Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 #include <uapi/linux/if_bonding.h>
 54 #include <uapi/linux/pkt_cls.h>
 55 #include <linux/hashtable.h>
 56 
 57 struct netpoll_info;
 58 struct device;
 59 struct phy_device;
 60 /* 802.11 specific */
 61 struct wireless_dev;
 62 /* 802.15.4 specific */
 63 struct wpan_dev;
 64 struct mpls_dev;
 65 /* UDP Tunnel offloads */
 66 struct udp_tunnel_info;
 67 struct bpf_prog;
 68 
 69 void netdev_set_default_ethtool_ops(struct net_device *dev,
 70                                     const struct ethtool_ops *ops);
 71 
 72 /* Backlog congestion levels */
 73 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 74 #define NET_RX_DROP             1       /* packet dropped */
 75 
 76 /*
 77  * Transmit return codes: transmit return codes originate from three different
 78  * namespaces:
 79  *
 80  * - qdisc return codes
 81  * - driver transmit return codes
 82  * - errno values
 83  *
 84  * Drivers are allowed to return any one of those in their hard_start_xmit()
 85  * function. Real network devices commonly used with qdiscs should only return
 86  * the driver transmit return codes though - when qdiscs are used, the actual
 87  * transmission happens asynchronously, so the value is not propagated to
 88  * higher layers. Virtual network devices transmit synchronously; in this case
 89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 90  * others are propagated to higher layers.
 91  */
 92 
 93 /* qdisc ->enqueue() return codes. */
 94 #define NET_XMIT_SUCCESS        0x00
 95 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 96 #define NET_XMIT_CN             0x02    /* congestion notification      */
 97 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 98 
 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK          0xf0
107 
108 enum netdev_tx {
109         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
110         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
111         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121         /*
122          * Positive cases with an skb consumed by a driver:
123          * - successful transmission (rc == NETDEV_TX_OK)
124          * - error while transmitting (rc < 0)
125          * - error while queueing to a different device (rc & NET_XMIT_MASK)
126          */
127         if (likely(rc < NET_XMIT_MASK))
128                 return true;
129 
130         return false;
131 }
132 
133 /*
134  *      Compute the worst-case header length according to the protocols
135  *      used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *      Old network device statistics. Fields are native words
159  *      (unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163         unsigned long   rx_packets;
164         unsigned long   tx_packets;
165         unsigned long   rx_bytes;
166         unsigned long   tx_bytes;
167         unsigned long   rx_errors;
168         unsigned long   tx_errors;
169         unsigned long   rx_dropped;
170         unsigned long   tx_dropped;
171         unsigned long   multicast;
172         unsigned long   collisions;
173         unsigned long   rx_length_errors;
174         unsigned long   rx_over_errors;
175         unsigned long   rx_crc_errors;
176         unsigned long   rx_frame_errors;
177         unsigned long   rx_fifo_errors;
178         unsigned long   rx_missed_errors;
179         unsigned long   tx_aborted_errors;
180         unsigned long   tx_carrier_errors;
181         unsigned long   tx_fifo_errors;
182         unsigned long   tx_heartbeat_errors;
183         unsigned long   tx_window_errors;
184         unsigned long   rx_compressed;
185         unsigned long   tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 extern struct static_key rfs_needed;
196 #endif
197 
198 struct neighbour;
199 struct neigh_parms;
200 struct sk_buff;
201 
202 struct netdev_hw_addr {
203         struct list_head        list;
204         unsigned char           addr[MAX_ADDR_LEN];
205         unsigned char           type;
206 #define NETDEV_HW_ADDR_T_LAN            1
207 #define NETDEV_HW_ADDR_T_SAN            2
208 #define NETDEV_HW_ADDR_T_SLAVE          3
209 #define NETDEV_HW_ADDR_T_UNICAST        4
210 #define NETDEV_HW_ADDR_T_MULTICAST      5
211         bool                    global_use;
212         int                     sync_cnt;
213         int                     refcount;
214         int                     synced;
215         struct rcu_head         rcu_head;
216 };
217 
218 struct netdev_hw_addr_list {
219         struct list_head        list;
220         int                     count;
221 };
222 
223 #define netdev_hw_addr_list_count(l) ((l)->count)
224 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
225 #define netdev_hw_addr_list_for_each(ha, l) \
226         list_for_each_entry(ha, &(l)->list, list)
227 
228 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
229 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
230 #define netdev_for_each_uc_addr(ha, dev) \
231         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
232 
233 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
234 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
235 #define netdev_for_each_mc_addr(ha, dev) \
236         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
237 
238 struct hh_cache {
239         u16             hh_len;
240         u16             __pad;
241         seqlock_t       hh_lock;
242 
243         /* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD     16
245 #define HH_DATA_OFF(__len) \
246         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251 
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264 
265 struct header_ops {
266         int     (*create) (struct sk_buff *skb, struct net_device *dev,
267                            unsigned short type, const void *daddr,
268                            const void *saddr, unsigned int len);
269         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271         void    (*cache_update)(struct hh_cache *hh,
272                                 const struct net_device *dev,
273                                 const unsigned char *haddr);
274         bool    (*validate)(const char *ll_header, unsigned int len);
275 };
276 
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281 
282 enum netdev_state_t {
283         __LINK_STATE_START,
284         __LINK_STATE_PRESENT,
285         __LINK_STATE_NOCARRIER,
286         __LINK_STATE_LINKWATCH_PENDING,
287         __LINK_STATE_DORMANT,
288 };
289 
290 
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296         char name[IFNAMSIZ];
297         struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300 
301 int __init netdev_boot_setup(char *str);
302 
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307         /* The poll_list must only be managed by the entity which
308          * changes the state of the NAPI_STATE_SCHED bit.  This means
309          * whoever atomically sets that bit can add this napi_struct
310          * to the per-CPU poll_list, and whoever clears that bit
311          * can remove from the list right before clearing the bit.
312          */
313         struct list_head        poll_list;
314 
315         unsigned long           state;
316         int                     weight;
317         unsigned int            gro_count;
318         int                     (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320         int                     poll_owner;
321 #endif
322         struct net_device       *dev;
323         struct sk_buff          *gro_list;
324         struct sk_buff          *skb;
325         struct hrtimer          timer;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330 
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_DISABLE,     /* Disable pending */
334         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
335         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
336         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
338 };
339 
340 enum {
341         NAPIF_STATE_SCHED        = (1UL << NAPI_STATE_SCHED),
342         NAPIF_STATE_DISABLE      = (1UL << NAPI_STATE_DISABLE),
343         NAPIF_STATE_NPSVC        = (1UL << NAPI_STATE_NPSVC),
344         NAPIF_STATE_HASHED       = (1UL << NAPI_STATE_HASHED),
345         NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL),
346         NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL),
347 };
348 
349 enum gro_result {
350         GRO_MERGED,
351         GRO_MERGED_FREE,
352         GRO_HELD,
353         GRO_NORMAL,
354         GRO_DROP,
355 };
356 typedef enum gro_result gro_result_t;
357 
358 /*
359  * enum rx_handler_result - Possible return values for rx_handlers.
360  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
361  * further.
362  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
363  * case skb->dev was changed by rx_handler.
364  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
365  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
366  *
367  * rx_handlers are functions called from inside __netif_receive_skb(), to do
368  * special processing of the skb, prior to delivery to protocol handlers.
369  *
370  * Currently, a net_device can only have a single rx_handler registered. Trying
371  * to register a second rx_handler will return -EBUSY.
372  *
373  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
374  * To unregister a rx_handler on a net_device, use
375  * netdev_rx_handler_unregister().
376  *
377  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
378  * do with the skb.
379  *
380  * If the rx_handler consumed the skb in some way, it should return
381  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
382  * the skb to be delivered in some other way.
383  *
384  * If the rx_handler changed skb->dev, to divert the skb to another
385  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
386  * new device will be called if it exists.
387  *
388  * If the rx_handler decides the skb should be ignored, it should return
389  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
390  * are registered on exact device (ptype->dev == skb->dev).
391  *
392  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
393  * delivered, it should return RX_HANDLER_PASS.
394  *
395  * A device without a registered rx_handler will behave as if rx_handler
396  * returned RX_HANDLER_PASS.
397  */
398 
399 enum rx_handler_result {
400         RX_HANDLER_CONSUMED,
401         RX_HANDLER_ANOTHER,
402         RX_HANDLER_EXACT,
403         RX_HANDLER_PASS,
404 };
405 typedef enum rx_handler_result rx_handler_result_t;
406 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
407 
408 void __napi_schedule(struct napi_struct *n);
409 void __napi_schedule_irqoff(struct napi_struct *n);
410 
411 static inline bool napi_disable_pending(struct napi_struct *n)
412 {
413         return test_bit(NAPI_STATE_DISABLE, &n->state);
414 }
415 
416 /**
417  *      napi_schedule_prep - check if NAPI can be scheduled
418  *      @n: NAPI context
419  *
420  * Test if NAPI routine is already running, and if not mark
421  * it as running.  This is used as a condition variable to
422  * insure only one NAPI poll instance runs.  We also make
423  * sure there is no pending NAPI disable.
424  */
425 static inline bool napi_schedule_prep(struct napi_struct *n)
426 {
427         return !napi_disable_pending(n) &&
428                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
429 }
430 
431 /**
432  *      napi_schedule - schedule NAPI poll
433  *      @n: NAPI context
434  *
435  * Schedule NAPI poll routine to be called if it is not already
436  * running.
437  */
438 static inline void napi_schedule(struct napi_struct *n)
439 {
440         if (napi_schedule_prep(n))
441                 __napi_schedule(n);
442 }
443 
444 /**
445  *      napi_schedule_irqoff - schedule NAPI poll
446  *      @n: NAPI context
447  *
448  * Variant of napi_schedule(), assuming hard irqs are masked.
449  */
450 static inline void napi_schedule_irqoff(struct napi_struct *n)
451 {
452         if (napi_schedule_prep(n))
453                 __napi_schedule_irqoff(n);
454 }
455 
456 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
457 static inline bool napi_reschedule(struct napi_struct *napi)
458 {
459         if (napi_schedule_prep(napi)) {
460                 __napi_schedule(napi);
461                 return true;
462         }
463         return false;
464 }
465 
466 bool __napi_complete(struct napi_struct *n);
467 bool napi_complete_done(struct napi_struct *n, int work_done);
468 /**
469  *      napi_complete - NAPI processing complete
470  *      @n: NAPI context
471  *
472  * Mark NAPI processing as complete.
473  * Consider using napi_complete_done() instead.
474  * Return false if device should avoid rearming interrupts.
475  */
476 static inline bool napi_complete(struct napi_struct *n)
477 {
478         return napi_complete_done(n, 0);
479 }
480 
481 /**
482  *      napi_hash_del - remove a NAPI from global table
483  *      @napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *      napi_disable - prevent NAPI from scheduling
497  *      @n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *      napi_enable - enable NAPI scheduling
506  *      @n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514         smp_mb__before_atomic();
515         clear_bit(NAPI_STATE_SCHED, &n->state);
516         clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *      napi_synchronize - wait until NAPI is not running
521  *      @n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529         if (IS_ENABLED(CONFIG_SMP))
530                 while (test_bit(NAPI_STATE_SCHED, &n->state))
531                         msleep(1);
532         else
533                 barrier();
534 }
535 
536 enum netdev_queue_state_t {
537         __QUEUE_STATE_DRV_XOFF,
538         __QUEUE_STATE_STACK_XOFF,
539         __QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548                                         QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550                                         QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566         struct net_device       *dev;
567         struct Qdisc __rcu      *qdisc;
568         struct Qdisc            *qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570         struct kobject          kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573         int                     numa_node;
574 #endif
575         unsigned long           tx_maxrate;
576         /*
577          * Number of TX timeouts for this queue
578          * (/sys/class/net/DEV/Q/trans_timeout)
579          */
580         unsigned long           trans_timeout;
581 /*
582  * write-mostly part
583  */
584         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
585         int                     xmit_lock_owner;
586         /*
587          * Time (in jiffies) of last Tx
588          */
589         unsigned long           trans_start;
590 
591         unsigned long           state;
592 
593 #ifdef CONFIG_BQL
594         struct dql              dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601         return q->numa_node;
602 #else
603         return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610         q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620         unsigned int len;
621         struct rcu_head rcu;
622         u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632         u16 cpu;
633         u16 filter;
634         unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642         unsigned int mask;
643         struct rcu_head rcu;
644         struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660         u32     mask;
661 
662         u32     ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672                                         u32 hash)
673 {
674         if (table && hash) {
675                 unsigned int index = hash & table->mask;
676                 u32 val = hash & ~rps_cpu_mask;
677 
678                 /* We only give a hint, preemption can change CPU under us */
679                 val |= raw_smp_processor_id();
680 
681                 if (table->ents[index] != val)
682                         table->ents[index] = val;
683         }
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688                          u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695         struct rps_map __rcu            *rps_map;
696         struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698         struct kobject                  kobj;
699         struct net_device               *dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706         struct attribute attr;
707         ssize_t (*show)(struct netdev_rx_queue *queue,
708             struct rx_queue_attribute *attr, char *buf);
709         ssize_t (*store)(struct netdev_rx_queue *queue,
710             struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719         unsigned int len;
720         unsigned int alloc_len;
721         struct rcu_head rcu;
722         u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732         struct rcu_head rcu;
733         struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
736         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE    16
740 #define TC_BITMASK      15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743         u16 count;
744         u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753         char    manufacturer[64];
754         char    serial_number[64];
755         char    hardware_version[64];
756         char    driver_version[64];
757         char    optionrom_version[64];
758         char    firmware_version[64];
759         char    model[256];
760         char    model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771         unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775                                             struct netdev_phys_item_id *b)
776 {
777         return a->id_len == b->id_len &&
778                memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782                                        struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788         TC_SETUP_MQPRIO,
789         TC_SETUP_CLSU32,
790         TC_SETUP_CLSFLOWER,
791         TC_SETUP_MATCHALL,
792         TC_SETUP_CLSBPF,
793 };
794 
795 struct tc_cls_u32_offload;
796 
797 struct tc_to_netdev {
798         unsigned int type;
799         union {
800                 u8 tc;
801                 struct tc_cls_u32_offload *cls_u32;
802                 struct tc_cls_flower_offload *cls_flower;
803                 struct tc_cls_matchall_offload *cls_mall;
804                 struct tc_cls_bpf_offload *cls_bpf;
805         };
806         bool egress_dev;
807 };
808 
809 /* These structures hold the attributes of xdp state that are being passed
810  * to the netdevice through the xdp op.
811  */
812 enum xdp_netdev_command {
813         /* Set or clear a bpf program used in the earliest stages of packet
814          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
815          * is responsible for calling bpf_prog_put on any old progs that are
816          * stored. In case of error, the callee need not release the new prog
817          * reference, but on success it takes ownership and must bpf_prog_put
818          * when it is no longer used.
819          */
820         XDP_SETUP_PROG,
821         /* Check if a bpf program is set on the device.  The callee should
822          * return true if a program is currently attached and running.
823          */
824         XDP_QUERY_PROG,
825 };
826 
827 struct netdev_xdp {
828         enum xdp_netdev_command command;
829         union {
830                 /* XDP_SETUP_PROG */
831                 struct bpf_prog *prog;
832                 /* XDP_QUERY_PROG */
833                 bool prog_attached;
834         };
835 };
836 
837 /*
838  * This structure defines the management hooks for network devices.
839  * The following hooks can be defined; unless noted otherwise, they are
840  * optional and can be filled with a null pointer.
841  *
842  * int (*ndo_init)(struct net_device *dev);
843  *     This function is called once when a network device is registered.
844  *     The network device can use this for any late stage initialization
845  *     or semantic validation. It can fail with an error code which will
846  *     be propagated back to register_netdev.
847  *
848  * void (*ndo_uninit)(struct net_device *dev);
849  *     This function is called when device is unregistered or when registration
850  *     fails. It is not called if init fails.
851  *
852  * int (*ndo_open)(struct net_device *dev);
853  *     This function is called when a network device transitions to the up
854  *     state.
855  *
856  * int (*ndo_stop)(struct net_device *dev);
857  *     This function is called when a network device transitions to the down
858  *     state.
859  *
860  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
861  *                               struct net_device *dev);
862  *      Called when a packet needs to be transmitted.
863  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
864  *      the queue before that can happen; it's for obsolete devices and weird
865  *      corner cases, but the stack really does a non-trivial amount
866  *      of useless work if you return NETDEV_TX_BUSY.
867  *      Required; cannot be NULL.
868  *
869  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
870  *                                         struct net_device *dev
871  *                                         netdev_features_t features);
872  *      Called by core transmit path to determine if device is capable of
873  *      performing offload operations on a given packet. This is to give
874  *      the device an opportunity to implement any restrictions that cannot
875  *      be otherwise expressed by feature flags. The check is called with
876  *      the set of features that the stack has calculated and it returns
877  *      those the driver believes to be appropriate.
878  *
879  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
880  *                         void *accel_priv, select_queue_fallback_t fallback);
881  *      Called to decide which queue to use when device supports multiple
882  *      transmit queues.
883  *
884  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
885  *      This function is called to allow device receiver to make
886  *      changes to configuration when multicast or promiscuous is enabled.
887  *
888  * void (*ndo_set_rx_mode)(struct net_device *dev);
889  *      This function is called device changes address list filtering.
890  *      If driver handles unicast address filtering, it should set
891  *      IFF_UNICAST_FLT in its priv_flags.
892  *
893  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
894  *      This function  is called when the Media Access Control address
895  *      needs to be changed. If this interface is not defined, the
896  *      MAC address can not be changed.
897  *
898  * int (*ndo_validate_addr)(struct net_device *dev);
899  *      Test if Media Access Control address is valid for the device.
900  *
901  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
902  *      Called when a user requests an ioctl which can't be handled by
903  *      the generic interface code. If not defined ioctls return
904  *      not supported error code.
905  *
906  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
907  *      Used to set network devices bus interface parameters. This interface
908  *      is retained for legacy reasons; new devices should use the bus
909  *      interface (PCI) for low level management.
910  *
911  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
912  *      Called when a user wants to change the Maximum Transfer Unit
913  *      of a device. If not defined, any request to change MTU will
914  *      will return an error.
915  *
916  * void (*ndo_tx_timeout)(struct net_device *dev);
917  *      Callback used when the transmitter has not made any progress
918  *      for dev->watchdog ticks.
919  *
920  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
921  *                      struct rtnl_link_stats64 *storage);
922  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
923  *      Called when a user wants to get the network device usage
924  *      statistics. Drivers must do one of the following:
925  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
926  *         rtnl_link_stats64 structure passed by the caller.
927  *      2. Define @ndo_get_stats to update a net_device_stats structure
928  *         (which should normally be dev->stats) and return a pointer to
929  *         it. The structure may be changed asynchronously only if each
930  *         field is written atomically.
931  *      3. Update dev->stats asynchronously and atomically, and define
932  *         neither operation.
933  *
934  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
935  *      Return true if this device supports offload stats of this attr_id.
936  *
937  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
938  *      void *attr_data)
939  *      Get statistics for offload operations by attr_id. Write it into the
940  *      attr_data pointer.
941  *
942  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
943  *      If device supports VLAN filtering this function is called when a
944  *      VLAN id is registered.
945  *
946  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
947  *      If device supports VLAN filtering this function is called when a
948  *      VLAN id is unregistered.
949  *
950  * void (*ndo_poll_controller)(struct net_device *dev);
951  *
952  *      SR-IOV management functions.
953  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
954  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
955  *                        u8 qos, __be16 proto);
956  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
957  *                        int max_tx_rate);
958  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
959  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
960  * int (*ndo_get_vf_config)(struct net_device *dev,
961  *                          int vf, struct ifla_vf_info *ivf);
962  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
963  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
964  *                        struct nlattr *port[]);
965  *
966  *      Enable or disable the VF ability to query its RSS Redirection Table and
967  *      Hash Key. This is needed since on some devices VF share this information
968  *      with PF and querying it may introduce a theoretical security risk.
969  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
970  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
971  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
972  *      Called to setup 'tc' number of traffic classes in the net device. This
973  *      is always called from the stack with the rtnl lock held and netif tx
974  *      queues stopped. This allows the netdevice to perform queue management
975  *      safely.
976  *
977  *      Fiber Channel over Ethernet (FCoE) offload functions.
978  * int (*ndo_fcoe_enable)(struct net_device *dev);
979  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
980  *      so the underlying device can perform whatever needed configuration or
981  *      initialization to support acceleration of FCoE traffic.
982  *
983  * int (*ndo_fcoe_disable)(struct net_device *dev);
984  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
985  *      so the underlying device can perform whatever needed clean-ups to
986  *      stop supporting acceleration of FCoE traffic.
987  *
988  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
989  *                           struct scatterlist *sgl, unsigned int sgc);
990  *      Called when the FCoE Initiator wants to initialize an I/O that
991  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
992  *      perform necessary setup and returns 1 to indicate the device is set up
993  *      successfully to perform DDP on this I/O, otherwise this returns 0.
994  *
995  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
996  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
997  *      indicated by the FC exchange id 'xid', so the underlying device can
998  *      clean up and reuse resources for later DDP requests.
999  *
1000  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1001  *                            struct scatterlist *sgl, unsigned int sgc);
1002  *      Called when the FCoE Target wants to initialize an I/O that
1003  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1004  *      perform necessary setup and returns 1 to indicate the device is set up
1005  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1006  *
1007  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1008  *                             struct netdev_fcoe_hbainfo *hbainfo);
1009  *      Called when the FCoE Protocol stack wants information on the underlying
1010  *      device. This information is utilized by the FCoE protocol stack to
1011  *      register attributes with Fiber Channel management service as per the
1012  *      FC-GS Fabric Device Management Information(FDMI) specification.
1013  *
1014  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1015  *      Called when the underlying device wants to override default World Wide
1016  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1017  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1018  *      protocol stack to use.
1019  *
1020  *      RFS acceleration.
1021  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1022  *                          u16 rxq_index, u32 flow_id);
1023  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1024  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1025  *      Return the filter ID on success, or a negative error code.
1026  *
1027  *      Slave management functions (for bridge, bonding, etc).
1028  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1029  *      Called to make another netdev an underling.
1030  *
1031  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1032  *      Called to release previously enslaved netdev.
1033  *
1034  *      Feature/offload setting functions.
1035  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1036  *              netdev_features_t features);
1037  *      Adjusts the requested feature flags according to device-specific
1038  *      constraints, and returns the resulting flags. Must not modify
1039  *      the device state.
1040  *
1041  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1042  *      Called to update device configuration to new features. Passed
1043  *      feature set might be less than what was returned by ndo_fix_features()).
1044  *      Must return >0 or -errno if it changed dev->features itself.
1045  *
1046  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1047  *                    struct net_device *dev,
1048  *                    const unsigned char *addr, u16 vid, u16 flags)
1049  *      Adds an FDB entry to dev for addr.
1050  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1051  *                    struct net_device *dev,
1052  *                    const unsigned char *addr, u16 vid)
1053  *      Deletes the FDB entry from dev coresponding to addr.
1054  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1055  *                     struct net_device *dev, struct net_device *filter_dev,
1056  *                     int *idx)
1057  *      Used to add FDB entries to dump requests. Implementers should add
1058  *      entries to skb and update idx with the number of entries.
1059  *
1060  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1061  *                           u16 flags)
1062  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1063  *                           struct net_device *dev, u32 filter_mask,
1064  *                           int nlflags)
1065  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1066  *                           u16 flags);
1067  *
1068  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1069  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1070  *      which do not represent real hardware may define this to allow their
1071  *      userspace components to manage their virtual carrier state. Devices
1072  *      that determine carrier state from physical hardware properties (eg
1073  *      network cables) or protocol-dependent mechanisms (eg
1074  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1075  *
1076  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1077  *                             struct netdev_phys_item_id *ppid);
1078  *      Called to get ID of physical port of this device. If driver does
1079  *      not implement this, it is assumed that the hw is not able to have
1080  *      multiple net devices on single physical port.
1081  *
1082  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1083  *                            struct udp_tunnel_info *ti);
1084  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1085  *      address family that a UDP tunnel is listnening to. It is called only
1086  *      when a new port starts listening. The operation is protected by the
1087  *      RTNL.
1088  *
1089  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1090  *                            struct udp_tunnel_info *ti);
1091  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1092  *      address family that the UDP tunnel is not listening to anymore. The
1093  *      operation is protected by the RTNL.
1094  *
1095  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1096  *                               struct net_device *dev)
1097  *      Called by upper layer devices to accelerate switching or other
1098  *      station functionality into hardware. 'pdev is the lowerdev
1099  *      to use for the offload and 'dev' is the net device that will
1100  *      back the offload. Returns a pointer to the private structure
1101  *      the upper layer will maintain.
1102  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1103  *      Called by upper layer device to delete the station created
1104  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1105  *      the station and priv is the structure returned by the add
1106  *      operation.
1107  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1108  *                                    struct net_device *dev,
1109  *                                    void *priv);
1110  *      Callback to use for xmit over the accelerated station. This
1111  *      is used in place of ndo_start_xmit on accelerated net
1112  *      devices.
1113  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1114  *                           int queue_index, u32 maxrate);
1115  *      Called when a user wants to set a max-rate limitation of specific
1116  *      TX queue.
1117  * int (*ndo_get_iflink)(const struct net_device *dev);
1118  *      Called to get the iflink value of this device.
1119  * void (*ndo_change_proto_down)(struct net_device *dev,
1120  *                               bool proto_down);
1121  *      This function is used to pass protocol port error state information
1122  *      to the switch driver. The switch driver can react to the proto_down
1123  *      by doing a phys down on the associated switch port.
1124  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1125  *      This function is used to get egress tunnel information for given skb.
1126  *      This is useful for retrieving outer tunnel header parameters while
1127  *      sampling packet.
1128  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1129  *      This function is used to specify the headroom that the skb must
1130  *      consider when allocation skb during packet reception. Setting
1131  *      appropriate rx headroom value allows avoiding skb head copy on
1132  *      forward. Setting a negative value resets the rx headroom to the
1133  *      default value.
1134  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1135  *      This function is used to set or query state related to XDP on the
1136  *      netdevice. See definition of enum xdp_netdev_command for details.
1137  *
1138  */
1139 struct net_device_ops {
1140         int                     (*ndo_init)(struct net_device *dev);
1141         void                    (*ndo_uninit)(struct net_device *dev);
1142         int                     (*ndo_open)(struct net_device *dev);
1143         int                     (*ndo_stop)(struct net_device *dev);
1144         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1145                                                   struct net_device *dev);
1146         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1147                                                       struct net_device *dev,
1148                                                       netdev_features_t features);
1149         u16                     (*ndo_select_queue)(struct net_device *dev,
1150                                                     struct sk_buff *skb,
1151                                                     void *accel_priv,
1152                                                     select_queue_fallback_t fallback);
1153         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1154                                                        int flags);
1155         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1156         int                     (*ndo_set_mac_address)(struct net_device *dev,
1157                                                        void *addr);
1158         int                     (*ndo_validate_addr)(struct net_device *dev);
1159         int                     (*ndo_do_ioctl)(struct net_device *dev,
1160                                                 struct ifreq *ifr, int cmd);
1161         int                     (*ndo_set_config)(struct net_device *dev,
1162                                                   struct ifmap *map);
1163         int                     (*ndo_change_mtu)(struct net_device *dev,
1164                                                   int new_mtu);
1165         int                     (*ndo_neigh_setup)(struct net_device *dev,
1166                                                    struct neigh_parms *);
1167         void                    (*ndo_tx_timeout) (struct net_device *dev);
1168 
1169         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1170                                                      struct rtnl_link_stats64 *storage);
1171         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1172         int                     (*ndo_get_offload_stats)(int attr_id,
1173                                                          const struct net_device *dev,
1174                                                          void *attr_data);
1175         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1176 
1177         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1178                                                        __be16 proto, u16 vid);
1179         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1180                                                         __be16 proto, u16 vid);
1181 #ifdef CONFIG_NET_POLL_CONTROLLER
1182         void                    (*ndo_poll_controller)(struct net_device *dev);
1183         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1184                                                      struct netpoll_info *info);
1185         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1186 #endif
1187 #ifdef CONFIG_NET_RX_BUSY_POLL
1188         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1189 #endif
1190         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1191                                                   int queue, u8 *mac);
1192         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1193                                                    int queue, u16 vlan,
1194                                                    u8 qos, __be16 proto);
1195         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1196                                                    int vf, int min_tx_rate,
1197                                                    int max_tx_rate);
1198         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1199                                                        int vf, bool setting);
1200         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1201                                                     int vf, bool setting);
1202         int                     (*ndo_get_vf_config)(struct net_device *dev,
1203                                                      int vf,
1204                                                      struct ifla_vf_info *ivf);
1205         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1206                                                          int vf, int link_state);
1207         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1208                                                     int vf,
1209                                                     struct ifla_vf_stats
1210                                                     *vf_stats);
1211         int                     (*ndo_set_vf_port)(struct net_device *dev,
1212                                                    int vf,
1213                                                    struct nlattr *port[]);
1214         int                     (*ndo_get_vf_port)(struct net_device *dev,
1215                                                    int vf, struct sk_buff *skb);
1216         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1217                                                    int vf, u64 guid,
1218                                                    int guid_type);
1219         int                     (*ndo_set_vf_rss_query_en)(
1220                                                    struct net_device *dev,
1221                                                    int vf, bool setting);
1222         int                     (*ndo_setup_tc)(struct net_device *dev,
1223                                                 u32 handle,
1224                                                 __be16 protocol,
1225                                                 struct tc_to_netdev *tc);
1226 #if IS_ENABLED(CONFIG_FCOE)
1227         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1228         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1229         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1230                                                       u16 xid,
1231                                                       struct scatterlist *sgl,
1232                                                       unsigned int sgc);
1233         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1234                                                      u16 xid);
1235         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1236                                                        u16 xid,
1237                                                        struct scatterlist *sgl,
1238                                                        unsigned int sgc);
1239         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1240                                                         struct netdev_fcoe_hbainfo *hbainfo);
1241 #endif
1242 
1243 #if IS_ENABLED(CONFIG_LIBFCOE)
1244 #define NETDEV_FCOE_WWNN 0
1245 #define NETDEV_FCOE_WWPN 1
1246         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1247                                                     u64 *wwn, int type);
1248 #endif
1249 
1250 #ifdef CONFIG_RFS_ACCEL
1251         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1252                                                      const struct sk_buff *skb,
1253                                                      u16 rxq_index,
1254                                                      u32 flow_id);
1255 #endif
1256         int                     (*ndo_add_slave)(struct net_device *dev,
1257                                                  struct net_device *slave_dev);
1258         int                     (*ndo_del_slave)(struct net_device *dev,
1259                                                  struct net_device *slave_dev);
1260         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1261                                                     netdev_features_t features);
1262         int                     (*ndo_set_features)(struct net_device *dev,
1263                                                     netdev_features_t features);
1264         int                     (*ndo_neigh_construct)(struct net_device *dev,
1265                                                        struct neighbour *n);
1266         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1267                                                      struct neighbour *n);
1268 
1269         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1270                                                struct nlattr *tb[],
1271                                                struct net_device *dev,
1272                                                const unsigned char *addr,
1273                                                u16 vid,
1274                                                u16 flags);
1275         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1276                                                struct nlattr *tb[],
1277                                                struct net_device *dev,
1278                                                const unsigned char *addr,
1279                                                u16 vid);
1280         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1281                                                 struct netlink_callback *cb,
1282                                                 struct net_device *dev,
1283                                                 struct net_device *filter_dev,
1284                                                 int *idx);
1285 
1286         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1287                                                       struct nlmsghdr *nlh,
1288                                                       u16 flags);
1289         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1290                                                       u32 pid, u32 seq,
1291                                                       struct net_device *dev,
1292                                                       u32 filter_mask,
1293                                                       int nlflags);
1294         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1295                                                       struct nlmsghdr *nlh,
1296                                                       u16 flags);
1297         int                     (*ndo_change_carrier)(struct net_device *dev,
1298                                                       bool new_carrier);
1299         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1300                                                         struct netdev_phys_item_id *ppid);
1301         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1302                                                           char *name, size_t len);
1303         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1304                                                       struct udp_tunnel_info *ti);
1305         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1306                                                       struct udp_tunnel_info *ti);
1307         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1308                                                         struct net_device *dev);
1309         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1310                                                         void *priv);
1311 
1312         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1313                                                         struct net_device *dev,
1314                                                         void *priv);
1315         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1316         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1317                                                       int queue_index,
1318                                                       u32 maxrate);
1319         int                     (*ndo_get_iflink)(const struct net_device *dev);
1320         int                     (*ndo_change_proto_down)(struct net_device *dev,
1321                                                          bool proto_down);
1322         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1323                                                        struct sk_buff *skb);
1324         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1325                                                        int needed_headroom);
1326         int                     (*ndo_xdp)(struct net_device *dev,
1327                                            struct netdev_xdp *xdp);
1328 };
1329 
1330 /**
1331  * enum net_device_priv_flags - &struct net_device priv_flags
1332  *
1333  * These are the &struct net_device, they are only set internally
1334  * by drivers and used in the kernel. These flags are invisible to
1335  * userspace; this means that the order of these flags can change
1336  * during any kernel release.
1337  *
1338  * You should have a pretty good reason to be extending these flags.
1339  *
1340  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1341  * @IFF_EBRIDGE: Ethernet bridging device
1342  * @IFF_BONDING: bonding master or slave
1343  * @IFF_ISATAP: ISATAP interface (RFC4214)
1344  * @IFF_WAN_HDLC: WAN HDLC device
1345  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1346  *      release skb->dst
1347  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1348  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1349  * @IFF_MACVLAN_PORT: device used as macvlan port
1350  * @IFF_BRIDGE_PORT: device used as bridge port
1351  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1352  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1353  * @IFF_UNICAST_FLT: Supports unicast filtering
1354  * @IFF_TEAM_PORT: device used as team port
1355  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1356  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1357  *      change when it's running
1358  * @IFF_MACVLAN: Macvlan device
1359  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1360  *      underlying stacked devices
1361  * @IFF_IPVLAN_MASTER: IPvlan master device
1362  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1363  * @IFF_L3MDEV_MASTER: device is an L3 master device
1364  * @IFF_NO_QUEUE: device can run without qdisc attached
1365  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1366  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1367  * @IFF_TEAM: device is a team device
1368  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1369  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1370  *      entity (i.e. the master device for bridged veth)
1371  * @IFF_MACSEC: device is a MACsec device
1372  */
1373 enum netdev_priv_flags {
1374         IFF_802_1Q_VLAN                 = 1<<0,
1375         IFF_EBRIDGE                     = 1<<1,
1376         IFF_BONDING                     = 1<<2,
1377         IFF_ISATAP                      = 1<<3,
1378         IFF_WAN_HDLC                    = 1<<4,
1379         IFF_XMIT_DST_RELEASE            = 1<<5,
1380         IFF_DONT_BRIDGE                 = 1<<6,
1381         IFF_DISABLE_NETPOLL             = 1<<7,
1382         IFF_MACVLAN_PORT                = 1<<8,
1383         IFF_BRIDGE_PORT                 = 1<<9,
1384         IFF_OVS_DATAPATH                = 1<<10,
1385         IFF_TX_SKB_SHARING              = 1<<11,
1386         IFF_UNICAST_FLT                 = 1<<12,
1387         IFF_TEAM_PORT                   = 1<<13,
1388         IFF_SUPP_NOFCS                  = 1<<14,
1389         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1390         IFF_MACVLAN                     = 1<<16,
1391         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1392         IFF_IPVLAN_MASTER               = 1<<18,
1393         IFF_IPVLAN_SLAVE                = 1<<19,
1394         IFF_L3MDEV_MASTER               = 1<<20,
1395         IFF_NO_QUEUE                    = 1<<21,
1396         IFF_OPENVSWITCH                 = 1<<22,
1397         IFF_L3MDEV_SLAVE                = 1<<23,
1398         IFF_TEAM                        = 1<<24,
1399         IFF_RXFH_CONFIGURED             = 1<<25,
1400         IFF_PHONY_HEADROOM              = 1<<26,
1401         IFF_MACSEC                      = 1<<27,
1402 };
1403 
1404 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1405 #define IFF_EBRIDGE                     IFF_EBRIDGE
1406 #define IFF_BONDING                     IFF_BONDING
1407 #define IFF_ISATAP                      IFF_ISATAP
1408 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1409 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1410 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1411 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1412 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1413 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1414 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1415 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1416 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1417 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1418 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1419 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1420 #define IFF_MACVLAN                     IFF_MACVLAN
1421 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1422 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1423 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1424 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1425 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1426 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1427 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1428 #define IFF_TEAM                        IFF_TEAM
1429 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1430 #define IFF_MACSEC                      IFF_MACSEC
1431 
1432 /**
1433  *      struct net_device - The DEVICE structure.
1434  *              Actually, this whole structure is a big mistake.  It mixes I/O
1435  *              data with strictly "high-level" data, and it has to know about
1436  *              almost every data structure used in the INET module.
1437  *
1438  *      @name:  This is the first field of the "visible" part of this structure
1439  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1440  *              of the interface.
1441  *
1442  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1443  *      @ifalias:       SNMP alias
1444  *      @mem_end:       Shared memory end
1445  *      @mem_start:     Shared memory start
1446  *      @base_addr:     Device I/O address
1447  *      @irq:           Device IRQ number
1448  *
1449  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1450  *
1451  *      @state:         Generic network queuing layer state, see netdev_state_t
1452  *      @dev_list:      The global list of network devices
1453  *      @napi_list:     List entry used for polling NAPI devices
1454  *      @unreg_list:    List entry  when we are unregistering the
1455  *                      device; see the function unregister_netdev
1456  *      @close_list:    List entry used when we are closing the device
1457  *      @ptype_all:     Device-specific packet handlers for all protocols
1458  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1459  *
1460  *      @adj_list:      Directly linked devices, like slaves for bonding
1461  *      @features:      Currently active device features
1462  *      @hw_features:   User-changeable features
1463  *
1464  *      @wanted_features:       User-requested features
1465  *      @vlan_features:         Mask of features inheritable by VLAN devices
1466  *
1467  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1468  *                              This field indicates what encapsulation
1469  *                              offloads the hardware is capable of doing,
1470  *                              and drivers will need to set them appropriately.
1471  *
1472  *      @mpls_features: Mask of features inheritable by MPLS
1473  *
1474  *      @ifindex:       interface index
1475  *      @group:         The group the device belongs to
1476  *
1477  *      @stats:         Statistics struct, which was left as a legacy, use
1478  *                      rtnl_link_stats64 instead
1479  *
1480  *      @rx_dropped:    Dropped packets by core network,
1481  *                      do not use this in drivers
1482  *      @tx_dropped:    Dropped packets by core network,
1483  *                      do not use this in drivers
1484  *      @rx_nohandler:  nohandler dropped packets by core network on
1485  *                      inactive devices, do not use this in drivers
1486  *
1487  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1488  *                              instead of ioctl,
1489  *                              see <net/iw_handler.h> for details.
1490  *      @wireless_data: Instance data managed by the core of wireless extensions
1491  *
1492  *      @netdev_ops:    Includes several pointers to callbacks,
1493  *                      if one wants to override the ndo_*() functions
1494  *      @ethtool_ops:   Management operations
1495  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1496  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1497  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1498  *                      of Layer 2 headers.
1499  *
1500  *      @flags:         Interface flags (a la BSD)
1501  *      @priv_flags:    Like 'flags' but invisible to userspace,
1502  *                      see if.h for the definitions
1503  *      @gflags:        Global flags ( kept as legacy )
1504  *      @padded:        How much padding added by alloc_netdev()
1505  *      @operstate:     RFC2863 operstate
1506  *      @link_mode:     Mapping policy to operstate
1507  *      @if_port:       Selectable AUI, TP, ...
1508  *      @dma:           DMA channel
1509  *      @mtu:           Interface MTU value
1510  *      @min_mtu:       Interface Minimum MTU value
1511  *      @max_mtu:       Interface Maximum MTU value
1512  *      @type:          Interface hardware type
1513  *      @hard_header_len: Maximum hardware header length.
1514  *      @min_header_len:  Minimum hardware header length
1515  *
1516  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1517  *                        cases can this be guaranteed
1518  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1519  *                        cases can this be guaranteed. Some cases also use
1520  *                        LL_MAX_HEADER instead to allocate the skb
1521  *
1522  *      interface address info:
1523  *
1524  *      @perm_addr:             Permanent hw address
1525  *      @addr_assign_type:      Hw address assignment type
1526  *      @addr_len:              Hardware address length
1527  *      @neigh_priv_len:        Used in neigh_alloc()
1528  *      @dev_id:                Used to differentiate devices that share
1529  *                              the same link layer address
1530  *      @dev_port:              Used to differentiate devices that share
1531  *                              the same function
1532  *      @addr_list_lock:        XXX: need comments on this one
1533  *      @uc_promisc:            Counter that indicates promiscuous mode
1534  *                              has been enabled due to the need to listen to
1535  *                              additional unicast addresses in a device that
1536  *                              does not implement ndo_set_rx_mode()
1537  *      @uc:                    unicast mac addresses
1538  *      @mc:                    multicast mac addresses
1539  *      @dev_addrs:             list of device hw addresses
1540  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1541  *      @promiscuity:           Number of times the NIC is told to work in
1542  *                              promiscuous mode; if it becomes 0 the NIC will
1543  *                              exit promiscuous mode
1544  *      @allmulti:              Counter, enables or disables allmulticast mode
1545  *
1546  *      @vlan_info:     VLAN info
1547  *      @dsa_ptr:       dsa specific data
1548  *      @tipc_ptr:      TIPC specific data
1549  *      @atalk_ptr:     AppleTalk link
1550  *      @ip_ptr:        IPv4 specific data
1551  *      @dn_ptr:        DECnet specific data
1552  *      @ip6_ptr:       IPv6 specific data
1553  *      @ax25_ptr:      AX.25 specific data
1554  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1555  *
1556  *      @last_rx:       Time of last Rx
1557  *      @dev_addr:      Hw address (before bcast,
1558  *                      because most packets are unicast)
1559  *
1560  *      @_rx:                   Array of RX queues
1561  *      @num_rx_queues:         Number of RX queues
1562  *                              allocated at register_netdev() time
1563  *      @real_num_rx_queues:    Number of RX queues currently active in device
1564  *
1565  *      @rx_handler:            handler for received packets
1566  *      @rx_handler_data:       XXX: need comments on this one
1567  *      @ingress_queue:         XXX: need comments on this one
1568  *      @broadcast:             hw bcast address
1569  *
1570  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1571  *                      indexed by RX queue number. Assigned by driver.
1572  *                      This must only be set if the ndo_rx_flow_steer
1573  *                      operation is defined
1574  *      @index_hlist:           Device index hash chain
1575  *
1576  *      @_tx:                   Array of TX queues
1577  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1578  *      @real_num_tx_queues:    Number of TX queues currently active in device
1579  *      @qdisc:                 Root qdisc from userspace point of view
1580  *      @tx_queue_len:          Max frames per queue allowed
1581  *      @tx_global_lock:        XXX: need comments on this one
1582  *
1583  *      @xps_maps:      XXX: need comments on this one
1584  *
1585  *      @watchdog_timeo:        Represents the timeout that is used by
1586  *                              the watchdog (see dev_watchdog())
1587  *      @watchdog_timer:        List of timers
1588  *
1589  *      @pcpu_refcnt:           Number of references to this device
1590  *      @todo_list:             Delayed register/unregister
1591  *      @link_watch_list:       XXX: need comments on this one
1592  *
1593  *      @reg_state:             Register/unregister state machine
1594  *      @dismantle:             Device is going to be freed
1595  *      @rtnl_link_state:       This enum represents the phases of creating
1596  *                              a new link
1597  *
1598  *      @destructor:            Called from unregister,
1599  *                              can be used to call free_netdev
1600  *      @npinfo:                XXX: need comments on this one
1601  *      @nd_net:                Network namespace this network device is inside
1602  *
1603  *      @ml_priv:       Mid-layer private
1604  *      @lstats:        Loopback statistics
1605  *      @tstats:        Tunnel statistics
1606  *      @dstats:        Dummy statistics
1607  *      @vstats:        Virtual ethernet statistics
1608  *
1609  *      @garp_port:     GARP
1610  *      @mrp_port:      MRP
1611  *
1612  *      @dev:           Class/net/name entry
1613  *      @sysfs_groups:  Space for optional device, statistics and wireless
1614  *                      sysfs groups
1615  *
1616  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1617  *      @rtnl_link_ops: Rtnl_link_ops
1618  *
1619  *      @gso_max_size:  Maximum size of generic segmentation offload
1620  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1621  *                      NIC for GSO
1622  *
1623  *      @dcbnl_ops:     Data Center Bridging netlink ops
1624  *      @num_tc:        Number of traffic classes in the net device
1625  *      @tc_to_txq:     XXX: need comments on this one
1626  *      @prio_tc_map:   XXX: need comments on this one
1627  *
1628  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1629  *
1630  *      @priomap:       XXX: need comments on this one
1631  *      @phydev:        Physical device may attach itself
1632  *                      for hardware timestamping
1633  *
1634  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1635  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1636  *
1637  *      @proto_down:    protocol port state information can be sent to the
1638  *                      switch driver and used to set the phys state of the
1639  *                      switch port.
1640  *
1641  *      FIXME: cleanup struct net_device such that network protocol info
1642  *      moves out.
1643  */
1644 
1645 struct net_device {
1646         char                    name[IFNAMSIZ];
1647         struct hlist_node       name_hlist;
1648         char                    *ifalias;
1649         /*
1650          *      I/O specific fields
1651          *      FIXME: Merge these and struct ifmap into one
1652          */
1653         unsigned long           mem_end;
1654         unsigned long           mem_start;
1655         unsigned long           base_addr;
1656         int                     irq;
1657 
1658         atomic_t                carrier_changes;
1659 
1660         /*
1661          *      Some hardware also needs these fields (state,dev_list,
1662          *      napi_list,unreg_list,close_list) but they are not
1663          *      part of the usual set specified in Space.c.
1664          */
1665 
1666         unsigned long           state;
1667 
1668         struct list_head        dev_list;
1669         struct list_head        napi_list;
1670         struct list_head        unreg_list;
1671         struct list_head        close_list;
1672         struct list_head        ptype_all;
1673         struct list_head        ptype_specific;
1674 
1675         struct {
1676                 struct list_head upper;
1677                 struct list_head lower;
1678         } adj_list;
1679 
1680         netdev_features_t       features;
1681         netdev_features_t       hw_features;
1682         netdev_features_t       wanted_features;
1683         netdev_features_t       vlan_features;
1684         netdev_features_t       hw_enc_features;
1685         netdev_features_t       mpls_features;
1686         netdev_features_t       gso_partial_features;
1687 
1688         int                     ifindex;
1689         int                     group;
1690 
1691         struct net_device_stats stats;
1692 
1693         atomic_long_t           rx_dropped;
1694         atomic_long_t           tx_dropped;
1695         atomic_long_t           rx_nohandler;
1696 
1697 #ifdef CONFIG_WIRELESS_EXT
1698         const struct iw_handler_def *wireless_handlers;
1699         struct iw_public_data   *wireless_data;
1700 #endif
1701         const struct net_device_ops *netdev_ops;
1702         const struct ethtool_ops *ethtool_ops;
1703 #ifdef CONFIG_NET_SWITCHDEV
1704         const struct switchdev_ops *switchdev_ops;
1705 #endif
1706 #ifdef CONFIG_NET_L3_MASTER_DEV
1707         const struct l3mdev_ops *l3mdev_ops;
1708 #endif
1709 #if IS_ENABLED(CONFIG_IPV6)
1710         const struct ndisc_ops *ndisc_ops;
1711 #endif
1712 
1713         const struct header_ops *header_ops;
1714 
1715         unsigned int            flags;
1716         unsigned int            priv_flags;
1717 
1718         unsigned short          gflags;
1719         unsigned short          padded;
1720 
1721         unsigned char           operstate;
1722         unsigned char           link_mode;
1723 
1724         unsigned char           if_port;
1725         unsigned char           dma;
1726 
1727         unsigned int            mtu;
1728         unsigned int            min_mtu;
1729         unsigned int            max_mtu;
1730         unsigned short          type;
1731         unsigned short          hard_header_len;
1732         unsigned short          min_header_len;
1733 
1734         unsigned short          needed_headroom;
1735         unsigned short          needed_tailroom;
1736 
1737         /* Interface address info. */
1738         unsigned char           perm_addr[MAX_ADDR_LEN];
1739         unsigned char           addr_assign_type;
1740         unsigned char           addr_len;
1741         unsigned short          neigh_priv_len;
1742         unsigned short          dev_id;
1743         unsigned short          dev_port;
1744         spinlock_t              addr_list_lock;
1745         unsigned char           name_assign_type;
1746         bool                    uc_promisc;
1747         struct netdev_hw_addr_list      uc;
1748         struct netdev_hw_addr_list      mc;
1749         struct netdev_hw_addr_list      dev_addrs;
1750 
1751 #ifdef CONFIG_SYSFS
1752         struct kset             *queues_kset;
1753 #endif
1754         unsigned int            promiscuity;
1755         unsigned int            allmulti;
1756 
1757 
1758         /* Protocol-specific pointers */
1759 
1760 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1761         struct vlan_info __rcu  *vlan_info;
1762 #endif
1763 #if IS_ENABLED(CONFIG_NET_DSA)
1764         struct dsa_switch_tree  *dsa_ptr;
1765 #endif
1766 #if IS_ENABLED(CONFIG_TIPC)
1767         struct tipc_bearer __rcu *tipc_ptr;
1768 #endif
1769         void                    *atalk_ptr;
1770         struct in_device __rcu  *ip_ptr;
1771         struct dn_dev __rcu     *dn_ptr;
1772         struct inet6_dev __rcu  *ip6_ptr;
1773         void                    *ax25_ptr;
1774         struct wireless_dev     *ieee80211_ptr;
1775         struct wpan_dev         *ieee802154_ptr;
1776 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1777         struct mpls_dev __rcu   *mpls_ptr;
1778 #endif
1779 
1780 /*
1781  * Cache lines mostly used on receive path (including eth_type_trans())
1782  */
1783         unsigned long           last_rx;
1784 
1785         /* Interface address info used in eth_type_trans() */
1786         unsigned char           *dev_addr;
1787 
1788 #ifdef CONFIG_SYSFS
1789         struct netdev_rx_queue  *_rx;
1790 
1791         unsigned int            num_rx_queues;
1792         unsigned int            real_num_rx_queues;
1793 #endif
1794 
1795         unsigned long           gro_flush_timeout;
1796         rx_handler_func_t __rcu *rx_handler;
1797         void __rcu              *rx_handler_data;
1798 
1799 #ifdef CONFIG_NET_CLS_ACT
1800         struct tcf_proto __rcu  *ingress_cl_list;
1801 #endif
1802         struct netdev_queue __rcu *ingress_queue;
1803 #ifdef CONFIG_NETFILTER_INGRESS
1804         struct nf_hook_entry __rcu *nf_hooks_ingress;
1805 #endif
1806 
1807         unsigned char           broadcast[MAX_ADDR_LEN];
1808 #ifdef CONFIG_RFS_ACCEL
1809         struct cpu_rmap         *rx_cpu_rmap;
1810 #endif
1811         struct hlist_node       index_hlist;
1812 
1813 /*
1814  * Cache lines mostly used on transmit path
1815  */
1816         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1817         unsigned int            num_tx_queues;
1818         unsigned int            real_num_tx_queues;
1819         struct Qdisc            *qdisc;
1820 #ifdef CONFIG_NET_SCHED
1821         DECLARE_HASHTABLE       (qdisc_hash, 4);
1822 #endif
1823         unsigned long           tx_queue_len;
1824         spinlock_t              tx_global_lock;
1825         int                     watchdog_timeo;
1826 
1827 #ifdef CONFIG_XPS
1828         struct xps_dev_maps __rcu *xps_maps;
1829 #endif
1830 #ifdef CONFIG_NET_CLS_ACT
1831         struct tcf_proto __rcu  *egress_cl_list;
1832 #endif
1833 
1834         /* These may be needed for future network-power-down code. */
1835         struct timer_list       watchdog_timer;
1836 
1837         int __percpu            *pcpu_refcnt;
1838         struct list_head        todo_list;
1839 
1840         struct list_head        link_watch_list;
1841 
1842         enum { NETREG_UNINITIALIZED=0,
1843                NETREG_REGISTERED,       /* completed register_netdevice */
1844                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1845                NETREG_UNREGISTERED,     /* completed unregister todo */
1846                NETREG_RELEASED,         /* called free_netdev */
1847                NETREG_DUMMY,            /* dummy device for NAPI poll */
1848         } reg_state:8;
1849 
1850         bool dismantle;
1851 
1852         enum {
1853                 RTNL_LINK_INITIALIZED,
1854                 RTNL_LINK_INITIALIZING,
1855         } rtnl_link_state:16;
1856 
1857         void (*destructor)(struct net_device *dev);
1858 
1859 #ifdef CONFIG_NETPOLL
1860         struct netpoll_info __rcu       *npinfo;
1861 #endif
1862 
1863         possible_net_t                  nd_net;
1864 
1865         /* mid-layer private */
1866         union {
1867                 void                                    *ml_priv;
1868                 struct pcpu_lstats __percpu             *lstats;
1869                 struct pcpu_sw_netstats __percpu        *tstats;
1870                 struct pcpu_dstats __percpu             *dstats;
1871                 struct pcpu_vstats __percpu             *vstats;
1872         };
1873 
1874         struct garp_port __rcu  *garp_port;
1875         struct mrp_port __rcu   *mrp_port;
1876 
1877         struct device           dev;
1878         const struct attribute_group *sysfs_groups[4];
1879         const struct attribute_group *sysfs_rx_queue_group;
1880 
1881         const struct rtnl_link_ops *rtnl_link_ops;
1882 
1883         /* for setting kernel sock attribute on TCP connection setup */
1884 #define GSO_MAX_SIZE            65536
1885         unsigned int            gso_max_size;
1886 #define GSO_MAX_SEGS            65535
1887         u16                     gso_max_segs;
1888 
1889 #ifdef CONFIG_DCB
1890         const struct dcbnl_rtnl_ops *dcbnl_ops;
1891 #endif
1892         u8                      num_tc;
1893         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1894         u8                      prio_tc_map[TC_BITMASK + 1];
1895 
1896 #if IS_ENABLED(CONFIG_FCOE)
1897         unsigned int            fcoe_ddp_xid;
1898 #endif
1899 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1900         struct netprio_map __rcu *priomap;
1901 #endif
1902         struct phy_device       *phydev;
1903         struct lock_class_key   *qdisc_tx_busylock;
1904         struct lock_class_key   *qdisc_running_key;
1905         bool                    proto_down;
1906 };
1907 #define to_net_dev(d) container_of(d, struct net_device, dev)
1908 
1909 #define NETDEV_ALIGN            32
1910 
1911 static inline
1912 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1913 {
1914         return dev->prio_tc_map[prio & TC_BITMASK];
1915 }
1916 
1917 static inline
1918 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1919 {
1920         if (tc >= dev->num_tc)
1921                 return -EINVAL;
1922 
1923         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1924         return 0;
1925 }
1926 
1927 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1928 void netdev_reset_tc(struct net_device *dev);
1929 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1930 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1931 
1932 static inline
1933 int netdev_get_num_tc(struct net_device *dev)
1934 {
1935         return dev->num_tc;
1936 }
1937 
1938 static inline
1939 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1940                                          unsigned int index)
1941 {
1942         return &dev->_tx[index];
1943 }
1944 
1945 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1946                                                     const struct sk_buff *skb)
1947 {
1948         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1949 }
1950 
1951 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1952                                             void (*f)(struct net_device *,
1953                                                       struct netdev_queue *,
1954                                                       void *),
1955                                             void *arg)
1956 {
1957         unsigned int i;
1958 
1959         for (i = 0; i < dev->num_tx_queues; i++)
1960                 f(dev, &dev->_tx[i], arg);
1961 }
1962 
1963 #define netdev_lockdep_set_classes(dev)                         \
1964 {                                                               \
1965         static struct lock_class_key qdisc_tx_busylock_key;     \
1966         static struct lock_class_key qdisc_running_key;         \
1967         static struct lock_class_key qdisc_xmit_lock_key;       \
1968         static struct lock_class_key dev_addr_list_lock_key;    \
1969         unsigned int i;                                         \
1970                                                                 \
1971         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1972         (dev)->qdisc_running_key = &qdisc_running_key;          \
1973         lockdep_set_class(&(dev)->addr_list_lock,               \
1974                           &dev_addr_list_lock_key);             \
1975         for (i = 0; i < (dev)->num_tx_queues; i++)              \
1976                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1977                                   &qdisc_xmit_lock_key);        \
1978 }
1979 
1980 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1981                                     struct sk_buff *skb,
1982                                     void *accel_priv);
1983 
1984 /* returns the headroom that the master device needs to take in account
1985  * when forwarding to this dev
1986  */
1987 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1988 {
1989         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1990 }
1991 
1992 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1993 {
1994         if (dev->netdev_ops->ndo_set_rx_headroom)
1995                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1996 }
1997 
1998 /* set the device rx headroom to the dev's default */
1999 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2000 {
2001         netdev_set_rx_headroom(dev, -1);
2002 }
2003 
2004 /*
2005  * Net namespace inlines
2006  */
2007 static inline
2008 struct net *dev_net(const struct net_device *dev)
2009 {
2010         return read_pnet(&dev->nd_net);
2011 }
2012 
2013 static inline
2014 void dev_net_set(struct net_device *dev, struct net *net)
2015 {
2016         write_pnet(&dev->nd_net, net);
2017 }
2018 
2019 static inline bool netdev_uses_dsa(struct net_device *dev)
2020 {
2021 #if IS_ENABLED(CONFIG_NET_DSA)
2022         if (dev->dsa_ptr != NULL)
2023                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2024 #endif
2025         return false;
2026 }
2027 
2028 /**
2029  *      netdev_priv - access network device private data
2030  *      @dev: network device
2031  *
2032  * Get network device private data
2033  */
2034 static inline void *netdev_priv(const struct net_device *dev)
2035 {
2036         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2037 }
2038 
2039 /* Set the sysfs physical device reference for the network logical device
2040  * if set prior to registration will cause a symlink during initialization.
2041  */
2042 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2043 
2044 /* Set the sysfs device type for the network logical device to allow
2045  * fine-grained identification of different network device types. For
2046  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2047  */
2048 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2049 
2050 /* Default NAPI poll() weight
2051  * Device drivers are strongly advised to not use bigger value
2052  */
2053 #define NAPI_POLL_WEIGHT 64
2054 
2055 /**
2056  *      netif_napi_add - initialize a NAPI context
2057  *      @dev:  network device
2058  *      @napi: NAPI context
2059  *      @poll: polling function
2060  *      @weight: default weight
2061  *
2062  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2063  * *any* of the other NAPI-related functions.
2064  */
2065 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2066                     int (*poll)(struct napi_struct *, int), int weight);
2067 
2068 /**
2069  *      netif_tx_napi_add - initialize a NAPI context
2070  *      @dev:  network device
2071  *      @napi: NAPI context
2072  *      @poll: polling function
2073  *      @weight: default weight
2074  *
2075  * This variant of netif_napi_add() should be used from drivers using NAPI
2076  * to exclusively poll a TX queue.
2077  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2078  */
2079 static inline void netif_tx_napi_add(struct net_device *dev,
2080                                      struct napi_struct *napi,
2081                                      int (*poll)(struct napi_struct *, int),
2082                                      int weight)
2083 {
2084         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2085         netif_napi_add(dev, napi, poll, weight);
2086 }
2087 
2088 /**
2089  *  netif_napi_del - remove a NAPI context
2090  *  @napi: NAPI context
2091  *
2092  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2093  */
2094 void netif_napi_del(struct napi_struct *napi);
2095 
2096 struct napi_gro_cb {
2097         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2098         void    *frag0;
2099 
2100         /* Length of frag0. */
2101         unsigned int frag0_len;
2102 
2103         /* This indicates where we are processing relative to skb->data. */
2104         int     data_offset;
2105 
2106         /* This is non-zero if the packet cannot be merged with the new skb. */
2107         u16     flush;
2108 
2109         /* Save the IP ID here and check when we get to the transport layer */
2110         u16     flush_id;
2111 
2112         /* Number of segments aggregated. */
2113         u16     count;
2114 
2115         /* Start offset for remote checksum offload */
2116         u16     gro_remcsum_start;
2117 
2118         /* jiffies when first packet was created/queued */
2119         unsigned long age;
2120 
2121         /* Used in ipv6_gro_receive() and foo-over-udp */
2122         u16     proto;
2123 
2124         /* This is non-zero if the packet may be of the same flow. */
2125         u8      same_flow:1;
2126 
2127         /* Used in tunnel GRO receive */
2128         u8      encap_mark:1;
2129 
2130         /* GRO checksum is valid */
2131         u8      csum_valid:1;
2132 
2133         /* Number of checksums via CHECKSUM_UNNECESSARY */
2134         u8      csum_cnt:3;
2135 
2136         /* Free the skb? */
2137         u8      free:2;
2138 #define NAPI_GRO_FREE             1
2139 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2140 
2141         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2142         u8      is_ipv6:1;
2143 
2144         /* Used in GRE, set in fou/gue_gro_receive */
2145         u8      is_fou:1;
2146 
2147         /* Used to determine if flush_id can be ignored */
2148         u8      is_atomic:1;
2149 
2150         /* Number of gro_receive callbacks this packet already went through */
2151         u8 recursion_counter:4;
2152 
2153         /* 1 bit hole */
2154 
2155         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2156         __wsum  csum;
2157 
2158         /* used in skb_gro_receive() slow path */
2159         struct sk_buff *last;
2160 };
2161 
2162 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2163 
2164 #define GRO_RECURSION_LIMIT 15
2165 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2166 {
2167         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2168 }
2169 
2170 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2171 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2172                                                 struct sk_buff **head,
2173                                                 struct sk_buff *skb)
2174 {
2175         if (unlikely(gro_recursion_inc_test(skb))) {
2176                 NAPI_GRO_CB(skb)->flush |= 1;
2177                 return NULL;
2178         }
2179 
2180         return cb(head, skb);
2181 }
2182 
2183 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2184                                              struct sk_buff *);
2185 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2186                                                    struct sock *sk,
2187                                                    struct sk_buff **head,
2188                                                    struct sk_buff *skb)
2189 {
2190         if (unlikely(gro_recursion_inc_test(skb))) {
2191                 NAPI_GRO_CB(skb)->flush |= 1;
2192                 return NULL;
2193         }
2194 
2195         return cb(sk, head, skb);
2196 }
2197 
2198 struct packet_type {
2199         __be16                  type;   /* This is really htons(ether_type). */
2200         struct net_device       *dev;   /* NULL is wildcarded here           */
2201         int                     (*func) (struct sk_buff *,
2202                                          struct net_device *,
2203                                          struct packet_type *,
2204                                          struct net_device *);
2205         bool                    (*id_match)(struct packet_type *ptype,
2206                                             struct sock *sk);
2207         void                    *af_packet_priv;
2208         struct list_head        list;
2209 };
2210 
2211 struct offload_callbacks {
2212         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2213                                                 netdev_features_t features);
2214         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2215                                                  struct sk_buff *skb);
2216         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2217 };
2218 
2219 struct packet_offload {
2220         __be16                   type;  /* This is really htons(ether_type). */
2221         u16                      priority;
2222         struct offload_callbacks callbacks;
2223         struct list_head         list;
2224 };
2225 
2226 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2227 struct pcpu_sw_netstats {
2228         u64     rx_packets;
2229         u64     rx_bytes;
2230         u64     tx_packets;
2231         u64     tx_bytes;
2232         struct u64_stats_sync   syncp;
2233 };
2234 
2235 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2236 ({                                                                      \
2237         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2238         if (pcpu_stats) {                                               \
2239                 int __cpu;                                              \
2240                 for_each_possible_cpu(__cpu) {                          \
2241                         typeof(type) *stat;                             \
2242                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2243                         u64_stats_init(&stat->syncp);                   \
2244                 }                                                       \
2245         }                                                               \
2246         pcpu_stats;                                                     \
2247 })
2248 
2249 #define netdev_alloc_pcpu_stats(type)                                   \
2250         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2251 
2252 enum netdev_lag_tx_type {
2253         NETDEV_LAG_TX_TYPE_UNKNOWN,
2254         NETDEV_LAG_TX_TYPE_RANDOM,
2255         NETDEV_LAG_TX_TYPE_BROADCAST,
2256         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2257         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2258         NETDEV_LAG_TX_TYPE_HASH,
2259 };
2260 
2261 struct netdev_lag_upper_info {
2262         enum netdev_lag_tx_type tx_type;
2263 };
2264 
2265 struct netdev_lag_lower_state_info {
2266         u8 link_up : 1,
2267            tx_enabled : 1;
2268 };
2269 
2270 #include <linux/notifier.h>
2271 
2272 /* netdevice notifier chain. Please remember to update the rtnetlink
2273  * notification exclusion list in rtnetlink_event() when adding new
2274  * types.
2275  */
2276 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2277 #define NETDEV_DOWN     0x0002
2278 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2279                                    detected a hardware crash and restarted
2280                                    - we can use this eg to kick tcp sessions
2281                                    once done */
2282 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2283 #define NETDEV_REGISTER 0x0005
2284 #define NETDEV_UNREGISTER       0x0006
2285 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2286 #define NETDEV_CHANGEADDR       0x0008
2287 #define NETDEV_GOING_DOWN       0x0009
2288 #define NETDEV_CHANGENAME       0x000A
2289 #define NETDEV_FEAT_CHANGE      0x000B
2290 #define NETDEV_BONDING_FAILOVER 0x000C
2291 #define NETDEV_PRE_UP           0x000D
2292 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2293 #define NETDEV_POST_TYPE_CHANGE 0x000F
2294 #define NETDEV_POST_INIT        0x0010
2295 #define NETDEV_UNREGISTER_FINAL 0x0011
2296 #define NETDEV_RELEASE          0x0012
2297 #define NETDEV_NOTIFY_PEERS     0x0013
2298 #define NETDEV_JOIN             0x0014
2299 #define NETDEV_CHANGEUPPER      0x0015
2300 #define NETDEV_RESEND_IGMP      0x0016
2301 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2302 #define NETDEV_CHANGEINFODATA   0x0018
2303 #define NETDEV_BONDING_INFO     0x0019
2304 #define NETDEV_PRECHANGEUPPER   0x001A
2305 #define NETDEV_CHANGELOWERSTATE 0x001B
2306 #define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2307 #define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2308 
2309 int register_netdevice_notifier(struct notifier_block *nb);
2310 int unregister_netdevice_notifier(struct notifier_block *nb);
2311 
2312 struct netdev_notifier_info {
2313         struct net_device *dev;
2314 };
2315 
2316 struct netdev_notifier_change_info {
2317         struct netdev_notifier_info info; /* must be first */
2318         unsigned int flags_changed;
2319 };
2320 
2321 struct netdev_notifier_changeupper_info {
2322         struct netdev_notifier_info info; /* must be first */
2323         struct net_device *upper_dev; /* new upper dev */
2324         bool master; /* is upper dev master */
2325         bool linking; /* is the notification for link or unlink */
2326         void *upper_info; /* upper dev info */
2327 };
2328 
2329 struct netdev_notifier_changelowerstate_info {
2330         struct netdev_notifier_info info; /* must be first */
2331         void *lower_state_info; /* is lower dev state */
2332 };
2333 
2334 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2335                                              struct net_device *dev)
2336 {
2337         info->dev = dev;
2338 }
2339 
2340 static inline struct net_device *
2341 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2342 {
2343         return info->dev;
2344 }
2345 
2346 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2347 
2348 
2349 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2350 
2351 #define for_each_netdev(net, d)         \
2352                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2353 #define for_each_netdev_reverse(net, d) \
2354                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2355 #define for_each_netdev_rcu(net, d)             \
2356                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2357 #define for_each_netdev_safe(net, d, n) \
2358                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2359 #define for_each_netdev_continue(net, d)                \
2360                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2361 #define for_each_netdev_continue_rcu(net, d)            \
2362         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2363 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2364                 for_each_netdev_rcu(&init_net, slave)   \
2365                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2366 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2367 
2368 static inline struct net_device *next_net_device(struct net_device *dev)
2369 {
2370         struct list_head *lh;
2371         struct net *net;
2372 
2373         net = dev_net(dev);
2374         lh = dev->dev_list.next;
2375         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2376 }
2377 
2378 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2379 {
2380         struct list_head *lh;
2381         struct net *net;
2382 
2383         net = dev_net(dev);
2384         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2385         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2386 }
2387 
2388 static inline struct net_device *first_net_device(struct net *net)
2389 {
2390         return list_empty(&net->dev_base_head) ? NULL :
2391                 net_device_entry(net->dev_base_head.next);
2392 }
2393 
2394 static inline struct net_device *first_net_device_rcu(struct net *net)
2395 {
2396         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2397 
2398         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2399 }
2400 
2401 int netdev_boot_setup_check(struct net_device *dev);
2402 unsigned long netdev_boot_base(const char *prefix, int unit);
2403 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2404                                        const char *hwaddr);
2405 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2406 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2407 void dev_add_pack(struct packet_type *pt);
2408 void dev_remove_pack(struct packet_type *pt);
2409 void __dev_remove_pack(struct packet_type *pt);
2410 void dev_add_offload(struct packet_offload *po);
2411 void dev_remove_offload(struct packet_offload *po);
2412 
2413 int dev_get_iflink(const struct net_device *dev);
2414 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2415 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2416                                       unsigned short mask);
2417 struct net_device *dev_get_by_name(struct net *net, const char *name);
2418 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2419 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2420 int dev_alloc_name(struct net_device *dev, const char *name);
2421 int dev_open(struct net_device *dev);
2422 int dev_close(struct net_device *dev);
2423 int dev_close_many(struct list_head *head, bool unlink);
2424 void dev_disable_lro(struct net_device *dev);
2425 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2426 int dev_queue_xmit(struct sk_buff *skb);
2427 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2428 int register_netdevice(struct net_device *dev);
2429 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2430 void unregister_netdevice_many(struct list_head *head);
2431 static inline void unregister_netdevice(struct net_device *dev)
2432 {
2433         unregister_netdevice_queue(dev, NULL);
2434 }
2435 
2436 int netdev_refcnt_read(const struct net_device *dev);
2437 void free_netdev(struct net_device *dev);
2438 void netdev_freemem(struct net_device *dev);
2439 void synchronize_net(void);
2440 int init_dummy_netdev(struct net_device *dev);
2441 
2442 DECLARE_PER_CPU(int, xmit_recursion);
2443 #define XMIT_RECURSION_LIMIT    10
2444 
2445 static inline int dev_recursion_level(void)
2446 {
2447         return this_cpu_read(xmit_recursion);
2448 }
2449 
2450 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2451 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2452 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2453 int netdev_get_name(struct net *net, char *name, int ifindex);
2454 int dev_restart(struct net_device *dev);
2455 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2456 
2457 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2458 {
2459         return NAPI_GRO_CB(skb)->data_offset;
2460 }
2461 
2462 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2463 {
2464         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2465 }
2466 
2467 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2468 {
2469         NAPI_GRO_CB(skb)->data_offset += len;
2470 }
2471 
2472 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2473                                         unsigned int offset)
2474 {
2475         return NAPI_GRO_CB(skb)->frag0 + offset;
2476 }
2477 
2478 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2479 {
2480         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2481 }
2482 
2483 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2484 {
2485         NAPI_GRO_CB(skb)->frag0 = NULL;
2486         NAPI_GRO_CB(skb)->frag0_len = 0;
2487 }
2488 
2489 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2490                                         unsigned int offset)
2491 {
2492         if (!pskb_may_pull(skb, hlen))
2493                 return NULL;
2494 
2495         skb_gro_frag0_invalidate(skb);
2496         return skb->data + offset;
2497 }
2498 
2499 static inline void *skb_gro_network_header(struct sk_buff *skb)
2500 {
2501         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2502                skb_network_offset(skb);
2503 }
2504 
2505 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2506                                         const void *start, unsigned int len)
2507 {
2508         if (NAPI_GRO_CB(skb)->csum_valid)
2509                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2510                                                   csum_partial(start, len, 0));
2511 }
2512 
2513 /* GRO checksum functions. These are logical equivalents of the normal
2514  * checksum functions (in skbuff.h) except that they operate on the GRO
2515  * offsets and fields in sk_buff.
2516  */
2517 
2518 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2519 
2520 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2521 {
2522         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2523 }
2524 
2525 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2526                                                       bool zero_okay,
2527                                                       __sum16 check)
2528 {
2529         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2530                 skb_checksum_start_offset(skb) <
2531                  skb_gro_offset(skb)) &&
2532                 !skb_at_gro_remcsum_start(skb) &&
2533                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2534                 (!zero_okay || check));
2535 }
2536 
2537 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2538                                                            __wsum psum)
2539 {
2540         if (NAPI_GRO_CB(skb)->csum_valid &&
2541             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2542                 return 0;
2543 
2544         NAPI_GRO_CB(skb)->csum = psum;
2545 
2546         return __skb_gro_checksum_complete(skb);
2547 }
2548 
2549 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2550 {
2551         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2552                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2553                 NAPI_GRO_CB(skb)->csum_cnt--;
2554         } else {
2555                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2556                  * verified a new top level checksum or an encapsulated one
2557                  * during GRO. This saves work if we fallback to normal path.
2558                  */
2559                 __skb_incr_checksum_unnecessary(skb);
2560         }
2561 }
2562 
2563 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2564                                     compute_pseudo)                     \
2565 ({                                                                      \
2566         __sum16 __ret = 0;                                              \
2567         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2568                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2569                                 compute_pseudo(skb, proto));            \
2570         if (__ret)                                                      \
2571                 __skb_mark_checksum_bad(skb);                           \
2572         else                                                            \
2573                 skb_gro_incr_csum_unnecessary(skb);                     \
2574         __ret;                                                          \
2575 })
2576 
2577 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2578         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2579 
2580 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2581                                              compute_pseudo)            \
2582         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2583 
2584 #define skb_gro_checksum_simple_validate(skb)                           \
2585         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2586 
2587 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2588 {
2589         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2590                 !NAPI_GRO_CB(skb)->csum_valid);
2591 }
2592 
2593 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2594                                               __sum16 check, __wsum pseudo)
2595 {
2596         NAPI_GRO_CB(skb)->csum = ~pseudo;
2597         NAPI_GRO_CB(skb)->csum_valid = 1;
2598 }
2599 
2600 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2601 do {                                                                    \
2602         if (__skb_gro_checksum_convert_check(skb))                      \
2603                 __skb_gro_checksum_convert(skb, check,                  \
2604                                            compute_pseudo(skb, proto)); \
2605 } while (0)
2606 
2607 struct gro_remcsum {
2608         int offset;
2609         __wsum delta;
2610 };
2611 
2612 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2613 {
2614         grc->offset = 0;
2615         grc->delta = 0;
2616 }
2617 
2618 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2619                                             unsigned int off, size_t hdrlen,
2620                                             int start, int offset,
2621                                             struct gro_remcsum *grc,
2622                                             bool nopartial)
2623 {
2624         __wsum delta;
2625         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2626 
2627         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2628 
2629         if (!nopartial) {
2630                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2631                 return ptr;
2632         }
2633 
2634         ptr = skb_gro_header_fast(skb, off);
2635         if (skb_gro_header_hard(skb, off + plen)) {
2636                 ptr = skb_gro_header_slow(skb, off + plen, off);
2637                 if (!ptr)
2638                         return NULL;
2639         }
2640 
2641         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2642                                start, offset);
2643 
2644         /* Adjust skb->csum since we changed the packet */
2645         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2646 
2647         grc->offset = off + hdrlen + offset;
2648         grc->delta = delta;
2649 
2650         return ptr;
2651 }
2652 
2653 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2654                                            struct gro_remcsum *grc)
2655 {
2656         void *ptr;
2657         size_t plen = grc->offset + sizeof(u16);
2658 
2659         if (!grc->delta)
2660                 return;
2661 
2662         ptr = skb_gro_header_fast(skb, grc->offset);
2663         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2664                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2665                 if (!ptr)
2666                         return;
2667         }
2668 
2669         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2670 }
2671 
2672 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2673                                   unsigned short type,
2674                                   const void *daddr, const void *saddr,
2675                                   unsigned int len)
2676 {
2677         if (!dev->header_ops || !dev->header_ops->create)
2678                 return 0;
2679 
2680         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2681 }
2682 
2683 static inline int dev_parse_header(const struct sk_buff *skb,
2684                                    unsigned char *haddr)
2685 {
2686         const struct net_device *dev = skb->dev;
2687 
2688         if (!dev->header_ops || !dev->header_ops->parse)
2689                 return 0;
2690         return dev->header_ops->parse(skb, haddr);
2691 }
2692 
2693 /* ll_header must have at least hard_header_len allocated */
2694 static inline bool dev_validate_header(const struct net_device *dev,
2695                                        char *ll_header, int len)
2696 {
2697         if (likely(len >= dev->hard_header_len))
2698                 return true;
2699         if (len < dev->min_header_len)
2700                 return false;
2701 
2702         if (capable(CAP_SYS_RAWIO)) {
2703                 memset(ll_header + len, 0, dev->hard_header_len - len);
2704                 return true;
2705         }
2706 
2707         if (dev->header_ops && dev->header_ops->validate)
2708                 return dev->header_ops->validate(ll_header, len);
2709 
2710         return false;
2711 }
2712 
2713 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2714 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2715 static inline int unregister_gifconf(unsigned int family)
2716 {
2717         return register_gifconf(family, NULL);
2718 }
2719 
2720 #ifdef CONFIG_NET_FLOW_LIMIT
2721 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2722 struct sd_flow_limit {
2723         u64                     count;
2724         unsigned int            num_buckets;
2725         unsigned int            history_head;
2726         u16                     history[FLOW_LIMIT_HISTORY];
2727         u8                      buckets[];
2728 };
2729 
2730 extern int netdev_flow_limit_table_len;
2731 #endif /* CONFIG_NET_FLOW_LIMIT */
2732 
2733 /*
2734  * Incoming packets are placed on per-CPU queues
2735  */
2736 struct softnet_data {
2737         struct list_head        poll_list;
2738         struct sk_buff_head     process_queue;
2739 
2740         /* stats */
2741         unsigned int            processed;
2742         unsigned int            time_squeeze;
2743         unsigned int            received_rps;
2744 #ifdef CONFIG_RPS
2745         struct softnet_data     *rps_ipi_list;
2746 #endif
2747 #ifdef CONFIG_NET_FLOW_LIMIT
2748         struct sd_flow_limit __rcu *flow_limit;
2749 #endif
2750         struct Qdisc            *output_queue;
2751         struct Qdisc            **output_queue_tailp;
2752         struct sk_buff          *completion_queue;
2753 
2754 #ifdef CONFIG_RPS
2755         /* input_queue_head should be written by cpu owning this struct,
2756          * and only read by other cpus. Worth using a cache line.
2757          */
2758         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2759 
2760         /* Elements below can be accessed between CPUs for RPS/RFS */
2761         struct call_single_data csd ____cacheline_aligned_in_smp;
2762         struct softnet_data     *rps_ipi_next;
2763         unsigned int            cpu;
2764         unsigned int            input_queue_tail;
2765 #endif
2766         unsigned int            dropped;
2767         struct sk_buff_head     input_pkt_queue;
2768         struct napi_struct      backlog;
2769 
2770 };
2771 
2772 static inline void input_queue_head_incr(struct softnet_data *sd)
2773 {
2774 #ifdef CONFIG_RPS
2775         sd->input_queue_head++;
2776 #endif
2777 }
2778 
2779 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2780                                               unsigned int *qtail)
2781 {
2782 #ifdef CONFIG_RPS
2783         *qtail = ++sd->input_queue_tail;
2784 #endif
2785 }
2786 
2787 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2788 
2789 void __netif_schedule(struct Qdisc *q);
2790 void netif_schedule_queue(struct netdev_queue *txq);
2791 
2792 static inline void netif_tx_schedule_all(struct net_device *dev)
2793 {
2794         unsigned int i;
2795 
2796         for (i = 0; i < dev->num_tx_queues; i++)
2797                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2798 }
2799 
2800 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2801 {
2802         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2803 }
2804 
2805 /**
2806  *      netif_start_queue - allow transmit
2807  *      @dev: network device
2808  *
2809  *      Allow upper layers to call the device hard_start_xmit routine.
2810  */
2811 static inline void netif_start_queue(struct net_device *dev)
2812 {
2813         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2814 }
2815 
2816 static inline void netif_tx_start_all_queues(struct net_device *dev)
2817 {
2818         unsigned int i;
2819 
2820         for (i = 0; i < dev->num_tx_queues; i++) {
2821                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2822                 netif_tx_start_queue(txq);
2823         }
2824 }
2825 
2826 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2827 
2828 /**
2829  *      netif_wake_queue - restart transmit
2830  *      @dev: network device
2831  *
2832  *      Allow upper layers to call the device hard_start_xmit routine.
2833  *      Used for flow control when transmit resources are available.
2834  */
2835 static inline void netif_wake_queue(struct net_device *dev)
2836 {
2837         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2838 }
2839 
2840 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2841 {
2842         unsigned int i;
2843 
2844         for (i = 0; i < dev->num_tx_queues; i++) {
2845                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2846                 netif_tx_wake_queue(txq);
2847         }
2848 }
2849 
2850 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2851 {
2852         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2853 }
2854 
2855 /**
2856  *      netif_stop_queue - stop transmitted packets
2857  *      @dev: network device
2858  *
2859  *      Stop upper layers calling the device hard_start_xmit routine.
2860  *      Used for flow control when transmit resources are unavailable.
2861  */
2862 static inline void netif_stop_queue(struct net_device *dev)
2863 {
2864         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2865 }
2866 
2867 void netif_tx_stop_all_queues(struct net_device *dev);
2868 
2869 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2870 {
2871         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2872 }
2873 
2874 /**
2875  *      netif_queue_stopped - test if transmit queue is flowblocked
2876  *      @dev: network device
2877  *
2878  *      Test if transmit queue on device is currently unable to send.
2879  */
2880 static inline bool netif_queue_stopped(const struct net_device *dev)
2881 {
2882         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2883 }
2884 
2885 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2886 {
2887         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2888 }
2889 
2890 static inline bool
2891 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2892 {
2893         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2894 }
2895 
2896 static inline bool
2897 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2898 {
2899         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2900 }
2901 
2902 /**
2903  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2904  *      @dev_queue: pointer to transmit queue
2905  *
2906  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2907  * to give appropriate hint to the CPU.
2908  */
2909 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2910 {
2911 #ifdef CONFIG_BQL
2912         prefetchw(&dev_queue->dql.num_queued);
2913 #endif
2914 }
2915 
2916 /**
2917  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2918  *      @dev_queue: pointer to transmit queue
2919  *
2920  * BQL enabled drivers might use this helper in their TX completion path,
2921  * to give appropriate hint to the CPU.
2922  */
2923 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2924 {
2925 #ifdef CONFIG_BQL
2926         prefetchw(&dev_queue->dql.limit);
2927 #endif
2928 }
2929 
2930 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2931                                         unsigned int bytes)
2932 {
2933 #ifdef CONFIG_BQL
2934         dql_queued(&dev_queue->dql, bytes);
2935 
2936         if (likely(dql_avail(&dev_queue->dql) >= 0))
2937                 return;
2938 
2939         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2940 
2941         /*
2942          * The XOFF flag must be set before checking the dql_avail below,
2943          * because in netdev_tx_completed_queue we update the dql_completed
2944          * before checking the XOFF flag.
2945          */
2946         smp_mb();
2947 
2948         /* check again in case another CPU has just made room avail */
2949         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2950                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2951 #endif
2952 }
2953 
2954 /**
2955  *      netdev_sent_queue - report the number of bytes queued to hardware
2956  *      @dev: network device
2957  *      @bytes: number of bytes queued to the hardware device queue
2958  *
2959  *      Report the number of bytes queued for sending/completion to the network
2960  *      device hardware queue. @bytes should be a good approximation and should
2961  *      exactly match netdev_completed_queue() @bytes
2962  */
2963 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2964 {
2965         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2966 }
2967 
2968 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2969                                              unsigned int pkts, unsigned int bytes)
2970 {
2971 #ifdef CONFIG_BQL
2972         if (unlikely(!bytes))
2973                 return;
2974 
2975         dql_completed(&dev_queue->dql, bytes);
2976 
2977         /*
2978          * Without the memory barrier there is a small possiblity that
2979          * netdev_tx_sent_queue will miss the update and cause the queue to
2980          * be stopped forever
2981          */
2982         smp_mb();
2983 
2984         if (dql_avail(&dev_queue->dql) < 0)
2985                 return;
2986 
2987         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2988                 netif_schedule_queue(dev_queue);
2989 #endif
2990 }
2991 
2992 /**
2993  *      netdev_completed_queue - report bytes and packets completed by device
2994  *      @dev: network device
2995  *      @pkts: actual number of packets sent over the medium
2996  *      @bytes: actual number of bytes sent over the medium
2997  *
2998  *      Report the number of bytes and packets transmitted by the network device
2999  *      hardware queue over the physical medium, @bytes must exactly match the
3000  *      @bytes amount passed to netdev_sent_queue()
3001  */
3002 static inline void netdev_completed_queue(struct net_device *dev,
3003                                           unsigned int pkts, unsigned int bytes)
3004 {
3005         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3006 }
3007 
3008 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3009 {
3010 #ifdef CONFIG_BQL
3011         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3012         dql_reset(&q->dql);
3013 #endif
3014 }
3015 
3016 /**
3017  *      netdev_reset_queue - reset the packets and bytes count of a network device
3018  *      @dev_queue: network device
3019  *
3020  *      Reset the bytes and packet count of a network device and clear the
3021  *      software flow control OFF bit for this network device
3022  */
3023 static inline void netdev_reset_queue(struct net_device *dev_queue)
3024 {
3025         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3026 }
3027 
3028 /**
3029  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3030  *      @dev: network device
3031  *      @queue_index: given tx queue index
3032  *
3033  *      Returns 0 if given tx queue index >= number of device tx queues,
3034  *      otherwise returns the originally passed tx queue index.
3035  */
3036 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3037 {
3038         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3039                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3040                                      dev->name, queue_index,
3041                                      dev->real_num_tx_queues);
3042                 return 0;
3043         }
3044 
3045         return queue_index;
3046 }
3047 
3048 /**
3049  *      netif_running - test if up
3050  *      @dev: network device
3051  *
3052  *      Test if the device has been brought up.
3053  */
3054 static inline bool netif_running(const struct net_device *dev)
3055 {
3056         return test_bit(__LINK_STATE_START, &dev->state);
3057 }
3058 
3059 /*
3060  * Routines to manage the subqueues on a device.  We only need start,
3061  * stop, and a check if it's stopped.  All other device management is
3062  * done at the overall netdevice level.
3063  * Also test the device if we're multiqueue.
3064  */
3065 
3066 /**
3067  *      netif_start_subqueue - allow sending packets on subqueue
3068  *      @dev: network device
3069  *      @queue_index: sub queue index
3070  *
3071  * Start individual transmit queue of a device with multiple transmit queues.
3072  */
3073 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3074 {
3075         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3076 
3077         netif_tx_start_queue(txq);
3078 }
3079 
3080 /**
3081  *      netif_stop_subqueue - stop sending packets on subqueue
3082  *      @dev: network device
3083  *      @queue_index: sub queue index
3084  *
3085  * Stop individual transmit queue of a device with multiple transmit queues.
3086  */
3087 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3088 {
3089         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3090         netif_tx_stop_queue(txq);
3091 }
3092 
3093 /**
3094  *      netif_subqueue_stopped - test status of subqueue
3095  *      @dev: network device
3096  *      @queue_index: sub queue index
3097  *
3098  * Check individual transmit queue of a device with multiple transmit queues.
3099  */
3100 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3101                                             u16 queue_index)
3102 {
3103         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3104 
3105         return netif_tx_queue_stopped(txq);
3106 }
3107 
3108 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3109                                           struct sk_buff *skb)
3110 {
3111         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3112 }
3113 
3114 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3115 
3116 #ifdef CONFIG_XPS
3117 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3118                         u16 index);
3119 #else
3120 static inline int netif_set_xps_queue(struct net_device *dev,
3121                                       const struct cpumask *mask,
3122                                       u16 index)
3123 {
3124         return 0;
3125 }
3126 #endif
3127 
3128 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3129                   unsigned int num_tx_queues);
3130 
3131 /*
3132  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3133  * as a distribution range limit for the returned value.
3134  */
3135 static inline u16 skb_tx_hash(const struct net_device *dev,
3136                               struct sk_buff *skb)
3137 {
3138         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3139 }
3140 
3141 /**
3142  *      netif_is_multiqueue - test if device has multiple transmit queues
3143  *      @dev: network device
3144  *
3145  * Check if device has multiple transmit queues
3146  */
3147 static inline bool netif_is_multiqueue(const struct net_device *dev)
3148 {
3149         return dev->num_tx_queues > 1;
3150 }
3151 
3152 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3153 
3154 #ifdef CONFIG_SYSFS
3155 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3156 #else
3157 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3158                                                 unsigned int rxq)
3159 {
3160         return 0;
3161 }
3162 #endif
3163 
3164 #ifdef CONFIG_SYSFS
3165 static inline unsigned int get_netdev_rx_queue_index(
3166                 struct netdev_rx_queue *queue)
3167 {
3168         struct net_device *dev = queue->dev;
3169         int index = queue - dev->_rx;
3170 
3171         BUG_ON(index >= dev->num_rx_queues);
3172         return index;
3173 }
3174 #endif
3175 
3176 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3177 int netif_get_num_default_rss_queues(void);
3178 
3179 enum skb_free_reason {
3180         SKB_REASON_CONSUMED,
3181         SKB_REASON_DROPPED,
3182 };
3183 
3184 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3185 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3186 
3187 /*
3188  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3189  * interrupt context or with hardware interrupts being disabled.
3190  * (in_irq() || irqs_disabled())
3191  *
3192  * We provide four helpers that can be used in following contexts :
3193  *
3194  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3195  *  replacing kfree_skb(skb)
3196  *
3197  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3198  *  Typically used in place of consume_skb(skb) in TX completion path
3199  *
3200  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3201  *  replacing kfree_skb(skb)
3202  *
3203  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3204  *  and consumed a packet. Used in place of consume_skb(skb)
3205  */
3206 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3207 {
3208         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3209 }
3210 
3211 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3212 {
3213         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3214 }
3215 
3216 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3217 {
3218         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3219 }
3220 
3221 static inline void dev_consume_skb_any(struct sk_buff *skb)
3222 {
3223         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3224 }
3225 
3226 int netif_rx(struct sk_buff *skb);
3227 int netif_rx_ni(struct sk_buff *skb);
3228 int netif_receive_skb(struct sk_buff *skb);
3229 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3230 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3231 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3232 gro_result_t napi_gro_frags(struct napi_struct *napi);
3233 struct packet_offload *gro_find_receive_by_type(__be16 type);
3234 struct packet_offload *gro_find_complete_by_type(__be16 type);
3235 
3236 static inline void napi_free_frags(struct napi_struct *napi)
3237 {
3238         kfree_skb(napi->skb);
3239         napi->skb = NULL;
3240 }
3241 
3242 bool netdev_is_rx_handler_busy(struct net_device *dev);
3243 int netdev_rx_handler_register(struct net_device *dev,
3244                                rx_handler_func_t *rx_handler,
3245                                void *rx_handler_data);
3246 void netdev_rx_handler_unregister(struct net_device *dev);
3247 
3248 bool dev_valid_name(const char *name);
3249 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3250 int dev_ethtool(struct net *net, struct ifreq *);
3251 unsigned int dev_get_flags(const struct net_device *);
3252 int __dev_change_flags(struct net_device *, unsigned int flags);
3253 int dev_change_flags(struct net_device *, unsigned int);
3254 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3255                         unsigned int gchanges);
3256 int dev_change_name(struct net_device *, const char *);
3257 int dev_set_alias(struct net_device *, const char *, size_t);
3258 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3259 int dev_set_mtu(struct net_device *, int);
3260 void dev_set_group(struct net_device *, int);
3261 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3262 int dev_change_carrier(struct net_device *, bool new_carrier);
3263 int dev_get_phys_port_id(struct net_device *dev,
3264                          struct netdev_phys_item_id *ppid);
3265 int dev_get_phys_port_name(struct net_device *dev,
3266                            char *name, size_t len);
3267 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3268 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3269 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3270 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3271                                     struct netdev_queue *txq, int *ret);
3272 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3273 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3274 bool is_skb_forwardable(const struct net_device *dev,
3275                         const struct sk_buff *skb);
3276 
3277 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3278                                                struct sk_buff *skb)
3279 {
3280         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3281             unlikely(!is_skb_forwardable(dev, skb))) {
3282                 atomic_long_inc(&dev->rx_dropped);
3283                 kfree_skb(skb);
3284                 return NET_RX_DROP;
3285         }
3286 
3287         skb_scrub_packet(skb, true);
3288         skb->priority = 0;
3289         return 0;
3290 }
3291 
3292 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3293 
3294 extern int              netdev_budget;
3295 
3296 /* Called by rtnetlink.c:rtnl_unlock() */
3297 void netdev_run_todo(void);
3298 
3299 /**
3300  *      dev_put - release reference to device
3301  *      @dev: network device
3302  *
3303  * Release reference to device to allow it to be freed.
3304  */
3305 static inline void dev_put(struct net_device *dev)
3306 {
3307         this_cpu_dec(*dev->pcpu_refcnt);
3308 }
3309 
3310 /**
3311  *      dev_hold - get reference to device
3312  *      @dev: network device
3313  *
3314  * Hold reference to device to keep it from being freed.
3315  */
3316 static inline void dev_hold(struct net_device *dev)
3317 {
3318         this_cpu_inc(*dev->pcpu_refcnt);
3319 }
3320 
3321 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3322  * and _off may be called from IRQ context, but it is caller
3323  * who is responsible for serialization of these calls.
3324  *
3325  * The name carrier is inappropriate, these functions should really be
3326  * called netif_lowerlayer_*() because they represent the state of any
3327  * kind of lower layer not just hardware media.
3328  */
3329 
3330 void linkwatch_init_dev(struct net_device *dev);
3331 void linkwatch_fire_event(struct net_device *dev);
3332 void linkwatch_forget_dev(struct net_device *dev);
3333 
3334 /**
3335  *      netif_carrier_ok - test if carrier present
3336  *      @dev: network device
3337  *
3338  * Check if carrier is present on device
3339  */
3340 static inline bool netif_carrier_ok(const struct net_device *dev)
3341 {
3342         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3343 }
3344 
3345 unsigned long dev_trans_start(struct net_device *dev);
3346 
3347 void __netdev_watchdog_up(struct net_device *dev);
3348 
3349 void netif_carrier_on(struct net_device *dev);
3350 
3351 void netif_carrier_off(struct net_device *dev);
3352 
3353 /**
3354  *      netif_dormant_on - mark device as dormant.
3355  *      @dev: network device
3356  *
3357  * Mark device as dormant (as per RFC2863).
3358  *
3359  * The dormant state indicates that the relevant interface is not
3360  * actually in a condition to pass packets (i.e., it is not 'up') but is
3361  * in a "pending" state, waiting for some external event.  For "on-
3362  * demand" interfaces, this new state identifies the situation where the
3363  * interface is waiting for events to place it in the up state.
3364  */
3365 static inline void netif_dormant_on(struct net_device *dev)
3366 {
3367         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3368                 linkwatch_fire_event(dev);
3369 }
3370 
3371 /**
3372  *      netif_dormant_off - set device as not dormant.
3373  *      @dev: network device
3374  *
3375  * Device is not in dormant state.
3376  */
3377 static inline void netif_dormant_off(struct net_device *dev)
3378 {
3379         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3380                 linkwatch_fire_event(dev);
3381 }
3382 
3383 /**
3384  *      netif_dormant - test if carrier present
3385  *      @dev: network device
3386  *
3387  * Check if carrier is present on device
3388  */
3389 static inline bool netif_dormant(const struct net_device *dev)
3390 {
3391         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3392 }
3393 
3394 
3395 /**
3396  *      netif_oper_up - test if device is operational
3397  *      @dev: network device
3398  *
3399  * Check if carrier is operational
3400  */
3401 static inline bool netif_oper_up(const struct net_device *dev)
3402 {
3403         return (dev->operstate == IF_OPER_UP ||
3404                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3405 }
3406 
3407 /**
3408  *      netif_device_present - is device available or removed
3409  *      @dev: network device
3410  *
3411  * Check if device has not been removed from system.
3412  */
3413 static inline bool netif_device_present(struct net_device *dev)
3414 {
3415         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3416 }
3417 
3418 void netif_device_detach(struct net_device *dev);
3419 
3420 void netif_device_attach(struct net_device *dev);
3421 
3422 /*
3423  * Network interface message level settings
3424  */
3425 
3426 enum {
3427         NETIF_MSG_DRV           = 0x0001,
3428         NETIF_MSG_PROBE         = 0x0002,
3429         NETIF_MSG_LINK          = 0x0004,
3430         NETIF_MSG_TIMER         = 0x0008,
3431         NETIF_MSG_IFDOWN        = 0x0010,
3432         NETIF_MSG_IFUP          = 0x0020,
3433         NETIF_MSG_RX_ERR        = 0x0040,
3434         NETIF_MSG_TX_ERR        = 0x0080,
3435         NETIF_MSG_TX_QUEUED     = 0x0100,
3436         NETIF_MSG_INTR          = 0x0200,
3437         NETIF_MSG_TX_DONE       = 0x0400,
3438         NETIF_MSG_RX_STATUS     = 0x0800,
3439         NETIF_MSG_PKTDATA       = 0x1000,
3440         NETIF_MSG_HW            = 0x2000,
3441         NETIF_MSG_WOL           = 0x4000,
3442 };
3443 
3444 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3445 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3446 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3447 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3448 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3449 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3450 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3451 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3452 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3453 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3454 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3455 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3456 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3457 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3458 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3459 
3460 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3461 {
3462         /* use default */
3463         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3464                 return default_msg_enable_bits;
3465         if (debug_value == 0)   /* no output */
3466                 return 0;
3467         /* set low N bits */
3468         return (1 << debug_value) - 1;
3469 }
3470 
3471 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3472 {
3473         spin_lock(&txq->_xmit_lock);
3474         txq->xmit_lock_owner = cpu;
3475 }
3476 
3477 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3478 {
3479         __acquire(&txq->_xmit_lock);
3480         return true;
3481 }
3482 
3483 static inline void __netif_tx_release(struct netdev_queue *txq)
3484 {
3485         __release(&txq->_xmit_lock);
3486 }
3487 
3488 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3489 {
3490         spin_lock_bh(&txq->_xmit_lock);
3491         txq->xmit_lock_owner = smp_processor_id();
3492 }
3493 
3494 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3495 {
3496         bool ok = spin_trylock(&txq->_xmit_lock);
3497         if (likely(ok))
3498                 txq->xmit_lock_owner = smp_processor_id();
3499         return ok;
3500 }
3501 
3502 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3503 {
3504         txq->xmit_lock_owner = -1;
3505         spin_unlock(&txq->_xmit_lock);
3506 }
3507 
3508 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3509 {
3510         txq->xmit_lock_owner = -1;
3511         spin_unlock_bh(&txq->_xmit_lock);
3512 }
3513 
3514 static inline void txq_trans_update(struct netdev_queue *txq)
3515 {
3516         if (txq->xmit_lock_owner != -1)
3517                 txq->trans_start = jiffies;
3518 }
3519 
3520 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3521 static inline void netif_trans_update(struct net_device *dev)
3522 {
3523         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3524 
3525         if (txq->trans_start != jiffies)
3526                 txq->trans_start = jiffies;
3527 }
3528 
3529 /**
3530  *      netif_tx_lock - grab network device transmit lock
3531  *      @dev: network device
3532  *
3533  * Get network device transmit lock
3534  */
3535 static inline void netif_tx_lock(struct net_device *dev)
3536 {
3537         unsigned int i;
3538         int cpu;
3539 
3540         spin_lock(&dev->tx_global_lock);
3541         cpu = smp_processor_id();
3542         for (i = 0; i < dev->num_tx_queues; i++) {
3543                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3544 
3545                 /* We are the only thread of execution doing a
3546                  * freeze, but we have to grab the _xmit_lock in
3547                  * order to synchronize with threads which are in
3548                  * the ->hard_start_xmit() handler and already
3549                  * checked the frozen bit.
3550                  */
3551                 __netif_tx_lock(txq, cpu);
3552                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3553                 __netif_tx_unlock(txq);
3554         }
3555 }
3556 
3557 static inline void netif_tx_lock_bh(struct net_device *dev)
3558 {
3559         local_bh_disable();
3560         netif_tx_lock(dev);
3561 }
3562 
3563 static inline void netif_tx_unlock(struct net_device *dev)
3564 {
3565         unsigned int i;
3566 
3567         for (i = 0; i < dev->num_tx_queues; i++) {
3568                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3569 
3570                 /* No need to grab the _xmit_lock here.  If the
3571                  * queue is not stopped for another reason, we
3572                  * force a schedule.
3573                  */
3574                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3575                 netif_schedule_queue(txq);
3576         }
3577         spin_unlock(&dev->tx_global_lock);
3578 }
3579 
3580 static inline void netif_tx_unlock_bh(struct net_device *dev)
3581 {
3582         netif_tx_unlock(dev);
3583         local_bh_enable();
3584 }
3585 
3586 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3587         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3588                 __netif_tx_lock(txq, cpu);              \
3589         } else {                                        \
3590                 __netif_tx_acquire(txq);                \
3591         }                                               \
3592 }
3593 
3594 #define HARD_TX_TRYLOCK(dev, txq)                       \
3595         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3596                 __netif_tx_trylock(txq) :               \
3597                 __netif_tx_acquire(txq))
3598 
3599 #define HARD_TX_UNLOCK(dev, txq) {                      \
3600         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3601                 __netif_tx_unlock(txq);                 \
3602         } else {                                        \
3603                 __netif_tx_release(txq);                \
3604         }                                               \
3605 }
3606 
3607 static inline void netif_tx_disable(struct net_device *dev)
3608 {
3609         unsigned int i;
3610         int cpu;
3611 
3612         local_bh_disable();
3613         cpu = smp_processor_id();
3614         for (i = 0; i < dev->num_tx_queues; i++) {
3615                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3616 
3617                 __netif_tx_lock(txq, cpu);
3618                 netif_tx_stop_queue(txq);
3619                 __netif_tx_unlock(txq);
3620         }
3621         local_bh_enable();
3622 }
3623 
3624 static inline void netif_addr_lock(struct net_device *dev)
3625 {
3626         spin_lock(&dev->addr_list_lock);
3627 }
3628 
3629 static inline void netif_addr_lock_nested(struct net_device *dev)
3630 {
3631         int subclass = SINGLE_DEPTH_NESTING;
3632 
3633         if (dev->netdev_ops->ndo_get_lock_subclass)
3634                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3635 
3636         spin_lock_nested(&dev->addr_list_lock, subclass);
3637 }
3638 
3639 static inline void netif_addr_lock_bh(struct net_device *dev)
3640 {
3641         spin_lock_bh(&dev->addr_list_lock);
3642 }
3643 
3644 static inline void netif_addr_unlock(struct net_device *dev)
3645 {
3646         spin_unlock(&dev->addr_list_lock);
3647 }
3648 
3649 static inline void netif_addr_unlock_bh(struct net_device *dev)
3650 {
3651         spin_unlock_bh(&dev->addr_list_lock);
3652 }
3653 
3654 /*
3655  * dev_addrs walker. Should be used only for read access. Call with
3656  * rcu_read_lock held.
3657  */
3658 #define for_each_dev_addr(dev, ha) \
3659                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3660 
3661 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3662 
3663 void ether_setup(struct net_device *dev);
3664 
3665 /* Support for loadable net-drivers */
3666 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3667                                     unsigned char name_assign_type,
3668                                     void (*setup)(struct net_device *),
3669                                     unsigned int txqs, unsigned int rxqs);
3670 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3671         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3672 
3673 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3674         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3675                          count)
3676 
3677 int register_netdev(struct net_device *dev);
3678 void unregister_netdev(struct net_device *dev);
3679 
3680 /* General hardware address lists handling functions */
3681 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3682                    struct netdev_hw_addr_list *from_list, int addr_len);
3683 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3684                       struct netdev_hw_addr_list *from_list, int addr_len);
3685 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3686                        struct net_device *dev,
3687                        int (*sync)(struct net_device *, const unsigned char *),
3688                        int (*unsync)(struct net_device *,
3689                                      const unsigned char *));
3690 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3691                           struct net_device *dev,
3692                           int (*unsync)(struct net_device *,
3693                                         const unsigned char *));
3694 void __hw_addr_init(struct netdev_hw_addr_list *list);
3695 
3696 /* Functions used for device addresses handling */
3697 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3698                  unsigned char addr_type);
3699 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3700                  unsigned char addr_type);
3701 void dev_addr_flush(struct net_device *dev);
3702 int dev_addr_init(struct net_device *dev);
3703 
3704 /* Functions used for unicast addresses handling */
3705 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3706 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3707 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3708 int dev_uc_sync(struct net_device *to, struct net_device *from);
3709 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3710 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3711 void dev_uc_flush(struct net_device *dev);
3712 void dev_uc_init(struct net_device *dev);
3713 
3714 /**
3715  *  __dev_uc_sync - Synchonize device's unicast list
3716  *  @dev:  device to sync
3717  *  @sync: function to call if address should be added
3718  *  @unsync: function to call if address should be removed
3719  *
3720  *  Add newly added addresses to the interface, and release
3721  *  addresses that have been deleted.
3722  */
3723 static inline int __dev_uc_sync(struct net_device *dev,
3724                                 int (*sync)(struct net_device *,
3725                                             const unsigned char *),
3726                                 int (*unsync)(struct net_device *,
3727                                               const unsigned char *))
3728 {
3729         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3730 }
3731 
3732 /**
3733  *  __dev_uc_unsync - Remove synchronized addresses from device
3734  *  @dev:  device to sync
3735  *  @unsync: function to call if address should be removed
3736  *
3737  *  Remove all addresses that were added to the device by dev_uc_sync().
3738  */
3739 static inline void __dev_uc_unsync(struct net_device *dev,
3740                                    int (*unsync)(struct net_device *,
3741                                                  const unsigned char *))
3742 {
3743         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3744 }
3745 
3746 /* Functions used for multicast addresses handling */
3747 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3748 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3749 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3750 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3751 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3752 int dev_mc_sync(struct net_device *to, struct net_device *from);
3753 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3754 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3755 void dev_mc_flush(struct net_device *dev);
3756 void dev_mc_init(struct net_device *dev);
3757 
3758 /**
3759  *  __dev_mc_sync - Synchonize device's multicast list
3760  *  @dev:  device to sync
3761  *  @sync: function to call if address should be added
3762  *  @unsync: function to call if address should be removed
3763  *
3764  *  Add newly added addresses to the interface, and release
3765  *  addresses that have been deleted.
3766  */
3767 static inline int __dev_mc_sync(struct net_device *dev,
3768                                 int (*sync)(struct net_device *,
3769                                             const unsigned char *),
3770                                 int (*unsync)(struct net_device *,
3771                                               const unsigned char *))
3772 {
3773         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3774 }
3775 
3776 /**
3777  *  __dev_mc_unsync - Remove synchronized addresses from device
3778  *  @dev:  device to sync
3779  *  @unsync: function to call if address should be removed
3780  *
3781  *  Remove all addresses that were added to the device by dev_mc_sync().
3782  */
3783 static inline void __dev_mc_unsync(struct net_device *dev,
3784                                    int (*unsync)(struct net_device *,
3785                                                  const unsigned char *))
3786 {
3787         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3788 }
3789 
3790 /* Functions used for secondary unicast and multicast support */
3791 void dev_set_rx_mode(struct net_device *dev);
3792 void __dev_set_rx_mode(struct net_device *dev);
3793 int dev_set_promiscuity(struct net_device *dev, int inc);
3794 int dev_set_allmulti(struct net_device *dev, int inc);
3795 void netdev_state_change(struct net_device *dev);
3796 void netdev_notify_peers(struct net_device *dev);
3797 void netdev_features_change(struct net_device *dev);
3798 /* Load a device via the kmod */
3799 void dev_load(struct net *net, const char *name);
3800 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3801                                         struct rtnl_link_stats64 *storage);
3802 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3803                              const struct net_device_stats *netdev_stats);
3804 
3805 extern int              netdev_max_backlog;
3806 extern int              netdev_tstamp_prequeue;
3807 extern int              weight_p;
3808 
3809 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3810 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3811                                                      struct list_head **iter);
3812 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3813                                                      struct list_head **iter);
3814 
3815 /* iterate through upper list, must be called under RCU read lock */
3816 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3817         for (iter = &(dev)->adj_list.upper, \
3818              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3819              updev; \
3820              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3821 
3822 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3823                                   int (*fn)(struct net_device *upper_dev,
3824                                             void *data),
3825                                   void *data);
3826 
3827 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3828                                   struct net_device *upper_dev);
3829 
3830 void *netdev_lower_get_next_private(struct net_device *dev,
3831                                     struct list_head **iter);
3832 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3833                                         struct list_head **iter);
3834 
3835 #define netdev_for_each_lower_private(dev, priv, iter) \
3836         for (iter = (dev)->adj_list.lower.next, \
3837              priv = netdev_lower_get_next_private(dev, &(iter)); \
3838              priv; \
3839              priv = netdev_lower_get_next_private(dev, &(iter)))
3840 
3841 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3842         for (iter = &(dev)->adj_list.lower, \
3843              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3844              priv; \
3845              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3846 
3847 void *netdev_lower_get_next(struct net_device *dev,
3848                                 struct list_head **iter);
3849 
3850 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3851         for (iter = (dev)->adj_list.lower.next, \
3852              ldev = netdev_lower_get_next(dev, &(iter)); \
3853              ldev; \
3854              ldev = netdev_lower_get_next(dev, &(iter)))
3855 
3856 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3857                                              struct list_head **iter);
3858 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3859                                                  struct list_head **iter);
3860 
3861 int netdev_walk_all_lower_dev(struct net_device *dev,
3862                               int (*fn)(struct net_device *lower_dev,
3863                                         void *data),
3864                               void *data);
3865 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3866                                   int (*fn)(struct net_device *lower_dev,
3867                                             void *data),
3868                                   void *data);
3869 
3870 void *netdev_adjacent_get_private(struct list_head *adj_list);
3871 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3872 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3873 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3874 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3875 int netdev_master_upper_dev_link(struct net_device *dev,
3876                                  struct net_device *upper_dev,
3877                                  void *upper_priv, void *upper_info);
3878 void netdev_upper_dev_unlink(struct net_device *dev,
3879                              struct net_device *upper_dev);
3880 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3881 void *netdev_lower_dev_get_private(struct net_device *dev,
3882                                    struct net_device *lower_dev);
3883 void netdev_lower_state_changed(struct net_device *lower_dev,
3884                                 void *lower_state_info);
3885 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3886                                            struct neighbour *n);
3887 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3888                                           struct neighbour *n);
3889 
3890 /* RSS keys are 40 or 52 bytes long */
3891 #define NETDEV_RSS_KEY_LEN 52
3892 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3893 void netdev_rss_key_fill(void *buffer, size_t len);
3894 
3895 int dev_get_nest_level(struct net_device *dev);
3896 int skb_checksum_help(struct sk_buff *skb);
3897 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3898                                   netdev_features_t features, bool tx_path);
3899 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3900                                     netdev_features_t features);
3901 
3902 struct netdev_bonding_info {
3903         ifslave slave;
3904         ifbond  master;
3905 };
3906 
3907 struct netdev_notifier_bonding_info {
3908         struct netdev_notifier_info info; /* must be first */
3909         struct netdev_bonding_info  bonding_info;
3910 };
3911 
3912 void netdev_bonding_info_change(struct net_device *dev,
3913                                 struct netdev_bonding_info *bonding_info);
3914 
3915 static inline
3916 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3917 {
3918         return __skb_gso_segment(skb, features, true);
3919 }
3920 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3921 
3922 static inline bool can_checksum_protocol(netdev_features_t features,
3923                                          __be16 protocol)
3924 {
3925         if (protocol == htons(ETH_P_FCOE))
3926                 return !!(features & NETIF_F_FCOE_CRC);
3927 
3928         /* Assume this is an IP checksum (not SCTP CRC) */
3929 
3930         if (features & NETIF_F_HW_CSUM) {
3931                 /* Can checksum everything */
3932                 return true;
3933         }
3934 
3935         switch (protocol) {
3936         case htons(ETH_P_IP):
3937                 return !!(features & NETIF_F_IP_CSUM);
3938         case htons(ETH_P_IPV6):
3939                 return !!(features & NETIF_F_IPV6_CSUM);
3940         default:
3941                 return false;
3942         }
3943 }
3944 
3945 #ifdef CONFIG_BUG
3946 void netdev_rx_csum_fault(struct net_device *dev);
3947 #else
3948 static inline void netdev_rx_csum_fault(struct net_device *dev)
3949 {
3950 }
3951 #endif
3952 /* rx skb timestamps */
3953 void net_enable_timestamp(void);
3954 void net_disable_timestamp(void);
3955 
3956 #ifdef CONFIG_PROC_FS
3957 int __init dev_proc_init(void);
3958 #else
3959 #define dev_proc_init() 0
3960 #endif
3961 
3962 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3963                                               struct sk_buff *skb, struct net_device *dev,
3964                                               bool more)
3965 {
3966         skb->xmit_more = more ? 1 : 0;
3967         return ops->ndo_start_xmit(skb, dev);
3968 }
3969 
3970 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3971                                             struct netdev_queue *txq, bool more)
3972 {
3973         const struct net_device_ops *ops = dev->netdev_ops;
3974         int rc;
3975 
3976         rc = __netdev_start_xmit(ops, skb, dev, more);
3977         if (rc == NETDEV_TX_OK)
3978                 txq_trans_update(txq);
3979 
3980         return rc;
3981 }
3982 
3983 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3984                                 const void *ns);
3985 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3986                                  const void *ns);
3987 
3988 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3989 {
3990         return netdev_class_create_file_ns(class_attr, NULL);
3991 }
3992 
3993 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3994 {
3995         netdev_class_remove_file_ns(class_attr, NULL);
3996 }
3997 
3998 extern struct kobj_ns_type_operations net_ns_type_operations;
3999 
4000 const char *netdev_drivername(const struct net_device *dev);
4001 
4002 void linkwatch_run_queue(void);
4003 
4004 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4005                                                           netdev_features_t f2)
4006 {
4007         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4008                 if (f1 & NETIF_F_HW_CSUM)
4009                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4010                 else
4011                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4012         }
4013 
4014         return f1 & f2;
4015 }
4016 
4017 static inline netdev_features_t netdev_get_wanted_features(
4018         struct net_device *dev)
4019 {
4020         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4021 }
4022 netdev_features_t netdev_increment_features(netdev_features_t all,
4023         netdev_features_t one, netdev_features_t mask);
4024 
4025 /* Allow TSO being used on stacked device :
4026  * Performing the GSO segmentation before last device
4027  * is a performance improvement.
4028  */
4029 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4030                                                         netdev_features_t mask)
4031 {
4032         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4033 }
4034 
4035 int __netdev_update_features(struct net_device *dev);
4036 void netdev_update_features(struct net_device *dev);
4037 void netdev_change_features(struct net_device *dev);
4038 
4039 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4040                                         struct net_device *dev);
4041 
4042 netdev_features_t passthru_features_check(struct sk_buff *skb,
4043                                           struct net_device *dev,
4044                                           netdev_features_t features);
4045 netdev_features_t netif_skb_features(struct sk_buff *skb);
4046 
4047 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4048 {
4049         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4050 
4051         /* check flags correspondence */
4052         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4053         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4054         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4055         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4056         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4057         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4058         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4059         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4060         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4061         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4062         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4063         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4064         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4065         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4066         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4067         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4068 
4069         return (features & feature) == feature;
4070 }
4071 
4072 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4073 {
4074         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4075                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4076 }
4077 
4078 static inline bool netif_needs_gso(struct sk_buff *skb,
4079                                    netdev_features_t features)
4080 {
4081         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4082                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4083                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4084 }
4085 
4086 static inline void netif_set_gso_max_size(struct net_device *dev,
4087                                           unsigned int size)
4088 {
4089         dev->gso_max_size = size;
4090 }
4091 
4092 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4093                                         int pulled_hlen, u16 mac_offset,
4094                                         int mac_len)
4095 {
4096         skb->protocol = protocol;
4097         skb->encapsulation = 1;
4098         skb_push(skb, pulled_hlen);
4099         skb_reset_transport_header(skb);
4100         skb->mac_header = mac_offset;
4101         skb->network_header = skb->mac_header + mac_len;
4102         skb->mac_len = mac_len;
4103 }
4104 
4105 static inline bool netif_is_macsec(const struct net_device *dev)
4106 {
4107         return dev->priv_flags & IFF_MACSEC;
4108 }
4109 
4110 static inline bool netif_is_macvlan(const struct net_device *dev)
4111 {
4112         return dev->priv_flags & IFF_MACVLAN;
4113 }
4114 
4115 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4116 {
4117         return dev->priv_flags & IFF_MACVLAN_PORT;
4118 }
4119 
4120 static inline bool netif_is_ipvlan(const struct net_device *dev)
4121 {
4122         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4123 }
4124 
4125 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4126 {
4127         return dev->priv_flags & IFF_IPVLAN_MASTER;
4128 }
4129 
4130 static inline bool netif_is_bond_master(const struct net_device *dev)
4131 {
4132         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4133 }
4134 
4135 static inline bool netif_is_bond_slave(const struct net_device *dev)
4136 {
4137         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4138 }
4139 
4140 static inline bool netif_supports_nofcs(struct net_device *dev)
4141 {
4142         return dev->priv_flags & IFF_SUPP_NOFCS;
4143 }
4144 
4145 static inline bool netif_is_l3_master(const struct net_device *dev)
4146 {
4147         return dev->priv_flags & IFF_L3MDEV_MASTER;
4148 }
4149 
4150 static inline bool netif_is_l3_slave(const struct net_device *dev)
4151 {
4152         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4153 }
4154 
4155 static inline bool netif_is_bridge_master(const struct net_device *dev)
4156 {
4157         return dev->priv_flags & IFF_EBRIDGE;
4158 }
4159 
4160 static inline bool netif_is_bridge_port(const struct net_device *dev)
4161 {
4162         return dev->priv_flags & IFF_BRIDGE_PORT;
4163 }
4164 
4165 static inline bool netif_is_ovs_master(const struct net_device *dev)
4166 {
4167         return dev->priv_flags & IFF_OPENVSWITCH;
4168 }
4169 
4170 static inline bool netif_is_team_master(const struct net_device *dev)
4171 {
4172         return dev->priv_flags & IFF_TEAM;
4173 }
4174 
4175 static inline bool netif_is_team_port(const struct net_device *dev)
4176 {
4177         return dev->priv_flags & IFF_TEAM_PORT;
4178 }
4179 
4180 static inline bool netif_is_lag_master(const struct net_device *dev)
4181 {
4182         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4183 }
4184 
4185 static inline bool netif_is_lag_port(const struct net_device *dev)
4186 {
4187         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4188 }
4189 
4190 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4191 {
4192         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4193 }
4194 
4195 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4196 static inline void netif_keep_dst(struct net_device *dev)
4197 {
4198         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4199 }
4200 
4201 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4202 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4203 {
4204         /* TODO: reserve and use an additional IFF bit, if we get more users */
4205         return dev->priv_flags & IFF_MACSEC;
4206 }
4207 
4208 extern struct pernet_operations __net_initdata loopback_net_ops;
4209 
4210 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4211 
4212 /* netdev_printk helpers, similar to dev_printk */
4213 
4214 static inline const char *netdev_name(const struct net_device *dev)
4215 {
4216         if (!dev->name[0] || strchr(dev->name, '%'))
4217                 return "(unnamed net_device)";
4218         return dev->name;
4219 }
4220 
4221 static inline const char *netdev_reg_state(const struct net_device *dev)
4222 {
4223         switch (dev->reg_state) {
4224         case NETREG_UNINITIALIZED: return " (uninitialized)";
4225         case NETREG_REGISTERED: return "";
4226         case NETREG_UNREGISTERING: return " (unregistering)";
4227         case NETREG_UNREGISTERED: return " (unregistered)";
4228         case NETREG_RELEASED: return " (released)";
4229         case NETREG_DUMMY: return " (dummy)";
4230         }
4231 
4232         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4233         return " (unknown)";
4234 }
4235 
4236 __printf(3, 4)
4237 void netdev_printk(const char *level, const struct net_device *dev,
4238                    const char *format, ...);
4239 __printf(2, 3)
4240 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4241 __printf(2, 3)
4242 void netdev_alert(const struct net_device *dev, const char *format, ...);
4243 __printf(2, 3)
4244 void netdev_crit(const struct net_device *dev, const char *format, ...);
4245 __printf(2, 3)
4246 void netdev_err(const struct net_device *dev, const char *format, ...);
4247 __printf(2, 3)
4248 void netdev_warn(const struct net_device *dev, const char *format, ...);
4249 __printf(2, 3)
4250 void netdev_notice(const struct net_device *dev, const char *format, ...);
4251 __printf(2, 3)
4252 void netdev_info(const struct net_device *dev, const char *format, ...);
4253 
4254 #define MODULE_ALIAS_NETDEV(device) \
4255         MODULE_ALIAS("netdev-" device)
4256 
4257 #if defined(CONFIG_DYNAMIC_DEBUG)
4258 #define netdev_dbg(__dev, format, args...)                      \
4259 do {                                                            \
4260         dynamic_netdev_dbg(__dev, format, ##args);              \
4261 } while (0)
4262 #elif defined(DEBUG)
4263 #define netdev_dbg(__dev, format, args...)                      \
4264         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4265 #else
4266 #define netdev_dbg(__dev, format, args...)                      \
4267 ({                                                              \
4268         if (0)                                                  \
4269                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4270 })
4271 #endif
4272 
4273 #if defined(VERBOSE_DEBUG)
4274 #define netdev_vdbg     netdev_dbg
4275 #else
4276 
4277 #define netdev_vdbg(dev, format, args...)                       \
4278 ({                                                              \
4279         if (0)                                                  \
4280                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4281         0;                                                      \
4282 })
4283 #endif
4284 
4285 /*
4286  * netdev_WARN() acts like dev_printk(), but with the key difference
4287  * of using a WARN/WARN_ON to get the message out, including the
4288  * file/line information and a backtrace.
4289  */
4290 #define netdev_WARN(dev, format, args...)                       \
4291         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4292              netdev_reg_state(dev), ##args)
4293 
4294 /* netif printk helpers, similar to netdev_printk */
4295 
4296 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4297 do {                                                            \
4298         if (netif_msg_##type(priv))                             \
4299                 netdev_printk(level, (dev), fmt, ##args);       \
4300 } while (0)
4301 
4302 #define netif_level(level, priv, type, dev, fmt, args...)       \
4303 do {                                                            \
4304         if (netif_msg_##type(priv))                             \
4305                 netdev_##level(dev, fmt, ##args);               \
4306 } while (0)
4307 
4308 #define netif_emerg(priv, type, dev, fmt, args...)              \
4309         netif_level(emerg, priv, type, dev, fmt, ##args)
4310 #define netif_alert(priv, type, dev, fmt, args...)              \
4311         netif_level(alert, priv, type, dev, fmt, ##args)
4312 #define netif_crit(priv, type, dev, fmt, args...)               \
4313         netif_level(crit, priv, type, dev, fmt, ##args)
4314 #define netif_err(priv, type, dev, fmt, args...)                \
4315         netif_level(err, priv, type, dev, fmt, ##args)
4316 #define netif_warn(priv, type, dev, fmt, args...)               \
4317         netif_level(warn, priv, type, dev, fmt, ##args)
4318 #define netif_notice(priv, type, dev, fmt, args...)             \
4319         netif_level(notice, priv, type, dev, fmt, ##args)
4320 #define netif_info(priv, type, dev, fmt, args...)               \
4321         netif_level(info, priv, type, dev, fmt, ##args)
4322 
4323 #if defined(CONFIG_DYNAMIC_DEBUG)
4324 #define netif_dbg(priv, type, netdev, format, args...)          \
4325 do {                                                            \
4326         if (netif_msg_##type(priv))                             \
4327                 dynamic_netdev_dbg(netdev, format, ##args);     \
4328 } while (0)
4329 #elif defined(DEBUG)
4330 #define netif_dbg(priv, type, dev, format, args...)             \
4331         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4332 #else
4333 #define netif_dbg(priv, type, dev, format, args...)                     \
4334 ({                                                                      \
4335         if (0)                                                          \
4336                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4337         0;                                                              \
4338 })
4339 #endif
4340 
4341 #if defined(VERBOSE_DEBUG)
4342 #define netif_vdbg      netif_dbg
4343 #else
4344 #define netif_vdbg(priv, type, dev, format, args...)            \
4345 ({                                                              \
4346         if (0)                                                  \
4347                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4348         0;                                                      \
4349 })
4350 #endif
4351 
4352 /*
4353  *      The list of packet types we will receive (as opposed to discard)
4354  *      and the routines to invoke.
4355  *
4356  *      Why 16. Because with 16 the only overlap we get on a hash of the
4357  *      low nibble of the protocol value is RARP/SNAP/X.25.
4358  *
4359  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4360  *             sure which should go first, but I bet it won't make much
4361  *             difference if we are running VLANs.  The good news is that
4362  *             this protocol won't be in the list unless compiled in, so
4363  *             the average user (w/out VLANs) will not be adversely affected.
4364  *             --BLG
4365  *
4366  *              0800    IP
4367  *              8100    802.1Q VLAN
4368  *              0001    802.3
4369  *              0002    AX.25
4370  *              0004    802.2
4371  *              8035    RARP
4372  *              0005    SNAP
4373  *              0805    X.25
4374  *              0806    ARP
4375  *              8137    IPX
4376  *              0009    Localtalk
4377  *              86DD    IPv6
4378  */
4379 #define PTYPE_HASH_SIZE (16)
4380 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4381 
4382 #endif  /* _LINUX_NETDEVICE_H */
4383 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us