Version:  2.0.40 2.2.26 2.4.37 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0

Linux/include/linux/usb.h

  1 #ifndef __LINUX_USB_H
  2 #define __LINUX_USB_H
  3 
  4 #include <linux/mod_devicetable.h>
  5 #include <linux/usb/ch9.h>
  6 
  7 #define USB_MAJOR                       180
  8 #define USB_DEVICE_MAJOR                189
  9 
 10 
 11 #ifdef __KERNEL__
 12 
 13 #include <linux/errno.h>        /* for -ENODEV */
 14 #include <linux/delay.h>        /* for mdelay() */
 15 #include <linux/interrupt.h>    /* for in_interrupt() */
 16 #include <linux/list.h>         /* for struct list_head */
 17 #include <linux/kref.h>         /* for struct kref */
 18 #include <linux/device.h>       /* for struct device */
 19 #include <linux/fs.h>           /* for struct file_operations */
 20 #include <linux/completion.h>   /* for struct completion */
 21 #include <linux/sched.h>        /* for current && schedule_timeout */
 22 #include <linux/mutex.h>        /* for struct mutex */
 23 #include <linux/pm_runtime.h>   /* for runtime PM */
 24 
 25 struct usb_device;
 26 struct usb_driver;
 27 struct wusb_dev;
 28 
 29 /*-------------------------------------------------------------------------*/
 30 
 31 /*
 32  * Host-side wrappers for standard USB descriptors ... these are parsed
 33  * from the data provided by devices.  Parsing turns them from a flat
 34  * sequence of descriptors into a hierarchy:
 35  *
 36  *  - devices have one (usually) or more configs;
 37  *  - configs have one (often) or more interfaces;
 38  *  - interfaces have one (usually) or more settings;
 39  *  - each interface setting has zero or (usually) more endpoints.
 40  *  - a SuperSpeed endpoint has a companion descriptor
 41  *
 42  * And there might be other descriptors mixed in with those.
 43  *
 44  * Devices may also have class-specific or vendor-specific descriptors.
 45  */
 46 
 47 struct ep_device;
 48 
 49 /**
 50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
 51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
 52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
 53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
 54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
 55  *      with one or more transfer descriptors (TDs) per urb
 56  * @ep_dev: ep_device for sysfs info
 57  * @extra: descriptors following this endpoint in the configuration
 58  * @extralen: how many bytes of "extra" are valid
 59  * @enabled: URBs may be submitted to this endpoint
 60  * @streams: number of USB-3 streams allocated on the endpoint
 61  *
 62  * USB requests are always queued to a given endpoint, identified by a
 63  * descriptor within an active interface in a given USB configuration.
 64  */
 65 struct usb_host_endpoint {
 66         struct usb_endpoint_descriptor          desc;
 67         struct usb_ss_ep_comp_descriptor        ss_ep_comp;
 68         struct list_head                urb_list;
 69         void                            *hcpriv;
 70         struct ep_device                *ep_dev;        /* For sysfs info */
 71 
 72         unsigned char *extra;   /* Extra descriptors */
 73         int extralen;
 74         int enabled;
 75         int streams;
 76 };
 77 
 78 /* host-side wrapper for one interface setting's parsed descriptors */
 79 struct usb_host_interface {
 80         struct usb_interface_descriptor desc;
 81 
 82         int extralen;
 83         unsigned char *extra;   /* Extra descriptors */
 84 
 85         /* array of desc.bNumEndpoints endpoints associated with this
 86          * interface setting.  these will be in no particular order.
 87          */
 88         struct usb_host_endpoint *endpoint;
 89 
 90         char *string;           /* iInterface string, if present */
 91 };
 92 
 93 enum usb_interface_condition {
 94         USB_INTERFACE_UNBOUND = 0,
 95         USB_INTERFACE_BINDING,
 96         USB_INTERFACE_BOUND,
 97         USB_INTERFACE_UNBINDING,
 98 };
 99 
100 /**
101  * struct usb_interface - what usb device drivers talk to
102  * @altsetting: array of interface structures, one for each alternate
103  *      setting that may be selected.  Each one includes a set of
104  *      endpoint configurations.  They will be in no particular order.
105  * @cur_altsetting: the current altsetting.
106  * @num_altsetting: number of altsettings defined.
107  * @intf_assoc: interface association descriptor
108  * @minor: the minor number assigned to this interface, if this
109  *      interface is bound to a driver that uses the USB major number.
110  *      If this interface does not use the USB major, this field should
111  *      be unused.  The driver should set this value in the probe()
112  *      function of the driver, after it has been assigned a minor
113  *      number from the USB core by calling usb_register_dev().
114  * @condition: binding state of the interface: not bound, binding
115  *      (in probe()), bound to a driver, or unbinding (in disconnect())
116  * @sysfs_files_created: sysfs attributes exist
117  * @ep_devs_created: endpoint child pseudo-devices exist
118  * @unregistering: flag set when the interface is being unregistered
119  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
120  *      capability during autosuspend.
121  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
122  *      has been deferred.
123  * @needs_binding: flag set when the driver should be re-probed or unbound
124  *      following a reset or suspend operation it doesn't support.
125  * @dev: driver model's view of this device
126  * @usb_dev: if an interface is bound to the USB major, this will point
127  *      to the sysfs representation for that device.
128  * @pm_usage_cnt: PM usage counter for this interface
129  * @reset_ws: Used for scheduling resets from atomic context.
130  * @resetting_device: USB core reset the device, so use alt setting 0 as
131  *      current; needs bandwidth alloc after reset.
132  *
133  * USB device drivers attach to interfaces on a physical device.  Each
134  * interface encapsulates a single high level function, such as feeding
135  * an audio stream to a speaker or reporting a change in a volume control.
136  * Many USB devices only have one interface.  The protocol used to talk to
137  * an interface's endpoints can be defined in a usb "class" specification,
138  * or by a product's vendor.  The (default) control endpoint is part of
139  * every interface, but is never listed among the interface's descriptors.
140  *
141  * The driver that is bound to the interface can use standard driver model
142  * calls such as dev_get_drvdata() on the dev member of this structure.
143  *
144  * Each interface may have alternate settings.  The initial configuration
145  * of a device sets altsetting 0, but the device driver can change
146  * that setting using usb_set_interface().  Alternate settings are often
147  * used to control the use of periodic endpoints, such as by having
148  * different endpoints use different amounts of reserved USB bandwidth.
149  * All standards-conformant USB devices that use isochronous endpoints
150  * will use them in non-default settings.
151  *
152  * The USB specification says that alternate setting numbers must run from
153  * 0 to one less than the total number of alternate settings.  But some
154  * devices manage to mess this up, and the structures aren't necessarily
155  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
156  * look up an alternate setting in the altsetting array based on its number.
157  */
158 struct usb_interface {
159         /* array of alternate settings for this interface,
160          * stored in no particular order */
161         struct usb_host_interface *altsetting;
162 
163         struct usb_host_interface *cur_altsetting;      /* the currently
164                                          * active alternate setting */
165         unsigned num_altsetting;        /* number of alternate settings */
166 
167         /* If there is an interface association descriptor then it will list
168          * the associated interfaces */
169         struct usb_interface_assoc_descriptor *intf_assoc;
170 
171         int minor;                      /* minor number this interface is
172                                          * bound to */
173         enum usb_interface_condition condition;         /* state of binding */
174         unsigned sysfs_files_created:1; /* the sysfs attributes exist */
175         unsigned ep_devs_created:1;     /* endpoint "devices" exist */
176         unsigned unregistering:1;       /* unregistration is in progress */
177         unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
178         unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
179         unsigned needs_binding:1;       /* needs delayed unbind/rebind */
180         unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
181 
182         struct device dev;              /* interface specific device info */
183         struct device *usb_dev;
184         atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
185         struct work_struct reset_ws;    /* for resets in atomic context */
186 };
187 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
188 
189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191         return dev_get_drvdata(&intf->dev);
192 }
193 
194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196         dev_set_drvdata(&intf->dev, data);
197 }
198 
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201 
202 /* Hard limit */
203 #define USB_MAXENDPOINTS        30
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES       32
206 #define USB_MAXIADS             (USB_MAXINTERFACES/2)
207 
208 /**
209  * struct usb_interface_cache - long-term representation of a device interface
210  * @num_altsetting: number of altsettings defined.
211  * @ref: reference counter.
212  * @altsetting: variable-length array of interface structures, one for
213  *      each alternate setting that may be selected.  Each one includes a
214  *      set of endpoint configurations.  They will be in no particular order.
215  *
216  * These structures persist for the lifetime of a usb_device, unlike
217  * struct usb_interface (which persists only as long as its configuration
218  * is installed).  The altsetting arrays can be accessed through these
219  * structures at any time, permitting comparison of configurations and
220  * providing support for the /proc/bus/usb/devices pseudo-file.
221  */
222 struct usb_interface_cache {
223         unsigned num_altsetting;        /* number of alternate settings */
224         struct kref ref;                /* reference counter */
225 
226         /* variable-length array of alternate settings for this interface,
227          * stored in no particular order */
228         struct usb_host_interface altsetting[0];
229 };
230 #define ref_to_usb_interface_cache(r) \
231                 container_of(r, struct usb_interface_cache, ref)
232 #define altsetting_to_usb_interface_cache(a) \
233                 container_of(a, struct usb_interface_cache, altsetting[0])
234 
235 /**
236  * struct usb_host_config - representation of a device's configuration
237  * @desc: the device's configuration descriptor.
238  * @string: pointer to the cached version of the iConfiguration string, if
239  *      present for this configuration.
240  * @intf_assoc: list of any interface association descriptors in this config
241  * @interface: array of pointers to usb_interface structures, one for each
242  *      interface in the configuration.  The number of interfaces is stored
243  *      in desc.bNumInterfaces.  These pointers are valid only while the
244  *      the configuration is active.
245  * @intf_cache: array of pointers to usb_interface_cache structures, one
246  *      for each interface in the configuration.  These structures exist
247  *      for the entire life of the device.
248  * @extra: pointer to buffer containing all extra descriptors associated
249  *      with this configuration (those preceding the first interface
250  *      descriptor).
251  * @extralen: length of the extra descriptors buffer.
252  *
253  * USB devices may have multiple configurations, but only one can be active
254  * at any time.  Each encapsulates a different operational environment;
255  * for example, a dual-speed device would have separate configurations for
256  * full-speed and high-speed operation.  The number of configurations
257  * available is stored in the device descriptor as bNumConfigurations.
258  *
259  * A configuration can contain multiple interfaces.  Each corresponds to
260  * a different function of the USB device, and all are available whenever
261  * the configuration is active.  The USB standard says that interfaces
262  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263  * of devices get this wrong.  In addition, the interface array is not
264  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
265  * look up an interface entry based on its number.
266  *
267  * Device drivers should not attempt to activate configurations.  The choice
268  * of which configuration to install is a policy decision based on such
269  * considerations as available power, functionality provided, and the user's
270  * desires (expressed through userspace tools).  However, drivers can call
271  * usb_reset_configuration() to reinitialize the current configuration and
272  * all its interfaces.
273  */
274 struct usb_host_config {
275         struct usb_config_descriptor    desc;
276 
277         char *string;           /* iConfiguration string, if present */
278 
279         /* List of any Interface Association Descriptors in this
280          * configuration. */
281         struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282 
283         /* the interfaces associated with this configuration,
284          * stored in no particular order */
285         struct usb_interface *interface[USB_MAXINTERFACES];
286 
287         /* Interface information available even when this is not the
288          * active configuration */
289         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290 
291         unsigned char *extra;   /* Extra descriptors */
292         int extralen;
293 };
294 
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297         struct usb_bos_descriptor       *desc;
298 
299         /* wireless cap descriptor is handled by wusb */
300         struct usb_ext_cap_descriptor   *ext_cap;
301         struct usb_ss_cap_descriptor    *ss_cap;
302         struct usb_ss_container_id_descriptor   *ss_id;
303 };
304 
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306         unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308                                 __usb_get_extra_descriptor((ifpoint)->extra, \
309                                 (ifpoint)->extralen, \
310                                 type, (void **)ptr)
311 
312 /* ----------------------------------------------------------------------- */
313 
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
317 };
318 
319 /*
320  * Allocated per bus (tree of devices) we have:
321  */
322 struct usb_bus {
323         struct device *controller;      /* host/master side hardware */
324         int busnum;                     /* Bus number (in order of reg) */
325         const char *bus_name;           /* stable id (PCI slot_name etc) */
326         u8 uses_dma;                    /* Does the host controller use DMA? */
327         u8 uses_pio_for_control;        /*
328                                          * Does the host controller use PIO
329                                          * for control transfers?
330                                          */
331         u8 otg_port;                    /* 0, or number of OTG/HNP port */
332         unsigned is_b_host:1;           /* true during some HNP roleswitches */
333         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
334         unsigned no_stop_on_short:1;    /*
335                                          * Quirk: some controllers don't stop
336                                          * the ep queue on a short transfer
337                                          * with the URB_SHORT_NOT_OK flag set.
338                                          */
339         unsigned no_sg_constraint:1;    /* no sg constraint */
340         unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
341 
342         int devnum_next;                /* Next open device number in
343                                          * round-robin allocation */
344 
345         struct usb_devmap devmap;       /* device address allocation map */
346         struct usb_device *root_hub;    /* Root hub */
347         struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
348         struct list_head bus_list;      /* list of busses */
349 
350         struct mutex usb_address0_mutex; /* unaddressed device mutex */
351 
352         int bandwidth_allocated;        /* on this bus: how much of the time
353                                          * reserved for periodic (intr/iso)
354                                          * requests is used, on average?
355                                          * Units: microseconds/frame.
356                                          * Limits: Full/low speed reserve 90%,
357                                          * while high speed reserves 80%.
358                                          */
359         int bandwidth_int_reqs;         /* number of Interrupt requests */
360         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
361 
362         unsigned resuming_ports;        /* bit array: resuming root-hub ports */
363 
364 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
365         struct mon_bus *mon_bus;        /* non-null when associated */
366         int monitored;                  /* non-zero when monitored */
367 #endif
368 };
369 
370 struct usb_dev_state;
371 
372 /* ----------------------------------------------------------------------- */
373 
374 struct usb_tt;
375 
376 enum usb_device_removable {
377         USB_DEVICE_REMOVABLE_UNKNOWN = 0,
378         USB_DEVICE_REMOVABLE,
379         USB_DEVICE_FIXED,
380 };
381 
382 enum usb_port_connect_type {
383         USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
384         USB_PORT_CONNECT_TYPE_HOT_PLUG,
385         USB_PORT_CONNECT_TYPE_HARD_WIRED,
386         USB_PORT_NOT_USED,
387 };
388 
389 /*
390  * USB 2.0 Link Power Management (LPM) parameters.
391  */
392 struct usb2_lpm_parameters {
393         /* Best effort service latency indicate how long the host will drive
394          * resume on an exit from L1.
395          */
396         unsigned int besl;
397 
398         /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
399          * When the timer counts to zero, the parent hub will initiate a LPM
400          * transition to L1.
401          */
402         int timeout;
403 };
404 
405 /*
406  * USB 3.0 Link Power Management (LPM) parameters.
407  *
408  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
409  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
410  * All three are stored in nanoseconds.
411  */
412 struct usb3_lpm_parameters {
413         /*
414          * Maximum exit latency (MEL) for the host to send a packet to the
415          * device (either a Ping for isoc endpoints, or a data packet for
416          * interrupt endpoints), the hubs to decode the packet, and for all hubs
417          * in the path to transition the links to U0.
418          */
419         unsigned int mel;
420         /*
421          * Maximum exit latency for a device-initiated LPM transition to bring
422          * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
423          * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
424          */
425         unsigned int pel;
426 
427         /*
428          * The System Exit Latency (SEL) includes PEL, and three other
429          * latencies.  After a device initiates a U0 transition, it will take
430          * some time from when the device sends the ERDY to when it will finally
431          * receive the data packet.  Basically, SEL should be the worse-case
432          * latency from when a device starts initiating a U0 transition to when
433          * it will get data.
434          */
435         unsigned int sel;
436         /*
437          * The idle timeout value that is currently programmed into the parent
438          * hub for this device.  When the timer counts to zero, the parent hub
439          * will initiate an LPM transition to either U1 or U2.
440          */
441         int timeout;
442 };
443 
444 /**
445  * struct usb_device - kernel's representation of a USB device
446  * @devnum: device number; address on a USB bus
447  * @devpath: device ID string for use in messages (e.g., /port/...)
448  * @route: tree topology hex string for use with xHCI
449  * @state: device state: configured, not attached, etc.
450  * @speed: device speed: high/full/low (or error)
451  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
452  * @ttport: device port on that tt hub
453  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
454  * @parent: our hub, unless we're the root
455  * @bus: bus we're part of
456  * @ep0: endpoint 0 data (default control pipe)
457  * @dev: generic device interface
458  * @descriptor: USB device descriptor
459  * @bos: USB device BOS descriptor set
460  * @config: all of the device's configs
461  * @actconfig: the active configuration
462  * @ep_in: array of IN endpoints
463  * @ep_out: array of OUT endpoints
464  * @rawdescriptors: raw descriptors for each config
465  * @bus_mA: Current available from the bus
466  * @portnum: parent port number (origin 1)
467  * @level: number of USB hub ancestors
468  * @can_submit: URBs may be submitted
469  * @persist_enabled:  USB_PERSIST enabled for this device
470  * @have_langid: whether string_langid is valid
471  * @authorized: policy has said we can use it;
472  *      (user space) policy determines if we authorize this device to be
473  *      used or not. By default, wired USB devices are authorized.
474  *      WUSB devices are not, until we authorize them from user space.
475  *      FIXME -- complete doc
476  * @authenticated: Crypto authentication passed
477  * @wusb: device is Wireless USB
478  * @lpm_capable: device supports LPM
479  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
480  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
481  * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
482  * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
483  * @usb3_lpm_enabled: USB3 hardware LPM enabled
484  * @string_langid: language ID for strings
485  * @product: iProduct string, if present (static)
486  * @manufacturer: iManufacturer string, if present (static)
487  * @serial: iSerialNumber string, if present (static)
488  * @filelist: usbfs files that are open to this device
489  * @maxchild: number of ports if hub
490  * @quirks: quirks of the whole device
491  * @urbnum: number of URBs submitted for the whole device
492  * @active_duration: total time device is not suspended
493  * @connect_time: time device was first connected
494  * @do_remote_wakeup:  remote wakeup should be enabled
495  * @reset_resume: needs reset instead of resume
496  * @port_is_suspended: the upstream port is suspended (L2 or U3)
497  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
498  *      specific data for the device.
499  * @slot_id: Slot ID assigned by xHCI
500  * @removable: Device can be physically removed from this port
501  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
502  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
503  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
504  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
505  *      to keep track of the number of functions that require USB 3.0 Link Power
506  *      Management to be disabled for this usb_device.  This count should only
507  *      be manipulated by those functions, with the bandwidth_mutex is held.
508  *
509  * Notes:
510  * Usbcore drivers should not set usbdev->state directly.  Instead use
511  * usb_set_device_state().
512  */
513 struct usb_device {
514         int             devnum;
515         char            devpath[16];
516         u32             route;
517         enum usb_device_state   state;
518         enum usb_device_speed   speed;
519 
520         struct usb_tt   *tt;
521         int             ttport;
522 
523         unsigned int toggle[2];
524 
525         struct usb_device *parent;
526         struct usb_bus *bus;
527         struct usb_host_endpoint ep0;
528 
529         struct device dev;
530 
531         struct usb_device_descriptor descriptor;
532         struct usb_host_bos *bos;
533         struct usb_host_config *config;
534 
535         struct usb_host_config *actconfig;
536         struct usb_host_endpoint *ep_in[16];
537         struct usb_host_endpoint *ep_out[16];
538 
539         char **rawdescriptors;
540 
541         unsigned short bus_mA;
542         u8 portnum;
543         u8 level;
544 
545         unsigned can_submit:1;
546         unsigned persist_enabled:1;
547         unsigned have_langid:1;
548         unsigned authorized:1;
549         unsigned authenticated:1;
550         unsigned wusb:1;
551         unsigned lpm_capable:1;
552         unsigned usb2_hw_lpm_capable:1;
553         unsigned usb2_hw_lpm_besl_capable:1;
554         unsigned usb2_hw_lpm_enabled:1;
555         unsigned usb2_hw_lpm_allowed:1;
556         unsigned usb3_lpm_enabled:1;
557         int string_langid;
558 
559         /* static strings from the device */
560         char *product;
561         char *manufacturer;
562         char *serial;
563 
564         struct list_head filelist;
565 
566         int maxchild;
567 
568         u32 quirks;
569         atomic_t urbnum;
570 
571         unsigned long active_duration;
572 
573 #ifdef CONFIG_PM
574         unsigned long connect_time;
575 
576         unsigned do_remote_wakeup:1;
577         unsigned reset_resume:1;
578         unsigned port_is_suspended:1;
579 #endif
580         struct wusb_dev *wusb_dev;
581         int slot_id;
582         enum usb_device_removable removable;
583         struct usb2_lpm_parameters l1_params;
584         struct usb3_lpm_parameters u1_params;
585         struct usb3_lpm_parameters u2_params;
586         unsigned lpm_disable_count;
587 };
588 #define to_usb_device(d) container_of(d, struct usb_device, dev)
589 
590 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
591 {
592         return to_usb_device(intf->dev.parent);
593 }
594 
595 extern struct usb_device *usb_get_dev(struct usb_device *dev);
596 extern void usb_put_dev(struct usb_device *dev);
597 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
598         int port1);
599 
600 /**
601  * usb_hub_for_each_child - iterate over all child devices on the hub
602  * @hdev:  USB device belonging to the usb hub
603  * @port1: portnum associated with child device
604  * @child: child device pointer
605  */
606 #define usb_hub_for_each_child(hdev, port1, child) \
607         for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
608                         port1 <= hdev->maxchild; \
609                         child = usb_hub_find_child(hdev, ++port1)) \
610                 if (!child) continue; else
611 
612 /* USB device locking */
613 #define usb_lock_device(udev)           device_lock(&(udev)->dev)
614 #define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
615 #define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
616 extern int usb_lock_device_for_reset(struct usb_device *udev,
617                                      const struct usb_interface *iface);
618 
619 /* USB port reset for device reinitialization */
620 extern int usb_reset_device(struct usb_device *dev);
621 extern void usb_queue_reset_device(struct usb_interface *dev);
622 
623 #ifdef CONFIG_ACPI
624 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
625         bool enable);
626 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
627 #else
628 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
629         bool enable) { return 0; }
630 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
631         { return true; }
632 #endif
633 
634 /* USB autosuspend and autoresume */
635 #ifdef CONFIG_PM
636 extern void usb_enable_autosuspend(struct usb_device *udev);
637 extern void usb_disable_autosuspend(struct usb_device *udev);
638 
639 extern int usb_autopm_get_interface(struct usb_interface *intf);
640 extern void usb_autopm_put_interface(struct usb_interface *intf);
641 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
642 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
643 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
644 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
645 
646 static inline void usb_mark_last_busy(struct usb_device *udev)
647 {
648         pm_runtime_mark_last_busy(&udev->dev);
649 }
650 
651 #else
652 
653 static inline int usb_enable_autosuspend(struct usb_device *udev)
654 { return 0; }
655 static inline int usb_disable_autosuspend(struct usb_device *udev)
656 { return 0; }
657 
658 static inline int usb_autopm_get_interface(struct usb_interface *intf)
659 { return 0; }
660 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
661 { return 0; }
662 
663 static inline void usb_autopm_put_interface(struct usb_interface *intf)
664 { }
665 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
666 { }
667 static inline void usb_autopm_get_interface_no_resume(
668                 struct usb_interface *intf)
669 { }
670 static inline void usb_autopm_put_interface_no_suspend(
671                 struct usb_interface *intf)
672 { }
673 static inline void usb_mark_last_busy(struct usb_device *udev)
674 { }
675 #endif
676 
677 extern int usb_disable_lpm(struct usb_device *udev);
678 extern void usb_enable_lpm(struct usb_device *udev);
679 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
680 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
681 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
682 
683 extern int usb_disable_ltm(struct usb_device *udev);
684 extern void usb_enable_ltm(struct usb_device *udev);
685 
686 static inline bool usb_device_supports_ltm(struct usb_device *udev)
687 {
688         if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
689                 return false;
690         return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
691 }
692 
693 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
694 {
695         return udev && udev->bus && udev->bus->no_sg_constraint;
696 }
697 
698 
699 /*-------------------------------------------------------------------------*/
700 
701 /* for drivers using iso endpoints */
702 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
703 
704 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
705 extern int usb_alloc_streams(struct usb_interface *interface,
706                 struct usb_host_endpoint **eps, unsigned int num_eps,
707                 unsigned int num_streams, gfp_t mem_flags);
708 
709 /* Reverts a group of bulk endpoints back to not using stream IDs. */
710 extern int usb_free_streams(struct usb_interface *interface,
711                 struct usb_host_endpoint **eps, unsigned int num_eps,
712                 gfp_t mem_flags);
713 
714 /* used these for multi-interface device registration */
715 extern int usb_driver_claim_interface(struct usb_driver *driver,
716                         struct usb_interface *iface, void *priv);
717 
718 /**
719  * usb_interface_claimed - returns true iff an interface is claimed
720  * @iface: the interface being checked
721  *
722  * Return: %true (nonzero) iff the interface is claimed, else %false
723  * (zero).
724  *
725  * Note:
726  * Callers must own the driver model's usb bus readlock.  So driver
727  * probe() entries don't need extra locking, but other call contexts
728  * may need to explicitly claim that lock.
729  *
730  */
731 static inline int usb_interface_claimed(struct usb_interface *iface)
732 {
733         return (iface->dev.driver != NULL);
734 }
735 
736 extern void usb_driver_release_interface(struct usb_driver *driver,
737                         struct usb_interface *iface);
738 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
739                                          const struct usb_device_id *id);
740 extern int usb_match_one_id(struct usb_interface *interface,
741                             const struct usb_device_id *id);
742 
743 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
744 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
745                 int minor);
746 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
747                 unsigned ifnum);
748 extern struct usb_host_interface *usb_altnum_to_altsetting(
749                 const struct usb_interface *intf, unsigned int altnum);
750 extern struct usb_host_interface *usb_find_alt_setting(
751                 struct usb_host_config *config,
752                 unsigned int iface_num,
753                 unsigned int alt_num);
754 
755 /* port claiming functions */
756 int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
757                 struct usb_dev_state *owner);
758 int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
759                 struct usb_dev_state *owner);
760 
761 /**
762  * usb_make_path - returns stable device path in the usb tree
763  * @dev: the device whose path is being constructed
764  * @buf: where to put the string
765  * @size: how big is "buf"?
766  *
767  * Return: Length of the string (> 0) or negative if size was too small.
768  *
769  * Note:
770  * This identifier is intended to be "stable", reflecting physical paths in
771  * hardware such as physical bus addresses for host controllers or ports on
772  * USB hubs.  That makes it stay the same until systems are physically
773  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
774  * controllers.  Adding and removing devices, including virtual root hubs
775  * in host controller driver modules, does not change these path identifiers;
776  * neither does rebooting or re-enumerating.  These are more useful identifiers
777  * than changeable ("unstable") ones like bus numbers or device addresses.
778  *
779  * With a partial exception for devices connected to USB 2.0 root hubs, these
780  * identifiers are also predictable.  So long as the device tree isn't changed,
781  * plugging any USB device into a given hub port always gives it the same path.
782  * Because of the use of "companion" controllers, devices connected to ports on
783  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
784  * high speed, and a different one if they are full or low speed.
785  */
786 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
787 {
788         int actual;
789         actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
790                           dev->devpath);
791         return (actual >= (int)size) ? -1 : actual;
792 }
793 
794 /*-------------------------------------------------------------------------*/
795 
796 #define USB_DEVICE_ID_MATCH_DEVICE \
797                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
798 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
799                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
800 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
801                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
802 #define USB_DEVICE_ID_MATCH_DEV_INFO \
803                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
804                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
805                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
806 #define USB_DEVICE_ID_MATCH_INT_INFO \
807                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
808                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
809                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
810 
811 /**
812  * USB_DEVICE - macro used to describe a specific usb device
813  * @vend: the 16 bit USB Vendor ID
814  * @prod: the 16 bit USB Product ID
815  *
816  * This macro is used to create a struct usb_device_id that matches a
817  * specific device.
818  */
819 #define USB_DEVICE(vend, prod) \
820         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
821         .idVendor = (vend), \
822         .idProduct = (prod)
823 /**
824  * USB_DEVICE_VER - describe a specific usb device with a version range
825  * @vend: the 16 bit USB Vendor ID
826  * @prod: the 16 bit USB Product ID
827  * @lo: the bcdDevice_lo value
828  * @hi: the bcdDevice_hi value
829  *
830  * This macro is used to create a struct usb_device_id that matches a
831  * specific device, with a version range.
832  */
833 #define USB_DEVICE_VER(vend, prod, lo, hi) \
834         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
835         .idVendor = (vend), \
836         .idProduct = (prod), \
837         .bcdDevice_lo = (lo), \
838         .bcdDevice_hi = (hi)
839 
840 /**
841  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
842  * @vend: the 16 bit USB Vendor ID
843  * @prod: the 16 bit USB Product ID
844  * @cl: bInterfaceClass value
845  *
846  * This macro is used to create a struct usb_device_id that matches a
847  * specific interface class of devices.
848  */
849 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
850         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
851                        USB_DEVICE_ID_MATCH_INT_CLASS, \
852         .idVendor = (vend), \
853         .idProduct = (prod), \
854         .bInterfaceClass = (cl)
855 
856 /**
857  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
858  * @vend: the 16 bit USB Vendor ID
859  * @prod: the 16 bit USB Product ID
860  * @pr: bInterfaceProtocol value
861  *
862  * This macro is used to create a struct usb_device_id that matches a
863  * specific interface protocol of devices.
864  */
865 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
866         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
867                        USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
868         .idVendor = (vend), \
869         .idProduct = (prod), \
870         .bInterfaceProtocol = (pr)
871 
872 /**
873  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
874  * @vend: the 16 bit USB Vendor ID
875  * @prod: the 16 bit USB Product ID
876  * @num: bInterfaceNumber value
877  *
878  * This macro is used to create a struct usb_device_id that matches a
879  * specific interface number of devices.
880  */
881 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
882         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
883                        USB_DEVICE_ID_MATCH_INT_NUMBER, \
884         .idVendor = (vend), \
885         .idProduct = (prod), \
886         .bInterfaceNumber = (num)
887 
888 /**
889  * USB_DEVICE_INFO - macro used to describe a class of usb devices
890  * @cl: bDeviceClass value
891  * @sc: bDeviceSubClass value
892  * @pr: bDeviceProtocol value
893  *
894  * This macro is used to create a struct usb_device_id that matches a
895  * specific class of devices.
896  */
897 #define USB_DEVICE_INFO(cl, sc, pr) \
898         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
899         .bDeviceClass = (cl), \
900         .bDeviceSubClass = (sc), \
901         .bDeviceProtocol = (pr)
902 
903 /**
904  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
905  * @cl: bInterfaceClass value
906  * @sc: bInterfaceSubClass value
907  * @pr: bInterfaceProtocol value
908  *
909  * This macro is used to create a struct usb_device_id that matches a
910  * specific class of interfaces.
911  */
912 #define USB_INTERFACE_INFO(cl, sc, pr) \
913         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
914         .bInterfaceClass = (cl), \
915         .bInterfaceSubClass = (sc), \
916         .bInterfaceProtocol = (pr)
917 
918 /**
919  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
920  * @vend: the 16 bit USB Vendor ID
921  * @prod: the 16 bit USB Product ID
922  * @cl: bInterfaceClass value
923  * @sc: bInterfaceSubClass value
924  * @pr: bInterfaceProtocol value
925  *
926  * This macro is used to create a struct usb_device_id that matches a
927  * specific device with a specific class of interfaces.
928  *
929  * This is especially useful when explicitly matching devices that have
930  * vendor specific bDeviceClass values, but standards-compliant interfaces.
931  */
932 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
933         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
934                 | USB_DEVICE_ID_MATCH_DEVICE, \
935         .idVendor = (vend), \
936         .idProduct = (prod), \
937         .bInterfaceClass = (cl), \
938         .bInterfaceSubClass = (sc), \
939         .bInterfaceProtocol = (pr)
940 
941 /**
942  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
943  * @vend: the 16 bit USB Vendor ID
944  * @cl: bInterfaceClass value
945  * @sc: bInterfaceSubClass value
946  * @pr: bInterfaceProtocol value
947  *
948  * This macro is used to create a struct usb_device_id that matches a
949  * specific vendor with a specific class of interfaces.
950  *
951  * This is especially useful when explicitly matching devices that have
952  * vendor specific bDeviceClass values, but standards-compliant interfaces.
953  */
954 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
955         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
956                 | USB_DEVICE_ID_MATCH_VENDOR, \
957         .idVendor = (vend), \
958         .bInterfaceClass = (cl), \
959         .bInterfaceSubClass = (sc), \
960         .bInterfaceProtocol = (pr)
961 
962 /* ----------------------------------------------------------------------- */
963 
964 /* Stuff for dynamic usb ids */
965 struct usb_dynids {
966         spinlock_t lock;
967         struct list_head list;
968 };
969 
970 struct usb_dynid {
971         struct list_head node;
972         struct usb_device_id id;
973 };
974 
975 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
976                                 const struct usb_device_id *id_table,
977                                 struct device_driver *driver,
978                                 const char *buf, size_t count);
979 
980 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
981 
982 /**
983  * struct usbdrv_wrap - wrapper for driver-model structure
984  * @driver: The driver-model core driver structure.
985  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
986  */
987 struct usbdrv_wrap {
988         struct device_driver driver;
989         int for_devices;
990 };
991 
992 /**
993  * struct usb_driver - identifies USB interface driver to usbcore
994  * @name: The driver name should be unique among USB drivers,
995  *      and should normally be the same as the module name.
996  * @probe: Called to see if the driver is willing to manage a particular
997  *      interface on a device.  If it is, probe returns zero and uses
998  *      usb_set_intfdata() to associate driver-specific data with the
999  *      interface.  It may also use usb_set_interface() to specify the
1000  *      appropriate altsetting.  If unwilling to manage the interface,
1001  *      return -ENODEV, if genuine IO errors occurred, an appropriate
1002  *      negative errno value.
1003  * @disconnect: Called when the interface is no longer accessible, usually
1004  *      because its device has been (or is being) disconnected or the
1005  *      driver module is being unloaded.
1006  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1007  *      the "usbfs" filesystem.  This lets devices provide ways to
1008  *      expose information to user space regardless of where they
1009  *      do (or don't) show up otherwise in the filesystem.
1010  * @suspend: Called when the device is going to be suspended by the
1011  *      system either from system sleep or runtime suspend context. The
1012  *      return value will be ignored in system sleep context, so do NOT
1013  *      try to continue using the device if suspend fails in this case.
1014  *      Instead, let the resume or reset-resume routine recover from
1015  *      the failure.
1016  * @resume: Called when the device is being resumed by the system.
1017  * @reset_resume: Called when the suspended device has been reset instead
1018  *      of being resumed.
1019  * @pre_reset: Called by usb_reset_device() when the device is about to be
1020  *      reset.  This routine must not return until the driver has no active
1021  *      URBs for the device, and no more URBs may be submitted until the
1022  *      post_reset method is called.
1023  * @post_reset: Called by usb_reset_device() after the device
1024  *      has been reset
1025  * @id_table: USB drivers use ID table to support hotplugging.
1026  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1027  *      or your driver's probe function will never get called.
1028  * @dynids: used internally to hold the list of dynamically added device
1029  *      ids for this driver.
1030  * @drvwrap: Driver-model core structure wrapper.
1031  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1032  *      added to this driver by preventing the sysfs file from being created.
1033  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1034  *      for interfaces bound to this driver.
1035  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1036  *      endpoints before calling the driver's disconnect method.
1037  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1038  *      to initiate lower power link state transitions when an idle timeout
1039  *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1040  *
1041  * USB interface drivers must provide a name, probe() and disconnect()
1042  * methods, and an id_table.  Other driver fields are optional.
1043  *
1044  * The id_table is used in hotplugging.  It holds a set of descriptors,
1045  * and specialized data may be associated with each entry.  That table
1046  * is used by both user and kernel mode hotplugging support.
1047  *
1048  * The probe() and disconnect() methods are called in a context where
1049  * they can sleep, but they should avoid abusing the privilege.  Most
1050  * work to connect to a device should be done when the device is opened,
1051  * and undone at the last close.  The disconnect code needs to address
1052  * concurrency issues with respect to open() and close() methods, as
1053  * well as forcing all pending I/O requests to complete (by unlinking
1054  * them as necessary, and blocking until the unlinks complete).
1055  */
1056 struct usb_driver {
1057         const char *name;
1058 
1059         int (*probe) (struct usb_interface *intf,
1060                       const struct usb_device_id *id);
1061 
1062         void (*disconnect) (struct usb_interface *intf);
1063 
1064         int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1065                         void *buf);
1066 
1067         int (*suspend) (struct usb_interface *intf, pm_message_t message);
1068         int (*resume) (struct usb_interface *intf);
1069         int (*reset_resume)(struct usb_interface *intf);
1070 
1071         int (*pre_reset)(struct usb_interface *intf);
1072         int (*post_reset)(struct usb_interface *intf);
1073 
1074         const struct usb_device_id *id_table;
1075 
1076         struct usb_dynids dynids;
1077         struct usbdrv_wrap drvwrap;
1078         unsigned int no_dynamic_id:1;
1079         unsigned int supports_autosuspend:1;
1080         unsigned int disable_hub_initiated_lpm:1;
1081         unsigned int soft_unbind:1;
1082 };
1083 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1084 
1085 /**
1086  * struct usb_device_driver - identifies USB device driver to usbcore
1087  * @name: The driver name should be unique among USB drivers,
1088  *      and should normally be the same as the module name.
1089  * @probe: Called to see if the driver is willing to manage a particular
1090  *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1091  *      to associate driver-specific data with the device.  If unwilling
1092  *      to manage the device, return a negative errno value.
1093  * @disconnect: Called when the device is no longer accessible, usually
1094  *      because it has been (or is being) disconnected or the driver's
1095  *      module is being unloaded.
1096  * @suspend: Called when the device is going to be suspended by the system.
1097  * @resume: Called when the device is being resumed by the system.
1098  * @drvwrap: Driver-model core structure wrapper.
1099  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1100  *      for devices bound to this driver.
1101  *
1102  * USB drivers must provide all the fields listed above except drvwrap.
1103  */
1104 struct usb_device_driver {
1105         const char *name;
1106 
1107         int (*probe) (struct usb_device *udev);
1108         void (*disconnect) (struct usb_device *udev);
1109 
1110         int (*suspend) (struct usb_device *udev, pm_message_t message);
1111         int (*resume) (struct usb_device *udev, pm_message_t message);
1112         struct usbdrv_wrap drvwrap;
1113         unsigned int supports_autosuspend:1;
1114 };
1115 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1116                 drvwrap.driver)
1117 
1118 extern struct bus_type usb_bus_type;
1119 
1120 /**
1121  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1122  * @name: the usb class device name for this driver.  Will show up in sysfs.
1123  * @devnode: Callback to provide a naming hint for a possible
1124  *      device node to create.
1125  * @fops: pointer to the struct file_operations of this driver.
1126  * @minor_base: the start of the minor range for this driver.
1127  *
1128  * This structure is used for the usb_register_dev() and
1129  * usb_unregister_dev() functions, to consolidate a number of the
1130  * parameters used for them.
1131  */
1132 struct usb_class_driver {
1133         char *name;
1134         char *(*devnode)(struct device *dev, umode_t *mode);
1135         const struct file_operations *fops;
1136         int minor_base;
1137 };
1138 
1139 /*
1140  * use these in module_init()/module_exit()
1141  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1142  */
1143 extern int usb_register_driver(struct usb_driver *, struct module *,
1144                                const char *);
1145 
1146 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1147 #define usb_register(driver) \
1148         usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1149 
1150 extern void usb_deregister(struct usb_driver *);
1151 
1152 /**
1153  * module_usb_driver() - Helper macro for registering a USB driver
1154  * @__usb_driver: usb_driver struct
1155  *
1156  * Helper macro for USB drivers which do not do anything special in module
1157  * init/exit. This eliminates a lot of boilerplate. Each module may only
1158  * use this macro once, and calling it replaces module_init() and module_exit()
1159  */
1160 #define module_usb_driver(__usb_driver) \
1161         module_driver(__usb_driver, usb_register, \
1162                        usb_deregister)
1163 
1164 extern int usb_register_device_driver(struct usb_device_driver *,
1165                         struct module *);
1166 extern void usb_deregister_device_driver(struct usb_device_driver *);
1167 
1168 extern int usb_register_dev(struct usb_interface *intf,
1169                             struct usb_class_driver *class_driver);
1170 extern void usb_deregister_dev(struct usb_interface *intf,
1171                                struct usb_class_driver *class_driver);
1172 
1173 extern int usb_disabled(void);
1174 
1175 /* ----------------------------------------------------------------------- */
1176 
1177 /*
1178  * URB support, for asynchronous request completions
1179  */
1180 
1181 /*
1182  * urb->transfer_flags:
1183  *
1184  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1185  */
1186 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1187 #define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1188                                          * slot in the schedule */
1189 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1190 #define URB_NO_FSBR             0x0020  /* UHCI-specific */
1191 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1192 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1193                                          * needed */
1194 #define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1195 
1196 /* The following flags are used internally by usbcore and HCDs */
1197 #define URB_DIR_IN              0x0200  /* Transfer from device to host */
1198 #define URB_DIR_OUT             0
1199 #define URB_DIR_MASK            URB_DIR_IN
1200 
1201 #define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1202 #define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1203 #define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1204 #define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1205 #define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1206 #define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1207 #define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1208 #define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1209 
1210 struct usb_iso_packet_descriptor {
1211         unsigned int offset;
1212         unsigned int length;            /* expected length */
1213         unsigned int actual_length;
1214         int status;
1215 };
1216 
1217 struct urb;
1218 
1219 struct usb_anchor {
1220         struct list_head urb_list;
1221         wait_queue_head_t wait;
1222         spinlock_t lock;
1223         atomic_t suspend_wakeups;
1224         unsigned int poisoned:1;
1225 };
1226 
1227 static inline void init_usb_anchor(struct usb_anchor *anchor)
1228 {
1229         memset(anchor, 0, sizeof(*anchor));
1230         INIT_LIST_HEAD(&anchor->urb_list);
1231         init_waitqueue_head(&anchor->wait);
1232         spin_lock_init(&anchor->lock);
1233 }
1234 
1235 typedef void (*usb_complete_t)(struct urb *);
1236 
1237 /**
1238  * struct urb - USB Request Block
1239  * @urb_list: For use by current owner of the URB.
1240  * @anchor_list: membership in the list of an anchor
1241  * @anchor: to anchor URBs to a common mooring
1242  * @ep: Points to the endpoint's data structure.  Will eventually
1243  *      replace @pipe.
1244  * @pipe: Holds endpoint number, direction, type, and more.
1245  *      Create these values with the eight macros available;
1246  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1247  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1248  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1249  *      numbers range from zero to fifteen.  Note that "in" endpoint two
1250  *      is a different endpoint (and pipe) from "out" endpoint two.
1251  *      The current configuration controls the existence, type, and
1252  *      maximum packet size of any given endpoint.
1253  * @stream_id: the endpoint's stream ID for bulk streams
1254  * @dev: Identifies the USB device to perform the request.
1255  * @status: This is read in non-iso completion functions to get the
1256  *      status of the particular request.  ISO requests only use it
1257  *      to tell whether the URB was unlinked; detailed status for
1258  *      each frame is in the fields of the iso_frame-desc.
1259  * @transfer_flags: A variety of flags may be used to affect how URB
1260  *      submission, unlinking, or operation are handled.  Different
1261  *      kinds of URB can use different flags.
1262  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1263  *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1264  *      (however, do not leave garbage in transfer_buffer even then).
1265  *      This buffer must be suitable for DMA; allocate it with
1266  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1267  *      of this buffer will be modified.  This buffer is used for the data
1268  *      stage of control transfers.
1269  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1270  *      the device driver is saying that it provided this DMA address,
1271  *      which the host controller driver should use in preference to the
1272  *      transfer_buffer.
1273  * @sg: scatter gather buffer list, the buffer size of each element in
1274  *      the list (except the last) must be divisible by the endpoint's
1275  *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1276  * @num_mapped_sgs: (internal) number of mapped sg entries
1277  * @num_sgs: number of entries in the sg list
1278  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1279  *      be broken up into chunks according to the current maximum packet
1280  *      size for the endpoint, which is a function of the configuration
1281  *      and is encoded in the pipe.  When the length is zero, neither
1282  *      transfer_buffer nor transfer_dma is used.
1283  * @actual_length: This is read in non-iso completion functions, and
1284  *      it tells how many bytes (out of transfer_buffer_length) were
1285  *      transferred.  It will normally be the same as requested, unless
1286  *      either an error was reported or a short read was performed.
1287  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1288  *      short reads be reported as errors.
1289  * @setup_packet: Only used for control transfers, this points to eight bytes
1290  *      of setup data.  Control transfers always start by sending this data
1291  *      to the device.  Then transfer_buffer is read or written, if needed.
1292  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1293  *      this field; setup_packet must point to a valid buffer.
1294  * @start_frame: Returns the initial frame for isochronous transfers.
1295  * @number_of_packets: Lists the number of ISO transfer buffers.
1296  * @interval: Specifies the polling interval for interrupt or isochronous
1297  *      transfers.  The units are frames (milliseconds) for full and low
1298  *      speed devices, and microframes (1/8 millisecond) for highspeed
1299  *      and SuperSpeed devices.
1300  * @error_count: Returns the number of ISO transfers that reported errors.
1301  * @context: For use in completion functions.  This normally points to
1302  *      request-specific driver context.
1303  * @complete: Completion handler. This URB is passed as the parameter to the
1304  *      completion function.  The completion function may then do what
1305  *      it likes with the URB, including resubmitting or freeing it.
1306  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1307  *      collect the transfer status for each buffer.
1308  *
1309  * This structure identifies USB transfer requests.  URBs must be allocated by
1310  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1311  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1312  * are submitted using usb_submit_urb(), and pending requests may be canceled
1313  * using usb_unlink_urb() or usb_kill_urb().
1314  *
1315  * Data Transfer Buffers:
1316  *
1317  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1318  * taken from the general page pool.  That is provided by transfer_buffer
1319  * (control requests also use setup_packet), and host controller drivers
1320  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1321  * mapping operations can be expensive on some platforms (perhaps using a dma
1322  * bounce buffer or talking to an IOMMU),
1323  * although they're cheap on commodity x86 and ppc hardware.
1324  *
1325  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1326  * which tells the host controller driver that no such mapping is needed for
1327  * the transfer_buffer since
1328  * the device driver is DMA-aware.  For example, a device driver might
1329  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1330  * When this transfer flag is provided, host controller drivers will
1331  * attempt to use the dma address found in the transfer_dma
1332  * field rather than determining a dma address themselves.
1333  *
1334  * Note that transfer_buffer must still be set if the controller
1335  * does not support DMA (as indicated by bus.uses_dma) and when talking
1336  * to root hub. If you have to trasfer between highmem zone and the device
1337  * on such controller, create a bounce buffer or bail out with an error.
1338  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1339  * capable, assign NULL to it, so that usbmon knows not to use the value.
1340  * The setup_packet must always be set, so it cannot be located in highmem.
1341  *
1342  * Initialization:
1343  *
1344  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1345  * zero), and complete fields.  All URBs must also initialize
1346  * transfer_buffer and transfer_buffer_length.  They may provide the
1347  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1348  * to be treated as errors; that flag is invalid for write requests.
1349  *
1350  * Bulk URBs may
1351  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1352  * should always terminate with a short packet, even if it means adding an
1353  * extra zero length packet.
1354  *
1355  * Control URBs must provide a valid pointer in the setup_packet field.
1356  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1357  * beforehand.
1358  *
1359  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1360  * or, for highspeed devices, 125 microsecond units)
1361  * to poll for transfers.  After the URB has been submitted, the interval
1362  * field reflects how the transfer was actually scheduled.
1363  * The polling interval may be more frequent than requested.
1364  * For example, some controllers have a maximum interval of 32 milliseconds,
1365  * while others support intervals of up to 1024 milliseconds.
1366  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1367  * endpoints, as well as high speed interrupt endpoints, the encoding of
1368  * the transfer interval in the endpoint descriptor is logarithmic.
1369  * Device drivers must convert that value to linear units themselves.)
1370  *
1371  * If an isochronous endpoint queue isn't already running, the host
1372  * controller will schedule a new URB to start as soon as bandwidth
1373  * utilization allows.  If the queue is running then a new URB will be
1374  * scheduled to start in the first transfer slot following the end of the
1375  * preceding URB, if that slot has not already expired.  If the slot has
1376  * expired (which can happen when IRQ delivery is delayed for a long time),
1377  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1378  * is clear then the URB will be scheduled to start in the expired slot,
1379  * implying that some of its packets will not be transferred; if the flag
1380  * is set then the URB will be scheduled in the first unexpired slot,
1381  * breaking the queue's synchronization.  Upon URB completion, the
1382  * start_frame field will be set to the (micro)frame number in which the
1383  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1384  * and can go from as low as 256 to as high as 65536 frames.
1385  *
1386  * Isochronous URBs have a different data transfer model, in part because
1387  * the quality of service is only "best effort".  Callers provide specially
1388  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1389  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1390  * URBs are normally queued, submitted by drivers to arrange that
1391  * transfers are at least double buffered, and then explicitly resubmitted
1392  * in completion handlers, so
1393  * that data (such as audio or video) streams at as constant a rate as the
1394  * host controller scheduler can support.
1395  *
1396  * Completion Callbacks:
1397  *
1398  * The completion callback is made in_interrupt(), and one of the first
1399  * things that a completion handler should do is check the status field.
1400  * The status field is provided for all URBs.  It is used to report
1401  * unlinked URBs, and status for all non-ISO transfers.  It should not
1402  * be examined before the URB is returned to the completion handler.
1403  *
1404  * The context field is normally used to link URBs back to the relevant
1405  * driver or request state.
1406  *
1407  * When the completion callback is invoked for non-isochronous URBs, the
1408  * actual_length field tells how many bytes were transferred.  This field
1409  * is updated even when the URB terminated with an error or was unlinked.
1410  *
1411  * ISO transfer status is reported in the status and actual_length fields
1412  * of the iso_frame_desc array, and the number of errors is reported in
1413  * error_count.  Completion callbacks for ISO transfers will normally
1414  * (re)submit URBs to ensure a constant transfer rate.
1415  *
1416  * Note that even fields marked "public" should not be touched by the driver
1417  * when the urb is owned by the hcd, that is, since the call to
1418  * usb_submit_urb() till the entry into the completion routine.
1419  */
1420 struct urb {
1421         /* private: usb core and host controller only fields in the urb */
1422         struct kref kref;               /* reference count of the URB */
1423         void *hcpriv;                   /* private data for host controller */
1424         atomic_t use_count;             /* concurrent submissions counter */
1425         atomic_t reject;                /* submissions will fail */
1426         int unlinked;                   /* unlink error code */
1427 
1428         /* public: documented fields in the urb that can be used by drivers */
1429         struct list_head urb_list;      /* list head for use by the urb's
1430                                          * current owner */
1431         struct list_head anchor_list;   /* the URB may be anchored */
1432         struct usb_anchor *anchor;
1433         struct usb_device *dev;         /* (in) pointer to associated device */
1434         struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1435         unsigned int pipe;              /* (in) pipe information */
1436         unsigned int stream_id;         /* (in) stream ID */
1437         int status;                     /* (return) non-ISO status */
1438         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1439         void *transfer_buffer;          /* (in) associated data buffer */
1440         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1441         struct scatterlist *sg;         /* (in) scatter gather buffer list */
1442         int num_mapped_sgs;             /* (internal) mapped sg entries */
1443         int num_sgs;                    /* (in) number of entries in the sg list */
1444         u32 transfer_buffer_length;     /* (in) data buffer length */
1445         u32 actual_length;              /* (return) actual transfer length */
1446         unsigned char *setup_packet;    /* (in) setup packet (control only) */
1447         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1448         int start_frame;                /* (modify) start frame (ISO) */
1449         int number_of_packets;          /* (in) number of ISO packets */
1450         int interval;                   /* (modify) transfer interval
1451                                          * (INT/ISO) */
1452         int error_count;                /* (return) number of ISO errors */
1453         void *context;                  /* (in) context for completion */
1454         usb_complete_t complete;        /* (in) completion routine */
1455         struct usb_iso_packet_descriptor iso_frame_desc[0];
1456                                         /* (in) ISO ONLY */
1457 };
1458 
1459 /* ----------------------------------------------------------------------- */
1460 
1461 /**
1462  * usb_fill_control_urb - initializes a control urb
1463  * @urb: pointer to the urb to initialize.
1464  * @dev: pointer to the struct usb_device for this urb.
1465  * @pipe: the endpoint pipe
1466  * @setup_packet: pointer to the setup_packet buffer
1467  * @transfer_buffer: pointer to the transfer buffer
1468  * @buffer_length: length of the transfer buffer
1469  * @complete_fn: pointer to the usb_complete_t function
1470  * @context: what to set the urb context to.
1471  *
1472  * Initializes a control urb with the proper information needed to submit
1473  * it to a device.
1474  */
1475 static inline void usb_fill_control_urb(struct urb *urb,
1476                                         struct usb_device *dev,
1477                                         unsigned int pipe,
1478                                         unsigned char *setup_packet,
1479                                         void *transfer_buffer,
1480                                         int buffer_length,
1481                                         usb_complete_t complete_fn,
1482                                         void *context)
1483 {
1484         urb->dev = dev;
1485         urb->pipe = pipe;
1486         urb->setup_packet = setup_packet;
1487         urb->transfer_buffer = transfer_buffer;
1488         urb->transfer_buffer_length = buffer_length;
1489         urb->complete = complete_fn;
1490         urb->context = context;
1491 }
1492 
1493 /**
1494  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1495  * @urb: pointer to the urb to initialize.
1496  * @dev: pointer to the struct usb_device for this urb.
1497  * @pipe: the endpoint pipe
1498  * @transfer_buffer: pointer to the transfer buffer
1499  * @buffer_length: length of the transfer buffer
1500  * @complete_fn: pointer to the usb_complete_t function
1501  * @context: what to set the urb context to.
1502  *
1503  * Initializes a bulk urb with the proper information needed to submit it
1504  * to a device.
1505  */
1506 static inline void usb_fill_bulk_urb(struct urb *urb,
1507                                      struct usb_device *dev,
1508                                      unsigned int pipe,
1509                                      void *transfer_buffer,
1510                                      int buffer_length,
1511                                      usb_complete_t complete_fn,
1512                                      void *context)
1513 {
1514         urb->dev = dev;
1515         urb->pipe = pipe;
1516         urb->transfer_buffer = transfer_buffer;
1517         urb->transfer_buffer_length = buffer_length;
1518         urb->complete = complete_fn;
1519         urb->context = context;
1520 }
1521 
1522 /**
1523  * usb_fill_int_urb - macro to help initialize a interrupt urb
1524  * @urb: pointer to the urb to initialize.
1525  * @dev: pointer to the struct usb_device for this urb.
1526  * @pipe: the endpoint pipe
1527  * @transfer_buffer: pointer to the transfer buffer
1528  * @buffer_length: length of the transfer buffer
1529  * @complete_fn: pointer to the usb_complete_t function
1530  * @context: what to set the urb context to.
1531  * @interval: what to set the urb interval to, encoded like
1532  *      the endpoint descriptor's bInterval value.
1533  *
1534  * Initializes a interrupt urb with the proper information needed to submit
1535  * it to a device.
1536  *
1537  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1538  * encoding of the endpoint interval, and express polling intervals in
1539  * microframes (eight per millisecond) rather than in frames (one per
1540  * millisecond).
1541  *
1542  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1543  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1544  * through to the host controller, rather than being translated into microframe
1545  * units.
1546  */
1547 static inline void usb_fill_int_urb(struct urb *urb,
1548                                     struct usb_device *dev,
1549                                     unsigned int pipe,
1550                                     void *transfer_buffer,
1551                                     int buffer_length,
1552                                     usb_complete_t complete_fn,
1553                                     void *context,
1554                                     int interval)
1555 {
1556         urb->dev = dev;
1557         urb->pipe = pipe;
1558         urb->transfer_buffer = transfer_buffer;
1559         urb->transfer_buffer_length = buffer_length;
1560         urb->complete = complete_fn;
1561         urb->context = context;
1562 
1563         if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1564                 /* make sure interval is within allowed range */
1565                 interval = clamp(interval, 1, 16);
1566 
1567                 urb->interval = 1 << (interval - 1);
1568         } else {
1569                 urb->interval = interval;
1570         }
1571 
1572         urb->start_frame = -1;
1573 }
1574 
1575 extern void usb_init_urb(struct urb *urb);
1576 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1577 extern void usb_free_urb(struct urb *urb);
1578 #define usb_put_urb usb_free_urb
1579 extern struct urb *usb_get_urb(struct urb *urb);
1580 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1581 extern int usb_unlink_urb(struct urb *urb);
1582 extern void usb_kill_urb(struct urb *urb);
1583 extern void usb_poison_urb(struct urb *urb);
1584 extern void usb_unpoison_urb(struct urb *urb);
1585 extern void usb_block_urb(struct urb *urb);
1586 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1587 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1588 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1589 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1590 extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1591 extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1592 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1593 extern void usb_unanchor_urb(struct urb *urb);
1594 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1595                                          unsigned int timeout);
1596 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1597 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1598 extern int usb_anchor_empty(struct usb_anchor *anchor);
1599 
1600 #define usb_unblock_urb usb_unpoison_urb
1601 
1602 /**
1603  * usb_urb_dir_in - check if an URB describes an IN transfer
1604  * @urb: URB to be checked
1605  *
1606  * Return: 1 if @urb describes an IN transfer (device-to-host),
1607  * otherwise 0.
1608  */
1609 static inline int usb_urb_dir_in(struct urb *urb)
1610 {
1611         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1612 }
1613 
1614 /**
1615  * usb_urb_dir_out - check if an URB describes an OUT transfer
1616  * @urb: URB to be checked
1617  *
1618  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1619  * otherwise 0.
1620  */
1621 static inline int usb_urb_dir_out(struct urb *urb)
1622 {
1623         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1624 }
1625 
1626 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1627         gfp_t mem_flags, dma_addr_t *dma);
1628 void usb_free_coherent(struct usb_device *dev, size_t size,
1629         void *addr, dma_addr_t dma);
1630 
1631 #if 0
1632 struct urb *usb_buffer_map(struct urb *urb);
1633 void usb_buffer_dmasync(struct urb *urb);
1634 void usb_buffer_unmap(struct urb *urb);
1635 #endif
1636 
1637 struct scatterlist;
1638 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1639                       struct scatterlist *sg, int nents);
1640 #if 0
1641 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1642                            struct scatterlist *sg, int n_hw_ents);
1643 #endif
1644 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1645                          struct scatterlist *sg, int n_hw_ents);
1646 
1647 /*-------------------------------------------------------------------*
1648  *                         SYNCHRONOUS CALL SUPPORT                  *
1649  *-------------------------------------------------------------------*/
1650 
1651 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1652         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1653         void *data, __u16 size, int timeout);
1654 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1655         void *data, int len, int *actual_length, int timeout);
1656 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1657         void *data, int len, int *actual_length,
1658         int timeout);
1659 
1660 /* wrappers around usb_control_msg() for the most common standard requests */
1661 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1662         unsigned char descindex, void *buf, int size);
1663 extern int usb_get_status(struct usb_device *dev,
1664         int type, int target, void *data);
1665 extern int usb_string(struct usb_device *dev, int index,
1666         char *buf, size_t size);
1667 
1668 /* wrappers that also update important state inside usbcore */
1669 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1670 extern int usb_reset_configuration(struct usb_device *dev);
1671 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1672 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1673 
1674 /* this request isn't really synchronous, but it belongs with the others */
1675 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1676 
1677 /* choose and set configuration for device */
1678 extern int usb_choose_configuration(struct usb_device *udev);
1679 extern int usb_set_configuration(struct usb_device *dev, int configuration);
1680 
1681 /*
1682  * timeouts, in milliseconds, used for sending/receiving control messages
1683  * they typically complete within a few frames (msec) after they're issued
1684  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1685  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1686  */
1687 #define USB_CTRL_GET_TIMEOUT    5000
1688 #define USB_CTRL_SET_TIMEOUT    5000
1689 
1690 
1691 /**
1692  * struct usb_sg_request - support for scatter/gather I/O
1693  * @status: zero indicates success, else negative errno
1694  * @bytes: counts bytes transferred.
1695  *
1696  * These requests are initialized using usb_sg_init(), and then are used
1697  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1698  * members of the request object aren't for driver access.
1699  *
1700  * The status and bytecount values are valid only after usb_sg_wait()
1701  * returns.  If the status is zero, then the bytecount matches the total
1702  * from the request.
1703  *
1704  * After an error completion, drivers may need to clear a halt condition
1705  * on the endpoint.
1706  */
1707 struct usb_sg_request {
1708         int                     status;
1709         size_t                  bytes;
1710 
1711         /* private:
1712          * members below are private to usbcore,
1713          * and are not provided for driver access!
1714          */
1715         spinlock_t              lock;
1716 
1717         struct usb_device       *dev;
1718         int                     pipe;
1719 
1720         int                     entries;
1721         struct urb              **urbs;
1722 
1723         int                     count;
1724         struct completion       complete;
1725 };
1726 
1727 int usb_sg_init(
1728         struct usb_sg_request   *io,
1729         struct usb_device       *dev,
1730         unsigned                pipe,
1731         unsigned                period,
1732         struct scatterlist      *sg,
1733         int                     nents,
1734         size_t                  length,
1735         gfp_t                   mem_flags
1736 );
1737 void usb_sg_cancel(struct usb_sg_request *io);
1738 void usb_sg_wait(struct usb_sg_request *io);
1739 
1740 
1741 /* ----------------------------------------------------------------------- */
1742 
1743 /*
1744  * For various legacy reasons, Linux has a small cookie that's paired with
1745  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1746  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1747  * an unsigned int encoded as:
1748  *
1749  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1750  *                                       1 = Device-to-Host [In] ...
1751  *                                      like endpoint bEndpointAddress)
1752  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1753  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1754  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1755  *                                       10 = control, 11 = bulk)
1756  *
1757  * Given the device address and endpoint descriptor, pipes are redundant.
1758  */
1759 
1760 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1761 /* (yet ... they're the values used by usbfs) */
1762 #define PIPE_ISOCHRONOUS                0
1763 #define PIPE_INTERRUPT                  1
1764 #define PIPE_CONTROL                    2
1765 #define PIPE_BULK                       3
1766 
1767 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1768 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1769 
1770 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1771 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1772 
1773 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1774 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1775 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1776 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1777 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1778 
1779 static inline unsigned int __create_pipe(struct usb_device *dev,
1780                 unsigned int endpoint)
1781 {
1782         return (dev->devnum << 8) | (endpoint << 15);
1783 }
1784 
1785 /* Create various pipes... */
1786 #define usb_sndctrlpipe(dev, endpoint)  \
1787         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1788 #define usb_rcvctrlpipe(dev, endpoint)  \
1789         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1790 #define usb_sndisocpipe(dev, endpoint)  \
1791         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1792 #define usb_rcvisocpipe(dev, endpoint)  \
1793         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1794 #define usb_sndbulkpipe(dev, endpoint)  \
1795         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1796 #define usb_rcvbulkpipe(dev, endpoint)  \
1797         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1798 #define usb_sndintpipe(dev, endpoint)   \
1799         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1800 #define usb_rcvintpipe(dev, endpoint)   \
1801         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1802 
1803 static inline struct usb_host_endpoint *
1804 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1805 {
1806         struct usb_host_endpoint **eps;
1807         eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1808         return eps[usb_pipeendpoint(pipe)];
1809 }
1810 
1811 /*-------------------------------------------------------------------------*/
1812 
1813 static inline __u16
1814 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1815 {
1816         struct usb_host_endpoint        *ep;
1817         unsigned                        epnum = usb_pipeendpoint(pipe);
1818 
1819         if (is_out) {
1820                 WARN_ON(usb_pipein(pipe));
1821                 ep = udev->ep_out[epnum];
1822         } else {
1823                 WARN_ON(usb_pipeout(pipe));
1824                 ep = udev->ep_in[epnum];
1825         }
1826         if (!ep)
1827                 return 0;
1828 
1829         /* NOTE:  only 0x07ff bits are for packet size... */
1830         return usb_endpoint_maxp(&ep->desc);
1831 }
1832 
1833 /* ----------------------------------------------------------------------- */
1834 
1835 /* translate USB error codes to codes user space understands */
1836 static inline int usb_translate_errors(int error_code)
1837 {
1838         switch (error_code) {
1839         case 0:
1840         case -ENOMEM:
1841         case -ENODEV:
1842         case -EOPNOTSUPP:
1843                 return error_code;
1844         default:
1845                 return -EIO;
1846         }
1847 }
1848 
1849 /* Events from the usb core */
1850 #define USB_DEVICE_ADD          0x0001
1851 #define USB_DEVICE_REMOVE       0x0002
1852 #define USB_BUS_ADD             0x0003
1853 #define USB_BUS_REMOVE          0x0004
1854 extern void usb_register_notify(struct notifier_block *nb);
1855 extern void usb_unregister_notify(struct notifier_block *nb);
1856 
1857 /* debugfs stuff */
1858 extern struct dentry *usb_debug_root;
1859 
1860 /* LED triggers */
1861 enum usb_led_event {
1862         USB_LED_EVENT_HOST = 0,
1863         USB_LED_EVENT_GADGET = 1,
1864 };
1865 
1866 #ifdef CONFIG_USB_LED_TRIG
1867 extern void usb_led_activity(enum usb_led_event ev);
1868 #else
1869 static inline void usb_led_activity(enum usb_led_event ev) {}
1870 #endif
1871 
1872 #endif  /* __KERNEL__ */
1873 
1874 #endif
1875 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us