Version:  2.6.34 2.6.35 2.6.36 2.6.37 2.6.38 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/pm_qos.h>
 29 #include <linux/timer.h>
 30 #include <linux/bug.h>
 31 #include <linux/delay.h>
 32 #include <linux/atomic.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 
 54 struct netpoll_info;
 55 struct device;
 56 struct phy_device;
 57 /* 802.11 specific */
 58 struct wireless_dev;
 59                                         /* source back-compat hooks */
 60 #define SET_ETHTOOL_OPS(netdev,ops) \
 61         ( (netdev)->ethtool_ops = (ops) )
 62 
 63 void netdev_set_default_ethtool_ops(struct net_device *dev,
 64                                     const struct ethtool_ops *ops);
 65 
 66 /* hardware address assignment types */
 67 #define NET_ADDR_PERM           0       /* address is permanent (default) */
 68 #define NET_ADDR_RANDOM         1       /* address is generated randomly */
 69 #define NET_ADDR_STOLEN         2       /* address is stolen from other device */
 70 #define NET_ADDR_SET            3       /* address is set using
 71                                          * dev_set_mac_address() */
 72 
 73 /* Backlog congestion levels */
 74 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 75 #define NET_RX_DROP             1       /* packet dropped */
 76 
 77 /*
 78  * Transmit return codes: transmit return codes originate from three different
 79  * namespaces:
 80  *
 81  * - qdisc return codes
 82  * - driver transmit return codes
 83  * - errno values
 84  *
 85  * Drivers are allowed to return any one of those in their hard_start_xmit()
 86  * function. Real network devices commonly used with qdiscs should only return
 87  * the driver transmit return codes though - when qdiscs are used, the actual
 88  * transmission happens asynchronously, so the value is not propagated to
 89  * higher layers. Virtual network devices transmit synchronously, in this case
 90  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 91  * others are propagated to higher layers.
 92  */
 93 
 94 /* qdisc ->enqueue() return codes. */
 95 #define NET_XMIT_SUCCESS        0x00
 96 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 97 #define NET_XMIT_CN             0x02    /* congestion notification      */
 98 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 99 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
100 
101 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
102  * indicates that the device will soon be dropping packets, or already drops
103  * some packets of the same priority; prompting us to send less aggressively. */
104 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
105 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
106 
107 /* Driver transmit return codes */
108 #define NETDEV_TX_MASK          0xf0
109 
110 enum netdev_tx {
111         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
112         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
113         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
114         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
122 static inline bool dev_xmit_complete(int rc)
123 {
124         /*
125          * Positive cases with an skb consumed by a driver:
126          * - successful transmission (rc == NETDEV_TX_OK)
127          * - error while transmitting (rc < 0)
128          * - error while queueing to a different device (rc & NET_XMIT_MASK)
129          */
130         if (likely(rc < NET_XMIT_MASK))
131                 return true;
132 
133         return false;
134 }
135 
136 /*
137  *      Compute the worst case header length according to the protocols
138  *      used.
139  */
140 
141 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150 
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157 
158 /*
159  *      Old network device statistics. Fields are native words
160  *      (unsigned long) so they can be read and written atomically.
161  */
162 
163 struct net_device_stats {
164         unsigned long   rx_packets;
165         unsigned long   tx_packets;
166         unsigned long   rx_bytes;
167         unsigned long   tx_bytes;
168         unsigned long   rx_errors;
169         unsigned long   tx_errors;
170         unsigned long   rx_dropped;
171         unsigned long   tx_dropped;
172         unsigned long   multicast;
173         unsigned long   collisions;
174         unsigned long   rx_length_errors;
175         unsigned long   rx_over_errors;
176         unsigned long   rx_crc_errors;
177         unsigned long   rx_frame_errors;
178         unsigned long   rx_fifo_errors;
179         unsigned long   rx_missed_errors;
180         unsigned long   tx_aborted_errors;
181         unsigned long   tx_carrier_errors;
182         unsigned long   tx_fifo_errors;
183         unsigned long   tx_heartbeat_errors;
184         unsigned long   tx_window_errors;
185         unsigned long   rx_compressed;
186         unsigned long   tx_compressed;
187 };
188 
189 
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192 
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203         struct list_head        list;
204         unsigned char           addr[MAX_ADDR_LEN];
205         unsigned char           type;
206 #define NETDEV_HW_ADDR_T_LAN            1
207 #define NETDEV_HW_ADDR_T_SAN            2
208 #define NETDEV_HW_ADDR_T_SLAVE          3
209 #define NETDEV_HW_ADDR_T_UNICAST        4
210 #define NETDEV_HW_ADDR_T_MULTICAST      5
211         bool                    global_use;
212         int                     sync_cnt;
213         int                     refcount;
214         int                     synced;
215         struct rcu_head         rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219         struct list_head        list;
220         int                     count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226         list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239         u16             hh_len;
240         u16             __pad;
241         seqlock_t       hh_lock;
242 
243         /* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD     16
245 #define HH_DATA_OFF(__len) \
246         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266         int     (*create) (struct sk_buff *skb, struct net_device *dev,
267                            unsigned short type, const void *daddr,
268                            const void *saddr, unsigned int len);
269         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270         int     (*rebuild)(struct sk_buff *skb);
271         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
272         void    (*cache_update)(struct hh_cache *hh,
273                                 const struct net_device *dev,
274                                 const unsigned char *haddr);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer, they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283         __LINK_STATE_START,
284         __LINK_STATE_PRESENT,
285         __LINK_STATE_NOCARRIER,
286         __LINK_STATE_LINKWATCH_PENDING,
287         __LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds at boot time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296         char name[IFNAMSIZ];
297         struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307         /* The poll_list must only be managed by the entity which
308          * changes the state of the NAPI_STATE_SCHED bit.  This means
309          * whoever atomically sets that bit can add this napi_struct
310          * to the per-cpu poll_list, and whoever clears that bit
311          * can remove from the list right before clearing the bit.
312          */
313         struct list_head        poll_list;
314 
315         unsigned long           state;
316         int                     weight;
317         unsigned int            gro_count;
318         int                     (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320         spinlock_t              poll_lock;
321         int                     poll_owner;
322 #endif
323         struct net_device       *dev;
324         struct sk_buff          *gro_list;
325         struct sk_buff          *skb;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330 
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_DISABLE,     /* Disable pending */
334         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
335         NAPI_STATE_HASHED,      /* In NAPI hash */
336 };
337 
338 enum gro_result {
339         GRO_MERGED,
340         GRO_MERGED_FREE,
341         GRO_HELD,
342         GRO_NORMAL,
343         GRO_DROP,
344 };
345 typedef enum gro_result gro_result_t;
346 
347 /*
348  * enum rx_handler_result - Possible return values for rx_handlers.
349  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
350  * further.
351  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
352  * case skb->dev was changed by rx_handler.
353  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
354  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
355  *
356  * rx_handlers are functions called from inside __netif_receive_skb(), to do
357  * special processing of the skb, prior to delivery to protocol handlers.
358  *
359  * Currently, a net_device can only have a single rx_handler registered. Trying
360  * to register a second rx_handler will return -EBUSY.
361  *
362  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
363  * To unregister a rx_handler on a net_device, use
364  * netdev_rx_handler_unregister().
365  *
366  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
367  * do with the skb.
368  *
369  * If the rx_handler consumed to skb in some way, it should return
370  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
371  * the skb to be delivered in some other ways.
372  *
373  * If the rx_handler changed skb->dev, to divert the skb to another
374  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
375  * new device will be called if it exists.
376  *
377  * If the rx_handler consider the skb should be ignored, it should return
378  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
379  * are registered on exact device (ptype->dev == skb->dev).
380  *
381  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
382  * delivered, it should return RX_HANDLER_PASS.
383  *
384  * A device without a registered rx_handler will behave as if rx_handler
385  * returned RX_HANDLER_PASS.
386  */
387 
388 enum rx_handler_result {
389         RX_HANDLER_CONSUMED,
390         RX_HANDLER_ANOTHER,
391         RX_HANDLER_EXACT,
392         RX_HANDLER_PASS,
393 };
394 typedef enum rx_handler_result rx_handler_result_t;
395 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
396 
397 void __napi_schedule(struct napi_struct *n);
398 
399 static inline bool napi_disable_pending(struct napi_struct *n)
400 {
401         return test_bit(NAPI_STATE_DISABLE, &n->state);
402 }
403 
404 /**
405  *      napi_schedule_prep - check if napi can be scheduled
406  *      @n: napi context
407  *
408  * Test if NAPI routine is already running, and if not mark
409  * it as running.  This is used as a condition variable
410  * insure only one NAPI poll instance runs.  We also make
411  * sure there is no pending NAPI disable.
412  */
413 static inline bool napi_schedule_prep(struct napi_struct *n)
414 {
415         return !napi_disable_pending(n) &&
416                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
417 }
418 
419 /**
420  *      napi_schedule - schedule NAPI poll
421  *      @n: napi context
422  *
423  * Schedule NAPI poll routine to be called if it is not already
424  * running.
425  */
426 static inline void napi_schedule(struct napi_struct *n)
427 {
428         if (napi_schedule_prep(n))
429                 __napi_schedule(n);
430 }
431 
432 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
433 static inline bool napi_reschedule(struct napi_struct *napi)
434 {
435         if (napi_schedule_prep(napi)) {
436                 __napi_schedule(napi);
437                 return true;
438         }
439         return false;
440 }
441 
442 /**
443  *      napi_complete - NAPI processing complete
444  *      @n: napi context
445  *
446  * Mark NAPI processing as complete.
447  */
448 void __napi_complete(struct napi_struct *n);
449 void napi_complete(struct napi_struct *n);
450 
451 /**
452  *      napi_by_id - lookup a NAPI by napi_id
453  *      @napi_id: hashed napi_id
454  *
455  * lookup @napi_id in napi_hash table
456  * must be called under rcu_read_lock()
457  */
458 struct napi_struct *napi_by_id(unsigned int napi_id);
459 
460 /**
461  *      napi_hash_add - add a NAPI to global hashtable
462  *      @napi: napi context
463  *
464  * generate a new napi_id and store a @napi under it in napi_hash
465  */
466 void napi_hash_add(struct napi_struct *napi);
467 
468 /**
469  *      napi_hash_del - remove a NAPI from global table
470  *      @napi: napi context
471  *
472  * Warning: caller must observe rcu grace period
473  * before freeing memory containing @napi
474  */
475 void napi_hash_del(struct napi_struct *napi);
476 
477 /**
478  *      napi_disable - prevent NAPI from scheduling
479  *      @n: napi context
480  *
481  * Stop NAPI from being scheduled on this context.
482  * Waits till any outstanding processing completes.
483  */
484 static inline void napi_disable(struct napi_struct *n)
485 {
486         might_sleep();
487         set_bit(NAPI_STATE_DISABLE, &n->state);
488         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
489                 msleep(1);
490         clear_bit(NAPI_STATE_DISABLE, &n->state);
491 }
492 
493 /**
494  *      napi_enable - enable NAPI scheduling
495  *      @n: napi context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503         smp_mb__before_clear_bit();
504         clear_bit(NAPI_STATE_SCHED, &n->state);
505 }
506 
507 #ifdef CONFIG_SMP
508 /**
509  *      napi_synchronize - wait until NAPI is not running
510  *      @n: napi context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518         while (test_bit(NAPI_STATE_SCHED, &n->state))
519                 msleep(1);
520 }
521 #else
522 # define napi_synchronize(n)    barrier()
523 #endif
524 
525 enum netdev_queue_state_t {
526         __QUEUE_STATE_DRV_XOFF,
527         __QUEUE_STATE_STACK_XOFF,
528         __QUEUE_STATE_FROZEN,
529 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)             | \
530                               (1 << __QUEUE_STATE_STACK_XOFF))
531 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF            | \
532                                         (1 << __QUEUE_STATE_FROZEN))
533 };
534 /*
535  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
536  * netif_tx_* functions below are used to manipulate this flag.  The
537  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538  * queue independently.  The netif_xmit_*stopped functions below are called
539  * to check if the queue has been stopped by the driver or stack (either
540  * of the XOFF bits are set in the state).  Drivers should not need to call
541  * netif_xmit*stopped functions, they should only be using netif_tx_*.
542  */
543 
544 struct netdev_queue {
545 /*
546  * read mostly part
547  */
548         struct net_device       *dev;
549         struct Qdisc            *qdisc;
550         struct Qdisc            *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552         struct kobject          kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555         int                     numa_node;
556 #endif
557 /*
558  * write mostly part
559  */
560         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
561         int                     xmit_lock_owner;
562         /*
563          * please use this field instead of dev->trans_start
564          */
565         unsigned long           trans_start;
566 
567         /*
568          * Number of TX timeouts for this queue
569          * (/sys/class/net/DEV/Q/trans_timeout)
570          */
571         unsigned long           trans_timeout;
572 
573         unsigned long           state;
574 
575 #ifdef CONFIG_BQL
576         struct dql              dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579 
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583         return q->numa_node;
584 #else
585         return NUMA_NO_NODE;
586 #endif
587 }
588 
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592         q->numa_node = node;
593 #endif
594 }
595 
596 #ifdef CONFIG_RPS
597 /*
598  * This structure holds an RPS map which can be of variable length.  The
599  * map is an array of CPUs.
600  */
601 struct rps_map {
602         unsigned int len;
603         struct rcu_head rcu;
604         u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607 
608 /*
609  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610  * tail pointer for that CPU's input queue at the time of last enqueue, and
611  * a hardware filter index.
612  */
613 struct rps_dev_flow {
614         u16 cpu;
615         u16 filter;
616         unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619 
620 /*
621  * The rps_dev_flow_table structure contains a table of flow mappings.
622  */
623 struct rps_dev_flow_table {
624         unsigned int mask;
625         struct rcu_head rcu;
626         struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629     ((_num) * sizeof(struct rps_dev_flow)))
630 
631 /*
632  * The rps_sock_flow_table contains mappings of flows to the last CPU
633  * on which they were processed by the application (set in recvmsg).
634  */
635 struct rps_sock_flow_table {
636         unsigned int mask;
637         u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640     ((_num) * sizeof(u16)))
641 
642 #define RPS_NO_CPU 0xffff
643 
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645                                         u32 hash)
646 {
647         if (table && hash) {
648                 unsigned int cpu, index = hash & table->mask;
649 
650                 /* We only give a hint, preemption can change cpu under us */
651                 cpu = raw_smp_processor_id();
652 
653                 if (table->ents[index] != cpu)
654                         table->ents[index] = cpu;
655         }
656 }
657 
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659                                        u32 hash)
660 {
661         if (table && hash)
662                 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664 
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669                          u16 filter_id);
670 #endif
671 #endif /* CONFIG_RPS */
672 
673 /* This structure contains an instance of an RX queue. */
674 struct netdev_rx_queue {
675 #ifdef CONFIG_RPS
676         struct rps_map __rcu            *rps_map;
677         struct rps_dev_flow_table __rcu *rps_flow_table;
678 #endif
679         struct kobject                  kobj;
680         struct net_device               *dev;
681 } ____cacheline_aligned_in_smp;
682 
683 /*
684  * RX queue sysfs structures and functions.
685  */
686 struct rx_queue_attribute {
687         struct attribute attr;
688         ssize_t (*show)(struct netdev_rx_queue *queue,
689             struct rx_queue_attribute *attr, char *buf);
690         ssize_t (*store)(struct netdev_rx_queue *queue,
691             struct rx_queue_attribute *attr, const char *buf, size_t len);
692 };
693 
694 #ifdef CONFIG_XPS
695 /*
696  * This structure holds an XPS map which can be of variable length.  The
697  * map is an array of queues.
698  */
699 struct xps_map {
700         unsigned int len;
701         unsigned int alloc_len;
702         struct rcu_head rcu;
703         u16 queues[0];
704 };
705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
707     / sizeof(u16))
708 
709 /*
710  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
711  */
712 struct xps_dev_maps {
713         struct rcu_head rcu;
714         struct xps_map __rcu *cpu_map[0];
715 };
716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
717     (nr_cpu_ids * sizeof(struct xps_map *)))
718 #endif /* CONFIG_XPS */
719 
720 #define TC_MAX_QUEUE    16
721 #define TC_BITMASK      15
722 /* HW offloaded queuing disciplines txq count and offset maps */
723 struct netdev_tc_txq {
724         u16 count;
725         u16 offset;
726 };
727 
728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729 /*
730  * This structure is to hold information about the device
731  * configured to run FCoE protocol stack.
732  */
733 struct netdev_fcoe_hbainfo {
734         char    manufacturer[64];
735         char    serial_number[64];
736         char    hardware_version[64];
737         char    driver_version[64];
738         char    optionrom_version[64];
739         char    firmware_version[64];
740         char    model[256];
741         char    model_description[256];
742 };
743 #endif
744 
745 #define MAX_PHYS_PORT_ID_LEN 32
746 
747 /* This structure holds a unique identifier to identify the
748  * physical port used by a netdevice.
749  */
750 struct netdev_phys_port_id {
751         unsigned char id[MAX_PHYS_PORT_ID_LEN];
752         unsigned char id_len;
753 };
754 
755 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756                                        struct sk_buff *skb);
757 
758 /*
759  * This structure defines the management hooks for network devices.
760  * The following hooks can be defined; unless noted otherwise, they are
761  * optional and can be filled with a null pointer.
762  *
763  * int (*ndo_init)(struct net_device *dev);
764  *     This function is called once when network device is registered.
765  *     The network device can use this to any late stage initializaton
766  *     or semantic validattion. It can fail with an error code which will
767  *     be propogated back to register_netdev
768  *
769  * void (*ndo_uninit)(struct net_device *dev);
770  *     This function is called when device is unregistered or when registration
771  *     fails. It is not called if init fails.
772  *
773  * int (*ndo_open)(struct net_device *dev);
774  *     This function is called when network device transistions to the up
775  *     state.
776  *
777  * int (*ndo_stop)(struct net_device *dev);
778  *     This function is called when network device transistions to the down
779  *     state.
780  *
781  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782  *                               struct net_device *dev);
783  *      Called when a packet needs to be transmitted.
784  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786  *      Required can not be NULL.
787  *
788  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789  *                         void *accel_priv, select_queue_fallback_t fallback);
790  *      Called to decide which queue to when device supports multiple
791  *      transmit queues.
792  *
793  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794  *      This function is called to allow device receiver to make
795  *      changes to configuration when multicast or promiscious is enabled.
796  *
797  * void (*ndo_set_rx_mode)(struct net_device *dev);
798  *      This function is called device changes address list filtering.
799  *      If driver handles unicast address filtering, it should set
800  *      IFF_UNICAST_FLT to its priv_flags.
801  *
802  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803  *      This function  is called when the Media Access Control address
804  *      needs to be changed. If this interface is not defined, the
805  *      mac address can not be changed.
806  *
807  * int (*ndo_validate_addr)(struct net_device *dev);
808  *      Test if Media Access Control address is valid for the device.
809  *
810  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811  *      Called when a user request an ioctl which can't be handled by
812  *      the generic interface code. If not defined ioctl's return
813  *      not supported error code.
814  *
815  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816  *      Used to set network devices bus interface parameters. This interface
817  *      is retained for legacy reason, new devices should use the bus
818  *      interface (PCI) for low level management.
819  *
820  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821  *      Called when a user wants to change the Maximum Transfer Unit
822  *      of a device. If not defined, any request to change MTU will
823  *      will return an error.
824  *
825  * void (*ndo_tx_timeout)(struct net_device *dev);
826  *      Callback uses when the transmitter has not made any progress
827  *      for dev->watchdog ticks.
828  *
829  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830  *                      struct rtnl_link_stats64 *storage);
831  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832  *      Called when a user wants to get the network device usage
833  *      statistics. Drivers must do one of the following:
834  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
835  *         rtnl_link_stats64 structure passed by the caller.
836  *      2. Define @ndo_get_stats to update a net_device_stats structure
837  *         (which should normally be dev->stats) and return a pointer to
838  *         it. The structure may be changed asynchronously only if each
839  *         field is written atomically.
840  *      3. Update dev->stats asynchronously and atomically, and define
841  *         neither operation.
842  *
843  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844  *      If device support VLAN filtering this function is called when a
845  *      VLAN id is registered.
846  *
847  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848  *      If device support VLAN filtering this function is called when a
849  *      VLAN id is unregistered.
850  *
851  * void (*ndo_poll_controller)(struct net_device *dev);
852  *
853  *      SR-IOV management functions.
854  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858  * int (*ndo_get_vf_config)(struct net_device *dev,
859  *                          int vf, struct ifla_vf_info *ivf);
860  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862  *                        struct nlattr *port[]);
863  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865  *      Called to setup 'tc' number of traffic classes in the net device. This
866  *      is always called from the stack with the rtnl lock held and netif tx
867  *      queues stopped. This allows the netdevice to perform queue management
868  *      safely.
869  *
870  *      Fiber Channel over Ethernet (FCoE) offload functions.
871  * int (*ndo_fcoe_enable)(struct net_device *dev);
872  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
873  *      so the underlying device can perform whatever needed configuration or
874  *      initialization to support acceleration of FCoE traffic.
875  *
876  * int (*ndo_fcoe_disable)(struct net_device *dev);
877  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
878  *      so the underlying device can perform whatever needed clean-ups to
879  *      stop supporting acceleration of FCoE traffic.
880  *
881  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882  *                           struct scatterlist *sgl, unsigned int sgc);
883  *      Called when the FCoE Initiator wants to initialize an I/O that
884  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
885  *      perform necessary setup and returns 1 to indicate the device is set up
886  *      successfully to perform DDP on this I/O, otherwise this returns 0.
887  *
888  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
889  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
890  *      indicated by the FC exchange id 'xid', so the underlying device can
891  *      clean up and reuse resources for later DDP requests.
892  *
893  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894  *                            struct scatterlist *sgl, unsigned int sgc);
895  *      Called when the FCoE Target wants to initialize an I/O that
896  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
897  *      perform necessary setup and returns 1 to indicate the device is set up
898  *      successfully to perform DDP on this I/O, otherwise this returns 0.
899  *
900  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901  *                             struct netdev_fcoe_hbainfo *hbainfo);
902  *      Called when the FCoE Protocol stack wants information on the underlying
903  *      device. This information is utilized by the FCoE protocol stack to
904  *      register attributes with Fiber Channel management service as per the
905  *      FC-GS Fabric Device Management Information(FDMI) specification.
906  *
907  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908  *      Called when the underlying device wants to override default World Wide
909  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911  *      protocol stack to use.
912  *
913  *      RFS acceleration.
914  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915  *                          u16 rxq_index, u32 flow_id);
916  *      Set hardware filter for RFS.  rxq_index is the target queue index;
917  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918  *      Return the filter ID on success, or a negative error code.
919  *
920  *      Slave management functions (for bridge, bonding, etc).
921  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922  *      Called to make another netdev an underling.
923  *
924  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925  *      Called to release previously enslaved netdev.
926  *
927  *      Feature/offload setting functions.
928  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929  *              netdev_features_t features);
930  *      Adjusts the requested feature flags according to device-specific
931  *      constraints, and returns the resulting flags. Must not modify
932  *      the device state.
933  *
934  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935  *      Called to update device configuration to new features. Passed
936  *      feature set might be less than what was returned by ndo_fix_features()).
937  *      Must return >0 or -errno if it changed dev->features itself.
938  *
939  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940  *                    struct net_device *dev,
941  *                    const unsigned char *addr, u16 flags)
942  *      Adds an FDB entry to dev for addr.
943  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944  *                    struct net_device *dev,
945  *                    const unsigned char *addr)
946  *      Deletes the FDB entry from dev coresponding to addr.
947  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948  *                     struct net_device *dev, int idx)
949  *      Used to add FDB entries to dump requests. Implementers should add
950  *      entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *                           struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *      which do not represent real hardware may define this to allow their
959  *      userspace components to manage their virtual carrier state. Devices
960  *      that determine carrier state from physical hardware properties (eg
961  *      network cables) or protocol-dependent mechanisms (eg
962  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *                             struct netdev_phys_port_id *ppid);
966  *      Called to get ID of physical port of this device. If driver does
967  *      not implement this, it is assumed that the hw is not able to have
968  *      multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *                            sa_family_t sa_family, __be16 port);
972  *      Called by vxlan to notiy a driver about the UDP port and socket
973  *      address family that vxlan is listnening to. It is called only when
974  *      a new port starts listening. The operation is protected by the
975  *      vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *                            sa_family_t sa_family, __be16 port);
979  *      Called by vxlan to notify the driver about a UDP port and socket
980  *      address family that vxlan is not listening to anymore. The operation
981  *      is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *                               struct net_device *dev)
985  *      Called by upper layer devices to accelerate switching or other
986  *      station functionality into hardware. 'pdev is the lowerdev
987  *      to use for the offload and 'dev' is the net device that will
988  *      back the offload. Returns a pointer to the private structure
989  *      the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *      Called by upper layer device to delete the station created
992  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *      the station and priv is the structure returned by the add
994  *      operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *                                    struct net_device *dev,
997  *                                    void *priv);
998  *      Callback to use for xmit over the accelerated station. This
999  *      is used in place of ndo_start_xmit on accelerated net
1000  *      devices.
1001  */
1002 struct net_device_ops {
1003         int                     (*ndo_init)(struct net_device *dev);
1004         void                    (*ndo_uninit)(struct net_device *dev);
1005         int                     (*ndo_open)(struct net_device *dev);
1006         int                     (*ndo_stop)(struct net_device *dev);
1007         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1008                                                    struct net_device *dev);
1009         u16                     (*ndo_select_queue)(struct net_device *dev,
1010                                                     struct sk_buff *skb,
1011                                                     void *accel_priv,
1012                                                     select_queue_fallback_t fallback);
1013         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1014                                                        int flags);
1015         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1016         int                     (*ndo_set_mac_address)(struct net_device *dev,
1017                                                        void *addr);
1018         int                     (*ndo_validate_addr)(struct net_device *dev);
1019         int                     (*ndo_do_ioctl)(struct net_device *dev,
1020                                                 struct ifreq *ifr, int cmd);
1021         int                     (*ndo_set_config)(struct net_device *dev,
1022                                                   struct ifmap *map);
1023         int                     (*ndo_change_mtu)(struct net_device *dev,
1024                                                   int new_mtu);
1025         int                     (*ndo_neigh_setup)(struct net_device *dev,
1026                                                    struct neigh_parms *);
1027         void                    (*ndo_tx_timeout) (struct net_device *dev);
1028 
1029         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030                                                      struct rtnl_link_stats64 *storage);
1031         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032 
1033         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034                                                        __be16 proto, u16 vid);
1035         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036                                                         __be16 proto, u16 vid);
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1038         void                    (*ndo_poll_controller)(struct net_device *dev);
1039         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1040                                                      struct netpoll_info *info,
1041                                                      gfp_t gfp);
1042         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1043 #endif
1044 #ifdef CONFIG_NET_RX_BUSY_POLL
1045         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1046 #endif
1047         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1048                                                   int queue, u8 *mac);
1049         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1050                                                    int queue, u16 vlan, u8 qos);
1051         int                     (*ndo_set_vf_tx_rate)(struct net_device *dev,
1052                                                       int vf, int rate);
1053         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1054                                                        int vf, bool setting);
1055         int                     (*ndo_get_vf_config)(struct net_device *dev,
1056                                                      int vf,
1057                                                      struct ifla_vf_info *ivf);
1058         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1059                                                          int vf, int link_state);
1060         int                     (*ndo_set_vf_port)(struct net_device *dev,
1061                                                    int vf,
1062                                                    struct nlattr *port[]);
1063         int                     (*ndo_get_vf_port)(struct net_device *dev,
1064                                                    int vf, struct sk_buff *skb);
1065         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1066 #if IS_ENABLED(CONFIG_FCOE)
1067         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1068         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1069         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1070                                                       u16 xid,
1071                                                       struct scatterlist *sgl,
1072                                                       unsigned int sgc);
1073         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1074                                                      u16 xid);
1075         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1076                                                        u16 xid,
1077                                                        struct scatterlist *sgl,
1078                                                        unsigned int sgc);
1079         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1080                                                         struct netdev_fcoe_hbainfo *hbainfo);
1081 #endif
1082 
1083 #if IS_ENABLED(CONFIG_LIBFCOE)
1084 #define NETDEV_FCOE_WWNN 0
1085 #define NETDEV_FCOE_WWPN 1
1086         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1087                                                     u64 *wwn, int type);
1088 #endif
1089 
1090 #ifdef CONFIG_RFS_ACCEL
1091         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1092                                                      const struct sk_buff *skb,
1093                                                      u16 rxq_index,
1094                                                      u32 flow_id);
1095 #endif
1096         int                     (*ndo_add_slave)(struct net_device *dev,
1097                                                  struct net_device *slave_dev);
1098         int                     (*ndo_del_slave)(struct net_device *dev,
1099                                                  struct net_device *slave_dev);
1100         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1101                                                     netdev_features_t features);
1102         int                     (*ndo_set_features)(struct net_device *dev,
1103                                                     netdev_features_t features);
1104         int                     (*ndo_neigh_construct)(struct neighbour *n);
1105         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1106 
1107         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1108                                                struct nlattr *tb[],
1109                                                struct net_device *dev,
1110                                                const unsigned char *addr,
1111                                                u16 flags);
1112         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1113                                                struct nlattr *tb[],
1114                                                struct net_device *dev,
1115                                                const unsigned char *addr);
1116         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1117                                                 struct netlink_callback *cb,
1118                                                 struct net_device *dev,
1119                                                 int idx);
1120 
1121         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1122                                                       struct nlmsghdr *nlh);
1123         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1124                                                       u32 pid, u32 seq,
1125                                                       struct net_device *dev,
1126                                                       u32 filter_mask);
1127         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1128                                                       struct nlmsghdr *nlh);
1129         int                     (*ndo_change_carrier)(struct net_device *dev,
1130                                                       bool new_carrier);
1131         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1132                                                         struct netdev_phys_port_id *ppid);
1133         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1134                                                       sa_family_t sa_family,
1135                                                       __be16 port);
1136         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1137                                                       sa_family_t sa_family,
1138                                                       __be16 port);
1139 
1140         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1141                                                         struct net_device *dev);
1142         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1143                                                         void *priv);
1144 
1145         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1146                                                         struct net_device *dev,
1147                                                         void *priv);
1148 };
1149 
1150 /*
1151  *      The DEVICE structure.
1152  *      Actually, this whole structure is a big mistake.  It mixes I/O
1153  *      data with strictly "high-level" data, and it has to know about
1154  *      almost every data structure used in the INET module.
1155  *
1156  *      FIXME: cleanup struct net_device such that network protocol info
1157  *      moves out.
1158  */
1159 
1160 struct net_device {
1161 
1162         /*
1163          * This is the first field of the "visible" part of this structure
1164          * (i.e. as seen by users in the "Space.c" file).  It is the name
1165          * of the interface.
1166          */
1167         char                    name[IFNAMSIZ];
1168 
1169         /* device name hash chain, please keep it close to name[] */
1170         struct hlist_node       name_hlist;
1171 
1172         /* snmp alias */
1173         char                    *ifalias;
1174 
1175         /*
1176          *      I/O specific fields
1177          *      FIXME: Merge these and struct ifmap into one
1178          */
1179         unsigned long           mem_end;        /* shared mem end       */
1180         unsigned long           mem_start;      /* shared mem start     */
1181         unsigned long           base_addr;      /* device I/O address   */
1182         int                     irq;            /* device IRQ number    */
1183 
1184         /*
1185          *      Some hardware also needs these fields, but they are not
1186          *      part of the usual set specified in Space.c.
1187          */
1188 
1189         unsigned long           state;
1190 
1191         struct list_head        dev_list;
1192         struct list_head        napi_list;
1193         struct list_head        unreg_list;
1194         struct list_head        close_list;
1195 
1196         /* directly linked devices, like slaves for bonding */
1197         struct {
1198                 struct list_head upper;
1199                 struct list_head lower;
1200         } adj_list;
1201 
1202         /* all linked devices, *including* neighbours */
1203         struct {
1204                 struct list_head upper;
1205                 struct list_head lower;
1206         } all_adj_list;
1207 
1208 
1209         /* currently active device features */
1210         netdev_features_t       features;
1211         /* user-changeable features */
1212         netdev_features_t       hw_features;
1213         /* user-requested features */
1214         netdev_features_t       wanted_features;
1215         /* mask of features inheritable by VLAN devices */
1216         netdev_features_t       vlan_features;
1217         /* mask of features inherited by encapsulating devices
1218          * This field indicates what encapsulation offloads
1219          * the hardware is capable of doing, and drivers will
1220          * need to set them appropriately.
1221          */
1222         netdev_features_t       hw_enc_features;
1223         /* mask of fetures inheritable by MPLS */
1224         netdev_features_t       mpls_features;
1225 
1226         /* Interface index. Unique device identifier    */
1227         int                     ifindex;
1228         int                     iflink;
1229 
1230         struct net_device_stats stats;
1231         atomic_long_t           rx_dropped; /* dropped packets by core network
1232                                              * Do not use this in drivers.
1233                                              */
1234 
1235 #ifdef CONFIG_WIRELESS_EXT
1236         /* List of functions to handle Wireless Extensions (instead of ioctl).
1237          * See <net/iw_handler.h> for details. Jean II */
1238         const struct iw_handler_def *   wireless_handlers;
1239         /* Instance data managed by the core of Wireless Extensions. */
1240         struct iw_public_data * wireless_data;
1241 #endif
1242         /* Management operations */
1243         const struct net_device_ops *netdev_ops;
1244         const struct ethtool_ops *ethtool_ops;
1245         const struct forwarding_accel_ops *fwd_ops;
1246 
1247         /* Hardware header description */
1248         const struct header_ops *header_ops;
1249 
1250         unsigned int            flags;  /* interface flags (a la BSD)   */
1251         unsigned int            priv_flags; /* Like 'flags' but invisible to userspace.
1252                                              * See if.h for definitions. */
1253         unsigned short          gflags;
1254         unsigned short          padded; /* How much padding added by alloc_netdev() */
1255 
1256         unsigned char           operstate; /* RFC2863 operstate */
1257         unsigned char           link_mode; /* mapping policy to operstate */
1258 
1259         unsigned char           if_port;        /* Selectable AUI, TP,..*/
1260         unsigned char           dma;            /* DMA channel          */
1261 
1262         unsigned int            mtu;    /* interface MTU value          */
1263         unsigned short          type;   /* interface hardware type      */
1264         unsigned short          hard_header_len;        /* hardware hdr length  */
1265 
1266         /* extra head- and tailroom the hardware may need, but not in all cases
1267          * can this be guaranteed, especially tailroom. Some cases also use
1268          * LL_MAX_HEADER instead to allocate the skb.
1269          */
1270         unsigned short          needed_headroom;
1271         unsigned short          needed_tailroom;
1272 
1273         /* Interface address info. */
1274         unsigned char           perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1275         unsigned char           addr_assign_type; /* hw address assignment type */
1276         unsigned char           addr_len;       /* hardware address length      */
1277         unsigned short          neigh_priv_len;
1278         unsigned short          dev_id;         /* Used to differentiate devices
1279                                                  * that share the same link
1280                                                  * layer address
1281                                                  */
1282         spinlock_t              addr_list_lock;
1283         struct netdev_hw_addr_list      uc;     /* Unicast mac addresses */
1284         struct netdev_hw_addr_list      mc;     /* Multicast mac addresses */
1285         struct netdev_hw_addr_list      dev_addrs; /* list of device
1286                                                     * hw addresses
1287                                                     */
1288 #ifdef CONFIG_SYSFS
1289         struct kset             *queues_kset;
1290 #endif
1291 
1292         bool                    uc_promisc;
1293         unsigned int            promiscuity;
1294         unsigned int            allmulti;
1295 
1296 
1297         /* Protocol specific pointers */
1298 
1299 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1300         struct vlan_info __rcu  *vlan_info;     /* VLAN info */
1301 #endif
1302 #if IS_ENABLED(CONFIG_NET_DSA)
1303         struct dsa_switch_tree  *dsa_ptr;       /* dsa specific data */
1304 #endif
1305 #if IS_ENABLED(CONFIG_TIPC)
1306         struct tipc_bearer __rcu *tipc_ptr;     /* TIPC specific data */
1307 #endif
1308         void                    *atalk_ptr;     /* AppleTalk link       */
1309         struct in_device __rcu  *ip_ptr;        /* IPv4 specific data   */
1310         struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1311         struct inet6_dev __rcu  *ip6_ptr;       /* IPv6 specific data */
1312         void                    *ax25_ptr;      /* AX.25 specific data */
1313         struct wireless_dev     *ieee80211_ptr; /* IEEE 802.11 specific data,
1314                                                    assign before registering */
1315 
1316 /*
1317  * Cache lines mostly used on receive path (including eth_type_trans())
1318  */
1319         unsigned long           last_rx;        /* Time of last Rx
1320                                                  * This should not be set in
1321                                                  * drivers, unless really needed,
1322                                                  * because network stack (bonding)
1323                                                  * use it if/when necessary, to
1324                                                  * avoid dirtying this cache line.
1325                                                  */
1326 
1327         /* Interface address info used in eth_type_trans() */
1328         unsigned char           *dev_addr;      /* hw address, (before bcast
1329                                                    because most packets are
1330                                                    unicast) */
1331 
1332 
1333 #ifdef CONFIG_SYSFS
1334         struct netdev_rx_queue  *_rx;
1335 
1336         /* Number of RX queues allocated at register_netdev() time */
1337         unsigned int            num_rx_queues;
1338 
1339         /* Number of RX queues currently active in device */
1340         unsigned int            real_num_rx_queues;
1341 
1342 #endif
1343 
1344         rx_handler_func_t __rcu *rx_handler;
1345         void __rcu              *rx_handler_data;
1346 
1347         struct netdev_queue __rcu *ingress_queue;
1348         unsigned char           broadcast[MAX_ADDR_LEN];        /* hw bcast add */
1349 
1350 
1351 /*
1352  * Cache lines mostly used on transmit path
1353  */
1354         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1355 
1356         /* Number of TX queues allocated at alloc_netdev_mq() time  */
1357         unsigned int            num_tx_queues;
1358 
1359         /* Number of TX queues currently active in device  */
1360         unsigned int            real_num_tx_queues;
1361 
1362         /* root qdisc from userspace point of view */
1363         struct Qdisc            *qdisc;
1364 
1365         unsigned long           tx_queue_len;   /* Max frames per queue allowed */
1366         spinlock_t              tx_global_lock;
1367 
1368 #ifdef CONFIG_XPS
1369         struct xps_dev_maps __rcu *xps_maps;
1370 #endif
1371 #ifdef CONFIG_RFS_ACCEL
1372         /* CPU reverse-mapping for RX completion interrupts, indexed
1373          * by RX queue number.  Assigned by driver.  This must only be
1374          * set if the ndo_rx_flow_steer operation is defined. */
1375         struct cpu_rmap         *rx_cpu_rmap;
1376 #endif
1377 
1378         /* These may be needed for future network-power-down code. */
1379 
1380         /*
1381          * trans_start here is expensive for high speed devices on SMP,
1382          * please use netdev_queue->trans_start instead.
1383          */
1384         unsigned long           trans_start;    /* Time (in jiffies) of last Tx */
1385 
1386         int                     watchdog_timeo; /* used by dev_watchdog() */
1387         struct timer_list       watchdog_timer;
1388 
1389         /* Number of references to this device */
1390         int __percpu            *pcpu_refcnt;
1391 
1392         /* delayed register/unregister */
1393         struct list_head        todo_list;
1394         /* device index hash chain */
1395         struct hlist_node       index_hlist;
1396 
1397         struct list_head        link_watch_list;
1398 
1399         /* register/unregister state machine */
1400         enum { NETREG_UNINITIALIZED=0,
1401                NETREG_REGISTERED,       /* completed register_netdevice */
1402                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1403                NETREG_UNREGISTERED,     /* completed unregister todo */
1404                NETREG_RELEASED,         /* called free_netdev */
1405                NETREG_DUMMY,            /* dummy device for NAPI poll */
1406         } reg_state:8;
1407 
1408         bool dismantle; /* device is going do be freed */
1409 
1410         enum {
1411                 RTNL_LINK_INITIALIZED,
1412                 RTNL_LINK_INITIALIZING,
1413         } rtnl_link_state:16;
1414 
1415         /* Called from unregister, can be used to call free_netdev */
1416         void (*destructor)(struct net_device *dev);
1417 
1418 #ifdef CONFIG_NETPOLL
1419         struct netpoll_info __rcu       *npinfo;
1420 #endif
1421 
1422 #ifdef CONFIG_NET_NS
1423         /* Network namespace this network device is inside */
1424         struct net              *nd_net;
1425 #endif
1426 
1427         /* mid-layer private */
1428         union {
1429                 void                            *ml_priv;
1430                 struct pcpu_lstats __percpu     *lstats; /* loopback stats */
1431                 struct pcpu_sw_netstats __percpu        *tstats;
1432                 struct pcpu_dstats __percpu     *dstats; /* dummy stats */
1433                 struct pcpu_vstats __percpu     *vstats; /* veth stats */
1434         };
1435         /* GARP */
1436         struct garp_port __rcu  *garp_port;
1437         /* MRP */
1438         struct mrp_port __rcu   *mrp_port;
1439 
1440         /* class/net/name entry */
1441         struct device           dev;
1442         /* space for optional device, statistics, and wireless sysfs groups */
1443         const struct attribute_group *sysfs_groups[4];
1444         /* space for optional per-rx queue attributes */
1445         const struct attribute_group *sysfs_rx_queue_group;
1446 
1447         /* rtnetlink link ops */
1448         const struct rtnl_link_ops *rtnl_link_ops;
1449 
1450         /* for setting kernel sock attribute on TCP connection setup */
1451 #define GSO_MAX_SIZE            65536
1452         unsigned int            gso_max_size;
1453 #define GSO_MAX_SEGS            65535
1454         u16                     gso_max_segs;
1455 
1456 #ifdef CONFIG_DCB
1457         /* Data Center Bridging netlink ops */
1458         const struct dcbnl_rtnl_ops *dcbnl_ops;
1459 #endif
1460         u8 num_tc;
1461         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1462         u8 prio_tc_map[TC_BITMASK + 1];
1463 
1464 #if IS_ENABLED(CONFIG_FCOE)
1465         /* max exchange id for FCoE LRO by ddp */
1466         unsigned int            fcoe_ddp_xid;
1467 #endif
1468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1469         struct netprio_map __rcu *priomap;
1470 #endif
1471         /* phy device may attach itself for hardware timestamping */
1472         struct phy_device *phydev;
1473 
1474         struct lock_class_key *qdisc_tx_busylock;
1475 
1476         /* group the device belongs to */
1477         int group;
1478 
1479         struct pm_qos_request   pm_qos_req;
1480 };
1481 #define to_net_dev(d) container_of(d, struct net_device, dev)
1482 
1483 #define NETDEV_ALIGN            32
1484 
1485 static inline
1486 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1487 {
1488         return dev->prio_tc_map[prio & TC_BITMASK];
1489 }
1490 
1491 static inline
1492 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1493 {
1494         if (tc >= dev->num_tc)
1495                 return -EINVAL;
1496 
1497         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1498         return 0;
1499 }
1500 
1501 static inline
1502 void netdev_reset_tc(struct net_device *dev)
1503 {
1504         dev->num_tc = 0;
1505         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1506         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1507 }
1508 
1509 static inline
1510 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1511 {
1512         if (tc >= dev->num_tc)
1513                 return -EINVAL;
1514 
1515         dev->tc_to_txq[tc].count = count;
1516         dev->tc_to_txq[tc].offset = offset;
1517         return 0;
1518 }
1519 
1520 static inline
1521 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1522 {
1523         if (num_tc > TC_MAX_QUEUE)
1524                 return -EINVAL;
1525 
1526         dev->num_tc = num_tc;
1527         return 0;
1528 }
1529 
1530 static inline
1531 int netdev_get_num_tc(struct net_device *dev)
1532 {
1533         return dev->num_tc;
1534 }
1535 
1536 static inline
1537 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1538                                          unsigned int index)
1539 {
1540         return &dev->_tx[index];
1541 }
1542 
1543 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1544                                             void (*f)(struct net_device *,
1545                                                       struct netdev_queue *,
1546                                                       void *),
1547                                             void *arg)
1548 {
1549         unsigned int i;
1550 
1551         for (i = 0; i < dev->num_tx_queues; i++)
1552                 f(dev, &dev->_tx[i], arg);
1553 }
1554 
1555 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1556                                     struct sk_buff *skb,
1557                                     void *accel_priv);
1558 
1559 /*
1560  * Net namespace inlines
1561  */
1562 static inline
1563 struct net *dev_net(const struct net_device *dev)
1564 {
1565         return read_pnet(&dev->nd_net);
1566 }
1567 
1568 static inline
1569 void dev_net_set(struct net_device *dev, struct net *net)
1570 {
1571 #ifdef CONFIG_NET_NS
1572         release_net(dev->nd_net);
1573         dev->nd_net = hold_net(net);
1574 #endif
1575 }
1576 
1577 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1578 {
1579 #ifdef CONFIG_NET_DSA_TAG_DSA
1580         if (dev->dsa_ptr != NULL)
1581                 return dsa_uses_dsa_tags(dev->dsa_ptr);
1582 #endif
1583 
1584         return 0;
1585 }
1586 
1587 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1588 {
1589 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1590         if (dev->dsa_ptr != NULL)
1591                 return dsa_uses_trailer_tags(dev->dsa_ptr);
1592 #endif
1593 
1594         return 0;
1595 }
1596 
1597 /**
1598  *      netdev_priv - access network device private data
1599  *      @dev: network device
1600  *
1601  * Get network device private data
1602  */
1603 static inline void *netdev_priv(const struct net_device *dev)
1604 {
1605         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1606 }
1607 
1608 /* Set the sysfs physical device reference for the network logical device
1609  * if set prior to registration will cause a symlink during initialization.
1610  */
1611 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1612 
1613 /* Set the sysfs device type for the network logical device to allow
1614  * fine-grained identification of different network device types. For
1615  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1616  */
1617 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1618 
1619 /* Default NAPI poll() weight
1620  * Device drivers are strongly advised to not use bigger value
1621  */
1622 #define NAPI_POLL_WEIGHT 64
1623 
1624 /**
1625  *      netif_napi_add - initialize a napi context
1626  *      @dev:  network device
1627  *      @napi: napi context
1628  *      @poll: polling function
1629  *      @weight: default weight
1630  *
1631  * netif_napi_add() must be used to initialize a napi context prior to calling
1632  * *any* of the other napi related functions.
1633  */
1634 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1635                     int (*poll)(struct napi_struct *, int), int weight);
1636 
1637 /**
1638  *  netif_napi_del - remove a napi context
1639  *  @napi: napi context
1640  *
1641  *  netif_napi_del() removes a napi context from the network device napi list
1642  */
1643 void netif_napi_del(struct napi_struct *napi);
1644 
1645 struct napi_gro_cb {
1646         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1647         void *frag0;
1648 
1649         /* Length of frag0. */
1650         unsigned int frag0_len;
1651 
1652         /* This indicates where we are processing relative to skb->data. */
1653         int data_offset;
1654 
1655         /* This is non-zero if the packet cannot be merged with the new skb. */
1656         u16     flush;
1657 
1658         /* Save the IP ID here and check when we get to the transport layer */
1659         u16     flush_id;
1660 
1661         /* Number of segments aggregated. */
1662         u16     count;
1663 
1664         /* This is non-zero if the packet may be of the same flow. */
1665         u8      same_flow;
1666 
1667         /* Free the skb? */
1668         u8      free;
1669 #define NAPI_GRO_FREE             1
1670 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1671 
1672         /* jiffies when first packet was created/queued */
1673         unsigned long age;
1674 
1675         /* Used in ipv6_gro_receive() */
1676         u16     proto;
1677 
1678         /* Used in udp_gro_receive */
1679         u16     udp_mark;
1680 
1681         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1682         __wsum  csum;
1683 
1684         /* used in skb_gro_receive() slow path */
1685         struct sk_buff *last;
1686 };
1687 
1688 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1689 
1690 struct packet_type {
1691         __be16                  type;   /* This is really htons(ether_type). */
1692         struct net_device       *dev;   /* NULL is wildcarded here           */
1693         int                     (*func) (struct sk_buff *,
1694                                          struct net_device *,
1695                                          struct packet_type *,
1696                                          struct net_device *);
1697         bool                    (*id_match)(struct packet_type *ptype,
1698                                             struct sock *sk);
1699         void                    *af_packet_priv;
1700         struct list_head        list;
1701 };
1702 
1703 struct offload_callbacks {
1704         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1705                                                 netdev_features_t features);
1706         int                     (*gso_send_check)(struct sk_buff *skb);
1707         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1708                                                struct sk_buff *skb);
1709         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1710 };
1711 
1712 struct packet_offload {
1713         __be16                   type;  /* This is really htons(ether_type). */
1714         struct offload_callbacks callbacks;
1715         struct list_head         list;
1716 };
1717 
1718 struct udp_offload {
1719         __be16                   port;
1720         struct offload_callbacks callbacks;
1721 };
1722 
1723 /* often modified stats are per cpu, other are shared (netdev->stats) */
1724 struct pcpu_sw_netstats {
1725         u64     rx_packets;
1726         u64     rx_bytes;
1727         u64     tx_packets;
1728         u64     tx_bytes;
1729         struct u64_stats_sync   syncp;
1730 };
1731 
1732 #include <linux/notifier.h>
1733 
1734 /* netdevice notifier chain. Please remember to update the rtnetlink
1735  * notification exclusion list in rtnetlink_event() when adding new
1736  * types.
1737  */
1738 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1739 #define NETDEV_DOWN     0x0002
1740 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1741                                    detected a hardware crash and restarted
1742                                    - we can use this eg to kick tcp sessions
1743                                    once done */
1744 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
1745 #define NETDEV_REGISTER 0x0005
1746 #define NETDEV_UNREGISTER       0x0006
1747 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
1748 #define NETDEV_CHANGEADDR       0x0008
1749 #define NETDEV_GOING_DOWN       0x0009
1750 #define NETDEV_CHANGENAME       0x000A
1751 #define NETDEV_FEAT_CHANGE      0x000B
1752 #define NETDEV_BONDING_FAILOVER 0x000C
1753 #define NETDEV_PRE_UP           0x000D
1754 #define NETDEV_PRE_TYPE_CHANGE  0x000E
1755 #define NETDEV_POST_TYPE_CHANGE 0x000F
1756 #define NETDEV_POST_INIT        0x0010
1757 #define NETDEV_UNREGISTER_FINAL 0x0011
1758 #define NETDEV_RELEASE          0x0012
1759 #define NETDEV_NOTIFY_PEERS     0x0013
1760 #define NETDEV_JOIN             0x0014
1761 #define NETDEV_CHANGEUPPER      0x0015
1762 #define NETDEV_RESEND_IGMP      0x0016
1763 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb);
1766 int unregister_netdevice_notifier(struct notifier_block *nb);
1767 
1768 struct netdev_notifier_info {
1769         struct net_device *dev;
1770 };
1771 
1772 struct netdev_notifier_change_info {
1773         struct netdev_notifier_info info; /* must be first */
1774         unsigned int flags_changed;
1775 };
1776 
1777 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1778                                              struct net_device *dev)
1779 {
1780         info->dev = dev;
1781 }
1782 
1783 static inline struct net_device *
1784 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1785 {
1786         return info->dev;
1787 }
1788 
1789 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1790 
1791 
1792 extern rwlock_t                         dev_base_lock;          /* Device list lock */
1793 
1794 #define for_each_netdev(net, d)         \
1795                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1796 #define for_each_netdev_reverse(net, d) \
1797                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1798 #define for_each_netdev_rcu(net, d)             \
1799                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1800 #define for_each_netdev_safe(net, d, n) \
1801                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1802 #define for_each_netdev_continue(net, d)                \
1803                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1804 #define for_each_netdev_continue_rcu(net, d)            \
1805         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1806 #define for_each_netdev_in_bond_rcu(bond, slave)        \
1807                 for_each_netdev_rcu(&init_net, slave)   \
1808                         if (netdev_master_upper_dev_get_rcu(slave) == bond)
1809 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
1810 
1811 static inline struct net_device *next_net_device(struct net_device *dev)
1812 {
1813         struct list_head *lh;
1814         struct net *net;
1815 
1816         net = dev_net(dev);
1817         lh = dev->dev_list.next;
1818         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1819 }
1820 
1821 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1822 {
1823         struct list_head *lh;
1824         struct net *net;
1825 
1826         net = dev_net(dev);
1827         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1828         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1829 }
1830 
1831 static inline struct net_device *first_net_device(struct net *net)
1832 {
1833         return list_empty(&net->dev_base_head) ? NULL :
1834                 net_device_entry(net->dev_base_head.next);
1835 }
1836 
1837 static inline struct net_device *first_net_device_rcu(struct net *net)
1838 {
1839         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1840 
1841         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1842 }
1843 
1844 int netdev_boot_setup_check(struct net_device *dev);
1845 unsigned long netdev_boot_base(const char *prefix, int unit);
1846 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1847                                        const char *hwaddr);
1848 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1849 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1850 void dev_add_pack(struct packet_type *pt);
1851 void dev_remove_pack(struct packet_type *pt);
1852 void __dev_remove_pack(struct packet_type *pt);
1853 void dev_add_offload(struct packet_offload *po);
1854 void dev_remove_offload(struct packet_offload *po);
1855 
1856 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1857                                         unsigned short mask);
1858 struct net_device *dev_get_by_name(struct net *net, const char *name);
1859 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1860 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1861 int dev_alloc_name(struct net_device *dev, const char *name);
1862 int dev_open(struct net_device *dev);
1863 int dev_close(struct net_device *dev);
1864 void dev_disable_lro(struct net_device *dev);
1865 int dev_loopback_xmit(struct sk_buff *newskb);
1866 int dev_queue_xmit(struct sk_buff *skb);
1867 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1868 int register_netdevice(struct net_device *dev);
1869 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1870 void unregister_netdevice_many(struct list_head *head);
1871 static inline void unregister_netdevice(struct net_device *dev)
1872 {
1873         unregister_netdevice_queue(dev, NULL);
1874 }
1875 
1876 int netdev_refcnt_read(const struct net_device *dev);
1877 void free_netdev(struct net_device *dev);
1878 void netdev_freemem(struct net_device *dev);
1879 void synchronize_net(void);
1880 int init_dummy_netdev(struct net_device *dev);
1881 
1882 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1883 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1884 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1885 int netdev_get_name(struct net *net, char *name, int ifindex);
1886 int dev_restart(struct net_device *dev);
1887 #ifdef CONFIG_NETPOLL_TRAP
1888 int netpoll_trap(void);
1889 #endif
1890 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1891 
1892 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1893 {
1894         return NAPI_GRO_CB(skb)->data_offset;
1895 }
1896 
1897 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1898 {
1899         return skb->len - NAPI_GRO_CB(skb)->data_offset;
1900 }
1901 
1902 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1903 {
1904         NAPI_GRO_CB(skb)->data_offset += len;
1905 }
1906 
1907 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1908                                         unsigned int offset)
1909 {
1910         return NAPI_GRO_CB(skb)->frag0 + offset;
1911 }
1912 
1913 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1914 {
1915         return NAPI_GRO_CB(skb)->frag0_len < hlen;
1916 }
1917 
1918 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1919                                         unsigned int offset)
1920 {
1921         if (!pskb_may_pull(skb, hlen))
1922                 return NULL;
1923 
1924         NAPI_GRO_CB(skb)->frag0 = NULL;
1925         NAPI_GRO_CB(skb)->frag0_len = 0;
1926         return skb->data + offset;
1927 }
1928 
1929 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1930 {
1931         return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1932 }
1933 
1934 static inline void *skb_gro_network_header(struct sk_buff *skb)
1935 {
1936         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1937                skb_network_offset(skb);
1938 }
1939 
1940 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
1941                                         const void *start, unsigned int len)
1942 {
1943         if (skb->ip_summed == CHECKSUM_COMPLETE)
1944                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
1945                                                   csum_partial(start, len, 0));
1946 }
1947 
1948 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1949                                   unsigned short type,
1950                                   const void *daddr, const void *saddr,
1951                                   unsigned int len)
1952 {
1953         if (!dev->header_ops || !dev->header_ops->create)
1954                 return 0;
1955 
1956         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1957 }
1958 
1959 static inline int dev_parse_header(const struct sk_buff *skb,
1960                                    unsigned char *haddr)
1961 {
1962         const struct net_device *dev = skb->dev;
1963 
1964         if (!dev->header_ops || !dev->header_ops->parse)
1965                 return 0;
1966         return dev->header_ops->parse(skb, haddr);
1967 }
1968 
1969 static inline int dev_rebuild_header(struct sk_buff *skb)
1970 {
1971         const struct net_device *dev = skb->dev;
1972 
1973         if (!dev->header_ops || !dev->header_ops->rebuild)
1974                 return 0;
1975         return dev->header_ops->rebuild(skb);
1976 }
1977 
1978 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1979 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1980 static inline int unregister_gifconf(unsigned int family)
1981 {
1982         return register_gifconf(family, NULL);
1983 }
1984 
1985 #ifdef CONFIG_NET_FLOW_LIMIT
1986 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
1987 struct sd_flow_limit {
1988         u64                     count;
1989         unsigned int            num_buckets;
1990         unsigned int            history_head;
1991         u16                     history[FLOW_LIMIT_HISTORY];
1992         u8                      buckets[];
1993 };
1994 
1995 extern int netdev_flow_limit_table_len;
1996 #endif /* CONFIG_NET_FLOW_LIMIT */
1997 
1998 /*
1999  * Incoming packets are placed on per-cpu queues
2000  */
2001 struct softnet_data {
2002         struct Qdisc            *output_queue;
2003         struct Qdisc            **output_queue_tailp;
2004         struct list_head        poll_list;
2005         struct sk_buff          *completion_queue;
2006         struct sk_buff_head     process_queue;
2007 
2008         /* stats */
2009         unsigned int            processed;
2010         unsigned int            time_squeeze;
2011         unsigned int            cpu_collision;
2012         unsigned int            received_rps;
2013 
2014 #ifdef CONFIG_RPS
2015         struct softnet_data     *rps_ipi_list;
2016 
2017         /* Elements below can be accessed between CPUs for RPS */
2018         struct call_single_data csd ____cacheline_aligned_in_smp;
2019         struct softnet_data     *rps_ipi_next;
2020         unsigned int            cpu;
2021         unsigned int            input_queue_head;
2022         unsigned int            input_queue_tail;
2023 #endif
2024         unsigned int            dropped;
2025         struct sk_buff_head     input_pkt_queue;
2026         struct napi_struct      backlog;
2027 
2028 #ifdef CONFIG_NET_FLOW_LIMIT
2029         struct sd_flow_limit __rcu *flow_limit;
2030 #endif
2031 };
2032 
2033 static inline void input_queue_head_incr(struct softnet_data *sd)
2034 {
2035 #ifdef CONFIG_RPS
2036         sd->input_queue_head++;
2037 #endif
2038 }
2039 
2040 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2041                                               unsigned int *qtail)
2042 {
2043 #ifdef CONFIG_RPS
2044         *qtail = ++sd->input_queue_tail;
2045 #endif
2046 }
2047 
2048 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2049 
2050 void __netif_schedule(struct Qdisc *q);
2051 
2052 static inline void netif_schedule_queue(struct netdev_queue *txq)
2053 {
2054         if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2055                 __netif_schedule(txq->qdisc);
2056 }
2057 
2058 static inline void netif_tx_schedule_all(struct net_device *dev)
2059 {
2060         unsigned int i;
2061 
2062         for (i = 0; i < dev->num_tx_queues; i++)
2063                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2064 }
2065 
2066 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2067 {
2068         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2069 }
2070 
2071 /**
2072  *      netif_start_queue - allow transmit
2073  *      @dev: network device
2074  *
2075  *      Allow upper layers to call the device hard_start_xmit routine.
2076  */
2077 static inline void netif_start_queue(struct net_device *dev)
2078 {
2079         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2080 }
2081 
2082 static inline void netif_tx_start_all_queues(struct net_device *dev)
2083 {
2084         unsigned int i;
2085 
2086         for (i = 0; i < dev->num_tx_queues; i++) {
2087                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2088                 netif_tx_start_queue(txq);
2089         }
2090 }
2091 
2092 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2093 {
2094 #ifdef CONFIG_NETPOLL_TRAP
2095         if (netpoll_trap()) {
2096                 netif_tx_start_queue(dev_queue);
2097                 return;
2098         }
2099 #endif
2100         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2101                 __netif_schedule(dev_queue->qdisc);
2102 }
2103 
2104 /**
2105  *      netif_wake_queue - restart transmit
2106  *      @dev: network device
2107  *
2108  *      Allow upper layers to call the device hard_start_xmit routine.
2109  *      Used for flow control when transmit resources are available.
2110  */
2111 static inline void netif_wake_queue(struct net_device *dev)
2112 {
2113         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2114 }
2115 
2116 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2117 {
2118         unsigned int i;
2119 
2120         for (i = 0; i < dev->num_tx_queues; i++) {
2121                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2122                 netif_tx_wake_queue(txq);
2123         }
2124 }
2125 
2126 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2127 {
2128         if (WARN_ON(!dev_queue)) {
2129                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2130                 return;
2131         }
2132         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2133 }
2134 
2135 /**
2136  *      netif_stop_queue - stop transmitted packets
2137  *      @dev: network device
2138  *
2139  *      Stop upper layers calling the device hard_start_xmit routine.
2140  *      Used for flow control when transmit resources are unavailable.
2141  */
2142 static inline void netif_stop_queue(struct net_device *dev)
2143 {
2144         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2145 }
2146 
2147 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2148 {
2149         unsigned int i;
2150 
2151         for (i = 0; i < dev->num_tx_queues; i++) {
2152                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2153                 netif_tx_stop_queue(txq);
2154         }
2155 }
2156 
2157 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2158 {
2159         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2160 }
2161 
2162 /**
2163  *      netif_queue_stopped - test if transmit queue is flowblocked
2164  *      @dev: network device
2165  *
2166  *      Test if transmit queue on device is currently unable to send.
2167  */
2168 static inline bool netif_queue_stopped(const struct net_device *dev)
2169 {
2170         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2171 }
2172 
2173 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2174 {
2175         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2176 }
2177 
2178 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2179 {
2180         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2181 }
2182 
2183 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2184                                         unsigned int bytes)
2185 {
2186 #ifdef CONFIG_BQL
2187         dql_queued(&dev_queue->dql, bytes);
2188 
2189         if (likely(dql_avail(&dev_queue->dql) >= 0))
2190                 return;
2191 
2192         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2193 
2194         /*
2195          * The XOFF flag must be set before checking the dql_avail below,
2196          * because in netdev_tx_completed_queue we update the dql_completed
2197          * before checking the XOFF flag.
2198          */
2199         smp_mb();
2200 
2201         /* check again in case another CPU has just made room avail */
2202         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2203                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2204 #endif
2205 }
2206 
2207 /**
2208  *      netdev_sent_queue - report the number of bytes queued to hardware
2209  *      @dev: network device
2210  *      @bytes: number of bytes queued to the hardware device queue
2211  *
2212  *      Report the number of bytes queued for sending/completion to the network
2213  *      device hardware queue. @bytes should be a good approximation and should
2214  *      exactly match netdev_completed_queue() @bytes
2215  */
2216 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2217 {
2218         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2219 }
2220 
2221 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2222                                              unsigned int pkts, unsigned int bytes)
2223 {
2224 #ifdef CONFIG_BQL
2225         if (unlikely(!bytes))
2226                 return;
2227 
2228         dql_completed(&dev_queue->dql, bytes);
2229 
2230         /*
2231          * Without the memory barrier there is a small possiblity that
2232          * netdev_tx_sent_queue will miss the update and cause the queue to
2233          * be stopped forever
2234          */
2235         smp_mb();
2236 
2237         if (dql_avail(&dev_queue->dql) < 0)
2238                 return;
2239 
2240         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2241                 netif_schedule_queue(dev_queue);
2242 #endif
2243 }
2244 
2245 /**
2246  *      netdev_completed_queue - report bytes and packets completed by device
2247  *      @dev: network device
2248  *      @pkts: actual number of packets sent over the medium
2249  *      @bytes: actual number of bytes sent over the medium
2250  *
2251  *      Report the number of bytes and packets transmitted by the network device
2252  *      hardware queue over the physical medium, @bytes must exactly match the
2253  *      @bytes amount passed to netdev_sent_queue()
2254  */
2255 static inline void netdev_completed_queue(struct net_device *dev,
2256                                           unsigned int pkts, unsigned int bytes)
2257 {
2258         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2259 }
2260 
2261 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2262 {
2263 #ifdef CONFIG_BQL
2264         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2265         dql_reset(&q->dql);
2266 #endif
2267 }
2268 
2269 /**
2270  *      netdev_reset_queue - reset the packets and bytes count of a network device
2271  *      @dev_queue: network device
2272  *
2273  *      Reset the bytes and packet count of a network device and clear the
2274  *      software flow control OFF bit for this network device
2275  */
2276 static inline void netdev_reset_queue(struct net_device *dev_queue)
2277 {
2278         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2279 }
2280 
2281 /**
2282  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2283  *      @dev: network device
2284  *      @queue_index: given tx queue index
2285  *
2286  *      Returns 0 if given tx queue index >= number of device tx queues,
2287  *      otherwise returns the originally passed tx queue index.
2288  */
2289 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2290 {
2291         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2292                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2293                                      dev->name, queue_index,
2294                                      dev->real_num_tx_queues);
2295                 return 0;
2296         }
2297 
2298         return queue_index;
2299 }
2300 
2301 /**
2302  *      netif_running - test if up
2303  *      @dev: network device
2304  *
2305  *      Test if the device has been brought up.
2306  */
2307 static inline bool netif_running(const struct net_device *dev)
2308 {
2309         return test_bit(__LINK_STATE_START, &dev->state);
2310 }
2311 
2312 /*
2313  * Routines to manage the subqueues on a device.  We only need start
2314  * stop, and a check if it's stopped.  All other device management is
2315  * done at the overall netdevice level.
2316  * Also test the device if we're multiqueue.
2317  */
2318 
2319 /**
2320  *      netif_start_subqueue - allow sending packets on subqueue
2321  *      @dev: network device
2322  *      @queue_index: sub queue index
2323  *
2324  * Start individual transmit queue of a device with multiple transmit queues.
2325  */
2326 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2327 {
2328         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2329 
2330         netif_tx_start_queue(txq);
2331 }
2332 
2333 /**
2334  *      netif_stop_subqueue - stop sending packets on subqueue
2335  *      @dev: network device
2336  *      @queue_index: sub queue index
2337  *
2338  * Stop individual transmit queue of a device with multiple transmit queues.
2339  */
2340 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2341 {
2342         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2343 #ifdef CONFIG_NETPOLL_TRAP
2344         if (netpoll_trap())
2345                 return;
2346 #endif
2347         netif_tx_stop_queue(txq);
2348 }
2349 
2350 /**
2351  *      netif_subqueue_stopped - test status of subqueue
2352  *      @dev: network device
2353  *      @queue_index: sub queue index
2354  *
2355  * Check individual transmit queue of a device with multiple transmit queues.
2356  */
2357 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2358                                             u16 queue_index)
2359 {
2360         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2361 
2362         return netif_tx_queue_stopped(txq);
2363 }
2364 
2365 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2366                                           struct sk_buff *skb)
2367 {
2368         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2369 }
2370 
2371 /**
2372  *      netif_wake_subqueue - allow sending packets on subqueue
2373  *      @dev: network device
2374  *      @queue_index: sub queue index
2375  *
2376  * Resume individual transmit queue of a device with multiple transmit queues.
2377  */
2378 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2379 {
2380         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2381 #ifdef CONFIG_NETPOLL_TRAP
2382         if (netpoll_trap())
2383                 return;
2384 #endif
2385         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2386                 __netif_schedule(txq->qdisc);
2387 }
2388 
2389 #ifdef CONFIG_XPS
2390 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2391                         u16 index);
2392 #else
2393 static inline int netif_set_xps_queue(struct net_device *dev,
2394                                       const struct cpumask *mask,
2395                                       u16 index)
2396 {
2397         return 0;
2398 }
2399 #endif
2400 
2401 /*
2402  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2403  * as a distribution range limit for the returned value.
2404  */
2405 static inline u16 skb_tx_hash(const struct net_device *dev,
2406                               const struct sk_buff *skb)
2407 {
2408         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2409 }
2410 
2411 /**
2412  *      netif_is_multiqueue - test if device has multiple transmit queues
2413  *      @dev: network device
2414  *
2415  * Check if device has multiple transmit queues
2416  */
2417 static inline bool netif_is_multiqueue(const struct net_device *dev)
2418 {
2419         return dev->num_tx_queues > 1;
2420 }
2421 
2422 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2423 
2424 #ifdef CONFIG_SYSFS
2425 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2426 #else
2427 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2428                                                 unsigned int rxq)
2429 {
2430         return 0;
2431 }
2432 #endif
2433 
2434 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2435                                              const struct net_device *from_dev)
2436 {
2437         int err;
2438 
2439         err = netif_set_real_num_tx_queues(to_dev,
2440                                            from_dev->real_num_tx_queues);
2441         if (err)
2442                 return err;
2443 #ifdef CONFIG_SYSFS
2444         return netif_set_real_num_rx_queues(to_dev,
2445                                             from_dev->real_num_rx_queues);
2446 #else
2447         return 0;
2448 #endif
2449 }
2450 
2451 #ifdef CONFIG_SYSFS
2452 static inline unsigned int get_netdev_rx_queue_index(
2453                 struct netdev_rx_queue *queue)
2454 {
2455         struct net_device *dev = queue->dev;
2456         int index = queue - dev->_rx;
2457 
2458         BUG_ON(index >= dev->num_rx_queues);
2459         return index;
2460 }
2461 #endif
2462 
2463 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2464 int netif_get_num_default_rss_queues(void);
2465 
2466 enum skb_free_reason {
2467         SKB_REASON_CONSUMED,
2468         SKB_REASON_DROPPED,
2469 };
2470 
2471 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2472 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2473 
2474 /*
2475  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2476  * interrupt context or with hardware interrupts being disabled.
2477  * (in_irq() || irqs_disabled())
2478  *
2479  * We provide four helpers that can be used in following contexts :
2480  *
2481  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2482  *  replacing kfree_skb(skb)
2483  *
2484  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2485  *  Typically used in place of consume_skb(skb) in TX completion path
2486  *
2487  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2488  *  replacing kfree_skb(skb)
2489  *
2490  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2491  *  and consumed a packet. Used in place of consume_skb(skb)
2492  */
2493 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2494 {
2495         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2496 }
2497 
2498 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2499 {
2500         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2501 }
2502 
2503 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2504 {
2505         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2506 }
2507 
2508 static inline void dev_consume_skb_any(struct sk_buff *skb)
2509 {
2510         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2511 }
2512 
2513 int netif_rx(struct sk_buff *skb);
2514 int netif_rx_ni(struct sk_buff *skb);
2515 int netif_receive_skb(struct sk_buff *skb);
2516 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2517 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2518 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2519 gro_result_t napi_gro_frags(struct napi_struct *napi);
2520 struct packet_offload *gro_find_receive_by_type(__be16 type);
2521 struct packet_offload *gro_find_complete_by_type(__be16 type);
2522 
2523 static inline void napi_free_frags(struct napi_struct *napi)
2524 {
2525         kfree_skb(napi->skb);
2526         napi->skb = NULL;
2527 }
2528 
2529 int netdev_rx_handler_register(struct net_device *dev,
2530                                rx_handler_func_t *rx_handler,
2531                                void *rx_handler_data);
2532 void netdev_rx_handler_unregister(struct net_device *dev);
2533 
2534 bool dev_valid_name(const char *name);
2535 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2536 int dev_ethtool(struct net *net, struct ifreq *);
2537 unsigned int dev_get_flags(const struct net_device *);
2538 int __dev_change_flags(struct net_device *, unsigned int flags);
2539 int dev_change_flags(struct net_device *, unsigned int);
2540 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2541                         unsigned int gchanges);
2542 int dev_change_name(struct net_device *, const char *);
2543 int dev_set_alias(struct net_device *, const char *, size_t);
2544 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2545 int dev_set_mtu(struct net_device *, int);
2546 void dev_set_group(struct net_device *, int);
2547 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2548 int dev_change_carrier(struct net_device *, bool new_carrier);
2549 int dev_get_phys_port_id(struct net_device *dev,
2550                          struct netdev_phys_port_id *ppid);
2551 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2552                         struct netdev_queue *txq);
2553 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2554 
2555 extern int              netdev_budget;
2556 
2557 /* Called by rtnetlink.c:rtnl_unlock() */
2558 void netdev_run_todo(void);
2559 
2560 /**
2561  *      dev_put - release reference to device
2562  *      @dev: network device
2563  *
2564  * Release reference to device to allow it to be freed.
2565  */
2566 static inline void dev_put(struct net_device *dev)
2567 {
2568         this_cpu_dec(*dev->pcpu_refcnt);
2569 }
2570 
2571 /**
2572  *      dev_hold - get reference to device
2573  *      @dev: network device
2574  *
2575  * Hold reference to device to keep it from being freed.
2576  */
2577 static inline void dev_hold(struct net_device *dev)
2578 {
2579         this_cpu_inc(*dev->pcpu_refcnt);
2580 }
2581 
2582 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2583  * and _off may be called from IRQ context, but it is caller
2584  * who is responsible for serialization of these calls.
2585  *
2586  * The name carrier is inappropriate, these functions should really be
2587  * called netif_lowerlayer_*() because they represent the state of any
2588  * kind of lower layer not just hardware media.
2589  */
2590 
2591 void linkwatch_init_dev(struct net_device *dev);
2592 void linkwatch_fire_event(struct net_device *dev);
2593 void linkwatch_forget_dev(struct net_device *dev);
2594 
2595 /**
2596  *      netif_carrier_ok - test if carrier present
2597  *      @dev: network device
2598  *
2599  * Check if carrier is present on device
2600  */
2601 static inline bool netif_carrier_ok(const struct net_device *dev)
2602 {
2603         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2604 }
2605 
2606 unsigned long dev_trans_start(struct net_device *dev);
2607 
2608 void __netdev_watchdog_up(struct net_device *dev);
2609 
2610 void netif_carrier_on(struct net_device *dev);
2611 
2612 void netif_carrier_off(struct net_device *dev);
2613 
2614 /**
2615  *      netif_dormant_on - mark device as dormant.
2616  *      @dev: network device
2617  *
2618  * Mark device as dormant (as per RFC2863).
2619  *
2620  * The dormant state indicates that the relevant interface is not
2621  * actually in a condition to pass packets (i.e., it is not 'up') but is
2622  * in a "pending" state, waiting for some external event.  For "on-
2623  * demand" interfaces, this new state identifies the situation where the
2624  * interface is waiting for events to place it in the up state.
2625  *
2626  */
2627 static inline void netif_dormant_on(struct net_device *dev)
2628 {
2629         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2630                 linkwatch_fire_event(dev);
2631 }
2632 
2633 /**
2634  *      netif_dormant_off - set device as not dormant.
2635  *      @dev: network device
2636  *
2637  * Device is not in dormant state.
2638  */
2639 static inline void netif_dormant_off(struct net_device *dev)
2640 {
2641         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2642                 linkwatch_fire_event(dev);
2643 }
2644 
2645 /**
2646  *      netif_dormant - test if carrier present
2647  *      @dev: network device
2648  *
2649  * Check if carrier is present on device
2650  */
2651 static inline bool netif_dormant(const struct net_device *dev)
2652 {
2653         return test_bit(__LINK_STATE_DORMANT, &dev->state);
2654 }
2655 
2656 
2657 /**
2658  *      netif_oper_up - test if device is operational
2659  *      @dev: network device
2660  *
2661  * Check if carrier is operational
2662  */
2663 static inline bool netif_oper_up(const struct net_device *dev)
2664 {
2665         return (dev->operstate == IF_OPER_UP ||
2666                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2667 }
2668 
2669 /**
2670  *      netif_device_present - is device available or removed
2671  *      @dev: network device
2672  *
2673  * Check if device has not been removed from system.
2674  */
2675 static inline bool netif_device_present(struct net_device *dev)
2676 {
2677         return test_bit(__LINK_STATE_PRESENT, &dev->state);
2678 }
2679 
2680 void netif_device_detach(struct net_device *dev);
2681 
2682 void netif_device_attach(struct net_device *dev);
2683 
2684 /*
2685  * Network interface message level settings
2686  */
2687 
2688 enum {
2689         NETIF_MSG_DRV           = 0x0001,
2690         NETIF_MSG_PROBE         = 0x0002,
2691         NETIF_MSG_LINK          = 0x0004,
2692         NETIF_MSG_TIMER         = 0x0008,
2693         NETIF_MSG_IFDOWN        = 0x0010,
2694         NETIF_MSG_IFUP          = 0x0020,
2695         NETIF_MSG_RX_ERR        = 0x0040,
2696         NETIF_MSG_TX_ERR        = 0x0080,
2697         NETIF_MSG_TX_QUEUED     = 0x0100,
2698         NETIF_MSG_INTR          = 0x0200,
2699         NETIF_MSG_TX_DONE       = 0x0400,
2700         NETIF_MSG_RX_STATUS     = 0x0800,
2701         NETIF_MSG_PKTDATA       = 0x1000,
2702         NETIF_MSG_HW            = 0x2000,
2703         NETIF_MSG_WOL           = 0x4000,
2704 };
2705 
2706 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
2707 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
2708 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
2709 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
2710 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
2711 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
2712 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
2713 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
2714 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2715 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
2716 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
2717 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2718 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
2719 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
2720 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
2721 
2722 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2723 {
2724         /* use default */
2725         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2726                 return default_msg_enable_bits;
2727         if (debug_value == 0)   /* no output */
2728                 return 0;
2729         /* set low N bits */
2730         return (1 << debug_value) - 1;
2731 }
2732 
2733 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2734 {
2735         spin_lock(&txq->_xmit_lock);
2736         txq->xmit_lock_owner = cpu;
2737 }
2738 
2739 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2740 {
2741         spin_lock_bh(&txq->_xmit_lock);
2742         txq->xmit_lock_owner = smp_processor_id();
2743 }
2744 
2745 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2746 {
2747         bool ok = spin_trylock(&txq->_xmit_lock);
2748         if (likely(ok))
2749                 txq->xmit_lock_owner = smp_processor_id();
2750         return ok;
2751 }
2752 
2753 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2754 {
2755         txq->xmit_lock_owner = -1;
2756         spin_unlock(&txq->_xmit_lock);
2757 }
2758 
2759 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2760 {
2761         txq->xmit_lock_owner = -1;
2762         spin_unlock_bh(&txq->_xmit_lock);
2763 }
2764 
2765 static inline void txq_trans_update(struct netdev_queue *txq)
2766 {
2767         if (txq->xmit_lock_owner != -1)
2768                 txq->trans_start = jiffies;
2769 }
2770 
2771 /**
2772  *      netif_tx_lock - grab network device transmit lock
2773  *      @dev: network device
2774  *
2775  * Get network device transmit lock
2776  */
2777 static inline void netif_tx_lock(struct net_device *dev)
2778 {
2779         unsigned int i;
2780         int cpu;
2781 
2782         spin_lock(&dev->tx_global_lock);
2783         cpu = smp_processor_id();
2784         for (i = 0; i < dev->num_tx_queues; i++) {
2785                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2786 
2787                 /* We are the only thread of execution doing a
2788                  * freeze, but we have to grab the _xmit_lock in
2789                  * order to synchronize with threads which are in
2790                  * the ->hard_start_xmit() handler and already
2791                  * checked the frozen bit.
2792                  */
2793                 __netif_tx_lock(txq, cpu);
2794                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2795                 __netif_tx_unlock(txq);
2796         }
2797 }
2798 
2799 static inline void netif_tx_lock_bh(struct net_device *dev)
2800 {
2801         local_bh_disable();
2802         netif_tx_lock(dev);
2803 }
2804 
2805 static inline void netif_tx_unlock(struct net_device *dev)
2806 {
2807         unsigned int i;
2808 
2809         for (i = 0; i < dev->num_tx_queues; i++) {
2810                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2811 
2812                 /* No need to grab the _xmit_lock here.  If the
2813                  * queue is not stopped for another reason, we
2814                  * force a schedule.
2815                  */
2816                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2817                 netif_schedule_queue(txq);
2818         }
2819         spin_unlock(&dev->tx_global_lock);
2820 }
2821 
2822 static inline void netif_tx_unlock_bh(struct net_device *dev)
2823 {
2824         netif_tx_unlock(dev);
2825         local_bh_enable();
2826 }
2827 
2828 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
2829         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2830                 __netif_tx_lock(txq, cpu);              \
2831         }                                               \
2832 }
2833 
2834 #define HARD_TX_UNLOCK(dev, txq) {                      \
2835         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2836                 __netif_tx_unlock(txq);                 \
2837         }                                               \
2838 }
2839 
2840 static inline void netif_tx_disable(struct net_device *dev)
2841 {
2842         unsigned int i;
2843         int cpu;
2844 
2845         local_bh_disable();
2846         cpu = smp_processor_id();
2847         for (i = 0; i < dev->num_tx_queues; i++) {
2848                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2849 
2850                 __netif_tx_lock(txq, cpu);
2851                 netif_tx_stop_queue(txq);
2852                 __netif_tx_unlock(txq);
2853         }
2854         local_bh_enable();
2855 }
2856 
2857 static inline void netif_addr_lock(struct net_device *dev)
2858 {
2859         spin_lock(&dev->addr_list_lock);
2860 }
2861 
2862 static inline void netif_addr_lock_nested(struct net_device *dev)
2863 {
2864         spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2865 }
2866 
2867 static inline void netif_addr_lock_bh(struct net_device *dev)
2868 {
2869         spin_lock_bh(&dev->addr_list_lock);
2870 }
2871 
2872 static inline void netif_addr_unlock(struct net_device *dev)
2873 {
2874         spin_unlock(&dev->addr_list_lock);
2875 }
2876 
2877 static inline void netif_addr_unlock_bh(struct net_device *dev)
2878 {
2879         spin_unlock_bh(&dev->addr_list_lock);
2880 }
2881 
2882 /*
2883  * dev_addrs walker. Should be used only for read access. Call with
2884  * rcu_read_lock held.
2885  */
2886 #define for_each_dev_addr(dev, ha) \
2887                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2888 
2889 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2890 
2891 void ether_setup(struct net_device *dev);
2892 
2893 /* Support for loadable net-drivers */
2894 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2895                                     void (*setup)(struct net_device *),
2896                                     unsigned int txqs, unsigned int rxqs);
2897 #define alloc_netdev(sizeof_priv, name, setup) \
2898         alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2899 
2900 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2901         alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2902 
2903 int register_netdev(struct net_device *dev);
2904 void unregister_netdev(struct net_device *dev);
2905 
2906 /* General hardware address lists handling functions */
2907 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2908                    struct netdev_hw_addr_list *from_list, int addr_len);
2909 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2910                       struct netdev_hw_addr_list *from_list, int addr_len);
2911 void __hw_addr_init(struct netdev_hw_addr_list *list);
2912 
2913 /* Functions used for device addresses handling */
2914 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2915                  unsigned char addr_type);
2916 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2917                  unsigned char addr_type);
2918 void dev_addr_flush(struct net_device *dev);
2919 int dev_addr_init(struct net_device *dev);
2920 
2921 /* Functions used for unicast addresses handling */
2922 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2923 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2924 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2925 int dev_uc_sync(struct net_device *to, struct net_device *from);
2926 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
2927 void dev_uc_unsync(struct net_device *to, struct net_device *from);
2928 void dev_uc_flush(struct net_device *dev);
2929 void dev_uc_init(struct net_device *dev);
2930 
2931 /* Functions used for multicast addresses handling */
2932 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2933 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2934 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2935 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2936 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2937 int dev_mc_sync(struct net_device *to, struct net_device *from);
2938 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
2939 void dev_mc_unsync(struct net_device *to, struct net_device *from);
2940 void dev_mc_flush(struct net_device *dev);
2941 void dev_mc_init(struct net_device *dev);
2942 
2943 /* Functions used for secondary unicast and multicast support */
2944 void dev_set_rx_mode(struct net_device *dev);
2945 void __dev_set_rx_mode(struct net_device *dev);
2946 int dev_set_promiscuity(struct net_device *dev, int inc);
2947 int dev_set_allmulti(struct net_device *dev, int inc);
2948 void netdev_state_change(struct net_device *dev);
2949 void netdev_notify_peers(struct net_device *dev);
2950 void netdev_features_change(struct net_device *dev);
2951 /* Load a device via the kmod */
2952 void dev_load(struct net *net, const char *name);
2953 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2954                                         struct rtnl_link_stats64 *storage);
2955 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2956                              const struct net_device_stats *netdev_stats);
2957 
2958 extern int              netdev_max_backlog;
2959 extern int              netdev_tstamp_prequeue;
2960 extern int              weight_p;
2961 extern int              bpf_jit_enable;
2962 
2963 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
2964 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
2965                                                      struct list_head **iter);
2966 
2967 /* iterate through upper list, must be called under RCU read lock */
2968 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
2969         for (iter = &(dev)->all_adj_list.upper, \
2970              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
2971              updev; \
2972              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
2973 
2974 void *netdev_lower_get_next_private(struct net_device *dev,
2975                                     struct list_head **iter);
2976 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
2977                                         struct list_head **iter);
2978 
2979 #define netdev_for_each_lower_private(dev, priv, iter) \
2980         for (iter = (dev)->adj_list.lower.next, \
2981              priv = netdev_lower_get_next_private(dev, &(iter)); \
2982              priv; \
2983              priv = netdev_lower_get_next_private(dev, &(iter)))
2984 
2985 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
2986         for (iter = &(dev)->adj_list.lower, \
2987              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
2988              priv; \
2989              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
2990 
2991 void *netdev_adjacent_get_private(struct list_head *adj_list);
2992 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
2993 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
2994 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
2995 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
2996 int netdev_master_upper_dev_link(struct net_device *dev,
2997                                  struct net_device *upper_dev);
2998 int netdev_master_upper_dev_link_private(struct net_device *dev,
2999                                          struct net_device *upper_dev,
3000                                          void *private);
3001 void netdev_upper_dev_unlink(struct net_device *dev,
3002                              struct net_device *upper_dev);
3003 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3004 void *netdev_lower_dev_get_private(struct net_device *dev,
3005                                    struct net_device *lower_dev);
3006 int skb_checksum_help(struct sk_buff *skb);
3007 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3008                                   netdev_features_t features, bool tx_path);
3009 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3010                                     netdev_features_t features);
3011 
3012 static inline
3013 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3014 {
3015         return __skb_gso_segment(skb, features, true);
3016 }
3017 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3018 
3019 static inline bool can_checksum_protocol(netdev_features_t features,
3020                                          __be16 protocol)
3021 {
3022         return ((features & NETIF_F_GEN_CSUM) ||
3023                 ((features & NETIF_F_V4_CSUM) &&
3024                  protocol == htons(ETH_P_IP)) ||
3025                 ((features & NETIF_F_V6_CSUM) &&
3026                  protocol == htons(ETH_P_IPV6)) ||
3027                 ((features & NETIF_F_FCOE_CRC) &&
3028                  protocol == htons(ETH_P_FCOE)));
3029 }
3030 
3031 #ifdef CONFIG_BUG
3032 void netdev_rx_csum_fault(struct net_device *dev);
3033 #else
3034 static inline void netdev_rx_csum_fault(struct net_device *dev)
3035 {
3036 }
3037 #endif
3038 /* rx skb timestamps */
3039 void net_enable_timestamp(void);
3040 void net_disable_timestamp(void);
3041 
3042 #ifdef CONFIG_PROC_FS
3043 int __init dev_proc_init(void);
3044 #else
3045 #define dev_proc_init() 0
3046 #endif
3047 
3048 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3049                                 const void *ns);
3050 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3051                                  const void *ns);
3052 
3053 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3054 {
3055         return netdev_class_create_file_ns(class_attr, NULL);
3056 }
3057 
3058 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3059 {
3060         netdev_class_remove_file_ns(class_attr, NULL);
3061 }
3062 
3063 extern struct kobj_ns_type_operations net_ns_type_operations;
3064 
3065 const char *netdev_drivername(const struct net_device *dev);
3066 
3067 void linkwatch_run_queue(void);
3068 
3069 static inline netdev_features_t netdev_get_wanted_features(
3070         struct net_device *dev)
3071 {
3072         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3073 }
3074 netdev_features_t netdev_increment_features(netdev_features_t all,
3075         netdev_features_t one, netdev_features_t mask);
3076 
3077 /* Allow TSO being used on stacked device :
3078  * Performing the GSO segmentation before last device
3079  * is a performance improvement.
3080  */
3081 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3082                                                         netdev_features_t mask)
3083 {
3084         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3085 }
3086 
3087 int __netdev_update_features(struct net_device *dev);
3088 void netdev_update_features(struct net_device *dev);
3089 void netdev_change_features(struct net_device *dev);
3090 
3091 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3092                                         struct net_device *dev);
3093 
3094 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
3095                                          const struct net_device *dev);
3096 static inline netdev_features_t netif_skb_features(struct sk_buff *skb)
3097 {
3098         return netif_skb_dev_features(skb, skb->dev);
3099 }
3100 
3101 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3102 {
3103         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3104 
3105         /* check flags correspondence */
3106         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3107         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3108         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3109         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3110         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3111         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3112 
3113         return (features & feature) == feature;
3114 }
3115 
3116 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3117 {
3118         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3119                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3120 }
3121 
3122 static inline bool netif_needs_gso(struct sk_buff *skb,
3123                                    netdev_features_t features)
3124 {
3125         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3126                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3127                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3128 }
3129 
3130 static inline void netif_set_gso_max_size(struct net_device *dev,
3131                                           unsigned int size)
3132 {
3133         dev->gso_max_size = size;
3134 }
3135 
3136 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3137                                         int pulled_hlen, u16 mac_offset,
3138                                         int mac_len)
3139 {
3140         skb->protocol = protocol;
3141         skb->encapsulation = 1;
3142         skb_push(skb, pulled_hlen);
3143         skb_reset_transport_header(skb);
3144         skb->mac_header = mac_offset;
3145         skb->network_header = skb->mac_header + mac_len;
3146         skb->mac_len = mac_len;
3147 }
3148 
3149 static inline bool netif_is_macvlan(struct net_device *dev)
3150 {
3151         return dev->priv_flags & IFF_MACVLAN;
3152 }
3153 
3154 static inline bool netif_is_bond_master(struct net_device *dev)
3155 {
3156         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3157 }
3158 
3159 static inline bool netif_is_bond_slave(struct net_device *dev)
3160 {
3161         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3162 }
3163 
3164 static inline bool netif_supports_nofcs(struct net_device *dev)
3165 {
3166         return dev->priv_flags & IFF_SUPP_NOFCS;
3167 }
3168 
3169 extern struct pernet_operations __net_initdata loopback_net_ops;
3170 
3171 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3172 
3173 /* netdev_printk helpers, similar to dev_printk */
3174 
3175 static inline const char *netdev_name(const struct net_device *dev)
3176 {
3177         if (dev->reg_state != NETREG_REGISTERED)
3178                 return "(unregistered net_device)";
3179         return dev->name;
3180 }
3181 
3182 __printf(3, 4)
3183 int netdev_printk(const char *level, const struct net_device *dev,
3184                   const char *format, ...);
3185 __printf(2, 3)
3186 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3187 __printf(2, 3)
3188 int netdev_alert(const struct net_device *dev, const char *format, ...);
3189 __printf(2, 3)
3190 int netdev_crit(const struct net_device *dev, const char *format, ...);
3191 __printf(2, 3)
3192 int netdev_err(const struct net_device *dev, const char *format, ...);
3193 __printf(2, 3)
3194 int netdev_warn(const struct net_device *dev, const char *format, ...);
3195 __printf(2, 3)
3196 int netdev_notice(const struct net_device *dev, const char *format, ...);
3197 __printf(2, 3)
3198 int netdev_info(const struct net_device *dev, const char *format, ...);
3199 
3200 #define MODULE_ALIAS_NETDEV(device) \
3201         MODULE_ALIAS("netdev-" device)
3202 
3203 #if defined(CONFIG_DYNAMIC_DEBUG)
3204 #define netdev_dbg(__dev, format, args...)                      \
3205 do {                                                            \
3206         dynamic_netdev_dbg(__dev, format, ##args);              \
3207 } while (0)
3208 #elif defined(DEBUG)
3209 #define netdev_dbg(__dev, format, args...)                      \
3210         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3211 #else
3212 #define netdev_dbg(__dev, format, args...)                      \
3213 ({                                                              \
3214         if (0)                                                  \
3215                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3216         0;                                                      \
3217 })
3218 #endif
3219 
3220 #if defined(VERBOSE_DEBUG)
3221 #define netdev_vdbg     netdev_dbg
3222 #else
3223 
3224 #define netdev_vdbg(dev, format, args...)                       \
3225 ({                                                              \
3226         if (0)                                                  \
3227                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3228         0;                                                      \
3229 })
3230 #endif
3231 
3232 /*
3233  * netdev_WARN() acts like dev_printk(), but with the key difference
3234  * of using a WARN/WARN_ON to get the message out, including the
3235  * file/line information and a backtrace.
3236  */
3237 #define netdev_WARN(dev, format, args...)                       \
3238         WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3239 
3240 /* netif printk helpers, similar to netdev_printk */
3241 
3242 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3243 do {                                                            \
3244         if (netif_msg_##type(priv))                             \
3245                 netdev_printk(level, (dev), fmt, ##args);       \
3246 } while (0)
3247 
3248 #define netif_level(level, priv, type, dev, fmt, args...)       \
3249 do {                                                            \
3250         if (netif_msg_##type(priv))                             \
3251                 netdev_##level(dev, fmt, ##args);               \
3252 } while (0)
3253 
3254 #define netif_emerg(priv, type, dev, fmt, args...)              \
3255         netif_level(emerg, priv, type, dev, fmt, ##args)
3256 #define netif_alert(priv, type, dev, fmt, args...)              \
3257         netif_level(alert, priv, type, dev, fmt, ##args)
3258 #define netif_crit(priv, type, dev, fmt, args...)               \
3259         netif_level(crit, priv, type, dev, fmt, ##args)
3260 #define netif_err(priv, type, dev, fmt, args...)                \
3261         netif_level(err, priv, type, dev, fmt, ##args)
3262 #define netif_warn(priv, type, dev, fmt, args...)               \
3263         netif_level(warn, priv, type, dev, fmt, ##args)
3264 #define netif_notice(priv, type, dev, fmt, args...)             \
3265         netif_level(notice, priv, type, dev, fmt, ##args)
3266 #define netif_info(priv, type, dev, fmt, args...)               \
3267         netif_level(info, priv, type, dev, fmt, ##args)
3268 
3269 #if defined(CONFIG_DYNAMIC_DEBUG)
3270 #define netif_dbg(priv, type, netdev, format, args...)          \
3271 do {                                                            \
3272         if (netif_msg_##type(priv))                             \
3273                 dynamic_netdev_dbg(netdev, format, ##args);     \
3274 } while (0)
3275 #elif defined(DEBUG)
3276 #define netif_dbg(priv, type, dev, format, args...)             \
3277         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3278 #else
3279 #define netif_dbg(priv, type, dev, format, args...)                     \
3280 ({                                                                      \
3281         if (0)                                                          \
3282                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3283         0;                                                              \
3284 })
3285 #endif
3286 
3287 #if defined(VERBOSE_DEBUG)
3288 #define netif_vdbg      netif_dbg
3289 #else
3290 #define netif_vdbg(priv, type, dev, format, args...)            \
3291 ({                                                              \
3292         if (0)                                                  \
3293                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3294         0;                                                      \
3295 })
3296 #endif
3297 
3298 /*
3299  *      The list of packet types we will receive (as opposed to discard)
3300  *      and the routines to invoke.
3301  *
3302  *      Why 16. Because with 16 the only overlap we get on a hash of the
3303  *      low nibble of the protocol value is RARP/SNAP/X.25.
3304  *
3305  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3306  *             sure which should go first, but I bet it won't make much
3307  *             difference if we are running VLANs.  The good news is that
3308  *             this protocol won't be in the list unless compiled in, so
3309  *             the average user (w/out VLANs) will not be adversely affected.
3310  *             --BLG
3311  *
3312  *              0800    IP
3313  *              8100    802.1Q VLAN
3314  *              0001    802.3
3315  *              0002    AX.25
3316  *              0004    802.2
3317  *              8035    RARP
3318  *              0005    SNAP
3319  *              0805    X.25
3320  *              0806    ARP
3321  *              8137    IPX
3322  *              0009    Localtalk
3323  *              86DD    IPv6
3324  */
3325 #define PTYPE_HASH_SIZE (16)
3326 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3327 
3328 #endif  /* _LINUX_NETDEVICE_H */
3329 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us