Version:  2.0.40 2.2.26 2.4.37 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Linux/include/linux/rcupdate.h

  1 /*
  2  * Read-Copy Update mechanism for mutual exclusion
  3  *
  4  * This program is free software; you can redistribute it and/or modify
  5  * it under the terms of the GNU General Public License as published by
  6  * the Free Software Foundation; either version 2 of the License, or
  7  * (at your option) any later version.
  8  *
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, you can access it online at
 16  * http://www.gnu.org/licenses/gpl-2.0.html.
 17  *
 18  * Copyright IBM Corporation, 2001
 19  *
 20  * Author: Dipankar Sarma <dipankar@in.ibm.com>
 21  *
 22  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
 23  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 24  * Papers:
 25  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
 26  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
 27  *
 28  * For detailed explanation of Read-Copy Update mechanism see -
 29  *              http://lse.sourceforge.net/locking/rcupdate.html
 30  *
 31  */
 32 
 33 #ifndef __LINUX_RCUPDATE_H
 34 #define __LINUX_RCUPDATE_H
 35 
 36 #include <linux/types.h>
 37 #include <linux/cache.h>
 38 #include <linux/spinlock.h>
 39 #include <linux/threads.h>
 40 #include <linux/cpumask.h>
 41 #include <linux/seqlock.h>
 42 #include <linux/lockdep.h>
 43 #include <linux/completion.h>
 44 #include <linux/debugobjects.h>
 45 #include <linux/bug.h>
 46 #include <linux/compiler.h>
 47 #include <linux/ktime.h>
 48 
 49 #include <asm/barrier.h>
 50 
 51 #ifndef CONFIG_TINY_RCU
 52 extern int rcu_expedited; /* for sysctl */
 53 extern int rcu_normal;    /* also for sysctl */
 54 #endif /* #ifndef CONFIG_TINY_RCU */
 55 
 56 #ifdef CONFIG_TINY_RCU
 57 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
 58 static inline bool rcu_gp_is_normal(void)  /* Internal RCU use. */
 59 {
 60         return true;
 61 }
 62 static inline bool rcu_gp_is_expedited(void)  /* Internal RCU use. */
 63 {
 64         return false;
 65 }
 66 
 67 static inline void rcu_expedite_gp(void)
 68 {
 69 }
 70 
 71 static inline void rcu_unexpedite_gp(void)
 72 {
 73 }
 74 #else /* #ifdef CONFIG_TINY_RCU */
 75 bool rcu_gp_is_normal(void);     /* Internal RCU use. */
 76 bool rcu_gp_is_expedited(void);  /* Internal RCU use. */
 77 void rcu_expedite_gp(void);
 78 void rcu_unexpedite_gp(void);
 79 #endif /* #else #ifdef CONFIG_TINY_RCU */
 80 
 81 enum rcutorture_type {
 82         RCU_FLAVOR,
 83         RCU_BH_FLAVOR,
 84         RCU_SCHED_FLAVOR,
 85         RCU_TASKS_FLAVOR,
 86         SRCU_FLAVOR,
 87         INVALID_RCU_FLAVOR
 88 };
 89 
 90 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
 91 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 92                             unsigned long *gpnum, unsigned long *completed);
 93 void rcutorture_record_test_transition(void);
 94 void rcutorture_record_progress(unsigned long vernum);
 95 void do_trace_rcu_torture_read(const char *rcutorturename,
 96                                struct rcu_head *rhp,
 97                                unsigned long secs,
 98                                unsigned long c_old,
 99                                unsigned long c);
100 #else
101 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
102                                           int *flags,
103                                           unsigned long *gpnum,
104                                           unsigned long *completed)
105 {
106         *flags = 0;
107         *gpnum = 0;
108         *completed = 0;
109 }
110 static inline void rcutorture_record_test_transition(void)
111 {
112 }
113 static inline void rcutorture_record_progress(unsigned long vernum)
114 {
115 }
116 #ifdef CONFIG_RCU_TRACE
117 void do_trace_rcu_torture_read(const char *rcutorturename,
118                                struct rcu_head *rhp,
119                                unsigned long secs,
120                                unsigned long c_old,
121                                unsigned long c);
122 #else
123 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
124         do { } while (0)
125 #endif
126 #endif
127 
128 #define UINT_CMP_GE(a, b)       (UINT_MAX / 2 >= (a) - (b))
129 #define UINT_CMP_LT(a, b)       (UINT_MAX / 2 < (a) - (b))
130 #define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
131 #define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
132 #define ulong2long(a)           (*(long *)(&(a)))
133 
134 /* Exported common interfaces */
135 
136 #ifdef CONFIG_PREEMPT_RCU
137 
138 /**
139  * call_rcu() - Queue an RCU callback for invocation after a grace period.
140  * @head: structure to be used for queueing the RCU updates.
141  * @func: actual callback function to be invoked after the grace period
142  *
143  * The callback function will be invoked some time after a full grace
144  * period elapses, in other words after all pre-existing RCU read-side
145  * critical sections have completed.  However, the callback function
146  * might well execute concurrently with RCU read-side critical sections
147  * that started after call_rcu() was invoked.  RCU read-side critical
148  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
149  * and may be nested.
150  *
151  * Note that all CPUs must agree that the grace period extended beyond
152  * all pre-existing RCU read-side critical section.  On systems with more
153  * than one CPU, this means that when "func()" is invoked, each CPU is
154  * guaranteed to have executed a full memory barrier since the end of its
155  * last RCU read-side critical section whose beginning preceded the call
156  * to call_rcu().  It also means that each CPU executing an RCU read-side
157  * critical section that continues beyond the start of "func()" must have
158  * executed a memory barrier after the call_rcu() but before the beginning
159  * of that RCU read-side critical section.  Note that these guarantees
160  * include CPUs that are offline, idle, or executing in user mode, as
161  * well as CPUs that are executing in the kernel.
162  *
163  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
164  * resulting RCU callback function "func()", then both CPU A and CPU B are
165  * guaranteed to execute a full memory barrier during the time interval
166  * between the call to call_rcu() and the invocation of "func()" -- even
167  * if CPU A and CPU B are the same CPU (but again only if the system has
168  * more than one CPU).
169  */
170 void call_rcu(struct rcu_head *head,
171               rcu_callback_t func);
172 
173 #else /* #ifdef CONFIG_PREEMPT_RCU */
174 
175 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
176 #define call_rcu        call_rcu_sched
177 
178 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
179 
180 /**
181  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
182  * @head: structure to be used for queueing the RCU updates.
183  * @func: actual callback function to be invoked after the grace period
184  *
185  * The callback function will be invoked some time after a full grace
186  * period elapses, in other words after all currently executing RCU
187  * read-side critical sections have completed. call_rcu_bh() assumes
188  * that the read-side critical sections end on completion of a softirq
189  * handler. This means that read-side critical sections in process
190  * context must not be interrupted by softirqs. This interface is to be
191  * used when most of the read-side critical sections are in softirq context.
192  * RCU read-side critical sections are delimited by :
193  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
194  *  OR
195  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
196  *  These may be nested.
197  *
198  * See the description of call_rcu() for more detailed information on
199  * memory ordering guarantees.
200  */
201 void call_rcu_bh(struct rcu_head *head,
202                  rcu_callback_t func);
203 
204 /**
205  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
206  * @head: structure to be used for queueing the RCU updates.
207  * @func: actual callback function to be invoked after the grace period
208  *
209  * The callback function will be invoked some time after a full grace
210  * period elapses, in other words after all currently executing RCU
211  * read-side critical sections have completed. call_rcu_sched() assumes
212  * that the read-side critical sections end on enabling of preemption
213  * or on voluntary preemption.
214  * RCU read-side critical sections are delimited by :
215  *  - rcu_read_lock_sched() and  rcu_read_unlock_sched(),
216  *  OR
217  *  anything that disables preemption.
218  *  These may be nested.
219  *
220  * See the description of call_rcu() for more detailed information on
221  * memory ordering guarantees.
222  */
223 void call_rcu_sched(struct rcu_head *head,
224                     rcu_callback_t func);
225 
226 void synchronize_sched(void);
227 
228 /*
229  * Structure allowing asynchronous waiting on RCU.
230  */
231 struct rcu_synchronize {
232         struct rcu_head head;
233         struct completion completion;
234 };
235 void wakeme_after_rcu(struct rcu_head *head);
236 
237 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
238                    struct rcu_synchronize *rs_array);
239 
240 #define _wait_rcu_gp(checktiny, ...) \
241 do {                                                                    \
242         call_rcu_func_t __crcu_array[] = { __VA_ARGS__ };               \
243         struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)];    \
244         __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array),              \
245                         __crcu_array, __rs_array);                      \
246 } while (0)
247 
248 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
249 
250 /**
251  * synchronize_rcu_mult - Wait concurrently for multiple grace periods
252  * @...: List of call_rcu() functions for the flavors to wait on.
253  *
254  * This macro waits concurrently for multiple flavors of RCU grace periods.
255  * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
256  * on concurrent RCU and RCU-bh grace periods.  Waiting on a give SRCU
257  * domain requires you to write a wrapper function for that SRCU domain's
258  * call_srcu() function, supplying the corresponding srcu_struct.
259  *
260  * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
261  * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
262  * is automatically a grace period.
263  */
264 #define synchronize_rcu_mult(...) \
265         _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
266 
267 /**
268  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
269  * @head: structure to be used for queueing the RCU updates.
270  * @func: actual callback function to be invoked after the grace period
271  *
272  * The callback function will be invoked some time after a full grace
273  * period elapses, in other words after all currently executing RCU
274  * read-side critical sections have completed. call_rcu_tasks() assumes
275  * that the read-side critical sections end at a voluntary context
276  * switch (not a preemption!), entry into idle, or transition to usermode
277  * execution.  As such, there are no read-side primitives analogous to
278  * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
279  * to determine that all tasks have passed through a safe state, not so
280  * much for data-strcuture synchronization.
281  *
282  * See the description of call_rcu() for more detailed information on
283  * memory ordering guarantees.
284  */
285 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
286 void synchronize_rcu_tasks(void);
287 void rcu_barrier_tasks(void);
288 
289 #ifdef CONFIG_PREEMPT_RCU
290 
291 void __rcu_read_lock(void);
292 void __rcu_read_unlock(void);
293 void rcu_read_unlock_special(struct task_struct *t);
294 void synchronize_rcu(void);
295 
296 /*
297  * Defined as a macro as it is a very low level header included from
298  * areas that don't even know about current.  This gives the rcu_read_lock()
299  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
300  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
301  */
302 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
303 
304 #else /* #ifdef CONFIG_PREEMPT_RCU */
305 
306 static inline void __rcu_read_lock(void)
307 {
308         if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
309                 preempt_disable();
310 }
311 
312 static inline void __rcu_read_unlock(void)
313 {
314         if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
315                 preempt_enable();
316 }
317 
318 static inline void synchronize_rcu(void)
319 {
320         synchronize_sched();
321 }
322 
323 static inline int rcu_preempt_depth(void)
324 {
325         return 0;
326 }
327 
328 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
329 
330 /* Internal to kernel */
331 void rcu_init(void);
332 void rcu_sched_qs(void);
333 void rcu_bh_qs(void);
334 void rcu_check_callbacks(int user);
335 void rcu_report_dead(unsigned int cpu);
336 
337 #ifndef CONFIG_TINY_RCU
338 void rcu_end_inkernel_boot(void);
339 #else /* #ifndef CONFIG_TINY_RCU */
340 static inline void rcu_end_inkernel_boot(void) { }
341 #endif /* #ifndef CONFIG_TINY_RCU */
342 
343 #ifdef CONFIG_RCU_STALL_COMMON
344 void rcu_sysrq_start(void);
345 void rcu_sysrq_end(void);
346 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
347 static inline void rcu_sysrq_start(void)
348 {
349 }
350 static inline void rcu_sysrq_end(void)
351 {
352 }
353 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
354 
355 #ifdef CONFIG_NO_HZ_FULL
356 void rcu_user_enter(void);
357 void rcu_user_exit(void);
358 #else
359 static inline void rcu_user_enter(void) { }
360 static inline void rcu_user_exit(void) { }
361 #endif /* CONFIG_NO_HZ_FULL */
362 
363 #ifdef CONFIG_RCU_NOCB_CPU
364 void rcu_init_nohz(void);
365 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
366 static inline void rcu_init_nohz(void)
367 {
368 }
369 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
370 
371 /**
372  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
373  * @a: Code that RCU needs to pay attention to.
374  *
375  * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
376  * in the inner idle loop, that is, between the rcu_idle_enter() and
377  * the rcu_idle_exit() -- RCU will happily ignore any such read-side
378  * critical sections.  However, things like powertop need tracepoints
379  * in the inner idle loop.
380  *
381  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
382  * will tell RCU that it needs to pay attending, invoke its argument
383  * (in this example, a call to the do_something_with_RCU() function),
384  * and then tell RCU to go back to ignoring this CPU.  It is permissible
385  * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
386  * quite limited.  If deeper nesting is required, it will be necessary
387  * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
388  */
389 #define RCU_NONIDLE(a) \
390         do { \
391                 rcu_irq_enter_irqson(); \
392                 do { a; } while (0); \
393                 rcu_irq_exit_irqson(); \
394         } while (0)
395 
396 /*
397  * Note a voluntary context switch for RCU-tasks benefit.  This is a
398  * macro rather than an inline function to avoid #include hell.
399  */
400 #ifdef CONFIG_TASKS_RCU
401 #define TASKS_RCU(x) x
402 extern struct srcu_struct tasks_rcu_exit_srcu;
403 #define rcu_note_voluntary_context_switch(t) \
404         do { \
405                 rcu_all_qs(); \
406                 if (READ_ONCE((t)->rcu_tasks_holdout)) \
407                         WRITE_ONCE((t)->rcu_tasks_holdout, false); \
408         } while (0)
409 #else /* #ifdef CONFIG_TASKS_RCU */
410 #define TASKS_RCU(x) do { } while (0)
411 #define rcu_note_voluntary_context_switch(t)    rcu_all_qs()
412 #endif /* #else #ifdef CONFIG_TASKS_RCU */
413 
414 /**
415  * cond_resched_rcu_qs - Report potential quiescent states to RCU
416  *
417  * This macro resembles cond_resched(), except that it is defined to
418  * report potential quiescent states to RCU-tasks even if the cond_resched()
419  * machinery were to be shut off, as some advocate for PREEMPT kernels.
420  */
421 #define cond_resched_rcu_qs() \
422 do { \
423         if (!cond_resched()) \
424                 rcu_note_voluntary_context_switch(current); \
425 } while (0)
426 
427 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
428 bool __rcu_is_watching(void);
429 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
430 
431 /*
432  * Infrastructure to implement the synchronize_() primitives in
433  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
434  */
435 
436 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
437 #include <linux/rcutree.h>
438 #elif defined(CONFIG_TINY_RCU)
439 #include <linux/rcutiny.h>
440 #else
441 #error "Unknown RCU implementation specified to kernel configuration"
442 #endif
443 
444 /*
445  * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
446  * initialization and destruction of rcu_head on the stack. rcu_head structures
447  * allocated dynamically in the heap or defined statically don't need any
448  * initialization.
449  */
450 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
451 void init_rcu_head(struct rcu_head *head);
452 void destroy_rcu_head(struct rcu_head *head);
453 void init_rcu_head_on_stack(struct rcu_head *head);
454 void destroy_rcu_head_on_stack(struct rcu_head *head);
455 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
456 static inline void init_rcu_head(struct rcu_head *head)
457 {
458 }
459 
460 static inline void destroy_rcu_head(struct rcu_head *head)
461 {
462 }
463 
464 static inline void init_rcu_head_on_stack(struct rcu_head *head)
465 {
466 }
467 
468 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
469 {
470 }
471 #endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
472 
473 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
474 bool rcu_lockdep_current_cpu_online(void);
475 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
476 static inline bool rcu_lockdep_current_cpu_online(void)
477 {
478         return true;
479 }
480 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
481 
482 #ifdef CONFIG_DEBUG_LOCK_ALLOC
483 
484 static inline void rcu_lock_acquire(struct lockdep_map *map)
485 {
486         lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
487 }
488 
489 static inline void rcu_lock_release(struct lockdep_map *map)
490 {
491         lock_release(map, 1, _THIS_IP_);
492 }
493 
494 extern struct lockdep_map rcu_lock_map;
495 extern struct lockdep_map rcu_bh_lock_map;
496 extern struct lockdep_map rcu_sched_lock_map;
497 extern struct lockdep_map rcu_callback_map;
498 int debug_lockdep_rcu_enabled(void);
499 
500 int rcu_read_lock_held(void);
501 int rcu_read_lock_bh_held(void);
502 
503 /**
504  * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
505  *
506  * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
507  * RCU-sched read-side critical section.  In absence of
508  * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
509  * critical section unless it can prove otherwise.
510  */
511 #ifdef CONFIG_PREEMPT_COUNT
512 int rcu_read_lock_sched_held(void);
513 #else /* #ifdef CONFIG_PREEMPT_COUNT */
514 static inline int rcu_read_lock_sched_held(void)
515 {
516         return 1;
517 }
518 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
519 
520 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
521 
522 # define rcu_lock_acquire(a)            do { } while (0)
523 # define rcu_lock_release(a)            do { } while (0)
524 
525 static inline int rcu_read_lock_held(void)
526 {
527         return 1;
528 }
529 
530 static inline int rcu_read_lock_bh_held(void)
531 {
532         return 1;
533 }
534 
535 #ifdef CONFIG_PREEMPT_COUNT
536 static inline int rcu_read_lock_sched_held(void)
537 {
538         return preempt_count() != 0 || irqs_disabled();
539 }
540 #else /* #ifdef CONFIG_PREEMPT_COUNT */
541 static inline int rcu_read_lock_sched_held(void)
542 {
543         return 1;
544 }
545 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
546 
547 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
548 
549 #ifdef CONFIG_PROVE_RCU
550 
551 /**
552  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
553  * @c: condition to check
554  * @s: informative message
555  */
556 #define RCU_LOCKDEP_WARN(c, s)                                          \
557         do {                                                            \
558                 static bool __section(.data.unlikely) __warned;         \
559                 if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
560                         __warned = true;                                \
561                         lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
562                 }                                                       \
563         } while (0)
564 
565 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
566 static inline void rcu_preempt_sleep_check(void)
567 {
568         RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
569                          "Illegal context switch in RCU read-side critical section");
570 }
571 #else /* #ifdef CONFIG_PROVE_RCU */
572 static inline void rcu_preempt_sleep_check(void)
573 {
574 }
575 #endif /* #else #ifdef CONFIG_PROVE_RCU */
576 
577 #define rcu_sleep_check()                                               \
578         do {                                                            \
579                 rcu_preempt_sleep_check();                              \
580                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
581                                  "Illegal context switch in RCU-bh read-side critical section"); \
582                 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
583                                  "Illegal context switch in RCU-sched read-side critical section"); \
584         } while (0)
585 
586 #else /* #ifdef CONFIG_PROVE_RCU */
587 
588 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
589 #define rcu_sleep_check() do { } while (0)
590 
591 #endif /* #else #ifdef CONFIG_PROVE_RCU */
592 
593 /*
594  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
595  * and rcu_assign_pointer().  Some of these could be folded into their
596  * callers, but they are left separate in order to ease introduction of
597  * multiple flavors of pointers to match the multiple flavors of RCU
598  * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
599  * the future.
600  */
601 
602 #ifdef __CHECKER__
603 #define rcu_dereference_sparse(p, space) \
604         ((void)(((typeof(*p) space *)p) == p))
605 #else /* #ifdef __CHECKER__ */
606 #define rcu_dereference_sparse(p, space)
607 #endif /* #else #ifdef __CHECKER__ */
608 
609 #define __rcu_access_pointer(p, space) \
610 ({ \
611         typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
612         rcu_dereference_sparse(p, space); \
613         ((typeof(*p) __force __kernel *)(_________p1)); \
614 })
615 #define __rcu_dereference_check(p, c, space) \
616 ({ \
617         /* Dependency order vs. p above. */ \
618         typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
619         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
620         rcu_dereference_sparse(p, space); \
621         ((typeof(*p) __force __kernel *)(________p1)); \
622 })
623 #define __rcu_dereference_protected(p, c, space) \
624 ({ \
625         RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
626         rcu_dereference_sparse(p, space); \
627         ((typeof(*p) __force __kernel *)(p)); \
628 })
629 
630 /**
631  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
632  * @v: The value to statically initialize with.
633  */
634 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
635 
636 /**
637  * rcu_assign_pointer() - assign to RCU-protected pointer
638  * @p: pointer to assign to
639  * @v: value to assign (publish)
640  *
641  * Assigns the specified value to the specified RCU-protected
642  * pointer, ensuring that any concurrent RCU readers will see
643  * any prior initialization.
644  *
645  * Inserts memory barriers on architectures that require them
646  * (which is most of them), and also prevents the compiler from
647  * reordering the code that initializes the structure after the pointer
648  * assignment.  More importantly, this call documents which pointers
649  * will be dereferenced by RCU read-side code.
650  *
651  * In some special cases, you may use RCU_INIT_POINTER() instead
652  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
653  * to the fact that it does not constrain either the CPU or the compiler.
654  * That said, using RCU_INIT_POINTER() when you should have used
655  * rcu_assign_pointer() is a very bad thing that results in
656  * impossible-to-diagnose memory corruption.  So please be careful.
657  * See the RCU_INIT_POINTER() comment header for details.
658  *
659  * Note that rcu_assign_pointer() evaluates each of its arguments only
660  * once, appearances notwithstanding.  One of the "extra" evaluations
661  * is in typeof() and the other visible only to sparse (__CHECKER__),
662  * neither of which actually execute the argument.  As with most cpp
663  * macros, this execute-arguments-only-once property is important, so
664  * please be careful when making changes to rcu_assign_pointer() and the
665  * other macros that it invokes.
666  */
667 #define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v))
668 
669 /**
670  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
671  * @p: The pointer to read
672  *
673  * Return the value of the specified RCU-protected pointer, but omit the
674  * smp_read_barrier_depends() and keep the READ_ONCE().  This is useful
675  * when the value of this pointer is accessed, but the pointer is not
676  * dereferenced, for example, when testing an RCU-protected pointer against
677  * NULL.  Although rcu_access_pointer() may also be used in cases where
678  * update-side locks prevent the value of the pointer from changing, you
679  * should instead use rcu_dereference_protected() for this use case.
680  *
681  * It is also permissible to use rcu_access_pointer() when read-side
682  * access to the pointer was removed at least one grace period ago, as
683  * is the case in the context of the RCU callback that is freeing up
684  * the data, or after a synchronize_rcu() returns.  This can be useful
685  * when tearing down multi-linked structures after a grace period
686  * has elapsed.
687  */
688 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
689 
690 /**
691  * rcu_dereference_check() - rcu_dereference with debug checking
692  * @p: The pointer to read, prior to dereferencing
693  * @c: The conditions under which the dereference will take place
694  *
695  * Do an rcu_dereference(), but check that the conditions under which the
696  * dereference will take place are correct.  Typically the conditions
697  * indicate the various locking conditions that should be held at that
698  * point.  The check should return true if the conditions are satisfied.
699  * An implicit check for being in an RCU read-side critical section
700  * (rcu_read_lock()) is included.
701  *
702  * For example:
703  *
704  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
705  *
706  * could be used to indicate to lockdep that foo->bar may only be dereferenced
707  * if either rcu_read_lock() is held, or that the lock required to replace
708  * the bar struct at foo->bar is held.
709  *
710  * Note that the list of conditions may also include indications of when a lock
711  * need not be held, for example during initialisation or destruction of the
712  * target struct:
713  *
714  *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
715  *                                            atomic_read(&foo->usage) == 0);
716  *
717  * Inserts memory barriers on architectures that require them
718  * (currently only the Alpha), prevents the compiler from refetching
719  * (and from merging fetches), and, more importantly, documents exactly
720  * which pointers are protected by RCU and checks that the pointer is
721  * annotated as __rcu.
722  */
723 #define rcu_dereference_check(p, c) \
724         __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
725 
726 /**
727  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
728  * @p: The pointer to read, prior to dereferencing
729  * @c: The conditions under which the dereference will take place
730  *
731  * This is the RCU-bh counterpart to rcu_dereference_check().
732  */
733 #define rcu_dereference_bh_check(p, c) \
734         __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
735 
736 /**
737  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
738  * @p: The pointer to read, prior to dereferencing
739  * @c: The conditions under which the dereference will take place
740  *
741  * This is the RCU-sched counterpart to rcu_dereference_check().
742  */
743 #define rcu_dereference_sched_check(p, c) \
744         __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
745                                 __rcu)
746 
747 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
748 
749 /*
750  * The tracing infrastructure traces RCU (we want that), but unfortunately
751  * some of the RCU checks causes tracing to lock up the system.
752  *
753  * The no-tracing version of rcu_dereference_raw() must not call
754  * rcu_read_lock_held().
755  */
756 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
757 
758 /**
759  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
760  * @p: The pointer to read, prior to dereferencing
761  * @c: The conditions under which the dereference will take place
762  *
763  * Return the value of the specified RCU-protected pointer, but omit
764  * both the smp_read_barrier_depends() and the READ_ONCE().  This
765  * is useful in cases where update-side locks prevent the value of the
766  * pointer from changing.  Please note that this primitive does -not-
767  * prevent the compiler from repeating this reference or combining it
768  * with other references, so it should not be used without protection
769  * of appropriate locks.
770  *
771  * This function is only for update-side use.  Using this function
772  * when protected only by rcu_read_lock() will result in infrequent
773  * but very ugly failures.
774  */
775 #define rcu_dereference_protected(p, c) \
776         __rcu_dereference_protected((p), (c), __rcu)
777 
778 
779 /**
780  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
781  * @p: The pointer to read, prior to dereferencing
782  *
783  * This is a simple wrapper around rcu_dereference_check().
784  */
785 #define rcu_dereference(p) rcu_dereference_check(p, 0)
786 
787 /**
788  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
789  * @p: The pointer to read, prior to dereferencing
790  *
791  * Makes rcu_dereference_check() do the dirty work.
792  */
793 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
794 
795 /**
796  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
797  * @p: The pointer to read, prior to dereferencing
798  *
799  * Makes rcu_dereference_check() do the dirty work.
800  */
801 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
802 
803 /**
804  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
805  * @p: The pointer to hand off
806  *
807  * This is simply an identity function, but it documents where a pointer
808  * is handed off from RCU to some other synchronization mechanism, for
809  * example, reference counting or locking.  In C11, it would map to
810  * kill_dependency().  It could be used as follows:
811  *
812  *      rcu_read_lock();
813  *      p = rcu_dereference(gp);
814  *      long_lived = is_long_lived(p);
815  *      if (long_lived) {
816  *              if (!atomic_inc_not_zero(p->refcnt))
817  *                      long_lived = false;
818  *              else
819  *                      p = rcu_pointer_handoff(p);
820  *      }
821  *      rcu_read_unlock();
822  */
823 #define rcu_pointer_handoff(p) (p)
824 
825 /**
826  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
827  *
828  * When synchronize_rcu() is invoked on one CPU while other CPUs
829  * are within RCU read-side critical sections, then the
830  * synchronize_rcu() is guaranteed to block until after all the other
831  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
832  * on one CPU while other CPUs are within RCU read-side critical
833  * sections, invocation of the corresponding RCU callback is deferred
834  * until after the all the other CPUs exit their critical sections.
835  *
836  * Note, however, that RCU callbacks are permitted to run concurrently
837  * with new RCU read-side critical sections.  One way that this can happen
838  * is via the following sequence of events: (1) CPU 0 enters an RCU
839  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
840  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
841  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
842  * callback is invoked.  This is legal, because the RCU read-side critical
843  * section that was running concurrently with the call_rcu() (and which
844  * therefore might be referencing something that the corresponding RCU
845  * callback would free up) has completed before the corresponding
846  * RCU callback is invoked.
847  *
848  * RCU read-side critical sections may be nested.  Any deferred actions
849  * will be deferred until the outermost RCU read-side critical section
850  * completes.
851  *
852  * You can avoid reading and understanding the next paragraph by
853  * following this rule: don't put anything in an rcu_read_lock() RCU
854  * read-side critical section that would block in a !PREEMPT kernel.
855  * But if you want the full story, read on!
856  *
857  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
858  * it is illegal to block while in an RCU read-side critical section.
859  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
860  * kernel builds, RCU read-side critical sections may be preempted,
861  * but explicit blocking is illegal.  Finally, in preemptible RCU
862  * implementations in real-time (with -rt patchset) kernel builds, RCU
863  * read-side critical sections may be preempted and they may also block, but
864  * only when acquiring spinlocks that are subject to priority inheritance.
865  */
866 static inline void rcu_read_lock(void)
867 {
868         __rcu_read_lock();
869         __acquire(RCU);
870         rcu_lock_acquire(&rcu_lock_map);
871         RCU_LOCKDEP_WARN(!rcu_is_watching(),
872                          "rcu_read_lock() used illegally while idle");
873 }
874 
875 /*
876  * So where is rcu_write_lock()?  It does not exist, as there is no
877  * way for writers to lock out RCU readers.  This is a feature, not
878  * a bug -- this property is what provides RCU's performance benefits.
879  * Of course, writers must coordinate with each other.  The normal
880  * spinlock primitives work well for this, but any other technique may be
881  * used as well.  RCU does not care how the writers keep out of each
882  * others' way, as long as they do so.
883  */
884 
885 /**
886  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
887  *
888  * In most situations, rcu_read_unlock() is immune from deadlock.
889  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
890  * is responsible for deboosting, which it does via rt_mutex_unlock().
891  * Unfortunately, this function acquires the scheduler's runqueue and
892  * priority-inheritance spinlocks.  This means that deadlock could result
893  * if the caller of rcu_read_unlock() already holds one of these locks or
894  * any lock that is ever acquired while holding them; or any lock which
895  * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
896  * does not disable irqs while taking ->wait_lock.
897  *
898  * That said, RCU readers are never priority boosted unless they were
899  * preempted.  Therefore, one way to avoid deadlock is to make sure
900  * that preemption never happens within any RCU read-side critical
901  * section whose outermost rcu_read_unlock() is called with one of
902  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
903  * a number of ways, for example, by invoking preempt_disable() before
904  * critical section's outermost rcu_read_lock().
905  *
906  * Given that the set of locks acquired by rt_mutex_unlock() might change
907  * at any time, a somewhat more future-proofed approach is to make sure
908  * that that preemption never happens within any RCU read-side critical
909  * section whose outermost rcu_read_unlock() is called with irqs disabled.
910  * This approach relies on the fact that rt_mutex_unlock() currently only
911  * acquires irq-disabled locks.
912  *
913  * The second of these two approaches is best in most situations,
914  * however, the first approach can also be useful, at least to those
915  * developers willing to keep abreast of the set of locks acquired by
916  * rt_mutex_unlock().
917  *
918  * See rcu_read_lock() for more information.
919  */
920 static inline void rcu_read_unlock(void)
921 {
922         RCU_LOCKDEP_WARN(!rcu_is_watching(),
923                          "rcu_read_unlock() used illegally while idle");
924         __release(RCU);
925         __rcu_read_unlock();
926         rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
927 }
928 
929 /**
930  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
931  *
932  * This is equivalent of rcu_read_lock(), but to be used when updates
933  * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
934  * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
935  * softirq handler to be a quiescent state, a process in RCU read-side
936  * critical section must be protected by disabling softirqs. Read-side
937  * critical sections in interrupt context can use just rcu_read_lock(),
938  * though this should at least be commented to avoid confusing people
939  * reading the code.
940  *
941  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
942  * must occur in the same context, for example, it is illegal to invoke
943  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
944  * was invoked from some other task.
945  */
946 static inline void rcu_read_lock_bh(void)
947 {
948         local_bh_disable();
949         __acquire(RCU_BH);
950         rcu_lock_acquire(&rcu_bh_lock_map);
951         RCU_LOCKDEP_WARN(!rcu_is_watching(),
952                          "rcu_read_lock_bh() used illegally while idle");
953 }
954 
955 /*
956  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
957  *
958  * See rcu_read_lock_bh() for more information.
959  */
960 static inline void rcu_read_unlock_bh(void)
961 {
962         RCU_LOCKDEP_WARN(!rcu_is_watching(),
963                          "rcu_read_unlock_bh() used illegally while idle");
964         rcu_lock_release(&rcu_bh_lock_map);
965         __release(RCU_BH);
966         local_bh_enable();
967 }
968 
969 /**
970  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
971  *
972  * This is equivalent of rcu_read_lock(), but to be used when updates
973  * are being done using call_rcu_sched() or synchronize_rcu_sched().
974  * Read-side critical sections can also be introduced by anything that
975  * disables preemption, including local_irq_disable() and friends.
976  *
977  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
978  * must occur in the same context, for example, it is illegal to invoke
979  * rcu_read_unlock_sched() from process context if the matching
980  * rcu_read_lock_sched() was invoked from an NMI handler.
981  */
982 static inline void rcu_read_lock_sched(void)
983 {
984         preempt_disable();
985         __acquire(RCU_SCHED);
986         rcu_lock_acquire(&rcu_sched_lock_map);
987         RCU_LOCKDEP_WARN(!rcu_is_watching(),
988                          "rcu_read_lock_sched() used illegally while idle");
989 }
990 
991 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
992 static inline notrace void rcu_read_lock_sched_notrace(void)
993 {
994         preempt_disable_notrace();
995         __acquire(RCU_SCHED);
996 }
997 
998 /*
999  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1000  *
1001  * See rcu_read_lock_sched for more information.
1002  */
1003 static inline void rcu_read_unlock_sched(void)
1004 {
1005         RCU_LOCKDEP_WARN(!rcu_is_watching(),
1006                          "rcu_read_unlock_sched() used illegally while idle");
1007         rcu_lock_release(&rcu_sched_lock_map);
1008         __release(RCU_SCHED);
1009         preempt_enable();
1010 }
1011 
1012 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
1013 static inline notrace void rcu_read_unlock_sched_notrace(void)
1014 {
1015         __release(RCU_SCHED);
1016         preempt_enable_notrace();
1017 }
1018 
1019 /**
1020  * RCU_INIT_POINTER() - initialize an RCU protected pointer
1021  *
1022  * Initialize an RCU-protected pointer in special cases where readers
1023  * do not need ordering constraints on the CPU or the compiler.  These
1024  * special cases are:
1025  *
1026  * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1027  * 2.   The caller has taken whatever steps are required to prevent
1028  *      RCU readers from concurrently accessing this pointer -or-
1029  * 3.   The referenced data structure has already been exposed to
1030  *      readers either at compile time or via rcu_assign_pointer() -and-
1031  *      a.      You have not made -any- reader-visible changes to
1032  *              this structure since then -or-
1033  *      b.      It is OK for readers accessing this structure from its
1034  *              new location to see the old state of the structure.  (For
1035  *              example, the changes were to statistical counters or to
1036  *              other state where exact synchronization is not required.)
1037  *
1038  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1039  * result in impossible-to-diagnose memory corruption.  As in the structures
1040  * will look OK in crash dumps, but any concurrent RCU readers might
1041  * see pre-initialized values of the referenced data structure.  So
1042  * please be very careful how you use RCU_INIT_POINTER()!!!
1043  *
1044  * If you are creating an RCU-protected linked structure that is accessed
1045  * by a single external-to-structure RCU-protected pointer, then you may
1046  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1047  * pointers, but you must use rcu_assign_pointer() to initialize the
1048  * external-to-structure pointer -after- you have completely initialized
1049  * the reader-accessible portions of the linked structure.
1050  *
1051  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1052  * ordering guarantees for either the CPU or the compiler.
1053  */
1054 #define RCU_INIT_POINTER(p, v) \
1055         do { \
1056                 rcu_dereference_sparse(p, __rcu); \
1057                 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1058         } while (0)
1059 
1060 /**
1061  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1062  *
1063  * GCC-style initialization for an RCU-protected pointer in a structure field.
1064  */
1065 #define RCU_POINTER_INITIALIZER(p, v) \
1066                 .p = RCU_INITIALIZER(v)
1067 
1068 /*
1069  * Does the specified offset indicate that the corresponding rcu_head
1070  * structure can be handled by kfree_rcu()?
1071  */
1072 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1073 
1074 /*
1075  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1076  */
1077 #define __kfree_rcu(head, offset) \
1078         do { \
1079                 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1080                 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1081         } while (0)
1082 
1083 /**
1084  * kfree_rcu() - kfree an object after a grace period.
1085  * @ptr:        pointer to kfree
1086  * @rcu_head:   the name of the struct rcu_head within the type of @ptr.
1087  *
1088  * Many rcu callbacks functions just call kfree() on the base structure.
1089  * These functions are trivial, but their size adds up, and furthermore
1090  * when they are used in a kernel module, that module must invoke the
1091  * high-latency rcu_barrier() function at module-unload time.
1092  *
1093  * The kfree_rcu() function handles this issue.  Rather than encoding a
1094  * function address in the embedded rcu_head structure, kfree_rcu() instead
1095  * encodes the offset of the rcu_head structure within the base structure.
1096  * Because the functions are not allowed in the low-order 4096 bytes of
1097  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1098  * If the offset is larger than 4095 bytes, a compile-time error will
1099  * be generated in __kfree_rcu().  If this error is triggered, you can
1100  * either fall back to use of call_rcu() or rearrange the structure to
1101  * position the rcu_head structure into the first 4096 bytes.
1102  *
1103  * Note that the allowable offset might decrease in the future, for example,
1104  * to allow something like kmem_cache_free_rcu().
1105  *
1106  * The BUILD_BUG_ON check must not involve any function calls, hence the
1107  * checks are done in macros here.
1108  */
1109 #define kfree_rcu(ptr, rcu_head)                                        \
1110         __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1111 
1112 #ifdef CONFIG_TINY_RCU
1113 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1114 {
1115         *nextevt = KTIME_MAX;
1116         return 0;
1117 }
1118 #endif /* #ifdef CONFIG_TINY_RCU */
1119 
1120 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
1121 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1122 #elif defined(CONFIG_RCU_NOCB_CPU)
1123 bool rcu_is_nocb_cpu(int cpu);
1124 #else
1125 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1126 #endif
1127 
1128 
1129 /* Only for use by adaptive-ticks code. */
1130 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1131 bool rcu_sys_is_idle(void);
1132 void rcu_sysidle_force_exit(void);
1133 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1134 
1135 static inline bool rcu_sys_is_idle(void)
1136 {
1137         return false;
1138 }
1139 
1140 static inline void rcu_sysidle_force_exit(void)
1141 {
1142 }
1143 
1144 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1145 
1146 
1147 #endif /* __LINUX_RCUPDATE_H */
1148 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us