Version:  2.0.40 2.2.26 2.4.37 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/pm_qos.h>
 29 #include <linux/timer.h>
 30 #include <linux/bug.h>
 31 #include <linux/delay.h>
 32 #include <linux/atomic.h>
 33 #include <linux/prefetch.h>
 34 #include <asm/cache.h>
 35 #include <asm/byteorder.h>
 36 
 37 #include <linux/percpu.h>
 38 #include <linux/rculist.h>
 39 #include <linux/dmaengine.h>
 40 #include <linux/workqueue.h>
 41 #include <linux/dynamic_queue_limits.h>
 42 
 43 #include <linux/ethtool.h>
 44 #include <net/net_namespace.h>
 45 #include <net/dsa.h>
 46 #ifdef CONFIG_DCB
 47 #include <net/dcbnl.h>
 48 #endif
 49 #include <net/netprio_cgroup.h>
 50 
 51 #include <linux/netdev_features.h>
 52 #include <linux/neighbour.h>
 53 #include <uapi/linux/netdevice.h>
 54 
 55 struct netpoll_info;
 56 struct device;
 57 struct phy_device;
 58 /* 802.11 specific */
 59 struct wireless_dev;
 60 
 61 void netdev_set_default_ethtool_ops(struct net_device *dev,
 62                                     const struct ethtool_ops *ops);
 63 
 64 /* Backlog congestion levels */
 65 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 66 #define NET_RX_DROP             1       /* packet dropped */
 67 
 68 /*
 69  * Transmit return codes: transmit return codes originate from three different
 70  * namespaces:
 71  *
 72  * - qdisc return codes
 73  * - driver transmit return codes
 74  * - errno values
 75  *
 76  * Drivers are allowed to return any one of those in their hard_start_xmit()
 77  * function. Real network devices commonly used with qdiscs should only return
 78  * the driver transmit return codes though - when qdiscs are used, the actual
 79  * transmission happens asynchronously, so the value is not propagated to
 80  * higher layers. Virtual network devices transmit synchronously, in this case
 81  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 82  * others are propagated to higher layers.
 83  */
 84 
 85 /* qdisc ->enqueue() return codes. */
 86 #define NET_XMIT_SUCCESS        0x00
 87 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 88 #define NET_XMIT_CN             0x02    /* congestion notification      */
 89 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 90 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 91 
 92 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 93  * indicates that the device will soon be dropping packets, or already drops
 94  * some packets of the same priority; prompting us to send less aggressively. */
 95 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 96 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 97 
 98 /* Driver transmit return codes */
 99 #define NETDEV_TX_MASK          0xf0
100 
101 enum netdev_tx {
102         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
103         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
104         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
105         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
106 };
107 typedef enum netdev_tx netdev_tx_t;
108 
109 /*
110  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
111  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
112  */
113 static inline bool dev_xmit_complete(int rc)
114 {
115         /*
116          * Positive cases with an skb consumed by a driver:
117          * - successful transmission (rc == NETDEV_TX_OK)
118          * - error while transmitting (rc < 0)
119          * - error while queueing to a different device (rc & NET_XMIT_MASK)
120          */
121         if (likely(rc < NET_XMIT_MASK))
122                 return true;
123 
124         return false;
125 }
126 
127 /*
128  *      Compute the worst case header length according to the protocols
129  *      used.
130  */
131 
132 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
133 # if defined(CONFIG_MAC80211_MESH)
134 #  define LL_MAX_HEADER 128
135 # else
136 #  define LL_MAX_HEADER 96
137 # endif
138 #else
139 # define LL_MAX_HEADER 32
140 #endif
141 
142 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
143     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
144 #define MAX_HEADER LL_MAX_HEADER
145 #else
146 #define MAX_HEADER (LL_MAX_HEADER + 48)
147 #endif
148 
149 /*
150  *      Old network device statistics. Fields are native words
151  *      (unsigned long) so they can be read and written atomically.
152  */
153 
154 struct net_device_stats {
155         unsigned long   rx_packets;
156         unsigned long   tx_packets;
157         unsigned long   rx_bytes;
158         unsigned long   tx_bytes;
159         unsigned long   rx_errors;
160         unsigned long   tx_errors;
161         unsigned long   rx_dropped;
162         unsigned long   tx_dropped;
163         unsigned long   multicast;
164         unsigned long   collisions;
165         unsigned long   rx_length_errors;
166         unsigned long   rx_over_errors;
167         unsigned long   rx_crc_errors;
168         unsigned long   rx_frame_errors;
169         unsigned long   rx_fifo_errors;
170         unsigned long   rx_missed_errors;
171         unsigned long   tx_aborted_errors;
172         unsigned long   tx_carrier_errors;
173         unsigned long   tx_fifo_errors;
174         unsigned long   tx_heartbeat_errors;
175         unsigned long   tx_window_errors;
176         unsigned long   rx_compressed;
177         unsigned long   tx_compressed;
178 };
179 
180 
181 #include <linux/cache.h>
182 #include <linux/skbuff.h>
183 
184 #ifdef CONFIG_RPS
185 #include <linux/static_key.h>
186 extern struct static_key rps_needed;
187 #endif
188 
189 struct neighbour;
190 struct neigh_parms;
191 struct sk_buff;
192 
193 struct netdev_hw_addr {
194         struct list_head        list;
195         unsigned char           addr[MAX_ADDR_LEN];
196         unsigned char           type;
197 #define NETDEV_HW_ADDR_T_LAN            1
198 #define NETDEV_HW_ADDR_T_SAN            2
199 #define NETDEV_HW_ADDR_T_SLAVE          3
200 #define NETDEV_HW_ADDR_T_UNICAST        4
201 #define NETDEV_HW_ADDR_T_MULTICAST      5
202         bool                    global_use;
203         int                     sync_cnt;
204         int                     refcount;
205         int                     synced;
206         struct rcu_head         rcu_head;
207 };
208 
209 struct netdev_hw_addr_list {
210         struct list_head        list;
211         int                     count;
212 };
213 
214 #define netdev_hw_addr_list_count(l) ((l)->count)
215 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
216 #define netdev_hw_addr_list_for_each(ha, l) \
217         list_for_each_entry(ha, &(l)->list, list)
218 
219 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
220 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
221 #define netdev_for_each_uc_addr(ha, dev) \
222         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
223 
224 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
225 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
226 #define netdev_for_each_mc_addr(ha, dev) \
227         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
228 
229 struct hh_cache {
230         u16             hh_len;
231         u16             __pad;
232         seqlock_t       hh_lock;
233 
234         /* cached hardware header; allow for machine alignment needs.        */
235 #define HH_DATA_MOD     16
236 #define HH_DATA_OFF(__len) \
237         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
238 #define HH_DATA_ALIGN(__len) \
239         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
240         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
241 };
242 
243 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
244  * Alternative is:
245  *   dev->hard_header_len ? (dev->hard_header_len +
246  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
247  *
248  * We could use other alignment values, but we must maintain the
249  * relationship HH alignment <= LL alignment.
250  */
251 #define LL_RESERVED_SPACE(dev) \
252         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
253 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
254         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
255 
256 struct header_ops {
257         int     (*create) (struct sk_buff *skb, struct net_device *dev,
258                            unsigned short type, const void *daddr,
259                            const void *saddr, unsigned int len);
260         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
261         int     (*rebuild)(struct sk_buff *skb);
262         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
263         void    (*cache_update)(struct hh_cache *hh,
264                                 const struct net_device *dev,
265                                 const unsigned char *haddr);
266 };
267 
268 /* These flag bits are private to the generic network queueing
269  * layer, they may not be explicitly referenced by any other
270  * code.
271  */
272 
273 enum netdev_state_t {
274         __LINK_STATE_START,
275         __LINK_STATE_PRESENT,
276         __LINK_STATE_NOCARRIER,
277         __LINK_STATE_LINKWATCH_PENDING,
278         __LINK_STATE_DORMANT,
279 };
280 
281 
282 /*
283  * This structure holds at boot time configured netdevice settings. They
284  * are then used in the device probing.
285  */
286 struct netdev_boot_setup {
287         char name[IFNAMSIZ];
288         struct ifmap map;
289 };
290 #define NETDEV_BOOT_SETUP_MAX 8
291 
292 int __init netdev_boot_setup(char *str);
293 
294 /*
295  * Structure for NAPI scheduling similar to tasklet but with weighting
296  */
297 struct napi_struct {
298         /* The poll_list must only be managed by the entity which
299          * changes the state of the NAPI_STATE_SCHED bit.  This means
300          * whoever atomically sets that bit can add this napi_struct
301          * to the per-cpu poll_list, and whoever clears that bit
302          * can remove from the list right before clearing the bit.
303          */
304         struct list_head        poll_list;
305 
306         unsigned long           state;
307         int                     weight;
308         unsigned int            gro_count;
309         int                     (*poll)(struct napi_struct *, int);
310 #ifdef CONFIG_NETPOLL
311         spinlock_t              poll_lock;
312         int                     poll_owner;
313 #endif
314         struct net_device       *dev;
315         struct sk_buff          *gro_list;
316         struct sk_buff          *skb;
317         struct list_head        dev_list;
318         struct hlist_node       napi_hash_node;
319         unsigned int            napi_id;
320 };
321 
322 enum {
323         NAPI_STATE_SCHED,       /* Poll is scheduled */
324         NAPI_STATE_DISABLE,     /* Disable pending */
325         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
326         NAPI_STATE_HASHED,      /* In NAPI hash */
327 };
328 
329 enum gro_result {
330         GRO_MERGED,
331         GRO_MERGED_FREE,
332         GRO_HELD,
333         GRO_NORMAL,
334         GRO_DROP,
335 };
336 typedef enum gro_result gro_result_t;
337 
338 /*
339  * enum rx_handler_result - Possible return values for rx_handlers.
340  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
341  * further.
342  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
343  * case skb->dev was changed by rx_handler.
344  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
345  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
346  *
347  * rx_handlers are functions called from inside __netif_receive_skb(), to do
348  * special processing of the skb, prior to delivery to protocol handlers.
349  *
350  * Currently, a net_device can only have a single rx_handler registered. Trying
351  * to register a second rx_handler will return -EBUSY.
352  *
353  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
354  * To unregister a rx_handler on a net_device, use
355  * netdev_rx_handler_unregister().
356  *
357  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
358  * do with the skb.
359  *
360  * If the rx_handler consumed to skb in some way, it should return
361  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
362  * the skb to be delivered in some other ways.
363  *
364  * If the rx_handler changed skb->dev, to divert the skb to another
365  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
366  * new device will be called if it exists.
367  *
368  * If the rx_handler consider the skb should be ignored, it should return
369  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
370  * are registered on exact device (ptype->dev == skb->dev).
371  *
372  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
373  * delivered, it should return RX_HANDLER_PASS.
374  *
375  * A device without a registered rx_handler will behave as if rx_handler
376  * returned RX_HANDLER_PASS.
377  */
378 
379 enum rx_handler_result {
380         RX_HANDLER_CONSUMED,
381         RX_HANDLER_ANOTHER,
382         RX_HANDLER_EXACT,
383         RX_HANDLER_PASS,
384 };
385 typedef enum rx_handler_result rx_handler_result_t;
386 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
387 
388 void __napi_schedule(struct napi_struct *n);
389 
390 static inline bool napi_disable_pending(struct napi_struct *n)
391 {
392         return test_bit(NAPI_STATE_DISABLE, &n->state);
393 }
394 
395 /**
396  *      napi_schedule_prep - check if napi can be scheduled
397  *      @n: napi context
398  *
399  * Test if NAPI routine is already running, and if not mark
400  * it as running.  This is used as a condition variable
401  * insure only one NAPI poll instance runs.  We also make
402  * sure there is no pending NAPI disable.
403  */
404 static inline bool napi_schedule_prep(struct napi_struct *n)
405 {
406         return !napi_disable_pending(n) &&
407                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
408 }
409 
410 /**
411  *      napi_schedule - schedule NAPI poll
412  *      @n: napi context
413  *
414  * Schedule NAPI poll routine to be called if it is not already
415  * running.
416  */
417 static inline void napi_schedule(struct napi_struct *n)
418 {
419         if (napi_schedule_prep(n))
420                 __napi_schedule(n);
421 }
422 
423 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
424 static inline bool napi_reschedule(struct napi_struct *napi)
425 {
426         if (napi_schedule_prep(napi)) {
427                 __napi_schedule(napi);
428                 return true;
429         }
430         return false;
431 }
432 
433 /**
434  *      napi_complete - NAPI processing complete
435  *      @n: napi context
436  *
437  * Mark NAPI processing as complete.
438  */
439 void __napi_complete(struct napi_struct *n);
440 void napi_complete(struct napi_struct *n);
441 
442 /**
443  *      napi_by_id - lookup a NAPI by napi_id
444  *      @napi_id: hashed napi_id
445  *
446  * lookup @napi_id in napi_hash table
447  * must be called under rcu_read_lock()
448  */
449 struct napi_struct *napi_by_id(unsigned int napi_id);
450 
451 /**
452  *      napi_hash_add - add a NAPI to global hashtable
453  *      @napi: napi context
454  *
455  * generate a new napi_id and store a @napi under it in napi_hash
456  */
457 void napi_hash_add(struct napi_struct *napi);
458 
459 /**
460  *      napi_hash_del - remove a NAPI from global table
461  *      @napi: napi context
462  *
463  * Warning: caller must observe rcu grace period
464  * before freeing memory containing @napi
465  */
466 void napi_hash_del(struct napi_struct *napi);
467 
468 /**
469  *      napi_disable - prevent NAPI from scheduling
470  *      @n: napi context
471  *
472  * Stop NAPI from being scheduled on this context.
473  * Waits till any outstanding processing completes.
474  */
475 static inline void napi_disable(struct napi_struct *n)
476 {
477         might_sleep();
478         set_bit(NAPI_STATE_DISABLE, &n->state);
479         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
480                 msleep(1);
481         clear_bit(NAPI_STATE_DISABLE, &n->state);
482 }
483 
484 /**
485  *      napi_enable - enable NAPI scheduling
486  *      @n: napi context
487  *
488  * Resume NAPI from being scheduled on this context.
489  * Must be paired with napi_disable.
490  */
491 static inline void napi_enable(struct napi_struct *n)
492 {
493         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
494         smp_mb__before_atomic();
495         clear_bit(NAPI_STATE_SCHED, &n->state);
496 }
497 
498 #ifdef CONFIG_SMP
499 /**
500  *      napi_synchronize - wait until NAPI is not running
501  *      @n: napi context
502  *
503  * Wait until NAPI is done being scheduled on this context.
504  * Waits till any outstanding processing completes but
505  * does not disable future activations.
506  */
507 static inline void napi_synchronize(const struct napi_struct *n)
508 {
509         while (test_bit(NAPI_STATE_SCHED, &n->state))
510                 msleep(1);
511 }
512 #else
513 # define napi_synchronize(n)    barrier()
514 #endif
515 
516 enum netdev_queue_state_t {
517         __QUEUE_STATE_DRV_XOFF,
518         __QUEUE_STATE_STACK_XOFF,
519         __QUEUE_STATE_FROZEN,
520 };
521 
522 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
523 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
524 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
525 
526 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
527 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
528                                         QUEUE_STATE_FROZEN)
529 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
530                                         QUEUE_STATE_FROZEN)
531 
532 /*
533  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
534  * netif_tx_* functions below are used to manipulate this flag.  The
535  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
536  * queue independently.  The netif_xmit_*stopped functions below are called
537  * to check if the queue has been stopped by the driver or stack (either
538  * of the XOFF bits are set in the state).  Drivers should not need to call
539  * netif_xmit*stopped functions, they should only be using netif_tx_*.
540  */
541 
542 struct netdev_queue {
543 /*
544  * read mostly part
545  */
546         struct net_device       *dev;
547         struct Qdisc __rcu      *qdisc;
548         struct Qdisc            *qdisc_sleeping;
549 #ifdef CONFIG_SYSFS
550         struct kobject          kobj;
551 #endif
552 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
553         int                     numa_node;
554 #endif
555 /*
556  * write mostly part
557  */
558         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
559         int                     xmit_lock_owner;
560         /*
561          * please use this field instead of dev->trans_start
562          */
563         unsigned long           trans_start;
564 
565         /*
566          * Number of TX timeouts for this queue
567          * (/sys/class/net/DEV/Q/trans_timeout)
568          */
569         unsigned long           trans_timeout;
570 
571         unsigned long           state;
572 
573 #ifdef CONFIG_BQL
574         struct dql              dql;
575 #endif
576 } ____cacheline_aligned_in_smp;
577 
578 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
579 {
580 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
581         return q->numa_node;
582 #else
583         return NUMA_NO_NODE;
584 #endif
585 }
586 
587 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590         q->numa_node = node;
591 #endif
592 }
593 
594 #ifdef CONFIG_RPS
595 /*
596  * This structure holds an RPS map which can be of variable length.  The
597  * map is an array of CPUs.
598  */
599 struct rps_map {
600         unsigned int len;
601         struct rcu_head rcu;
602         u16 cpus[0];
603 };
604 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
605 
606 /*
607  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
608  * tail pointer for that CPU's input queue at the time of last enqueue, and
609  * a hardware filter index.
610  */
611 struct rps_dev_flow {
612         u16 cpu;
613         u16 filter;
614         unsigned int last_qtail;
615 };
616 #define RPS_NO_FILTER 0xffff
617 
618 /*
619  * The rps_dev_flow_table structure contains a table of flow mappings.
620  */
621 struct rps_dev_flow_table {
622         unsigned int mask;
623         struct rcu_head rcu;
624         struct rps_dev_flow flows[0];
625 };
626 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
627     ((_num) * sizeof(struct rps_dev_flow)))
628 
629 /*
630  * The rps_sock_flow_table contains mappings of flows to the last CPU
631  * on which they were processed by the application (set in recvmsg).
632  */
633 struct rps_sock_flow_table {
634         unsigned int mask;
635         u16 ents[0];
636 };
637 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
638     ((_num) * sizeof(u16)))
639 
640 #define RPS_NO_CPU 0xffff
641 
642 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
643                                         u32 hash)
644 {
645         if (table && hash) {
646                 unsigned int cpu, index = hash & table->mask;
647 
648                 /* We only give a hint, preemption can change cpu under us */
649                 cpu = raw_smp_processor_id();
650 
651                 if (table->ents[index] != cpu)
652                         table->ents[index] = cpu;
653         }
654 }
655 
656 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
657                                        u32 hash)
658 {
659         if (table && hash)
660                 table->ents[hash & table->mask] = RPS_NO_CPU;
661 }
662 
663 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
664 
665 #ifdef CONFIG_RFS_ACCEL
666 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
667                          u16 filter_id);
668 #endif
669 #endif /* CONFIG_RPS */
670 
671 /* This structure contains an instance of an RX queue. */
672 struct netdev_rx_queue {
673 #ifdef CONFIG_RPS
674         struct rps_map __rcu            *rps_map;
675         struct rps_dev_flow_table __rcu *rps_flow_table;
676 #endif
677         struct kobject                  kobj;
678         struct net_device               *dev;
679 } ____cacheline_aligned_in_smp;
680 
681 /*
682  * RX queue sysfs structures and functions.
683  */
684 struct rx_queue_attribute {
685         struct attribute attr;
686         ssize_t (*show)(struct netdev_rx_queue *queue,
687             struct rx_queue_attribute *attr, char *buf);
688         ssize_t (*store)(struct netdev_rx_queue *queue,
689             struct rx_queue_attribute *attr, const char *buf, size_t len);
690 };
691 
692 #ifdef CONFIG_XPS
693 /*
694  * This structure holds an XPS map which can be of variable length.  The
695  * map is an array of queues.
696  */
697 struct xps_map {
698         unsigned int len;
699         unsigned int alloc_len;
700         struct rcu_head rcu;
701         u16 queues[0];
702 };
703 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
704 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
705     / sizeof(u16))
706 
707 /*
708  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
709  */
710 struct xps_dev_maps {
711         struct rcu_head rcu;
712         struct xps_map __rcu *cpu_map[0];
713 };
714 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
715     (nr_cpu_ids * sizeof(struct xps_map *)))
716 #endif /* CONFIG_XPS */
717 
718 #define TC_MAX_QUEUE    16
719 #define TC_BITMASK      15
720 /* HW offloaded queuing disciplines txq count and offset maps */
721 struct netdev_tc_txq {
722         u16 count;
723         u16 offset;
724 };
725 
726 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
727 /*
728  * This structure is to hold information about the device
729  * configured to run FCoE protocol stack.
730  */
731 struct netdev_fcoe_hbainfo {
732         char    manufacturer[64];
733         char    serial_number[64];
734         char    hardware_version[64];
735         char    driver_version[64];
736         char    optionrom_version[64];
737         char    firmware_version[64];
738         char    model[256];
739         char    model_description[256];
740 };
741 #endif
742 
743 #define MAX_PHYS_PORT_ID_LEN 32
744 
745 /* This structure holds a unique identifier to identify the
746  * physical port used by a netdevice.
747  */
748 struct netdev_phys_port_id {
749         unsigned char id[MAX_PHYS_PORT_ID_LEN];
750         unsigned char id_len;
751 };
752 
753 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
754                                        struct sk_buff *skb);
755 
756 /*
757  * This structure defines the management hooks for network devices.
758  * The following hooks can be defined; unless noted otherwise, they are
759  * optional and can be filled with a null pointer.
760  *
761  * int (*ndo_init)(struct net_device *dev);
762  *     This function is called once when network device is registered.
763  *     The network device can use this to any late stage initializaton
764  *     or semantic validattion. It can fail with an error code which will
765  *     be propogated back to register_netdev
766  *
767  * void (*ndo_uninit)(struct net_device *dev);
768  *     This function is called when device is unregistered or when registration
769  *     fails. It is not called if init fails.
770  *
771  * int (*ndo_open)(struct net_device *dev);
772  *     This function is called when network device transistions to the up
773  *     state.
774  *
775  * int (*ndo_stop)(struct net_device *dev);
776  *     This function is called when network device transistions to the down
777  *     state.
778  *
779  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
780  *                               struct net_device *dev);
781  *      Called when a packet needs to be transmitted.
782  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
783  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
784  *      Required can not be NULL.
785  *
786  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
787  *                         void *accel_priv, select_queue_fallback_t fallback);
788  *      Called to decide which queue to when device supports multiple
789  *      transmit queues.
790  *
791  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
792  *      This function is called to allow device receiver to make
793  *      changes to configuration when multicast or promiscious is enabled.
794  *
795  * void (*ndo_set_rx_mode)(struct net_device *dev);
796  *      This function is called device changes address list filtering.
797  *      If driver handles unicast address filtering, it should set
798  *      IFF_UNICAST_FLT to its priv_flags.
799  *
800  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
801  *      This function  is called when the Media Access Control address
802  *      needs to be changed. If this interface is not defined, the
803  *      mac address can not be changed.
804  *
805  * int (*ndo_validate_addr)(struct net_device *dev);
806  *      Test if Media Access Control address is valid for the device.
807  *
808  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
809  *      Called when a user request an ioctl which can't be handled by
810  *      the generic interface code. If not defined ioctl's return
811  *      not supported error code.
812  *
813  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
814  *      Used to set network devices bus interface parameters. This interface
815  *      is retained for legacy reason, new devices should use the bus
816  *      interface (PCI) for low level management.
817  *
818  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
819  *      Called when a user wants to change the Maximum Transfer Unit
820  *      of a device. If not defined, any request to change MTU will
821  *      will return an error.
822  *
823  * void (*ndo_tx_timeout)(struct net_device *dev);
824  *      Callback uses when the transmitter has not made any progress
825  *      for dev->watchdog ticks.
826  *
827  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
828  *                      struct rtnl_link_stats64 *storage);
829  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
830  *      Called when a user wants to get the network device usage
831  *      statistics. Drivers must do one of the following:
832  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
833  *         rtnl_link_stats64 structure passed by the caller.
834  *      2. Define @ndo_get_stats to update a net_device_stats structure
835  *         (which should normally be dev->stats) and return a pointer to
836  *         it. The structure may be changed asynchronously only if each
837  *         field is written atomically.
838  *      3. Update dev->stats asynchronously and atomically, and define
839  *         neither operation.
840  *
841  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
842  *      If device support VLAN filtering this function is called when a
843  *      VLAN id is registered.
844  *
845  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
846  *      If device support VLAN filtering this function is called when a
847  *      VLAN id is unregistered.
848  *
849  * void (*ndo_poll_controller)(struct net_device *dev);
850  *
851  *      SR-IOV management functions.
852  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
853  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
854  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
855  *                        int max_tx_rate);
856  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
857  * int (*ndo_get_vf_config)(struct net_device *dev,
858  *                          int vf, struct ifla_vf_info *ivf);
859  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
860  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
861  *                        struct nlattr *port[]);
862  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
863  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
864  *      Called to setup 'tc' number of traffic classes in the net device. This
865  *      is always called from the stack with the rtnl lock held and netif tx
866  *      queues stopped. This allows the netdevice to perform queue management
867  *      safely.
868  *
869  *      Fiber Channel over Ethernet (FCoE) offload functions.
870  * int (*ndo_fcoe_enable)(struct net_device *dev);
871  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
872  *      so the underlying device can perform whatever needed configuration or
873  *      initialization to support acceleration of FCoE traffic.
874  *
875  * int (*ndo_fcoe_disable)(struct net_device *dev);
876  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
877  *      so the underlying device can perform whatever needed clean-ups to
878  *      stop supporting acceleration of FCoE traffic.
879  *
880  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
881  *                           struct scatterlist *sgl, unsigned int sgc);
882  *      Called when the FCoE Initiator wants to initialize an I/O that
883  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
884  *      perform necessary setup and returns 1 to indicate the device is set up
885  *      successfully to perform DDP on this I/O, otherwise this returns 0.
886  *
887  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
888  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
889  *      indicated by the FC exchange id 'xid', so the underlying device can
890  *      clean up and reuse resources for later DDP requests.
891  *
892  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
893  *                            struct scatterlist *sgl, unsigned int sgc);
894  *      Called when the FCoE Target wants to initialize an I/O that
895  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
896  *      perform necessary setup and returns 1 to indicate the device is set up
897  *      successfully to perform DDP on this I/O, otherwise this returns 0.
898  *
899  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
900  *                             struct netdev_fcoe_hbainfo *hbainfo);
901  *      Called when the FCoE Protocol stack wants information on the underlying
902  *      device. This information is utilized by the FCoE protocol stack to
903  *      register attributes with Fiber Channel management service as per the
904  *      FC-GS Fabric Device Management Information(FDMI) specification.
905  *
906  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
907  *      Called when the underlying device wants to override default World Wide
908  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
909  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
910  *      protocol stack to use.
911  *
912  *      RFS acceleration.
913  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
914  *                          u16 rxq_index, u32 flow_id);
915  *      Set hardware filter for RFS.  rxq_index is the target queue index;
916  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
917  *      Return the filter ID on success, or a negative error code.
918  *
919  *      Slave management functions (for bridge, bonding, etc).
920  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
921  *      Called to make another netdev an underling.
922  *
923  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
924  *      Called to release previously enslaved netdev.
925  *
926  *      Feature/offload setting functions.
927  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
928  *              netdev_features_t features);
929  *      Adjusts the requested feature flags according to device-specific
930  *      constraints, and returns the resulting flags. Must not modify
931  *      the device state.
932  *
933  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
934  *      Called to update device configuration to new features. Passed
935  *      feature set might be less than what was returned by ndo_fix_features()).
936  *      Must return >0 or -errno if it changed dev->features itself.
937  *
938  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
939  *                    struct net_device *dev,
940  *                    const unsigned char *addr, u16 flags)
941  *      Adds an FDB entry to dev for addr.
942  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
943  *                    struct net_device *dev,
944  *                    const unsigned char *addr)
945  *      Deletes the FDB entry from dev coresponding to addr.
946  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
947  *                     struct net_device *dev, struct net_device *filter_dev,
948  *                     int idx)
949  *      Used to add FDB entries to dump requests. Implementers should add
950  *      entries to skb and update idx with the number of entries.
951  *
952  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
953  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
954  *                           struct net_device *dev, u32 filter_mask)
955  *
956  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
957  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
958  *      which do not represent real hardware may define this to allow their
959  *      userspace components to manage their virtual carrier state. Devices
960  *      that determine carrier state from physical hardware properties (eg
961  *      network cables) or protocol-dependent mechanisms (eg
962  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
963  *
964  * int (*ndo_get_phys_port_id)(struct net_device *dev,
965  *                             struct netdev_phys_port_id *ppid);
966  *      Called to get ID of physical port of this device. If driver does
967  *      not implement this, it is assumed that the hw is not able to have
968  *      multiple net devices on single physical port.
969  *
970  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
971  *                            sa_family_t sa_family, __be16 port);
972  *      Called by vxlan to notiy a driver about the UDP port and socket
973  *      address family that vxlan is listnening to. It is called only when
974  *      a new port starts listening. The operation is protected by the
975  *      vxlan_net->sock_lock.
976  *
977  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
978  *                            sa_family_t sa_family, __be16 port);
979  *      Called by vxlan to notify the driver about a UDP port and socket
980  *      address family that vxlan is not listening to anymore. The operation
981  *      is protected by the vxlan_net->sock_lock.
982  *
983  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
984  *                               struct net_device *dev)
985  *      Called by upper layer devices to accelerate switching or other
986  *      station functionality into hardware. 'pdev is the lowerdev
987  *      to use for the offload and 'dev' is the net device that will
988  *      back the offload. Returns a pointer to the private structure
989  *      the upper layer will maintain.
990  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
991  *      Called by upper layer device to delete the station created
992  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
993  *      the station and priv is the structure returned by the add
994  *      operation.
995  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
996  *                                    struct net_device *dev,
997  *                                    void *priv);
998  *      Callback to use for xmit over the accelerated station. This
999  *      is used in place of ndo_start_xmit on accelerated net
1000  *      devices.
1001  * bool (*ndo_gso_check) (struct sk_buff *skb,
1002  *                        struct net_device *dev);
1003  *      Called by core transmit path to determine if device is capable of
1004  *      performing GSO on a packet. The device returns true if it is
1005  *      able to GSO the packet, false otherwise. If the return value is
1006  *      false the stack will do software GSO.
1007  */
1008 struct net_device_ops {
1009         int                     (*ndo_init)(struct net_device *dev);
1010         void                    (*ndo_uninit)(struct net_device *dev);
1011         int                     (*ndo_open)(struct net_device *dev);
1012         int                     (*ndo_stop)(struct net_device *dev);
1013         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1014                                                    struct net_device *dev);
1015         u16                     (*ndo_select_queue)(struct net_device *dev,
1016                                                     struct sk_buff *skb,
1017                                                     void *accel_priv,
1018                                                     select_queue_fallback_t fallback);
1019         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1020                                                        int flags);
1021         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1022         int                     (*ndo_set_mac_address)(struct net_device *dev,
1023                                                        void *addr);
1024         int                     (*ndo_validate_addr)(struct net_device *dev);
1025         int                     (*ndo_do_ioctl)(struct net_device *dev,
1026                                                 struct ifreq *ifr, int cmd);
1027         int                     (*ndo_set_config)(struct net_device *dev,
1028                                                   struct ifmap *map);
1029         int                     (*ndo_change_mtu)(struct net_device *dev,
1030                                                   int new_mtu);
1031         int                     (*ndo_neigh_setup)(struct net_device *dev,
1032                                                    struct neigh_parms *);
1033         void                    (*ndo_tx_timeout) (struct net_device *dev);
1034 
1035         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1036                                                      struct rtnl_link_stats64 *storage);
1037         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1038 
1039         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1040                                                        __be16 proto, u16 vid);
1041         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1042                                                         __be16 proto, u16 vid);
1043 #ifdef CONFIG_NET_POLL_CONTROLLER
1044         void                    (*ndo_poll_controller)(struct net_device *dev);
1045         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1046                                                      struct netpoll_info *info);
1047         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1048 #endif
1049 #ifdef CONFIG_NET_RX_BUSY_POLL
1050         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1051 #endif
1052         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1053                                                   int queue, u8 *mac);
1054         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1055                                                    int queue, u16 vlan, u8 qos);
1056         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1057                                                    int vf, int min_tx_rate,
1058                                                    int max_tx_rate);
1059         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1060                                                        int vf, bool setting);
1061         int                     (*ndo_get_vf_config)(struct net_device *dev,
1062                                                      int vf,
1063                                                      struct ifla_vf_info *ivf);
1064         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1065                                                          int vf, int link_state);
1066         int                     (*ndo_set_vf_port)(struct net_device *dev,
1067                                                    int vf,
1068                                                    struct nlattr *port[]);
1069         int                     (*ndo_get_vf_port)(struct net_device *dev,
1070                                                    int vf, struct sk_buff *skb);
1071         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1072 #if IS_ENABLED(CONFIG_FCOE)
1073         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1074         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1075         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1076                                                       u16 xid,
1077                                                       struct scatterlist *sgl,
1078                                                       unsigned int sgc);
1079         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1080                                                      u16 xid);
1081         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1082                                                        u16 xid,
1083                                                        struct scatterlist *sgl,
1084                                                        unsigned int sgc);
1085         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1086                                                         struct netdev_fcoe_hbainfo *hbainfo);
1087 #endif
1088 
1089 #if IS_ENABLED(CONFIG_LIBFCOE)
1090 #define NETDEV_FCOE_WWNN 0
1091 #define NETDEV_FCOE_WWPN 1
1092         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1093                                                     u64 *wwn, int type);
1094 #endif
1095 
1096 #ifdef CONFIG_RFS_ACCEL
1097         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1098                                                      const struct sk_buff *skb,
1099                                                      u16 rxq_index,
1100                                                      u32 flow_id);
1101 #endif
1102         int                     (*ndo_add_slave)(struct net_device *dev,
1103                                                  struct net_device *slave_dev);
1104         int                     (*ndo_del_slave)(struct net_device *dev,
1105                                                  struct net_device *slave_dev);
1106         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1107                                                     netdev_features_t features);
1108         int                     (*ndo_set_features)(struct net_device *dev,
1109                                                     netdev_features_t features);
1110         int                     (*ndo_neigh_construct)(struct neighbour *n);
1111         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1112 
1113         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1114                                                struct nlattr *tb[],
1115                                                struct net_device *dev,
1116                                                const unsigned char *addr,
1117                                                u16 flags);
1118         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1119                                                struct nlattr *tb[],
1120                                                struct net_device *dev,
1121                                                const unsigned char *addr);
1122         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1123                                                 struct netlink_callback *cb,
1124                                                 struct net_device *dev,
1125                                                 struct net_device *filter_dev,
1126                                                 int idx);
1127 
1128         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1129                                                       struct nlmsghdr *nlh);
1130         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1131                                                       u32 pid, u32 seq,
1132                                                       struct net_device *dev,
1133                                                       u32 filter_mask);
1134         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1135                                                       struct nlmsghdr *nlh);
1136         int                     (*ndo_change_carrier)(struct net_device *dev,
1137                                                       bool new_carrier);
1138         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1139                                                         struct netdev_phys_port_id *ppid);
1140         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1141                                                       sa_family_t sa_family,
1142                                                       __be16 port);
1143         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1144                                                       sa_family_t sa_family,
1145                                                       __be16 port);
1146 
1147         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1148                                                         struct net_device *dev);
1149         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1150                                                         void *priv);
1151 
1152         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1153                                                         struct net_device *dev,
1154                                                         void *priv);
1155         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1156         bool                    (*ndo_gso_check) (struct sk_buff *skb,
1157                                                   struct net_device *dev);
1158 };
1159 
1160 /**
1161  * enum net_device_priv_flags - &struct net_device priv_flags
1162  *
1163  * These are the &struct net_device, they are only set internally
1164  * by drivers and used in the kernel. These flags are invisible to
1165  * userspace, this means that the order of these flags can change
1166  * during any kernel release.
1167  *
1168  * You should have a pretty good reason to be extending these flags.
1169  *
1170  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1171  * @IFF_EBRIDGE: Ethernet bridging device
1172  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1173  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1174  * @IFF_MASTER_ALB: bonding master, balance-alb
1175  * @IFF_BONDING: bonding master or slave
1176  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1177  * @IFF_ISATAP: ISATAP interface (RFC4214)
1178  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1179  * @IFF_WAN_HDLC: WAN HDLC device
1180  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1181  *      release skb->dst
1182  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1183  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1184  * @IFF_MACVLAN_PORT: device used as macvlan port
1185  * @IFF_BRIDGE_PORT: device used as bridge port
1186  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1187  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1188  * @IFF_UNICAST_FLT: Supports unicast filtering
1189  * @IFF_TEAM_PORT: device used as team port
1190  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1191  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1192  *      change when it's running
1193  * @IFF_MACVLAN: Macvlan device
1194  */
1195 enum netdev_priv_flags {
1196         IFF_802_1Q_VLAN                 = 1<<0,
1197         IFF_EBRIDGE                     = 1<<1,
1198         IFF_SLAVE_INACTIVE              = 1<<2,
1199         IFF_MASTER_8023AD               = 1<<3,
1200         IFF_MASTER_ALB                  = 1<<4,
1201         IFF_BONDING                     = 1<<5,
1202         IFF_SLAVE_NEEDARP               = 1<<6,
1203         IFF_ISATAP                      = 1<<7,
1204         IFF_MASTER_ARPMON               = 1<<8,
1205         IFF_WAN_HDLC                    = 1<<9,
1206         IFF_XMIT_DST_RELEASE            = 1<<10,
1207         IFF_DONT_BRIDGE                 = 1<<11,
1208         IFF_DISABLE_NETPOLL             = 1<<12,
1209         IFF_MACVLAN_PORT                = 1<<13,
1210         IFF_BRIDGE_PORT                 = 1<<14,
1211         IFF_OVS_DATAPATH                = 1<<15,
1212         IFF_TX_SKB_SHARING              = 1<<16,
1213         IFF_UNICAST_FLT                 = 1<<17,
1214         IFF_TEAM_PORT                   = 1<<18,
1215         IFF_SUPP_NOFCS                  = 1<<19,
1216         IFF_LIVE_ADDR_CHANGE            = 1<<20,
1217         IFF_MACVLAN                     = 1<<21,
1218         IFF_XMIT_DST_RELEASE_PERM       = 1<<22,
1219 };
1220 
1221 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1222 #define IFF_EBRIDGE                     IFF_EBRIDGE
1223 #define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1224 #define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1225 #define IFF_MASTER_ALB                  IFF_MASTER_ALB
1226 #define IFF_BONDING                     IFF_BONDING
1227 #define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1228 #define IFF_ISATAP                      IFF_ISATAP
1229 #define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1230 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1231 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1232 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1233 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1234 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1235 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1236 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1237 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1238 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1239 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1240 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1241 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1242 #define IFF_MACVLAN                     IFF_MACVLAN
1243 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1244 
1245 /**
1246  *      struct net_device - The DEVICE structure.
1247  *              Actually, this whole structure is a big mistake.  It mixes I/O
1248  *              data with strictly "high-level" data, and it has to know about
1249  *              almost every data structure used in the INET module.
1250  *
1251  *      @name:  This is the first field of the "visible" part of this structure
1252  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1253  *              of the interface.
1254  *
1255  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1256  *      @ifalias:       SNMP alias
1257  *      @mem_end:       Shared memory end
1258  *      @mem_start:     Shared memory start
1259  *      @base_addr:     Device I/O address
1260  *      @irq:           Device IRQ number
1261  *
1262  *      @state:         Generic network queuing layer state, see netdev_state_t
1263  *      @dev_list:      The global list of network devices
1264  *      @napi_list:     List entry, that is used for polling napi devices
1265  *      @unreg_list:    List entry, that is used, when we are unregistering the
1266  *                      device, see the function unregister_netdev
1267  *      @close_list:    List entry, that is used, when we are closing the device
1268  *
1269  *      @adj_list:      Directly linked devices, like slaves for bonding
1270  *      @all_adj_list:  All linked devices, *including* neighbours
1271  *      @features:      Currently active device features
1272  *      @hw_features:   User-changeable features
1273  *
1274  *      @wanted_features:       User-requested features
1275  *      @vlan_features:         Mask of features inheritable by VLAN devices
1276  *
1277  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1278  *                              This field indicates what encapsulation
1279  *                              offloads the hardware is capable of doing,
1280  *                              and drivers will need to set them appropriately.
1281  *
1282  *      @mpls_features: Mask of features inheritable by MPLS
1283  *
1284  *      @ifindex:       interface index
1285  *      @iflink:        unique device identifier
1286  *
1287  *      @stats:         Statistics struct, which was left as a legacy, use
1288  *                      rtnl_link_stats64 instead
1289  *
1290  *      @rx_dropped:    Dropped packets by core network,
1291  *                      do not use this in drivers
1292  *      @tx_dropped:    Dropped packets by core network,
1293  *                      do not use this in drivers
1294  *
1295  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1296  *
1297  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1298  *                              instead of ioctl,
1299  *                              see <net/iw_handler.h> for details.
1300  *      @wireless_data: Instance data managed by the core of wireless extensions
1301  *
1302  *      @netdev_ops:    Includes several pointers to callbacks,
1303  *                      if one wants to override the ndo_*() functions
1304  *      @ethtool_ops:   Management operations
1305  *      @fwd_ops:       Management operations
1306  *      @header_ops:    Includes callbacks for creating,parsing,rebuilding,etc
1307  *                      of Layer 2 headers.
1308  *
1309  *      @flags:         Interface flags (a la BSD)
1310  *      @priv_flags:    Like 'flags' but invisible to userspace,
1311  *                      see if.h for the definitions
1312  *      @gflags:        Global flags ( kept as legacy )
1313  *      @padded:        How much padding added by alloc_netdev()
1314  *      @operstate:     RFC2863 operstate
1315  *      @link_mode:     Mapping policy to operstate
1316  *      @if_port:       Selectable AUI, TP, ...
1317  *      @dma:           DMA channel
1318  *      @mtu:           Interface MTU value
1319  *      @type:          Interface hardware type
1320  *      @hard_header_len: Hardware header length
1321  *
1322  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1323  *                        cases can this be guaranteed
1324  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1325  *                        cases can this be guaranteed. Some cases also use
1326  *                        LL_MAX_HEADER instead to allocate the skb
1327  *
1328  *      interface address info:
1329  *
1330  *      @perm_addr:             Permanent hw address
1331  *      @addr_assign_type:      Hw address assignment type
1332  *      @addr_len:              Hardware address length
1333  *      @neigh_priv_len;        Used in neigh_alloc(),
1334  *                              initialized only in atm/clip.c
1335  *      @dev_id:                Used to differentiate devices that share
1336  *                              the same link layer address
1337  *      @dev_port:              Used to differentiate devices that share
1338  *                              the same function
1339  *      @addr_list_lock:        XXX: need comments on this one
1340  *      @uc:                    unicast mac addresses
1341  *      @mc:                    multicast mac addresses
1342  *      @dev_addrs:             list of device hw addresses
1343  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1344  *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1345  *                              has been enabled due to the need to listen to
1346  *                              additional unicast addresses in a device that
1347  *                              does not implement ndo_set_rx_mode()
1348  *      @promiscuity:           Number of times, the NIC is told to work in
1349  *                              Promiscuous mode, if it becomes 0 the NIC will
1350  *                              exit from working in Promiscuous mode
1351  *      @allmulti:              Counter, enables or disables allmulticast mode
1352  *
1353  *      @vlan_info:     VLAN info
1354  *      @dsa_ptr:       dsa specific data
1355  *      @tipc_ptr:      TIPC specific data
1356  *      @atalk_ptr:     AppleTalk link
1357  *      @ip_ptr:        IPv4 specific data
1358  *      @dn_ptr:        DECnet specific data
1359  *      @ip6_ptr:       IPv6 specific data
1360  *      @ax25_ptr:      AX.25 specific data
1361  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1362  *
1363  *      @last_rx:       Time of last Rx
1364  *      @dev_addr:      Hw address (before bcast,
1365  *                      because most packets are unicast)
1366  *
1367  *      @_rx:                   Array of RX queues
1368  *      @num_rx_queues:         Number of RX queues
1369  *                              allocated at register_netdev() time
1370  *      @real_num_rx_queues:    Number of RX queues currently active in device
1371  *
1372  *      @rx_handler:            handler for received packets
1373  *      @rx_handler_data:       XXX: need comments on this one
1374  *      @ingress_queue:         XXX: need comments on this one
1375  *      @broadcast:             hw bcast address
1376  *
1377  *      @_tx:                   Array of TX queues
1378  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1379  *      @real_num_tx_queues:    Number of TX queues currently active in device
1380  *      @qdisc:                 Root qdisc from userspace point of view
1381  *      @tx_queue_len:          Max frames per queue allowed
1382  *      @tx_global_lock:        XXX: need comments on this one
1383  *
1384  *      @xps_maps:      XXX: need comments on this one
1385  *
1386  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1387  *                      indexed by RX queue number. Assigned by driver.
1388  *                      This must only be set if the ndo_rx_flow_steer
1389  *                      operation is defined
1390  *
1391  *      @trans_start:           Time (in jiffies) of last Tx
1392  *      @watchdog_timeo:        Represents the timeout that is used by
1393  *                              the watchdog ( see dev_watchdog() )
1394  *      @watchdog_timer:        List of timers
1395  *
1396  *      @pcpu_refcnt:           Number of references to this device
1397  *      @todo_list:             Delayed register/unregister
1398  *      @index_hlist:           Device index hash chain
1399  *      @link_watch_list:       XXX: need comments on this one
1400  *
1401  *      @reg_state:             Register/unregister state machine
1402  *      @dismantle:             Device is going to be freed
1403  *      @rtnl_link_state:       This enum represents the phases of creating
1404  *                              a new link
1405  *
1406  *      @destructor:            Called from unregister,
1407  *                              can be used to call free_netdev
1408  *      @npinfo:                XXX: need comments on this one
1409  *      @nd_net:                Network namespace this network device is inside
1410  *
1411  *      @ml_priv:       Mid-layer private
1412  *      @lstats:        Loopback statistics
1413  *      @tstats:        Tunnel statistics
1414  *      @dstats:        Dummy statistics
1415  *      @vstats:        Virtual ethernet statistics
1416  *
1417  *      @garp_port:     GARP
1418  *      @mrp_port:      MRP
1419  *
1420  *      @dev:           Class/net/name entry
1421  *      @sysfs_groups:  Space for optional device, statistics and wireless
1422  *                      sysfs groups
1423  *
1424  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1425  *      @rtnl_link_ops: Rtnl_link_ops
1426  *
1427  *      @gso_max_size:  Maximum size of generic segmentation offload
1428  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1429  *                      NIC for GSO
1430  *      @gso_min_segs:  Minimum number of segments that can be passed to the
1431  *                      NIC for GSO
1432  *
1433  *      @dcbnl_ops:     Data Center Bridging netlink ops
1434  *      @num_tc:        Number of traffic classes in the net device
1435  *      @tc_to_txq:     XXX: need comments on this one
1436  *      @prio_tc_map    XXX: need comments on this one
1437  *
1438  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1439  *
1440  *      @priomap:       XXX: need comments on this one
1441  *      @phydev:        Physical device may attach itself
1442  *                      for hardware timestamping
1443  *
1444  *      @qdisc_tx_busylock:     XXX: need comments on this one
1445  *
1446  *      @group:         The group, that the device belongs to
1447  *      @pm_qos_req:    Power Management QoS object
1448  *
1449  *      FIXME: cleanup struct net_device such that network protocol info
1450  *      moves out.
1451  */
1452 
1453 struct net_device {
1454         char                    name[IFNAMSIZ];
1455         struct hlist_node       name_hlist;
1456         char                    *ifalias;
1457         /*
1458          *      I/O specific fields
1459          *      FIXME: Merge these and struct ifmap into one
1460          */
1461         unsigned long           mem_end;
1462         unsigned long           mem_start;
1463         unsigned long           base_addr;
1464         int                     irq;
1465 
1466         /*
1467          *      Some hardware also needs these fields (state,dev_list,
1468          *      napi_list,unreg_list,close_list) but they are not
1469          *      part of the usual set specified in Space.c.
1470          */
1471 
1472         unsigned long           state;
1473 
1474         struct list_head        dev_list;
1475         struct list_head        napi_list;
1476         struct list_head        unreg_list;
1477         struct list_head        close_list;
1478 
1479         struct {
1480                 struct list_head upper;
1481                 struct list_head lower;
1482         } adj_list;
1483 
1484         struct {
1485                 struct list_head upper;
1486                 struct list_head lower;
1487         } all_adj_list;
1488 
1489         netdev_features_t       features;
1490         netdev_features_t       hw_features;
1491         netdev_features_t       wanted_features;
1492         netdev_features_t       vlan_features;
1493         netdev_features_t       hw_enc_features;
1494         netdev_features_t       mpls_features;
1495 
1496         int                     ifindex;
1497         int                     iflink;
1498 
1499         struct net_device_stats stats;
1500 
1501         atomic_long_t           rx_dropped;
1502         atomic_long_t           tx_dropped;
1503 
1504         atomic_t                carrier_changes;
1505 
1506 #ifdef CONFIG_WIRELESS_EXT
1507         const struct iw_handler_def *   wireless_handlers;
1508         struct iw_public_data * wireless_data;
1509 #endif
1510         const struct net_device_ops *netdev_ops;
1511         const struct ethtool_ops *ethtool_ops;
1512         const struct forwarding_accel_ops *fwd_ops;
1513 
1514         const struct header_ops *header_ops;
1515 
1516         unsigned int            flags;
1517         unsigned int            priv_flags;
1518 
1519         unsigned short          gflags;
1520         unsigned short          padded;
1521 
1522         unsigned char           operstate;
1523         unsigned char           link_mode;
1524 
1525         unsigned char           if_port;
1526         unsigned char           dma;
1527 
1528         unsigned int            mtu;
1529         unsigned short          type;
1530         unsigned short          hard_header_len;
1531 
1532         unsigned short          needed_headroom;
1533         unsigned short          needed_tailroom;
1534 
1535         /* Interface address info. */
1536         unsigned char           perm_addr[MAX_ADDR_LEN];
1537         unsigned char           addr_assign_type;
1538         unsigned char           addr_len;
1539         unsigned short          neigh_priv_len;
1540         unsigned short          dev_id;
1541         unsigned short          dev_port;
1542         spinlock_t              addr_list_lock;
1543         struct netdev_hw_addr_list      uc;
1544         struct netdev_hw_addr_list      mc;
1545         struct netdev_hw_addr_list      dev_addrs;
1546 
1547 #ifdef CONFIG_SYSFS
1548         struct kset             *queues_kset;
1549 #endif
1550 
1551         unsigned char           name_assign_type;
1552 
1553         bool                    uc_promisc;
1554         unsigned int            promiscuity;
1555         unsigned int            allmulti;
1556 
1557 
1558         /* Protocol specific pointers */
1559 
1560 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1561         struct vlan_info __rcu  *vlan_info;
1562 #endif
1563 #if IS_ENABLED(CONFIG_NET_DSA)
1564         struct dsa_switch_tree  *dsa_ptr;
1565 #endif
1566 #if IS_ENABLED(CONFIG_TIPC)
1567         struct tipc_bearer __rcu *tipc_ptr;
1568 #endif
1569         void                    *atalk_ptr;
1570         struct in_device __rcu  *ip_ptr;
1571         struct dn_dev __rcu     *dn_ptr;
1572         struct inet6_dev __rcu  *ip6_ptr;
1573         void                    *ax25_ptr;
1574         struct wireless_dev     *ieee80211_ptr;
1575 
1576 /*
1577  * Cache lines mostly used on receive path (including eth_type_trans())
1578  */
1579         unsigned long           last_rx;
1580 
1581         /* Interface address info used in eth_type_trans() */
1582         unsigned char           *dev_addr;
1583 
1584 
1585 #ifdef CONFIG_SYSFS
1586         struct netdev_rx_queue  *_rx;
1587 
1588         unsigned int            num_rx_queues;
1589         unsigned int            real_num_rx_queues;
1590 
1591 #endif
1592 
1593         rx_handler_func_t __rcu *rx_handler;
1594         void __rcu              *rx_handler_data;
1595 
1596         struct netdev_queue __rcu *ingress_queue;
1597         unsigned char           broadcast[MAX_ADDR_LEN];
1598 
1599 
1600 /*
1601  * Cache lines mostly used on transmit path
1602  */
1603         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1604         unsigned int            num_tx_queues;
1605         unsigned int            real_num_tx_queues;
1606         struct Qdisc            *qdisc;
1607         unsigned long           tx_queue_len;
1608         spinlock_t              tx_global_lock;
1609 
1610 #ifdef CONFIG_XPS
1611         struct xps_dev_maps __rcu *xps_maps;
1612 #endif
1613 #ifdef CONFIG_RFS_ACCEL
1614         struct cpu_rmap         *rx_cpu_rmap;
1615 #endif
1616 
1617         /* These may be needed for future network-power-down code. */
1618 
1619         /*
1620          * trans_start here is expensive for high speed devices on SMP,
1621          * please use netdev_queue->trans_start instead.
1622          */
1623         unsigned long           trans_start;
1624 
1625         int                     watchdog_timeo;
1626         struct timer_list       watchdog_timer;
1627 
1628         int __percpu            *pcpu_refcnt;
1629         struct list_head        todo_list;
1630 
1631         struct hlist_node       index_hlist;
1632         struct list_head        link_watch_list;
1633 
1634         enum { NETREG_UNINITIALIZED=0,
1635                NETREG_REGISTERED,       /* completed register_netdevice */
1636                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1637                NETREG_UNREGISTERED,     /* completed unregister todo */
1638                NETREG_RELEASED,         /* called free_netdev */
1639                NETREG_DUMMY,            /* dummy device for NAPI poll */
1640         } reg_state:8;
1641 
1642         bool dismantle;
1643 
1644         enum {
1645                 RTNL_LINK_INITIALIZED,
1646                 RTNL_LINK_INITIALIZING,
1647         } rtnl_link_state:16;
1648 
1649         void (*destructor)(struct net_device *dev);
1650 
1651 #ifdef CONFIG_NETPOLL
1652         struct netpoll_info __rcu       *npinfo;
1653 #endif
1654 
1655 #ifdef CONFIG_NET_NS
1656         struct net              *nd_net;
1657 #endif
1658 
1659         /* mid-layer private */
1660         union {
1661                 void                                    *ml_priv;
1662                 struct pcpu_lstats __percpu             *lstats;
1663                 struct pcpu_sw_netstats __percpu        *tstats;
1664                 struct pcpu_dstats __percpu             *dstats;
1665                 struct pcpu_vstats __percpu             *vstats;
1666         };
1667 
1668         struct garp_port __rcu  *garp_port;
1669         struct mrp_port __rcu   *mrp_port;
1670 
1671         struct device   dev;
1672         const struct attribute_group *sysfs_groups[4];
1673         const struct attribute_group *sysfs_rx_queue_group;
1674 
1675         const struct rtnl_link_ops *rtnl_link_ops;
1676 
1677         /* for setting kernel sock attribute on TCP connection setup */
1678 #define GSO_MAX_SIZE            65536
1679         unsigned int            gso_max_size;
1680 #define GSO_MAX_SEGS            65535
1681         u16                     gso_max_segs;
1682         u16                     gso_min_segs;
1683 #ifdef CONFIG_DCB
1684         const struct dcbnl_rtnl_ops *dcbnl_ops;
1685 #endif
1686         u8 num_tc;
1687         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1688         u8 prio_tc_map[TC_BITMASK + 1];
1689 
1690 #if IS_ENABLED(CONFIG_FCOE)
1691         unsigned int            fcoe_ddp_xid;
1692 #endif
1693 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1694         struct netprio_map __rcu *priomap;
1695 #endif
1696         struct phy_device *phydev;
1697         struct lock_class_key *qdisc_tx_busylock;
1698         int group;
1699         struct pm_qos_request   pm_qos_req;
1700 };
1701 #define to_net_dev(d) container_of(d, struct net_device, dev)
1702 
1703 #define NETDEV_ALIGN            32
1704 
1705 static inline
1706 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1707 {
1708         return dev->prio_tc_map[prio & TC_BITMASK];
1709 }
1710 
1711 static inline
1712 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1713 {
1714         if (tc >= dev->num_tc)
1715                 return -EINVAL;
1716 
1717         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1718         return 0;
1719 }
1720 
1721 static inline
1722 void netdev_reset_tc(struct net_device *dev)
1723 {
1724         dev->num_tc = 0;
1725         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1726         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1727 }
1728 
1729 static inline
1730 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1731 {
1732         if (tc >= dev->num_tc)
1733                 return -EINVAL;
1734 
1735         dev->tc_to_txq[tc].count = count;
1736         dev->tc_to_txq[tc].offset = offset;
1737         return 0;
1738 }
1739 
1740 static inline
1741 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1742 {
1743         if (num_tc > TC_MAX_QUEUE)
1744                 return -EINVAL;
1745 
1746         dev->num_tc = num_tc;
1747         return 0;
1748 }
1749 
1750 static inline
1751 int netdev_get_num_tc(struct net_device *dev)
1752 {
1753         return dev->num_tc;
1754 }
1755 
1756 static inline
1757 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1758                                          unsigned int index)
1759 {
1760         return &dev->_tx[index];
1761 }
1762 
1763 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1764                                                     const struct sk_buff *skb)
1765 {
1766         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1767 }
1768 
1769 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1770                                             void (*f)(struct net_device *,
1771                                                       struct netdev_queue *,
1772                                                       void *),
1773                                             void *arg)
1774 {
1775         unsigned int i;
1776 
1777         for (i = 0; i < dev->num_tx_queues; i++)
1778                 f(dev, &dev->_tx[i], arg);
1779 }
1780 
1781 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1782                                     struct sk_buff *skb,
1783                                     void *accel_priv);
1784 
1785 /*
1786  * Net namespace inlines
1787  */
1788 static inline
1789 struct net *dev_net(const struct net_device *dev)
1790 {
1791         return read_pnet(&dev->nd_net);
1792 }
1793 
1794 static inline
1795 void dev_net_set(struct net_device *dev, struct net *net)
1796 {
1797 #ifdef CONFIG_NET_NS
1798         release_net(dev->nd_net);
1799         dev->nd_net = hold_net(net);
1800 #endif
1801 }
1802 
1803 static inline bool netdev_uses_dsa(struct net_device *dev)
1804 {
1805 #if IS_ENABLED(CONFIG_NET_DSA)
1806         if (dev->dsa_ptr != NULL)
1807                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1808 #endif
1809         return false;
1810 }
1811 
1812 /**
1813  *      netdev_priv - access network device private data
1814  *      @dev: network device
1815  *
1816  * Get network device private data
1817  */
1818 static inline void *netdev_priv(const struct net_device *dev)
1819 {
1820         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1821 }
1822 
1823 /* Set the sysfs physical device reference for the network logical device
1824  * if set prior to registration will cause a symlink during initialization.
1825  */
1826 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1827 
1828 /* Set the sysfs device type for the network logical device to allow
1829  * fine-grained identification of different network device types. For
1830  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1831  */
1832 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1833 
1834 /* Default NAPI poll() weight
1835  * Device drivers are strongly advised to not use bigger value
1836  */
1837 #define NAPI_POLL_WEIGHT 64
1838 
1839 /**
1840  *      netif_napi_add - initialize a napi context
1841  *      @dev:  network device
1842  *      @napi: napi context
1843  *      @poll: polling function
1844  *      @weight: default weight
1845  *
1846  * netif_napi_add() must be used to initialize a napi context prior to calling
1847  * *any* of the other napi related functions.
1848  */
1849 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1850                     int (*poll)(struct napi_struct *, int), int weight);
1851 
1852 /**
1853  *  netif_napi_del - remove a napi context
1854  *  @napi: napi context
1855  *
1856  *  netif_napi_del() removes a napi context from the network device napi list
1857  */
1858 void netif_napi_del(struct napi_struct *napi);
1859 
1860 struct napi_gro_cb {
1861         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1862         void *frag0;
1863 
1864         /* Length of frag0. */
1865         unsigned int frag0_len;
1866 
1867         /* This indicates where we are processing relative to skb->data. */
1868         int data_offset;
1869 
1870         /* This is non-zero if the packet cannot be merged with the new skb. */
1871         u16     flush;
1872 
1873         /* Save the IP ID here and check when we get to the transport layer */
1874         u16     flush_id;
1875 
1876         /* Number of segments aggregated. */
1877         u16     count;
1878 
1879         /* This is non-zero if the packet may be of the same flow. */
1880         u8      same_flow;
1881 
1882         /* Free the skb? */
1883         u8      free;
1884 #define NAPI_GRO_FREE             1
1885 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1886 
1887         /* jiffies when first packet was created/queued */
1888         unsigned long age;
1889 
1890         /* Used in ipv6_gro_receive() and foo-over-udp */
1891         u16     proto;
1892 
1893         /* Used in udp_gro_receive */
1894         u8      udp_mark:1;
1895 
1896         /* GRO checksum is valid */
1897         u8      csum_valid:1;
1898 
1899         /* Number of checksums via CHECKSUM_UNNECESSARY */
1900         u8      csum_cnt:3;
1901 
1902         /* Used in foo-over-udp, set in udp[46]_gro_receive */
1903         u8      is_ipv6:1;
1904 
1905         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1906         __wsum  csum;
1907 
1908         /* used in skb_gro_receive() slow path */
1909         struct sk_buff *last;
1910 };
1911 
1912 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1913 
1914 struct packet_type {
1915         __be16                  type;   /* This is really htons(ether_type). */
1916         struct net_device       *dev;   /* NULL is wildcarded here           */
1917         int                     (*func) (struct sk_buff *,
1918                                          struct net_device *,
1919                                          struct packet_type *,
1920                                          struct net_device *);
1921         bool                    (*id_match)(struct packet_type *ptype,
1922                                             struct sock *sk);
1923         void                    *af_packet_priv;
1924         struct list_head        list;
1925 };
1926 
1927 struct offload_callbacks {
1928         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1929                                                 netdev_features_t features);
1930         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1931                                                struct sk_buff *skb);
1932         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1933 };
1934 
1935 struct packet_offload {
1936         __be16                   type;  /* This is really htons(ether_type). */
1937         struct offload_callbacks callbacks;
1938         struct list_head         list;
1939 };
1940 
1941 struct udp_offload {
1942         __be16                   port;
1943         u8                       ipproto;
1944         struct offload_callbacks callbacks;
1945 };
1946 
1947 /* often modified stats are per cpu, other are shared (netdev->stats) */
1948 struct pcpu_sw_netstats {
1949         u64     rx_packets;
1950         u64     rx_bytes;
1951         u64     tx_packets;
1952         u64     tx_bytes;
1953         struct u64_stats_sync   syncp;
1954 };
1955 
1956 #define netdev_alloc_pcpu_stats(type)                           \
1957 ({                                                              \
1958         typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1959         if (pcpu_stats) {                                       \
1960                 int i;                                          \
1961                 for_each_possible_cpu(i) {                      \
1962                         typeof(type) *stat;                     \
1963                         stat = per_cpu_ptr(pcpu_stats, i);      \
1964                         u64_stats_init(&stat->syncp);           \
1965                 }                                               \
1966         }                                                       \
1967         pcpu_stats;                                             \
1968 })
1969 
1970 #include <linux/notifier.h>
1971 
1972 /* netdevice notifier chain. Please remember to update the rtnetlink
1973  * notification exclusion list in rtnetlink_event() when adding new
1974  * types.
1975  */
1976 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1977 #define NETDEV_DOWN     0x0002
1978 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1979                                    detected a hardware crash and restarted
1980                                    - we can use this eg to kick tcp sessions
1981                                    once done */
1982 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
1983 #define NETDEV_REGISTER 0x0005
1984 #define NETDEV_UNREGISTER       0x0006
1985 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
1986 #define NETDEV_CHANGEADDR       0x0008
1987 #define NETDEV_GOING_DOWN       0x0009
1988 #define NETDEV_CHANGENAME       0x000A
1989 #define NETDEV_FEAT_CHANGE      0x000B
1990 #define NETDEV_BONDING_FAILOVER 0x000C
1991 #define NETDEV_PRE_UP           0x000D
1992 #define NETDEV_PRE_TYPE_CHANGE  0x000E
1993 #define NETDEV_POST_TYPE_CHANGE 0x000F
1994 #define NETDEV_POST_INIT        0x0010
1995 #define NETDEV_UNREGISTER_FINAL 0x0011
1996 #define NETDEV_RELEASE          0x0012
1997 #define NETDEV_NOTIFY_PEERS     0x0013
1998 #define NETDEV_JOIN             0x0014
1999 #define NETDEV_CHANGEUPPER      0x0015
2000 #define NETDEV_RESEND_IGMP      0x0016
2001 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2002 #define NETDEV_CHANGEINFODATA   0x0018
2003 
2004 int register_netdevice_notifier(struct notifier_block *nb);
2005 int unregister_netdevice_notifier(struct notifier_block *nb);
2006 
2007 struct netdev_notifier_info {
2008         struct net_device *dev;
2009 };
2010 
2011 struct netdev_notifier_change_info {
2012         struct netdev_notifier_info info; /* must be first */
2013         unsigned int flags_changed;
2014 };
2015 
2016 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2017                                              struct net_device *dev)
2018 {
2019         info->dev = dev;
2020 }
2021 
2022 static inline struct net_device *
2023 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2024 {
2025         return info->dev;
2026 }
2027 
2028 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2029 
2030 
2031 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2032 
2033 #define for_each_netdev(net, d)         \
2034                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2035 #define for_each_netdev_reverse(net, d) \
2036                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2037 #define for_each_netdev_rcu(net, d)             \
2038                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2039 #define for_each_netdev_safe(net, d, n) \
2040                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2041 #define for_each_netdev_continue(net, d)                \
2042                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2043 #define for_each_netdev_continue_rcu(net, d)            \
2044         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2045 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2046                 for_each_netdev_rcu(&init_net, slave)   \
2047                         if (netdev_master_upper_dev_get_rcu(slave) == bond)
2048 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2049 
2050 static inline struct net_device *next_net_device(struct net_device *dev)
2051 {
2052         struct list_head *lh;
2053         struct net *net;
2054 
2055         net = dev_net(dev);
2056         lh = dev->dev_list.next;
2057         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2058 }
2059 
2060 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2061 {
2062         struct list_head *lh;
2063         struct net *net;
2064 
2065         net = dev_net(dev);
2066         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2067         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2068 }
2069 
2070 static inline struct net_device *first_net_device(struct net *net)
2071 {
2072         return list_empty(&net->dev_base_head) ? NULL :
2073                 net_device_entry(net->dev_base_head.next);
2074 }
2075 
2076 static inline struct net_device *first_net_device_rcu(struct net *net)
2077 {
2078         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2079 
2080         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2081 }
2082 
2083 int netdev_boot_setup_check(struct net_device *dev);
2084 unsigned long netdev_boot_base(const char *prefix, int unit);
2085 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2086                                        const char *hwaddr);
2087 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2088 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2089 void dev_add_pack(struct packet_type *pt);
2090 void dev_remove_pack(struct packet_type *pt);
2091 void __dev_remove_pack(struct packet_type *pt);
2092 void dev_add_offload(struct packet_offload *po);
2093 void dev_remove_offload(struct packet_offload *po);
2094 
2095 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2096                                       unsigned short mask);
2097 struct net_device *dev_get_by_name(struct net *net, const char *name);
2098 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2099 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2100 int dev_alloc_name(struct net_device *dev, const char *name);
2101 int dev_open(struct net_device *dev);
2102 int dev_close(struct net_device *dev);
2103 void dev_disable_lro(struct net_device *dev);
2104 int dev_loopback_xmit(struct sk_buff *newskb);
2105 int dev_queue_xmit(struct sk_buff *skb);
2106 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2107 int register_netdevice(struct net_device *dev);
2108 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2109 void unregister_netdevice_many(struct list_head *head);
2110 static inline void unregister_netdevice(struct net_device *dev)
2111 {
2112         unregister_netdevice_queue(dev, NULL);
2113 }
2114 
2115 int netdev_refcnt_read(const struct net_device *dev);
2116 void free_netdev(struct net_device *dev);
2117 void netdev_freemem(struct net_device *dev);
2118 void synchronize_net(void);
2119 int init_dummy_netdev(struct net_device *dev);
2120 
2121 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2122 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2123 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2124 int netdev_get_name(struct net *net, char *name, int ifindex);
2125 int dev_restart(struct net_device *dev);
2126 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2127 
2128 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2129 {
2130         return NAPI_GRO_CB(skb)->data_offset;
2131 }
2132 
2133 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2134 {
2135         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2136 }
2137 
2138 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2139 {
2140         NAPI_GRO_CB(skb)->data_offset += len;
2141 }
2142 
2143 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2144                                         unsigned int offset)
2145 {
2146         return NAPI_GRO_CB(skb)->frag0 + offset;
2147 }
2148 
2149 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2150 {
2151         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2152 }
2153 
2154 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2155                                         unsigned int offset)
2156 {
2157         if (!pskb_may_pull(skb, hlen))
2158                 return NULL;
2159 
2160         NAPI_GRO_CB(skb)->frag0 = NULL;
2161         NAPI_GRO_CB(skb)->frag0_len = 0;
2162         return skb->data + offset;
2163 }
2164 
2165 static inline void *skb_gro_network_header(struct sk_buff *skb)
2166 {
2167         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2168                skb_network_offset(skb);
2169 }
2170 
2171 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2172                                         const void *start, unsigned int len)
2173 {
2174         if (NAPI_GRO_CB(skb)->csum_valid)
2175                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2176                                                   csum_partial(start, len, 0));
2177 }
2178 
2179 /* GRO checksum functions. These are logical equivalents of the normal
2180  * checksum functions (in skbuff.h) except that they operate on the GRO
2181  * offsets and fields in sk_buff.
2182  */
2183 
2184 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2185 
2186 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2187                                                       bool zero_okay,
2188                                                       __sum16 check)
2189 {
2190         return (skb->ip_summed != CHECKSUM_PARTIAL &&
2191                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2192                 (!zero_okay || check));
2193 }
2194 
2195 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2196                                                            __wsum psum)
2197 {
2198         if (NAPI_GRO_CB(skb)->csum_valid &&
2199             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2200                 return 0;
2201 
2202         NAPI_GRO_CB(skb)->csum = psum;
2203 
2204         return __skb_gro_checksum_complete(skb);
2205 }
2206 
2207 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2208 {
2209         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2210                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2211                 NAPI_GRO_CB(skb)->csum_cnt--;
2212         } else {
2213                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2214                  * verified a new top level checksum or an encapsulated one
2215                  * during GRO. This saves work if we fallback to normal path.
2216                  */
2217                 __skb_incr_checksum_unnecessary(skb);
2218         }
2219 }
2220 
2221 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2222                                     compute_pseudo)                     \
2223 ({                                                                      \
2224         __sum16 __ret = 0;                                              \
2225         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2226                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2227                                 compute_pseudo(skb, proto));            \
2228         if (__ret)                                                      \
2229                 __skb_mark_checksum_bad(skb);                           \
2230         else                                                            \
2231                 skb_gro_incr_csum_unnecessary(skb);                     \
2232         __ret;                                                          \
2233 })
2234 
2235 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2236         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2237 
2238 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2239                                              compute_pseudo)            \
2240         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2241 
2242 #define skb_gro_checksum_simple_validate(skb)                           \
2243         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2244 
2245 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2246 {
2247         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2248                 !NAPI_GRO_CB(skb)->csum_valid);
2249 }
2250 
2251 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2252                                               __sum16 check, __wsum pseudo)
2253 {
2254         NAPI_GRO_CB(skb)->csum = ~pseudo;
2255         NAPI_GRO_CB(skb)->csum_valid = 1;
2256 }
2257 
2258 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2259 do {                                                                    \
2260         if (__skb_gro_checksum_convert_check(skb))                      \
2261                 __skb_gro_checksum_convert(skb, check,                  \
2262                                            compute_pseudo(skb, proto)); \
2263 } while (0)
2264 
2265 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2266                                   unsigned short type,
2267                                   const void *daddr, const void *saddr,
2268                                   unsigned int len)
2269 {
2270         if (!dev->header_ops || !dev->header_ops->create)
2271                 return 0;
2272 
2273         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2274 }
2275 
2276 static inline int dev_parse_header(const struct sk_buff *skb,
2277                                    unsigned char *haddr)
2278 {
2279         const struct net_device *dev = skb->dev;
2280 
2281         if (!dev->header_ops || !dev->header_ops->parse)
2282                 return 0;
2283         return dev->header_ops->parse(skb, haddr);
2284 }
2285 
2286 static inline int dev_rebuild_header(struct sk_buff *skb)
2287 {
2288         const struct net_device *dev = skb->dev;
2289 
2290         if (!dev->header_ops || !dev->header_ops->rebuild)
2291                 return 0;
2292         return dev->header_ops->rebuild(skb);
2293 }
2294 
2295 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2296 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2297 static inline int unregister_gifconf(unsigned int family)
2298 {
2299         return register_gifconf(family, NULL);
2300 }
2301 
2302 #ifdef CONFIG_NET_FLOW_LIMIT
2303 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2304 struct sd_flow_limit {
2305         u64                     count;
2306         unsigned int            num_buckets;
2307         unsigned int            history_head;
2308         u16                     history[FLOW_LIMIT_HISTORY];
2309         u8                      buckets[];
2310 };
2311 
2312 extern int netdev_flow_limit_table_len;
2313 #endif /* CONFIG_NET_FLOW_LIMIT */
2314 
2315 /*
2316  * Incoming packets are placed on per-cpu queues
2317  */
2318 struct softnet_data {
2319         struct Qdisc            *output_queue;
2320         struct Qdisc            **output_queue_tailp;
2321         struct list_head        poll_list;
2322         struct sk_buff          *completion_queue;
2323         struct sk_buff_head     process_queue;
2324 
2325         /* stats */
2326         unsigned int            processed;
2327         unsigned int            time_squeeze;
2328         unsigned int            cpu_collision;
2329         unsigned int            received_rps;
2330 
2331 #ifdef CONFIG_RPS
2332         struct softnet_data     *rps_ipi_list;
2333 
2334         /* Elements below can be accessed between CPUs for RPS */
2335         struct call_single_data csd ____cacheline_aligned_in_smp;
2336         struct softnet_data     *rps_ipi_next;
2337         unsigned int            cpu;
2338         unsigned int            input_queue_head;
2339         unsigned int            input_queue_tail;
2340 #endif
2341         unsigned int            dropped;
2342         struct sk_buff_head     input_pkt_queue;
2343         struct napi_struct      backlog;
2344 
2345 #ifdef CONFIG_NET_FLOW_LIMIT
2346         struct sd_flow_limit __rcu *flow_limit;
2347 #endif
2348 };
2349 
2350 static inline void input_queue_head_incr(struct softnet_data *sd)
2351 {
2352 #ifdef CONFIG_RPS
2353         sd->input_queue_head++;
2354 #endif
2355 }
2356 
2357 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2358                                               unsigned int *qtail)
2359 {
2360 #ifdef CONFIG_RPS
2361         *qtail = ++sd->input_queue_tail;
2362 #endif
2363 }
2364 
2365 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2366 
2367 void __netif_schedule(struct Qdisc *q);
2368 void netif_schedule_queue(struct netdev_queue *txq);
2369 
2370 static inline void netif_tx_schedule_all(struct net_device *dev)
2371 {
2372         unsigned int i;
2373 
2374         for (i = 0; i < dev->num_tx_queues; i++)
2375                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2376 }
2377 
2378 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2379 {
2380         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2381 }
2382 
2383 /**
2384  *      netif_start_queue - allow transmit
2385  *      @dev: network device
2386  *
2387  *      Allow upper layers to call the device hard_start_xmit routine.
2388  */
2389 static inline void netif_start_queue(struct net_device *dev)
2390 {
2391         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2392 }
2393 
2394 static inline void netif_tx_start_all_queues(struct net_device *dev)
2395 {
2396         unsigned int i;
2397 
2398         for (i = 0; i < dev->num_tx_queues; i++) {
2399                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2400                 netif_tx_start_queue(txq);
2401         }
2402 }
2403 
2404 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2405 
2406 /**
2407  *      netif_wake_queue - restart transmit
2408  *      @dev: network device
2409  *
2410  *      Allow upper layers to call the device hard_start_xmit routine.
2411  *      Used for flow control when transmit resources are available.
2412  */
2413 static inline void netif_wake_queue(struct net_device *dev)
2414 {
2415         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2416 }
2417 
2418 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2419 {
2420         unsigned int i;
2421 
2422         for (i = 0; i < dev->num_tx_queues; i++) {
2423                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2424                 netif_tx_wake_queue(txq);
2425         }
2426 }
2427 
2428 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2429 {
2430         if (WARN_ON(!dev_queue)) {
2431                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2432                 return;
2433         }
2434         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2435 }
2436 
2437 /**
2438  *      netif_stop_queue - stop transmitted packets
2439  *      @dev: network device
2440  *
2441  *      Stop upper layers calling the device hard_start_xmit routine.
2442  *      Used for flow control when transmit resources are unavailable.
2443  */
2444 static inline void netif_stop_queue(struct net_device *dev)
2445 {
2446         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2447 }
2448 
2449 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2450 {
2451         unsigned int i;
2452 
2453         for (i = 0; i < dev->num_tx_queues; i++) {
2454                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2455                 netif_tx_stop_queue(txq);
2456         }
2457 }
2458 
2459 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2460 {
2461         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2462 }
2463 
2464 /**
2465  *      netif_queue_stopped - test if transmit queue is flowblocked
2466  *      @dev: network device
2467  *
2468  *      Test if transmit queue on device is currently unable to send.
2469  */
2470 static inline bool netif_queue_stopped(const struct net_device *dev)
2471 {
2472         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2473 }
2474 
2475 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2476 {
2477         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2478 }
2479 
2480 static inline bool
2481 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2482 {
2483         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2484 }
2485 
2486 static inline bool
2487 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2488 {
2489         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2490 }
2491 
2492 /**
2493  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2494  *      @dev_queue: pointer to transmit queue
2495  *
2496  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2497  * to give appropriate hint to the cpu.
2498  */
2499 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2500 {
2501 #ifdef CONFIG_BQL
2502         prefetchw(&dev_queue->dql.num_queued);
2503 #endif
2504 }
2505 
2506 /**
2507  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2508  *      @dev_queue: pointer to transmit queue
2509  *
2510  * BQL enabled drivers might use this helper in their TX completion path,
2511  * to give appropriate hint to the cpu.
2512  */
2513 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2514 {
2515 #ifdef CONFIG_BQL
2516         prefetchw(&dev_queue->dql.limit);
2517 #endif
2518 }
2519 
2520 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2521                                         unsigned int bytes)
2522 {
2523 #ifdef CONFIG_BQL
2524         dql_queued(&dev_queue->dql, bytes);
2525 
2526         if (likely(dql_avail(&dev_queue->dql) >= 0))
2527                 return;
2528 
2529         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2530 
2531         /*
2532          * The XOFF flag must be set before checking the dql_avail below,
2533          * because in netdev_tx_completed_queue we update the dql_completed
2534          * before checking the XOFF flag.
2535          */
2536         smp_mb();
2537 
2538         /* check again in case another CPU has just made room avail */
2539         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2540                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2541 #endif
2542 }
2543 
2544 /**
2545  *      netdev_sent_queue - report the number of bytes queued to hardware
2546  *      @dev: network device
2547  *      @bytes: number of bytes queued to the hardware device queue
2548  *
2549  *      Report the number of bytes queued for sending/completion to the network
2550  *      device hardware queue. @bytes should be a good approximation and should
2551  *      exactly match netdev_completed_queue() @bytes
2552  */
2553 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2554 {
2555         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2556 }
2557 
2558 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2559                                              unsigned int pkts, unsigned int bytes)
2560 {
2561 #ifdef CONFIG_BQL
2562         if (unlikely(!bytes))
2563                 return;
2564 
2565         dql_completed(&dev_queue->dql, bytes);
2566 
2567         /*
2568          * Without the memory barrier there is a small possiblity that
2569          * netdev_tx_sent_queue will miss the update and cause the queue to
2570          * be stopped forever
2571          */
2572         smp_mb();
2573 
2574         if (dql_avail(&dev_queue->dql) < 0)
2575                 return;
2576 
2577         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2578                 netif_schedule_queue(dev_queue);
2579 #endif
2580 }
2581 
2582 /**
2583  *      netdev_completed_queue - report bytes and packets completed by device
2584  *      @dev: network device
2585  *      @pkts: actual number of packets sent over the medium
2586  *      @bytes: actual number of bytes sent over the medium
2587  *
2588  *      Report the number of bytes and packets transmitted by the network device
2589  *      hardware queue over the physical medium, @bytes must exactly match the
2590  *      @bytes amount passed to netdev_sent_queue()
2591  */
2592 static inline void netdev_completed_queue(struct net_device *dev,
2593                                           unsigned int pkts, unsigned int bytes)
2594 {
2595         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2596 }
2597 
2598 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2599 {
2600 #ifdef CONFIG_BQL
2601         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2602         dql_reset(&q->dql);
2603 #endif
2604 }
2605 
2606 /**
2607  *      netdev_reset_queue - reset the packets and bytes count of a network device
2608  *      @dev_queue: network device
2609  *
2610  *      Reset the bytes and packet count of a network device and clear the
2611  *      software flow control OFF bit for this network device
2612  */
2613 static inline void netdev_reset_queue(struct net_device *dev_queue)
2614 {
2615         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2616 }
2617 
2618 /**
2619  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2620  *      @dev: network device
2621  *      @queue_index: given tx queue index
2622  *
2623  *      Returns 0 if given tx queue index >= number of device tx queues,
2624  *      otherwise returns the originally passed tx queue index.
2625  */
2626 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2627 {
2628         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2629                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2630                                      dev->name, queue_index,
2631                                      dev->real_num_tx_queues);
2632                 return 0;
2633         }
2634 
2635         return queue_index;
2636 }
2637 
2638 /**
2639  *      netif_running - test if up
2640  *      @dev: network device
2641  *
2642  *      Test if the device has been brought up.
2643  */
2644 static inline bool netif_running(const struct net_device *dev)
2645 {
2646         return test_bit(__LINK_STATE_START, &dev->state);
2647 }
2648 
2649 /*
2650  * Routines to manage the subqueues on a device.  We only need start
2651  * stop, and a check if it's stopped.  All other device management is
2652  * done at the overall netdevice level.
2653  * Also test the device if we're multiqueue.
2654  */
2655 
2656 /**
2657  *      netif_start_subqueue - allow sending packets on subqueue
2658  *      @dev: network device
2659  *      @queue_index: sub queue index
2660  *
2661  * Start individual transmit queue of a device with multiple transmit queues.
2662  */
2663 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2664 {
2665         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2666 
2667         netif_tx_start_queue(txq);
2668 }
2669 
2670 /**
2671  *      netif_stop_subqueue - stop sending packets on subqueue
2672  *      @dev: network device
2673  *      @queue_index: sub queue index
2674  *
2675  * Stop individual transmit queue of a device with multiple transmit queues.
2676  */
2677 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2678 {
2679         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2680         netif_tx_stop_queue(txq);
2681 }
2682 
2683 /**
2684  *      netif_subqueue_stopped - test status of subqueue
2685  *      @dev: network device
2686  *      @queue_index: sub queue index
2687  *
2688  * Check individual transmit queue of a device with multiple transmit queues.
2689  */
2690 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2691                                             u16 queue_index)
2692 {
2693         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2694 
2695         return netif_tx_queue_stopped(txq);
2696 }
2697 
2698 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2699                                           struct sk_buff *skb)
2700 {
2701         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2702 }
2703 
2704 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2705 
2706 #ifdef CONFIG_XPS
2707 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2708                         u16 index);
2709 #else
2710 static inline int netif_set_xps_queue(struct net_device *dev,
2711                                       const struct cpumask *mask,
2712                                       u16 index)
2713 {
2714         return 0;
2715 }
2716 #endif
2717 
2718 /*
2719  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2720  * as a distribution range limit for the returned value.
2721  */
2722 static inline u16 skb_tx_hash(const struct net_device *dev,
2723                               struct sk_buff *skb)
2724 {
2725         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2726 }
2727 
2728 /**
2729  *      netif_is_multiqueue - test if device has multiple transmit queues
2730  *      @dev: network device
2731  *
2732  * Check if device has multiple transmit queues
2733  */
2734 static inline bool netif_is_multiqueue(const struct net_device *dev)
2735 {
2736         return dev->num_tx_queues > 1;
2737 }
2738 
2739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2740 
2741 #ifdef CONFIG_SYSFS
2742 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2743 #else
2744 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2745                                                 unsigned int rxq)
2746 {
2747         return 0;
2748 }
2749 #endif
2750 
2751 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2752                                              const struct net_device *from_dev)
2753 {
2754         int err;
2755 
2756         err = netif_set_real_num_tx_queues(to_dev,
2757                                            from_dev->real_num_tx_queues);
2758         if (err)
2759                 return err;
2760 #ifdef CONFIG_SYSFS
2761         return netif_set_real_num_rx_queues(to_dev,
2762                                             from_dev->real_num_rx_queues);
2763 #else
2764         return 0;
2765 #endif
2766 }
2767 
2768 #ifdef CONFIG_SYSFS
2769 static inline unsigned int get_netdev_rx_queue_index(
2770                 struct netdev_rx_queue *queue)
2771 {
2772         struct net_device *dev = queue->dev;
2773         int index = queue - dev->_rx;
2774 
2775         BUG_ON(index >= dev->num_rx_queues);
2776         return index;
2777 }
2778 #endif
2779 
2780 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2781 int netif_get_num_default_rss_queues(void);
2782 
2783 enum skb_free_reason {
2784         SKB_REASON_CONSUMED,
2785         SKB_REASON_DROPPED,
2786 };
2787 
2788 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2790 
2791 /*
2792  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2793  * interrupt context or with hardware interrupts being disabled.
2794  * (in_irq() || irqs_disabled())
2795  *
2796  * We provide four helpers that can be used in following contexts :
2797  *
2798  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2799  *  replacing kfree_skb(skb)
2800  *
2801  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2802  *  Typically used in place of consume_skb(skb) in TX completion path
2803  *
2804  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2805  *  replacing kfree_skb(skb)
2806  *
2807  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2808  *  and consumed a packet. Used in place of consume_skb(skb)
2809  */
2810 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2811 {
2812         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2813 }
2814 
2815 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2816 {
2817         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2818 }
2819 
2820 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2821 {
2822         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2823 }
2824 
2825 static inline void dev_consume_skb_any(struct sk_buff *skb)
2826 {
2827         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2828 }
2829 
2830 int netif_rx(struct sk_buff *skb);
2831 int netif_rx_ni(struct sk_buff *skb);
2832 int netif_receive_skb(struct sk_buff *skb);
2833 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2834 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2835 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2836 gro_result_t napi_gro_frags(struct napi_struct *napi);
2837 struct packet_offload *gro_find_receive_by_type(__be16 type);
2838 struct packet_offload *gro_find_complete_by_type(__be16 type);
2839 
2840 static inline void napi_free_frags(struct napi_struct *napi)
2841 {
2842         kfree_skb(napi->skb);
2843         napi->skb = NULL;
2844 }
2845 
2846 int netdev_rx_handler_register(struct net_device *dev,
2847                                rx_handler_func_t *rx_handler,
2848                                void *rx_handler_data);
2849 void netdev_rx_handler_unregister(struct net_device *dev);
2850 
2851 bool dev_valid_name(const char *name);
2852 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2853 int dev_ethtool(struct net *net, struct ifreq *);
2854 unsigned int dev_get_flags(const struct net_device *);
2855 int __dev_change_flags(struct net_device *, unsigned int flags);
2856 int dev_change_flags(struct net_device *, unsigned int);
2857 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2858                         unsigned int gchanges);
2859 int dev_change_name(struct net_device *, const char *);
2860 int dev_set_alias(struct net_device *, const char *, size_t);
2861 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2862 int dev_set_mtu(struct net_device *, int);
2863 void dev_set_group(struct net_device *, int);
2864 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2865 int dev_change_carrier(struct net_device *, bool new_carrier);
2866 int dev_get_phys_port_id(struct net_device *dev,
2867                          struct netdev_phys_port_id *ppid);
2868 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2869 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2870                                     struct netdev_queue *txq, int *ret);
2871 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2872 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2873 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2874 
2875 extern int              netdev_budget;
2876 
2877 /* Called by rtnetlink.c:rtnl_unlock() */
2878 void netdev_run_todo(void);
2879 
2880 /**
2881  *      dev_put - release reference to device
2882  *      @dev: network device
2883  *
2884  * Release reference to device to allow it to be freed.
2885  */
2886 static inline void dev_put(struct net_device *dev)
2887 {
2888         this_cpu_dec(*dev->pcpu_refcnt);
2889 }
2890 
2891 /**
2892  *      dev_hold - get reference to device
2893  *      @dev: network device
2894  *
2895  * Hold reference to device to keep it from being freed.
2896  */
2897 static inline void dev_hold(struct net_device *dev)
2898 {
2899         this_cpu_inc(*dev->pcpu_refcnt);
2900 }
2901 
2902 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2903  * and _off may be called from IRQ context, but it is caller
2904  * who is responsible for serialization of these calls.
2905  *
2906  * The name carrier is inappropriate, these functions should really be
2907  * called netif_lowerlayer_*() because they represent the state of any
2908  * kind of lower layer not just hardware media.
2909  */
2910 
2911 void linkwatch_init_dev(struct net_device *dev);
2912 void linkwatch_fire_event(struct net_device *dev);
2913 void linkwatch_forget_dev(struct net_device *dev);
2914 
2915 /**
2916  *      netif_carrier_ok - test if carrier present
2917  *      @dev: network device
2918  *
2919  * Check if carrier is present on device
2920  */
2921 static inline bool netif_carrier_ok(const struct net_device *dev)
2922 {
2923         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2924 }
2925 
2926 unsigned long dev_trans_start(struct net_device *dev);
2927 
2928 void __netdev_watchdog_up(struct net_device *dev);
2929 
2930 void netif_carrier_on(struct net_device *dev);
2931 
2932 void netif_carrier_off(struct net_device *dev);
2933 
2934 /**
2935  *      netif_dormant_on - mark device as dormant.
2936  *      @dev: network device
2937  *
2938  * Mark device as dormant (as per RFC2863).
2939  *
2940  * The dormant state indicates that the relevant interface is not
2941  * actually in a condition to pass packets (i.e., it is not 'up') but is
2942  * in a "pending" state, waiting for some external event.  For "on-
2943  * demand" interfaces, this new state identifies the situation where the
2944  * interface is waiting for events to place it in the up state.
2945  *
2946  */
2947 static inline void netif_dormant_on(struct net_device *dev)
2948 {
2949         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2950                 linkwatch_fire_event(dev);
2951 }
2952 
2953 /**
2954  *      netif_dormant_off - set device as not dormant.
2955  *      @dev: network device
2956  *
2957  * Device is not in dormant state.
2958  */
2959 static inline void netif_dormant_off(struct net_device *dev)
2960 {
2961         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2962                 linkwatch_fire_event(dev);
2963 }
2964 
2965 /**
2966  *      netif_dormant - test if carrier present
2967  *      @dev: network device
2968  *
2969  * Check if carrier is present on device
2970  */
2971 static inline bool netif_dormant(const struct net_device *dev)
2972 {
2973         return test_bit(__LINK_STATE_DORMANT, &dev->state);
2974 }
2975 
2976 
2977 /**
2978  *      netif_oper_up - test if device is operational
2979  *      @dev: network device
2980  *
2981  * Check if carrier is operational
2982  */
2983 static inline bool netif_oper_up(const struct net_device *dev)
2984 {
2985         return (dev->operstate == IF_OPER_UP ||
2986                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2987 }
2988 
2989 /**
2990  *      netif_device_present - is device available or removed
2991  *      @dev: network device
2992  *
2993  * Check if device has not been removed from system.
2994  */
2995 static inline bool netif_device_present(struct net_device *dev)
2996 {
2997         return test_bit(__LINK_STATE_PRESENT, &dev->state);
2998 }
2999 
3000 void netif_device_detach(struct net_device *dev);
3001 
3002 void netif_device_attach(struct net_device *dev);
3003 
3004 /*
3005  * Network interface message level settings
3006  */
3007 
3008 enum {
3009         NETIF_MSG_DRV           = 0x0001,
3010         NETIF_MSG_PROBE         = 0x0002,
3011         NETIF_MSG_LINK          = 0x0004,
3012         NETIF_MSG_TIMER         = 0x0008,
3013         NETIF_MSG_IFDOWN        = 0x0010,
3014         NETIF_MSG_IFUP          = 0x0020,
3015         NETIF_MSG_RX_ERR        = 0x0040,
3016         NETIF_MSG_TX_ERR        = 0x0080,
3017         NETIF_MSG_TX_QUEUED     = 0x0100,
3018         NETIF_MSG_INTR          = 0x0200,
3019         NETIF_MSG_TX_DONE       = 0x0400,
3020         NETIF_MSG_RX_STATUS     = 0x0800,
3021         NETIF_MSG_PKTDATA       = 0x1000,
3022         NETIF_MSG_HW            = 0x2000,
3023         NETIF_MSG_WOL           = 0x4000,
3024 };
3025 
3026 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3027 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3028 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3029 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3030 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3031 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3032 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3033 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3034 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3035 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3036 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3037 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3038 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3039 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3040 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3041 
3042 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3043 {
3044         /* use default */
3045         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3046                 return default_msg_enable_bits;
3047         if (debug_value == 0)   /* no output */
3048                 return 0;
3049         /* set low N bits */
3050         return (1 << debug_value) - 1;
3051 }
3052 
3053 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3054 {
3055         spin_lock(&txq->_xmit_lock);
3056         txq->xmit_lock_owner = cpu;
3057 }
3058 
3059 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3060 {
3061         spin_lock_bh(&txq->_xmit_lock);
3062         txq->xmit_lock_owner = smp_processor_id();
3063 }
3064 
3065 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3066 {
3067         bool ok = spin_trylock(&txq->_xmit_lock);
3068         if (likely(ok))
3069                 txq->xmit_lock_owner = smp_processor_id();
3070         return ok;
3071 }
3072 
3073 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3074 {
3075         txq->xmit_lock_owner = -1;
3076         spin_unlock(&txq->_xmit_lock);
3077 }
3078 
3079 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3080 {
3081         txq->xmit_lock_owner = -1;
3082         spin_unlock_bh(&txq->_xmit_lock);
3083 }
3084 
3085 static inline void txq_trans_update(struct netdev_queue *txq)
3086 {
3087         if (txq->xmit_lock_owner != -1)
3088                 txq->trans_start = jiffies;
3089 }
3090 
3091 /**
3092  *      netif_tx_lock - grab network device transmit lock
3093  *      @dev: network device
3094  *
3095  * Get network device transmit lock
3096  */
3097 static inline void netif_tx_lock(struct net_device *dev)
3098 {
3099         unsigned int i;
3100         int cpu;
3101 
3102         spin_lock(&dev->tx_global_lock);
3103         cpu = smp_processor_id();
3104         for (i = 0; i < dev->num_tx_queues; i++) {
3105                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3106 
3107                 /* We are the only thread of execution doing a
3108                  * freeze, but we have to grab the _xmit_lock in
3109                  * order to synchronize with threads which are in
3110                  * the ->hard_start_xmit() handler and already
3111                  * checked the frozen bit.
3112                  */
3113                 __netif_tx_lock(txq, cpu);
3114                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3115                 __netif_tx_unlock(txq);
3116         }
3117 }
3118 
3119 static inline void netif_tx_lock_bh(struct net_device *dev)
3120 {
3121         local_bh_disable();
3122         netif_tx_lock(dev);
3123 }
3124 
3125 static inline void netif_tx_unlock(struct net_device *dev)
3126 {
3127         unsigned int i;
3128 
3129         for (i = 0; i < dev->num_tx_queues; i++) {
3130                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3131 
3132                 /* No need to grab the _xmit_lock here.  If the
3133                  * queue is not stopped for another reason, we
3134                  * force a schedule.
3135                  */
3136                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3137                 netif_schedule_queue(txq);
3138         }
3139         spin_unlock(&dev->tx_global_lock);
3140 }
3141 
3142 static inline void netif_tx_unlock_bh(struct net_device *dev)
3143 {
3144         netif_tx_unlock(dev);
3145         local_bh_enable();
3146 }
3147 
3148 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3149         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3150                 __netif_tx_lock(txq, cpu);              \
3151         }                                               \
3152 }
3153 
3154 #define HARD_TX_TRYLOCK(dev, txq)                       \
3155         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3156                 __netif_tx_trylock(txq) :               \
3157                 true )
3158 
3159 #define HARD_TX_UNLOCK(dev, txq) {                      \
3160         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3161                 __netif_tx_unlock(txq);                 \
3162         }                                               \
3163 }
3164 
3165 static inline void netif_tx_disable(struct net_device *dev)
3166 {
3167         unsigned int i;
3168         int cpu;
3169 
3170         local_bh_disable();
3171         cpu = smp_processor_id();
3172         for (i = 0; i < dev->num_tx_queues; i++) {
3173                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3174 
3175                 __netif_tx_lock(txq, cpu);
3176                 netif_tx_stop_queue(txq);
3177                 __netif_tx_unlock(txq);
3178         }
3179         local_bh_enable();
3180 }
3181 
3182 static inline void netif_addr_lock(struct net_device *dev)
3183 {
3184         spin_lock(&dev->addr_list_lock);
3185 }
3186 
3187 static inline void netif_addr_lock_nested(struct net_device *dev)
3188 {
3189         int subclass = SINGLE_DEPTH_NESTING;
3190 
3191         if (dev->netdev_ops->ndo_get_lock_subclass)
3192                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3193 
3194         spin_lock_nested(&dev->addr_list_lock, subclass);
3195 }
3196 
3197 static inline void netif_addr_lock_bh(struct net_device *dev)
3198 {
3199         spin_lock_bh(&dev->addr_list_lock);
3200 }
3201 
3202 static inline void netif_addr_unlock(struct net_device *dev)
3203 {
3204         spin_unlock(&dev->addr_list_lock);
3205 }
3206 
3207 static inline void netif_addr_unlock_bh(struct net_device *dev)
3208 {
3209         spin_unlock_bh(&dev->addr_list_lock);
3210 }
3211 
3212 /*
3213  * dev_addrs walker. Should be used only for read access. Call with
3214  * rcu_read_lock held.
3215  */
3216 #define for_each_dev_addr(dev, ha) \
3217                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3218 
3219 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3220 
3221 void ether_setup(struct net_device *dev);
3222 
3223 /* Support for loadable net-drivers */
3224 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3225                                     unsigned char name_assign_type,
3226                                     void (*setup)(struct net_device *),
3227                                     unsigned int txqs, unsigned int rxqs);
3228 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3229         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3230 
3231 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3232         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3233                          count)
3234 
3235 int register_netdev(struct net_device *dev);
3236 void unregister_netdev(struct net_device *dev);
3237 
3238 /* General hardware address lists handling functions */
3239 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3240                    struct netdev_hw_addr_list *from_list, int addr_len);
3241 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3242                       struct netdev_hw_addr_list *from_list, int addr_len);
3243 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3244                        struct net_device *dev,
3245                        int (*sync)(struct net_device *, const unsigned char *),
3246                        int (*unsync)(struct net_device *,
3247                                      const unsigned char *));
3248 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3249                           struct net_device *dev,
3250                           int (*unsync)(struct net_device *,
3251                                         const unsigned char *));
3252 void __hw_addr_init(struct netdev_hw_addr_list *list);
3253 
3254 /* Functions used for device addresses handling */
3255 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3256                  unsigned char addr_type);
3257 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3258                  unsigned char addr_type);
3259 void dev_addr_flush(struct net_device *dev);
3260 int dev_addr_init(struct net_device *dev);
3261 
3262 /* Functions used for unicast addresses handling */
3263 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3264 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3265 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3266 int dev_uc_sync(struct net_device *to, struct net_device *from);
3267 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3268 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3269 void dev_uc_flush(struct net_device *dev);
3270 void dev_uc_init(struct net_device *dev);
3271 
3272 /**
3273  *  __dev_uc_sync - Synchonize device's unicast list
3274  *  @dev:  device to sync
3275  *  @sync: function to call if address should be added
3276  *  @unsync: function to call if address should be removed
3277  *
3278  *  Add newly added addresses to the interface, and release
3279  *  addresses that have been deleted.
3280  **/
3281 static inline int __dev_uc_sync(struct net_device *dev,
3282                                 int (*sync)(struct net_device *,
3283                                             const unsigned char *),
3284                                 int (*unsync)(struct net_device *,
3285                                               const unsigned char *))
3286 {
3287         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3288 }
3289 
3290 /**
3291  *  __dev_uc_unsync - Remove synchronized addresses from device
3292  *  @dev:  device to sync
3293  *  @unsync: function to call if address should be removed
3294  *
3295  *  Remove all addresses that were added to the device by dev_uc_sync().
3296  **/
3297 static inline void __dev_uc_unsync(struct net_device *dev,
3298                                    int (*unsync)(struct net_device *,
3299                                                  const unsigned char *))
3300 {
3301         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3302 }
3303 
3304 /* Functions used for multicast addresses handling */
3305 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3306 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3307 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3308 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3309 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3310 int dev_mc_sync(struct net_device *to, struct net_device *from);
3311 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3312 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3313 void dev_mc_flush(struct net_device *dev);
3314 void dev_mc_init(struct net_device *dev);
3315 
3316 /**
3317  *  __dev_mc_sync - Synchonize device's multicast list
3318  *  @dev:  device to sync
3319  *  @sync: function to call if address should be added
3320  *  @unsync: function to call if address should be removed
3321  *
3322  *  Add newly added addresses to the interface, and release
3323  *  addresses that have been deleted.
3324  **/
3325 static inline int __dev_mc_sync(struct net_device *dev,
3326                                 int (*sync)(struct net_device *,
3327                                             const unsigned char *),
3328                                 int (*unsync)(struct net_device *,
3329                                               const unsigned char *))
3330 {
3331         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3332 }
3333 
3334 /**
3335  *  __dev_mc_unsync - Remove synchronized addresses from device
3336  *  @dev:  device to sync
3337  *  @unsync: function to call if address should be removed
3338  *
3339  *  Remove all addresses that were added to the device by dev_mc_sync().
3340  **/
3341 static inline void __dev_mc_unsync(struct net_device *dev,
3342                                    int (*unsync)(struct net_device *,
3343                                                  const unsigned char *))
3344 {
3345         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3346 }
3347 
3348 /* Functions used for secondary unicast and multicast support */
3349 void dev_set_rx_mode(struct net_device *dev);
3350 void __dev_set_rx_mode(struct net_device *dev);
3351 int dev_set_promiscuity(struct net_device *dev, int inc);
3352 int dev_set_allmulti(struct net_device *dev, int inc);
3353 void netdev_state_change(struct net_device *dev);
3354 void netdev_notify_peers(struct net_device *dev);
3355 void netdev_features_change(struct net_device *dev);
3356 /* Load a device via the kmod */
3357 void dev_load(struct net *net, const char *name);
3358 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3359                                         struct rtnl_link_stats64 *storage);
3360 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3361                              const struct net_device_stats *netdev_stats);
3362 
3363 extern int              netdev_max_backlog;
3364 extern int              netdev_tstamp_prequeue;
3365 extern int              weight_p;
3366 extern int              bpf_jit_enable;
3367 
3368 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3369 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3370                                                      struct list_head **iter);
3371 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3372                                                      struct list_head **iter);
3373 
3374 /* iterate through upper list, must be called under RCU read lock */
3375 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3376         for (iter = &(dev)->adj_list.upper, \
3377              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3378              updev; \
3379              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3380 
3381 /* iterate through upper list, must be called under RCU read lock */
3382 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3383         for (iter = &(dev)->all_adj_list.upper, \
3384              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3385              updev; \
3386              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3387 
3388 void *netdev_lower_get_next_private(struct net_device *dev,
3389                                     struct list_head **iter);
3390 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3391                                         struct list_head **iter);
3392 
3393 #define netdev_for_each_lower_private(dev, priv, iter) \
3394         for (iter = (dev)->adj_list.lower.next, \
3395              priv = netdev_lower_get_next_private(dev, &(iter)); \
3396              priv; \
3397              priv = netdev_lower_get_next_private(dev, &(iter)))
3398 
3399 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3400         for (iter = &(dev)->adj_list.lower, \
3401              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3402              priv; \
3403              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3404 
3405 void *netdev_lower_get_next(struct net_device *dev,
3406                                 struct list_head **iter);
3407 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3408         for (iter = &(dev)->adj_list.lower, \
3409              ldev = netdev_lower_get_next(dev, &(iter)); \
3410              ldev; \
3411              ldev = netdev_lower_get_next(dev, &(iter)))
3412 
3413 void *netdev_adjacent_get_private(struct list_head *adj_list);
3414 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3415 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3416 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3417 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3418 int netdev_master_upper_dev_link(struct net_device *dev,
3419                                  struct net_device *upper_dev);
3420 int netdev_master_upper_dev_link_private(struct net_device *dev,
3421                                          struct net_device *upper_dev,
3422                                          void *private);
3423 void netdev_upper_dev_unlink(struct net_device *dev,
3424                              struct net_device *upper_dev);
3425 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3426 void *netdev_lower_dev_get_private(struct net_device *dev,
3427                                    struct net_device *lower_dev);
3428 int dev_get_nest_level(struct net_device *dev,
3429                        bool (*type_check)(struct net_device *dev));
3430 int skb_checksum_help(struct sk_buff *skb);
3431 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3432                                   netdev_features_t features, bool tx_path);
3433 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3434                                     netdev_features_t features);
3435 
3436 static inline
3437 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3438 {
3439         return __skb_gso_segment(skb, features, true);
3440 }
3441 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3442 
3443 static inline bool can_checksum_protocol(netdev_features_t features,
3444                                          __be16 protocol)
3445 {
3446         return ((features & NETIF_F_GEN_CSUM) ||
3447                 ((features & NETIF_F_V4_CSUM) &&
3448                  protocol == htons(ETH_P_IP)) ||
3449                 ((features & NETIF_F_V6_CSUM) &&
3450                  protocol == htons(ETH_P_IPV6)) ||
3451                 ((features & NETIF_F_FCOE_CRC) &&
3452                  protocol == htons(ETH_P_FCOE)));
3453 }
3454 
3455 #ifdef CONFIG_BUG
3456 void netdev_rx_csum_fault(struct net_device *dev);
3457 #else
3458 static inline void netdev_rx_csum_fault(struct net_device *dev)
3459 {
3460 }
3461 #endif
3462 /* rx skb timestamps */
3463 void net_enable_timestamp(void);
3464 void net_disable_timestamp(void);
3465 
3466 #ifdef CONFIG_PROC_FS
3467 int __init dev_proc_init(void);
3468 #else
3469 #define dev_proc_init() 0
3470 #endif
3471 
3472 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3473                                               struct sk_buff *skb, struct net_device *dev,
3474                                               bool more)
3475 {
3476         skb->xmit_more = more ? 1 : 0;
3477         return ops->ndo_start_xmit(skb, dev);
3478 }
3479 
3480 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3481                                             struct netdev_queue *txq, bool more)
3482 {
3483         const struct net_device_ops *ops = dev->netdev_ops;
3484         int rc;
3485 
3486         rc = __netdev_start_xmit(ops, skb, dev, more);
3487         if (rc == NETDEV_TX_OK)
3488                 txq_trans_update(txq);
3489 
3490         return rc;
3491 }
3492 
3493 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3494                                 const void *ns);
3495 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3496                                  const void *ns);
3497 
3498 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3499 {
3500         return netdev_class_create_file_ns(class_attr, NULL);
3501 }
3502 
3503 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3504 {
3505         netdev_class_remove_file_ns(class_attr, NULL);
3506 }
3507 
3508 extern struct kobj_ns_type_operations net_ns_type_operations;
3509 
3510 const char *netdev_drivername(const struct net_device *dev);
3511 
3512 void linkwatch_run_queue(void);
3513 
3514 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3515                                                           netdev_features_t f2)
3516 {
3517         if (f1 & NETIF_F_GEN_CSUM)
3518                 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3519         if (f2 & NETIF_F_GEN_CSUM)
3520                 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3521         f1 &= f2;
3522         if (f1 & NETIF_F_GEN_CSUM)
3523                 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3524 
3525         return f1;
3526 }
3527 
3528 static inline netdev_features_t netdev_get_wanted_features(
3529         struct net_device *dev)
3530 {
3531         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3532 }
3533 netdev_features_t netdev_increment_features(netdev_features_t all,
3534         netdev_features_t one, netdev_features_t mask);
3535 
3536 /* Allow TSO being used on stacked device :
3537  * Performing the GSO segmentation before last device
3538  * is a performance improvement.
3539  */
3540 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3541                                                         netdev_features_t mask)
3542 {
3543         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3544 }
3545 
3546 int __netdev_update_features(struct net_device *dev);
3547 void netdev_update_features(struct net_device *dev);
3548 void netdev_change_features(struct net_device *dev);
3549 
3550 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3551                                         struct net_device *dev);
3552 
3553 netdev_features_t netif_skb_features(struct sk_buff *skb);
3554 
3555 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3556 {
3557         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3558 
3559         /* check flags correspondence */
3560         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3561         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3562         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3563         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3564         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3565         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3566         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3567         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3568         BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3569         BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3570         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3571         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3572         BUILD_BUG_ON(SKB_GSO_MPLS    != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3573 
3574         return (features & feature) == feature;
3575 }
3576 
3577 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3578 {
3579         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3580                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3581 }
3582 
3583 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3584                                    netdev_features_t features)
3585 {
3586         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3587                 (dev->netdev_ops->ndo_gso_check &&
3588                  !dev->netdev_ops->ndo_gso_check(skb, dev)) ||
3589                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3590                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3591 }
3592 
3593 static inline void netif_set_gso_max_size(struct net_device *dev,
3594                                           unsigned int size)
3595 {
3596         dev->gso_max_size = size;
3597 }
3598 
3599 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3600                                         int pulled_hlen, u16 mac_offset,
3601                                         int mac_len)
3602 {
3603         skb->protocol = protocol;
3604         skb->encapsulation = 1;
3605         skb_push(skb, pulled_hlen);
3606         skb_reset_transport_header(skb);
3607         skb->mac_header = mac_offset;
3608         skb->network_header = skb->mac_header + mac_len;
3609         skb->mac_len = mac_len;
3610 }
3611 
3612 static inline bool netif_is_macvlan(struct net_device *dev)
3613 {
3614         return dev->priv_flags & IFF_MACVLAN;
3615 }
3616 
3617 static inline bool netif_is_bond_master(struct net_device *dev)
3618 {
3619         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3620 }
3621 
3622 static inline bool netif_is_bond_slave(struct net_device *dev)
3623 {
3624         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3625 }
3626 
3627 static inline bool netif_supports_nofcs(struct net_device *dev)
3628 {
3629         return dev->priv_flags & IFF_SUPP_NOFCS;
3630 }
3631 
3632 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3633 static inline void netif_keep_dst(struct net_device *dev)
3634 {
3635         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3636 }
3637 
3638 extern struct pernet_operations __net_initdata loopback_net_ops;
3639 
3640 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3641 
3642 /* netdev_printk helpers, similar to dev_printk */
3643 
3644 static inline const char *netdev_name(const struct net_device *dev)
3645 {
3646         if (!dev->name[0] || strchr(dev->name, '%'))
3647                 return "(unnamed net_device)";
3648         return dev->name;
3649 }
3650 
3651 static inline const char *netdev_reg_state(const struct net_device *dev)
3652 {
3653         switch (dev->reg_state) {
3654         case NETREG_UNINITIALIZED: return " (uninitialized)";
3655         case NETREG_REGISTERED: return "";
3656         case NETREG_UNREGISTERING: return " (unregistering)";
3657         case NETREG_UNREGISTERED: return " (unregistered)";
3658         case NETREG_RELEASED: return " (released)";
3659         case NETREG_DUMMY: return " (dummy)";
3660         }
3661 
3662         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3663         return " (unknown)";
3664 }
3665 
3666 __printf(3, 4)
3667 void netdev_printk(const char *level, const struct net_device *dev,
3668                    const char *format, ...);
3669 __printf(2, 3)
3670 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3671 __printf(2, 3)
3672 void netdev_alert(const struct net_device *dev, const char *format, ...);
3673 __printf(2, 3)
3674 void netdev_crit(const struct net_device *dev, const char *format, ...);
3675 __printf(2, 3)
3676 void netdev_err(const struct net_device *dev, const char *format, ...);
3677 __printf(2, 3)
3678 void netdev_warn(const struct net_device *dev, const char *format, ...);
3679 __printf(2, 3)
3680 void netdev_notice(const struct net_device *dev, const char *format, ...);
3681 __printf(2, 3)
3682 void netdev_info(const struct net_device *dev, const char *format, ...);
3683 
3684 #define MODULE_ALIAS_NETDEV(device) \
3685         MODULE_ALIAS("netdev-" device)
3686 
3687 #if defined(CONFIG_DYNAMIC_DEBUG)
3688 #define netdev_dbg(__dev, format, args...)                      \
3689 do {                                                            \
3690         dynamic_netdev_dbg(__dev, format, ##args);              \
3691 } while (0)
3692 #elif defined(DEBUG)
3693 #define netdev_dbg(__dev, format, args...)                      \
3694         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3695 #else
3696 #define netdev_dbg(__dev, format, args...)                      \
3697 ({                                                              \
3698         if (0)                                                  \
3699                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3700 })
3701 #endif
3702 
3703 #if defined(VERBOSE_DEBUG)
3704 #define netdev_vdbg     netdev_dbg
3705 #else
3706 
3707 #define netdev_vdbg(dev, format, args...)                       \
3708 ({                                                              \
3709         if (0)                                                  \
3710                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3711         0;                                                      \
3712 })
3713 #endif
3714 
3715 /*
3716  * netdev_WARN() acts like dev_printk(), but with the key difference
3717  * of using a WARN/WARN_ON to get the message out, including the
3718  * file/line information and a backtrace.
3719  */
3720 #define netdev_WARN(dev, format, args...)                       \
3721         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3722              netdev_reg_state(dev), ##args)
3723 
3724 /* netif printk helpers, similar to netdev_printk */
3725 
3726 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3727 do {                                                            \
3728         if (netif_msg_##type(priv))                             \
3729                 netdev_printk(level, (dev), fmt, ##args);       \
3730 } while (0)
3731 
3732 #define netif_level(level, priv, type, dev, fmt, args...)       \
3733 do {                                                            \
3734         if (netif_msg_##type(priv))                             \
3735                 netdev_##level(dev, fmt, ##args);               \
3736 } while (0)
3737 
3738 #define netif_emerg(priv, type, dev, fmt, args...)              \
3739         netif_level(emerg, priv, type, dev, fmt, ##args)
3740 #define netif_alert(priv, type, dev, fmt, args...)              \
3741         netif_level(alert, priv, type, dev, fmt, ##args)
3742 #define netif_crit(priv, type, dev, fmt, args...)               \
3743         netif_level(crit, priv, type, dev, fmt, ##args)
3744 #define netif_err(priv, type, dev, fmt, args...)                \
3745         netif_level(err, priv, type, dev, fmt, ##args)
3746 #define netif_warn(priv, type, dev, fmt, args...)               \
3747         netif_level(warn, priv, type, dev, fmt, ##args)
3748 #define netif_notice(priv, type, dev, fmt, args...)             \
3749         netif_level(notice, priv, type, dev, fmt, ##args)
3750 #define netif_info(priv, type, dev, fmt, args...)               \
3751         netif_level(info, priv, type, dev, fmt, ##args)
3752 
3753 #if defined(CONFIG_DYNAMIC_DEBUG)
3754 #define netif_dbg(priv, type, netdev, format, args...)          \
3755 do {                                                            \
3756         if (netif_msg_##type(priv))                             \
3757                 dynamic_netdev_dbg(netdev, format, ##args);     \
3758 } while (0)
3759 #elif defined(DEBUG)
3760 #define netif_dbg(priv, type, dev, format, args...)             \
3761         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3762 #else
3763 #define netif_dbg(priv, type, dev, format, args...)                     \
3764 ({                                                                      \
3765         if (0)                                                          \
3766                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3767         0;                                                              \
3768 })
3769 #endif
3770 
3771 #if defined(VERBOSE_DEBUG)
3772 #define netif_vdbg      netif_dbg
3773 #else
3774 #define netif_vdbg(priv, type, dev, format, args...)            \
3775 ({                                                              \
3776         if (0)                                                  \
3777                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3778         0;                                                      \
3779 })
3780 #endif
3781 
3782 /*
3783  *      The list of packet types we will receive (as opposed to discard)
3784  *      and the routines to invoke.
3785  *
3786  *      Why 16. Because with 16 the only overlap we get on a hash of the
3787  *      low nibble of the protocol value is RARP/SNAP/X.25.
3788  *
3789  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3790  *             sure which should go first, but I bet it won't make much
3791  *             difference if we are running VLANs.  The good news is that
3792  *             this protocol won't be in the list unless compiled in, so
3793  *             the average user (w/out VLANs) will not be adversely affected.
3794  *             --BLG
3795  *
3796  *              0800    IP
3797  *              8100    802.1Q VLAN
3798  *              0001    802.3
3799  *              0002    AX.25
3800  *              0004    802.2
3801  *              8035    RARP
3802  *              0005    SNAP
3803  *              0805    X.25
3804  *              0806    ARP
3805  *              8137    IPX
3806  *              0009    Localtalk
3807  *              86DD    IPv6
3808  */
3809 #define PTYPE_HASH_SIZE (16)
3810 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3811 
3812 #endif  /* _LINUX_NETDEVICE_H */
3813 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us