         } else {
1131                                 result = SCAN_EXCEED_NONE_PTE;
1132                                 goto out_unmap;
1133                         }
1134                 }
1135                 if (!pte_present(pteval)) {
1136                         result = SCAN_PTE_NON_PRESENT;
1137                         goto out_unmap;
1138                 }
1139                 if (pte_write(pteval))
1140                         writable = true;
1141 
1142                 page = vm_normal_page(vma, _address, pteval);
1143                 if (unlikely(!page)) {
1144                         result = SCAN_PAGE_NULL;
1145                         goto out_unmap;
1146                 }
1147 
1148                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1149                 if (PageCompound(page)) {
1150                         result = SCAN_PAGE_COMPOUND;
1151                         goto out_unmap;
1152                 }
1153 
1154                 /*
1155                  * Record which node the original page is from and save this
1156                  * information to khugepaged_node_load[].
1157                  * Khupaged will allocate hugepage from the node has the max
1158                  * hit record.
1159                  */
1160                 node = page_to_nid(page);
1161                 if (khugepaged_scan_abort(node)) {
1162                         result = SCAN_SCAN_ABORT;
1163                         goto out_unmap;
1164                 }
1165                 khugepaged_node_load[node]++;
1166                 if (!PageLRU(page)) {
1167                         result = SCAN_PAGE_LRU;
1168                         goto out_unmap;
1169                 }
1170                 if (PageLocked(page)) {
1171                         result = SCAN_PAGE_LOCK;
1172                         goto out_unmap;
1173                 }
1174                 if (!PageAnon(page)) {
1175                         result = SCAN_PAGE_ANON;
1176                         goto out_unmap;
1177                 }
1178 
1179                 /*
1180                  * cannot use mapcount: can't collapse if there's a gup pin.
1181                  * The page must only be referenced by the scanned process
1182                  * and page swap cache.
1183                  */
1184                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1185                         result = SCAN_PAGE_COUNT;
1186                         goto out_unmap;
1187                 }
1188                 if (pte_young(pteval) ||
1189                     page_is_young(page) || PageReferenced(page) ||
1190                     mmu_notifier_test_young(vma->vm_mm, address))
1191                         referenced++;
1192         }
1193         if (writable) {
1194                 if (referenced) {
1195                         result = SCAN_SUCCEED;
1196                         ret = 1;
1197                 } else {
1198                         result = SCAN_LACK_REFERENCED_PAGE;
1199                 }
1200         } else {
1201                 result = SCAN_PAGE_RO;
1202         }
1203 out_unmap:
1204         pte_unmap_unlock(pte, ptl);
1205         if (ret) {
1206                 node = khugepaged_find_target_node();
1207                 /* collapse_huge_page will return with the mmap_sem released */
1208                 collapse_huge_page(mm, address, hpage, node, referenced);
1209         }
1210 out:
1211         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1212                                      none_or_zero, result, unmapped);
1213         return ret;
1214 }
1215 
1216 static void collect_mm_slot(struct mm_slot *mm_slot)
1217 {
1218         struct mm_struct *mm = mm_slot->mm;
1219 
1220         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1221 
1222         if (khugepaged_test_exit(mm)) {
1223                 /* free mm_slot */
1224                 hash_del(&mm_slot->hash);
1225                 list_del(&mm_slot->mm_node);
1226 
1227                 /*
1228                  * Not strictly needed because the mm exited already.
1229                  *
1230                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1231                  */
1232 
1233                 /* khugepaged_mm_lock actually not necessary for the below */
1234                 free_mm_slot(mm_slot);
1235                 mmdrop(mm);
1236         }
1237 }
1238 
1239 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1240 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1241 {
1242         struct vm_area_struct *vma;
1243         unsigned long addr;
1244         pmd_t *pmd, _pmd;
1245 
1246         i_mmap_lock_write(mapping);
1247         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1248                 /* probably overkill */
1249                 if (vma->anon_vma)
1250                         continue;
1251                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1252                 if (addr & ~HPAGE_PMD_MASK)
1253                         continue;
1254                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1255                         continue;
1256                 pmd = mm_find_pmd(vma->vm_mm, addr);
1257                 if (!pmd)
1258                         continue;
1259                 /*
1260                  * We need exclusive mmap_sem to retract page table.
1261                  * If trylock fails we would end up with pte-mapped THP after
1262                  * re-fault. Not ideal, but it's more important to not disturb
1263                  * the system too much.
1264                  */
1265                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1266                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1267                         /* assume page table is clear */
1268                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1269                         spin_unlock(ptl);
1270                         up_write(&vma->vm_mm->mmap_sem);
1271                         atomic_long_dec(&vma->vm_mm->nr_ptes);
1272                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1273                 }
1274         }
1275         i_mmap_unlock_write(mapping);
1276 }
1277 
1278 /**
1279  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1280  *
1281  * Basic scheme is simple, details are more complex:
1282  *  - allocate and freeze a new huge page;
1283  *  - scan over radix tree replacing old pages the new one
1284  *    + swap in pages if necessary;
1285  *    + fill in gaps;
1286  *    + keep old pages around in case if rollback is required;
1287  *  - if replacing succeed:
1288  *    + copy data over;
1289  *    + free old pages;
1290  *    + unfreeze huge page;
1291  *  - if replacing failed;
1292  *    + put all pages back and unfreeze them;
1293  *    + restore gaps in the radix-tree;
1294  *    + free huge page;
1295  */
1296 static void collapse_shmem(struct mm_struct *mm,
1297                 struct address_space *mapping, pgoff_t start,
1298                 struct page **hpage, int node)
1299 {
1300         gfp_t gfp;
1301         struct page *page, *new_page, *tmp;
1302         struct mem_cgroup *memcg;
1303         pgoff_t index, end = start + HPAGE_PMD_NR;
1304         LIST_HEAD(pagelist);
1305         struct radix_tree_iter iter;
1306         void **slot;
1307         int nr_none = 0, result = SCAN_SUCCEED;
1308 
1309         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1310 
1311         /* Only allocate from the target node */
1312         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1313 
1314         new_page = khugepaged_alloc_page(hpage, gfp, node);
1315         if (!new_page) {
1316                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1317                 goto out;
1318         }
1319 
1320         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1321                 result = SCAN_CGROUP_CHARGE_FAIL;
1322                 goto out;
1323         }
1324 
1325         new_page->index = start;
1326         new_page->mapping = mapping;
1327         __SetPageSwapBacked(new_page);
1328         __SetPageLocked(new_page);
1329         BUG_ON(!page_ref_freeze(new_page, 1));
1330 
1331 
1332         /*
1333          * At this point the new_page is 'frozen' (page_count() is zero), locked
1334          * and not up-to-date. It's safe to insert it into radix tree, because
1335          * nobody would be able to map it or use it in other way until we
1336          * unfreeze it.
1337          */
1338 
1339         index = start;
1340         spin_lock_irq(&mapping->tree_lock);
1341         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1342                 int n = min(iter.index, end) - index;
1343 
1344                 /*
1345                  * Handle holes in the radix tree: charge it from shmem and
1346                  * insert relevant subpage of new_page into the radix-tree.
1347                  */
1348                 if (n && !shmem_charge(mapping->host, n)) {
1349                         result = SCAN_FAIL;
1350                         break;
1351                 }
1352                 nr_none += n;
1353                 for (; index < min(iter.index, end); index++) {
1354                         radix_tree_insert(&mapping->page_tree, index,
1355                                         new_page + (index % HPAGE_PMD_NR));
1356                 }
1357 
1358                 /* We are done. */
1359                 if (index >= end)
1360                         break;
1361 
1362                 page = radix_tree_deref_slot_protected(slot,
1363                                 &mapping->tree_lock);
1364                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1365                         spin_unlock_irq(&mapping->tree_lock);
1366                         /* swap in or instantiate fallocated page */
1367                         if (shmem_getpage(mapping->host, index, &page,
1368                                                 SGP_NOHUGE)) {
1369                                 result = SCAN_FAIL;
1370                                 goto tree_unlocked;
1371                         }
1372                         spin_lock_irq(&mapping->tree_lock);
1373                 } else if (trylock_page(page)) {
1374                         get_page(page);
1375                 } else {
1376                         result = SCAN_PAGE_LOCK;
1377                         break;
1378                 }
1379 
1380                 /*
1381                  * The page must be locked, so we can drop the tree_lock
1382                  * without racing with truncate.
1383                  */
1384                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1385                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1386                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1387 
1388                 if (page_mapping(page) != mapping) {
1389                         result = SCAN_TRUNCATED;
1390                         goto out_unlock;
1391                 }
1392                 spin_unlock_irq(&mapping->tree_lock);
1393 
1394                 if (isolate_lru_page(page)) {
1395                         result = SCAN_DEL_PAGE_LRU;
1396                         goto out_isolate_failed;
1397                 }
1398 
1399                 if (page_mapped(page))
1400                         unmap_mapping_range(mapping, index << PAGE_SHIFT,
1401                                         PAGE_SIZE, 0);
1402 
1403                 spin_lock_irq(&mapping->tree_lock);
1404 
1405                 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1406                 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1407                                         &mapping->tree_lock), page);
1408                 VM_BUG_ON_PAGE(page_mapped(page), page);
1409 
1410                 /*
1411                  * The page is expected to have page_count() == 3:
1412                  *  - we hold a pin on it;
1413                  *  - one reference from radix tree;
1414                  *  - one from isolate_lru_page;
1415                  */
1416                 if (!page_ref_freeze(page, 3)) {
1417                         result = SCAN_PAGE_COUNT;
1418                         goto out_lru;
1419                 }
1420 
1421                 /*
1422                  * Add the page to the list to be able to undo the collapse if
1423                  * something go wrong.
1424                  */
1425                 list_add_tail(&page->lru, &pagelist);
1426 
1427                 /* Finally, replace with the new page. */
1428                 radix_tree_replace_slot(&mapping->page_tree, slot,
1429                                 new_page + (index % HPAGE_PMD_NR));
1430 
1431                 slot = radix_tree_iter_resume(slot, &iter);
1432                 index++;
1433                 continue;
1434 out_lru:
1435                 spin_unlock_irq(&mapping->tree_lock);
1436                 putback_lru_page(page);
1437 out_isolate_failed:
1438                 unlock_page(page);
1439                 put_page(page);
1440                 goto tree_unlocked;
1441 out_unlock:
1442                 unlock_page(page);
1443                 put_page(page);
1444                 break;
1445         }
1446 
1447         /*
1448          * Handle hole in radix tree at the end of the range.
1449          * This code only triggers if there's nothing in radix tree
1450          * beyond 'end'.
1451          */
1452         if (result == SCAN_SUCCEED && index < end) {
1453                 int n = end - index;
1454 
1455                 if (!shmem_charge(mapping->host, n)) {
1456                         result = SCAN_FAIL;
1457                         goto tree_locked;
1458                 }
1459 
1460                 for (; index < end; index++) {
1461                         radix_tree_insert(&mapping->page_tree, index,
1462                                         new_page + (index % HPAGE_PMD_NR));
1463                 }
1464                 nr_none += n;
1465         }
1466 
1467 tree_locked:
1468         spin_unlock_irq(&mapping->tree_lock);
1469 tree_unlocked:
1470 
1471         if (result == SCAN_SUCCEED) {
1472                 unsigned long flags;
1473                 struct zone *zone = page_zone(new_page);
1474 
1475                 /*
1476                  * Replacing old pages with new one has succeed, now we need to
1477                  * copy the content and free old pages.
1478                  */
1479                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1480                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1481                                         page);
1482                         list_del(&page->lru);
1483                         unlock_page(page);
1484                         page_ref_unfreeze(page, 1);
1485                         page->mapping = NULL;
1486                         ClearPageActive(page);
1487                         ClearPageUnevictable(page);
1488                         put_page(page);
1489                 }
1490 
1491                 local_irq_save(flags);
1492                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1493                 if (nr_none) {
1494                         __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1495                         __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1496                 }
1497                 local_irq_restore(flags);
1498 
1499                 /*
1500                  * Remove pte page tables, so we can re-faulti
1501                  * the page as huge.
1502                  */
1503                 retract_page_tables(mapping, start);
1504 
1505                 /* Everything is ready, let's unfreeze the new_page */
1506                 set_page_dirty(new_page);
1507                 SetPageUptodate(new_page);
1508                 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1509                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1510                 lru_cache_add_anon(new_page);
1511                 unlock_page(new_page);
1512 
1513                 *hpage = NULL;
1514         } else {
1515                 /* Something went wrong: rollback changes to the radix-tree */
1516                 shmem_uncharge(mapping->host, nr_none);
1517                 spin_lock_irq(&mapping->tree_lock);
1518                 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1519                                 start) {
1520                         if (iter.index >= end)
1521                                 break;
1522                         page = list_first_entry_or_null(&pagelist,
1523                                         struct page, lru);
1524                         if (!page || iter.index < page->index) {
1525                                 if (!nr_none)
1526                                         break;
1527                                 nr_none--;
1528                                 /* Put holes back where they were */
1529                                 radix_tree_delete(&mapping->page_tree,
1530                                                   iter.index);
1531                                 continue;
1532                         }
1533 
1534                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1535 
1536                         /* Unfreeze the page. */
1537                         list_del(&page->lru);
1538                         page_ref_unfreeze(page, 2);
1539                         radix_tree_replace_slot(&mapping->page_tree,
1540                                                 slot, page);
1541                         slot = radix_tree_iter_resume(slot, &iter);
1542                         spin_unlock_irq(&mapping->tree_lock);
1543                         putback_lru_page(page);
1544                         unlock_page(page);
1545                         spin_lock_irq(&mapping->tree_lock);
1546                 }
1547                 VM_BUG_ON(nr_none);
1548                 spin_unlock_irq(&mapping->tree_lock);
1549 
1550                 /* Unfreeze new_page, caller would take care about freeing it */
1551                 page_ref_unfreeze(new_page, 1);
1552                 mem_cgroup_cancel_charge(new_page, memcg, true);
1553                 unlock_page(new_page);
1554                 new_page->mapping = NULL;
1555         }
1556 out:
1557         VM_BUG_ON(!list_empty(&pagelist));
1558         /* TODO: tracepoints */
1559 }
1560 
1561 static void khugepaged_scan_shmem(struct mm_struct *mm,
1562                 struct address_space *mapping,
1563                 pgoff_t start, struct page **hpage)
1564 {
1565         struct page *page = NULL;
1566         struct radix_tree_iter iter;
1567         void **slot;
1568         int present, swap;
1569         int node = NUMA_NO_NODE;
1570         int result = SCAN_SUCCEED;
1571 
1572         present = 0;
1573         swap = 0;
1574         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1575         rcu_read_lock();
1576         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1577                 if (iter.index >= start + HPAGE_PMD_NR)
1578                         break;
1579 
1580                 page = radix_tree_deref_slot(slot);
1581                 if (radix_tree_deref_retry(page)) {
1582                         slot = radix_tree_iter_retry(&iter);
1583                         continue;
1584                 }
1585 
1586                 if (radix_tree_exception(page)) {
1587                         if (++swap > khugepaged_max_ptes_swap) {
1588                                 result = SCAN_EXCEED_SWAP_PTE;
1589                                 break;
1590                         }
1591                         continue;
1592                 }
1593 
1594                 if (PageTransCompound(page)) {
1595                         result = SCAN_PAGE_COMPOUND;
1596                         break;
1597                 }
1598 
1599                 node = page_to_nid(page);
1600                 if (khugepaged_scan_abort(node)) {
1601                         result = SCAN_SCAN_ABORT;
1602                         break;
1603                 }
1604                 khugepaged_node_load[node]++;
1605 
1606                 if (!PageLRU(page)) {
1607                         result = SCAN_PAGE_LRU;
1608                         break;
1609                 }
1610 
1611                 if (page_count(page) != 1 + page_mapcount(page)) {
1612                         result = SCAN_PAGE_COUNT;
1613                         break;
1614                 }
1615 
1616                 /*
1617                  * We probably should check if the page is referenced here, but
1618                  * nobody would transfer pte_young() to PageReferenced() for us.
1619                  * And rmap walk here is just too costly...
1620                  */
1621 
1622                 present++;
1623 
1624                 if (need_resched()) {
1625                         slot = radix_tree_iter_resume(slot, &iter);
1626                         cond_resched_rcu();
1627                 }
1628         }
1629         rcu_read_unlock();
1630 
1631         if (result == SCAN_SUCCEED) {
1632                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1633                         result = SCAN_EXCEED_NONE_PTE;
1634                 } else {
1635                         node = khugepaged_find_target_node();
1636                         collapse_shmem(mm, mapping, start, hpage, node);
1637                 }
1638         }
1639 
1640         /* TODO: tracepoints */
1641 }
1642 #else
1643 static void khugepaged_scan_shmem(struct mm_struct *mm,
1644                 struct address_space *mapping,
1645                 pgoff_t start, struct page **hpage)
1646 {
1647         BUILD_BUG();
1648 }
1649 #endif
1650 
1651 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1652                                             struct page **hpage)
1653         __releases(&khugepaged_mm_lock)
1654         __acquires(&khugepaged_mm_lock)
1655 {
1656         struct mm_slot *mm_slot;
1657         struct mm_struct *mm;
1658         struct vm_area_struct *vma;
1659         int progress = 0;
1660 
1661         VM_BUG_ON(!pages);
1662         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1663 
1664         if (khugepaged_scan.mm_slot)
1665                 mm_slot = khugepaged_scan.mm_slot;
1666         else {
1667                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1668                                      struct mm_slot, mm_node);
1669                 khugepaged_scan.address = 0;
1670                 khugepaged_scan.mm_slot = mm_slot;
1671         }
1672         spin_unlock(&khugepaged_mm_lock);
1673 
1674         mm = mm_slot->mm;
1675         down_read(&mm->mmap_sem);
1676         if (unlikely(khugepaged_test_exit(mm)))
1677                 vma = NULL;
1678         else
1679                 vma = find_vma(mm, khugepaged_scan.address);
1680 
1681         progress++;
1682         for (; vma; vma = vma->vm_next) {
1683                 unsigned long hstart, hend;
1684 
1685                 cond_resched();
1686                 if (unlikely(khugepaged_test_exit(mm))) {
1687                         progress++;
1688                         break;
1689                 }
1690                 if (!hugepage_vma_check(vma)) {
1691 skip:
1692                         progress++;
1693                         continue;
1694                 }
1695                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1696                 hend = vma->vm_end & HPAGE_PMD_MASK;
1697                 if (hstart >= hend)
1698                         goto skip;
1699                 if (khugepaged_scan.address > hend)
1700                         goto skip;
1701                 if (khugepaged_scan.address < hstart)
1702                         khugepaged_scan.address = hstart;
1703                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1704 
1705                 while (khugepaged_scan.address < hend) {
1706                         int ret;
1707                         cond_resched();
1708                         if (unlikely(khugepaged_test_exit(mm)))
1709                                 goto breakouterloop;
1710 
1711                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1712                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1713                                   hend);
1714                         if (shmem_file(vma->vm_file)) {
1715                                 struct file *file;
1716                                 pgoff_t pgoff = linear_page_index(vma,
1717                                                 khugepaged_scan.address);
1718                                 if (!shmem_huge_enabled(vma))
1719                                         goto skip;
1720                                 file = get_file(vma->vm_file);
1721                                 up_read(&mm->mmap_sem);
1722                                 ret = 1;
1723                                 khugepaged_scan_shmem(mm, file->f_mapping,
1724                                                 pgoff, hpage);
1725                                 fput(file);
1726                         } else {
1727                                 ret = khugepaged_scan_pmd(mm, vma,
1728                                                 khugepaged_scan.address,
1729                                                 hpage);
1730                         }
1731                         /* move to next address */
1732                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1733                         progress += HPAGE_PMD_NR;
1734                         if (ret)
1735                                 /* we released mmap_sem so break loop */
1736                                 goto breakouterloop_mmap_sem;
1737                         if (progress >= pages)
1738                                 goto breakouterloop;
1739                 }
1740         }
1741 breakouterloop:
1742         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1743 breakouterloop_mmap_sem:
1744 
1745         spin_lock(&khugepaged_mm_lock);
1746         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1747         /*
1748          * Release the current mm_slot if this mm is about to die, or
1749          * if we scanned all vmas of this mm.
1750          */
1751         if (khugepaged_test_exit(mm) || !vma) {
1752                 /*
1753                  * Make sure that if mm_users is reaching zero while
1754                  * khugepaged runs here, khugepaged_exit will find
1755                  * mm_slot not pointing to the exiting mm.
1756                  */
1757                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1758                         khugepaged_scan.mm_slot = list_entry(
1759                                 mm_slot->mm_node.next,
1760                                 struct mm_slot, mm_node);
1761                         khugepaged_scan.address = 0;
1762                 } else {
1763                         khugepaged_scan.mm_slot = NULL;
1764                         khugepaged_full_scans++;
1765                 }
1766 
1767                 collect_mm_slot(mm_slot);
1768         }
1769 
1770         return progress;
1771 }
1772 
1773 static int khugepaged_has_work(void)
1774 {
1775         return !list_empty(&khugepaged_scan.mm_head) &&
1776                 khugepaged_enabled();
1777 }
1778 
1779 static int khugepaged_wait_event(void)
1780 {
1781         return !list_empty(&khugepaged_scan.mm_head) ||
1782                 kthread_should_stop();
1783 }
1784 
1785 static void khugepaged_do_scan(void)
1786 {
1787         struct page *hpage = NULL;
1788         unsigned int progress = 0, pass_through_head = 0;
1789         unsigned int pages = khugepaged_pages_to_scan;
1790         bool wait = true;
1791 
1792         barrier(); /* write khugepaged_pages_to_scan to local stack */
1793 
1794         while (progress < pages) {
1795                 if (!khugepaged_prealloc_page(&hpage, &wait))
1796                         break;
1797 
1798                 cond_resched();
1799 
1800                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1801                         break;
1802 
1803                 spin_lock(&khugepaged_mm_lock);
1804                 if (!khugepaged_scan.mm_slot)
1805                         pass_through_head++;
1806                 if (khugepaged_has_work() &&
1807                     pass_through_head < 2)
1808                         progress += khugepaged_scan_mm_slot(pages - progress,
1809                                                             &hpage);
1810                 else
1811                         progress = pages;
1812                 spin_unlock(&khugepaged_mm_lock);
1813         }
1814 
1815         if (!IS_ERR_OR_NULL(hpage))
1816                 put_page(hpage);
1817 }
1818 
1819 static bool khugepaged_should_wakeup(void)
1820 {
1821         return kthread_should_stop() ||
1822                time_after_eq(jiffies, khugepaged_sleep_expire);
1823 }
1824 
1825 static void khugepaged_wait_work(void)
1826 {
1827         if (khugepaged_has_work()) {
1828                 const unsigned long scan_sleep_jiffies =
1829                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1830 
1831                 if (!scan_sleep_jiffies)
1832                         return;
1833 
1834                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1835                 wait_event_freezable_timeout(khugepaged_wait,
1836                                              khugepaged_should_wakeup(),
1837                                              scan_sleep_jiffies);
1838                 return;
1839         }
1840 
1841         if (khugepaged_enabled())
1842                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1843 }
1844 
1845 static int khugepaged(void *none)
1846 {
1847         struct mm_slot *mm_slot;
1848 
1849         set_freezable();
1850         set_user_nice(current, MAX_NICE);
1851 
1852         while (!kthread_should_stop()) {
1853                 khugepaged_do_scan();
1854                 khugepaged_wait_work();
1855         }
1856 
1857         spin_lock(&khugepaged_mm_lock);
1858         mm_slot = khugepaged_scan.mm_slot;
1859         khugepaged_scan.mm_slot = NULL;
1860         if (mm_slot)
1861                 collect_mm_slot(mm_slot);
1862         spin_unlock(&khugepaged_mm_lock);
1863         return 0;
1864 }
1865 
1866 static void set_recommended_min_free_kbytes(void)
1867 {
1868         struct zone *zone;
1869         int nr_zones = 0;
1870         unsigned long recommended_min;
1871 
1872         for_each_populated_zone(zone)
1873                 nr_zones++;
1874 
1875         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1876         recommended_min = pageblock_nr_pages * nr_zones * 2;
1877 
1878         /*
1879          * Make sure that on average at least two pageblocks are almost free
1880          * of another type, one for a migratetype to fall back to and a
1881          * second to avoid subsequent fallbacks of other types There are 3
1882          * MIGRATE_TYPES we care about.
1883          */
1884         recommended_min += pageblock_nr_pages * nr_zones *
1885                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1886 
1887         /* don't ever allow to reserve more than 5% of the lowmem */
1888         recommended_min = min(recommended_min,
1889                               (unsigned long) nr_free_buffer_pages() / 20);
1890         recommended_min <<= (PAGE_SHIFT-10);
1891 
1892         if (recommended_min > min_free_kbytes) {
1893                 if (user_min_free_kbytes >= 0)
1894                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1895                                 min_free_kbytes, recommended_min);
1896 
1897                 min_free_kbytes = recommended_min;
1898         }
1899         setup_per_zone_wmarks();
1900 }
1901 
1902 int start_stop_khugepaged(void)
1903 {
1904         static struct task_struct *khugepaged_thread __read_mostly;
1905         static DEFINE_MUTEX(khugepaged_mutex);
1906         int err = 0;
1907 
1908         mutex_lock(&khugepaged_mutex);
1909         if (khugepaged_enabled()) {
1910                 if (!khugepaged_thread)
1911                         khugepaged_thread = kthread_run(khugepaged, NULL,
1912                                                         "khugepaged");
1913                 if (IS_ERR(khugepaged_thread)) {
1914                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1915                         err = PTR_ERR(khugepaged_thread);
1916                         khugepaged_thread = NULL;
1917                         goto fail;
1918                 }
1919 
1920                 if (!list_empty(&khugepaged_scan.mm_head))
1921                         wake_up_interruptible(&khugepaged_wait);
1922 
1923                 set_recommended_min_free_kbytes();
1924         } else if (khugepaged_thread) {
1925                 kthread_stop(khugepaged_thread);
1926                 khugepaged_thread = NULL;
1927         }
1928 fail:
1929         mutex_unlock(&khugepaged_mutex);
1930         return err;
1931 }
1932 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us