Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5

Linux/include/linux/usb/gadget.h

  1 /*
  2  * <linux/usb/gadget.h>
  3  *
  4  * We call the USB code inside a Linux-based peripheral device a "gadget"
  5  * driver, except for the hardware-specific bus glue.  One USB host can
  6  * master many USB gadgets, but the gadgets are only slaved to one host.
  7  *
  8  *
  9  * (C) Copyright 2002-2004 by David Brownell
 10  * All Rights Reserved.
 11  *
 12  * This software is licensed under the GNU GPL version 2.
 13  */
 14 
 15 #ifndef __LINUX_USB_GADGET_H
 16 #define __LINUX_USB_GADGET_H
 17 
 18 #include <linux/device.h>
 19 #include <linux/errno.h>
 20 #include <linux/init.h>
 21 #include <linux/list.h>
 22 #include <linux/slab.h>
 23 #include <linux/scatterlist.h>
 24 #include <linux/types.h>
 25 #include <linux/workqueue.h>
 26 #include <linux/usb/ch9.h>
 27 
 28 struct usb_ep;
 29 
 30 /**
 31  * struct usb_request - describes one i/o request
 32  * @buf: Buffer used for data.  Always provide this; some controllers
 33  *      only use PIO, or don't use DMA for some endpoints.
 34  * @dma: DMA address corresponding to 'buf'.  If you don't set this
 35  *      field, and the usb controller needs one, it is responsible
 36  *      for mapping and unmapping the buffer.
 37  * @sg: a scatterlist for SG-capable controllers.
 38  * @num_sgs: number of SG entries
 39  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
 40  * @length: Length of that data
 41  * @stream_id: The stream id, when USB3.0 bulk streams are being used
 42  * @no_interrupt: If true, hints that no completion irq is needed.
 43  *      Helpful sometimes with deep request queues that are handled
 44  *      directly by DMA controllers.
 45  * @zero: If true, when writing data, makes the last packet be "short"
 46  *     by adding a zero length packet as needed;
 47  * @short_not_ok: When reading data, makes short packets be
 48  *     treated as errors (queue stops advancing till cleanup).
 49  * @complete: Function called when request completes, so this request and
 50  *      its buffer may be re-used.  The function will always be called with
 51  *      interrupts disabled, and it must not sleep.
 52  *      Reads terminate with a short packet, or when the buffer fills,
 53  *      whichever comes first.  When writes terminate, some data bytes
 54  *      will usually still be in flight (often in a hardware fifo).
 55  *      Errors (for reads or writes) stop the queue from advancing
 56  *      until the completion function returns, so that any transfers
 57  *      invalidated by the error may first be dequeued.
 58  * @context: For use by the completion callback
 59  * @list: For use by the gadget driver.
 60  * @status: Reports completion code, zero or a negative errno.
 61  *      Normally, faults block the transfer queue from advancing until
 62  *      the completion callback returns.
 63  *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
 64  *      or when the driver disabled the endpoint.
 65  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
 66  *      transfers) this may be less than the requested length.  If the
 67  *      short_not_ok flag is set, short reads are treated as errors
 68  *      even when status otherwise indicates successful completion.
 69  *      Note that for writes (IN transfers) some data bytes may still
 70  *      reside in a device-side FIFO when the request is reported as
 71  *      complete.
 72  *
 73  * These are allocated/freed through the endpoint they're used with.  The
 74  * hardware's driver can add extra per-request data to the memory it returns,
 75  * which often avoids separate memory allocations (potential failures),
 76  * later when the request is queued.
 77  *
 78  * Request flags affect request handling, such as whether a zero length
 79  * packet is written (the "zero" flag), whether a short read should be
 80  * treated as an error (blocking request queue advance, the "short_not_ok"
 81  * flag), or hinting that an interrupt is not required (the "no_interrupt"
 82  * flag, for use with deep request queues).
 83  *
 84  * Bulk endpoints can use any size buffers, and can also be used for interrupt
 85  * transfers. interrupt-only endpoints can be much less functional.
 86  *
 87  * NOTE:  this is analogous to 'struct urb' on the host side, except that
 88  * it's thinner and promotes more pre-allocation.
 89  */
 90 
 91 struct usb_request {
 92         void                    *buf;
 93         unsigned                length;
 94         dma_addr_t              dma;
 95 
 96         struct scatterlist      *sg;
 97         unsigned                num_sgs;
 98         unsigned                num_mapped_sgs;
 99 
100         unsigned                stream_id:16;
101         unsigned                no_interrupt:1;
102         unsigned                zero:1;
103         unsigned                short_not_ok:1;
104 
105         void                    (*complete)(struct usb_ep *ep,
106                                         struct usb_request *req);
107         void                    *context;
108         struct list_head        list;
109 
110         int                     status;
111         unsigned                actual;
112 };
113 
114 /*-------------------------------------------------------------------------*/
115 
116 /* endpoint-specific parts of the api to the usb controller hardware.
117  * unlike the urb model, (de)multiplexing layers are not required.
118  * (so this api could slash overhead if used on the host side...)
119  *
120  * note that device side usb controllers commonly differ in how many
121  * endpoints they support, as well as their capabilities.
122  */
123 struct usb_ep_ops {
124         int (*enable) (struct usb_ep *ep,
125                 const struct usb_endpoint_descriptor *desc);
126         int (*disable) (struct usb_ep *ep);
127 
128         struct usb_request *(*alloc_request) (struct usb_ep *ep,
129                 gfp_t gfp_flags);
130         void (*free_request) (struct usb_ep *ep, struct usb_request *req);
131 
132         int (*queue) (struct usb_ep *ep, struct usb_request *req,
133                 gfp_t gfp_flags);
134         int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
135 
136         int (*set_halt) (struct usb_ep *ep, int value);
137         int (*set_wedge) (struct usb_ep *ep);
138 
139         int (*fifo_status) (struct usb_ep *ep);
140         void (*fifo_flush) (struct usb_ep *ep);
141 };
142 
143 /**
144  * struct usb_ep_caps - endpoint capabilities description
145  * @type_control:Endpoint supports control type (reserved for ep0).
146  * @type_iso:Endpoint supports isochronous transfers.
147  * @type_bulk:Endpoint supports bulk transfers.
148  * @type_int:Endpoint supports interrupt transfers.
149  * @dir_in:Endpoint supports IN direction.
150  * @dir_out:Endpoint supports OUT direction.
151  */
152 struct usb_ep_caps {
153         unsigned type_control:1;
154         unsigned type_iso:1;
155         unsigned type_bulk:1;
156         unsigned type_int:1;
157         unsigned dir_in:1;
158         unsigned dir_out:1;
159 };
160 
161 #define USB_EP_CAPS_TYPE_CONTROL     0x01
162 #define USB_EP_CAPS_TYPE_ISO         0x02
163 #define USB_EP_CAPS_TYPE_BULK        0x04
164 #define USB_EP_CAPS_TYPE_INT         0x08
165 #define USB_EP_CAPS_TYPE_ALL \
166         (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
167 #define USB_EP_CAPS_DIR_IN           0x01
168 #define USB_EP_CAPS_DIR_OUT          0x02
169 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
170 
171 #define USB_EP_CAPS(_type, _dir) \
172         { \
173                 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
174                 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
175                 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
176                 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
177                 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
178                 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
179         }
180 
181 /**
182  * struct usb_ep - device side representation of USB endpoint
183  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
184  * @ops: Function pointers used to access hardware-specific operations.
185  * @ep_list:the gadget's ep_list holds all of its endpoints
186  * @caps:The structure describing types and directions supported by endoint.
187  * @maxpacket:The maximum packet size used on this endpoint.  The initial
188  *      value can sometimes be reduced (hardware allowing), according to
189  *      the endpoint descriptor used to configure the endpoint.
190  * @maxpacket_limit:The maximum packet size value which can be handled by this
191  *      endpoint. It's set once by UDC driver when endpoint is initialized, and
192  *      should not be changed. Should not be confused with maxpacket.
193  * @max_streams: The maximum number of streams supported
194  *      by this EP (0 - 16, actual number is 2^n)
195  * @mult: multiplier, 'mult' value for SS Isoc EPs
196  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
197  * @driver_data:for use by the gadget driver.
198  * @address: used to identify the endpoint when finding descriptor that
199  *      matches connection speed
200  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
201  *      enabled and remains valid until the endpoint is disabled.
202  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
203  *      descriptor that is used to configure the endpoint
204  *
205  * the bus controller driver lists all the general purpose endpoints in
206  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
207  * and is accessed only in response to a driver setup() callback.
208  */
209 
210 struct usb_ep {
211         void                    *driver_data;
212 
213         const char              *name;
214         const struct usb_ep_ops *ops;
215         struct list_head        ep_list;
216         struct usb_ep_caps      caps;
217         bool                    claimed;
218         bool                    enabled;
219         unsigned                maxpacket:16;
220         unsigned                maxpacket_limit:16;
221         unsigned                max_streams:16;
222         unsigned                mult:2;
223         unsigned                maxburst:5;
224         u8                      address;
225         const struct usb_endpoint_descriptor    *desc;
226         const struct usb_ss_ep_comp_descriptor  *comp_desc;
227 };
228 
229 /*-------------------------------------------------------------------------*/
230 
231 /**
232  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
233  * @ep:the endpoint being configured
234  * @maxpacket_limit:value of maximum packet size limit
235  *
236  * This function should be used only in UDC drivers to initialize endpoint
237  * (usually in probe function).
238  */
239 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
240                                               unsigned maxpacket_limit)
241 {
242         ep->maxpacket_limit = maxpacket_limit;
243         ep->maxpacket = maxpacket_limit;
244 }
245 
246 /**
247  * usb_ep_enable - configure endpoint, making it usable
248  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
249  *      drivers discover endpoints through the ep_list of a usb_gadget.
250  *
251  * When configurations are set, or when interface settings change, the driver
252  * will enable or disable the relevant endpoints.  while it is enabled, an
253  * endpoint may be used for i/o until the driver receives a disconnect() from
254  * the host or until the endpoint is disabled.
255  *
256  * the ep0 implementation (which calls this routine) must ensure that the
257  * hardware capabilities of each endpoint match the descriptor provided
258  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
259  * for interrupt transfers as well as bulk, but it likely couldn't be used
260  * for iso transfers or for endpoint 14.  some endpoints are fully
261  * configurable, with more generic names like "ep-a".  (remember that for
262  * USB, "in" means "towards the USB master".)
263  *
264  * returns zero, or a negative error code.
265  */
266 static inline int usb_ep_enable(struct usb_ep *ep)
267 {
268         int ret;
269 
270         if (ep->enabled)
271                 return 0;
272 
273         ret = ep->ops->enable(ep, ep->desc);
274         if (ret)
275                 return ret;
276 
277         ep->enabled = true;
278 
279         return 0;
280 }
281 
282 /**
283  * usb_ep_disable - endpoint is no longer usable
284  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
285  *
286  * no other task may be using this endpoint when this is called.
287  * any pending and uncompleted requests will complete with status
288  * indicating disconnect (-ESHUTDOWN) before this call returns.
289  * gadget drivers must call usb_ep_enable() again before queueing
290  * requests to the endpoint.
291  *
292  * returns zero, or a negative error code.
293  */
294 static inline int usb_ep_disable(struct usb_ep *ep)
295 {
296         int ret;
297 
298         if (!ep->enabled)
299                 return 0;
300 
301         ret = ep->ops->disable(ep);
302         if (ret)
303                 return ret;
304 
305         ep->enabled = false;
306 
307         return 0;
308 }
309 
310 /**
311  * usb_ep_alloc_request - allocate a request object to use with this endpoint
312  * @ep:the endpoint to be used with with the request
313  * @gfp_flags:GFP_* flags to use
314  *
315  * Request objects must be allocated with this call, since they normally
316  * need controller-specific setup and may even need endpoint-specific
317  * resources such as allocation of DMA descriptors.
318  * Requests may be submitted with usb_ep_queue(), and receive a single
319  * completion callback.  Free requests with usb_ep_free_request(), when
320  * they are no longer needed.
321  *
322  * Returns the request, or null if one could not be allocated.
323  */
324 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
325                                                        gfp_t gfp_flags)
326 {
327         return ep->ops->alloc_request(ep, gfp_flags);
328 }
329 
330 /**
331  * usb_ep_free_request - frees a request object
332  * @ep:the endpoint associated with the request
333  * @req:the request being freed
334  *
335  * Reverses the effect of usb_ep_alloc_request().
336  * Caller guarantees the request is not queued, and that it will
337  * no longer be requeued (or otherwise used).
338  */
339 static inline void usb_ep_free_request(struct usb_ep *ep,
340                                        struct usb_request *req)
341 {
342         ep->ops->free_request(ep, req);
343 }
344 
345 /**
346  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
347  * @ep:the endpoint associated with the request
348  * @req:the request being submitted
349  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
350  *      pre-allocate all necessary memory with the request.
351  *
352  * This tells the device controller to perform the specified request through
353  * that endpoint (reading or writing a buffer).  When the request completes,
354  * including being canceled by usb_ep_dequeue(), the request's completion
355  * routine is called to return the request to the driver.  Any endpoint
356  * (except control endpoints like ep0) may have more than one transfer
357  * request queued; they complete in FIFO order.  Once a gadget driver
358  * submits a request, that request may not be examined or modified until it
359  * is given back to that driver through the completion callback.
360  *
361  * Each request is turned into one or more packets.  The controller driver
362  * never merges adjacent requests into the same packet.  OUT transfers
363  * will sometimes use data that's already buffered in the hardware.
364  * Drivers can rely on the fact that the first byte of the request's buffer
365  * always corresponds to the first byte of some USB packet, for both
366  * IN and OUT transfers.
367  *
368  * Bulk endpoints can queue any amount of data; the transfer is packetized
369  * automatically.  The last packet will be short if the request doesn't fill it
370  * out completely.  Zero length packets (ZLPs) should be avoided in portable
371  * protocols since not all usb hardware can successfully handle zero length
372  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
373  * the request 'zero' flag is set.)  Bulk endpoints may also be used
374  * for interrupt transfers; but the reverse is not true, and some endpoints
375  * won't support every interrupt transfer.  (Such as 768 byte packets.)
376  *
377  * Interrupt-only endpoints are less functional than bulk endpoints, for
378  * example by not supporting queueing or not handling buffers that are
379  * larger than the endpoint's maxpacket size.  They may also treat data
380  * toggle differently.
381  *
382  * Control endpoints ... after getting a setup() callback, the driver queues
383  * one response (even if it would be zero length).  That enables the
384  * status ack, after transferring data as specified in the response.  Setup
385  * functions may return negative error codes to generate protocol stalls.
386  * (Note that some USB device controllers disallow protocol stall responses
387  * in some cases.)  When control responses are deferred (the response is
388  * written after the setup callback returns), then usb_ep_set_halt() may be
389  * used on ep0 to trigger protocol stalls.  Depending on the controller,
390  * it may not be possible to trigger a status-stage protocol stall when the
391  * data stage is over, that is, from within the response's completion
392  * routine.
393  *
394  * For periodic endpoints, like interrupt or isochronous ones, the usb host
395  * arranges to poll once per interval, and the gadget driver usually will
396  * have queued some data to transfer at that time.
397  *
398  * Returns zero, or a negative error code.  Endpoints that are not enabled
399  * report errors; errors will also be
400  * reported when the usb peripheral is disconnected.
401  */
402 static inline int usb_ep_queue(struct usb_ep *ep,
403                                struct usb_request *req, gfp_t gfp_flags)
404 {
405         if (WARN_ON_ONCE(!ep->enabled && ep->address))
406                 return -ESHUTDOWN;
407 
408         return ep->ops->queue(ep, req, gfp_flags);
409 }
410 
411 /**
412  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
413  * @ep:the endpoint associated with the request
414  * @req:the request being canceled
415  *
416  * If the request is still active on the endpoint, it is dequeued and its
417  * completion routine is called (with status -ECONNRESET); else a negative
418  * error code is returned. This is guaranteed to happen before the call to
419  * usb_ep_dequeue() returns.
420  *
421  * Note that some hardware can't clear out write fifos (to unlink the request
422  * at the head of the queue) except as part of disconnecting from usb. Such
423  * restrictions prevent drivers from supporting configuration changes,
424  * even to configuration zero (a "chapter 9" requirement).
425  */
426 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
427 {
428         return ep->ops->dequeue(ep, req);
429 }
430 
431 /**
432  * usb_ep_set_halt - sets the endpoint halt feature.
433  * @ep: the non-isochronous endpoint being stalled
434  *
435  * Use this to stall an endpoint, perhaps as an error report.
436  * Except for control endpoints,
437  * the endpoint stays halted (will not stream any data) until the host
438  * clears this feature; drivers may need to empty the endpoint's request
439  * queue first, to make sure no inappropriate transfers happen.
440  *
441  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
442  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
443  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
444  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
445  *
446  * Returns zero, or a negative error code.  On success, this call sets
447  * underlying hardware state that blocks data transfers.
448  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
449  * transfer requests are still queued, or if the controller hardware
450  * (usually a FIFO) still holds bytes that the host hasn't collected.
451  */
452 static inline int usb_ep_set_halt(struct usb_ep *ep)
453 {
454         return ep->ops->set_halt(ep, 1);
455 }
456 
457 /**
458  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
459  * @ep:the bulk or interrupt endpoint being reset
460  *
461  * Use this when responding to the standard usb "set interface" request,
462  * for endpoints that aren't reconfigured, after clearing any other state
463  * in the endpoint's i/o queue.
464  *
465  * Returns zero, or a negative error code.  On success, this call clears
466  * the underlying hardware state reflecting endpoint halt and data toggle.
467  * Note that some hardware can't support this request (like pxa2xx_udc),
468  * and accordingly can't correctly implement interface altsettings.
469  */
470 static inline int usb_ep_clear_halt(struct usb_ep *ep)
471 {
472         return ep->ops->set_halt(ep, 0);
473 }
474 
475 /**
476  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
477  * @ep: the endpoint being wedged
478  *
479  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
480  * requests. If the gadget driver clears the halt status, it will
481  * automatically unwedge the endpoint.
482  *
483  * Returns zero on success, else negative errno.
484  */
485 static inline int
486 usb_ep_set_wedge(struct usb_ep *ep)
487 {
488         if (ep->ops->set_wedge)
489                 return ep->ops->set_wedge(ep);
490         else
491                 return ep->ops->set_halt(ep, 1);
492 }
493 
494 /**
495  * usb_ep_fifo_status - returns number of bytes in fifo, or error
496  * @ep: the endpoint whose fifo status is being checked.
497  *
498  * FIFO endpoints may have "unclaimed data" in them in certain cases,
499  * such as after aborted transfers.  Hosts may not have collected all
500  * the IN data written by the gadget driver (and reported by a request
501  * completion).  The gadget driver may not have collected all the data
502  * written OUT to it by the host.  Drivers that need precise handling for
503  * fault reporting or recovery may need to use this call.
504  *
505  * This returns the number of such bytes in the fifo, or a negative
506  * errno if the endpoint doesn't use a FIFO or doesn't support such
507  * precise handling.
508  */
509 static inline int usb_ep_fifo_status(struct usb_ep *ep)
510 {
511         if (ep->ops->fifo_status)
512                 return ep->ops->fifo_status(ep);
513         else
514                 return -EOPNOTSUPP;
515 }
516 
517 /**
518  * usb_ep_fifo_flush - flushes contents of a fifo
519  * @ep: the endpoint whose fifo is being flushed.
520  *
521  * This call may be used to flush the "unclaimed data" that may exist in
522  * an endpoint fifo after abnormal transaction terminations.  The call
523  * must never be used except when endpoint is not being used for any
524  * protocol translation.
525  */
526 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
527 {
528         if (ep->ops->fifo_flush)
529                 ep->ops->fifo_flush(ep);
530 }
531 
532 
533 /*-------------------------------------------------------------------------*/
534 
535 struct usb_dcd_config_params {
536         __u8  bU1devExitLat;    /* U1 Device exit Latency */
537 #define USB_DEFAULT_U1_DEV_EXIT_LAT     0x01    /* Less then 1 microsec */
538         __le16 bU2DevExitLat;   /* U2 Device exit Latency */
539 #define USB_DEFAULT_U2_DEV_EXIT_LAT     0x1F4   /* Less then 500 microsec */
540 };
541 
542 
543 struct usb_gadget;
544 struct usb_gadget_driver;
545 struct usb_udc;
546 
547 /* the rest of the api to the controller hardware: device operations,
548  * which don't involve endpoints (or i/o).
549  */
550 struct usb_gadget_ops {
551         int     (*get_frame)(struct usb_gadget *);
552         int     (*wakeup)(struct usb_gadget *);
553         int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
554         int     (*vbus_session) (struct usb_gadget *, int is_active);
555         int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
556         int     (*pullup) (struct usb_gadget *, int is_on);
557         int     (*ioctl)(struct usb_gadget *,
558                                 unsigned code, unsigned long param);
559         void    (*get_config_params)(struct usb_dcd_config_params *);
560         int     (*udc_start)(struct usb_gadget *,
561                         struct usb_gadget_driver *);
562         int     (*udc_stop)(struct usb_gadget *);
563         struct usb_ep *(*match_ep)(struct usb_gadget *,
564                         struct usb_endpoint_descriptor *,
565                         struct usb_ss_ep_comp_descriptor *);
566 };
567 
568 /**
569  * struct usb_gadget - represents a usb slave device
570  * @work: (internal use) Workqueue to be used for sysfs_notify()
571  * @udc: struct usb_udc pointer for this gadget
572  * @ops: Function pointers used to access hardware-specific operations.
573  * @ep0: Endpoint zero, used when reading or writing responses to
574  *      driver setup() requests
575  * @ep_list: List of other endpoints supported by the device.
576  * @speed: Speed of current connection to USB host.
577  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
578  *      and all slower speeds.
579  * @state: the state we are now (attached, suspended, configured, etc)
580  * @name: Identifies the controller hardware type.  Used in diagnostics
581  *      and sometimes configuration.
582  * @dev: Driver model state for this abstract device.
583  * @out_epnum: last used out ep number
584  * @in_epnum: last used in ep number
585  * @otg_caps: OTG capabilities of this gadget.
586  * @sg_supported: true if we can handle scatter-gather
587  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
588  *      gadget driver must provide a USB OTG descriptor.
589  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
590  *      is in the Mini-AB jack, and HNP has been used to switch roles
591  *      so that the "A" device currently acts as A-Peripheral, not A-Host.
592  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
593  *      supports HNP at this port.
594  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
595  *      only supports HNP on a different root port.
596  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
597  *      enabled HNP support.
598  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
599  *      MaxPacketSize.
600  * @is_selfpowered: if the gadget is self-powered.
601  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
602  *      be connected.
603  * @connected: True if gadget is connected.
604  *
605  * Gadgets have a mostly-portable "gadget driver" implementing device
606  * functions, handling all usb configurations and interfaces.  Gadget
607  * drivers talk to hardware-specific code indirectly, through ops vectors.
608  * That insulates the gadget driver from hardware details, and packages
609  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
610  * and "usb_ep" interfaces provide that insulation from the hardware.
611  *
612  * Except for the driver data, all fields in this structure are
613  * read-only to the gadget driver.  That driver data is part of the
614  * "driver model" infrastructure in 2.6 (and later) kernels, and for
615  * earlier systems is grouped in a similar structure that's not known
616  * to the rest of the kernel.
617  *
618  * Values of the three OTG device feature flags are updated before the
619  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
620  * driver suspend() calls.  They are valid only when is_otg, and when the
621  * device is acting as a B-Peripheral (so is_a_peripheral is false).
622  */
623 struct usb_gadget {
624         struct work_struct              work;
625         struct usb_udc                  *udc;
626         /* readonly to gadget driver */
627         const struct usb_gadget_ops     *ops;
628         struct usb_ep                   *ep0;
629         struct list_head                ep_list;        /* of usb_ep */
630         enum usb_device_speed           speed;
631         enum usb_device_speed           max_speed;
632         enum usb_device_state           state;
633         const char                      *name;
634         struct device                   dev;
635         unsigned                        out_epnum;
636         unsigned                        in_epnum;
637         struct usb_otg_caps             *otg_caps;
638 
639         unsigned                        sg_supported:1;
640         unsigned                        is_otg:1;
641         unsigned                        is_a_peripheral:1;
642         unsigned                        b_hnp_enable:1;
643         unsigned                        a_hnp_support:1;
644         unsigned                        a_alt_hnp_support:1;
645         unsigned                        quirk_ep_out_aligned_size:1;
646         unsigned                        quirk_altset_not_supp:1;
647         unsigned                        quirk_stall_not_supp:1;
648         unsigned                        quirk_zlp_not_supp:1;
649         unsigned                        is_selfpowered:1;
650         unsigned                        deactivated:1;
651         unsigned                        connected:1;
652 };
653 #define work_to_gadget(w)       (container_of((w), struct usb_gadget, work))
654 
655 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
656         { dev_set_drvdata(&gadget->dev, data); }
657 static inline void *get_gadget_data(struct usb_gadget *gadget)
658         { return dev_get_drvdata(&gadget->dev); }
659 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
660 {
661         return container_of(dev, struct usb_gadget, dev);
662 }
663 
664 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
665 #define gadget_for_each_ep(tmp, gadget) \
666         list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
667 
668 /**
669  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
670  *      requires quirk_ep_out_aligned_size, otherwise reguens len.
671  * @g: controller to check for quirk
672  * @ep: the endpoint whose maxpacketsize is used to align @len
673  * @len: buffer size's length to align to @ep's maxpacketsize
674  *
675  * This helper is used in case it's required for any reason to check and maybe
676  * align buffer's size to an ep's maxpacketsize.
677  */
678 static inline size_t
679 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
680 {
681         return !g->quirk_ep_out_aligned_size ? len :
682                         round_up(len, (size_t)ep->desc->wMaxPacketSize);
683 }
684 
685 /**
686  * gadget_is_altset_supported - return true iff the hardware supports
687  *      altsettings
688  * @g: controller to check for quirk
689  */
690 static inline int gadget_is_altset_supported(struct usb_gadget *g)
691 {
692         return !g->quirk_altset_not_supp;
693 }
694 
695 /**
696  * gadget_is_stall_supported - return true iff the hardware supports stalling
697  * @g: controller to check for quirk
698  */
699 static inline int gadget_is_stall_supported(struct usb_gadget *g)
700 {
701         return !g->quirk_stall_not_supp;
702 }
703 
704 /**
705  * gadget_is_zlp_supported - return true iff the hardware supports zlp
706  * @g: controller to check for quirk
707  */
708 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
709 {
710         return !g->quirk_zlp_not_supp;
711 }
712 
713 /**
714  * gadget_is_dualspeed - return true iff the hardware handles high speed
715  * @g: controller that might support both high and full speeds
716  */
717 static inline int gadget_is_dualspeed(struct usb_gadget *g)
718 {
719         return g->max_speed >= USB_SPEED_HIGH;
720 }
721 
722 /**
723  * gadget_is_superspeed() - return true if the hardware handles superspeed
724  * @g: controller that might support superspeed
725  */
726 static inline int gadget_is_superspeed(struct usb_gadget *g)
727 {
728         return g->max_speed >= USB_SPEED_SUPER;
729 }
730 
731 /**
732  * gadget_is_otg - return true iff the hardware is OTG-ready
733  * @g: controller that might have a Mini-AB connector
734  *
735  * This is a runtime test, since kernels with a USB-OTG stack sometimes
736  * run on boards which only have a Mini-B (or Mini-A) connector.
737  */
738 static inline int gadget_is_otg(struct usb_gadget *g)
739 {
740 #ifdef CONFIG_USB_OTG
741         return g->is_otg;
742 #else
743         return 0;
744 #endif
745 }
746 
747 /**
748  * usb_gadget_frame_number - returns the current frame number
749  * @gadget: controller that reports the frame number
750  *
751  * Returns the usb frame number, normally eleven bits from a SOF packet,
752  * or negative errno if this device doesn't support this capability.
753  */
754 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
755 {
756         return gadget->ops->get_frame(gadget);
757 }
758 
759 /**
760  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
761  * @gadget: controller used to wake up the host
762  *
763  * Returns zero on success, else negative error code if the hardware
764  * doesn't support such attempts, or its support has not been enabled
765  * by the usb host.  Drivers must return device descriptors that report
766  * their ability to support this, or hosts won't enable it.
767  *
768  * This may also try to use SRP to wake the host and start enumeration,
769  * even if OTG isn't otherwise in use.  OTG devices may also start
770  * remote wakeup even when hosts don't explicitly enable it.
771  */
772 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
773 {
774         if (!gadget->ops->wakeup)
775                 return -EOPNOTSUPP;
776         return gadget->ops->wakeup(gadget);
777 }
778 
779 /**
780  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
781  * @gadget:the device being declared as self-powered
782  *
783  * this affects the device status reported by the hardware driver
784  * to reflect that it now has a local power supply.
785  *
786  * returns zero on success, else negative errno.
787  */
788 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
789 {
790         if (!gadget->ops->set_selfpowered)
791                 return -EOPNOTSUPP;
792         return gadget->ops->set_selfpowered(gadget, 1);
793 }
794 
795 /**
796  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
797  * @gadget:the device being declared as bus-powered
798  *
799  * this affects the device status reported by the hardware driver.
800  * some hardware may not support bus-powered operation, in which
801  * case this feature's value can never change.
802  *
803  * returns zero on success, else negative errno.
804  */
805 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
806 {
807         if (!gadget->ops->set_selfpowered)
808                 return -EOPNOTSUPP;
809         return gadget->ops->set_selfpowered(gadget, 0);
810 }
811 
812 /**
813  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
814  * @gadget:The device which now has VBUS power.
815  * Context: can sleep
816  *
817  * This call is used by a driver for an external transceiver (or GPIO)
818  * that detects a VBUS power session starting.  Common responses include
819  * resuming the controller, activating the D+ (or D-) pullup to let the
820  * host detect that a USB device is attached, and starting to draw power
821  * (8mA or possibly more, especially after SET_CONFIGURATION).
822  *
823  * Returns zero on success, else negative errno.
824  */
825 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
826 {
827         if (!gadget->ops->vbus_session)
828                 return -EOPNOTSUPP;
829         return gadget->ops->vbus_session(gadget, 1);
830 }
831 
832 /**
833  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
834  * @gadget:The device whose VBUS usage is being described
835  * @mA:How much current to draw, in milliAmperes.  This should be twice
836  *      the value listed in the configuration descriptor bMaxPower field.
837  *
838  * This call is used by gadget drivers during SET_CONFIGURATION calls,
839  * reporting how much power the device may consume.  For example, this
840  * could affect how quickly batteries are recharged.
841  *
842  * Returns zero on success, else negative errno.
843  */
844 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
845 {
846         if (!gadget->ops->vbus_draw)
847                 return -EOPNOTSUPP;
848         return gadget->ops->vbus_draw(gadget, mA);
849 }
850 
851 /**
852  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
853  * @gadget:the device whose VBUS supply is being described
854  * Context: can sleep
855  *
856  * This call is used by a driver for an external transceiver (or GPIO)
857  * that detects a VBUS power session ending.  Common responses include
858  * reversing everything done in usb_gadget_vbus_connect().
859  *
860  * Returns zero on success, else negative errno.
861  */
862 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
863 {
864         if (!gadget->ops->vbus_session)
865                 return -EOPNOTSUPP;
866         return gadget->ops->vbus_session(gadget, 0);
867 }
868 
869 /**
870  * usb_gadget_connect - software-controlled connect to USB host
871  * @gadget:the peripheral being connected
872  *
873  * Enables the D+ (or potentially D-) pullup.  The host will start
874  * enumerating this gadget when the pullup is active and a VBUS session
875  * is active (the link is powered).  This pullup is always enabled unless
876  * usb_gadget_disconnect() has been used to disable it.
877  *
878  * Returns zero on success, else negative errno.
879  */
880 static inline int usb_gadget_connect(struct usb_gadget *gadget)
881 {
882         int ret;
883 
884         if (!gadget->ops->pullup)
885                 return -EOPNOTSUPP;
886 
887         if (gadget->deactivated) {
888                 /*
889                  * If gadget is deactivated we only save new state.
890                  * Gadget will be connected automatically after activation.
891                  */
892                 gadget->connected = true;
893                 return 0;
894         }
895 
896         ret = gadget->ops->pullup(gadget, 1);
897         if (!ret)
898                 gadget->connected = 1;
899         return ret;
900 }
901 
902 /**
903  * usb_gadget_disconnect - software-controlled disconnect from USB host
904  * @gadget:the peripheral being disconnected
905  *
906  * Disables the D+ (or potentially D-) pullup, which the host may see
907  * as a disconnect (when a VBUS session is active).  Not all systems
908  * support software pullup controls.
909  *
910  * Returns zero on success, else negative errno.
911  */
912 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
913 {
914         int ret;
915 
916         if (!gadget->ops->pullup)
917                 return -EOPNOTSUPP;
918 
919         if (gadget->deactivated) {
920                 /*
921                  * If gadget is deactivated we only save new state.
922                  * Gadget will stay disconnected after activation.
923                  */
924                 gadget->connected = false;
925                 return 0;
926         }
927 
928         ret = gadget->ops->pullup(gadget, 0);
929         if (!ret)
930                 gadget->connected = 0;
931         return ret;
932 }
933 
934 /**
935  * usb_gadget_deactivate - deactivate function which is not ready to work
936  * @gadget: the peripheral being deactivated
937  *
938  * This routine may be used during the gadget driver bind() call to prevent
939  * the peripheral from ever being visible to the USB host, unless later
940  * usb_gadget_activate() is called.  For example, user mode components may
941  * need to be activated before the system can talk to hosts.
942  *
943  * Returns zero on success, else negative errno.
944  */
945 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
946 {
947         int ret;
948 
949         if (gadget->deactivated)
950                 return 0;
951 
952         if (gadget->connected) {
953                 ret = usb_gadget_disconnect(gadget);
954                 if (ret)
955                         return ret;
956                 /*
957                  * If gadget was being connected before deactivation, we want
958                  * to reconnect it in usb_gadget_activate().
959                  */
960                 gadget->connected = true;
961         }
962         gadget->deactivated = true;
963 
964         return 0;
965 }
966 
967 /**
968  * usb_gadget_activate - activate function which is not ready to work
969  * @gadget: the peripheral being activated
970  *
971  * This routine activates gadget which was previously deactivated with
972  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
973  *
974  * Returns zero on success, else negative errno.
975  */
976 static inline int usb_gadget_activate(struct usb_gadget *gadget)
977 {
978         if (!gadget->deactivated)
979                 return 0;
980 
981         gadget->deactivated = false;
982 
983         /*
984          * If gadget has been connected before deactivation, or became connected
985          * while it was being deactivated, we call usb_gadget_connect().
986          */
987         if (gadget->connected)
988                 return usb_gadget_connect(gadget);
989 
990         return 0;
991 }
992 
993 /*-------------------------------------------------------------------------*/
994 
995 /**
996  * struct usb_gadget_driver - driver for usb 'slave' devices
997  * @function: String describing the gadget's function
998  * @max_speed: Highest speed the driver handles.
999  * @setup: Invoked for ep0 control requests that aren't handled by
1000  *      the hardware level driver. Most calls must be handled by
1001  *      the gadget driver, including descriptor and configuration
1002  *      management.  The 16 bit members of the setup data are in
1003  *      USB byte order. Called in_interrupt; this may not sleep.  Driver
1004  *      queues a response to ep0, or returns negative to stall.
1005  * @disconnect: Invoked after all transfers have been stopped,
1006  *      when the host is disconnected.  May be called in_interrupt; this
1007  *      may not sleep.  Some devices can't detect disconnect, so this might
1008  *      not be called except as part of controller shutdown.
1009  * @bind: the driver's bind callback
1010  * @unbind: Invoked when the driver is unbound from a gadget,
1011  *      usually from rmmod (after a disconnect is reported).
1012  *      Called in a context that permits sleeping.
1013  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
1014  * @resume: Invoked on USB resume.  May be called in_interrupt.
1015  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
1016  *      and should be called in_interrupt.
1017  * @driver: Driver model state for this driver.
1018  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
1019  *      this driver will be bound to any available UDC.
1020  * @pending: UDC core private data used for deferred probe of this driver.
1021  *
1022  * Devices are disabled till a gadget driver successfully bind()s, which
1023  * means the driver will handle setup() requests needed to enumerate (and
1024  * meet "chapter 9" requirements) then do some useful work.
1025  *
1026  * If gadget->is_otg is true, the gadget driver must provide an OTG
1027  * descriptor during enumeration, or else fail the bind() call.  In such
1028  * cases, no USB traffic may flow until both bind() returns without
1029  * having called usb_gadget_disconnect(), and the USB host stack has
1030  * initialized.
1031  *
1032  * Drivers use hardware-specific knowledge to configure the usb hardware.
1033  * endpoint addressing is only one of several hardware characteristics that
1034  * are in descriptors the ep0 implementation returns from setup() calls.
1035  *
1036  * Except for ep0 implementation, most driver code shouldn't need change to
1037  * run on top of different usb controllers.  It'll use endpoints set up by
1038  * that ep0 implementation.
1039  *
1040  * The usb controller driver handles a few standard usb requests.  Those
1041  * include set_address, and feature flags for devices, interfaces, and
1042  * endpoints (the get_status, set_feature, and clear_feature requests).
1043  *
1044  * Accordingly, the driver's setup() callback must always implement all
1045  * get_descriptor requests, returning at least a device descriptor and
1046  * a configuration descriptor.  Drivers must make sure the endpoint
1047  * descriptors match any hardware constraints. Some hardware also constrains
1048  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
1049  *
1050  * The driver's setup() callback must also implement set_configuration,
1051  * and should also implement set_interface, get_configuration, and
1052  * get_interface.  Setting a configuration (or interface) is where
1053  * endpoints should be activated or (config 0) shut down.
1054  *
1055  * (Note that only the default control endpoint is supported.  Neither
1056  * hosts nor devices generally support control traffic except to ep0.)
1057  *
1058  * Most devices will ignore USB suspend/resume operations, and so will
1059  * not provide those callbacks.  However, some may need to change modes
1060  * when the host is not longer directing those activities.  For example,
1061  * local controls (buttons, dials, etc) may need to be re-enabled since
1062  * the (remote) host can't do that any longer; or an error state might
1063  * be cleared, to make the device behave identically whether or not
1064  * power is maintained.
1065  */
1066 struct usb_gadget_driver {
1067         char                    *function;
1068         enum usb_device_speed   max_speed;
1069         int                     (*bind)(struct usb_gadget *gadget,
1070                                         struct usb_gadget_driver *driver);
1071         void                    (*unbind)(struct usb_gadget *);
1072         int                     (*setup)(struct usb_gadget *,
1073                                         const struct usb_ctrlrequest *);
1074         void                    (*disconnect)(struct usb_gadget *);
1075         void                    (*suspend)(struct usb_gadget *);
1076         void                    (*resume)(struct usb_gadget *);
1077         void                    (*reset)(struct usb_gadget *);
1078 
1079         /* FIXME support safe rmmod */
1080         struct device_driver    driver;
1081 
1082         char                    *udc_name;
1083         struct list_head        pending;
1084 };
1085 
1086 
1087 
1088 /*-------------------------------------------------------------------------*/
1089 
1090 /* driver modules register and unregister, as usual.
1091  * these calls must be made in a context that can sleep.
1092  *
1093  * these will usually be implemented directly by the hardware-dependent
1094  * usb bus interface driver, which will only support a single driver.
1095  */
1096 
1097 /**
1098  * usb_gadget_probe_driver - probe a gadget driver
1099  * @driver: the driver being registered
1100  * Context: can sleep
1101  *
1102  * Call this in your gadget driver's module initialization function,
1103  * to tell the underlying usb controller driver about your driver.
1104  * The @bind() function will be called to bind it to a gadget before this
1105  * registration call returns.  It's expected that the @bind() function will
1106  * be in init sections.
1107  */
1108 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
1109 
1110 /**
1111  * usb_gadget_unregister_driver - unregister a gadget driver
1112  * @driver:the driver being unregistered
1113  * Context: can sleep
1114  *
1115  * Call this in your gadget driver's module cleanup function,
1116  * to tell the underlying usb controller that your driver is
1117  * going away.  If the controller is connected to a USB host,
1118  * it will first disconnect().  The driver is also requested
1119  * to unbind() and clean up any device state, before this procedure
1120  * finally returns.  It's expected that the unbind() functions
1121  * will in in exit sections, so may not be linked in some kernels.
1122  */
1123 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
1124 
1125 extern int usb_add_gadget_udc_release(struct device *parent,
1126                 struct usb_gadget *gadget, void (*release)(struct device *dev));
1127 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
1128 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
1129 
1130 /*-------------------------------------------------------------------------*/
1131 
1132 /* utility to simplify dealing with string descriptors */
1133 
1134 /**
1135  * struct usb_string - wraps a C string and its USB id
1136  * @id:the (nonzero) ID for this string
1137  * @s:the string, in UTF-8 encoding
1138  *
1139  * If you're using usb_gadget_get_string(), use this to wrap a string
1140  * together with its ID.
1141  */
1142 struct usb_string {
1143         u8                      id;
1144         const char              *s;
1145 };
1146 
1147 /**
1148  * struct usb_gadget_strings - a set of USB strings in a given language
1149  * @language:identifies the strings' language (0x0409 for en-us)
1150  * @strings:array of strings with their ids
1151  *
1152  * If you're using usb_gadget_get_string(), use this to wrap all the
1153  * strings for a given language.
1154  */
1155 struct usb_gadget_strings {
1156         u16                     language;       /* 0x0409 for en-us */
1157         struct usb_string       *strings;
1158 };
1159 
1160 struct usb_gadget_string_container {
1161         struct list_head        list;
1162         u8                      *stash[0];
1163 };
1164 
1165 /* put descriptor for string with that id into buf (buflen >= 256) */
1166 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
1167 
1168 /*-------------------------------------------------------------------------*/
1169 
1170 /* utility to simplify managing config descriptors */
1171 
1172 /* write vector of descriptors into buffer */
1173 int usb_descriptor_fillbuf(void *, unsigned,
1174                 const struct usb_descriptor_header **);
1175 
1176 /* build config descriptor from single descriptor vector */
1177 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
1178         void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
1179 
1180 /* copy a NULL-terminated vector of descriptors */
1181 struct usb_descriptor_header **usb_copy_descriptors(
1182                 struct usb_descriptor_header **);
1183 
1184 /**
1185  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
1186  * @v: vector of descriptors
1187  */
1188 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
1189 {
1190         kfree(v);
1191 }
1192 
1193 struct usb_function;
1194 int usb_assign_descriptors(struct usb_function *f,
1195                 struct usb_descriptor_header **fs,
1196                 struct usb_descriptor_header **hs,
1197                 struct usb_descriptor_header **ss);
1198 void usb_free_all_descriptors(struct usb_function *f);
1199 
1200 struct usb_descriptor_header *usb_otg_descriptor_alloc(
1201                                 struct usb_gadget *gadget);
1202 int usb_otg_descriptor_init(struct usb_gadget *gadget,
1203                 struct usb_descriptor_header *otg_desc);
1204 /*-------------------------------------------------------------------------*/
1205 
1206 /* utility to simplify map/unmap of usb_requests to/from DMA */
1207 
1208 extern int usb_gadget_map_request(struct usb_gadget *gadget,
1209                 struct usb_request *req, int is_in);
1210 
1211 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
1212                 struct usb_request *req, int is_in);
1213 
1214 /*-------------------------------------------------------------------------*/
1215 
1216 /* utility to set gadget state properly */
1217 
1218 extern void usb_gadget_set_state(struct usb_gadget *gadget,
1219                 enum usb_device_state state);
1220 
1221 /*-------------------------------------------------------------------------*/
1222 
1223 /* utility to tell udc core that the bus reset occurs */
1224 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
1225                 struct usb_gadget_driver *driver);
1226 
1227 /*-------------------------------------------------------------------------*/
1228 
1229 /* utility to give requests back to the gadget layer */
1230 
1231 extern void usb_gadget_giveback_request(struct usb_ep *ep,
1232                 struct usb_request *req);
1233 
1234 /*-------------------------------------------------------------------------*/
1235 
1236 /* utility to find endpoint by name */
1237 
1238 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
1239                 const char *name);
1240 
1241 /*-------------------------------------------------------------------------*/
1242 
1243 /* utility to check if endpoint caps match descriptor needs */
1244 
1245 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
1246                 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
1247                 struct usb_ss_ep_comp_descriptor *ep_comp);
1248 
1249 /*-------------------------------------------------------------------------*/
1250 
1251 /* utility to update vbus status for udc core, it may be scheduled */
1252 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
1253 
1254 /*-------------------------------------------------------------------------*/
1255 
1256 /* utility wrapping a simple endpoint selection policy */
1257 
1258 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
1259                         struct usb_endpoint_descriptor *);
1260 
1261 
1262 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
1263                         struct usb_endpoint_descriptor *,
1264                         struct usb_ss_ep_comp_descriptor *);
1265 
1266 extern void usb_ep_autoconfig_release(struct usb_ep *);
1267 
1268 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
1269 
1270 #endif /* __LINUX_USB_GADGET_H */
1271 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us