Version:  2.0.40 2.2.26 2.4.37 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 #include <uapi/linux/if_bonding.h>
 54 #include <uapi/linux/pkt_cls.h>
 55 #include <linux/hashtable.h>
 56 
 57 struct netpoll_info;
 58 struct device;
 59 struct phy_device;
 60 /* 802.11 specific */
 61 struct wireless_dev;
 62 /* 802.15.4 specific */
 63 struct wpan_dev;
 64 struct mpls_dev;
 65 /* UDP Tunnel offloads */
 66 struct udp_tunnel_info;
 67 struct bpf_prog;
 68 
 69 void netdev_set_default_ethtool_ops(struct net_device *dev,
 70                                     const struct ethtool_ops *ops);
 71 
 72 /* Backlog congestion levels */
 73 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 74 #define NET_RX_DROP             1       /* packet dropped */
 75 
 76 /*
 77  * Transmit return codes: transmit return codes originate from three different
 78  * namespaces:
 79  *
 80  * - qdisc return codes
 81  * - driver transmit return codes
 82  * - errno values
 83  *
 84  * Drivers are allowed to return any one of those in their hard_start_xmit()
 85  * function. Real network devices commonly used with qdiscs should only return
 86  * the driver transmit return codes though - when qdiscs are used, the actual
 87  * transmission happens asynchronously, so the value is not propagated to
 88  * higher layers. Virtual network devices transmit synchronously; in this case
 89  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
 90  * others are propagated to higher layers.
 91  */
 92 
 93 /* qdisc ->enqueue() return codes. */
 94 #define NET_XMIT_SUCCESS        0x00
 95 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 96 #define NET_XMIT_CN             0x02    /* congestion notification      */
 97 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 98 
 99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK          0xf0
107 
108 enum netdev_tx {
109         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
110         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
111         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
112 };
113 typedef enum netdev_tx netdev_tx_t;
114 
115 /*
116  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
117  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
118  */
119 static inline bool dev_xmit_complete(int rc)
120 {
121         /*
122          * Positive cases with an skb consumed by a driver:
123          * - successful transmission (rc == NETDEV_TX_OK)
124          * - error while transmitting (rc < 0)
125          * - error while queueing to a different device (rc & NET_XMIT_MASK)
126          */
127         if (likely(rc < NET_XMIT_MASK))
128                 return true;
129 
130         return false;
131 }
132 
133 /*
134  *      Compute the worst-case header length according to the protocols
135  *      used.
136  */
137 
138 #if defined(CONFIG_HYPERV_NET)
139 # define LL_MAX_HEADER 128
140 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
141 # if defined(CONFIG_MAC80211_MESH)
142 #  define LL_MAX_HEADER 128
143 # else
144 #  define LL_MAX_HEADER 96
145 # endif
146 #else
147 # define LL_MAX_HEADER 32
148 #endif
149 
150 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
151     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
152 #define MAX_HEADER LL_MAX_HEADER
153 #else
154 #define MAX_HEADER (LL_MAX_HEADER + 48)
155 #endif
156 
157 /*
158  *      Old network device statistics. Fields are native words
159  *      (unsigned long) so they can be read and written atomically.
160  */
161 
162 struct net_device_stats {
163         unsigned long   rx_packets;
164         unsigned long   tx_packets;
165         unsigned long   rx_bytes;
166         unsigned long   tx_bytes;
167         unsigned long   rx_errors;
168         unsigned long   tx_errors;
169         unsigned long   rx_dropped;
170         unsigned long   tx_dropped;
171         unsigned long   multicast;
172         unsigned long   collisions;
173         unsigned long   rx_length_errors;
174         unsigned long   rx_over_errors;
175         unsigned long   rx_crc_errors;
176         unsigned long   rx_frame_errors;
177         unsigned long   rx_fifo_errors;
178         unsigned long   rx_missed_errors;
179         unsigned long   tx_aborted_errors;
180         unsigned long   tx_carrier_errors;
181         unsigned long   tx_fifo_errors;
182         unsigned long   tx_heartbeat_errors;
183         unsigned long   tx_window_errors;
184         unsigned long   rx_compressed;
185         unsigned long   tx_compressed;
186 };
187 
188 
189 #include <linux/cache.h>
190 #include <linux/skbuff.h>
191 
192 #ifdef CONFIG_RPS
193 #include <linux/static_key.h>
194 extern struct static_key rps_needed;
195 #endif
196 
197 struct neighbour;
198 struct neigh_parms;
199 struct sk_buff;
200 
201 struct netdev_hw_addr {
202         struct list_head        list;
203         unsigned char           addr[MAX_ADDR_LEN];
204         unsigned char           type;
205 #define NETDEV_HW_ADDR_T_LAN            1
206 #define NETDEV_HW_ADDR_T_SAN            2
207 #define NETDEV_HW_ADDR_T_SLAVE          3
208 #define NETDEV_HW_ADDR_T_UNICAST        4
209 #define NETDEV_HW_ADDR_T_MULTICAST      5
210         bool                    global_use;
211         int                     sync_cnt;
212         int                     refcount;
213         int                     synced;
214         struct rcu_head         rcu_head;
215 };
216 
217 struct netdev_hw_addr_list {
218         struct list_head        list;
219         int                     count;
220 };
221 
222 #define netdev_hw_addr_list_count(l) ((l)->count)
223 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
224 #define netdev_hw_addr_list_for_each(ha, l) \
225         list_for_each_entry(ha, &(l)->list, list)
226 
227 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
228 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
229 #define netdev_for_each_uc_addr(ha, dev) \
230         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
231 
232 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
233 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
234 #define netdev_for_each_mc_addr(ha, dev) \
235         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
236 
237 struct hh_cache {
238         u16             hh_len;
239         u16             __pad;
240         seqlock_t       hh_lock;
241 
242         /* cached hardware header; allow for machine alignment needs.        */
243 #define HH_DATA_MOD     16
244 #define HH_DATA_OFF(__len) \
245         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
246 #define HH_DATA_ALIGN(__len) \
247         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
248         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
249 };
250 
251 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
252  * Alternative is:
253  *   dev->hard_header_len ? (dev->hard_header_len +
254  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
255  *
256  * We could use other alignment values, but we must maintain the
257  * relationship HH alignment <= LL alignment.
258  */
259 #define LL_RESERVED_SPACE(dev) \
260         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
261 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
262         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
263 
264 struct header_ops {
265         int     (*create) (struct sk_buff *skb, struct net_device *dev,
266                            unsigned short type, const void *daddr,
267                            const void *saddr, unsigned int len);
268         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
269         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
270         void    (*cache_update)(struct hh_cache *hh,
271                                 const struct net_device *dev,
272                                 const unsigned char *haddr);
273         bool    (*validate)(const char *ll_header, unsigned int len);
274 };
275 
276 /* These flag bits are private to the generic network queueing
277  * layer; they may not be explicitly referenced by any other
278  * code.
279  */
280 
281 enum netdev_state_t {
282         __LINK_STATE_START,
283         __LINK_STATE_PRESENT,
284         __LINK_STATE_NOCARRIER,
285         __LINK_STATE_LINKWATCH_PENDING,
286         __LINK_STATE_DORMANT,
287 };
288 
289 
290 /*
291  * This structure holds boot-time configured netdevice settings. They
292  * are then used in the device probing.
293  */
294 struct netdev_boot_setup {
295         char name[IFNAMSIZ];
296         struct ifmap map;
297 };
298 #define NETDEV_BOOT_SETUP_MAX 8
299 
300 int __init netdev_boot_setup(char *str);
301 
302 /*
303  * Structure for NAPI scheduling similar to tasklet but with weighting
304  */
305 struct napi_struct {
306         /* The poll_list must only be managed by the entity which
307          * changes the state of the NAPI_STATE_SCHED bit.  This means
308          * whoever atomically sets that bit can add this napi_struct
309          * to the per-CPU poll_list, and whoever clears that bit
310          * can remove from the list right before clearing the bit.
311          */
312         struct list_head        poll_list;
313 
314         unsigned long           state;
315         int                     weight;
316         unsigned int            gro_count;
317         int                     (*poll)(struct napi_struct *, int);
318 #ifdef CONFIG_NETPOLL
319         spinlock_t              poll_lock;
320         int                     poll_owner;
321 #endif
322         struct net_device       *dev;
323         struct sk_buff          *gro_list;
324         struct sk_buff          *skb;
325         struct hrtimer          timer;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330 
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_DISABLE,     /* Disable pending */
334         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
335         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
336         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
337 };
338 
339 enum gro_result {
340         GRO_MERGED,
341         GRO_MERGED_FREE,
342         GRO_HELD,
343         GRO_NORMAL,
344         GRO_DROP,
345 };
346 typedef enum gro_result gro_result_t;
347 
348 /*
349  * enum rx_handler_result - Possible return values for rx_handlers.
350  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
351  * further.
352  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
353  * case skb->dev was changed by rx_handler.
354  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
355  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
356  *
357  * rx_handlers are functions called from inside __netif_receive_skb(), to do
358  * special processing of the skb, prior to delivery to protocol handlers.
359  *
360  * Currently, a net_device can only have a single rx_handler registered. Trying
361  * to register a second rx_handler will return -EBUSY.
362  *
363  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
364  * To unregister a rx_handler on a net_device, use
365  * netdev_rx_handler_unregister().
366  *
367  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
368  * do with the skb.
369  *
370  * If the rx_handler consumed the skb in some way, it should return
371  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
372  * the skb to be delivered in some other way.
373  *
374  * If the rx_handler changed skb->dev, to divert the skb to another
375  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
376  * new device will be called if it exists.
377  *
378  * If the rx_handler decides the skb should be ignored, it should return
379  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
380  * are registered on exact device (ptype->dev == skb->dev).
381  *
382  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
383  * delivered, it should return RX_HANDLER_PASS.
384  *
385  * A device without a registered rx_handler will behave as if rx_handler
386  * returned RX_HANDLER_PASS.
387  */
388 
389 enum rx_handler_result {
390         RX_HANDLER_CONSUMED,
391         RX_HANDLER_ANOTHER,
392         RX_HANDLER_EXACT,
393         RX_HANDLER_PASS,
394 };
395 typedef enum rx_handler_result rx_handler_result_t;
396 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
397 
398 void __napi_schedule(struct napi_struct *n);
399 void __napi_schedule_irqoff(struct napi_struct *n);
400 
401 static inline bool napi_disable_pending(struct napi_struct *n)
402 {
403         return test_bit(NAPI_STATE_DISABLE, &n->state);
404 }
405 
406 /**
407  *      napi_schedule_prep - check if NAPI can be scheduled
408  *      @n: NAPI context
409  *
410  * Test if NAPI routine is already running, and if not mark
411  * it as running.  This is used as a condition variable to
412  * insure only one NAPI poll instance runs.  We also make
413  * sure there is no pending NAPI disable.
414  */
415 static inline bool napi_schedule_prep(struct napi_struct *n)
416 {
417         return !napi_disable_pending(n) &&
418                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
419 }
420 
421 /**
422  *      napi_schedule - schedule NAPI poll
423  *      @n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430         if (napi_schedule_prep(n))
431                 __napi_schedule(n);
432 }
433 
434 /**
435  *      napi_schedule_irqoff - schedule NAPI poll
436  *      @n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442         if (napi_schedule_prep(n))
443                 __napi_schedule_irqoff(n);
444 }
445 
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449         if (napi_schedule_prep(napi)) {
450                 __napi_schedule(napi);
451                 return true;
452         }
453         return false;
454 }
455 
456 void __napi_complete(struct napi_struct *n);
457 void napi_complete_done(struct napi_struct *n, int work_done);
458 /**
459  *      napi_complete - NAPI processing complete
460  *      @n: NAPI context
461  *
462  * Mark NAPI processing as complete.
463  * Consider using napi_complete_done() instead.
464  */
465 static inline void napi_complete(struct napi_struct *n)
466 {
467         return napi_complete_done(n, 0);
468 }
469 
470 /**
471  *      napi_hash_add - add a NAPI to global hashtable
472  *      @napi: NAPI context
473  *
474  * Generate a new napi_id and store a @napi under it in napi_hash.
475  * Used for busy polling (CONFIG_NET_RX_BUSY_POLL).
476  * Note: This is normally automatically done from netif_napi_add(),
477  * so might disappear in a future Linux version.
478  */
479 void napi_hash_add(struct napi_struct *napi);
480 
481 /**
482  *      napi_hash_del - remove a NAPI from global table
483  *      @napi: NAPI context
484  *
485  * Warning: caller must observe RCU grace period
486  * before freeing memory containing @napi, if
487  * this function returns true.
488  * Note: core networking stack automatically calls it
489  * from netif_napi_del().
490  * Drivers might want to call this helper to combine all
491  * the needed RCU grace periods into a single one.
492  */
493 bool napi_hash_del(struct napi_struct *napi);
494 
495 /**
496  *      napi_disable - prevent NAPI from scheduling
497  *      @n: NAPI context
498  *
499  * Stop NAPI from being scheduled on this context.
500  * Waits till any outstanding processing completes.
501  */
502 void napi_disable(struct napi_struct *n);
503 
504 /**
505  *      napi_enable - enable NAPI scheduling
506  *      @n: NAPI context
507  *
508  * Resume NAPI from being scheduled on this context.
509  * Must be paired with napi_disable.
510  */
511 static inline void napi_enable(struct napi_struct *n)
512 {
513         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
514         smp_mb__before_atomic();
515         clear_bit(NAPI_STATE_SCHED, &n->state);
516         clear_bit(NAPI_STATE_NPSVC, &n->state);
517 }
518 
519 /**
520  *      napi_synchronize - wait until NAPI is not running
521  *      @n: NAPI context
522  *
523  * Wait until NAPI is done being scheduled on this context.
524  * Waits till any outstanding processing completes but
525  * does not disable future activations.
526  */
527 static inline void napi_synchronize(const struct napi_struct *n)
528 {
529         if (IS_ENABLED(CONFIG_SMP))
530                 while (test_bit(NAPI_STATE_SCHED, &n->state))
531                         msleep(1);
532         else
533                 barrier();
534 }
535 
536 enum netdev_queue_state_t {
537         __QUEUE_STATE_DRV_XOFF,
538         __QUEUE_STATE_STACK_XOFF,
539         __QUEUE_STATE_FROZEN,
540 };
541 
542 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
543 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
544 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
545 
546 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
547 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
548                                         QUEUE_STATE_FROZEN)
549 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
550                                         QUEUE_STATE_FROZEN)
551 
552 /*
553  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
554  * netif_tx_* functions below are used to manipulate this flag.  The
555  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
556  * queue independently.  The netif_xmit_*stopped functions below are called
557  * to check if the queue has been stopped by the driver or stack (either
558  * of the XOFF bits are set in the state).  Drivers should not need to call
559  * netif_xmit*stopped functions, they should only be using netif_tx_*.
560  */
561 
562 struct netdev_queue {
563 /*
564  * read-mostly part
565  */
566         struct net_device       *dev;
567         struct Qdisc __rcu      *qdisc;
568         struct Qdisc            *qdisc_sleeping;
569 #ifdef CONFIG_SYSFS
570         struct kobject          kobj;
571 #endif
572 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
573         int                     numa_node;
574 #endif
575         unsigned long           tx_maxrate;
576         /*
577          * Number of TX timeouts for this queue
578          * (/sys/class/net/DEV/Q/trans_timeout)
579          */
580         unsigned long           trans_timeout;
581 /*
582  * write-mostly part
583  */
584         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
585         int                     xmit_lock_owner;
586         /*
587          * Time (in jiffies) of last Tx
588          */
589         unsigned long           trans_start;
590 
591         unsigned long           state;
592 
593 #ifdef CONFIG_BQL
594         struct dql              dql;
595 #endif
596 } ____cacheline_aligned_in_smp;
597 
598 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
599 {
600 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
601         return q->numa_node;
602 #else
603         return NUMA_NO_NODE;
604 #endif
605 }
606 
607 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
608 {
609 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
610         q->numa_node = node;
611 #endif
612 }
613 
614 #ifdef CONFIG_RPS
615 /*
616  * This structure holds an RPS map which can be of variable length.  The
617  * map is an array of CPUs.
618  */
619 struct rps_map {
620         unsigned int len;
621         struct rcu_head rcu;
622         u16 cpus[0];
623 };
624 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
625 
626 /*
627  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
628  * tail pointer for that CPU's input queue at the time of last enqueue, and
629  * a hardware filter index.
630  */
631 struct rps_dev_flow {
632         u16 cpu;
633         u16 filter;
634         unsigned int last_qtail;
635 };
636 #define RPS_NO_FILTER 0xffff
637 
638 /*
639  * The rps_dev_flow_table structure contains a table of flow mappings.
640  */
641 struct rps_dev_flow_table {
642         unsigned int mask;
643         struct rcu_head rcu;
644         struct rps_dev_flow flows[0];
645 };
646 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
647     ((_num) * sizeof(struct rps_dev_flow)))
648 
649 /*
650  * The rps_sock_flow_table contains mappings of flows to the last CPU
651  * on which they were processed by the application (set in recvmsg).
652  * Each entry is a 32bit value. Upper part is the high-order bits
653  * of flow hash, lower part is CPU number.
654  * rps_cpu_mask is used to partition the space, depending on number of
655  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
656  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
657  * meaning we use 32-6=26 bits for the hash.
658  */
659 struct rps_sock_flow_table {
660         u32     mask;
661 
662         u32     ents[0] ____cacheline_aligned_in_smp;
663 };
664 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
665 
666 #define RPS_NO_CPU 0xffff
667 
668 extern u32 rps_cpu_mask;
669 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
670 
671 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
672                                         u32 hash)
673 {
674         if (table && hash) {
675                 unsigned int index = hash & table->mask;
676                 u32 val = hash & ~rps_cpu_mask;
677 
678                 /* We only give a hint, preemption can change CPU under us */
679                 val |= raw_smp_processor_id();
680 
681                 if (table->ents[index] != val)
682                         table->ents[index] = val;
683         }
684 }
685 
686 #ifdef CONFIG_RFS_ACCEL
687 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
688                          u16 filter_id);
689 #endif
690 #endif /* CONFIG_RPS */
691 
692 /* This structure contains an instance of an RX queue. */
693 struct netdev_rx_queue {
694 #ifdef CONFIG_RPS
695         struct rps_map __rcu            *rps_map;
696         struct rps_dev_flow_table __rcu *rps_flow_table;
697 #endif
698         struct kobject                  kobj;
699         struct net_device               *dev;
700 } ____cacheline_aligned_in_smp;
701 
702 /*
703  * RX queue sysfs structures and functions.
704  */
705 struct rx_queue_attribute {
706         struct attribute attr;
707         ssize_t (*show)(struct netdev_rx_queue *queue,
708             struct rx_queue_attribute *attr, char *buf);
709         ssize_t (*store)(struct netdev_rx_queue *queue,
710             struct rx_queue_attribute *attr, const char *buf, size_t len);
711 };
712 
713 #ifdef CONFIG_XPS
714 /*
715  * This structure holds an XPS map which can be of variable length.  The
716  * map is an array of queues.
717  */
718 struct xps_map {
719         unsigned int len;
720         unsigned int alloc_len;
721         struct rcu_head rcu;
722         u16 queues[0];
723 };
724 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
725 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
726        - sizeof(struct xps_map)) / sizeof(u16))
727 
728 /*
729  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
730  */
731 struct xps_dev_maps {
732         struct rcu_head rcu;
733         struct xps_map __rcu *cpu_map[0];
734 };
735 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
736     (nr_cpu_ids * sizeof(struct xps_map *)))
737 #endif /* CONFIG_XPS */
738 
739 #define TC_MAX_QUEUE    16
740 #define TC_BITMASK      15
741 /* HW offloaded queuing disciplines txq count and offset maps */
742 struct netdev_tc_txq {
743         u16 count;
744         u16 offset;
745 };
746 
747 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
748 /*
749  * This structure is to hold information about the device
750  * configured to run FCoE protocol stack.
751  */
752 struct netdev_fcoe_hbainfo {
753         char    manufacturer[64];
754         char    serial_number[64];
755         char    hardware_version[64];
756         char    driver_version[64];
757         char    optionrom_version[64];
758         char    firmware_version[64];
759         char    model[256];
760         char    model_description[256];
761 };
762 #endif
763 
764 #define MAX_PHYS_ITEM_ID_LEN 32
765 
766 /* This structure holds a unique identifier to identify some
767  * physical item (port for example) used by a netdevice.
768  */
769 struct netdev_phys_item_id {
770         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
771         unsigned char id_len;
772 };
773 
774 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
775                                             struct netdev_phys_item_id *b)
776 {
777         return a->id_len == b->id_len &&
778                memcmp(a->id, b->id, a->id_len) == 0;
779 }
780 
781 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
782                                        struct sk_buff *skb);
783 
784 /* These structures hold the attributes of qdisc and classifiers
785  * that are being passed to the netdevice through the setup_tc op.
786  */
787 enum {
788         TC_SETUP_MQPRIO,
789         TC_SETUP_CLSU32,
790         TC_SETUP_CLSFLOWER,
791         TC_SETUP_MATCHALL,
792         TC_SETUP_CLSBPF,
793 };
794 
795 struct tc_cls_u32_offload;
796 
797 struct tc_to_netdev {
798         unsigned int type;
799         union {
800                 u8 tc;
801                 struct tc_cls_u32_offload *cls_u32;
802                 struct tc_cls_flower_offload *cls_flower;
803                 struct tc_cls_matchall_offload *cls_mall;
804                 struct tc_cls_bpf_offload *cls_bpf;
805         };
806 };
807 
808 /* These structures hold the attributes of xdp state that are being passed
809  * to the netdevice through the xdp op.
810  */
811 enum xdp_netdev_command {
812         /* Set or clear a bpf program used in the earliest stages of packet
813          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
814          * is responsible for calling bpf_prog_put on any old progs that are
815          * stored. In case of error, the callee need not release the new prog
816          * reference, but on success it takes ownership and must bpf_prog_put
817          * when it is no longer used.
818          */
819         XDP_SETUP_PROG,
820         /* Check if a bpf program is set on the device.  The callee should
821          * return true if a program is currently attached and running.
822          */
823         XDP_QUERY_PROG,
824 };
825 
826 struct netdev_xdp {
827         enum xdp_netdev_command command;
828         union {
829                 /* XDP_SETUP_PROG */
830                 struct bpf_prog *prog;
831                 /* XDP_QUERY_PROG */
832                 bool prog_attached;
833         };
834 };
835 
836 /*
837  * This structure defines the management hooks for network devices.
838  * The following hooks can be defined; unless noted otherwise, they are
839  * optional and can be filled with a null pointer.
840  *
841  * int (*ndo_init)(struct net_device *dev);
842  *     This function is called once when a network device is registered.
843  *     The network device can use this for any late stage initialization
844  *     or semantic validation. It can fail with an error code which will
845  *     be propagated back to register_netdev.
846  *
847  * void (*ndo_uninit)(struct net_device *dev);
848  *     This function is called when device is unregistered or when registration
849  *     fails. It is not called if init fails.
850  *
851  * int (*ndo_open)(struct net_device *dev);
852  *     This function is called when a network device transitions to the up
853  *     state.
854  *
855  * int (*ndo_stop)(struct net_device *dev);
856  *     This function is called when a network device transitions to the down
857  *     state.
858  *
859  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
860  *                               struct net_device *dev);
861  *      Called when a packet needs to be transmitted.
862  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
863  *      the queue before that can happen; it's for obsolete devices and weird
864  *      corner cases, but the stack really does a non-trivial amount
865  *      of useless work if you return NETDEV_TX_BUSY.
866  *      Required; cannot be NULL.
867  *
868  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869  *              netdev_features_t features);
870  *      Adjusts the requested feature flags according to device-specific
871  *      constraints, and returns the resulting flags. Must not modify
872  *      the device state.
873  *
874  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
875  *                         void *accel_priv, select_queue_fallback_t fallback);
876  *      Called to decide which queue to use when device supports multiple
877  *      transmit queues.
878  *
879  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
880  *      This function is called to allow device receiver to make
881  *      changes to configuration when multicast or promiscuous is enabled.
882  *
883  * void (*ndo_set_rx_mode)(struct net_device *dev);
884  *      This function is called device changes address list filtering.
885  *      If driver handles unicast address filtering, it should set
886  *      IFF_UNICAST_FLT in its priv_flags.
887  *
888  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
889  *      This function  is called when the Media Access Control address
890  *      needs to be changed. If this interface is not defined, the
891  *      MAC address can not be changed.
892  *
893  * int (*ndo_validate_addr)(struct net_device *dev);
894  *      Test if Media Access Control address is valid for the device.
895  *
896  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
897  *      Called when a user requests an ioctl which can't be handled by
898  *      the generic interface code. If not defined ioctls return
899  *      not supported error code.
900  *
901  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
902  *      Used to set network devices bus interface parameters. This interface
903  *      is retained for legacy reasons; new devices should use the bus
904  *      interface (PCI) for low level management.
905  *
906  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
907  *      Called when a user wants to change the Maximum Transfer Unit
908  *      of a device. If not defined, any request to change MTU will
909  *      will return an error.
910  *
911  * void (*ndo_tx_timeout)(struct net_device *dev);
912  *      Callback used when the transmitter has not made any progress
913  *      for dev->watchdog ticks.
914  *
915  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
916  *                      struct rtnl_link_stats64 *storage);
917  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
918  *      Called when a user wants to get the network device usage
919  *      statistics. Drivers must do one of the following:
920  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
921  *         rtnl_link_stats64 structure passed by the caller.
922  *      2. Define @ndo_get_stats to update a net_device_stats structure
923  *         (which should normally be dev->stats) and return a pointer to
924  *         it. The structure may be changed asynchronously only if each
925  *         field is written atomically.
926  *      3. Update dev->stats asynchronously and atomically, and define
927  *         neither operation.
928  *
929  * bool (*ndo_has_offload_stats)(int attr_id)
930  *      Return true if this device supports offload stats of this attr_id.
931  *
932  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
933  *      void *attr_data)
934  *      Get statistics for offload operations by attr_id. Write it into the
935  *      attr_data pointer.
936  *
937  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
938  *      If device supports VLAN filtering this function is called when a
939  *      VLAN id is registered.
940  *
941  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
942  *      If device supports VLAN filtering this function is called when a
943  *      VLAN id is unregistered.
944  *
945  * void (*ndo_poll_controller)(struct net_device *dev);
946  *
947  *      SR-IOV management functions.
948  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
949  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
950  *                        u8 qos, __be16 proto);
951  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
952  *                        int max_tx_rate);
953  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
954  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
955  * int (*ndo_get_vf_config)(struct net_device *dev,
956  *                          int vf, struct ifla_vf_info *ivf);
957  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
958  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
959  *                        struct nlattr *port[]);
960  *
961  *      Enable or disable the VF ability to query its RSS Redirection Table and
962  *      Hash Key. This is needed since on some devices VF share this information
963  *      with PF and querying it may introduce a theoretical security risk.
964  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
965  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
966  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
967  *      Called to setup 'tc' number of traffic classes in the net device. This
968  *      is always called from the stack with the rtnl lock held and netif tx
969  *      queues stopped. This allows the netdevice to perform queue management
970  *      safely.
971  *
972  *      Fiber Channel over Ethernet (FCoE) offload functions.
973  * int (*ndo_fcoe_enable)(struct net_device *dev);
974  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
975  *      so the underlying device can perform whatever needed configuration or
976  *      initialization to support acceleration of FCoE traffic.
977  *
978  * int (*ndo_fcoe_disable)(struct net_device *dev);
979  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
980  *      so the underlying device can perform whatever needed clean-ups to
981  *      stop supporting acceleration of FCoE traffic.
982  *
983  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
984  *                           struct scatterlist *sgl, unsigned int sgc);
985  *      Called when the FCoE Initiator wants to initialize an I/O that
986  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
987  *      perform necessary setup and returns 1 to indicate the device is set up
988  *      successfully to perform DDP on this I/O, otherwise this returns 0.
989  *
990  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
991  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
992  *      indicated by the FC exchange id 'xid', so the underlying device can
993  *      clean up and reuse resources for later DDP requests.
994  *
995  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
996  *                            struct scatterlist *sgl, unsigned int sgc);
997  *      Called when the FCoE Target wants to initialize an I/O that
998  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
999  *      perform necessary setup and returns 1 to indicate the device is set up
1000  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1001  *
1002  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1003  *                             struct netdev_fcoe_hbainfo *hbainfo);
1004  *      Called when the FCoE Protocol stack wants information on the underlying
1005  *      device. This information is utilized by the FCoE protocol stack to
1006  *      register attributes with Fiber Channel management service as per the
1007  *      FC-GS Fabric Device Management Information(FDMI) specification.
1008  *
1009  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1010  *      Called when the underlying device wants to override default World Wide
1011  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1012  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1013  *      protocol stack to use.
1014  *
1015  *      RFS acceleration.
1016  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1017  *                          u16 rxq_index, u32 flow_id);
1018  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1019  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1020  *      Return the filter ID on success, or a negative error code.
1021  *
1022  *      Slave management functions (for bridge, bonding, etc).
1023  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1024  *      Called to make another netdev an underling.
1025  *
1026  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1027  *      Called to release previously enslaved netdev.
1028  *
1029  *      Feature/offload setting functions.
1030  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1031  *      Called to update device configuration to new features. Passed
1032  *      feature set might be less than what was returned by ndo_fix_features()).
1033  *      Must return >0 or -errno if it changed dev->features itself.
1034  *
1035  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1036  *                    struct net_device *dev,
1037  *                    const unsigned char *addr, u16 vid, u16 flags)
1038  *      Adds an FDB entry to dev for addr.
1039  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1040  *                    struct net_device *dev,
1041  *                    const unsigned char *addr, u16 vid)
1042  *      Deletes the FDB entry from dev coresponding to addr.
1043  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1044  *                     struct net_device *dev, struct net_device *filter_dev,
1045  *                     int *idx)
1046  *      Used to add FDB entries to dump requests. Implementers should add
1047  *      entries to skb and update idx with the number of entries.
1048  *
1049  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1050  *                           u16 flags)
1051  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1052  *                           struct net_device *dev, u32 filter_mask,
1053  *                           int nlflags)
1054  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1055  *                           u16 flags);
1056  *
1057  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1058  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1059  *      which do not represent real hardware may define this to allow their
1060  *      userspace components to manage their virtual carrier state. Devices
1061  *      that determine carrier state from physical hardware properties (eg
1062  *      network cables) or protocol-dependent mechanisms (eg
1063  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1064  *
1065  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1066  *                             struct netdev_phys_item_id *ppid);
1067  *      Called to get ID of physical port of this device. If driver does
1068  *      not implement this, it is assumed that the hw is not able to have
1069  *      multiple net devices on single physical port.
1070  *
1071  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1072  *                            struct udp_tunnel_info *ti);
1073  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1074  *      address family that a UDP tunnel is listnening to. It is called only
1075  *      when a new port starts listening. The operation is protected by the
1076  *      RTNL.
1077  *
1078  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1079  *                            struct udp_tunnel_info *ti);
1080  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1081  *      address family that the UDP tunnel is not listening to anymore. The
1082  *      operation is protected by the RTNL.
1083  *
1084  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1085  *                               struct net_device *dev)
1086  *      Called by upper layer devices to accelerate switching or other
1087  *      station functionality into hardware. 'pdev is the lowerdev
1088  *      to use for the offload and 'dev' is the net device that will
1089  *      back the offload. Returns a pointer to the private structure
1090  *      the upper layer will maintain.
1091  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1092  *      Called by upper layer device to delete the station created
1093  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1094  *      the station and priv is the structure returned by the add
1095  *      operation.
1096  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1097  *                                    struct net_device *dev,
1098  *                                    void *priv);
1099  *      Callback to use for xmit over the accelerated station. This
1100  *      is used in place of ndo_start_xmit on accelerated net
1101  *      devices.
1102  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1103  *                                         struct net_device *dev
1104  *                                         netdev_features_t features);
1105  *      Called by core transmit path to determine if device is capable of
1106  *      performing offload operations on a given packet. This is to give
1107  *      the device an opportunity to implement any restrictions that cannot
1108  *      be otherwise expressed by feature flags. The check is called with
1109  *      the set of features that the stack has calculated and it returns
1110  *      those the driver believes to be appropriate.
1111  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1112  *                           int queue_index, u32 maxrate);
1113  *      Called when a user wants to set a max-rate limitation of specific
1114  *      TX queue.
1115  * int (*ndo_get_iflink)(const struct net_device *dev);
1116  *      Called to get the iflink value of this device.
1117  * void (*ndo_change_proto_down)(struct net_device *dev,
1118  *                               bool proto_down);
1119  *      This function is used to pass protocol port error state information
1120  *      to the switch driver. The switch driver can react to the proto_down
1121  *      by doing a phys down on the associated switch port.
1122  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1123  *      This function is used to get egress tunnel information for given skb.
1124  *      This is useful for retrieving outer tunnel header parameters while
1125  *      sampling packet.
1126  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1127  *      This function is used to specify the headroom that the skb must
1128  *      consider when allocation skb during packet reception. Setting
1129  *      appropriate rx headroom value allows avoiding skb head copy on
1130  *      forward. Setting a negative value resets the rx headroom to the
1131  *      default value.
1132  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1133  *      This function is used to set or query state related to XDP on the
1134  *      netdevice. See definition of enum xdp_netdev_command for details.
1135  *
1136  */
1137 struct net_device_ops {
1138         int                     (*ndo_init)(struct net_device *dev);
1139         void                    (*ndo_uninit)(struct net_device *dev);
1140         int                     (*ndo_open)(struct net_device *dev);
1141         int                     (*ndo_stop)(struct net_device *dev);
1142         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1143                                                   struct net_device *dev);
1144         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1145                                                       struct net_device *dev,
1146                                                       netdev_features_t features);
1147         u16                     (*ndo_select_queue)(struct net_device *dev,
1148                                                     struct sk_buff *skb,
1149                                                     void *accel_priv,
1150                                                     select_queue_fallback_t fallback);
1151         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1152                                                        int flags);
1153         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1154         int                     (*ndo_set_mac_address)(struct net_device *dev,
1155                                                        void *addr);
1156         int                     (*ndo_validate_addr)(struct net_device *dev);
1157         int                     (*ndo_do_ioctl)(struct net_device *dev,
1158                                                 struct ifreq *ifr, int cmd);
1159         int                     (*ndo_set_config)(struct net_device *dev,
1160                                                   struct ifmap *map);
1161         int                     (*ndo_change_mtu)(struct net_device *dev,
1162                                                   int new_mtu);
1163         int                     (*ndo_neigh_setup)(struct net_device *dev,
1164                                                    struct neigh_parms *);
1165         void                    (*ndo_tx_timeout) (struct net_device *dev);
1166 
1167         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1168                                                      struct rtnl_link_stats64 *storage);
1169         bool                    (*ndo_has_offload_stats)(int attr_id);
1170         int                     (*ndo_get_offload_stats)(int attr_id,
1171                                                          const struct net_device *dev,
1172                                                          void *attr_data);
1173         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1174 
1175         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1176                                                        __be16 proto, u16 vid);
1177         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1178                                                         __be16 proto, u16 vid);
1179 #ifdef CONFIG_NET_POLL_CONTROLLER
1180         void                    (*ndo_poll_controller)(struct net_device *dev);
1181         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1182                                                      struct netpoll_info *info);
1183         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1184 #endif
1185 #ifdef CONFIG_NET_RX_BUSY_POLL
1186         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1187 #endif
1188         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1189                                                   int queue, u8 *mac);
1190         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1191                                                    int queue, u16 vlan,
1192                                                    u8 qos, __be16 proto);
1193         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1194                                                    int vf, int min_tx_rate,
1195                                                    int max_tx_rate);
1196         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1197                                                        int vf, bool setting);
1198         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1199                                                     int vf, bool setting);
1200         int                     (*ndo_get_vf_config)(struct net_device *dev,
1201                                                      int vf,
1202                                                      struct ifla_vf_info *ivf);
1203         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1204                                                          int vf, int link_state);
1205         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1206                                                     int vf,
1207                                                     struct ifla_vf_stats
1208                                                     *vf_stats);
1209         int                     (*ndo_set_vf_port)(struct net_device *dev,
1210                                                    int vf,
1211                                                    struct nlattr *port[]);
1212         int                     (*ndo_get_vf_port)(struct net_device *dev,
1213                                                    int vf, struct sk_buff *skb);
1214         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1215                                                    int vf, u64 guid,
1216                                                    int guid_type);
1217         int                     (*ndo_set_vf_rss_query_en)(
1218                                                    struct net_device *dev,
1219                                                    int vf, bool setting);
1220         int                     (*ndo_setup_tc)(struct net_device *dev,
1221                                                 u32 handle,
1222                                                 __be16 protocol,
1223                                                 struct tc_to_netdev *tc);
1224 #if IS_ENABLED(CONFIG_FCOE)
1225         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1226         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1227         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1228                                                       u16 xid,
1229                                                       struct scatterlist *sgl,
1230                                                       unsigned int sgc);
1231         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1232                                                      u16 xid);
1233         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1234                                                        u16 xid,
1235                                                        struct scatterlist *sgl,
1236                                                        unsigned int sgc);
1237         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1238                                                         struct netdev_fcoe_hbainfo *hbainfo);
1239 #endif
1240 
1241 #if IS_ENABLED(CONFIG_LIBFCOE)
1242 #define NETDEV_FCOE_WWNN 0
1243 #define NETDEV_FCOE_WWPN 1
1244         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1245                                                     u64 *wwn, int type);
1246 #endif
1247 
1248 #ifdef CONFIG_RFS_ACCEL
1249         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1250                                                      const struct sk_buff *skb,
1251                                                      u16 rxq_index,
1252                                                      u32 flow_id);
1253 #endif
1254         int                     (*ndo_add_slave)(struct net_device *dev,
1255                                                  struct net_device *slave_dev);
1256         int                     (*ndo_del_slave)(struct net_device *dev,
1257                                                  struct net_device *slave_dev);
1258         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1259                                                     netdev_features_t features);
1260         int                     (*ndo_set_features)(struct net_device *dev,
1261                                                     netdev_features_t features);
1262         int                     (*ndo_neigh_construct)(struct net_device *dev,
1263                                                        struct neighbour *n);
1264         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1265                                                      struct neighbour *n);
1266 
1267         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1268                                                struct nlattr *tb[],
1269                                                struct net_device *dev,
1270                                                const unsigned char *addr,
1271                                                u16 vid,
1272                                                u16 flags);
1273         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1274                                                struct nlattr *tb[],
1275                                                struct net_device *dev,
1276                                                const unsigned char *addr,
1277                                                u16 vid);
1278         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1279                                                 struct netlink_callback *cb,
1280                                                 struct net_device *dev,
1281                                                 struct net_device *filter_dev,
1282                                                 int *idx);
1283 
1284         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1285                                                       struct nlmsghdr *nlh,
1286                                                       u16 flags);
1287         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1288                                                       u32 pid, u32 seq,
1289                                                       struct net_device *dev,
1290                                                       u32 filter_mask,
1291                                                       int nlflags);
1292         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1293                                                       struct nlmsghdr *nlh,
1294                                                       u16 flags);
1295         int                     (*ndo_change_carrier)(struct net_device *dev,
1296                                                       bool new_carrier);
1297         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1298                                                         struct netdev_phys_item_id *ppid);
1299         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1300                                                           char *name, size_t len);
1301         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1302                                                       struct udp_tunnel_info *ti);
1303         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1304                                                       struct udp_tunnel_info *ti);
1305         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1306                                                         struct net_device *dev);
1307         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1308                                                         void *priv);
1309 
1310         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1311                                                         struct net_device *dev,
1312                                                         void *priv);
1313         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1314         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1315                                                       int queue_index,
1316                                                       u32 maxrate);
1317         int                     (*ndo_get_iflink)(const struct net_device *dev);
1318         int                     (*ndo_change_proto_down)(struct net_device *dev,
1319                                                          bool proto_down);
1320         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1321                                                        struct sk_buff *skb);
1322         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1323                                                        int needed_headroom);
1324         int                     (*ndo_xdp)(struct net_device *dev,
1325                                            struct netdev_xdp *xdp);
1326 };
1327 
1328 /**
1329  * enum net_device_priv_flags - &struct net_device priv_flags
1330  *
1331  * These are the &struct net_device, they are only set internally
1332  * by drivers and used in the kernel. These flags are invisible to
1333  * userspace; this means that the order of these flags can change
1334  * during any kernel release.
1335  *
1336  * You should have a pretty good reason to be extending these flags.
1337  *
1338  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1339  * @IFF_EBRIDGE: Ethernet bridging device
1340  * @IFF_BONDING: bonding master or slave
1341  * @IFF_ISATAP: ISATAP interface (RFC4214)
1342  * @IFF_WAN_HDLC: WAN HDLC device
1343  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1344  *      release skb->dst
1345  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1346  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1347  * @IFF_MACVLAN_PORT: device used as macvlan port
1348  * @IFF_BRIDGE_PORT: device used as bridge port
1349  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1350  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1351  * @IFF_UNICAST_FLT: Supports unicast filtering
1352  * @IFF_TEAM_PORT: device used as team port
1353  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1354  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1355  *      change when it's running
1356  * @IFF_MACVLAN: Macvlan device
1357  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1358  *      underlying stacked devices
1359  * @IFF_IPVLAN_MASTER: IPvlan master device
1360  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1361  * @IFF_L3MDEV_MASTER: device is an L3 master device
1362  * @IFF_NO_QUEUE: device can run without qdisc attached
1363  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1364  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1365  * @IFF_TEAM: device is a team device
1366  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1367  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1368  *      entity (i.e. the master device for bridged veth)
1369  * @IFF_MACSEC: device is a MACsec device
1370  */
1371 enum netdev_priv_flags {
1372         IFF_802_1Q_VLAN                 = 1<<0,
1373         IFF_EBRIDGE                     = 1<<1,
1374         IFF_BONDING                     = 1<<2,
1375         IFF_ISATAP                      = 1<<3,
1376         IFF_WAN_HDLC                    = 1<<4,
1377         IFF_XMIT_DST_RELEASE            = 1<<5,
1378         IFF_DONT_BRIDGE                 = 1<<6,
1379         IFF_DISABLE_NETPOLL             = 1<<7,
1380         IFF_MACVLAN_PORT                = 1<<8,
1381         IFF_BRIDGE_PORT                 = 1<<9,
1382         IFF_OVS_DATAPATH                = 1<<10,
1383         IFF_TX_SKB_SHARING              = 1<<11,
1384         IFF_UNICAST_FLT                 = 1<<12,
1385         IFF_TEAM_PORT                   = 1<<13,
1386         IFF_SUPP_NOFCS                  = 1<<14,
1387         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1388         IFF_MACVLAN                     = 1<<16,
1389         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1390         IFF_IPVLAN_MASTER               = 1<<18,
1391         IFF_IPVLAN_SLAVE                = 1<<19,
1392         IFF_L3MDEV_MASTER               = 1<<20,
1393         IFF_NO_QUEUE                    = 1<<21,
1394         IFF_OPENVSWITCH                 = 1<<22,
1395         IFF_L3MDEV_SLAVE                = 1<<23,
1396         IFF_TEAM                        = 1<<24,
1397         IFF_RXFH_CONFIGURED             = 1<<25,
1398         IFF_PHONY_HEADROOM              = 1<<26,
1399         IFF_MACSEC                      = 1<<27,
1400 };
1401 
1402 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1403 #define IFF_EBRIDGE                     IFF_EBRIDGE
1404 #define IFF_BONDING                     IFF_BONDING
1405 #define IFF_ISATAP                      IFF_ISATAP
1406 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1407 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1408 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1409 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1410 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1411 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1412 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1413 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1414 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1415 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1416 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1417 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1418 #define IFF_MACVLAN                     IFF_MACVLAN
1419 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1420 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1421 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1422 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1423 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1424 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1425 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1426 #define IFF_TEAM                        IFF_TEAM
1427 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1428 #define IFF_MACSEC                      IFF_MACSEC
1429 
1430 /**
1431  *      struct net_device - The DEVICE structure.
1432  *              Actually, this whole structure is a big mistake.  It mixes I/O
1433  *              data with strictly "high-level" data, and it has to know about
1434  *              almost every data structure used in the INET module.
1435  *
1436  *      @name:  This is the first field of the "visible" part of this structure
1437  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1438  *              of the interface.
1439  *
1440  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1441  *      @ifalias:       SNMP alias
1442  *      @mem_end:       Shared memory end
1443  *      @mem_start:     Shared memory start
1444  *      @base_addr:     Device I/O address
1445  *      @irq:           Device IRQ number
1446  *
1447  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1448  *
1449  *      @state:         Generic network queuing layer state, see netdev_state_t
1450  *      @dev_list:      The global list of network devices
1451  *      @napi_list:     List entry used for polling NAPI devices
1452  *      @unreg_list:    List entry  when we are unregistering the
1453  *                      device; see the function unregister_netdev
1454  *      @close_list:    List entry used when we are closing the device
1455  *      @ptype_all:     Device-specific packet handlers for all protocols
1456  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1457  *
1458  *      @adj_list:      Directly linked devices, like slaves for bonding
1459  *      @all_adj_list:  All linked devices, *including* neighbours
1460  *      @features:      Currently active device features
1461  *      @hw_features:   User-changeable features
1462  *
1463  *      @wanted_features:       User-requested features
1464  *      @vlan_features:         Mask of features inheritable by VLAN devices
1465  *
1466  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1467  *                              This field indicates what encapsulation
1468  *                              offloads the hardware is capable of doing,
1469  *                              and drivers will need to set them appropriately.
1470  *
1471  *      @mpls_features: Mask of features inheritable by MPLS
1472  *
1473  *      @ifindex:       interface index
1474  *      @group:         The group the device belongs to
1475  *
1476  *      @stats:         Statistics struct, which was left as a legacy, use
1477  *                      rtnl_link_stats64 instead
1478  *
1479  *      @rx_dropped:    Dropped packets by core network,
1480  *                      do not use this in drivers
1481  *      @tx_dropped:    Dropped packets by core network,
1482  *                      do not use this in drivers
1483  *      @rx_nohandler:  nohandler dropped packets by core network on
1484  *                      inactive devices, do not use this in drivers
1485  *
1486  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1487  *                              instead of ioctl,
1488  *                              see <net/iw_handler.h> for details.
1489  *      @wireless_data: Instance data managed by the core of wireless extensions
1490  *
1491  *      @netdev_ops:    Includes several pointers to callbacks,
1492  *                      if one wants to override the ndo_*() functions
1493  *      @ethtool_ops:   Management operations
1494  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1495  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1496  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1497  *                      of Layer 2 headers.
1498  *
1499  *      @flags:         Interface flags (a la BSD)
1500  *      @priv_flags:    Like 'flags' but invisible to userspace,
1501  *                      see if.h for the definitions
1502  *      @gflags:        Global flags ( kept as legacy )
1503  *      @padded:        How much padding added by alloc_netdev()
1504  *      @operstate:     RFC2863 operstate
1505  *      @link_mode:     Mapping policy to operstate
1506  *      @if_port:       Selectable AUI, TP, ...
1507  *      @dma:           DMA channel
1508  *      @mtu:           Interface MTU value
1509  *      @type:          Interface hardware type
1510  *      @hard_header_len: Maximum hardware header length.
1511  *
1512  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1513  *                        cases can this be guaranteed
1514  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1515  *                        cases can this be guaranteed. Some cases also use
1516  *                        LL_MAX_HEADER instead to allocate the skb
1517  *
1518  *      interface address info:
1519  *
1520  *      @perm_addr:             Permanent hw address
1521  *      @addr_assign_type:      Hw address assignment type
1522  *      @addr_len:              Hardware address length
1523  *      @neigh_priv_len:        Used in neigh_alloc()
1524  *      @dev_id:                Used to differentiate devices that share
1525  *                              the same link layer address
1526  *      @dev_port:              Used to differentiate devices that share
1527  *                              the same function
1528  *      @addr_list_lock:        XXX: need comments on this one
1529  *      @uc_promisc:            Counter that indicates promiscuous mode
1530  *                              has been enabled due to the need to listen to
1531  *                              additional unicast addresses in a device that
1532  *                              does not implement ndo_set_rx_mode()
1533  *      @uc:                    unicast mac addresses
1534  *      @mc:                    multicast mac addresses
1535  *      @dev_addrs:             list of device hw addresses
1536  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1537  *      @promiscuity:           Number of times the NIC is told to work in
1538  *                              promiscuous mode; if it becomes 0 the NIC will
1539  *                              exit promiscuous mode
1540  *      @allmulti:              Counter, enables or disables allmulticast mode
1541  *
1542  *      @vlan_info:     VLAN info
1543  *      @dsa_ptr:       dsa specific data
1544  *      @tipc_ptr:      TIPC specific data
1545  *      @atalk_ptr:     AppleTalk link
1546  *      @ip_ptr:        IPv4 specific data
1547  *      @dn_ptr:        DECnet specific data
1548  *      @ip6_ptr:       IPv6 specific data
1549  *      @ax25_ptr:      AX.25 specific data
1550  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1551  *
1552  *      @last_rx:       Time of last Rx
1553  *      @dev_addr:      Hw address (before bcast,
1554  *                      because most packets are unicast)
1555  *
1556  *      @_rx:                   Array of RX queues
1557  *      @num_rx_queues:         Number of RX queues
1558  *                              allocated at register_netdev() time
1559  *      @real_num_rx_queues:    Number of RX queues currently active in device
1560  *
1561  *      @rx_handler:            handler for received packets
1562  *      @rx_handler_data:       XXX: need comments on this one
1563  *      @ingress_queue:         XXX: need comments on this one
1564  *      @broadcast:             hw bcast address
1565  *
1566  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1567  *                      indexed by RX queue number. Assigned by driver.
1568  *                      This must only be set if the ndo_rx_flow_steer
1569  *                      operation is defined
1570  *      @index_hlist:           Device index hash chain
1571  *
1572  *      @_tx:                   Array of TX queues
1573  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1574  *      @real_num_tx_queues:    Number of TX queues currently active in device
1575  *      @qdisc:                 Root qdisc from userspace point of view
1576  *      @tx_queue_len:          Max frames per queue allowed
1577  *      @tx_global_lock:        XXX: need comments on this one
1578  *
1579  *      @xps_maps:      XXX: need comments on this one
1580  *
1581  *      @watchdog_timeo:        Represents the timeout that is used by
1582  *                              the watchdog (see dev_watchdog())
1583  *      @watchdog_timer:        List of timers
1584  *
1585  *      @pcpu_refcnt:           Number of references to this device
1586  *      @todo_list:             Delayed register/unregister
1587  *      @link_watch_list:       XXX: need comments on this one
1588  *
1589  *      @reg_state:             Register/unregister state machine
1590  *      @dismantle:             Device is going to be freed
1591  *      @rtnl_link_state:       This enum represents the phases of creating
1592  *                              a new link
1593  *
1594  *      @destructor:            Called from unregister,
1595  *                              can be used to call free_netdev
1596  *      @npinfo:                XXX: need comments on this one
1597  *      @nd_net:                Network namespace this network device is inside
1598  *
1599  *      @ml_priv:       Mid-layer private
1600  *      @lstats:        Loopback statistics
1601  *      @tstats:        Tunnel statistics
1602  *      @dstats:        Dummy statistics
1603  *      @vstats:        Virtual ethernet statistics
1604  *
1605  *      @garp_port:     GARP
1606  *      @mrp_port:      MRP
1607  *
1608  *      @dev:           Class/net/name entry
1609  *      @sysfs_groups:  Space for optional device, statistics and wireless
1610  *                      sysfs groups
1611  *
1612  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1613  *      @rtnl_link_ops: Rtnl_link_ops
1614  *
1615  *      @gso_max_size:  Maximum size of generic segmentation offload
1616  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1617  *                      NIC for GSO
1618  *
1619  *      @dcbnl_ops:     Data Center Bridging netlink ops
1620  *      @num_tc:        Number of traffic classes in the net device
1621  *      @tc_to_txq:     XXX: need comments on this one
1622  *      @prio_tc_map:   XXX: need comments on this one
1623  *
1624  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1625  *
1626  *      @priomap:       XXX: need comments on this one
1627  *      @phydev:        Physical device may attach itself
1628  *                      for hardware timestamping
1629  *
1630  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1631  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1632  *
1633  *      @proto_down:    protocol port state information can be sent to the
1634  *                      switch driver and used to set the phys state of the
1635  *                      switch port.
1636  *
1637  *      FIXME: cleanup struct net_device such that network protocol info
1638  *      moves out.
1639  */
1640 
1641 struct net_device {
1642         char                    name[IFNAMSIZ];
1643         struct hlist_node       name_hlist;
1644         char                    *ifalias;
1645         /*
1646          *      I/O specific fields
1647          *      FIXME: Merge these and struct ifmap into one
1648          */
1649         unsigned long           mem_end;
1650         unsigned long           mem_start;
1651         unsigned long           base_addr;
1652         int                     irq;
1653 
1654         atomic_t                carrier_changes;
1655 
1656         /*
1657          *      Some hardware also needs these fields (state,dev_list,
1658          *      napi_list,unreg_list,close_list) but they are not
1659          *      part of the usual set specified in Space.c.
1660          */
1661 
1662         unsigned long           state;
1663 
1664         struct list_head        dev_list;
1665         struct list_head        napi_list;
1666         struct list_head        unreg_list;
1667         struct list_head        close_list;
1668         struct list_head        ptype_all;
1669         struct list_head        ptype_specific;
1670 
1671         struct {
1672                 struct list_head upper;
1673                 struct list_head lower;
1674         } adj_list;
1675 
1676         struct {
1677                 struct list_head upper;
1678                 struct list_head lower;
1679         } all_adj_list;
1680 
1681         netdev_features_t       features;
1682         netdev_features_t       hw_features;
1683         netdev_features_t       wanted_features;
1684         netdev_features_t       vlan_features;
1685         netdev_features_t       hw_enc_features;
1686         netdev_features_t       mpls_features;
1687         netdev_features_t       gso_partial_features;
1688 
1689         int                     ifindex;
1690         int                     group;
1691 
1692         struct net_device_stats stats;
1693 
1694         atomic_long_t           rx_dropped;
1695         atomic_long_t           tx_dropped;
1696         atomic_long_t           rx_nohandler;
1697 
1698 #ifdef CONFIG_WIRELESS_EXT
1699         const struct iw_handler_def *wireless_handlers;
1700         struct iw_public_data   *wireless_data;
1701 #endif
1702         const struct net_device_ops *netdev_ops;
1703         const struct ethtool_ops *ethtool_ops;
1704 #ifdef CONFIG_NET_SWITCHDEV
1705         const struct switchdev_ops *switchdev_ops;
1706 #endif
1707 #ifdef CONFIG_NET_L3_MASTER_DEV
1708         const struct l3mdev_ops *l3mdev_ops;
1709 #endif
1710 #if IS_ENABLED(CONFIG_IPV6)
1711         const struct ndisc_ops *ndisc_ops;
1712 #endif
1713 
1714         const struct header_ops *header_ops;
1715 
1716         unsigned int            flags;
1717         unsigned int            priv_flags;
1718 
1719         unsigned short          gflags;
1720         unsigned short          padded;
1721 
1722         unsigned char           operstate;
1723         unsigned char           link_mode;
1724 
1725         unsigned char           if_port;
1726         unsigned char           dma;
1727 
1728         unsigned int            mtu;
1729         unsigned short          type;
1730         unsigned short          hard_header_len;
1731 
1732         unsigned short          needed_headroom;
1733         unsigned short          needed_tailroom;
1734 
1735         /* Interface address info. */
1736         unsigned char           perm_addr[MAX_ADDR_LEN];
1737         unsigned char           addr_assign_type;
1738         unsigned char           addr_len;
1739         unsigned short          neigh_priv_len;
1740         unsigned short          dev_id;
1741         unsigned short          dev_port;
1742         spinlock_t              addr_list_lock;
1743         unsigned char           name_assign_type;
1744         bool                    uc_promisc;
1745         struct netdev_hw_addr_list      uc;
1746         struct netdev_hw_addr_list      mc;
1747         struct netdev_hw_addr_list      dev_addrs;
1748 
1749 #ifdef CONFIG_SYSFS
1750         struct kset             *queues_kset;
1751 #endif
1752         unsigned int            promiscuity;
1753         unsigned int            allmulti;
1754 
1755 
1756         /* Protocol-specific pointers */
1757 
1758 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1759         struct vlan_info __rcu  *vlan_info;
1760 #endif
1761 #if IS_ENABLED(CONFIG_NET_DSA)
1762         struct dsa_switch_tree  *dsa_ptr;
1763 #endif
1764 #if IS_ENABLED(CONFIG_TIPC)
1765         struct tipc_bearer __rcu *tipc_ptr;
1766 #endif
1767         void                    *atalk_ptr;
1768         struct in_device __rcu  *ip_ptr;
1769         struct dn_dev __rcu     *dn_ptr;
1770         struct inet6_dev __rcu  *ip6_ptr;
1771         void                    *ax25_ptr;
1772         struct wireless_dev     *ieee80211_ptr;
1773         struct wpan_dev         *ieee802154_ptr;
1774 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1775         struct mpls_dev __rcu   *mpls_ptr;
1776 #endif
1777 
1778 /*
1779  * Cache lines mostly used on receive path (including eth_type_trans())
1780  */
1781         unsigned long           last_rx;
1782 
1783         /* Interface address info used in eth_type_trans() */
1784         unsigned char           *dev_addr;
1785 
1786 #ifdef CONFIG_SYSFS
1787         struct netdev_rx_queue  *_rx;
1788 
1789         unsigned int            num_rx_queues;
1790         unsigned int            real_num_rx_queues;
1791 #endif
1792 
1793         unsigned long           gro_flush_timeout;
1794         rx_handler_func_t __rcu *rx_handler;
1795         void __rcu              *rx_handler_data;
1796 
1797 #ifdef CONFIG_NET_CLS_ACT
1798         struct tcf_proto __rcu  *ingress_cl_list;
1799 #endif
1800         struct netdev_queue __rcu *ingress_queue;
1801 #ifdef CONFIG_NETFILTER_INGRESS
1802         struct nf_hook_entry __rcu *nf_hooks_ingress;
1803 #endif
1804 
1805         unsigned char           broadcast[MAX_ADDR_LEN];
1806 #ifdef CONFIG_RFS_ACCEL
1807         struct cpu_rmap         *rx_cpu_rmap;
1808 #endif
1809         struct hlist_node       index_hlist;
1810 
1811 /*
1812  * Cache lines mostly used on transmit path
1813  */
1814         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1815         unsigned int            num_tx_queues;
1816         unsigned int            real_num_tx_queues;
1817         struct Qdisc            *qdisc;
1818 #ifdef CONFIG_NET_SCHED
1819         DECLARE_HASHTABLE       (qdisc_hash, 4);
1820 #endif
1821         unsigned long           tx_queue_len;
1822         spinlock_t              tx_global_lock;
1823         int                     watchdog_timeo;
1824 
1825 #ifdef CONFIG_XPS
1826         struct xps_dev_maps __rcu *xps_maps;
1827 #endif
1828 #ifdef CONFIG_NET_CLS_ACT
1829         struct tcf_proto __rcu  *egress_cl_list;
1830 #endif
1831 
1832         /* These may be needed for future network-power-down code. */
1833         struct timer_list       watchdog_timer;
1834 
1835         int __percpu            *pcpu_refcnt;
1836         struct list_head        todo_list;
1837 
1838         struct list_head        link_watch_list;
1839 
1840         enum { NETREG_UNINITIALIZED=0,
1841                NETREG_REGISTERED,       /* completed register_netdevice */
1842                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1843                NETREG_UNREGISTERED,     /* completed unregister todo */
1844                NETREG_RELEASED,         /* called free_netdev */
1845                NETREG_DUMMY,            /* dummy device for NAPI poll */
1846         } reg_state:8;
1847 
1848         bool dismantle;
1849 
1850         enum {
1851                 RTNL_LINK_INITIALIZED,
1852                 RTNL_LINK_INITIALIZING,
1853         } rtnl_link_state:16;
1854 
1855         void (*destructor)(struct net_device *dev);
1856 
1857 #ifdef CONFIG_NETPOLL
1858         struct netpoll_info __rcu       *npinfo;
1859 #endif
1860 
1861         possible_net_t                  nd_net;
1862 
1863         /* mid-layer private */
1864         union {
1865                 void                                    *ml_priv;
1866                 struct pcpu_lstats __percpu             *lstats;
1867                 struct pcpu_sw_netstats __percpu        *tstats;
1868                 struct pcpu_dstats __percpu             *dstats;
1869                 struct pcpu_vstats __percpu             *vstats;
1870         };
1871 
1872         struct garp_port __rcu  *garp_port;
1873         struct mrp_port __rcu   *mrp_port;
1874 
1875         struct device           dev;
1876         const struct attribute_group *sysfs_groups[4];
1877         const struct attribute_group *sysfs_rx_queue_group;
1878 
1879         const struct rtnl_link_ops *rtnl_link_ops;
1880 
1881         /* for setting kernel sock attribute on TCP connection setup */
1882 #define GSO_MAX_SIZE            65536
1883         unsigned int            gso_max_size;
1884 #define GSO_MAX_SEGS            65535
1885         u16                     gso_max_segs;
1886 
1887 #ifdef CONFIG_DCB
1888         const struct dcbnl_rtnl_ops *dcbnl_ops;
1889 #endif
1890         u8                      num_tc;
1891         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1892         u8                      prio_tc_map[TC_BITMASK + 1];
1893 
1894 #if IS_ENABLED(CONFIG_FCOE)
1895         unsigned int            fcoe_ddp_xid;
1896 #endif
1897 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1898         struct netprio_map __rcu *priomap;
1899 #endif
1900         struct phy_device       *phydev;
1901         struct lock_class_key   *qdisc_tx_busylock;
1902         struct lock_class_key   *qdisc_running_key;
1903         bool                    proto_down;
1904 };
1905 #define to_net_dev(d) container_of(d, struct net_device, dev)
1906 
1907 #define NETDEV_ALIGN            32
1908 
1909 static inline
1910 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1911 {
1912         return dev->prio_tc_map[prio & TC_BITMASK];
1913 }
1914 
1915 static inline
1916 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1917 {
1918         if (tc >= dev->num_tc)
1919                 return -EINVAL;
1920 
1921         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1922         return 0;
1923 }
1924 
1925 static inline
1926 void netdev_reset_tc(struct net_device *dev)
1927 {
1928         dev->num_tc = 0;
1929         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1930         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1931 }
1932 
1933 static inline
1934 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1935 {
1936         if (tc >= dev->num_tc)
1937                 return -EINVAL;
1938 
1939         dev->tc_to_txq[tc].count = count;
1940         dev->tc_to_txq[tc].offset = offset;
1941         return 0;
1942 }
1943 
1944 static inline
1945 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1946 {
1947         if (num_tc > TC_MAX_QUEUE)
1948                 return -EINVAL;
1949 
1950         dev->num_tc = num_tc;
1951         return 0;
1952 }
1953 
1954 static inline
1955 int netdev_get_num_tc(struct net_device *dev)
1956 {
1957         return dev->num_tc;
1958 }
1959 
1960 static inline
1961 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1962                                          unsigned int index)
1963 {
1964         return &dev->_tx[index];
1965 }
1966 
1967 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1968                                                     const struct sk_buff *skb)
1969 {
1970         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1971 }
1972 
1973 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1974                                             void (*f)(struct net_device *,
1975                                                       struct netdev_queue *,
1976                                                       void *),
1977                                             void *arg)
1978 {
1979         unsigned int i;
1980 
1981         for (i = 0; i < dev->num_tx_queues; i++)
1982                 f(dev, &dev->_tx[i], arg);
1983 }
1984 
1985 #define netdev_lockdep_set_classes(dev)                         \
1986 {                                                               \
1987         static struct lock_class_key qdisc_tx_busylock_key;     \
1988         static struct lock_class_key qdisc_running_key;         \
1989         static struct lock_class_key qdisc_xmit_lock_key;       \
1990         static struct lock_class_key dev_addr_list_lock_key;    \
1991         unsigned int i;                                         \
1992                                                                 \
1993         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1994         (dev)->qdisc_running_key = &qdisc_running_key;          \
1995         lockdep_set_class(&(dev)->addr_list_lock,               \
1996                           &dev_addr_list_lock_key);             \
1997         for (i = 0; i < (dev)->num_tx_queues; i++)              \
1998                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1999                                   &qdisc_xmit_lock_key);        \
2000 }
2001 
2002 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2003                                     struct sk_buff *skb,
2004                                     void *accel_priv);
2005 
2006 /* returns the headroom that the master device needs to take in account
2007  * when forwarding to this dev
2008  */
2009 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2010 {
2011         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2012 }
2013 
2014 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2015 {
2016         if (dev->netdev_ops->ndo_set_rx_headroom)
2017                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2018 }
2019 
2020 /* set the device rx headroom to the dev's default */
2021 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2022 {
2023         netdev_set_rx_headroom(dev, -1);
2024 }
2025 
2026 /*
2027  * Net namespace inlines
2028  */
2029 static inline
2030 struct net *dev_net(const struct net_device *dev)
2031 {
2032         return read_pnet(&dev->nd_net);
2033 }
2034 
2035 static inline
2036 void dev_net_set(struct net_device *dev, struct net *net)
2037 {
2038         write_pnet(&dev->nd_net, net);
2039 }
2040 
2041 static inline bool netdev_uses_dsa(struct net_device *dev)
2042 {
2043 #if IS_ENABLED(CONFIG_NET_DSA)
2044         if (dev->dsa_ptr != NULL)
2045                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
2046 #endif
2047         return false;
2048 }
2049 
2050 /**
2051  *      netdev_priv - access network device private data
2052  *      @dev: network device
2053  *
2054  * Get network device private data
2055  */
2056 static inline void *netdev_priv(const struct net_device *dev)
2057 {
2058         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2059 }
2060 
2061 /* Set the sysfs physical device reference for the network logical device
2062  * if set prior to registration will cause a symlink during initialization.
2063  */
2064 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2065 
2066 /* Set the sysfs device type for the network logical device to allow
2067  * fine-grained identification of different network device types. For
2068  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2069  */
2070 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2071 
2072 /* Default NAPI poll() weight
2073  * Device drivers are strongly advised to not use bigger value
2074  */
2075 #define NAPI_POLL_WEIGHT 64
2076 
2077 /**
2078  *      netif_napi_add - initialize a NAPI context
2079  *      @dev:  network device
2080  *      @napi: NAPI context
2081  *      @poll: polling function
2082  *      @weight: default weight
2083  *
2084  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2085  * *any* of the other NAPI-related functions.
2086  */
2087 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2088                     int (*poll)(struct napi_struct *, int), int weight);
2089 
2090 /**
2091  *      netif_tx_napi_add - initialize a NAPI context
2092  *      @dev:  network device
2093  *      @napi: NAPI context
2094  *      @poll: polling function
2095  *      @weight: default weight
2096  *
2097  * This variant of netif_napi_add() should be used from drivers using NAPI
2098  * to exclusively poll a TX queue.
2099  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2100  */
2101 static inline void netif_tx_napi_add(struct net_device *dev,
2102                                      struct napi_struct *napi,
2103                                      int (*poll)(struct napi_struct *, int),
2104                                      int weight)
2105 {
2106         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2107         netif_napi_add(dev, napi, poll, weight);
2108 }
2109 
2110 /**
2111  *  netif_napi_del - remove a NAPI context
2112  *  @napi: NAPI context
2113  *
2114  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2115  */
2116 void netif_napi_del(struct napi_struct *napi);
2117 
2118 struct napi_gro_cb {
2119         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2120         void    *frag0;
2121 
2122         /* Length of frag0. */
2123         unsigned int frag0_len;
2124 
2125         /* This indicates where we are processing relative to skb->data. */
2126         int     data_offset;
2127 
2128         /* This is non-zero if the packet cannot be merged with the new skb. */
2129         u16     flush;
2130 
2131         /* Save the IP ID here and check when we get to the transport layer */
2132         u16     flush_id;
2133 
2134         /* Number of segments aggregated. */
2135         u16     count;
2136 
2137         /* Start offset for remote checksum offload */
2138         u16     gro_remcsum_start;
2139 
2140         /* jiffies when first packet was created/queued */
2141         unsigned long age;
2142 
2143         /* Used in ipv6_gro_receive() and foo-over-udp */
2144         u16     proto;
2145 
2146         /* This is non-zero if the packet may be of the same flow. */
2147         u8      same_flow:1;
2148 
2149         /* Used in tunnel GRO receive */
2150         u8      encap_mark:1;
2151 
2152         /* GRO checksum is valid */
2153         u8      csum_valid:1;
2154 
2155         /* Number of checksums via CHECKSUM_UNNECESSARY */
2156         u8      csum_cnt:3;
2157 
2158         /* Free the skb? */
2159         u8      free:2;
2160 #define NAPI_GRO_FREE             1
2161 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2162 
2163         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2164         u8      is_ipv6:1;
2165 
2166         /* Used in GRE, set in fou/gue_gro_receive */
2167         u8      is_fou:1;
2168 
2169         /* Used to determine if flush_id can be ignored */
2170         u8      is_atomic:1;
2171 
2172         /* Number of gro_receive callbacks this packet already went through */
2173         u8 recursion_counter:4;
2174 
2175         /* 1 bit hole */
2176 
2177         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2178         __wsum  csum;
2179 
2180         /* used in skb_gro_receive() slow path */
2181         struct sk_buff *last;
2182 };
2183 
2184 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2185 
2186 #define GRO_RECURSION_LIMIT 15
2187 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2188 {
2189         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2190 }
2191 
2192 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2193 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2194                                                 struct sk_buff **head,
2195                                                 struct sk_buff *skb)
2196 {
2197         if (unlikely(gro_recursion_inc_test(skb))) {
2198                 NAPI_GRO_CB(skb)->flush |= 1;
2199                 return NULL;
2200         }
2201 
2202         return cb(head, skb);
2203 }
2204 
2205 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2206                                              struct sk_buff *);
2207 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2208                                                    struct sock *sk,
2209                                                    struct sk_buff **head,
2210                                                    struct sk_buff *skb)
2211 {
2212         if (unlikely(gro_recursion_inc_test(skb))) {
2213                 NAPI_GRO_CB(skb)->flush |= 1;
2214                 return NULL;
2215         }
2216 
2217         return cb(sk, head, skb);
2218 }
2219 
2220 struct packet_type {
2221         __be16                  type;   /* This is really htons(ether_type). */
2222         struct net_device       *dev;   /* NULL is wildcarded here           */
2223         int                     (*func) (struct sk_buff *,
2224                                          struct net_device *,
2225                                          struct packet_type *,
2226                                          struct net_device *);
2227         bool                    (*id_match)(struct packet_type *ptype,
2228                                             struct sock *sk);
2229         void                    *af_packet_priv;
2230         struct list_head        list;
2231 };
2232 
2233 struct offload_callbacks {
2234         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2235                                                 netdev_features_t features);
2236         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2237                                                  struct sk_buff *skb);
2238         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2239 };
2240 
2241 struct packet_offload {
2242         __be16                   type;  /* This is really htons(ether_type). */
2243         u16                      priority;
2244         struct offload_callbacks callbacks;
2245         struct list_head         list;
2246 };
2247 
2248 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2249 struct pcpu_sw_netstats {
2250         u64     rx_packets;
2251         u64     rx_bytes;
2252         u64     tx_packets;
2253         u64     tx_bytes;
2254         struct u64_stats_sync   syncp;
2255 };
2256 
2257 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2258 ({                                                                      \
2259         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2260         if (pcpu_stats) {                                               \
2261                 int __cpu;                                              \
2262                 for_each_possible_cpu(__cpu) {                          \
2263                         typeof(type) *stat;                             \
2264                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2265                         u64_stats_init(&stat->syncp);                   \
2266                 }                                                       \
2267         }                                                               \
2268         pcpu_stats;                                                     \
2269 })
2270 
2271 #define netdev_alloc_pcpu_stats(type)                                   \
2272         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2273 
2274 enum netdev_lag_tx_type {
2275         NETDEV_LAG_TX_TYPE_UNKNOWN,
2276         NETDEV_LAG_TX_TYPE_RANDOM,
2277         NETDEV_LAG_TX_TYPE_BROADCAST,
2278         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2279         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2280         NETDEV_LAG_TX_TYPE_HASH,
2281 };
2282 
2283 struct netdev_lag_upper_info {
2284         enum netdev_lag_tx_type tx_type;
2285 };
2286 
2287 struct netdev_lag_lower_state_info {
2288         u8 link_up : 1,
2289            tx_enabled : 1;
2290 };
2291 
2292 #include <linux/notifier.h>
2293 
2294 /* netdevice notifier chain. Please remember to update the rtnetlink
2295  * notification exclusion list in rtnetlink_event() when adding new
2296  * types.
2297  */
2298 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2299 #define NETDEV_DOWN     0x0002
2300 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2301                                    detected a hardware crash and restarted
2302                                    - we can use this eg to kick tcp sessions
2303                                    once done */
2304 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2305 #define NETDEV_REGISTER 0x0005
2306 #define NETDEV_UNREGISTER       0x0006
2307 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2308 #define NETDEV_CHANGEADDR       0x0008
2309 #define NETDEV_GOING_DOWN       0x0009
2310 #define NETDEV_CHANGENAME       0x000A
2311 #define NETDEV_FEAT_CHANGE      0x000B
2312 #define NETDEV_BONDING_FAILOVER 0x000C
2313 #define NETDEV_PRE_UP           0x000D
2314 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2315 #define NETDEV_POST_TYPE_CHANGE 0x000F
2316 #define NETDEV_POST_INIT        0x0010
2317 #define NETDEV_UNREGISTER_FINAL 0x0011
2318 #define NETDEV_RELEASE          0x0012
2319 #define NETDEV_NOTIFY_PEERS     0x0013
2320 #define NETDEV_JOIN             0x0014
2321 #define NETDEV_CHANGEUPPER      0x0015
2322 #define NETDEV_RESEND_IGMP      0x0016
2323 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2324 #define NETDEV_CHANGEINFODATA   0x0018
2325 #define NETDEV_BONDING_INFO     0x0019
2326 #define NETDEV_PRECHANGEUPPER   0x001A
2327 #define NETDEV_CHANGELOWERSTATE 0x001B
2328 #define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2329 #define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2330 
2331 int register_netdevice_notifier(struct notifier_block *nb);
2332 int unregister_netdevice_notifier(struct notifier_block *nb);
2333 
2334 struct netdev_notifier_info {
2335         struct net_device *dev;
2336 };
2337 
2338 struct netdev_notifier_change_info {
2339         struct netdev_notifier_info info; /* must be first */
2340         unsigned int flags_changed;
2341 };
2342 
2343 struct netdev_notifier_changeupper_info {
2344         struct netdev_notifier_info info; /* must be first */
2345         struct net_device *upper_dev; /* new upper dev */
2346         bool master; /* is upper dev master */
2347         bool linking; /* is the notification for link or unlink */
2348         void *upper_info; /* upper dev info */
2349 };
2350 
2351 struct netdev_notifier_changelowerstate_info {
2352         struct netdev_notifier_info info; /* must be first */
2353         void *lower_state_info; /* is lower dev state */
2354 };
2355 
2356 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2357                                              struct net_device *dev)
2358 {
2359         info->dev = dev;
2360 }
2361 
2362 static inline struct net_device *
2363 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2364 {
2365         return info->dev;
2366 }
2367 
2368 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2369 
2370 
2371 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2372 
2373 #define for_each_netdev(net, d)         \
2374                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2375 #define for_each_netdev_reverse(net, d) \
2376                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2377 #define for_each_netdev_rcu(net, d)             \
2378                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2379 #define for_each_netdev_safe(net, d, n) \
2380                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2381 #define for_each_netdev_continue(net, d)                \
2382                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2383 #define for_each_netdev_continue_rcu(net, d)            \
2384         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2385 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2386                 for_each_netdev_rcu(&init_net, slave)   \
2387                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2388 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2389 
2390 static inline struct net_device *next_net_device(struct net_device *dev)
2391 {
2392         struct list_head *lh;
2393         struct net *net;
2394 
2395         net = dev_net(dev);
2396         lh = dev->dev_list.next;
2397         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2398 }
2399 
2400 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2401 {
2402         struct list_head *lh;
2403         struct net *net;
2404 
2405         net = dev_net(dev);
2406         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2407         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2408 }
2409 
2410 static inline struct net_device *first_net_device(struct net *net)
2411 {
2412         return list_empty(&net->dev_base_head) ? NULL :
2413                 net_device_entry(net->dev_base_head.next);
2414 }
2415 
2416 static inline struct net_device *first_net_device_rcu(struct net *net)
2417 {
2418         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2419 
2420         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2421 }
2422 
2423 int netdev_boot_setup_check(struct net_device *dev);
2424 unsigned long netdev_boot_base(const char *prefix, int unit);
2425 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2426                                        const char *hwaddr);
2427 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2428 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2429 void dev_add_pack(struct packet_type *pt);
2430 void dev_remove_pack(struct packet_type *pt);
2431 void __dev_remove_pack(struct packet_type *pt);
2432 void dev_add_offload(struct packet_offload *po);
2433 void dev_remove_offload(struct packet_offload *po);
2434 
2435 int dev_get_iflink(const struct net_device *dev);
2436 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2437 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2438                                       unsigned short mask);
2439 struct net_device *dev_get_by_name(struct net *net, const char *name);
2440 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2441 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2442 int dev_alloc_name(struct net_device *dev, const char *name);
2443 int dev_open(struct net_device *dev);
2444 int dev_close(struct net_device *dev);
2445 int dev_close_many(struct list_head *head, bool unlink);
2446 void dev_disable_lro(struct net_device *dev);
2447 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2448 int dev_queue_xmit(struct sk_buff *skb);
2449 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2450 int register_netdevice(struct net_device *dev);
2451 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2452 void unregister_netdevice_many(struct list_head *head);
2453 static inline void unregister_netdevice(struct net_device *dev)
2454 {
2455         unregister_netdevice_queue(dev, NULL);
2456 }
2457 
2458 int netdev_refcnt_read(const struct net_device *dev);
2459 void free_netdev(struct net_device *dev);
2460 void netdev_freemem(struct net_device *dev);
2461 void synchronize_net(void);
2462 int init_dummy_netdev(struct net_device *dev);
2463 
2464 DECLARE_PER_CPU(int, xmit_recursion);
2465 #define XMIT_RECURSION_LIMIT    10
2466 
2467 static inline int dev_recursion_level(void)
2468 {
2469         return this_cpu_read(xmit_recursion);
2470 }
2471 
2472 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2473 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2474 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2475 int netdev_get_name(struct net *net, char *name, int ifindex);
2476 int dev_restart(struct net_device *dev);
2477 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2478 
2479 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2480 {
2481         return NAPI_GRO_CB(skb)->data_offset;
2482 }
2483 
2484 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2485 {
2486         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2487 }
2488 
2489 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2490 {
2491         NAPI_GRO_CB(skb)->data_offset += len;
2492 }
2493 
2494 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2495                                         unsigned int offset)
2496 {
2497         return NAPI_GRO_CB(skb)->frag0 + offset;
2498 }
2499 
2500 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2501 {
2502         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2503 }
2504 
2505 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2506                                         unsigned int offset)
2507 {
2508         if (!pskb_may_pull(skb, hlen))
2509                 return NULL;
2510 
2511         NAPI_GRO_CB(skb)->frag0 = NULL;
2512         NAPI_GRO_CB(skb)->frag0_len = 0;
2513         return skb->data + offset;
2514 }
2515 
2516 static inline void *skb_gro_network_header(struct sk_buff *skb)
2517 {
2518         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2519                skb_network_offset(skb);
2520 }
2521 
2522 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2523                                         const void *start, unsigned int len)
2524 {
2525         if (NAPI_GRO_CB(skb)->csum_valid)
2526                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2527                                                   csum_partial(start, len, 0));
2528 }
2529 
2530 /* GRO checksum functions. These are logical equivalents of the normal
2531  * checksum functions (in skbuff.h) except that they operate on the GRO
2532  * offsets and fields in sk_buff.
2533  */
2534 
2535 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2536 
2537 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2538 {
2539         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2540 }
2541 
2542 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2543                                                       bool zero_okay,
2544                                                       __sum16 check)
2545 {
2546         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2547                 skb_checksum_start_offset(skb) <
2548                  skb_gro_offset(skb)) &&
2549                 !skb_at_gro_remcsum_start(skb) &&
2550                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2551                 (!zero_okay || check));
2552 }
2553 
2554 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2555                                                            __wsum psum)
2556 {
2557         if (NAPI_GRO_CB(skb)->csum_valid &&
2558             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2559                 return 0;
2560 
2561         NAPI_GRO_CB(skb)->csum = psum;
2562 
2563         return __skb_gro_checksum_complete(skb);
2564 }
2565 
2566 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2567 {
2568         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2569                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2570                 NAPI_GRO_CB(skb)->csum_cnt--;
2571         } else {
2572                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2573                  * verified a new top level checksum or an encapsulated one
2574                  * during GRO. This saves work if we fallback to normal path.
2575                  */
2576                 __skb_incr_checksum_unnecessary(skb);
2577         }
2578 }
2579 
2580 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2581                                     compute_pseudo)                     \
2582 ({                                                                      \
2583         __sum16 __ret = 0;                                              \
2584         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2585                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2586                                 compute_pseudo(skb, proto));            \
2587         if (__ret)                                                      \
2588                 __skb_mark_checksum_bad(skb);                           \
2589         else                                                            \
2590                 skb_gro_incr_csum_unnecessary(skb);                     \
2591         __ret;                                                          \
2592 })
2593 
2594 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2595         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2596 
2597 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2598                                              compute_pseudo)            \
2599         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2600 
2601 #define skb_gro_checksum_simple_validate(skb)                           \
2602         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2603 
2604 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2605 {
2606         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2607                 !NAPI_GRO_CB(skb)->csum_valid);
2608 }
2609 
2610 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2611                                               __sum16 check, __wsum pseudo)
2612 {
2613         NAPI_GRO_CB(skb)->csum = ~pseudo;
2614         NAPI_GRO_CB(skb)->csum_valid = 1;
2615 }
2616 
2617 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2618 do {                                                                    \
2619         if (__skb_gro_checksum_convert_check(skb))                      \
2620                 __skb_gro_checksum_convert(skb, check,                  \
2621                                            compute_pseudo(skb, proto)); \
2622 } while (0)
2623 
2624 struct gro_remcsum {
2625         int offset;
2626         __wsum delta;
2627 };
2628 
2629 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2630 {
2631         grc->offset = 0;
2632         grc->delta = 0;
2633 }
2634 
2635 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2636                                             unsigned int off, size_t hdrlen,
2637                                             int start, int offset,
2638                                             struct gro_remcsum *grc,
2639                                             bool nopartial)
2640 {
2641         __wsum delta;
2642         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2643 
2644         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2645 
2646         if (!nopartial) {
2647                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2648                 return ptr;
2649         }
2650 
2651         ptr = skb_gro_header_fast(skb, off);
2652         if (skb_gro_header_hard(skb, off + plen)) {
2653                 ptr = skb_gro_header_slow(skb, off + plen, off);
2654                 if (!ptr)
2655                         return NULL;
2656         }
2657 
2658         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2659                                start, offset);
2660 
2661         /* Adjust skb->csum since we changed the packet */
2662         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2663 
2664         grc->offset = off + hdrlen + offset;
2665         grc->delta = delta;
2666 
2667         return ptr;
2668 }
2669 
2670 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2671                                            struct gro_remcsum *grc)
2672 {
2673         void *ptr;
2674         size_t plen = grc->offset + sizeof(u16);
2675 
2676         if (!grc->delta)
2677                 return;
2678 
2679         ptr = skb_gro_header_fast(skb, grc->offset);
2680         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2681                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2682                 if (!ptr)
2683                         return;
2684         }
2685 
2686         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2687 }
2688 
2689 struct skb_csum_offl_spec {
2690         __u16           ipv4_okay:1,
2691                         ipv6_okay:1,
2692                         encap_okay:1,
2693                         ip_options_okay:1,
2694                         ext_hdrs_okay:1,
2695                         tcp_okay:1,
2696                         udp_okay:1,
2697                         sctp_okay:1,
2698                         vlan_okay:1,
2699                         no_encapped_ipv6:1,
2700                         no_not_encapped:1;
2701 };
2702 
2703 bool __skb_csum_offload_chk(struct sk_buff *skb,
2704                             const struct skb_csum_offl_spec *spec,
2705                             bool *csum_encapped,
2706                             bool csum_help);
2707 
2708 static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2709                                         const struct skb_csum_offl_spec *spec,
2710                                         bool *csum_encapped,
2711                                         bool csum_help)
2712 {
2713         if (skb->ip_summed != CHECKSUM_PARTIAL)
2714                 return false;
2715 
2716         return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2717 }
2718 
2719 static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2720                                              const struct skb_csum_offl_spec *spec)
2721 {
2722         bool csum_encapped;
2723 
2724         return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2725 }
2726 
2727 static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2728 {
2729         static const struct skb_csum_offl_spec csum_offl_spec = {
2730                 .ipv4_okay = 1,
2731                 .ip_options_okay = 1,
2732                 .ipv6_okay = 1,
2733                 .vlan_okay = 1,
2734                 .tcp_okay = 1,
2735                 .udp_okay = 1,
2736         };
2737 
2738         return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2739 }
2740 
2741 static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2742 {
2743         static const struct skb_csum_offl_spec csum_offl_spec = {
2744                 .ipv4_okay = 1,
2745                 .ip_options_okay = 1,
2746                 .tcp_okay = 1,
2747                 .udp_okay = 1,
2748                 .vlan_okay = 1,
2749         };
2750 
2751         return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2752 }
2753 
2754 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2755                                   unsigned short type,
2756                                   const void *daddr, const void *saddr,
2757                                   unsigned int len)
2758 {
2759         if (!dev->header_ops || !dev->header_ops->create)
2760                 return 0;
2761 
2762         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2763 }
2764 
2765 static inline int dev_parse_header(const struct sk_buff *skb,
2766                                    unsigned char *haddr)
2767 {
2768         const struct net_device *dev = skb->dev;
2769 
2770         if (!dev->header_ops || !dev->header_ops->parse)
2771                 return 0;
2772         return dev->header_ops->parse(skb, haddr);
2773 }
2774 
2775 /* ll_header must have at least hard_header_len allocated */
2776 static inline bool dev_validate_header(const struct net_device *dev,
2777                                        char *ll_header, int len)
2778 {
2779         if (likely(len >= dev->hard_header_len))
2780                 return true;
2781 
2782         if (capable(CAP_SYS_RAWIO)) {
2783                 memset(ll_header + len, 0, dev->hard_header_len - len);
2784                 return true;
2785         }
2786 
2787         if (dev->header_ops && dev->header_ops->validate)
2788                 return dev->header_ops->validate(ll_header, len);
2789 
2790         return false;
2791 }
2792 
2793 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2794 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2795 static inline int unregister_gifconf(unsigned int family)
2796 {
2797         return register_gifconf(family, NULL);
2798 }
2799 
2800 #ifdef CONFIG_NET_FLOW_LIMIT
2801 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2802 struct sd_flow_limit {
2803         u64                     count;
2804         unsigned int            num_buckets;
2805         unsigned int            history_head;
2806         u16                     history[FLOW_LIMIT_HISTORY];
2807         u8                      buckets[];
2808 };
2809 
2810 extern int netdev_flow_limit_table_len;
2811 #endif /* CONFIG_NET_FLOW_LIMIT */
2812 
2813 /*
2814  * Incoming packets are placed on per-CPU queues
2815  */
2816 struct softnet_data {
2817         struct list_head        poll_list;
2818         struct sk_buff_head     process_queue;
2819 
2820         /* stats */
2821         unsigned int            processed;
2822         unsigned int            time_squeeze;
2823         unsigned int            received_rps;
2824 #ifdef CONFIG_RPS
2825         struct softnet_data     *rps_ipi_list;
2826 #endif
2827 #ifdef CONFIG_NET_FLOW_LIMIT
2828         struct sd_flow_limit __rcu *flow_limit;
2829 #endif
2830         struct Qdisc            *output_queue;
2831         struct Qdisc            **output_queue_tailp;
2832         struct sk_buff          *completion_queue;
2833 
2834 #ifdef CONFIG_RPS
2835         /* input_queue_head should be written by cpu owning this struct,
2836          * and only read by other cpus. Worth using a cache line.
2837          */
2838         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2839 
2840         /* Elements below can be accessed between CPUs for RPS/RFS */
2841         struct call_single_data csd ____cacheline_aligned_in_smp;
2842         struct softnet_data     *rps_ipi_next;
2843         unsigned int            cpu;
2844         unsigned int            input_queue_tail;
2845 #endif
2846         unsigned int            dropped;
2847         struct sk_buff_head     input_pkt_queue;
2848         struct napi_struct      backlog;
2849 
2850 };
2851 
2852 static inline void input_queue_head_incr(struct softnet_data *sd)
2853 {
2854 #ifdef CONFIG_RPS
2855         sd->input_queue_head++;
2856 #endif
2857 }
2858 
2859 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2860                                               unsigned int *qtail)
2861 {
2862 #ifdef CONFIG_RPS
2863         *qtail = ++sd->input_queue_tail;
2864 #endif
2865 }
2866 
2867 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2868 
2869 void __netif_schedule(struct Qdisc *q);
2870 void netif_schedule_queue(struct netdev_queue *txq);
2871 
2872 static inline void netif_tx_schedule_all(struct net_device *dev)
2873 {
2874         unsigned int i;
2875 
2876         for (i = 0; i < dev->num_tx_queues; i++)
2877                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2878 }
2879 
2880 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2881 {
2882         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2883 }
2884 
2885 /**
2886  *      netif_start_queue - allow transmit
2887  *      @dev: network device
2888  *
2889  *      Allow upper layers to call the device hard_start_xmit routine.
2890  */
2891 static inline void netif_start_queue(struct net_device *dev)
2892 {
2893         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2894 }
2895 
2896 static inline void netif_tx_start_all_queues(struct net_device *dev)
2897 {
2898         unsigned int i;
2899 
2900         for (i = 0; i < dev->num_tx_queues; i++) {
2901                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2902                 netif_tx_start_queue(txq);
2903         }
2904 }
2905 
2906 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2907 
2908 /**
2909  *      netif_wake_queue - restart transmit
2910  *      @dev: network device
2911  *
2912  *      Allow upper layers to call the device hard_start_xmit routine.
2913  *      Used for flow control when transmit resources are available.
2914  */
2915 static inline void netif_wake_queue(struct net_device *dev)
2916 {
2917         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2918 }
2919 
2920 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2921 {
2922         unsigned int i;
2923 
2924         for (i = 0; i < dev->num_tx_queues; i++) {
2925                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2926                 netif_tx_wake_queue(txq);
2927         }
2928 }
2929 
2930 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2931 {
2932         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2933 }
2934 
2935 /**
2936  *      netif_stop_queue - stop transmitted packets
2937  *      @dev: network device
2938  *
2939  *      Stop upper layers calling the device hard_start_xmit routine.
2940  *      Used for flow control when transmit resources are unavailable.
2941  */
2942 static inline void netif_stop_queue(struct net_device *dev)
2943 {
2944         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2945 }
2946 
2947 void netif_tx_stop_all_queues(struct net_device *dev);
2948 
2949 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2950 {
2951         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2952 }
2953 
2954 /**
2955  *      netif_queue_stopped - test if transmit queue is flowblocked
2956  *      @dev: network device
2957  *
2958  *      Test if transmit queue on device is currently unable to send.
2959  */
2960 static inline bool netif_queue_stopped(const struct net_device *dev)
2961 {
2962         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2963 }
2964 
2965 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2966 {
2967         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2968 }
2969 
2970 static inline bool
2971 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2972 {
2973         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2974 }
2975 
2976 static inline bool
2977 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2978 {
2979         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2980 }
2981 
2982 /**
2983  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2984  *      @dev_queue: pointer to transmit queue
2985  *
2986  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2987  * to give appropriate hint to the CPU.
2988  */
2989 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2990 {
2991 #ifdef CONFIG_BQL
2992         prefetchw(&dev_queue->dql.num_queued);
2993 #endif
2994 }
2995 
2996 /**
2997  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2998  *      @dev_queue: pointer to transmit queue
2999  *
3000  * BQL enabled drivers might use this helper in their TX completion path,
3001  * to give appropriate hint to the CPU.
3002  */
3003 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3004 {
3005 #ifdef CONFIG_BQL
3006         prefetchw(&dev_queue->dql.limit);
3007 #endif
3008 }
3009 
3010 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3011                                         unsigned int bytes)
3012 {
3013 #ifdef CONFIG_BQL
3014         dql_queued(&dev_queue->dql, bytes);
3015 
3016         if (likely(dql_avail(&dev_queue->dql) >= 0))
3017                 return;
3018 
3019         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3020 
3021         /*
3022          * The XOFF flag must be set before checking the dql_avail below,
3023          * because in netdev_tx_completed_queue we update the dql_completed
3024          * before checking the XOFF flag.
3025          */
3026         smp_mb();
3027 
3028         /* check again in case another CPU has just made room avail */
3029         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3030                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3031 #endif
3032 }
3033 
3034 /**
3035  *      netdev_sent_queue - report the number of bytes queued to hardware
3036  *      @dev: network device
3037  *      @bytes: number of bytes queued to the hardware device queue
3038  *
3039  *      Report the number of bytes queued for sending/completion to the network
3040  *      device hardware queue. @bytes should be a good approximation and should
3041  *      exactly match netdev_completed_queue() @bytes
3042  */
3043 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3044 {
3045         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3046 }
3047 
3048 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3049                                              unsigned int pkts, unsigned int bytes)
3050 {
3051 #ifdef CONFIG_BQL
3052         if (unlikely(!bytes))
3053                 return;
3054 
3055         dql_completed(&dev_queue->dql, bytes);
3056 
3057         /*
3058          * Without the memory barrier there is a small possiblity that
3059          * netdev_tx_sent_queue will miss the update and cause the queue to
3060          * be stopped forever
3061          */
3062         smp_mb();
3063 
3064         if (dql_avail(&dev_queue->dql) < 0)
3065                 return;
3066 
3067         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3068                 netif_schedule_queue(dev_queue);
3069 #endif
3070 }
3071 
3072 /**
3073  *      netdev_completed_queue - report bytes and packets completed by device
3074  *      @dev: network device
3075  *      @pkts: actual number of packets sent over the medium
3076  *      @bytes: actual number of bytes sent over the medium
3077  *
3078  *      Report the number of bytes and packets transmitted by the network device
3079  *      hardware queue over the physical medium, @bytes must exactly match the
3080  *      @bytes amount passed to netdev_sent_queue()
3081  */
3082 static inline void netdev_completed_queue(struct net_device *dev,
3083                                           unsigned int pkts, unsigned int bytes)
3084 {
3085         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3086 }
3087 
3088 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3089 {
3090 #ifdef CONFIG_BQL
3091         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3092         dql_reset(&q->dql);
3093 #endif
3094 }
3095 
3096 /**
3097  *      netdev_reset_queue - reset the packets and bytes count of a network device
3098  *      @dev_queue: network device
3099  *
3100  *      Reset the bytes and packet count of a network device and clear the
3101  *      software flow control OFF bit for this network device
3102  */
3103 static inline void netdev_reset_queue(struct net_device *dev_queue)
3104 {
3105         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3106 }
3107 
3108 /**
3109  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3110  *      @dev: network device
3111  *      @queue_index: given tx queue index
3112  *
3113  *      Returns 0 if given tx queue index >= number of device tx queues,
3114  *      otherwise returns the originally passed tx queue index.
3115  */
3116 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3117 {
3118         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3119                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3120                                      dev->name, queue_index,
3121                                      dev->real_num_tx_queues);
3122                 return 0;
3123         }
3124 
3125         return queue_index;
3126 }
3127 
3128 /**
3129  *      netif_running - test if up
3130  *      @dev: network device
3131  *
3132  *      Test if the device has been brought up.
3133  */
3134 static inline bool netif_running(const struct net_device *dev)
3135 {
3136         return test_bit(__LINK_STATE_START, &dev->state);
3137 }
3138 
3139 /*
3140  * Routines to manage the subqueues on a device.  We only need start,
3141  * stop, and a check if it's stopped.  All other device management is
3142  * done at the overall netdevice level.
3143  * Also test the device if we're multiqueue.
3144  */
3145 
3146 /**
3147  *      netif_start_subqueue - allow sending packets on subqueue
3148  *      @dev: network device
3149  *      @queue_index: sub queue index
3150  *
3151  * Start individual transmit queue of a device with multiple transmit queues.
3152  */
3153 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3154 {
3155         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3156 
3157         netif_tx_start_queue(txq);
3158 }
3159 
3160 /**
3161  *      netif_stop_subqueue - stop sending packets on subqueue
3162  *      @dev: network device
3163  *      @queue_index: sub queue index
3164  *
3165  * Stop individual transmit queue of a device with multiple transmit queues.
3166  */
3167 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3168 {
3169         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3170         netif_tx_stop_queue(txq);
3171 }
3172 
3173 /**
3174  *      netif_subqueue_stopped - test status of subqueue
3175  *      @dev: network device
3176  *      @queue_index: sub queue index
3177  *
3178  * Check individual transmit queue of a device with multiple transmit queues.
3179  */
3180 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3181                                             u16 queue_index)
3182 {
3183         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3184 
3185         return netif_tx_queue_stopped(txq);
3186 }
3187 
3188 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3189                                           struct sk_buff *skb)
3190 {
3191         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3192 }
3193 
3194 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
3195 
3196 #ifdef CONFIG_XPS
3197 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3198                         u16 index);
3199 #else
3200 static inline int netif_set_xps_queue(struct net_device *dev,
3201                                       const struct cpumask *mask,
3202                                       u16 index)
3203 {
3204         return 0;
3205 }
3206 #endif
3207 
3208 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3209                   unsigned int num_tx_queues);
3210 
3211 /*
3212  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3213  * as a distribution range limit for the returned value.
3214  */
3215 static inline u16 skb_tx_hash(const struct net_device *dev,
3216                               struct sk_buff *skb)
3217 {
3218         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3219 }
3220 
3221 /**
3222  *      netif_is_multiqueue - test if device has multiple transmit queues
3223  *      @dev: network device
3224  *
3225  * Check if device has multiple transmit queues
3226  */
3227 static inline bool netif_is_multiqueue(const struct net_device *dev)
3228 {
3229         return dev->num_tx_queues > 1;
3230 }
3231 
3232 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3233 
3234 #ifdef CONFIG_SYSFS
3235 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3236 #else
3237 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3238                                                 unsigned int rxq)
3239 {
3240         return 0;
3241 }
3242 #endif
3243 
3244 #ifdef CONFIG_SYSFS
3245 static inline unsigned int get_netdev_rx_queue_index(
3246                 struct netdev_rx_queue *queue)
3247 {
3248         struct net_device *dev = queue->dev;
3249         int index = queue - dev->_rx;
3250 
3251         BUG_ON(index >= dev->num_rx_queues);
3252         return index;
3253 }
3254 #endif
3255 
3256 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3257 int netif_get_num_default_rss_queues(void);
3258 
3259 enum skb_free_reason {
3260         SKB_REASON_CONSUMED,
3261         SKB_REASON_DROPPED,
3262 };
3263 
3264 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3265 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3266 
3267 /*
3268  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3269  * interrupt context or with hardware interrupts being disabled.
3270  * (in_irq() || irqs_disabled())
3271  *
3272  * We provide four helpers that can be used in following contexts :
3273  *
3274  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3275  *  replacing kfree_skb(skb)
3276  *
3277  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3278  *  Typically used in place of consume_skb(skb) in TX completion path
3279  *
3280  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3281  *  replacing kfree_skb(skb)
3282  *
3283  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3284  *  and consumed a packet. Used in place of consume_skb(skb)
3285  */
3286 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3287 {
3288         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3289 }
3290 
3291 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3292 {
3293         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3294 }
3295 
3296 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3297 {
3298         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3299 }
3300 
3301 static inline void dev_consume_skb_any(struct sk_buff *skb)
3302 {
3303         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3304 }
3305 
3306 int netif_rx(struct sk_buff *skb);
3307 int netif_rx_ni(struct sk_buff *skb);
3308 int netif_receive_skb(struct sk_buff *skb);
3309 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3310 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3311 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3312 gro_result_t napi_gro_frags(struct napi_struct *napi);
3313 struct packet_offload *gro_find_receive_by_type(__be16 type);
3314 struct packet_offload *gro_find_complete_by_type(__be16 type);
3315 
3316 static inline void napi_free_frags(struct napi_struct *napi)
3317 {
3318         kfree_skb(napi->skb);
3319         napi->skb = NULL;
3320 }
3321 
3322 bool netdev_is_rx_handler_busy(struct net_device *dev);
3323 int netdev_rx_handler_register(struct net_device *dev,
3324                                rx_handler_func_t *rx_handler,
3325                                void *rx_handler_data);
3326 void netdev_rx_handler_unregister(struct net_device *dev);
3327 
3328 bool dev_valid_name(const char *name);
3329 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3330 int dev_ethtool(struct net *net, struct ifreq *);
3331 unsigned int dev_get_flags(const struct net_device *);
3332 int __dev_change_flags(struct net_device *, unsigned int flags);
3333 int dev_change_flags(struct net_device *, unsigned int);
3334 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3335                         unsigned int gchanges);
3336 int dev_change_name(struct net_device *, const char *);
3337 int dev_set_alias(struct net_device *, const char *, size_t);
3338 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3339 int dev_set_mtu(struct net_device *, int);
3340 void dev_set_group(struct net_device *, int);
3341 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3342 int dev_change_carrier(struct net_device *, bool new_carrier);
3343 int dev_get_phys_port_id(struct net_device *dev,
3344                          struct netdev_phys_item_id *ppid);
3345 int dev_get_phys_port_name(struct net_device *dev,
3346                            char *name, size_t len);
3347 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3348 int dev_change_xdp_fd(struct net_device *dev, int fd);
3349 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3350 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3351                                     struct netdev_queue *txq, int *ret);
3352 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3353 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3354 bool is_skb_forwardable(const struct net_device *dev,
3355                         const struct sk_buff *skb);
3356 
3357 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3358                                                struct sk_buff *skb)
3359 {
3360         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3361             unlikely(!is_skb_forwardable(dev, skb))) {
3362                 atomic_long_inc(&dev->rx_dropped);
3363                 kfree_skb(skb);
3364                 return NET_RX_DROP;
3365         }
3366 
3367         skb_scrub_packet(skb, true);
3368         skb->priority = 0;
3369         return 0;
3370 }
3371 
3372 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3373 
3374 extern int              netdev_budget;
3375 
3376 /* Called by rtnetlink.c:rtnl_unlock() */
3377 void netdev_run_todo(void);
3378 
3379 /**
3380  *      dev_put - release reference to device
3381  *      @dev: network device
3382  *
3383  * Release reference to device to allow it to be freed.
3384  */
3385 static inline void dev_put(struct net_device *dev)
3386 {
3387         this_cpu_dec(*dev->pcpu_refcnt);
3388 }
3389 
3390 /**
3391  *      dev_hold - get reference to device
3392  *      @dev: network device
3393  *
3394  * Hold reference to device to keep it from being freed.
3395  */
3396 static inline void dev_hold(struct net_device *dev)
3397 {
3398         this_cpu_inc(*dev->pcpu_refcnt);
3399 }
3400 
3401 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3402  * and _off may be called from IRQ context, but it is caller
3403  * who is responsible for serialization of these calls.
3404  *
3405  * The name carrier is inappropriate, these functions should really be
3406  * called netif_lowerlayer_*() because they represent the state of any
3407  * kind of lower layer not just hardware media.
3408  */
3409 
3410 void linkwatch_init_dev(struct net_device *dev);
3411 void linkwatch_fire_event(struct net_device *dev);
3412 void linkwatch_forget_dev(struct net_device *dev);
3413 
3414 /**
3415  *      netif_carrier_ok - test if carrier present
3416  *      @dev: network device
3417  *
3418  * Check if carrier is present on device
3419  */
3420 static inline bool netif_carrier_ok(const struct net_device *dev)
3421 {
3422         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3423 }
3424 
3425 unsigned long dev_trans_start(struct net_device *dev);
3426 
3427 void __netdev_watchdog_up(struct net_device *dev);
3428 
3429 void netif_carrier_on(struct net_device *dev);
3430 
3431 void netif_carrier_off(struct net_device *dev);
3432 
3433 /**
3434  *      netif_dormant_on - mark device as dormant.
3435  *      @dev: network device
3436  *
3437  * Mark device as dormant (as per RFC2863).
3438  *
3439  * The dormant state indicates that the relevant interface is not
3440  * actually in a condition to pass packets (i.e., it is not 'up') but is
3441  * in a "pending" state, waiting for some external event.  For "on-
3442  * demand" interfaces, this new state identifies the situation where the
3443  * interface is waiting for events to place it in the up state.
3444  */
3445 static inline void netif_dormant_on(struct net_device *dev)
3446 {
3447         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3448                 linkwatch_fire_event(dev);
3449 }
3450 
3451 /**
3452  *      netif_dormant_off - set device as not dormant.
3453  *      @dev: network device
3454  *
3455  * Device is not in dormant state.
3456  */
3457 static inline void netif_dormant_off(struct net_device *dev)
3458 {
3459         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3460                 linkwatch_fire_event(dev);
3461 }
3462 
3463 /**
3464  *      netif_dormant - test if carrier present
3465  *      @dev: network device
3466  *
3467  * Check if carrier is present on device
3468  */
3469 static inline bool netif_dormant(const struct net_device *dev)
3470 {
3471         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3472 }
3473 
3474 
3475 /**
3476  *      netif_oper_up - test if device is operational
3477  *      @dev: network device
3478  *
3479  * Check if carrier is operational
3480  */
3481 static inline bool netif_oper_up(const struct net_device *dev)
3482 {
3483         return (dev->operstate == IF_OPER_UP ||
3484                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3485 }
3486 
3487 /**
3488  *      netif_device_present - is device available or removed
3489  *      @dev: network device
3490  *
3491  * Check if device has not been removed from system.
3492  */
3493 static inline bool netif_device_present(struct net_device *dev)
3494 {
3495         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3496 }
3497 
3498 void netif_device_detach(struct net_device *dev);
3499 
3500 void netif_device_attach(struct net_device *dev);
3501 
3502 /*
3503  * Network interface message level settings
3504  */
3505 
3506 enum {
3507         NETIF_MSG_DRV           = 0x0001,
3508         NETIF_MSG_PROBE         = 0x0002,
3509         NETIF_MSG_LINK          = 0x0004,
3510         NETIF_MSG_TIMER         = 0x0008,
3511         NETIF_MSG_IFDOWN        = 0x0010,
3512         NETIF_MSG_IFUP          = 0x0020,
3513         NETIF_MSG_RX_ERR        = 0x0040,
3514         NETIF_MSG_TX_ERR        = 0x0080,
3515         NETIF_MSG_TX_QUEUED     = 0x0100,
3516         NETIF_MSG_INTR          = 0x0200,
3517         NETIF_MSG_TX_DONE       = 0x0400,
3518         NETIF_MSG_RX_STATUS     = 0x0800,
3519         NETIF_MSG_PKTDATA       = 0x1000,
3520         NETIF_MSG_HW            = 0x2000,
3521         NETIF_MSG_WOL           = 0x4000,
3522 };
3523 
3524 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3525 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3526 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3527 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3528 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3529 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3530 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3531 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3532 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3533 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3534 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3535 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3536 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3537 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3538 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3539 
3540 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3541 {
3542         /* use default */
3543         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3544                 return default_msg_enable_bits;
3545         if (debug_value == 0)   /* no output */
3546                 return 0;
3547         /* set low N bits */
3548         return (1 << debug_value) - 1;
3549 }
3550 
3551 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3552 {
3553         spin_lock(&txq->_xmit_lock);
3554         txq->xmit_lock_owner = cpu;
3555 }
3556 
3557 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3558 {
3559         spin_lock_bh(&txq->_xmit_lock);
3560         txq->xmit_lock_owner = smp_processor_id();
3561 }
3562 
3563 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3564 {
3565         bool ok = spin_trylock(&txq->_xmit_lock);
3566         if (likely(ok))
3567                 txq->xmit_lock_owner = smp_processor_id();
3568         return ok;
3569 }
3570 
3571 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3572 {
3573         txq->xmit_lock_owner = -1;
3574         spin_unlock(&txq->_xmit_lock);
3575 }
3576 
3577 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3578 {
3579         txq->xmit_lock_owner = -1;
3580         spin_unlock_bh(&txq->_xmit_lock);
3581 }
3582 
3583 static inline void txq_trans_update(struct netdev_queue *txq)
3584 {
3585         if (txq->xmit_lock_owner != -1)
3586                 txq->trans_start = jiffies;
3587 }
3588 
3589 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3590 static inline void netif_trans_update(struct net_device *dev)
3591 {
3592         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3593 
3594         if (txq->trans_start != jiffies)
3595                 txq->trans_start = jiffies;
3596 }
3597 
3598 /**
3599  *      netif_tx_lock - grab network device transmit lock
3600  *      @dev: network device
3601  *
3602  * Get network device transmit lock
3603  */
3604 static inline void netif_tx_lock(struct net_device *dev)
3605 {
3606         unsigned int i;
3607         int cpu;
3608 
3609         spin_lock(&dev->tx_global_lock);
3610         cpu = smp_processor_id();
3611         for (i = 0; i < dev->num_tx_queues; i++) {
3612                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3613 
3614                 /* We are the only thread of execution doing a
3615                  * freeze, but we have to grab the _xmit_lock in
3616                  * order to synchronize with threads which are in
3617                  * the ->hard_start_xmit() handler and already
3618                  * checked the frozen bit.
3619                  */
3620                 __netif_tx_lock(txq, cpu);
3621                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3622                 __netif_tx_unlock(txq);
3623         }
3624 }
3625 
3626 static inline void netif_tx_lock_bh(struct net_device *dev)
3627 {
3628         local_bh_disable();
3629         netif_tx_lock(dev);
3630 }
3631 
3632 static inline void netif_tx_unlock(struct net_device *dev)
3633 {
3634         unsigned int i;
3635 
3636         for (i = 0; i < dev->num_tx_queues; i++) {
3637                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3638 
3639                 /* No need to grab the _xmit_lock here.  If the
3640                  * queue is not stopped for another reason, we
3641                  * force a schedule.
3642                  */
3643                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3644                 netif_schedule_queue(txq);
3645         }
3646         spin_unlock(&dev->tx_global_lock);
3647 }
3648 
3649 static inline void netif_tx_unlock_bh(struct net_device *dev)
3650 {
3651         netif_tx_unlock(dev);
3652         local_bh_enable();
3653 }
3654 
3655 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3656         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3657                 __netif_tx_lock(txq, cpu);              \
3658         }                                               \
3659 }
3660 
3661 #define HARD_TX_TRYLOCK(dev, txq)                       \
3662         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3663                 __netif_tx_trylock(txq) :               \
3664                 true )
3665 
3666 #define HARD_TX_UNLOCK(dev, txq) {                      \
3667         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3668                 __netif_tx_unlock(txq);                 \
3669         }                                               \
3670 }
3671 
3672 static inline void netif_tx_disable(struct net_device *dev)
3673 {
3674         unsigned int i;
3675         int cpu;
3676 
3677         local_bh_disable();
3678         cpu = smp_processor_id();
3679         for (i = 0; i < dev->num_tx_queues; i++) {
3680                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3681 
3682                 __netif_tx_lock(txq, cpu);
3683                 netif_tx_stop_queue(txq);
3684                 __netif_tx_unlock(txq);
3685         }
3686         local_bh_enable();
3687 }
3688 
3689 static inline void netif_addr_lock(struct net_device *dev)
3690 {
3691         spin_lock(&dev->addr_list_lock);
3692 }
3693 
3694 static inline void netif_addr_lock_nested(struct net_device *dev)
3695 {
3696         int subclass = SINGLE_DEPTH_NESTING;
3697 
3698         if (dev->netdev_ops->ndo_get_lock_subclass)
3699                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3700 
3701         spin_lock_nested(&dev->addr_list_lock, subclass);
3702 }
3703 
3704 static inline void netif_addr_lock_bh(struct net_device *dev)
3705 {
3706         spin_lock_bh(&dev->addr_list_lock);
3707 }
3708 
3709 static inline void netif_addr_unlock(struct net_device *dev)
3710 {
3711         spin_unlock(&dev->addr_list_lock);
3712 }
3713 
3714 static inline void netif_addr_unlock_bh(struct net_device *dev)
3715 {
3716         spin_unlock_bh(&dev->addr_list_lock);
3717 }
3718 
3719 /*
3720  * dev_addrs walker. Should be used only for read access. Call with
3721  * rcu_read_lock held.
3722  */
3723 #define for_each_dev_addr(dev, ha) \
3724                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3725 
3726 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3727 
3728 void ether_setup(struct net_device *dev);
3729 
3730 /* Support for loadable net-drivers */
3731 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3732                                     unsigned char name_assign_type,
3733                                     void (*setup)(struct net_device *),
3734                                     unsigned int txqs, unsigned int rxqs);
3735 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3736         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3737 
3738 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3739         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3740                          count)
3741 
3742 int register_netdev(struct net_device *dev);
3743 void unregister_netdev(struct net_device *dev);
3744 
3745 /* General hardware address lists handling functions */
3746 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3747                    struct netdev_hw_addr_list *from_list, int addr_len);
3748 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3749                       struct netdev_hw_addr_list *from_list, int addr_len);
3750 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3751                        struct net_device *dev,
3752                        int (*sync)(struct net_device *, const unsigned char *),
3753                        int (*unsync)(struct net_device *,
3754                                      const unsigned char *));
3755 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3756                           struct net_device *dev,
3757                           int (*unsync)(struct net_device *,
3758                                         const unsigned char *));
3759 void __hw_addr_init(struct netdev_hw_addr_list *list);
3760 
3761 /* Functions used for device addresses handling */
3762 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3763                  unsigned char addr_type);
3764 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3765                  unsigned char addr_type);
3766 void dev_addr_flush(struct net_device *dev);
3767 int dev_addr_init(struct net_device *dev);
3768 
3769 /* Functions used for unicast addresses handling */
3770 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3771 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3772 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3773 int dev_uc_sync(struct net_device *to, struct net_device *from);
3774 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3775 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3776 void dev_uc_flush(struct net_device *dev);
3777 void dev_uc_init(struct net_device *dev);
3778 
3779 /**
3780  *  __dev_uc_sync - Synchonize device's unicast list
3781  *  @dev:  device to sync
3782  *  @sync: function to call if address should be added
3783  *  @unsync: function to call if address should be removed
3784  *
3785  *  Add newly added addresses to the interface, and release
3786  *  addresses that have been deleted.
3787  */
3788 static inline int __dev_uc_sync(struct net_device *dev,
3789                                 int (*sync)(struct net_device *,
3790                                             const unsigned char *),
3791                                 int (*unsync)(struct net_device *,
3792                                               const unsigned char *))
3793 {
3794         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3795 }
3796 
3797 /**
3798  *  __dev_uc_unsync - Remove synchronized addresses from device
3799  *  @dev:  device to sync
3800  *  @unsync: function to call if address should be removed
3801  *
3802  *  Remove all addresses that were added to the device by dev_uc_sync().
3803  */
3804 static inline void __dev_uc_unsync(struct net_device *dev,
3805                                    int (*unsync)(struct net_device *,
3806                                                  const unsigned char *))
3807 {
3808         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3809 }
3810 
3811 /* Functions used for multicast addresses handling */
3812 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3813 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3814 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3815 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3816 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3817 int dev_mc_sync(struct net_device *to, struct net_device *from);
3818 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3819 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3820 void dev_mc_flush(struct net_device *dev);
3821 void dev_mc_init(struct net_device *dev);
3822 
3823 /**
3824  *  __dev_mc_sync - Synchonize device's multicast list
3825  *  @dev:  device to sync
3826  *  @sync: function to call if address should be added
3827  *  @unsync: function to call if address should be removed
3828  *
3829  *  Add newly added addresses to the interface, and release
3830  *  addresses that have been deleted.
3831  */
3832 static inline int __dev_mc_sync(struct net_device *dev,
3833                                 int (*sync)(struct net_device *,
3834                                             const unsigned char *),
3835                                 int (*unsync)(struct net_device *,
3836                                               const unsigned char *))
3837 {
3838         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3839 }
3840 
3841 /**
3842  *  __dev_mc_unsync - Remove synchronized addresses from device
3843  *  @dev:  device to sync
3844  *  @unsync: function to call if address should be removed
3845  *
3846  *  Remove all addresses that were added to the device by dev_mc_sync().
3847  */
3848 static inline void __dev_mc_unsync(struct net_device *dev,
3849                                    int (*unsync)(struct net_device *,
3850                                                  const unsigned char *))
3851 {
3852         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3853 }
3854 
3855 /* Functions used for secondary unicast and multicast support */
3856 void dev_set_rx_mode(struct net_device *dev);
3857 void __dev_set_rx_mode(struct net_device *dev);
3858 int dev_set_promiscuity(struct net_device *dev, int inc);
3859 int dev_set_allmulti(struct net_device *dev, int inc);
3860 void netdev_state_change(struct net_device *dev);
3861 void netdev_notify_peers(struct net_device *dev);
3862 void netdev_features_change(struct net_device *dev);
3863 /* Load a device via the kmod */
3864 void dev_load(struct net *net, const char *name);
3865 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3866                                         struct rtnl_link_stats64 *storage);
3867 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3868                              const struct net_device_stats *netdev_stats);
3869 
3870 extern int              netdev_max_backlog;
3871 extern int              netdev_tstamp_prequeue;
3872 extern int              weight_p;
3873 
3874 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3875 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3876                                                      struct list_head **iter);
3877 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3878                                                      struct list_head **iter);
3879 
3880 /* iterate through upper list, must be called under RCU read lock */
3881 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3882         for (iter = &(dev)->adj_list.upper, \
3883              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3884              updev; \
3885              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3886 
3887 /* iterate through upper list, must be called under RCU read lock */
3888 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3889         for (iter = &(dev)->all_adj_list.upper, \
3890              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3891              updev; \
3892              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3893 
3894 void *netdev_lower_get_next_private(struct net_device *dev,
3895                                     struct list_head **iter);
3896 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3897                                         struct list_head **iter);
3898 
3899 #define netdev_for_each_lower_private(dev, priv, iter) \
3900         for (iter = (dev)->adj_list.lower.next, \
3901              priv = netdev_lower_get_next_private(dev, &(iter)); \
3902              priv; \
3903              priv = netdev_lower_get_next_private(dev, &(iter)))
3904 
3905 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3906         for (iter = &(dev)->adj_list.lower, \
3907              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3908              priv; \
3909              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3910 
3911 void *netdev_lower_get_next(struct net_device *dev,
3912                                 struct list_head **iter);
3913 
3914 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3915         for (iter = (dev)->adj_list.lower.next, \
3916              ldev = netdev_lower_get_next(dev, &(iter)); \
3917              ldev; \
3918              ldev = netdev_lower_get_next(dev, &(iter)))
3919 
3920 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3921                                              struct list_head **iter);
3922 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3923                                                  struct list_head **iter);
3924 
3925 #define netdev_for_each_all_lower_dev(dev, ldev, iter) \
3926         for (iter = (dev)->all_adj_list.lower.next, \
3927              ldev = netdev_all_lower_get_next(dev, &(iter)); \
3928              ldev; \
3929              ldev = netdev_all_lower_get_next(dev, &(iter)))
3930 
3931 #define netdev_for_each_all_lower_dev_rcu(dev, ldev, iter) \
3932         for (iter = &(dev)->all_adj_list.lower, \
3933              ldev = netdev_all_lower_get_next_rcu(dev, &(iter)); \
3934              ldev; \
3935              ldev = netdev_all_lower_get_next_rcu(dev, &(iter)))
3936 
3937 void *netdev_adjacent_get_private(struct list_head *adj_list);
3938 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3939 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3940 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3941 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3942 int netdev_master_upper_dev_link(struct net_device *dev,
3943                                  struct net_device *upper_dev,
3944                                  void *upper_priv, void *upper_info);
3945 void netdev_upper_dev_unlink(struct net_device *dev,
3946                              struct net_device *upper_dev);
3947 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3948 void *netdev_lower_dev_get_private(struct net_device *dev,
3949                                    struct net_device *lower_dev);
3950 void netdev_lower_state_changed(struct net_device *lower_dev,
3951                                 void *lower_state_info);
3952 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
3953                                            struct neighbour *n);
3954 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
3955                                           struct neighbour *n);
3956 
3957 /* RSS keys are 40 or 52 bytes long */
3958 #define NETDEV_RSS_KEY_LEN 52
3959 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3960 void netdev_rss_key_fill(void *buffer, size_t len);
3961 
3962 int dev_get_nest_level(struct net_device *dev);
3963 int skb_checksum_help(struct sk_buff *skb);
3964 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3965                                   netdev_features_t features, bool tx_path);
3966 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3967                                     netdev_features_t features);
3968 
3969 struct netdev_bonding_info {
3970         ifslave slave;
3971         ifbond  master;
3972 };
3973 
3974 struct netdev_notifier_bonding_info {
3975         struct netdev_notifier_info info; /* must be first */
3976         struct netdev_bonding_info  bonding_info;
3977 };
3978 
3979 void netdev_bonding_info_change(struct net_device *dev,
3980                                 struct netdev_bonding_info *bonding_info);
3981 
3982 static inline
3983 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3984 {
3985         return __skb_gso_segment(skb, features, true);
3986 }
3987 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3988 
3989 static inline bool can_checksum_protocol(netdev_features_t features,
3990                                          __be16 protocol)
3991 {
3992         if (protocol == htons(ETH_P_FCOE))
3993                 return !!(features & NETIF_F_FCOE_CRC);
3994 
3995         /* Assume this is an IP checksum (not SCTP CRC) */
3996 
3997         if (features & NETIF_F_HW_CSUM) {
3998                 /* Can checksum everything */
3999                 return true;
4000         }
4001 
4002         switch (protocol) {
4003         case htons(ETH_P_IP):
4004                 return !!(features & NETIF_F_IP_CSUM);
4005         case htons(ETH_P_IPV6):
4006                 return !!(features & NETIF_F_IPV6_CSUM);
4007         default:
4008                 return false;
4009         }
4010 }
4011 
4012 /* Map an ethertype into IP protocol if possible */
4013 static inline int eproto_to_ipproto(int eproto)
4014 {
4015         switch (eproto) {
4016         case htons(ETH_P_IP):
4017                 return IPPROTO_IP;
4018         case htons(ETH_P_IPV6):
4019                 return IPPROTO_IPV6;
4020         default:
4021                 return -1;
4022         }
4023 }
4024 
4025 #ifdef CONFIG_BUG
4026 void netdev_rx_csum_fault(struct net_device *dev);
4027 #else
4028 static inline void netdev_rx_csum_fault(struct net_device *dev)
4029 {
4030 }
4031 #endif
4032 /* rx skb timestamps */
4033 void net_enable_timestamp(void);
4034 void net_disable_timestamp(void);
4035 
4036 #ifdef CONFIG_PROC_FS
4037 int __init dev_proc_init(void);
4038 #else
4039 #define dev_proc_init() 0
4040 #endif
4041 
4042 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4043                                               struct sk_buff *skb, struct net_device *dev,
4044                                               bool more)
4045 {
4046         skb->xmit_more = more ? 1 : 0;
4047         return ops->ndo_start_xmit(skb, dev);
4048 }
4049 
4050 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4051                                             struct netdev_queue *txq, bool more)
4052 {
4053         const struct net_device_ops *ops = dev->netdev_ops;
4054         int rc;
4055 
4056         rc = __netdev_start_xmit(ops, skb, dev, more);
4057         if (rc == NETDEV_TX_OK)
4058                 txq_trans_update(txq);
4059 
4060         return rc;
4061 }
4062 
4063 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4064                                 const void *ns);
4065 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4066                                  const void *ns);
4067 
4068 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4069 {
4070         return netdev_class_create_file_ns(class_attr, NULL);
4071 }
4072 
4073 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4074 {
4075         netdev_class_remove_file_ns(class_attr, NULL);
4076 }
4077 
4078 extern struct kobj_ns_type_operations net_ns_type_operations;
4079 
4080 const char *netdev_drivername(const struct net_device *dev);
4081 
4082 void linkwatch_run_queue(void);
4083 
4084 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4085                                                           netdev_features_t f2)
4086 {
4087         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4088                 if (f1 & NETIF_F_HW_CSUM)
4089                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4090                 else
4091                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4092         }
4093 
4094         return f1 & f2;
4095 }
4096 
4097 static inline netdev_features_t netdev_get_wanted_features(
4098         struct net_device *dev)
4099 {
4100         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4101 }
4102 netdev_features_t netdev_increment_features(netdev_features_t all,
4103         netdev_features_t one, netdev_features_t mask);
4104 
4105 /* Allow TSO being used on stacked device :
4106  * Performing the GSO segmentation before last device
4107  * is a performance improvement.
4108  */
4109 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4110                                                         netdev_features_t mask)
4111 {
4112         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4113 }
4114 
4115 int __netdev_update_features(struct net_device *dev);
4116 void netdev_update_features(struct net_device *dev);
4117 void netdev_change_features(struct net_device *dev);
4118 
4119 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4120                                         struct net_device *dev);
4121 
4122 netdev_features_t passthru_features_check(struct sk_buff *skb,
4123                                           struct net_device *dev,
4124                                           netdev_features_t features);
4125 netdev_features_t netif_skb_features(struct sk_buff *skb);
4126 
4127 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4128 {
4129         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4130 
4131         /* check flags correspondence */
4132         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4133         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4134         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4135         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4136         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4137         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4138         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4139         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4140         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4141         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4142         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4143         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4144         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4145         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4146         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4147         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4148 
4149         return (features & feature) == feature;
4150 }
4151 
4152 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4153 {
4154         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4155                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4156 }
4157 
4158 static inline bool netif_needs_gso(struct sk_buff *skb,
4159                                    netdev_features_t features)
4160 {
4161         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4162                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4163                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4164 }
4165 
4166 static inline void netif_set_gso_max_size(struct net_device *dev,
4167                                           unsigned int size)
4168 {
4169         dev->gso_max_size = size;
4170 }
4171 
4172 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4173                                         int pulled_hlen, u16 mac_offset,
4174                                         int mac_len)
4175 {
4176         skb->protocol = protocol;
4177         skb->encapsulation = 1;
4178         skb_push(skb, pulled_hlen);
4179         skb_reset_transport_header(skb);
4180         skb->mac_header = mac_offset;
4181         skb->network_header = skb->mac_header + mac_len;
4182         skb->mac_len = mac_len;
4183 }
4184 
4185 static inline bool netif_is_macsec(const struct net_device *dev)
4186 {
4187         return dev->priv_flags & IFF_MACSEC;
4188 }
4189 
4190 static inline bool netif_is_macvlan(const struct net_device *dev)
4191 {
4192         return dev->priv_flags & IFF_MACVLAN;
4193 }
4194 
4195 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4196 {
4197         return dev->priv_flags & IFF_MACVLAN_PORT;
4198 }
4199 
4200 static inline bool netif_is_ipvlan(const struct net_device *dev)
4201 {
4202         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4203 }
4204 
4205 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4206 {
4207         return dev->priv_flags & IFF_IPVLAN_MASTER;
4208 }
4209 
4210 static inline bool netif_is_bond_master(const struct net_device *dev)
4211 {
4212         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4213 }
4214 
4215 static inline bool netif_is_bond_slave(const struct net_device *dev)
4216 {
4217         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4218 }
4219 
4220 static inline bool netif_supports_nofcs(struct net_device *dev)
4221 {
4222         return dev->priv_flags & IFF_SUPP_NOFCS;
4223 }
4224 
4225 static inline bool netif_is_l3_master(const struct net_device *dev)
4226 {
4227         return dev->priv_flags & IFF_L3MDEV_MASTER;
4228 }
4229 
4230 static inline bool netif_is_l3_slave(const struct net_device *dev)
4231 {
4232         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4233 }
4234 
4235 static inline bool netif_is_bridge_master(const struct net_device *dev)
4236 {
4237         return dev->priv_flags & IFF_EBRIDGE;
4238 }
4239 
4240 static inline bool netif_is_bridge_port(const struct net_device *dev)
4241 {
4242         return dev->priv_flags & IFF_BRIDGE_PORT;
4243 }
4244 
4245 static inline bool netif_is_ovs_master(const struct net_device *dev)
4246 {
4247         return dev->priv_flags & IFF_OPENVSWITCH;
4248 }
4249 
4250 static inline bool netif_is_team_master(const struct net_device *dev)
4251 {
4252         return dev->priv_flags & IFF_TEAM;
4253 }
4254 
4255 static inline bool netif_is_team_port(const struct net_device *dev)
4256 {
4257         return dev->priv_flags & IFF_TEAM_PORT;
4258 }
4259 
4260 static inline bool netif_is_lag_master(const struct net_device *dev)
4261 {
4262         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4263 }
4264 
4265 static inline bool netif_is_lag_port(const struct net_device *dev)
4266 {
4267         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4268 }
4269 
4270 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4271 {
4272         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4273 }
4274 
4275 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4276 static inline void netif_keep_dst(struct net_device *dev)
4277 {
4278         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4279 }
4280 
4281 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4282 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4283 {
4284         /* TODO: reserve and use an additional IFF bit, if we get more users */
4285         return dev->priv_flags & IFF_MACSEC;
4286 }
4287 
4288 extern struct pernet_operations __net_initdata loopback_net_ops;
4289 
4290 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4291 
4292 /* netdev_printk helpers, similar to dev_printk */
4293 
4294 static inline const char *netdev_name(const struct net_device *dev)
4295 {
4296         if (!dev->name[0] || strchr(dev->name, '%'))
4297                 return "(unnamed net_device)";
4298         return dev->name;
4299 }
4300 
4301 static inline const char *netdev_reg_state(const struct net_device *dev)
4302 {
4303         switch (dev->reg_state) {
4304         case NETREG_UNINITIALIZED: return " (uninitialized)";
4305         case NETREG_REGISTERED: return "";
4306         case NETREG_UNREGISTERING: return " (unregistering)";
4307         case NETREG_UNREGISTERED: return " (unregistered)";
4308         case NETREG_RELEASED: return " (released)";
4309         case NETREG_DUMMY: return " (dummy)";
4310         }
4311 
4312         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4313         return " (unknown)";
4314 }
4315 
4316 __printf(3, 4)
4317 void netdev_printk(const char *level, const struct net_device *dev,
4318                    const char *format, ...);
4319 __printf(2, 3)
4320 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4321 __printf(2, 3)
4322 void netdev_alert(const struct net_device *dev, const char *format, ...);
4323 __printf(2, 3)
4324 void netdev_crit(const struct net_device *dev, const char *format, ...);
4325 __printf(2, 3)
4326 void netdev_err(const struct net_device *dev, const char *format, ...);
4327 __printf(2, 3)
4328 void netdev_warn(const struct net_device *dev, const char *format, ...);
4329 __printf(2, 3)
4330 void netdev_notice(const struct net_device *dev, const char *format, ...);
4331 __printf(2, 3)
4332 void netdev_info(const struct net_device *dev, const char *format, ...);
4333 
4334 #define MODULE_ALIAS_NETDEV(device) \
4335         MODULE_ALIAS("netdev-" device)
4336 
4337 #if defined(CONFIG_DYNAMIC_DEBUG)
4338 #define netdev_dbg(__dev, format, args...)                      \
4339 do {                                                            \
4340         dynamic_netdev_dbg(__dev, format, ##args);              \
4341 } while (0)
4342 #elif defined(DEBUG)
4343 #define netdev_dbg(__dev, format, args...)                      \
4344         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4345 #else
4346 #define netdev_dbg(__dev, format, args...)                      \
4347 ({                                                              \
4348         if (0)                                                  \
4349                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4350 })
4351 #endif
4352 
4353 #if defined(VERBOSE_DEBUG)
4354 #define netdev_vdbg     netdev_dbg
4355 #else
4356 
4357 #define netdev_vdbg(dev, format, args...)                       \
4358 ({                                                              \
4359         if (0)                                                  \
4360                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4361         0;                                                      \
4362 })
4363 #endif
4364 
4365 /*
4366  * netdev_WARN() acts like dev_printk(), but with the key difference
4367  * of using a WARN/WARN_ON to get the message out, including the
4368  * file/line information and a backtrace.
4369  */
4370 #define netdev_WARN(dev, format, args...)                       \
4371         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4372              netdev_reg_state(dev), ##args)
4373 
4374 /* netif printk helpers, similar to netdev_printk */
4375 
4376 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4377 do {                                                            \
4378         if (netif_msg_##type(priv))                             \
4379                 netdev_printk(level, (dev), fmt, ##args);       \
4380 } while (0)
4381 
4382 #define netif_level(level, priv, type, dev, fmt, args...)       \
4383 do {                                                            \
4384         if (netif_msg_##type(priv))                             \
4385                 netdev_##level(dev, fmt, ##args);               \
4386 } while (0)
4387 
4388 #define netif_emerg(priv, type, dev, fmt, args...)              \
4389         netif_level(emerg, priv, type, dev, fmt, ##args)
4390 #define netif_alert(priv, type, dev, fmt, args...)              \
4391         netif_level(alert, priv, type, dev, fmt, ##args)
4392 #define netif_crit(priv, type, dev, fmt, args...)               \
4393         netif_level(crit, priv, type, dev, fmt, ##args)
4394 #define netif_err(priv, type, dev, fmt, args...)                \
4395         netif_level(err, priv, type, dev, fmt, ##args)
4396 #define netif_warn(priv, type, dev, fmt, args...)               \
4397         netif_level(warn, priv, type, dev, fmt, ##args)
4398 #define netif_notice(priv, type, dev, fmt, args...)             \
4399         netif_level(notice, priv, type, dev, fmt, ##args)
4400 #define netif_info(priv, type, dev, fmt, args...)               \
4401         netif_level(info, priv, type, dev, fmt, ##args)
4402 
4403 #if defined(CONFIG_DYNAMIC_DEBUG)
4404 #define netif_dbg(priv, type, netdev, format, args...)          \
4405 do {                                                            \
4406         if (netif_msg_##type(priv))                             \
4407                 dynamic_netdev_dbg(netdev, format, ##args);     \
4408 } while (0)
4409 #elif defined(DEBUG)
4410 #define netif_dbg(priv, type, dev, format, args...)             \
4411         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4412 #else
4413 #define netif_dbg(priv, type, dev, format, args...)                     \
4414 ({                                                                      \
4415         if (0)                                                          \
4416                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4417         0;                                                              \
4418 })
4419 #endif
4420 
4421 #if defined(VERBOSE_DEBUG)
4422 #define netif_vdbg      netif_dbg
4423 #else
4424 #define netif_vdbg(priv, type, dev, format, args...)            \
4425 ({                                                              \
4426         if (0)                                                  \
4427                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4428         0;                                                      \
4429 })
4430 #endif
4431 
4432 /*
4433  *      The list of packet types we will receive (as opposed to discard)
4434  *      and the routines to invoke.
4435  *
4436  *      Why 16. Because with 16 the only overlap we get on a hash of the
4437  *      low nibble of the protocol value is RARP/SNAP/X.25.
4438  *
4439  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4440  *             sure which should go first, but I bet it won't make much
4441  *             difference if we are running VLANs.  The good news is that
4442  *             this protocol won't be in the list unless compiled in, so
4443  *             the average user (w/out VLANs) will not be adversely affected.
4444  *             --BLG
4445  *
4446  *              0800    IP
4447  *              8100    802.1Q VLAN
4448  *              0001    802.3
4449  *              0002    AX.25
4450  *              0004    802.2
4451  *              8035    RARP
4452  *              0005    SNAP
4453  *              0805    X.25
4454  *              0806    ARP
4455  *              8137    IPX
4456  *              0009    Localtalk
4457  *              86DD    IPv6
4458  */
4459 #define PTYPE_HASH_SIZE (16)
4460 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4461 
4462 #endif  /* _LINUX_NETDEVICE_H */
4463 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us