Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/pm_qos.h>
 29 #include <linux/timer.h>
 30 #include <linux/bug.h>
 31 #include <linux/delay.h>
 32 #include <linux/atomic.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 
 54 struct netpoll_info;
 55 struct device;
 56 struct phy_device;
 57 /* 802.11 specific */
 58 struct wireless_dev;
 59                                         /* source back-compat hooks */
 60 #define SET_ETHTOOL_OPS(netdev,ops) \
 61         ( (netdev)->ethtool_ops = (ops) )
 62 
 63 void netdev_set_default_ethtool_ops(struct net_device *dev,
 64                                     const struct ethtool_ops *ops);
 65 
 66 /* Backlog congestion levels */
 67 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 68 #define NET_RX_DROP             1       /* packet dropped */
 69 
 70 /*
 71  * Transmit return codes: transmit return codes originate from three different
 72  * namespaces:
 73  *
 74  * - qdisc return codes
 75  * - driver transmit return codes
 76  * - errno values
 77  *
 78  * Drivers are allowed to return any one of those in their hard_start_xmit()
 79  * function. Real network devices commonly used with qdiscs should only return
 80  * the driver transmit return codes though - when qdiscs are used, the actual
 81  * transmission happens asynchronously, so the value is not propagated to
 82  * higher layers. Virtual network devices transmit synchronously, in this case
 83  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 84  * others are propagated to higher layers.
 85  */
 86 
 87 /* qdisc ->enqueue() return codes. */
 88 #define NET_XMIT_SUCCESS        0x00
 89 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 90 #define NET_XMIT_CN             0x02    /* congestion notification      */
 91 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 92 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 93 
 94 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 95  * indicates that the device will soon be dropping packets, or already drops
 96  * some packets of the same priority; prompting us to send less aggressively. */
 97 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 98 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 99 
100 /* Driver transmit return codes */
101 #define NETDEV_TX_MASK          0xf0
102 
103 enum netdev_tx {
104         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
105         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
106         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
107         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
108 };
109 typedef enum netdev_tx netdev_tx_t;
110 
111 /*
112  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
113  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
114  */
115 static inline bool dev_xmit_complete(int rc)
116 {
117         /*
118          * Positive cases with an skb consumed by a driver:
119          * - successful transmission (rc == NETDEV_TX_OK)
120          * - error while transmitting (rc < 0)
121          * - error while queueing to a different device (rc & NET_XMIT_MASK)
122          */
123         if (likely(rc < NET_XMIT_MASK))
124                 return true;
125 
126         return false;
127 }
128 
129 /*
130  *      Compute the worst case header length according to the protocols
131  *      used.
132  */
133 
134 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
135 # if defined(CONFIG_MAC80211_MESH)
136 #  define LL_MAX_HEADER 128
137 # else
138 #  define LL_MAX_HEADER 96
139 # endif
140 #else
141 # define LL_MAX_HEADER 32
142 #endif
143 
144 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
145     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
146 #define MAX_HEADER LL_MAX_HEADER
147 #else
148 #define MAX_HEADER (LL_MAX_HEADER + 48)
149 #endif
150 
151 /*
152  *      Old network device statistics. Fields are native words
153  *      (unsigned long) so they can be read and written atomically.
154  */
155 
156 struct net_device_stats {
157         unsigned long   rx_packets;
158         unsigned long   tx_packets;
159         unsigned long   rx_bytes;
160         unsigned long   tx_bytes;
161         unsigned long   rx_errors;
162         unsigned long   tx_errors;
163         unsigned long   rx_dropped;
164         unsigned long   tx_dropped;
165         unsigned long   multicast;
166         unsigned long   collisions;
167         unsigned long   rx_length_errors;
168         unsigned long   rx_over_errors;
169         unsigned long   rx_crc_errors;
170         unsigned long   rx_frame_errors;
171         unsigned long   rx_fifo_errors;
172         unsigned long   rx_missed_errors;
173         unsigned long   tx_aborted_errors;
174         unsigned long   tx_carrier_errors;
175         unsigned long   tx_fifo_errors;
176         unsigned long   tx_heartbeat_errors;
177         unsigned long   tx_window_errors;
178         unsigned long   rx_compressed;
179         unsigned long   tx_compressed;
180 };
181 
182 
183 #include <linux/cache.h>
184 #include <linux/skbuff.h>
185 
186 #ifdef CONFIG_RPS
187 #include <linux/static_key.h>
188 extern struct static_key rps_needed;
189 #endif
190 
191 struct neighbour;
192 struct neigh_parms;
193 struct sk_buff;
194 
195 struct netdev_hw_addr {
196         struct list_head        list;
197         unsigned char           addr[MAX_ADDR_LEN];
198         unsigned char           type;
199 #define NETDEV_HW_ADDR_T_LAN            1
200 #define NETDEV_HW_ADDR_T_SAN            2
201 #define NETDEV_HW_ADDR_T_SLAVE          3
202 #define NETDEV_HW_ADDR_T_UNICAST        4
203 #define NETDEV_HW_ADDR_T_MULTICAST      5
204         bool                    global_use;
205         int                     sync_cnt;
206         int                     refcount;
207         int                     synced;
208         struct rcu_head         rcu_head;
209 };
210 
211 struct netdev_hw_addr_list {
212         struct list_head        list;
213         int                     count;
214 };
215 
216 #define netdev_hw_addr_list_count(l) ((l)->count)
217 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
218 #define netdev_hw_addr_list_for_each(ha, l) \
219         list_for_each_entry(ha, &(l)->list, list)
220 
221 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
222 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
223 #define netdev_for_each_uc_addr(ha, dev) \
224         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
225 
226 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
227 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
228 #define netdev_for_each_mc_addr(ha, dev) \
229         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
230 
231 struct hh_cache {
232         u16             hh_len;
233         u16             __pad;
234         seqlock_t       hh_lock;
235 
236         /* cached hardware header; allow for machine alignment needs.        */
237 #define HH_DATA_MOD     16
238 #define HH_DATA_OFF(__len) \
239         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
240 #define HH_DATA_ALIGN(__len) \
241         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
242         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
243 };
244 
245 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
246  * Alternative is:
247  *   dev->hard_header_len ? (dev->hard_header_len +
248  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
249  *
250  * We could use other alignment values, but we must maintain the
251  * relationship HH alignment <= LL alignment.
252  */
253 #define LL_RESERVED_SPACE(dev) \
254         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
256         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
257 
258 struct header_ops {
259         int     (*create) (struct sk_buff *skb, struct net_device *dev,
260                            unsigned short type, const void *daddr,
261                            const void *saddr, unsigned int len);
262         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
263         int     (*rebuild)(struct sk_buff *skb);
264         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265         void    (*cache_update)(struct hh_cache *hh,
266                                 const struct net_device *dev,
267                                 const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276         __LINK_STATE_START,
277         __LINK_STATE_PRESENT,
278         __LINK_STATE_NOCARRIER,
279         __LINK_STATE_LINKWATCH_PENDING,
280         __LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289         char name[IFNAMSIZ];
290         struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300         /* The poll_list must only be managed by the entity which
301          * changes the state of the NAPI_STATE_SCHED bit.  This means
302          * whoever atomically sets that bit can add this napi_struct
303          * to the per-cpu poll_list, and whoever clears that bit
304          * can remove from the list right before clearing the bit.
305          */
306         struct list_head        poll_list;
307 
308         unsigned long           state;
309         int                     weight;
310         unsigned int            gro_count;
311         int                     (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313         spinlock_t              poll_lock;
314         int                     poll_owner;
315 #endif
316         struct net_device       *dev;
317         struct sk_buff          *gro_list;
318         struct sk_buff          *skb;
319         struct list_head        dev_list;
320         struct hlist_node       napi_hash_node;
321         unsigned int            napi_id;
322 };
323 
324 enum {
325         NAPI_STATE_SCHED,       /* Poll is scheduled */
326         NAPI_STATE_DISABLE,     /* Disable pending */
327         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
328         NAPI_STATE_HASHED,      /* In NAPI hash */
329 };
330 
331 enum gro_result {
332         GRO_MERGED,
333         GRO_MERGED_FREE,
334         GRO_HELD,
335         GRO_NORMAL,
336         GRO_DROP,
337 };
338 typedef enum gro_result gro_result_t;
339 
340 /*
341  * enum rx_handler_result - Possible return values for rx_handlers.
342  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343  * further.
344  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345  * case skb->dev was changed by rx_handler.
346  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348  *
349  * rx_handlers are functions called from inside __netif_receive_skb(), to do
350  * special processing of the skb, prior to delivery to protocol handlers.
351  *
352  * Currently, a net_device can only have a single rx_handler registered. Trying
353  * to register a second rx_handler will return -EBUSY.
354  *
355  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356  * To unregister a rx_handler on a net_device, use
357  * netdev_rx_handler_unregister().
358  *
359  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360  * do with the skb.
361  *
362  * If the rx_handler consumed to skb in some way, it should return
363  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364  * the skb to be delivered in some other ways.
365  *
366  * If the rx_handler changed skb->dev, to divert the skb to another
367  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368  * new device will be called if it exists.
369  *
370  * If the rx_handler consider the skb should be ignored, it should return
371  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372  * are registered on exact device (ptype->dev == skb->dev).
373  *
374  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375  * delivered, it should return RX_HANDLER_PASS.
376  *
377  * A device without a registered rx_handler will behave as if rx_handler
378  * returned RX_HANDLER_PASS.
379  */
380 
381 enum rx_handler_result {
382         RX_HANDLER_CONSUMED,
383         RX_HANDLER_ANOTHER,
384         RX_HANDLER_EXACT,
385         RX_HANDLER_PASS,
386 };
387 typedef enum rx_handler_result rx_handler_result_t;
388 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
389 
390 void __napi_schedule(struct napi_struct *n);
391 
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394         return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396 
397 /**
398  *      napi_schedule_prep - check if napi can be scheduled
399  *      @n: napi context
400  *
401  * Test if NAPI routine is already running, and if not mark
402  * it as running.  This is used as a condition variable
403  * insure only one NAPI poll instance runs.  We also make
404  * sure there is no pending NAPI disable.
405  */
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408         return !napi_disable_pending(n) &&
409                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
410 }
411 
412 /**
413  *      napi_schedule - schedule NAPI poll
414  *      @n: napi context
415  *
416  * Schedule NAPI poll routine to be called if it is not already
417  * running.
418  */
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421         if (napi_schedule_prep(n))
422                 __napi_schedule(n);
423 }
424 
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428         if (napi_schedule_prep(napi)) {
429                 __napi_schedule(napi);
430                 return true;
431         }
432         return false;
433 }
434 
435 /**
436  *      napi_complete - NAPI processing complete
437  *      @n: napi context
438  *
439  * Mark NAPI processing as complete.
440  */
441 void __napi_complete(struct napi_struct *n);
442 void napi_complete(struct napi_struct *n);
443 
444 /**
445  *      napi_by_id - lookup a NAPI by napi_id
446  *      @napi_id: hashed napi_id
447  *
448  * lookup @napi_id in napi_hash table
449  * must be called under rcu_read_lock()
450  */
451 struct napi_struct *napi_by_id(unsigned int napi_id);
452 
453 /**
454  *      napi_hash_add - add a NAPI to global hashtable
455  *      @napi: napi context
456  *
457  * generate a new napi_id and store a @napi under it in napi_hash
458  */
459 void napi_hash_add(struct napi_struct *napi);
460 
461 /**
462  *      napi_hash_del - remove a NAPI from global table
463  *      @napi: napi context
464  *
465  * Warning: caller must observe rcu grace period
466  * before freeing memory containing @napi
467  */
468 void napi_hash_del(struct napi_struct *napi);
469 
470 /**
471  *      napi_disable - prevent NAPI from scheduling
472  *      @n: napi context
473  *
474  * Stop NAPI from being scheduled on this context.
475  * Waits till any outstanding processing completes.
476  */
477 static inline void napi_disable(struct napi_struct *n)
478 {
479         might_sleep();
480         set_bit(NAPI_STATE_DISABLE, &n->state);
481         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
482                 msleep(1);
483         clear_bit(NAPI_STATE_DISABLE, &n->state);
484 }
485 
486 /**
487  *      napi_enable - enable NAPI scheduling
488  *      @n: napi context
489  *
490  * Resume NAPI from being scheduled on this context.
491  * Must be paired with napi_disable.
492  */
493 static inline void napi_enable(struct napi_struct *n)
494 {
495         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
496         smp_mb__before_clear_bit();
497         clear_bit(NAPI_STATE_SCHED, &n->state);
498 }
499 
500 #ifdef CONFIG_SMP
501 /**
502  *      napi_synchronize - wait until NAPI is not running
503  *      @n: napi context
504  *
505  * Wait until NAPI is done being scheduled on this context.
506  * Waits till any outstanding processing completes but
507  * does not disable future activations.
508  */
509 static inline void napi_synchronize(const struct napi_struct *n)
510 {
511         while (test_bit(NAPI_STATE_SCHED, &n->state))
512                 msleep(1);
513 }
514 #else
515 # define napi_synchronize(n)    barrier()
516 #endif
517 
518 enum netdev_queue_state_t {
519         __QUEUE_STATE_DRV_XOFF,
520         __QUEUE_STATE_STACK_XOFF,
521         __QUEUE_STATE_FROZEN,
522 };
523 
524 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
525 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
526 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
527 
528 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
529 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
530                                         QUEUE_STATE_FROZEN)
531 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
532                                         QUEUE_STATE_FROZEN)
533 
534 /*
535  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
536  * netif_tx_* functions below are used to manipulate this flag.  The
537  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
538  * queue independently.  The netif_xmit_*stopped functions below are called
539  * to check if the queue has been stopped by the driver or stack (either
540  * of the XOFF bits are set in the state).  Drivers should not need to call
541  * netif_xmit*stopped functions, they should only be using netif_tx_*.
542  */
543 
544 struct netdev_queue {
545 /*
546  * read mostly part
547  */
548         struct net_device       *dev;
549         struct Qdisc            *qdisc;
550         struct Qdisc            *qdisc_sleeping;
551 #ifdef CONFIG_SYSFS
552         struct kobject          kobj;
553 #endif
554 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
555         int                     numa_node;
556 #endif
557 /*
558  * write mostly part
559  */
560         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
561         int                     xmit_lock_owner;
562         /*
563          * please use this field instead of dev->trans_start
564          */
565         unsigned long           trans_start;
566 
567         /*
568          * Number of TX timeouts for this queue
569          * (/sys/class/net/DEV/Q/trans_timeout)
570          */
571         unsigned long           trans_timeout;
572 
573         unsigned long           state;
574 
575 #ifdef CONFIG_BQL
576         struct dql              dql;
577 #endif
578 } ____cacheline_aligned_in_smp;
579 
580 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
581 {
582 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
583         return q->numa_node;
584 #else
585         return NUMA_NO_NODE;
586 #endif
587 }
588 
589 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
590 {
591 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
592         q->numa_node = node;
593 #endif
594 }
595 
596 #ifdef CONFIG_RPS
597 /*
598  * This structure holds an RPS map which can be of variable length.  The
599  * map is an array of CPUs.
600  */
601 struct rps_map {
602         unsigned int len;
603         struct rcu_head rcu;
604         u16 cpus[0];
605 };
606 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
607 
608 /*
609  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
610  * tail pointer for that CPU's input queue at the time of last enqueue, and
611  * a hardware filter index.
612  */
613 struct rps_dev_flow {
614         u16 cpu;
615         u16 filter;
616         unsigned int last_qtail;
617 };
618 #define RPS_NO_FILTER 0xffff
619 
620 /*
621  * The rps_dev_flow_table structure contains a table of flow mappings.
622  */
623 struct rps_dev_flow_table {
624         unsigned int mask;
625         struct rcu_head rcu;
626         struct rps_dev_flow flows[0];
627 };
628 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
629     ((_num) * sizeof(struct rps_dev_flow)))
630 
631 /*
632  * The rps_sock_flow_table contains mappings of flows to the last CPU
633  * on which they were processed by the application (set in recvmsg).
634  */
635 struct rps_sock_flow_table {
636         unsigned int mask;
637         u16 ents[0];
638 };
639 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
640     ((_num) * sizeof(u16)))
641 
642 #define RPS_NO_CPU 0xffff
643 
644 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
645                                         u32 hash)
646 {
647         if (table && hash) {
648                 unsigned int cpu, index = hash & table->mask;
649 
650                 /* We only give a hint, preemption can change cpu under us */
651                 cpu = raw_smp_processor_id();
652 
653                 if (table->ents[index] != cpu)
654                         table->ents[index] = cpu;
655         }
656 }
657 
658 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
659                                        u32 hash)
660 {
661         if (table && hash)
662                 table->ents[hash & table->mask] = RPS_NO_CPU;
663 }
664 
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 #ifdef CONFIG_RFS_ACCEL
668 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
669                          u16 filter_id);
670 #endif
671 #endif /* CONFIG_RPS */
672 
673 /* This structure contains an instance of an RX queue. */
674 struct netdev_rx_queue {
675 #ifdef CONFIG_RPS
676         struct rps_map __rcu            *rps_map;
677         struct rps_dev_flow_table __rcu *rps_flow_table;
678 #endif
679         struct kobject                  kobj;
680         struct net_device               *dev;
681 } ____cacheline_aligned_in_smp;
682 
683 /*
684  * RX queue sysfs structures and functions.
685  */
686 struct rx_queue_attribute {
687         struct attribute attr;
688         ssize_t (*show)(struct netdev_rx_queue *queue,
689             struct rx_queue_attribute *attr, char *buf);
690         ssize_t (*store)(struct netdev_rx_queue *queue,
691             struct rx_queue_attribute *attr, const char *buf, size_t len);
692 };
693 
694 #ifdef CONFIG_XPS
695 /*
696  * This structure holds an XPS map which can be of variable length.  The
697  * map is an array of queues.
698  */
699 struct xps_map {
700         unsigned int len;
701         unsigned int alloc_len;
702         struct rcu_head rcu;
703         u16 queues[0];
704 };
705 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
706 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
707     / sizeof(u16))
708 
709 /*
710  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
711  */
712 struct xps_dev_maps {
713         struct rcu_head rcu;
714         struct xps_map __rcu *cpu_map[0];
715 };
716 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
717     (nr_cpu_ids * sizeof(struct xps_map *)))
718 #endif /* CONFIG_XPS */
719 
720 #define TC_MAX_QUEUE    16
721 #define TC_BITMASK      15
722 /* HW offloaded queuing disciplines txq count and offset maps */
723 struct netdev_tc_txq {
724         u16 count;
725         u16 offset;
726 };
727 
728 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
729 /*
730  * This structure is to hold information about the device
731  * configured to run FCoE protocol stack.
732  */
733 struct netdev_fcoe_hbainfo {
734         char    manufacturer[64];
735         char    serial_number[64];
736         char    hardware_version[64];
737         char    driver_version[64];
738         char    optionrom_version[64];
739         char    firmware_version[64];
740         char    model[256];
741         char    model_description[256];
742 };
743 #endif
744 
745 #define MAX_PHYS_PORT_ID_LEN 32
746 
747 /* This structure holds a unique identifier to identify the
748  * physical port used by a netdevice.
749  */
750 struct netdev_phys_port_id {
751         unsigned char id[MAX_PHYS_PORT_ID_LEN];
752         unsigned char id_len;
753 };
754 
755 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
756                                        struct sk_buff *skb);
757 
758 /*
759  * This structure defines the management hooks for network devices.
760  * The following hooks can be defined; unless noted otherwise, they are
761  * optional and can be filled with a null pointer.
762  *
763  * int (*ndo_init)(struct net_device *dev);
764  *     This function is called once when network device is registered.
765  *     The network device can use this to any late stage initializaton
766  *     or semantic validattion. It can fail with an error code which will
767  *     be propogated back to register_netdev
768  *
769  * void (*ndo_uninit)(struct net_device *dev);
770  *     This function is called when device is unregistered or when registration
771  *     fails. It is not called if init fails.
772  *
773  * int (*ndo_open)(struct net_device *dev);
774  *     This function is called when network device transistions to the up
775  *     state.
776  *
777  * int (*ndo_stop)(struct net_device *dev);
778  *     This function is called when network device transistions to the down
779  *     state.
780  *
781  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
782  *                               struct net_device *dev);
783  *      Called when a packet needs to be transmitted.
784  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
785  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
786  *      Required can not be NULL.
787  *
788  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
789  *                         void *accel_priv, select_queue_fallback_t fallback);
790  *      Called to decide which queue to when device supports multiple
791  *      transmit queues.
792  *
793  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
794  *      This function is called to allow device receiver to make
795  *      changes to configuration when multicast or promiscious is enabled.
796  *
797  * void (*ndo_set_rx_mode)(struct net_device *dev);
798  *      This function is called device changes address list filtering.
799  *      If driver handles unicast address filtering, it should set
800  *      IFF_UNICAST_FLT to its priv_flags.
801  *
802  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
803  *      This function  is called when the Media Access Control address
804  *      needs to be changed. If this interface is not defined, the
805  *      mac address can not be changed.
806  *
807  * int (*ndo_validate_addr)(struct net_device *dev);
808  *      Test if Media Access Control address is valid for the device.
809  *
810  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
811  *      Called when a user request an ioctl which can't be handled by
812  *      the generic interface code. If not defined ioctl's return
813  *      not supported error code.
814  *
815  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
816  *      Used to set network devices bus interface parameters. This interface
817  *      is retained for legacy reason, new devices should use the bus
818  *      interface (PCI) for low level management.
819  *
820  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
821  *      Called when a user wants to change the Maximum Transfer Unit
822  *      of a device. If not defined, any request to change MTU will
823  *      will return an error.
824  *
825  * void (*ndo_tx_timeout)(struct net_device *dev);
826  *      Callback uses when the transmitter has not made any progress
827  *      for dev->watchdog ticks.
828  *
829  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
830  *                      struct rtnl_link_stats64 *storage);
831  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
832  *      Called when a user wants to get the network device usage
833  *      statistics. Drivers must do one of the following:
834  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
835  *         rtnl_link_stats64 structure passed by the caller.
836  *      2. Define @ndo_get_stats to update a net_device_stats structure
837  *         (which should normally be dev->stats) and return a pointer to
838  *         it. The structure may be changed asynchronously only if each
839  *         field is written atomically.
840  *      3. Update dev->stats asynchronously and atomically, and define
841  *         neither operation.
842  *
843  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
844  *      If device support VLAN filtering this function is called when a
845  *      VLAN id is registered.
846  *
847  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
848  *      If device support VLAN filtering this function is called when a
849  *      VLAN id is unregistered.
850  *
851  * void (*ndo_poll_controller)(struct net_device *dev);
852  *
853  *      SR-IOV management functions.
854  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
855  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
856  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
857  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
858  * int (*ndo_get_vf_config)(struct net_device *dev,
859  *                          int vf, struct ifla_vf_info *ivf);
860  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
861  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
862  *                        struct nlattr *port[]);
863  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
864  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
865  *      Called to setup 'tc' number of traffic classes in the net device. This
866  *      is always called from the stack with the rtnl lock held and netif tx
867  *      queues stopped. This allows the netdevice to perform queue management
868  *      safely.
869  *
870  *      Fiber Channel over Ethernet (FCoE) offload functions.
871  * int (*ndo_fcoe_enable)(struct net_device *dev);
872  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
873  *      so the underlying device can perform whatever needed configuration or
874  *      initialization to support acceleration of FCoE traffic.
875  *
876  * int (*ndo_fcoe_disable)(struct net_device *dev);
877  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
878  *      so the underlying device can perform whatever needed clean-ups to
879  *      stop supporting acceleration of FCoE traffic.
880  *
881  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
882  *                           struct scatterlist *sgl, unsigned int sgc);
883  *      Called when the FCoE Initiator wants to initialize an I/O that
884  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
885  *      perform necessary setup and returns 1 to indicate the device is set up
886  *      successfully to perform DDP on this I/O, otherwise this returns 0.
887  *
888  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
889  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
890  *      indicated by the FC exchange id 'xid', so the underlying device can
891  *      clean up and reuse resources for later DDP requests.
892  *
893  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
894  *                            struct scatterlist *sgl, unsigned int sgc);
895  *      Called when the FCoE Target wants to initialize an I/O that
896  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
897  *      perform necessary setup and returns 1 to indicate the device is set up
898  *      successfully to perform DDP on this I/O, otherwise this returns 0.
899  *
900  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
901  *                             struct netdev_fcoe_hbainfo *hbainfo);
902  *      Called when the FCoE Protocol stack wants information on the underlying
903  *      device. This information is utilized by the FCoE protocol stack to
904  *      register attributes with Fiber Channel management service as per the
905  *      FC-GS Fabric Device Management Information(FDMI) specification.
906  *
907  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
908  *      Called when the underlying device wants to override default World Wide
909  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
910  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
911  *      protocol stack to use.
912  *
913  *      RFS acceleration.
914  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
915  *                          u16 rxq_index, u32 flow_id);
916  *      Set hardware filter for RFS.  rxq_index is the target queue index;
917  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
918  *      Return the filter ID on success, or a negative error code.
919  *
920  *      Slave management functions (for bridge, bonding, etc).
921  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
922  *      Called to make another netdev an underling.
923  *
924  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
925  *      Called to release previously enslaved netdev.
926  *
927  *      Feature/offload setting functions.
928  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
929  *              netdev_features_t features);
930  *      Adjusts the requested feature flags according to device-specific
931  *      constraints, and returns the resulting flags. Must not modify
932  *      the device state.
933  *
934  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
935  *      Called to update device configuration to new features. Passed
936  *      feature set might be less than what was returned by ndo_fix_features()).
937  *      Must return >0 or -errno if it changed dev->features itself.
938  *
939  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
940  *                    struct net_device *dev,
941  *                    const unsigned char *addr, u16 flags)
942  *      Adds an FDB entry to dev for addr.
943  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
944  *                    struct net_device *dev,
945  *                    const unsigned char *addr)
946  *      Deletes the FDB entry from dev coresponding to addr.
947  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
948  *                     struct net_device *dev, int idx)
949  *      Used to add FDB entries to dump requests. Implementers should add
950  *      entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *                           struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *      which do not represent real hardware may define this to allow their
959  *      userspace components to manage their virtual carrier state. Devices
960  *      that determine carrier state from physical hardware properties (eg
961  *      network cables) or protocol-dependent mechanisms (eg
962  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *                             struct netdev_phys_port_id *ppid);
966  *      Called to get ID of physical port of this device. If driver does
967  *      not implement this, it is assumed that the hw is not able to have
968  *      multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *                            sa_family_t sa_family, __be16 port);
972  *      Called by vxlan to notiy a driver about the UDP port and socket
973  *      address family that vxlan is listnening to. It is called only when
974  *      a new port starts listening. The operation is protected by the
975  *      vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *                            sa_family_t sa_family, __be16 port);
979  *      Called by vxlan to notify the driver about a UDP port and socket
980  *      address family that vxlan is not listening to anymore. The operation
981  *      is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *                               struct net_device *dev)
985  *      Called by upper layer devices to accelerate switching or other
986  *      station functionality into hardware. 'pdev is the lowerdev
987  *      to use for the offload and 'dev' is the net device that will
988  *      back the offload. Returns a pointer to the private structure
989  *      the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *      Called by upper layer device to delete the station created
992  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *      the station and priv is the structure returned by the add
994  *      operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *                                    struct net_device *dev,
997  *                                    void *priv);
998  *      Callback to use for xmit over the accelerated station. This
999  *      is used in place of ndo_start_xmit on accelerated net
1000  *      devices.
1001  */
1002 struct net_device_ops {
1003         int                     (*ndo_init)(struct net_device *dev);
1004         void                    (*ndo_uninit)(struct net_device *dev);
1005         int                     (*ndo_open)(struct net_device *dev);
1006         int                     (*ndo_stop)(struct net_device *dev);
1007         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1008                                                    struct net_device *dev);
1009         u16                     (*ndo_select_queue)(struct net_device *dev,
1010                                                     struct sk_buff *skb,
1011                                                     void *accel_priv,
1012                                                     select_queue_fallback_t fallback);
1013         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1014                                                        int flags);
1015         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1016         int                     (*ndo_set_mac_address)(struct net_device *dev,
1017                                                        void *addr);
1018         int                     (*ndo_validate_addr)(struct net_device *dev);
1019         int                     (*ndo_do_ioctl)(struct net_device *dev,
1020                                                 struct ifreq *ifr, int cmd);
1021         int                     (*ndo_set_config)(struct net_device *dev,
1022                                                   struct ifmap *map);
1023         int                     (*ndo_change_mtu)(struct net_device *dev,
1024                                                   int new_mtu);
1025         int                     (*ndo_neigh_setup)(struct net_device *dev,
1026                                                    struct neigh_parms *);
1027         void                    (*ndo_tx_timeout) (struct net_device *dev);
1028 
1029         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1030                                                      struct rtnl_link_stats64 *storage);
1031         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1032 
1033         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1034                                                        __be16 proto, u16 vid);
1035         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1036                                                         __be16 proto, u16 vid);
1037 #ifdef CONFIG_NET_POLL_CONTROLLER
1038         void                    (*ndo_poll_controller)(struct net_device *dev);
1039         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1040                                                      struct netpoll_info *info);
1041         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1042 #endif
1043 #ifdef CONFIG_NET_RX_BUSY_POLL
1044         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1045 #endif
1046         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1047                                                   int queue, u8 *mac);
1048         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1049                                                    int queue, u16 vlan, u8 qos);
1050         int                     (*ndo_set_vf_tx_rate)(struct net_device *dev,
1051                                                       int vf, int rate);
1052         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1053                                                        int vf, bool setting);
1054         int                     (*ndo_get_vf_config)(struct net_device *dev,
1055                                                      int vf,
1056                                                      struct ifla_vf_info *ivf);
1057         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1058                                                          int vf, int link_state);
1059         int                     (*ndo_set_vf_port)(struct net_device *dev,
1060                                                    int vf,
1061                                                    struct nlattr *port[]);
1062         int                     (*ndo_get_vf_port)(struct net_device *dev,
1063                                                    int vf, struct sk_buff *skb);
1064         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1065 #if IS_ENABLED(CONFIG_FCOE)
1066         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1067         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1068         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1069                                                       u16 xid,
1070                                                       struct scatterlist *sgl,
1071                                                       unsigned int sgc);
1072         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1073                                                      u16 xid);
1074         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1075                                                        u16 xid,
1076                                                        struct scatterlist *sgl,
1077                                                        unsigned int sgc);
1078         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1079                                                         struct netdev_fcoe_hbainfo *hbainfo);
1080 #endif
1081 
1082 #if IS_ENABLED(CONFIG_LIBFCOE)
1083 #define NETDEV_FCOE_WWNN 0
1084 #define NETDEV_FCOE_WWPN 1
1085         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1086                                                     u64 *wwn, int type);
1087 #endif
1088 
1089 #ifdef CONFIG_RFS_ACCEL
1090         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1091                                                      const struct sk_buff *skb,
1092                                                      u16 rxq_index,
1093                                                      u32 flow_id);
1094 #endif
1095         int                     (*ndo_add_slave)(struct net_device *dev,
1096                                                  struct net_device *slave_dev);
1097         int                     (*ndo_del_slave)(struct net_device *dev,
1098                                                  struct net_device *slave_dev);
1099         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1100                                                     netdev_features_t features);
1101         int                     (*ndo_set_features)(struct net_device *dev,
1102                                                     netdev_features_t features);
1103         int                     (*ndo_neigh_construct)(struct neighbour *n);
1104         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1105 
1106         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1107                                                struct nlattr *tb[],
1108                                                struct net_device *dev,
1109                                                const unsigned char *addr,
1110                                                u16 flags);
1111         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1112                                                struct nlattr *tb[],
1113                                                struct net_device *dev,
1114                                                const unsigned char *addr);
1115         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1116                                                 struct netlink_callback *cb,
1117                                                 struct net_device *dev,
1118                                                 int idx);
1119 
1120         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1121                                                       struct nlmsghdr *nlh);
1122         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1123                                                       u32 pid, u32 seq,
1124                                                       struct net_device *dev,
1125                                                       u32 filter_mask);
1126         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1127                                                       struct nlmsghdr *nlh);
1128         int                     (*ndo_change_carrier)(struct net_device *dev,
1129                                                       bool new_carrier);
1130         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1131                                                         struct netdev_phys_port_id *ppid);
1132         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1133                                                       sa_family_t sa_family,
1134                                                       __be16 port);
1135         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1136                                                       sa_family_t sa_family,
1137                                                       __be16 port);
1138 
1139         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1140                                                         struct net_device *dev);
1141         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1142                                                         void *priv);
1143 
1144         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1145                                                         struct net_device *dev,
1146                                                         void *priv);
1147         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1148 };
1149 
1150 /**
1151  * enum net_device_priv_flags - &struct net_device priv_flags
1152  *
1153  * These are the &struct net_device, they are only set internally
1154  * by drivers and used in the kernel. These flags are invisible to
1155  * userspace, this means that the order of these flags can change
1156  * during any kernel release.
1157  *
1158  * You should have a pretty good reason to be extending these flags.
1159  *
1160  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1161  * @IFF_EBRIDGE: Ethernet bridging device
1162  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1163  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1164  * @IFF_MASTER_ALB: bonding master, balance-alb
1165  * @IFF_BONDING: bonding master or slave
1166  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1167  * @IFF_ISATAP: ISATAP interface (RFC4214)
1168  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1169  * @IFF_WAN_HDLC: WAN HDLC device
1170  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1171  *      release skb->dst
1172  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1173  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1174  * @IFF_MACVLAN_PORT: device used as macvlan port
1175  * @IFF_BRIDGE_PORT: device used as bridge port
1176  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1177  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1178  * @IFF_UNICAST_FLT: Supports unicast filtering
1179  * @IFF_TEAM_PORT: device used as team port
1180  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1181  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1182  *      change when it's running
1183  * @IFF_MACVLAN: Macvlan device
1184  */
1185 enum netdev_priv_flags {
1186         IFF_802_1Q_VLAN                 = 1<<0,
1187         IFF_EBRIDGE                     = 1<<1,
1188         IFF_SLAVE_INACTIVE              = 1<<2,
1189         IFF_MASTER_8023AD               = 1<<3,
1190         IFF_MASTER_ALB                  = 1<<4,
1191         IFF_BONDING                     = 1<<5,
1192         IFF_SLAVE_NEEDARP               = 1<<6,
1193         IFF_ISATAP                      = 1<<7,
1194         IFF_MASTER_ARPMON               = 1<<8,
1195         IFF_WAN_HDLC                    = 1<<9,
1196         IFF_XMIT_DST_RELEASE            = 1<<10,
1197         IFF_DONT_BRIDGE                 = 1<<11,
1198         IFF_DISABLE_NETPOLL             = 1<<12,
1199         IFF_MACVLAN_PORT                = 1<<13,
1200         IFF_BRIDGE_PORT                 = 1<<14,
1201         IFF_OVS_DATAPATH                = 1<<15,
1202         IFF_TX_SKB_SHARING              = 1<<16,
1203         IFF_UNICAST_FLT                 = 1<<17,
1204         IFF_TEAM_PORT                   = 1<<18,
1205         IFF_SUPP_NOFCS                  = 1<<19,
1206         IFF_LIVE_ADDR_CHANGE            = 1<<20,
1207         IFF_MACVLAN                     = 1<<21,
1208 };
1209 
1210 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1211 #define IFF_EBRIDGE                     IFF_EBRIDGE
1212 #define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1213 #define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1214 #define IFF_MASTER_ALB                  IFF_MASTER_ALB
1215 #define IFF_BONDING                     IFF_BONDING
1216 #define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1217 #define IFF_ISATAP                      IFF_ISATAP
1218 #define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1219 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1220 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1221 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1222 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1223 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1224 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1225 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1226 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1227 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1228 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1229 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1230 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1231 #define IFF_MACVLAN                     IFF_MACVLAN
1232 
1233 /*
1234  *      The DEVICE structure.
1235  *      Actually, this whole structure is a big mistake.  It mixes I/O
1236  *      data with strictly "high-level" data, and it has to know about
1237  *      almost every data structure used in the INET module.
1238  *
1239  *      FIXME: cleanup struct net_device such that network protocol info
1240  *      moves out.
1241  */
1242 
1243 struct net_device {
1244 
1245         /*
1246          * This is the first field of the "visible" part of this structure
1247          * (i.e. as seen by users in the "Space.c" file).  It is the name
1248          * of the interface.
1249          */
1250         char                    name[IFNAMSIZ];
1251 
1252         /* device name hash chain, please keep it close to name[] */
1253         struct hlist_node       name_hlist;
1254 
1255         /* snmp alias */
1256         char                    *ifalias;
1257 
1258         /*
1259          *      I/O specific fields
1260          *      FIXME: Merge these and struct ifmap into one
1261          */
1262         unsigned long           mem_end;        /* shared mem end       */
1263         unsigned long           mem_start;      /* shared mem start     */
1264         unsigned long           base_addr;      /* device I/O address   */
1265         int                     irq;            /* device IRQ number    */
1266 
1267         /*
1268          *      Some hardware also needs these fields, but they are not
1269          *      part of the usual set specified in Space.c.
1270          */
1271 
1272         unsigned long           state;
1273 
1274         struct list_head        dev_list;
1275         struct list_head        napi_list;
1276         struct list_head        unreg_list;
1277         struct list_head        close_list;
1278 
1279         /* directly linked devices, like slaves for bonding */
1280         struct {
1281                 struct list_head upper;
1282                 struct list_head lower;
1283         } adj_list;
1284 
1285         /* all linked devices, *including* neighbours */
1286         struct {
1287                 struct list_head upper;
1288                 struct list_head lower;
1289         } all_adj_list;
1290 
1291 
1292         /* currently active device features */
1293         netdev_features_t       features;
1294         /* user-changeable features */
1295         netdev_features_t       hw_features;
1296         /* user-requested features */
1297         netdev_features_t       wanted_features;
1298         /* mask of features inheritable by VLAN devices */
1299         netdev_features_t       vlan_features;
1300         /* mask of features inherited by encapsulating devices
1301          * This field indicates what encapsulation offloads
1302          * the hardware is capable of doing, and drivers will
1303          * need to set them appropriately.
1304          */
1305         netdev_features_t       hw_enc_features;
1306         /* mask of fetures inheritable by MPLS */
1307         netdev_features_t       mpls_features;
1308 
1309         /* Interface index. Unique device identifier    */
1310         int                     ifindex;
1311         int                     iflink;
1312 
1313         struct net_device_stats stats;
1314 
1315         /* dropped packets by core network, Do not use this in drivers */
1316         atomic_long_t           rx_dropped;
1317         atomic_long_t           tx_dropped;
1318 
1319         /* Stats to monitor carrier on<->off transitions */
1320         atomic_t                carrier_changes;
1321 
1322 #ifdef CONFIG_WIRELESS_EXT
1323         /* List of functions to handle Wireless Extensions (instead of ioctl).
1324          * See <net/iw_handler.h> for details. Jean II */
1325         const struct iw_handler_def *   wireless_handlers;
1326         /* Instance data managed by the core of Wireless Extensions. */
1327         struct iw_public_data * wireless_data;
1328 #endif
1329         /* Management operations */
1330         const struct net_device_ops *netdev_ops;
1331         const struct ethtool_ops *ethtool_ops;
1332         const struct forwarding_accel_ops *fwd_ops;
1333 
1334         /* Hardware header description */
1335         const struct header_ops *header_ops;
1336 
1337         unsigned int            flags;  /* interface flags (a la BSD)   */
1338         unsigned int            priv_flags; /* Like 'flags' but invisible to userspace.
1339                                              * See if.h for definitions. */
1340         unsigned short          gflags;
1341         unsigned short          padded; /* How much padding added by alloc_netdev() */
1342 
1343         unsigned char           operstate; /* RFC2863 operstate */
1344         unsigned char           link_mode; /* mapping policy to operstate */
1345 
1346         unsigned char           if_port;        /* Selectable AUI, TP,..*/
1347         unsigned char           dma;            /* DMA channel          */
1348 
1349         unsigned int            mtu;    /* interface MTU value          */
1350         unsigned short          type;   /* interface hardware type      */
1351         unsigned short          hard_header_len;        /* hardware hdr length  */
1352 
1353         /* extra head- and tailroom the hardware may need, but not in all cases
1354          * can this be guaranteed, especially tailroom. Some cases also use
1355          * LL_MAX_HEADER instead to allocate the skb.
1356          */
1357         unsigned short          needed_headroom;
1358         unsigned short          needed_tailroom;
1359 
1360         /* Interface address info. */
1361         unsigned char           perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1362         unsigned char           addr_assign_type; /* hw address assignment type */
1363         unsigned char           addr_len;       /* hardware address length      */
1364         unsigned short          neigh_priv_len;
1365         unsigned short          dev_id;         /* Used to differentiate devices
1366                                                  * that share the same link
1367                                                  * layer address
1368                                                  */
1369         unsigned short          dev_port;       /* Used to differentiate
1370                                                  * devices that share the same
1371                                                  * function
1372                                                  */
1373         spinlock_t              addr_list_lock;
1374         struct netdev_hw_addr_list      uc;     /* Unicast mac addresses */
1375         struct netdev_hw_addr_list      mc;     /* Multicast mac addresses */
1376         struct netdev_hw_addr_list      dev_addrs; /* list of device
1377                                                     * hw addresses
1378                                                     */
1379 #ifdef CONFIG_SYSFS
1380         struct kset             *queues_kset;
1381 #endif
1382 
1383         bool                    uc_promisc;
1384         unsigned int            promiscuity;
1385         unsigned int            allmulti;
1386 
1387 
1388         /* Protocol specific pointers */
1389 
1390 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1391         struct vlan_info __rcu  *vlan_info;     /* VLAN info */
1392 #endif
1393 #if IS_ENABLED(CONFIG_NET_DSA)
1394         struct dsa_switch_tree  *dsa_ptr;       /* dsa specific data */
1395 #endif
1396 #if IS_ENABLED(CONFIG_TIPC)
1397         struct tipc_bearer __rcu *tipc_ptr;     /* TIPC specific data */
1398 #endif
1399         void                    *atalk_ptr;     /* AppleTalk link       */
1400         struct in_device __rcu  *ip_ptr;        /* IPv4 specific data   */
1401         struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1402         struct inet6_dev __rcu  *ip6_ptr;       /* IPv6 specific data */
1403         void                    *ax25_ptr;      /* AX.25 specific data */
1404         struct wireless_dev     *ieee80211_ptr; /* IEEE 802.11 specific data,
1405                                                    assign before registering */
1406 
1407 /*
1408  * Cache lines mostly used on receive path (including eth_type_trans())
1409  */
1410         unsigned long           last_rx;        /* Time of last Rx */
1411 
1412         /* Interface address info used in eth_type_trans() */
1413         unsigned char           *dev_addr;      /* hw address, (before bcast
1414                                                    because most packets are
1415                                                    unicast) */
1416 
1417 
1418 #ifdef CONFIG_SYSFS
1419         struct netdev_rx_queue  *_rx;
1420 
1421         /* Number of RX queues allocated at register_netdev() time */
1422         unsigned int            num_rx_queues;
1423 
1424         /* Number of RX queues currently active in device */
1425         unsigned int            real_num_rx_queues;
1426 
1427 #endif
1428 
1429         rx_handler_func_t __rcu *rx_handler;
1430         void __rcu              *rx_handler_data;
1431 
1432         struct netdev_queue __rcu *ingress_queue;
1433         unsigned char           broadcast[MAX_ADDR_LEN];        /* hw bcast add */
1434 
1435 
1436 /*
1437  * Cache lines mostly used on transmit path
1438  */
1439         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1440 
1441         /* Number of TX queues allocated at alloc_netdev_mq() time  */
1442         unsigned int            num_tx_queues;
1443 
1444         /* Number of TX queues currently active in device  */
1445         unsigned int            real_num_tx_queues;
1446 
1447         /* root qdisc from userspace point of view */
1448         struct Qdisc            *qdisc;
1449 
1450         unsigned long           tx_queue_len;   /* Max frames per queue allowed */
1451         spinlock_t              tx_global_lock;
1452 
1453 #ifdef CONFIG_XPS
1454         struct xps_dev_maps __rcu *xps_maps;
1455 #endif
1456 #ifdef CONFIG_RFS_ACCEL
1457         /* CPU reverse-mapping for RX completion interrupts, indexed
1458          * by RX queue number.  Assigned by driver.  This must only be
1459          * set if the ndo_rx_flow_steer operation is defined. */
1460         struct cpu_rmap         *rx_cpu_rmap;
1461 #endif
1462 
1463         /* These may be needed for future network-power-down code. */
1464 
1465         /*
1466          * trans_start here is expensive for high speed devices on SMP,
1467          * please use netdev_queue->trans_start instead.
1468          */
1469         unsigned long           trans_start;    /* Time (in jiffies) of last Tx */
1470 
1471         int                     watchdog_timeo; /* used by dev_watchdog() */
1472         struct timer_list       watchdog_timer;
1473 
1474         /* Number of references to this device */
1475         int __percpu            *pcpu_refcnt;
1476 
1477         /* delayed register/unregister */
1478         struct list_head        todo_list;
1479         /* device index hash chain */
1480         struct hlist_node       index_hlist;
1481 
1482         struct list_head        link_watch_list;
1483 
1484         /* register/unregister state machine */
1485         enum { NETREG_UNINITIALIZED=0,
1486                NETREG_REGISTERED,       /* completed register_netdevice */
1487                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1488                NETREG_UNREGISTERED,     /* completed unregister todo */
1489                NETREG_RELEASED,         /* called free_netdev */
1490                NETREG_DUMMY,            /* dummy device for NAPI poll */
1491         } reg_state:8;
1492 
1493         bool dismantle; /* device is going do be freed */
1494 
1495         enum {
1496                 RTNL_LINK_INITIALIZED,
1497                 RTNL_LINK_INITIALIZING,
1498         } rtnl_link_state:16;
1499 
1500         /* Called from unregister, can be used to call free_netdev */
1501         void (*destructor)(struct net_device *dev);
1502 
1503 #ifdef CONFIG_NETPOLL
1504         struct netpoll_info __rcu       *npinfo;
1505 #endif
1506 
1507 #ifdef CONFIG_NET_NS
1508         /* Network namespace this network device is inside */
1509         struct net              *nd_net;
1510 #endif
1511 
1512         /* mid-layer private */
1513         union {
1514                 void                            *ml_priv;
1515                 struct pcpu_lstats __percpu     *lstats; /* loopback stats */
1516                 struct pcpu_sw_netstats __percpu        *tstats;
1517                 struct pcpu_dstats __percpu     *dstats; /* dummy stats */
1518                 struct pcpu_vstats __percpu     *vstats; /* veth stats */
1519         };
1520         /* GARP */
1521         struct garp_port __rcu  *garp_port;
1522         /* MRP */
1523         struct mrp_port __rcu   *mrp_port;
1524 
1525         /* class/net/name entry */
1526         struct device           dev;
1527         /* space for optional device, statistics, and wireless sysfs groups */
1528         const struct attribute_group *sysfs_groups[4];
1529         /* space for optional per-rx queue attributes */
1530         const struct attribute_group *sysfs_rx_queue_group;
1531 
1532         /* rtnetlink link ops */
1533         const struct rtnl_link_ops *rtnl_link_ops;
1534 
1535         /* for setting kernel sock attribute on TCP connection setup */
1536 #define GSO_MAX_SIZE            65536
1537         unsigned int            gso_max_size;
1538 #define GSO_MAX_SEGS            65535
1539         u16                     gso_max_segs;
1540 
1541 #ifdef CONFIG_DCB
1542         /* Data Center Bridging netlink ops */
1543         const struct dcbnl_rtnl_ops *dcbnl_ops;
1544 #endif
1545         u8 num_tc;
1546         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1547         u8 prio_tc_map[TC_BITMASK + 1];
1548 
1549 #if IS_ENABLED(CONFIG_FCOE)
1550         /* max exchange id for FCoE LRO by ddp */
1551         unsigned int            fcoe_ddp_xid;
1552 #endif
1553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1554         struct netprio_map __rcu *priomap;
1555 #endif
1556         /* phy device may attach itself for hardware timestamping */
1557         struct phy_device *phydev;
1558 
1559         struct lock_class_key *qdisc_tx_busylock;
1560 
1561         /* group the device belongs to */
1562         int group;
1563 
1564         struct pm_qos_request   pm_qos_req;
1565 };
1566 #define to_net_dev(d) container_of(d, struct net_device, dev)
1567 
1568 #define NETDEV_ALIGN            32
1569 
1570 static inline
1571 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1572 {
1573         return dev->prio_tc_map[prio & TC_BITMASK];
1574 }
1575 
1576 static inline
1577 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1578 {
1579         if (tc >= dev->num_tc)
1580                 return -EINVAL;
1581 
1582         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1583         return 0;
1584 }
1585 
1586 static inline
1587 void netdev_reset_tc(struct net_device *dev)
1588 {
1589         dev->num_tc = 0;
1590         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1591         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1592 }
1593 
1594 static inline
1595 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1596 {
1597         if (tc >= dev->num_tc)
1598                 return -EINVAL;
1599 
1600         dev->tc_to_txq[tc].count = count;
1601         dev->tc_to_txq[tc].offset = offset;
1602         return 0;
1603 }
1604 
1605 static inline
1606 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1607 {
1608         if (num_tc > TC_MAX_QUEUE)
1609                 return -EINVAL;
1610 
1611         dev->num_tc = num_tc;
1612         return 0;
1613 }
1614 
1615 static inline
1616 int netdev_get_num_tc(struct net_device *dev)
1617 {
1618         return dev->num_tc;
1619 }
1620 
1621 static inline
1622 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1623                                          unsigned int index)
1624 {
1625         return &dev->_tx[index];
1626 }
1627 
1628 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1629                                             void (*f)(struct net_device *,
1630                                                       struct netdev_queue *,
1631                                                       void *),
1632                                             void *arg)
1633 {
1634         unsigned int i;
1635 
1636         for (i = 0; i < dev->num_tx_queues; i++)
1637                 f(dev, &dev->_tx[i], arg);
1638 }
1639 
1640 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1641                                     struct sk_buff *skb,
1642                                     void *accel_priv);
1643 
1644 /*
1645  * Net namespace inlines
1646  */
1647 static inline
1648 struct net *dev_net(const struct net_device *dev)
1649 {
1650         return read_pnet(&dev->nd_net);
1651 }
1652 
1653 static inline
1654 void dev_net_set(struct net_device *dev, struct net *net)
1655 {
1656 #ifdef CONFIG_NET_NS
1657         release_net(dev->nd_net);
1658         dev->nd_net = hold_net(net);
1659 #endif
1660 }
1661 
1662 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1663 {
1664 #ifdef CONFIG_NET_DSA_TAG_DSA
1665         if (dev->dsa_ptr != NULL)
1666                 return dsa_uses_dsa_tags(dev->dsa_ptr);
1667 #endif
1668 
1669         return 0;
1670 }
1671 
1672 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1673 {
1674 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1675         if (dev->dsa_ptr != NULL)
1676                 return dsa_uses_trailer_tags(dev->dsa_ptr);
1677 #endif
1678 
1679         return 0;
1680 }
1681 
1682 /**
1683  *      netdev_priv - access network device private data
1684  *      @dev: network device
1685  *
1686  * Get network device private data
1687  */
1688 static inline void *netdev_priv(const struct net_device *dev)
1689 {
1690         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1691 }
1692 
1693 /* Set the sysfs physical device reference for the network logical device
1694  * if set prior to registration will cause a symlink during initialization.
1695  */
1696 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1697 
1698 /* Set the sysfs device type for the network logical device to allow
1699  * fine-grained identification of different network device types. For
1700  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1701  */
1702 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1703 
1704 /* Default NAPI poll() weight
1705  * Device drivers are strongly advised to not use bigger value
1706  */
1707 #define NAPI_POLL_WEIGHT 64
1708 
1709 /**
1710  *      netif_napi_add - initialize a napi context
1711  *      @dev:  network device
1712  *      @napi: napi context
1713  *      @poll: polling function
1714  *      @weight: default weight
1715  *
1716  * netif_napi_add() must be used to initialize a napi context prior to calling
1717  * *any* of the other napi related functions.
1718  */
1719 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1720                     int (*poll)(struct napi_struct *, int), int weight);
1721 
1722 /**
1723  *  netif_napi_del - remove a napi context
1724  *  @napi: napi context
1725  *
1726  *  netif_napi_del() removes a napi context from the network device napi list
1727  */
1728 void netif_napi_del(struct napi_struct *napi);
1729 
1730 struct napi_gro_cb {
1731         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1732         void *frag0;
1733 
1734         /* Length of frag0. */
1735         unsigned int frag0_len;
1736 
1737         /* This indicates where we are processing relative to skb->data. */
1738         int data_offset;
1739 
1740         /* This is non-zero if the packet cannot be merged with the new skb. */
1741         u16     flush;
1742 
1743         /* Save the IP ID here and check when we get to the transport layer */
1744         u16     flush_id;
1745 
1746         /* Number of segments aggregated. */
1747         u16     count;
1748 
1749         /* This is non-zero if the packet may be of the same flow. */
1750         u8      same_flow;
1751 
1752         /* Free the skb? */
1753         u8      free;
1754 #define NAPI_GRO_FREE             1
1755 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1756 
1757         /* jiffies when first packet was created/queued */
1758         unsigned long age;
1759 
1760         /* Used in ipv6_gro_receive() */
1761         u16     proto;
1762 
1763         /* Used in udp_gro_receive */
1764         u16     udp_mark;
1765 
1766         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1767         __wsum  csum;
1768 
1769         /* used in skb_gro_receive() slow path */
1770         struct sk_buff *last;
1771 };
1772 
1773 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1774 
1775 struct packet_type {
1776         __be16                  type;   /* This is really htons(ether_type). */
1777         struct net_device       *dev;   /* NULL is wildcarded here           */
1778         int                     (*func) (struct sk_buff *,
1779                                          struct net_device *,
1780                                          struct packet_type *,
1781                                          struct net_device *);
1782         bool                    (*id_match)(struct packet_type *ptype,
1783                                             struct sock *sk);
1784         void                    *af_packet_priv;
1785         struct list_head        list;
1786 };
1787 
1788 struct offload_callbacks {
1789         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1790                                                 netdev_features_t features);
1791         int                     (*gso_send_check)(struct sk_buff *skb);
1792         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1793                                                struct sk_buff *skb);
1794         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1795 };
1796 
1797 struct packet_offload {
1798         __be16                   type;  /* This is really htons(ether_type). */
1799         struct offload_callbacks callbacks;
1800         struct list_head         list;
1801 };
1802 
1803 struct udp_offload {
1804         __be16                   port;
1805         struct offload_callbacks callbacks;
1806 };
1807 
1808 /* often modified stats are per cpu, other are shared (netdev->stats) */
1809 struct pcpu_sw_netstats {
1810         u64     rx_packets;
1811         u64     rx_bytes;
1812         u64     tx_packets;
1813         u64     tx_bytes;
1814         struct u64_stats_sync   syncp;
1815 };
1816 
1817 #define netdev_alloc_pcpu_stats(type)                           \
1818 ({                                                              \
1819         typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1820         if (pcpu_stats) {                                       \
1821                 int i;                                          \
1822                 for_each_possible_cpu(i) {                      \
1823                         typeof(type) *stat;                     \
1824                         stat = per_cpu_ptr(pcpu_stats, i);      \
1825                         u64_stats_init(&stat->syncp);           \
1826                 }                                               \
1827         }                                                       \
1828         pcpu_stats;                                             \
1829 })
1830 
1831 #include <linux/notifier.h>
1832 
1833 /* netdevice notifier chain. Please remember to update the rtnetlink
1834  * notification exclusion list in rtnetlink_event() when adding new
1835  * types.
1836  */
1837 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1838 #define NETDEV_DOWN     0x0002
1839 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1840                                    detected a hardware crash and restarted
1841                                    - we can use this eg to kick tcp sessions
1842                                    once done */
1843 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
1844 #define NETDEV_REGISTER 0x0005
1845 #define NETDEV_UNREGISTER       0x0006
1846 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
1847 #define NETDEV_CHANGEADDR       0x0008
1848 #define NETDEV_GOING_DOWN       0x0009
1849 #define NETDEV_CHANGENAME       0x000A
1850 #define NETDEV_FEAT_CHANGE      0x000B
1851 #define NETDEV_BONDING_FAILOVER 0x000C
1852 #define NETDEV_PRE_UP           0x000D
1853 #define NETDEV_PRE_TYPE_CHANGE  0x000E
1854 #define NETDEV_POST_TYPE_CHANGE 0x000F
1855 #define NETDEV_POST_INIT        0x0010
1856 #define NETDEV_UNREGISTER_FINAL 0x0011
1857 #define NETDEV_RELEASE          0x0012
1858 #define NETDEV_NOTIFY_PEERS     0x0013
1859 #define NETDEV_JOIN             0x0014
1860 #define NETDEV_CHANGEUPPER      0x0015
1861 #define NETDEV_RESEND_IGMP      0x0016
1862 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
1863 
1864 int register_netdevice_notifier(struct notifier_block *nb);
1865 int unregister_netdevice_notifier(struct notifier_block *nb);
1866 
1867 struct netdev_notifier_info {
1868         struct net_device *dev;
1869 };
1870 
1871 struct netdev_notifier_change_info {
1872         struct netdev_notifier_info info; /* must be first */
1873         unsigned int flags_changed;
1874 };
1875 
1876 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1877                                              struct net_device *dev)
1878 {
1879         info->dev = dev;
1880 }
1881 
1882 static inline struct net_device *
1883 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1884 {
1885         return info->dev;
1886 }
1887 
1888 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1889 
1890 
1891 extern rwlock_t                         dev_base_lock;          /* Device list lock */
1892 
1893 #define for_each_netdev(net, d)         \
1894                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1895 #define for_each_netdev_reverse(net, d) \
1896                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1897 #define for_each_netdev_rcu(net, d)             \
1898                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1899 #define for_each_netdev_safe(net, d, n) \
1900                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1901 #define for_each_netdev_continue(net, d)                \
1902                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1903 #define for_each_netdev_continue_rcu(net, d)            \
1904         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1905 #define for_each_netdev_in_bond_rcu(bond, slave)        \
1906                 for_each_netdev_rcu(&init_net, slave)   \
1907                         if (netdev_master_upper_dev_get_rcu(slave) == bond)
1908 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
1909 
1910 static inline struct net_device *next_net_device(struct net_device *dev)
1911 {
1912         struct list_head *lh;
1913         struct net *net;
1914 
1915         net = dev_net(dev);
1916         lh = dev->dev_list.next;
1917         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1918 }
1919 
1920 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1921 {
1922         struct list_head *lh;
1923         struct net *net;
1924 
1925         net = dev_net(dev);
1926         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1927         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1928 }
1929 
1930 static inline struct net_device *first_net_device(struct net *net)
1931 {
1932         return list_empty(&net->dev_base_head) ? NULL :
1933                 net_device_entry(net->dev_base_head.next);
1934 }
1935 
1936 static inline struct net_device *first_net_device_rcu(struct net *net)
1937 {
1938         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1939 
1940         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1941 }
1942 
1943 int netdev_boot_setup_check(struct net_device *dev);
1944 unsigned long netdev_boot_base(const char *prefix, int unit);
1945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1946                                        const char *hwaddr);
1947 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1948 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1949 void dev_add_pack(struct packet_type *pt);
1950 void dev_remove_pack(struct packet_type *pt);
1951 void __dev_remove_pack(struct packet_type *pt);
1952 void dev_add_offload(struct packet_offload *po);
1953 void dev_remove_offload(struct packet_offload *po);
1954 
1955 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1956                                         unsigned short mask);
1957 struct net_device *dev_get_by_name(struct net *net, const char *name);
1958 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1959 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1960 int dev_alloc_name(struct net_device *dev, const char *name);
1961 int dev_open(struct net_device *dev);
1962 int dev_close(struct net_device *dev);
1963 void dev_disable_lro(struct net_device *dev);
1964 int dev_loopback_xmit(struct sk_buff *newskb);
1965 int dev_queue_xmit(struct sk_buff *skb);
1966 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1967 int register_netdevice(struct net_device *dev);
1968 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1969 void unregister_netdevice_many(struct list_head *head);
1970 static inline void unregister_netdevice(struct net_device *dev)
1971 {
1972         unregister_netdevice_queue(dev, NULL);
1973 }
1974 
1975 int netdev_refcnt_read(const struct net_device *dev);
1976 void free_netdev(struct net_device *dev);
1977 void netdev_freemem(struct net_device *dev);
1978 void synchronize_net(void);
1979 int init_dummy_netdev(struct net_device *dev);
1980 
1981 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1982 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1983 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1984 int netdev_get_name(struct net *net, char *name, int ifindex);
1985 int dev_restart(struct net_device *dev);
1986 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1987 
1988 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1989 {
1990         return NAPI_GRO_CB(skb)->data_offset;
1991 }
1992 
1993 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1994 {
1995         return skb->len - NAPI_GRO_CB(skb)->data_offset;
1996 }
1997 
1998 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1999 {
2000         NAPI_GRO_CB(skb)->data_offset += len;
2001 }
2002 
2003 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2004                                         unsigned int offset)
2005 {
2006         return NAPI_GRO_CB(skb)->frag0 + offset;
2007 }
2008 
2009 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2010 {
2011         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2012 }
2013 
2014 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2015                                         unsigned int offset)
2016 {
2017         if (!pskb_may_pull(skb, hlen))
2018                 return NULL;
2019 
2020         NAPI_GRO_CB(skb)->frag0 = NULL;
2021         NAPI_GRO_CB(skb)->frag0_len = 0;
2022         return skb->data + offset;
2023 }
2024 
2025 static inline void *skb_gro_network_header(struct sk_buff *skb)
2026 {
2027         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2028                skb_network_offset(skb);
2029 }
2030 
2031 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2032                                         const void *start, unsigned int len)
2033 {
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2036                                                   csum_partial(start, len, 0));
2037 }
2038 
2039 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2040                                   unsigned short type,
2041                                   const void *daddr, const void *saddr,
2042                                   unsigned int len)
2043 {
2044         if (!dev->header_ops || !dev->header_ops->create)
2045                 return 0;
2046 
2047         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2048 }
2049 
2050 static inline int dev_parse_header(const struct sk_buff *skb,
2051                                    unsigned char *haddr)
2052 {
2053         const struct net_device *dev = skb->dev;
2054 
2055         if (!dev->header_ops || !dev->header_ops->parse)
2056                 return 0;
2057         return dev->header_ops->parse(skb, haddr);
2058 }
2059 
2060 static inline int dev_rebuild_header(struct sk_buff *skb)
2061 {
2062         const struct net_device *dev = skb->dev;
2063 
2064         if (!dev->header_ops || !dev->header_ops->rebuild)
2065                 return 0;
2066         return dev->header_ops->rebuild(skb);
2067 }
2068 
2069 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2070 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2071 static inline int unregister_gifconf(unsigned int family)
2072 {
2073         return register_gifconf(family, NULL);
2074 }
2075 
2076 #ifdef CONFIG_NET_FLOW_LIMIT
2077 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2078 struct sd_flow_limit {
2079         u64                     count;
2080         unsigned int            num_buckets;
2081         unsigned int            history_head;
2082         u16                     history[FLOW_LIMIT_HISTORY];
2083         u8                      buckets[];
2084 };
2085 
2086 extern int netdev_flow_limit_table_len;
2087 #endif /* CONFIG_NET_FLOW_LIMIT */
2088 
2089 /*
2090  * Incoming packets are placed on per-cpu queues
2091  */
2092 struct softnet_data {
2093         struct Qdisc            *output_queue;
2094         struct Qdisc            **output_queue_tailp;
2095         struct list_head        poll_list;
2096         struct sk_buff          *completion_queue;
2097         struct sk_buff_head     process_queue;
2098 
2099         /* stats */
2100         unsigned int            processed;
2101         unsigned int            time_squeeze;
2102         unsigned int            cpu_collision;
2103         unsigned int            received_rps;
2104 
2105 #ifdef CONFIG_RPS
2106         struct softnet_data     *rps_ipi_list;
2107 
2108         /* Elements below can be accessed between CPUs for RPS */
2109         struct call_single_data csd ____cacheline_aligned_in_smp;
2110         struct softnet_data     *rps_ipi_next;
2111         unsigned int            cpu;
2112         unsigned int            input_queue_head;
2113         unsigned int            input_queue_tail;
2114 #endif
2115         unsigned int            dropped;
2116         struct sk_buff_head     input_pkt_queue;
2117         struct napi_struct      backlog;
2118 
2119 #ifdef CONFIG_NET_FLOW_LIMIT
2120         struct sd_flow_limit __rcu *flow_limit;
2121 #endif
2122 };
2123 
2124 static inline void input_queue_head_incr(struct softnet_data *sd)
2125 {
2126 #ifdef CONFIG_RPS
2127         sd->input_queue_head++;
2128 #endif
2129 }
2130 
2131 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2132                                               unsigned int *qtail)
2133 {
2134 #ifdef CONFIG_RPS
2135         *qtail = ++sd->input_queue_tail;
2136 #endif
2137 }
2138 
2139 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2140 
2141 void __netif_schedule(struct Qdisc *q);
2142 
2143 static inline void netif_schedule_queue(struct netdev_queue *txq)
2144 {
2145         if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2146                 __netif_schedule(txq->qdisc);
2147 }
2148 
2149 static inline void netif_tx_schedule_all(struct net_device *dev)
2150 {
2151         unsigned int i;
2152 
2153         for (i = 0; i < dev->num_tx_queues; i++)
2154                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2155 }
2156 
2157 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2158 {
2159         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2160 }
2161 
2162 /**
2163  *      netif_start_queue - allow transmit
2164  *      @dev: network device
2165  *
2166  *      Allow upper layers to call the device hard_start_xmit routine.
2167  */
2168 static inline void netif_start_queue(struct net_device *dev)
2169 {
2170         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2171 }
2172 
2173 static inline void netif_tx_start_all_queues(struct net_device *dev)
2174 {
2175         unsigned int i;
2176 
2177         for (i = 0; i < dev->num_tx_queues; i++) {
2178                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2179                 netif_tx_start_queue(txq);
2180         }
2181 }
2182 
2183 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2184 {
2185         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2186                 __netif_schedule(dev_queue->qdisc);
2187 }
2188 
2189 /**
2190  *      netif_wake_queue - restart transmit
2191  *      @dev: network device
2192  *
2193  *      Allow upper layers to call the device hard_start_xmit routine.
2194  *      Used for flow control when transmit resources are available.
2195  */
2196 static inline void netif_wake_queue(struct net_device *dev)
2197 {
2198         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2199 }
2200 
2201 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2202 {
2203         unsigned int i;
2204 
2205         for (i = 0; i < dev->num_tx_queues; i++) {
2206                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2207                 netif_tx_wake_queue(txq);
2208         }
2209 }
2210 
2211 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2212 {
2213         if (WARN_ON(!dev_queue)) {
2214                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2215                 return;
2216         }
2217         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2218 }
2219 
2220 /**
2221  *      netif_stop_queue - stop transmitted packets
2222  *      @dev: network device
2223  *
2224  *      Stop upper layers calling the device hard_start_xmit routine.
2225  *      Used for flow control when transmit resources are unavailable.
2226  */
2227 static inline void netif_stop_queue(struct net_device *dev)
2228 {
2229         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2230 }
2231 
2232 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2233 {
2234         unsigned int i;
2235 
2236         for (i = 0; i < dev->num_tx_queues; i++) {
2237                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2238                 netif_tx_stop_queue(txq);
2239         }
2240 }
2241 
2242 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2243 {
2244         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2245 }
2246 
2247 /**
2248  *      netif_queue_stopped - test if transmit queue is flowblocked
2249  *      @dev: network device
2250  *
2251  *      Test if transmit queue on device is currently unable to send.
2252  */
2253 static inline bool netif_queue_stopped(const struct net_device *dev)
2254 {
2255         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2256 }
2257 
2258 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2259 {
2260         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2261 }
2262 
2263 static inline bool
2264 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2265 {
2266         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2267 }
2268 
2269 static inline bool
2270 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2271 {
2272         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2273 }
2274 
2275 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2276                                         unsigned int bytes)
2277 {
2278 #ifdef CONFIG_BQL
2279         dql_queued(&dev_queue->dql, bytes);
2280 
2281         if (likely(dql_avail(&dev_queue->dql) >= 0))
2282                 return;
2283 
2284         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2285 
2286         /*
2287          * The XOFF flag must be set before checking the dql_avail below,
2288          * because in netdev_tx_completed_queue we update the dql_completed
2289          * before checking the XOFF flag.
2290          */
2291         smp_mb();
2292 
2293         /* check again in case another CPU has just made room avail */
2294         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2295                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2296 #endif
2297 }
2298 
2299 /**
2300  *      netdev_sent_queue - report the number of bytes queued to hardware
2301  *      @dev: network device
2302  *      @bytes: number of bytes queued to the hardware device queue
2303  *
2304  *      Report the number of bytes queued for sending/completion to the network
2305  *      device hardware queue. @bytes should be a good approximation and should
2306  *      exactly match netdev_completed_queue() @bytes
2307  */
2308 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2309 {
2310         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2311 }
2312 
2313 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2314                                              unsigned int pkts, unsigned int bytes)
2315 {
2316 #ifdef CONFIG_BQL
2317         if (unlikely(!bytes))
2318                 return;
2319 
2320         dql_completed(&dev_queue->dql, bytes);
2321 
2322         /*
2323          * Without the memory barrier there is a small possiblity that
2324          * netdev_tx_sent_queue will miss the update and cause the queue to
2325          * be stopped forever
2326          */
2327         smp_mb();
2328 
2329         if (dql_avail(&dev_queue->dql) < 0)
2330                 return;
2331 
2332         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2333                 netif_schedule_queue(dev_queue);
2334 #endif
2335 }
2336 
2337 /**
2338  *      netdev_completed_queue - report bytes and packets completed by device
2339  *      @dev: network device
2340  *      @pkts: actual number of packets sent over the medium
2341  *      @bytes: actual number of bytes sent over the medium
2342  *
2343  *      Report the number of bytes and packets transmitted by the network device
2344  *      hardware queue over the physical medium, @bytes must exactly match the
2345  *      @bytes amount passed to netdev_sent_queue()
2346  */
2347 static inline void netdev_completed_queue(struct net_device *dev,
2348                                           unsigned int pkts, unsigned int bytes)
2349 {
2350         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2351 }
2352 
2353 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2354 {
2355 #ifdef CONFIG_BQL
2356         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2357         dql_reset(&q->dql);
2358 #endif
2359 }
2360 
2361 /**
2362  *      netdev_reset_queue - reset the packets and bytes count of a network device
2363  *      @dev_queue: network device
2364  *
2365  *      Reset the bytes and packet count of a network device and clear the
2366  *      software flow control OFF bit for this network device
2367  */
2368 static inline void netdev_reset_queue(struct net_device *dev_queue)
2369 {
2370         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2371 }
2372 
2373 /**
2374  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2375  *      @dev: network device
2376  *      @queue_index: given tx queue index
2377  *
2378  *      Returns 0 if given tx queue index >= number of device tx queues,
2379  *      otherwise returns the originally passed tx queue index.
2380  */
2381 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2382 {
2383         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2384                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2385                                      dev->name, queue_index,
2386                                      dev->real_num_tx_queues);
2387                 return 0;
2388         }
2389 
2390         return queue_index;
2391 }
2392 
2393 /**
2394  *      netif_running - test if up
2395  *      @dev: network device
2396  *
2397  *      Test if the device has been brought up.
2398  */
2399 static inline bool netif_running(const struct net_device *dev)
2400 {
2401         return test_bit(__LINK_STATE_START, &dev->state);
2402 }
2403 
2404 /*
2405  * Routines to manage the subqueues on a device.  We only need start
2406  * stop, and a check if it's stopped.  All other device management is
2407  * done at the overall netdevice level.
2408  * Also test the device if we're multiqueue.
2409  */
2410 
2411 /**
2412  *      netif_start_subqueue - allow sending packets on subqueue
2413  *      @dev: network device
2414  *      @queue_index: sub queue index
2415  *
2416  * Start individual transmit queue of a device with multiple transmit queues.
2417  */
2418 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421 
2422         netif_tx_start_queue(txq);
2423 }
2424 
2425 /**
2426  *      netif_stop_subqueue - stop sending packets on subqueue
2427  *      @dev: network device
2428  *      @queue_index: sub queue index
2429  *
2430  * Stop individual transmit queue of a device with multiple transmit queues.
2431  */
2432 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2433 {
2434         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2435         netif_tx_stop_queue(txq);
2436 }
2437 
2438 /**
2439  *      netif_subqueue_stopped - test status of subqueue
2440  *      @dev: network device
2441  *      @queue_index: sub queue index
2442  *
2443  * Check individual transmit queue of a device with multiple transmit queues.
2444  */
2445 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2446                                             u16 queue_index)
2447 {
2448         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2449 
2450         return netif_tx_queue_stopped(txq);
2451 }
2452 
2453 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2454                                           struct sk_buff *skb)
2455 {
2456         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2457 }
2458 
2459 /**
2460  *      netif_wake_subqueue - allow sending packets on subqueue
2461  *      @dev: network device
2462  *      @queue_index: sub queue index
2463  *
2464  * Resume individual transmit queue of a device with multiple transmit queues.
2465  */
2466 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2467 {
2468         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2469         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2470                 __netif_schedule(txq->qdisc);
2471 }
2472 
2473 #ifdef CONFIG_XPS
2474 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2475                         u16 index);
2476 #else
2477 static inline int netif_set_xps_queue(struct net_device *dev,
2478                                       const struct cpumask *mask,
2479                                       u16 index)
2480 {
2481         return 0;
2482 }
2483 #endif
2484 
2485 /*
2486  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2487  * as a distribution range limit for the returned value.
2488  */
2489 static inline u16 skb_tx_hash(const struct net_device *dev,
2490                               const struct sk_buff *skb)
2491 {
2492         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2493 }
2494 
2495 /**
2496  *      netif_is_multiqueue - test if device has multiple transmit queues
2497  *      @dev: network device
2498  *
2499  * Check if device has multiple transmit queues
2500  */
2501 static inline bool netif_is_multiqueue(const struct net_device *dev)
2502 {
2503         return dev->num_tx_queues > 1;
2504 }
2505 
2506 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2507 
2508 #ifdef CONFIG_SYSFS
2509 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2510 #else
2511 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2512                                                 unsigned int rxq)
2513 {
2514         return 0;
2515 }
2516 #endif
2517 
2518 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2519                                              const struct net_device *from_dev)
2520 {
2521         int err;
2522 
2523         err = netif_set_real_num_tx_queues(to_dev,
2524                                            from_dev->real_num_tx_queues);
2525         if (err)
2526                 return err;
2527 #ifdef CONFIG_SYSFS
2528         return netif_set_real_num_rx_queues(to_dev,
2529                                             from_dev->real_num_rx_queues);
2530 #else
2531         return 0;
2532 #endif
2533 }
2534 
2535 #ifdef CONFIG_SYSFS
2536 static inline unsigned int get_netdev_rx_queue_index(
2537                 struct netdev_rx_queue *queue)
2538 {
2539         struct net_device *dev = queue->dev;
2540         int index = queue - dev->_rx;
2541 
2542         BUG_ON(index >= dev->num_rx_queues);
2543         return index;
2544 }
2545 #endif
2546 
2547 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2548 int netif_get_num_default_rss_queues(void);
2549 
2550 enum skb_free_reason {
2551         SKB_REASON_CONSUMED,
2552         SKB_REASON_DROPPED,
2553 };
2554 
2555 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2556 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2557 
2558 /*
2559  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2560  * interrupt context or with hardware interrupts being disabled.
2561  * (in_irq() || irqs_disabled())
2562  *
2563  * We provide four helpers that can be used in following contexts :
2564  *
2565  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2566  *  replacing kfree_skb(skb)
2567  *
2568  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2569  *  Typically used in place of consume_skb(skb) in TX completion path
2570  *
2571  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2572  *  replacing kfree_skb(skb)
2573  *
2574  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2575  *  and consumed a packet. Used in place of consume_skb(skb)
2576  */
2577 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2578 {
2579         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2580 }
2581 
2582 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2583 {
2584         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2585 }
2586 
2587 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2588 {
2589         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2590 }
2591 
2592 static inline void dev_consume_skb_any(struct sk_buff *skb)
2593 {
2594         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2595 }
2596 
2597 int netif_rx(struct sk_buff *skb);
2598 int netif_rx_ni(struct sk_buff *skb);
2599 int netif_receive_skb(struct sk_buff *skb);
2600 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2601 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2602 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2603 gro_result_t napi_gro_frags(struct napi_struct *napi);
2604 struct packet_offload *gro_find_receive_by_type(__be16 type);
2605 struct packet_offload *gro_find_complete_by_type(__be16 type);
2606 
2607 static inline void napi_free_frags(struct napi_struct *napi)
2608 {
2609         kfree_skb(napi->skb);
2610         napi->skb = NULL;
2611 }
2612 
2613 int netdev_rx_handler_register(struct net_device *dev,
2614                                rx_handler_func_t *rx_handler,
2615                                void *rx_handler_data);
2616 void netdev_rx_handler_unregister(struct net_device *dev);
2617 
2618 bool dev_valid_name(const char *name);
2619 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2620 int dev_ethtool(struct net *net, struct ifreq *);
2621 unsigned int dev_get_flags(const struct net_device *);
2622 int __dev_change_flags(struct net_device *, unsigned int flags);
2623 int dev_change_flags(struct net_device *, unsigned int);
2624 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2625                         unsigned int gchanges);
2626 int dev_change_name(struct net_device *, const char *);
2627 int dev_set_alias(struct net_device *, const char *, size_t);
2628 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2629 int dev_set_mtu(struct net_device *, int);
2630 void dev_set_group(struct net_device *, int);
2631 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2632 int dev_change_carrier(struct net_device *, bool new_carrier);
2633 int dev_get_phys_port_id(struct net_device *dev,
2634                          struct netdev_phys_port_id *ppid);
2635 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2636                         struct netdev_queue *txq);
2637 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2638 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2639 
2640 extern int              netdev_budget;
2641 
2642 /* Called by rtnetlink.c:rtnl_unlock() */
2643 void netdev_run_todo(void);
2644 
2645 /**
2646  *      dev_put - release reference to device
2647  *      @dev: network device
2648  *
2649  * Release reference to device to allow it to be freed.
2650  */
2651 static inline void dev_put(struct net_device *dev)
2652 {
2653         this_cpu_dec(*dev->pcpu_refcnt);
2654 }
2655 
2656 /**
2657  *      dev_hold - get reference to device
2658  *      @dev: network device
2659  *
2660  * Hold reference to device to keep it from being freed.
2661  */
2662 static inline void dev_hold(struct net_device *dev)
2663 {
2664         this_cpu_inc(*dev->pcpu_refcnt);
2665 }
2666 
2667 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2668  * and _off may be called from IRQ context, but it is caller
2669  * who is responsible for serialization of these calls.
2670  *
2671  * The name carrier is inappropriate, these functions should really be
2672  * called netif_lowerlayer_*() because they represent the state of any
2673  * kind of lower layer not just hardware media.
2674  */
2675 
2676 void linkwatch_init_dev(struct net_device *dev);
2677 void linkwatch_fire_event(struct net_device *dev);
2678 void linkwatch_forget_dev(struct net_device *dev);
2679 
2680 /**
2681  *      netif_carrier_ok - test if carrier present
2682  *      @dev: network device
2683  *
2684  * Check if carrier is present on device
2685  */
2686 static inline bool netif_carrier_ok(const struct net_device *dev)
2687 {
2688         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2689 }
2690 
2691 unsigned long dev_trans_start(struct net_device *dev);
2692 
2693 void __netdev_watchdog_up(struct net_device *dev);
2694 
2695 void netif_carrier_on(struct net_device *dev);
2696 
2697 void netif_carrier_off(struct net_device *dev);
2698 
2699 /**
2700  *      netif_dormant_on - mark device as dormant.
2701  *      @dev: network device
2702  *
2703  * Mark device as dormant (as per RFC2863).
2704  *
2705  * The dormant state indicates that the relevant interface is not
2706  * actually in a condition to pass packets (i.e., it is not 'up') but is
2707  * in a "pending" state, waiting for some external event.  For "on-
2708  * demand" interfaces, this new state identifies the situation where the
2709  * interface is waiting for events to place it in the up state.
2710  *
2711  */
2712 static inline void netif_dormant_on(struct net_device *dev)
2713 {
2714         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2715                 linkwatch_fire_event(dev);
2716 }
2717 
2718 /**
2719  *      netif_dormant_off - set device as not dormant.
2720  *      @dev: network device
2721  *
2722  * Device is not in dormant state.
2723  */
2724 static inline void netif_dormant_off(struct net_device *dev)
2725 {
2726         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2727                 linkwatch_fire_event(dev);
2728 }
2729 
2730 /**
2731  *      netif_dormant - test if carrier present
2732  *      @dev: network device
2733  *
2734  * Check if carrier is present on device
2735  */
2736 static inline bool netif_dormant(const struct net_device *dev)
2737 {
2738         return test_bit(__LINK_STATE_DORMANT, &dev->state);
2739 }
2740 
2741 
2742 /**
2743  *      netif_oper_up - test if device is operational
2744  *      @dev: network device
2745  *
2746  * Check if carrier is operational
2747  */
2748 static inline bool netif_oper_up(const struct net_device *dev)
2749 {
2750         return (dev->operstate == IF_OPER_UP ||
2751                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2752 }
2753 
2754 /**
2755  *      netif_device_present - is device available or removed
2756  *      @dev: network device
2757  *
2758  * Check if device has not been removed from system.
2759  */
2760 static inline bool netif_device_present(struct net_device *dev)
2761 {
2762         return test_bit(__LINK_STATE_PRESENT, &dev->state);
2763 }
2764 
2765 void netif_device_detach(struct net_device *dev);
2766 
2767 void netif_device_attach(struct net_device *dev);
2768 
2769 /*
2770  * Network interface message level settings
2771  */
2772 
2773 enum {
2774         NETIF_MSG_DRV           = 0x0001,
2775         NETIF_MSG_PROBE         = 0x0002,
2776         NETIF_MSG_LINK          = 0x0004,
2777         NETIF_MSG_TIMER         = 0x0008,
2778         NETIF_MSG_IFDOWN        = 0x0010,
2779         NETIF_MSG_IFUP          = 0x0020,
2780         NETIF_MSG_RX_ERR        = 0x0040,
2781         NETIF_MSG_TX_ERR        = 0x0080,
2782         NETIF_MSG_TX_QUEUED     = 0x0100,
2783         NETIF_MSG_INTR          = 0x0200,
2784         NETIF_MSG_TX_DONE       = 0x0400,
2785         NETIF_MSG_RX_STATUS     = 0x0800,
2786         NETIF_MSG_PKTDATA       = 0x1000,
2787         NETIF_MSG_HW            = 0x2000,
2788         NETIF_MSG_WOL           = 0x4000,
2789 };
2790 
2791 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
2792 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
2793 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
2794 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
2795 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
2796 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
2797 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
2798 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
2799 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2800 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
2801 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
2802 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2803 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
2804 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
2805 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
2806 
2807 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2808 {
2809         /* use default */
2810         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2811                 return default_msg_enable_bits;
2812         if (debug_value == 0)   /* no output */
2813                 return 0;
2814         /* set low N bits */
2815         return (1 << debug_value) - 1;
2816 }
2817 
2818 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2819 {
2820         spin_lock(&txq->_xmit_lock);
2821         txq->xmit_lock_owner = cpu;
2822 }
2823 
2824 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2825 {
2826         spin_lock_bh(&txq->_xmit_lock);
2827         txq->xmit_lock_owner = smp_processor_id();
2828 }
2829 
2830 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2831 {
2832         bool ok = spin_trylock(&txq->_xmit_lock);
2833         if (likely(ok))
2834                 txq->xmit_lock_owner = smp_processor_id();
2835         return ok;
2836 }
2837 
2838 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2839 {
2840         txq->xmit_lock_owner = -1;
2841         spin_unlock(&txq->_xmit_lock);
2842 }
2843 
2844 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2845 {
2846         txq->xmit_lock_owner = -1;
2847         spin_unlock_bh(&txq->_xmit_lock);
2848 }
2849 
2850 static inline void txq_trans_update(struct netdev_queue *txq)
2851 {
2852         if (txq->xmit_lock_owner != -1)
2853                 txq->trans_start = jiffies;
2854 }
2855 
2856 /**
2857  *      netif_tx_lock - grab network device transmit lock
2858  *      @dev: network device
2859  *
2860  * Get network device transmit lock
2861  */
2862 static inline void netif_tx_lock(struct net_device *dev)
2863 {
2864         unsigned int i;
2865         int cpu;
2866 
2867         spin_lock(&dev->tx_global_lock);
2868         cpu = smp_processor_id();
2869         for (i = 0; i < dev->num_tx_queues; i++) {
2870                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2871 
2872                 /* We are the only thread of execution doing a
2873                  * freeze, but we have to grab the _xmit_lock in
2874                  * order to synchronize with threads which are in
2875                  * the ->hard_start_xmit() handler and already
2876                  * checked the frozen bit.
2877                  */
2878                 __netif_tx_lock(txq, cpu);
2879                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2880                 __netif_tx_unlock(txq);
2881         }
2882 }
2883 
2884 static inline void netif_tx_lock_bh(struct net_device *dev)
2885 {
2886         local_bh_disable();
2887         netif_tx_lock(dev);
2888 }
2889 
2890 static inline void netif_tx_unlock(struct net_device *dev)
2891 {
2892         unsigned int i;
2893 
2894         for (i = 0; i < dev->num_tx_queues; i++) {
2895                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2896 
2897                 /* No need to grab the _xmit_lock here.  If the
2898                  * queue is not stopped for another reason, we
2899                  * force a schedule.
2900                  */
2901                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2902                 netif_schedule_queue(txq);
2903         }
2904         spin_unlock(&dev->tx_global_lock);
2905 }
2906 
2907 static inline void netif_tx_unlock_bh(struct net_device *dev)
2908 {
2909         netif_tx_unlock(dev);
2910         local_bh_enable();
2911 }
2912 
2913 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
2914         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2915                 __netif_tx_lock(txq, cpu);              \
2916         }                                               \
2917 }
2918 
2919 #define HARD_TX_TRYLOCK(dev, txq)                       \
2920         (((dev->features & NETIF_F_LLTX) == 0) ?        \
2921                 __netif_tx_trylock(txq) :               \
2922                 true )
2923 
2924 #define HARD_TX_UNLOCK(dev, txq) {                      \
2925         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2926                 __netif_tx_unlock(txq);                 \
2927         }                                               \
2928 }
2929 
2930 static inline void netif_tx_disable(struct net_device *dev)
2931 {
2932         unsigned int i;
2933         int cpu;
2934 
2935         local_bh_disable();
2936         cpu = smp_processor_id();
2937         for (i = 0; i < dev->num_tx_queues; i++) {
2938                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2939 
2940                 __netif_tx_lock(txq, cpu);
2941                 netif_tx_stop_queue(txq);
2942                 __netif_tx_unlock(txq);
2943         }
2944         local_bh_enable();
2945 }
2946 
2947 static inline void netif_addr_lock(struct net_device *dev)
2948 {
2949         spin_lock(&dev->addr_list_lock);
2950 }
2951 
2952 static inline void netif_addr_lock_nested(struct net_device *dev)
2953 {
2954         int subclass = SINGLE_DEPTH_NESTING;
2955 
2956         if (dev->netdev_ops->ndo_get_lock_subclass)
2957                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
2958 
2959         spin_lock_nested(&dev->addr_list_lock, subclass);
2960 }
2961 
2962 static inline void netif_addr_lock_bh(struct net_device *dev)
2963 {
2964         spin_lock_bh(&dev->addr_list_lock);
2965 }
2966 
2967 static inline void netif_addr_unlock(struct net_device *dev)
2968 {
2969         spin_unlock(&dev->addr_list_lock);
2970 }
2971 
2972 static inline void netif_addr_unlock_bh(struct net_device *dev)
2973 {
2974         spin_unlock_bh(&dev->addr_list_lock);
2975 }
2976 
2977 /*
2978  * dev_addrs walker. Should be used only for read access. Call with
2979  * rcu_read_lock held.
2980  */
2981 #define for_each_dev_addr(dev, ha) \
2982                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2983 
2984 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2985 
2986 void ether_setup(struct net_device *dev);
2987 
2988 /* Support for loadable net-drivers */
2989 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2990                                     void (*setup)(struct net_device *),
2991                                     unsigned int txqs, unsigned int rxqs);
2992 #define alloc_netdev(sizeof_priv, name, setup) \
2993         alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2994 
2995 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2996         alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2997 
2998 int register_netdev(struct net_device *dev);
2999 void unregister_netdev(struct net_device *dev);
3000 
3001 /* General hardware address lists handling functions */
3002 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3003                    struct netdev_hw_addr_list *from_list, int addr_len);
3004 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3005                       struct netdev_hw_addr_list *from_list, int addr_len);
3006 void __hw_addr_init(struct netdev_hw_addr_list *list);
3007 
3008 /* Functions used for device addresses handling */
3009 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3010                  unsigned char addr_type);
3011 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3012                  unsigned char addr_type);
3013 void dev_addr_flush(struct net_device *dev);
3014 int dev_addr_init(struct net_device *dev);
3015 
3016 /* Functions used for unicast addresses handling */
3017 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3018 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3019 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3020 int dev_uc_sync(struct net_device *to, struct net_device *from);
3021 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3022 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3023 void dev_uc_flush(struct net_device *dev);
3024 void dev_uc_init(struct net_device *dev);
3025 
3026 /* Functions used for multicast addresses handling */
3027 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3028 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3029 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3030 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3031 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3032 int dev_mc_sync(struct net_device *to, struct net_device *from);
3033 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3034 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3035 void dev_mc_flush(struct net_device *dev);
3036 void dev_mc_init(struct net_device *dev);
3037 
3038 /* Functions used for secondary unicast and multicast support */
3039 void dev_set_rx_mode(struct net_device *dev);
3040 void __dev_set_rx_mode(struct net_device *dev);
3041 int dev_set_promiscuity(struct net_device *dev, int inc);
3042 int dev_set_allmulti(struct net_device *dev, int inc);
3043 void netdev_state_change(struct net_device *dev);
3044 void netdev_notify_peers(struct net_device *dev);
3045 void netdev_features_change(struct net_device *dev);
3046 /* Load a device via the kmod */
3047 void dev_load(struct net *net, const char *name);
3048 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3049                                         struct rtnl_link_stats64 *storage);
3050 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3051                              const struct net_device_stats *netdev_stats);
3052 
3053 extern int              netdev_max_backlog;
3054 extern int              netdev_tstamp_prequeue;
3055 extern int              weight_p;
3056 extern int              bpf_jit_enable;
3057 
3058 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3059 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3060                                                      struct list_head **iter);
3061 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3062                                                      struct list_head **iter);
3063 
3064 /* iterate through upper list, must be called under RCU read lock */
3065 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3066         for (iter = &(dev)->adj_list.upper, \
3067              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3068              updev; \
3069              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3070 
3071 /* iterate through upper list, must be called under RCU read lock */
3072 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3073         for (iter = &(dev)->all_adj_list.upper, \
3074              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3075              updev; \
3076              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3077 
3078 void *netdev_lower_get_next_private(struct net_device *dev,
3079                                     struct list_head **iter);
3080 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3081                                         struct list_head **iter);
3082 
3083 #define netdev_for_each_lower_private(dev, priv, iter) \
3084         for (iter = (dev)->adj_list.lower.next, \
3085              priv = netdev_lower_get_next_private(dev, &(iter)); \
3086              priv; \
3087              priv = netdev_lower_get_next_private(dev, &(iter)))
3088 
3089 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3090         for (iter = &(dev)->adj_list.lower, \
3091              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3092              priv; \
3093              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3094 
3095 void *netdev_lower_get_next(struct net_device *dev,
3096                                 struct list_head **iter);
3097 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3098         for (iter = &(dev)->adj_list.lower, \
3099              ldev = netdev_lower_get_next(dev, &(iter)); \
3100              ldev; \
3101              ldev = netdev_lower_get_next(dev, &(iter)))
3102 
3103 void *netdev_adjacent_get_private(struct list_head *adj_list);
3104 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3105 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3106 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3107 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3108 int netdev_master_upper_dev_link(struct net_device *dev,
3109                                  struct net_device *upper_dev);
3110 int netdev_master_upper_dev_link_private(struct net_device *dev,
3111                                          struct net_device *upper_dev,
3112                                          void *private);
3113 void netdev_upper_dev_unlink(struct net_device *dev,
3114                              struct net_device *upper_dev);
3115 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3116 void *netdev_lower_dev_get_private(struct net_device *dev,
3117                                    struct net_device *lower_dev);
3118 int dev_get_nest_level(struct net_device *dev,
3119                        bool (*type_check)(struct net_device *dev));
3120 int skb_checksum_help(struct sk_buff *skb);
3121 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3122                                   netdev_features_t features, bool tx_path);
3123 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3124                                     netdev_features_t features);
3125 
3126 static inline
3127 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3128 {
3129         return __skb_gso_segment(skb, features, true);
3130 }
3131 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3132 
3133 static inline bool can_checksum_protocol(netdev_features_t features,
3134                                          __be16 protocol)
3135 {
3136         return ((features & NETIF_F_GEN_CSUM) ||
3137                 ((features & NETIF_F_V4_CSUM) &&
3138                  protocol == htons(ETH_P_IP)) ||
3139                 ((features & NETIF_F_V6_CSUM) &&
3140                  protocol == htons(ETH_P_IPV6)) ||
3141                 ((features & NETIF_F_FCOE_CRC) &&
3142                  protocol == htons(ETH_P_FCOE)));
3143 }
3144 
3145 #ifdef CONFIG_BUG
3146 void netdev_rx_csum_fault(struct net_device *dev);
3147 #else
3148 static inline void netdev_rx_csum_fault(struct net_device *dev)
3149 {
3150 }
3151 #endif
3152 /* rx skb timestamps */
3153 void net_enable_timestamp(void);
3154 void net_disable_timestamp(void);
3155 
3156 #ifdef CONFIG_PROC_FS
3157 int __init dev_proc_init(void);
3158 #else
3159 #define dev_proc_init() 0
3160 #endif
3161 
3162 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3163                                 const void *ns);
3164 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3165                                  const void *ns);
3166 
3167 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3168 {
3169         return netdev_class_create_file_ns(class_attr, NULL);
3170 }
3171 
3172 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3173 {
3174         netdev_class_remove_file_ns(class_attr, NULL);
3175 }
3176 
3177 extern struct kobj_ns_type_operations net_ns_type_operations;
3178 
3179 const char *netdev_drivername(const struct net_device *dev);
3180 
3181 void linkwatch_run_queue(void);
3182 
3183 static inline netdev_features_t netdev_get_wanted_features(
3184         struct net_device *dev)
3185 {
3186         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3187 }
3188 netdev_features_t netdev_increment_features(netdev_features_t all,
3189         netdev_features_t one, netdev_features_t mask);
3190 
3191 /* Allow TSO being used on stacked device :
3192  * Performing the GSO segmentation before last device
3193  * is a performance improvement.
3194  */
3195 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3196                                                         netdev_features_t mask)
3197 {
3198         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3199 }
3200 
3201 int __netdev_update_features(struct net_device *dev);
3202 void netdev_update_features(struct net_device *dev);
3203 void netdev_change_features(struct net_device *dev);
3204 
3205 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3206                                         struct net_device *dev);
3207 
3208 netdev_features_t netif_skb_features(struct sk_buff *skb);
3209 
3210 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3211 {
3212         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3213 
3214         /* check flags correspondence */
3215         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3216         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3217         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3218         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3219         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3220         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3221 
3222         return (features & feature) == feature;
3223 }
3224 
3225 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3226 {
3227         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3228                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3229 }
3230 
3231 static inline bool netif_needs_gso(struct sk_buff *skb,
3232                                    netdev_features_t features)
3233 {
3234         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3235                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3236                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3237 }
3238 
3239 static inline void netif_set_gso_max_size(struct net_device *dev,
3240                                           unsigned int size)
3241 {
3242         dev->gso_max_size = size;
3243 }
3244 
3245 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3246                                         int pulled_hlen, u16 mac_offset,
3247                                         int mac_len)
3248 {
3249         skb->protocol = protocol;
3250         skb->encapsulation = 1;
3251         skb_push(skb, pulled_hlen);
3252         skb_reset_transport_header(skb);
3253         skb->mac_header = mac_offset;
3254         skb->network_header = skb->mac_header + mac_len;
3255         skb->mac_len = mac_len;
3256 }
3257 
3258 static inline bool netif_is_macvlan(struct net_device *dev)
3259 {
3260         return dev->priv_flags & IFF_MACVLAN;
3261 }
3262 
3263 static inline bool netif_is_bond_master(struct net_device *dev)
3264 {
3265         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3266 }
3267 
3268 static inline bool netif_is_bond_slave(struct net_device *dev)
3269 {
3270         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3271 }
3272 
3273 static inline bool netif_supports_nofcs(struct net_device *dev)
3274 {
3275         return dev->priv_flags & IFF_SUPP_NOFCS;
3276 }
3277 
3278 extern struct pernet_operations __net_initdata loopback_net_ops;
3279 
3280 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3281 
3282 /* netdev_printk helpers, similar to dev_printk */
3283 
3284 static inline const char *netdev_name(const struct net_device *dev)
3285 {
3286         if (dev->reg_state != NETREG_REGISTERED)
3287                 return "(unregistered net_device)";
3288         return dev->name;
3289 }
3290 
3291 __printf(3, 4)
3292 int netdev_printk(const char *level, const struct net_device *dev,
3293                   const char *format, ...);
3294 __printf(2, 3)
3295 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3296 __printf(2, 3)
3297 int netdev_alert(const struct net_device *dev, const char *format, ...);
3298 __printf(2, 3)
3299 int netdev_crit(const struct net_device *dev, const char *format, ...);
3300 __printf(2, 3)
3301 int netdev_err(const struct net_device *dev, const char *format, ...);
3302 __printf(2, 3)
3303 int netdev_warn(const struct net_device *dev, const char *format, ...);
3304 __printf(2, 3)
3305 int netdev_notice(const struct net_device *dev, const char *format, ...);
3306 __printf(2, 3)
3307 int netdev_info(const struct net_device *dev, const char *format, ...);
3308 
3309 #define MODULE_ALIAS_NETDEV(device) \
3310         MODULE_ALIAS("netdev-" device)
3311 
3312 #if defined(CONFIG_DYNAMIC_DEBUG)
3313 #define netdev_dbg(__dev, format, args...)                      \
3314 do {                                                            \
3315         dynamic_netdev_dbg(__dev, format, ##args);              \
3316 } while (0)
3317 #elif defined(DEBUG)
3318 #define netdev_dbg(__dev, format, args...)                      \
3319         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3320 #else
3321 #define netdev_dbg(__dev, format, args...)                      \
3322 ({                                                              \
3323         if (0)                                                  \
3324                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3325         0;                                                      \
3326 })
3327 #endif
3328 
3329 #if defined(VERBOSE_DEBUG)
3330 #define netdev_vdbg     netdev_dbg
3331 #else
3332 
3333 #define netdev_vdbg(dev, format, args...)                       \
3334 ({                                                              \
3335         if (0)                                                  \
3336                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3337         0;                                                      \
3338 })
3339 #endif
3340 
3341 /*
3342  * netdev_WARN() acts like dev_printk(), but with the key difference
3343  * of using a WARN/WARN_ON to get the message out, including the
3344  * file/line information and a backtrace.
3345  */
3346 #define netdev_WARN(dev, format, args...)                       \
3347         WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3348 
3349 /* netif printk helpers, similar to netdev_printk */
3350 
3351 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3352 do {                                                            \
3353         if (netif_msg_##type(priv))                             \
3354                 netdev_printk(level, (dev), fmt, ##args);       \
3355 } while (0)
3356 
3357 #define netif_level(level, priv, type, dev, fmt, args...)       \
3358 do {                                                            \
3359         if (netif_msg_##type(priv))                             \
3360                 netdev_##level(dev, fmt, ##args);               \
3361 } while (0)
3362 
3363 #define netif_emerg(priv, type, dev, fmt, args...)              \
3364         netif_level(emerg, priv, type, dev, fmt, ##args)
3365 #define netif_alert(priv, type, dev, fmt, args...)              \
3366         netif_level(alert, priv, type, dev, fmt, ##args)
3367 #define netif_crit(priv, type, dev, fmt, args...)               \
3368         netif_level(crit, priv, type, dev, fmt, ##args)
3369 #define netif_err(priv, type, dev, fmt, args...)                \
3370         netif_level(err, priv, type, dev, fmt, ##args)
3371 #define netif_warn(priv, type, dev, fmt, args...)               \
3372         netif_level(warn, priv, type, dev, fmt, ##args)
3373 #define netif_notice(priv, type, dev, fmt, args...)             \
3374         netif_level(notice, priv, type, dev, fmt, ##args)
3375 #define netif_info(priv, type, dev, fmt, args...)               \
3376         netif_level(info, priv, type, dev, fmt, ##args)
3377 
3378 #if defined(CONFIG_DYNAMIC_DEBUG)
3379 #define netif_dbg(priv, type, netdev, format, args...)          \
3380 do {                                                            \
3381         if (netif_msg_##type(priv))                             \
3382                 dynamic_netdev_dbg(netdev, format, ##args);     \
3383 } while (0)
3384 #elif defined(DEBUG)
3385 #define netif_dbg(priv, type, dev, format, args...)             \
3386         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3387 #else
3388 #define netif_dbg(priv, type, dev, format, args...)                     \
3389 ({                                                                      \
3390         if (0)                                                          \
3391                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3392         0;                                                              \
3393 })
3394 #endif
3395 
3396 #if defined(VERBOSE_DEBUG)
3397 #define netif_vdbg      netif_dbg
3398 #else
3399 #define netif_vdbg(priv, type, dev, format, args...)            \
3400 ({                                                              \
3401         if (0)                                                  \
3402                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3403         0;                                                      \
3404 })
3405 #endif
3406 
3407 /*
3408  *      The list of packet types we will receive (as opposed to discard)
3409  *      and the routines to invoke.
3410  *
3411  *      Why 16. Because with 16 the only overlap we get on a hash of the
3412  *      low nibble of the protocol value is RARP/SNAP/X.25.
3413  *
3414  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3415  *             sure which should go first, but I bet it won't make much
3416  *             difference if we are running VLANs.  The good news is that
3417  *             this protocol won't be in the list unless compiled in, so
3418  *             the average user (w/out VLANs) will not be adversely affected.
3419  *             --BLG
3420  *
3421  *              0800    IP
3422  *              8100    802.1Q VLAN
3423  *              0001    802.3
3424  *              0002    AX.25
3425  *              0004    802.2
3426  *              8035    RARP
3427  *              0005    SNAP
3428  *              0805    X.25
3429  *              0806    ARP
3430  *              8137    IPX
3431  *              0009    Localtalk
3432  *              86DD    IPv6
3433  */
3434 #define PTYPE_HASH_SIZE (16)
3435 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3436 
3437 #endif  /* _LINUX_NETDEVICE_H */
3438 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us