Version:  2.0.40 2.2.26 2.4.37 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/pm_qos.h>
 29 #include <linux/timer.h>
 30 #include <linux/bug.h>
 31 #include <linux/delay.h>
 32 #include <linux/atomic.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 
 54 struct netpoll_info;
 55 struct device;
 56 struct phy_device;
 57 /* 802.11 specific */
 58 struct wireless_dev;
 59 
 60 void netdev_set_default_ethtool_ops(struct net_device *dev,
 61                                     const struct ethtool_ops *ops);
 62 
 63 /* Backlog congestion levels */
 64 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 65 #define NET_RX_DROP             1       /* packet dropped */
 66 
 67 /*
 68  * Transmit return codes: transmit return codes originate from three different
 69  * namespaces:
 70  *
 71  * - qdisc return codes
 72  * - driver transmit return codes
 73  * - errno values
 74  *
 75  * Drivers are allowed to return any one of those in their hard_start_xmit()
 76  * function. Real network devices commonly used with qdiscs should only return
 77  * the driver transmit return codes though - when qdiscs are used, the actual
 78  * transmission happens asynchronously, so the value is not propagated to
 79  * higher layers. Virtual network devices transmit synchronously, in this case
 80  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 81  * others are propagated to higher layers.
 82  */
 83 
 84 /* qdisc ->enqueue() return codes. */
 85 #define NET_XMIT_SUCCESS        0x00
 86 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 87 #define NET_XMIT_CN             0x02    /* congestion notification      */
 88 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 89 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 90 
 91 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 92  * indicates that the device will soon be dropping packets, or already drops
 93  * some packets of the same priority; prompting us to send less aggressively. */
 94 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 95 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
 96 
 97 /* Driver transmit return codes */
 98 #define NETDEV_TX_MASK          0xf0
 99 
100 enum netdev_tx {
101         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
102         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
103         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
104         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
105 };
106 typedef enum netdev_tx netdev_tx_t;
107 
108 /*
109  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
110  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
111  */
112 static inline bool dev_xmit_complete(int rc)
113 {
114         /*
115          * Positive cases with an skb consumed by a driver:
116          * - successful transmission (rc == NETDEV_TX_OK)
117          * - error while transmitting (rc < 0)
118          * - error while queueing to a different device (rc & NET_XMIT_MASK)
119          */
120         if (likely(rc < NET_XMIT_MASK))
121                 return true;
122 
123         return false;
124 }
125 
126 /*
127  *      Compute the worst case header length according to the protocols
128  *      used.
129  */
130 
131 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
132 # if defined(CONFIG_MAC80211_MESH)
133 #  define LL_MAX_HEADER 128
134 # else
135 #  define LL_MAX_HEADER 96
136 # endif
137 #else
138 # define LL_MAX_HEADER 32
139 #endif
140 
141 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
142     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
143 #define MAX_HEADER LL_MAX_HEADER
144 #else
145 #define MAX_HEADER (LL_MAX_HEADER + 48)
146 #endif
147 
148 /*
149  *      Old network device statistics. Fields are native words
150  *      (unsigned long) so they can be read and written atomically.
151  */
152 
153 struct net_device_stats {
154         unsigned long   rx_packets;
155         unsigned long   tx_packets;
156         unsigned long   rx_bytes;
157         unsigned long   tx_bytes;
158         unsigned long   rx_errors;
159         unsigned long   tx_errors;
160         unsigned long   rx_dropped;
161         unsigned long   tx_dropped;
162         unsigned long   multicast;
163         unsigned long   collisions;
164         unsigned long   rx_length_errors;
165         unsigned long   rx_over_errors;
166         unsigned long   rx_crc_errors;
167         unsigned long   rx_frame_errors;
168         unsigned long   rx_fifo_errors;
169         unsigned long   rx_missed_errors;
170         unsigned long   tx_aborted_errors;
171         unsigned long   tx_carrier_errors;
172         unsigned long   tx_fifo_errors;
173         unsigned long   tx_heartbeat_errors;
174         unsigned long   tx_window_errors;
175         unsigned long   rx_compressed;
176         unsigned long   tx_compressed;
177 };
178 
179 
180 #include <linux/cache.h>
181 #include <linux/skbuff.h>
182 
183 #ifdef CONFIG_RPS
184 #include <linux/static_key.h>
185 extern struct static_key rps_needed;
186 #endif
187 
188 struct neighbour;
189 struct neigh_parms;
190 struct sk_buff;
191 
192 struct netdev_hw_addr {
193         struct list_head        list;
194         unsigned char           addr[MAX_ADDR_LEN];
195         unsigned char           type;
196 #define NETDEV_HW_ADDR_T_LAN            1
197 #define NETDEV_HW_ADDR_T_SAN            2
198 #define NETDEV_HW_ADDR_T_SLAVE          3
199 #define NETDEV_HW_ADDR_T_UNICAST        4
200 #define NETDEV_HW_ADDR_T_MULTICAST      5
201         bool                    global_use;
202         int                     sync_cnt;
203         int                     refcount;
204         int                     synced;
205         struct rcu_head         rcu_head;
206 };
207 
208 struct netdev_hw_addr_list {
209         struct list_head        list;
210         int                     count;
211 };
212 
213 #define netdev_hw_addr_list_count(l) ((l)->count)
214 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
215 #define netdev_hw_addr_list_for_each(ha, l) \
216         list_for_each_entry(ha, &(l)->list, list)
217 
218 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
219 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
220 #define netdev_for_each_uc_addr(ha, dev) \
221         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
222 
223 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
224 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
225 #define netdev_for_each_mc_addr(ha, dev) \
226         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
227 
228 struct hh_cache {
229         u16             hh_len;
230         u16             __pad;
231         seqlock_t       hh_lock;
232 
233         /* cached hardware header; allow for machine alignment needs.        */
234 #define HH_DATA_MOD     16
235 #define HH_DATA_OFF(__len) \
236         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
237 #define HH_DATA_ALIGN(__len) \
238         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
239         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
240 };
241 
242 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
243  * Alternative is:
244  *   dev->hard_header_len ? (dev->hard_header_len +
245  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
246  *
247  * We could use other alignment values, but we must maintain the
248  * relationship HH alignment <= LL alignment.
249  */
250 #define LL_RESERVED_SPACE(dev) \
251         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
252 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
253         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
254 
255 struct header_ops {
256         int     (*create) (struct sk_buff *skb, struct net_device *dev,
257                            unsigned short type, const void *daddr,
258                            const void *saddr, unsigned int len);
259         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
260         int     (*rebuild)(struct sk_buff *skb);
261         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
262         void    (*cache_update)(struct hh_cache *hh,
263                                 const struct net_device *dev,
264                                 const unsigned char *haddr);
265 };
266 
267 /* These flag bits are private to the generic network queueing
268  * layer, they may not be explicitly referenced by any other
269  * code.
270  */
271 
272 enum netdev_state_t {
273         __LINK_STATE_START,
274         __LINK_STATE_PRESENT,
275         __LINK_STATE_NOCARRIER,
276         __LINK_STATE_LINKWATCH_PENDING,
277         __LINK_STATE_DORMANT,
278 };
279 
280 
281 /*
282  * This structure holds at boot time configured netdevice settings. They
283  * are then used in the device probing.
284  */
285 struct netdev_boot_setup {
286         char name[IFNAMSIZ];
287         struct ifmap map;
288 };
289 #define NETDEV_BOOT_SETUP_MAX 8
290 
291 int __init netdev_boot_setup(char *str);
292 
293 /*
294  * Structure for NAPI scheduling similar to tasklet but with weighting
295  */
296 struct napi_struct {
297         /* The poll_list must only be managed by the entity which
298          * changes the state of the NAPI_STATE_SCHED bit.  This means
299          * whoever atomically sets that bit can add this napi_struct
300          * to the per-cpu poll_list, and whoever clears that bit
301          * can remove from the list right before clearing the bit.
302          */
303         struct list_head        poll_list;
304 
305         unsigned long           state;
306         int                     weight;
307         unsigned int            gro_count;
308         int                     (*poll)(struct napi_struct *, int);
309 #ifdef CONFIG_NETPOLL
310         spinlock_t              poll_lock;
311         int                     poll_owner;
312 #endif
313         struct net_device       *dev;
314         struct sk_buff          *gro_list;
315         struct sk_buff          *skb;
316         struct list_head        dev_list;
317         struct hlist_node       napi_hash_node;
318         unsigned int            napi_id;
319 };
320 
321 enum {
322         NAPI_STATE_SCHED,       /* Poll is scheduled */
323         NAPI_STATE_DISABLE,     /* Disable pending */
324         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
325         NAPI_STATE_HASHED,      /* In NAPI hash */
326 };
327 
328 enum gro_result {
329         GRO_MERGED,
330         GRO_MERGED_FREE,
331         GRO_HELD,
332         GRO_NORMAL,
333         GRO_DROP,
334 };
335 typedef enum gro_result gro_result_t;
336 
337 /*
338  * enum rx_handler_result - Possible return values for rx_handlers.
339  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
340  * further.
341  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
342  * case skb->dev was changed by rx_handler.
343  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
344  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
345  *
346  * rx_handlers are functions called from inside __netif_receive_skb(), to do
347  * special processing of the skb, prior to delivery to protocol handlers.
348  *
349  * Currently, a net_device can only have a single rx_handler registered. Trying
350  * to register a second rx_handler will return -EBUSY.
351  *
352  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
353  * To unregister a rx_handler on a net_device, use
354  * netdev_rx_handler_unregister().
355  *
356  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
357  * do with the skb.
358  *
359  * If the rx_handler consumed to skb in some way, it should return
360  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
361  * the skb to be delivered in some other ways.
362  *
363  * If the rx_handler changed skb->dev, to divert the skb to another
364  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
365  * new device will be called if it exists.
366  *
367  * If the rx_handler consider the skb should be ignored, it should return
368  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
369  * are registered on exact device (ptype->dev == skb->dev).
370  *
371  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
372  * delivered, it should return RX_HANDLER_PASS.
373  *
374  * A device without a registered rx_handler will behave as if rx_handler
375  * returned RX_HANDLER_PASS.
376  */
377 
378 enum rx_handler_result {
379         RX_HANDLER_CONSUMED,
380         RX_HANDLER_ANOTHER,
381         RX_HANDLER_EXACT,
382         RX_HANDLER_PASS,
383 };
384 typedef enum rx_handler_result rx_handler_result_t;
385 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
386 
387 void __napi_schedule(struct napi_struct *n);
388 
389 static inline bool napi_disable_pending(struct napi_struct *n)
390 {
391         return test_bit(NAPI_STATE_DISABLE, &n->state);
392 }
393 
394 /**
395  *      napi_schedule_prep - check if napi can be scheduled
396  *      @n: napi context
397  *
398  * Test if NAPI routine is already running, and if not mark
399  * it as running.  This is used as a condition variable
400  * insure only one NAPI poll instance runs.  We also make
401  * sure there is no pending NAPI disable.
402  */
403 static inline bool napi_schedule_prep(struct napi_struct *n)
404 {
405         return !napi_disable_pending(n) &&
406                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
407 }
408 
409 /**
410  *      napi_schedule - schedule NAPI poll
411  *      @n: napi context
412  *
413  * Schedule NAPI poll routine to be called if it is not already
414  * running.
415  */
416 static inline void napi_schedule(struct napi_struct *n)
417 {
418         if (napi_schedule_prep(n))
419                 __napi_schedule(n);
420 }
421 
422 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
423 static inline bool napi_reschedule(struct napi_struct *napi)
424 {
425         if (napi_schedule_prep(napi)) {
426                 __napi_schedule(napi);
427                 return true;
428         }
429         return false;
430 }
431 
432 /**
433  *      napi_complete - NAPI processing complete
434  *      @n: napi context
435  *
436  * Mark NAPI processing as complete.
437  */
438 void __napi_complete(struct napi_struct *n);
439 void napi_complete(struct napi_struct *n);
440 
441 /**
442  *      napi_by_id - lookup a NAPI by napi_id
443  *      @napi_id: hashed napi_id
444  *
445  * lookup @napi_id in napi_hash table
446  * must be called under rcu_read_lock()
447  */
448 struct napi_struct *napi_by_id(unsigned int napi_id);
449 
450 /**
451  *      napi_hash_add - add a NAPI to global hashtable
452  *      @napi: napi context
453  *
454  * generate a new napi_id and store a @napi under it in napi_hash
455  */
456 void napi_hash_add(struct napi_struct *napi);
457 
458 /**
459  *      napi_hash_del - remove a NAPI from global table
460  *      @napi: napi context
461  *
462  * Warning: caller must observe rcu grace period
463  * before freeing memory containing @napi
464  */
465 void napi_hash_del(struct napi_struct *napi);
466 
467 /**
468  *      napi_disable - prevent NAPI from scheduling
469  *      @n: napi context
470  *
471  * Stop NAPI from being scheduled on this context.
472  * Waits till any outstanding processing completes.
473  */
474 static inline void napi_disable(struct napi_struct *n)
475 {
476         might_sleep();
477         set_bit(NAPI_STATE_DISABLE, &n->state);
478         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
479                 msleep(1);
480         clear_bit(NAPI_STATE_DISABLE, &n->state);
481 }
482 
483 /**
484  *      napi_enable - enable NAPI scheduling
485  *      @n: napi context
486  *
487  * Resume NAPI from being scheduled on this context.
488  * Must be paired with napi_disable.
489  */
490 static inline void napi_enable(struct napi_struct *n)
491 {
492         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
493         smp_mb__before_atomic();
494         clear_bit(NAPI_STATE_SCHED, &n->state);
495 }
496 
497 #ifdef CONFIG_SMP
498 /**
499  *      napi_synchronize - wait until NAPI is not running
500  *      @n: napi context
501  *
502  * Wait until NAPI is done being scheduled on this context.
503  * Waits till any outstanding processing completes but
504  * does not disable future activations.
505  */
506 static inline void napi_synchronize(const struct napi_struct *n)
507 {
508         while (test_bit(NAPI_STATE_SCHED, &n->state))
509                 msleep(1);
510 }
511 #else
512 # define napi_synchronize(n)    barrier()
513 #endif
514 
515 enum netdev_queue_state_t {
516         __QUEUE_STATE_DRV_XOFF,
517         __QUEUE_STATE_STACK_XOFF,
518         __QUEUE_STATE_FROZEN,
519 };
520 
521 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
522 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
523 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
524 
525 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
526 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
527                                         QUEUE_STATE_FROZEN)
528 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
529                                         QUEUE_STATE_FROZEN)
530 
531 /*
532  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
533  * netif_tx_* functions below are used to manipulate this flag.  The
534  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
535  * queue independently.  The netif_xmit_*stopped functions below are called
536  * to check if the queue has been stopped by the driver or stack (either
537  * of the XOFF bits are set in the state).  Drivers should not need to call
538  * netif_xmit*stopped functions, they should only be using netif_tx_*.
539  */
540 
541 struct netdev_queue {
542 /*
543  * read mostly part
544  */
545         struct net_device       *dev;
546         struct Qdisc            *qdisc;
547         struct Qdisc            *qdisc_sleeping;
548 #ifdef CONFIG_SYSFS
549         struct kobject          kobj;
550 #endif
551 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
552         int                     numa_node;
553 #endif
554 /*
555  * write mostly part
556  */
557         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
558         int                     xmit_lock_owner;
559         /*
560          * please use this field instead of dev->trans_start
561          */
562         unsigned long           trans_start;
563 
564         /*
565          * Number of TX timeouts for this queue
566          * (/sys/class/net/DEV/Q/trans_timeout)
567          */
568         unsigned long           trans_timeout;
569 
570         unsigned long           state;
571 
572 #ifdef CONFIG_BQL
573         struct dql              dql;
574 #endif
575 } ____cacheline_aligned_in_smp;
576 
577 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
578 {
579 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
580         return q->numa_node;
581 #else
582         return NUMA_NO_NODE;
583 #endif
584 }
585 
586 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
587 {
588 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
589         q->numa_node = node;
590 #endif
591 }
592 
593 #ifdef CONFIG_RPS
594 /*
595  * This structure holds an RPS map which can be of variable length.  The
596  * map is an array of CPUs.
597  */
598 struct rps_map {
599         unsigned int len;
600         struct rcu_head rcu;
601         u16 cpus[0];
602 };
603 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
604 
605 /*
606  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
607  * tail pointer for that CPU's input queue at the time of last enqueue, and
608  * a hardware filter index.
609  */
610 struct rps_dev_flow {
611         u16 cpu;
612         u16 filter;
613         unsigned int last_qtail;
614 };
615 #define RPS_NO_FILTER 0xffff
616 
617 /*
618  * The rps_dev_flow_table structure contains a table of flow mappings.
619  */
620 struct rps_dev_flow_table {
621         unsigned int mask;
622         struct rcu_head rcu;
623         struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626     ((_num) * sizeof(struct rps_dev_flow)))
627 
628 /*
629  * The rps_sock_flow_table contains mappings of flows to the last CPU
630  * on which they were processed by the application (set in recvmsg).
631  */
632 struct rps_sock_flow_table {
633         unsigned int mask;
634         u16 ents[0];
635 };
636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637     ((_num) * sizeof(u16)))
638 
639 #define RPS_NO_CPU 0xffff
640 
641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642                                         u32 hash)
643 {
644         if (table && hash) {
645                 unsigned int cpu, index = hash & table->mask;
646 
647                 /* We only give a hint, preemption can change cpu under us */
648                 cpu = raw_smp_processor_id();
649 
650                 if (table->ents[index] != cpu)
651                         table->ents[index] = cpu;
652         }
653 }
654 
655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656                                        u32 hash)
657 {
658         if (table && hash)
659                 table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661 
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663 
664 #ifdef CONFIG_RFS_ACCEL
665 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
666                          u16 filter_id);
667 #endif
668 #endif /* CONFIG_RPS */
669 
670 /* This structure contains an instance of an RX queue. */
671 struct netdev_rx_queue {
672 #ifdef CONFIG_RPS
673         struct rps_map __rcu            *rps_map;
674         struct rps_dev_flow_table __rcu *rps_flow_table;
675 #endif
676         struct kobject                  kobj;
677         struct net_device               *dev;
678 } ____cacheline_aligned_in_smp;
679 
680 /*
681  * RX queue sysfs structures and functions.
682  */
683 struct rx_queue_attribute {
684         struct attribute attr;
685         ssize_t (*show)(struct netdev_rx_queue *queue,
686             struct rx_queue_attribute *attr, char *buf);
687         ssize_t (*store)(struct netdev_rx_queue *queue,
688             struct rx_queue_attribute *attr, const char *buf, size_t len);
689 };
690 
691 #ifdef CONFIG_XPS
692 /*
693  * This structure holds an XPS map which can be of variable length.  The
694  * map is an array of queues.
695  */
696 struct xps_map {
697         unsigned int len;
698         unsigned int alloc_len;
699         struct rcu_head rcu;
700         u16 queues[0];
701 };
702 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
703 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
704     / sizeof(u16))
705 
706 /*
707  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
708  */
709 struct xps_dev_maps {
710         struct rcu_head rcu;
711         struct xps_map __rcu *cpu_map[0];
712 };
713 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
714     (nr_cpu_ids * sizeof(struct xps_map *)))
715 #endif /* CONFIG_XPS */
716 
717 #define TC_MAX_QUEUE    16
718 #define TC_BITMASK      15
719 /* HW offloaded queuing disciplines txq count and offset maps */
720 struct netdev_tc_txq {
721         u16 count;
722         u16 offset;
723 };
724 
725 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
726 /*
727  * This structure is to hold information about the device
728  * configured to run FCoE protocol stack.
729  */
730 struct netdev_fcoe_hbainfo {
731         char    manufacturer[64];
732         char    serial_number[64];
733         char    hardware_version[64];
734         char    driver_version[64];
735         char    optionrom_version[64];
736         char    firmware_version[64];
737         char    model[256];
738         char    model_description[256];
739 };
740 #endif
741 
742 #define MAX_PHYS_PORT_ID_LEN 32
743 
744 /* This structure holds a unique identifier to identify the
745  * physical port used by a netdevice.
746  */
747 struct netdev_phys_port_id {
748         unsigned char id[MAX_PHYS_PORT_ID_LEN];
749         unsigned char id_len;
750 };
751 
752 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
753                                        struct sk_buff *skb);
754 
755 /*
756  * This structure defines the management hooks for network devices.
757  * The following hooks can be defined; unless noted otherwise, they are
758  * optional and can be filled with a null pointer.
759  *
760  * int (*ndo_init)(struct net_device *dev);
761  *     This function is called once when network device is registered.
762  *     The network device can use this to any late stage initializaton
763  *     or semantic validattion. It can fail with an error code which will
764  *     be propogated back to register_netdev
765  *
766  * void (*ndo_uninit)(struct net_device *dev);
767  *     This function is called when device is unregistered or when registration
768  *     fails. It is not called if init fails.
769  *
770  * int (*ndo_open)(struct net_device *dev);
771  *     This function is called when network device transistions to the up
772  *     state.
773  *
774  * int (*ndo_stop)(struct net_device *dev);
775  *     This function is called when network device transistions to the down
776  *     state.
777  *
778  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
779  *                               struct net_device *dev);
780  *      Called when a packet needs to be transmitted.
781  *      Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
782  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
783  *      Required can not be NULL.
784  *
785  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
786  *                         void *accel_priv, select_queue_fallback_t fallback);
787  *      Called to decide which queue to when device supports multiple
788  *      transmit queues.
789  *
790  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
791  *      This function is called to allow device receiver to make
792  *      changes to configuration when multicast or promiscious is enabled.
793  *
794  * void (*ndo_set_rx_mode)(struct net_device *dev);
795  *      This function is called device changes address list filtering.
796  *      If driver handles unicast address filtering, it should set
797  *      IFF_UNICAST_FLT to its priv_flags.
798  *
799  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
800  *      This function  is called when the Media Access Control address
801  *      needs to be changed. If this interface is not defined, the
802  *      mac address can not be changed.
803  *
804  * int (*ndo_validate_addr)(struct net_device *dev);
805  *      Test if Media Access Control address is valid for the device.
806  *
807  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
808  *      Called when a user request an ioctl which can't be handled by
809  *      the generic interface code. If not defined ioctl's return
810  *      not supported error code.
811  *
812  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
813  *      Used to set network devices bus interface parameters. This interface
814  *      is retained for legacy reason, new devices should use the bus
815  *      interface (PCI) for low level management.
816  *
817  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
818  *      Called when a user wants to change the Maximum Transfer Unit
819  *      of a device. If not defined, any request to change MTU will
820  *      will return an error.
821  *
822  * void (*ndo_tx_timeout)(struct net_device *dev);
823  *      Callback uses when the transmitter has not made any progress
824  *      for dev->watchdog ticks.
825  *
826  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
827  *                      struct rtnl_link_stats64 *storage);
828  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
829  *      Called when a user wants to get the network device usage
830  *      statistics. Drivers must do one of the following:
831  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
832  *         rtnl_link_stats64 structure passed by the caller.
833  *      2. Define @ndo_get_stats to update a net_device_stats structure
834  *         (which should normally be dev->stats) and return a pointer to
835  *         it. The structure may be changed asynchronously only if each
836  *         field is written atomically.
837  *      3. Update dev->stats asynchronously and atomically, and define
838  *         neither operation.
839  *
840  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16t vid);
841  *      If device support VLAN filtering this function is called when a
842  *      VLAN id is registered.
843  *
844  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
845  *      If device support VLAN filtering this function is called when a
846  *      VLAN id is unregistered.
847  *
848  * void (*ndo_poll_controller)(struct net_device *dev);
849  *
850  *      SR-IOV management functions.
851  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
852  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
853  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
854  *                        int max_tx_rate);
855  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
856  * int (*ndo_get_vf_config)(struct net_device *dev,
857  *                          int vf, struct ifla_vf_info *ivf);
858  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
859  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
860  *                        struct nlattr *port[]);
861  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
862  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
863  *      Called to setup 'tc' number of traffic classes in the net device. This
864  *      is always called from the stack with the rtnl lock held and netif tx
865  *      queues stopped. This allows the netdevice to perform queue management
866  *      safely.
867  *
868  *      Fiber Channel over Ethernet (FCoE) offload functions.
869  * int (*ndo_fcoe_enable)(struct net_device *dev);
870  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
871  *      so the underlying device can perform whatever needed configuration or
872  *      initialization to support acceleration of FCoE traffic.
873  *
874  * int (*ndo_fcoe_disable)(struct net_device *dev);
875  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
876  *      so the underlying device can perform whatever needed clean-ups to
877  *      stop supporting acceleration of FCoE traffic.
878  *
879  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
880  *                           struct scatterlist *sgl, unsigned int sgc);
881  *      Called when the FCoE Initiator wants to initialize an I/O that
882  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
883  *      perform necessary setup and returns 1 to indicate the device is set up
884  *      successfully to perform DDP on this I/O, otherwise this returns 0.
885  *
886  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
887  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
888  *      indicated by the FC exchange id 'xid', so the underlying device can
889  *      clean up and reuse resources for later DDP requests.
890  *
891  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
892  *                            struct scatterlist *sgl, unsigned int sgc);
893  *      Called when the FCoE Target wants to initialize an I/O that
894  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
895  *      perform necessary setup and returns 1 to indicate the device is set up
896  *      successfully to perform DDP on this I/O, otherwise this returns 0.
897  *
898  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
899  *                             struct netdev_fcoe_hbainfo *hbainfo);
900  *      Called when the FCoE Protocol stack wants information on the underlying
901  *      device. This information is utilized by the FCoE protocol stack to
902  *      register attributes with Fiber Channel management service as per the
903  *      FC-GS Fabric Device Management Information(FDMI) specification.
904  *
905  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
906  *      Called when the underlying device wants to override default World Wide
907  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
908  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
909  *      protocol stack to use.
910  *
911  *      RFS acceleration.
912  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
913  *                          u16 rxq_index, u32 flow_id);
914  *      Set hardware filter for RFS.  rxq_index is the target queue index;
915  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
916  *      Return the filter ID on success, or a negative error code.
917  *
918  *      Slave management functions (for bridge, bonding, etc).
919  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
920  *      Called to make another netdev an underling.
921  *
922  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
923  *      Called to release previously enslaved netdev.
924  *
925  *      Feature/offload setting functions.
926  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
927  *              netdev_features_t features);
928  *      Adjusts the requested feature flags according to device-specific
929  *      constraints, and returns the resulting flags. Must not modify
930  *      the device state.
931  *
932  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
933  *      Called to update device configuration to new features. Passed
934  *      feature set might be less than what was returned by ndo_fix_features()).
935  *      Must return >0 or -errno if it changed dev->features itself.
936  *
937  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
938  *                    struct net_device *dev,
939  *                    const unsigned char *addr, u16 flags)
940  *      Adds an FDB entry to dev for addr.
941  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
942  *                    struct net_device *dev,
943  *                    const unsigned char *addr)
944  *      Deletes the FDB entry from dev coresponding to addr.
945  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
946  *                     struct net_device *dev, int idx)
947  *      Used to add FDB entries to dump requests. Implementers should add
948  *      entries to skb and update idx with the number of entries.
949  *
950  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
951  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
952  *                           struct net_device *dev, u32 filter_mask)
953  *
954  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
955  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
956  *      which do not represent real hardware may define this to allow their
957  *      userspace components to manage their virtual carrier state. Devices
958  *      that determine carrier state from physical hardware properties (eg
959  *      network cables) or protocol-dependent mechanisms (eg
960  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
961  *
962  * int (*ndo_get_phys_port_id)(struct net_device *dev,
963  *                             struct netdev_phys_port_id *ppid);
964  *      Called to get ID of physical port of this device. If driver does
965  *      not implement this, it is assumed that the hw is not able to have
966  *      multiple net devices on single physical port.
967  *
968  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
969  *                            sa_family_t sa_family, __be16 port);
970  *      Called by vxlan to notiy a driver about the UDP port and socket
971  *      address family that vxlan is listnening to. It is called only when
972  *      a new port starts listening. The operation is protected by the
973  *      vxlan_net->sock_lock.
974  *
975  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
976  *                            sa_family_t sa_family, __be16 port);
977  *      Called by vxlan to notify the driver about a UDP port and socket
978  *      address family that vxlan is not listening to anymore. The operation
979  *      is protected by the vxlan_net->sock_lock.
980  *
981  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
982  *                               struct net_device *dev)
983  *      Called by upper layer devices to accelerate switching or other
984  *      station functionality into hardware. 'pdev is the lowerdev
985  *      to use for the offload and 'dev' is the net device that will
986  *      back the offload. Returns a pointer to the private structure
987  *      the upper layer will maintain.
988  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
989  *      Called by upper layer device to delete the station created
990  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
991  *      the station and priv is the structure returned by the add
992  *      operation.
993  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
994  *                                    struct net_device *dev,
995  *                                    void *priv);
996  *      Callback to use for xmit over the accelerated station. This
997  *      is used in place of ndo_start_xmit on accelerated net
998  *      devices.
999  */
1000 struct net_device_ops {
1001         int                     (*ndo_init)(struct net_device *dev);
1002         void                    (*ndo_uninit)(struct net_device *dev);
1003         int                     (*ndo_open)(struct net_device *dev);
1004         int                     (*ndo_stop)(struct net_device *dev);
1005         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1006                                                    struct net_device *dev);
1007         u16                     (*ndo_select_queue)(struct net_device *dev,
1008                                                     struct sk_buff *skb,
1009                                                     void *accel_priv,
1010                                                     select_queue_fallback_t fallback);
1011         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1012                                                        int flags);
1013         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1014         int                     (*ndo_set_mac_address)(struct net_device *dev,
1015                                                        void *addr);
1016         int                     (*ndo_validate_addr)(struct net_device *dev);
1017         int                     (*ndo_do_ioctl)(struct net_device *dev,
1018                                                 struct ifreq *ifr, int cmd);
1019         int                     (*ndo_set_config)(struct net_device *dev,
1020                                                   struct ifmap *map);
1021         int                     (*ndo_change_mtu)(struct net_device *dev,
1022                                                   int new_mtu);
1023         int                     (*ndo_neigh_setup)(struct net_device *dev,
1024                                                    struct neigh_parms *);
1025         void                    (*ndo_tx_timeout) (struct net_device *dev);
1026 
1027         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1028                                                      struct rtnl_link_stats64 *storage);
1029         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1030 
1031         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1032                                                        __be16 proto, u16 vid);
1033         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1034                                                         __be16 proto, u16 vid);
1035 #ifdef CONFIG_NET_POLL_CONTROLLER
1036         void                    (*ndo_poll_controller)(struct net_device *dev);
1037         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1038                                                      struct netpoll_info *info);
1039         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1040 #endif
1041 #ifdef CONFIG_NET_RX_BUSY_POLL
1042         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1043 #endif
1044         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1045                                                   int queue, u8 *mac);
1046         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1047                                                    int queue, u16 vlan, u8 qos);
1048         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1049                                                    int vf, int min_tx_rate,
1050                                                    int max_tx_rate);
1051         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1052                                                        int vf, bool setting);
1053         int                     (*ndo_get_vf_config)(struct net_device *dev,
1054                                                      int vf,
1055                                                      struct ifla_vf_info *ivf);
1056         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1057                                                          int vf, int link_state);
1058         int                     (*ndo_set_vf_port)(struct net_device *dev,
1059                                                    int vf,
1060                                                    struct nlattr *port[]);
1061         int                     (*ndo_get_vf_port)(struct net_device *dev,
1062                                                    int vf, struct sk_buff *skb);
1063         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1064 #if IS_ENABLED(CONFIG_FCOE)
1065         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1066         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1067         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1068                                                       u16 xid,
1069                                                       struct scatterlist *sgl,
1070                                                       unsigned int sgc);
1071         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1072                                                      u16 xid);
1073         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1074                                                        u16 xid,
1075                                                        struct scatterlist *sgl,
1076                                                        unsigned int sgc);
1077         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1078                                                         struct netdev_fcoe_hbainfo *hbainfo);
1079 #endif
1080 
1081 #if IS_ENABLED(CONFIG_LIBFCOE)
1082 #define NETDEV_FCOE_WWNN 0
1083 #define NETDEV_FCOE_WWPN 1
1084         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1085                                                     u64 *wwn, int type);
1086 #endif
1087 
1088 #ifdef CONFIG_RFS_ACCEL
1089         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1090                                                      const struct sk_buff *skb,
1091                                                      u16 rxq_index,
1092                                                      u32 flow_id);
1093 #endif
1094         int                     (*ndo_add_slave)(struct net_device *dev,
1095                                                  struct net_device *slave_dev);
1096         int                     (*ndo_del_slave)(struct net_device *dev,
1097                                                  struct net_device *slave_dev);
1098         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1099                                                     netdev_features_t features);
1100         int                     (*ndo_set_features)(struct net_device *dev,
1101                                                     netdev_features_t features);
1102         int                     (*ndo_neigh_construct)(struct neighbour *n);
1103         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1104 
1105         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1106                                                struct nlattr *tb[],
1107                                                struct net_device *dev,
1108                                                const unsigned char *addr,
1109                                                u16 flags);
1110         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1111                                                struct nlattr *tb[],
1112                                                struct net_device *dev,
1113                                                const unsigned char *addr);
1114         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1115                                                 struct netlink_callback *cb,
1116                                                 struct net_device *dev,
1117                                                 int idx);
1118 
1119         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1120                                                       struct nlmsghdr *nlh);
1121         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1122                                                       u32 pid, u32 seq,
1123                                                       struct net_device *dev,
1124                                                       u32 filter_mask);
1125         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1126                                                       struct nlmsghdr *nlh);
1127         int                     (*ndo_change_carrier)(struct net_device *dev,
1128                                                       bool new_carrier);
1129         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1130                                                         struct netdev_phys_port_id *ppid);
1131         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1132                                                       sa_family_t sa_family,
1133                                                       __be16 port);
1134         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1135                                                       sa_family_t sa_family,
1136                                                       __be16 port);
1137 
1138         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1139                                                         struct net_device *dev);
1140         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1141                                                         void *priv);
1142 
1143         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1144                                                         struct net_device *dev,
1145                                                         void *priv);
1146         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1147 };
1148 
1149 /**
1150  * enum net_device_priv_flags - &struct net_device priv_flags
1151  *
1152  * These are the &struct net_device, they are only set internally
1153  * by drivers and used in the kernel. These flags are invisible to
1154  * userspace, this means that the order of these flags can change
1155  * during any kernel release.
1156  *
1157  * You should have a pretty good reason to be extending these flags.
1158  *
1159  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1160  * @IFF_EBRIDGE: Ethernet bridging device
1161  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1162  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1163  * @IFF_MASTER_ALB: bonding master, balance-alb
1164  * @IFF_BONDING: bonding master or slave
1165  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1166  * @IFF_ISATAP: ISATAP interface (RFC4214)
1167  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1168  * @IFF_WAN_HDLC: WAN HDLC device
1169  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1170  *      release skb->dst
1171  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1172  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1173  * @IFF_MACVLAN_PORT: device used as macvlan port
1174  * @IFF_BRIDGE_PORT: device used as bridge port
1175  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1176  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1177  * @IFF_UNICAST_FLT: Supports unicast filtering
1178  * @IFF_TEAM_PORT: device used as team port
1179  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1180  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1181  *      change when it's running
1182  * @IFF_MACVLAN: Macvlan device
1183  */
1184 enum netdev_priv_flags {
1185         IFF_802_1Q_VLAN                 = 1<<0,
1186         IFF_EBRIDGE                     = 1<<1,
1187         IFF_SLAVE_INACTIVE              = 1<<2,
1188         IFF_MASTER_8023AD               = 1<<3,
1189         IFF_MASTER_ALB                  = 1<<4,
1190         IFF_BONDING                     = 1<<5,
1191         IFF_SLAVE_NEEDARP               = 1<<6,
1192         IFF_ISATAP                      = 1<<7,
1193         IFF_MASTER_ARPMON               = 1<<8,
1194         IFF_WAN_HDLC                    = 1<<9,
1195         IFF_XMIT_DST_RELEASE            = 1<<10,
1196         IFF_DONT_BRIDGE                 = 1<<11,
1197         IFF_DISABLE_NETPOLL             = 1<<12,
1198         IFF_MACVLAN_PORT                = 1<<13,
1199         IFF_BRIDGE_PORT                 = 1<<14,
1200         IFF_OVS_DATAPATH                = 1<<15,
1201         IFF_TX_SKB_SHARING              = 1<<16,
1202         IFF_UNICAST_FLT                 = 1<<17,
1203         IFF_TEAM_PORT                   = 1<<18,
1204         IFF_SUPP_NOFCS                  = 1<<19,
1205         IFF_LIVE_ADDR_CHANGE            = 1<<20,
1206         IFF_MACVLAN                     = 1<<21,
1207 };
1208 
1209 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1210 #define IFF_EBRIDGE                     IFF_EBRIDGE
1211 #define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1212 #define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1213 #define IFF_MASTER_ALB                  IFF_MASTER_ALB
1214 #define IFF_BONDING                     IFF_BONDING
1215 #define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1216 #define IFF_ISATAP                      IFF_ISATAP
1217 #define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1218 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1219 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1220 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1221 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1222 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1223 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1224 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1225 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1226 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1227 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1228 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1229 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1230 #define IFF_MACVLAN                     IFF_MACVLAN
1231 
1232 /*
1233  *      The DEVICE structure.
1234  *      Actually, this whole structure is a big mistake.  It mixes I/O
1235  *      data with strictly "high-level" data, and it has to know about
1236  *      almost every data structure used in the INET module.
1237  *
1238  *      FIXME: cleanup struct net_device such that network protocol info
1239  *      moves out.
1240  */
1241 
1242 struct net_device {
1243 
1244         /*
1245          * This is the first field of the "visible" part of this structure
1246          * (i.e. as seen by users in the "Space.c" file).  It is the name
1247          * of the interface.
1248          */
1249         char                    name[IFNAMSIZ];
1250 
1251         /* device name hash chain, please keep it close to name[] */
1252         struct hlist_node       name_hlist;
1253 
1254         /* snmp alias */
1255         char                    *ifalias;
1256 
1257         /*
1258          *      I/O specific fields
1259          *      FIXME: Merge these and struct ifmap into one
1260          */
1261         unsigned long           mem_end;        /* shared mem end       */
1262         unsigned long           mem_start;      /* shared mem start     */
1263         unsigned long           base_addr;      /* device I/O address   */
1264         int                     irq;            /* device IRQ number    */
1265 
1266         /*
1267          *      Some hardware also needs these fields, but they are not
1268          *      part of the usual set specified in Space.c.
1269          */
1270 
1271         unsigned long           state;
1272 
1273         struct list_head        dev_list;
1274         struct list_head        napi_list;
1275         struct list_head        unreg_list;
1276         struct list_head        close_list;
1277 
1278         /* directly linked devices, like slaves for bonding */
1279         struct {
1280                 struct list_head upper;
1281                 struct list_head lower;
1282         } adj_list;
1283 
1284         /* all linked devices, *including* neighbours */
1285         struct {
1286                 struct list_head upper;
1287                 struct list_head lower;
1288         } all_adj_list;
1289 
1290 
1291         /* currently active device features */
1292         netdev_features_t       features;
1293         /* user-changeable features */
1294         netdev_features_t       hw_features;
1295         /* user-requested features */
1296         netdev_features_t       wanted_features;
1297         /* mask of features inheritable by VLAN devices */
1298         netdev_features_t       vlan_features;
1299         /* mask of features inherited by encapsulating devices
1300          * This field indicates what encapsulation offloads
1301          * the hardware is capable of doing, and drivers will
1302          * need to set them appropriately.
1303          */
1304         netdev_features_t       hw_enc_features;
1305         /* mask of fetures inheritable by MPLS */
1306         netdev_features_t       mpls_features;
1307 
1308         /* Interface index. Unique device identifier    */
1309         int                     ifindex;
1310         int                     iflink;
1311 
1312         struct net_device_stats stats;
1313 
1314         /* dropped packets by core network, Do not use this in drivers */
1315         atomic_long_t           rx_dropped;
1316         atomic_long_t           tx_dropped;
1317 
1318         /* Stats to monitor carrier on<->off transitions */
1319         atomic_t                carrier_changes;
1320 
1321 #ifdef CONFIG_WIRELESS_EXT
1322         /* List of functions to handle Wireless Extensions (instead of ioctl).
1323          * See <net/iw_handler.h> for details. Jean II */
1324         const struct iw_handler_def *   wireless_handlers;
1325         /* Instance data managed by the core of Wireless Extensions. */
1326         struct iw_public_data * wireless_data;
1327 #endif
1328         /* Management operations */
1329         const struct net_device_ops *netdev_ops;
1330         const struct ethtool_ops *ethtool_ops;
1331         const struct forwarding_accel_ops *fwd_ops;
1332 
1333         /* Hardware header description */
1334         const struct header_ops *header_ops;
1335 
1336         unsigned int            flags;  /* interface flags (a la BSD)   */
1337         unsigned int            priv_flags; /* Like 'flags' but invisible to userspace.
1338                                              * See if.h for definitions. */
1339         unsigned short          gflags;
1340         unsigned short          padded; /* How much padding added by alloc_netdev() */
1341 
1342         unsigned char           operstate; /* RFC2863 operstate */
1343         unsigned char           link_mode; /* mapping policy to operstate */
1344 
1345         unsigned char           if_port;        /* Selectable AUI, TP,..*/
1346         unsigned char           dma;            /* DMA channel          */
1347 
1348         unsigned int            mtu;    /* interface MTU value          */
1349         unsigned short          type;   /* interface hardware type      */
1350         unsigned short          hard_header_len;        /* hardware hdr length  */
1351 
1352         /* extra head- and tailroom the hardware may need, but not in all cases
1353          * can this be guaranteed, especially tailroom. Some cases also use
1354          * LL_MAX_HEADER instead to allocate the skb.
1355          */
1356         unsigned short          needed_headroom;
1357         unsigned short          needed_tailroom;
1358 
1359         /* Interface address info. */
1360         unsigned char           perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1361         unsigned char           addr_assign_type; /* hw address assignment type */
1362         unsigned char           addr_len;       /* hardware address length      */
1363         unsigned short          neigh_priv_len;
1364         unsigned short          dev_id;         /* Used to differentiate devices
1365                                                  * that share the same link
1366                                                  * layer address
1367                                                  */
1368         unsigned short          dev_port;       /* Used to differentiate
1369                                                  * devices that share the same
1370                                                  * function
1371                                                  */
1372         spinlock_t              addr_list_lock;
1373         struct netdev_hw_addr_list      uc;     /* Unicast mac addresses */
1374         struct netdev_hw_addr_list      mc;     /* Multicast mac addresses */
1375         struct netdev_hw_addr_list      dev_addrs; /* list of device
1376                                                     * hw addresses
1377                                                     */
1378 #ifdef CONFIG_SYSFS
1379         struct kset             *queues_kset;
1380 #endif
1381 
1382         bool                    uc_promisc;
1383         unsigned int            promiscuity;
1384         unsigned int            allmulti;
1385 
1386 
1387         /* Protocol specific pointers */
1388 
1389 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1390         struct vlan_info __rcu  *vlan_info;     /* VLAN info */
1391 #endif
1392 #if IS_ENABLED(CONFIG_NET_DSA)
1393         struct dsa_switch_tree  *dsa_ptr;       /* dsa specific data */
1394 #endif
1395 #if IS_ENABLED(CONFIG_TIPC)
1396         struct tipc_bearer __rcu *tipc_ptr;     /* TIPC specific data */
1397 #endif
1398         void                    *atalk_ptr;     /* AppleTalk link       */
1399         struct in_device __rcu  *ip_ptr;        /* IPv4 specific data   */
1400         struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1401         struct inet6_dev __rcu  *ip6_ptr;       /* IPv6 specific data */
1402         void                    *ax25_ptr;      /* AX.25 specific data */
1403         struct wireless_dev     *ieee80211_ptr; /* IEEE 802.11 specific data,
1404                                                    assign before registering */
1405 
1406 /*
1407  * Cache lines mostly used on receive path (including eth_type_trans())
1408  */
1409         unsigned long           last_rx;        /* Time of last Rx */
1410 
1411         /* Interface address info used in eth_type_trans() */
1412         unsigned char           *dev_addr;      /* hw address, (before bcast
1413                                                    because most packets are
1414                                                    unicast) */
1415 
1416 
1417 #ifdef CONFIG_SYSFS
1418         struct netdev_rx_queue  *_rx;
1419 
1420         /* Number of RX queues allocated at register_netdev() time */
1421         unsigned int            num_rx_queues;
1422 
1423         /* Number of RX queues currently active in device */
1424         unsigned int            real_num_rx_queues;
1425 
1426 #endif
1427 
1428         rx_handler_func_t __rcu *rx_handler;
1429         void __rcu              *rx_handler_data;
1430 
1431         struct netdev_queue __rcu *ingress_queue;
1432         unsigned char           broadcast[MAX_ADDR_LEN];        /* hw bcast add */
1433 
1434 
1435 /*
1436  * Cache lines mostly used on transmit path
1437  */
1438         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1439 
1440         /* Number of TX queues allocated at alloc_netdev_mq() time  */
1441         unsigned int            num_tx_queues;
1442 
1443         /* Number of TX queues currently active in device  */
1444         unsigned int            real_num_tx_queues;
1445 
1446         /* root qdisc from userspace point of view */
1447         struct Qdisc            *qdisc;
1448 
1449         unsigned long           tx_queue_len;   /* Max frames per queue allowed */
1450         spinlock_t              tx_global_lock;
1451 
1452 #ifdef CONFIG_XPS
1453         struct xps_dev_maps __rcu *xps_maps;
1454 #endif
1455 #ifdef CONFIG_RFS_ACCEL
1456         /* CPU reverse-mapping for RX completion interrupts, indexed
1457          * by RX queue number.  Assigned by driver.  This must only be
1458          * set if the ndo_rx_flow_steer operation is defined. */
1459         struct cpu_rmap         *rx_cpu_rmap;
1460 #endif
1461 
1462         /* These may be needed for future network-power-down code. */
1463 
1464         /*
1465          * trans_start here is expensive for high speed devices on SMP,
1466          * please use netdev_queue->trans_start instead.
1467          */
1468         unsigned long           trans_start;    /* Time (in jiffies) of last Tx */
1469 
1470         int                     watchdog_timeo; /* used by dev_watchdog() */
1471         struct timer_list       watchdog_timer;
1472 
1473         /* Number of references to this device */
1474         int __percpu            *pcpu_refcnt;
1475 
1476         /* delayed register/unregister */
1477         struct list_head        todo_list;
1478         /* device index hash chain */
1479         struct hlist_node       index_hlist;
1480 
1481         struct list_head        link_watch_list;
1482 
1483         /* register/unregister state machine */
1484         enum { NETREG_UNINITIALIZED=0,
1485                NETREG_REGISTERED,       /* completed register_netdevice */
1486                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1487                NETREG_UNREGISTERED,     /* completed unregister todo */
1488                NETREG_RELEASED,         /* called free_netdev */
1489                NETREG_DUMMY,            /* dummy device for NAPI poll */
1490         } reg_state:8;
1491 
1492         bool dismantle; /* device is going do be freed */
1493 
1494         enum {
1495                 RTNL_LINK_INITIALIZED,
1496                 RTNL_LINK_INITIALIZING,
1497         } rtnl_link_state:16;
1498 
1499         /* Called from unregister, can be used to call free_netdev */
1500         void (*destructor)(struct net_device *dev);
1501 
1502 #ifdef CONFIG_NETPOLL
1503         struct netpoll_info __rcu       *npinfo;
1504 #endif
1505 
1506 #ifdef CONFIG_NET_NS
1507         /* Network namespace this network device is inside */
1508         struct net              *nd_net;
1509 #endif
1510 
1511         /* mid-layer private */
1512         union {
1513                 void                            *ml_priv;
1514                 struct pcpu_lstats __percpu     *lstats; /* loopback stats */
1515                 struct pcpu_sw_netstats __percpu        *tstats;
1516                 struct pcpu_dstats __percpu     *dstats; /* dummy stats */
1517                 struct pcpu_vstats __percpu     *vstats; /* veth stats */
1518         };
1519         /* GARP */
1520         struct garp_port __rcu  *garp_port;
1521         /* MRP */
1522         struct mrp_port __rcu   *mrp_port;
1523 
1524         /* class/net/name entry */
1525         struct device           dev;
1526         /* space for optional device, statistics, and wireless sysfs groups */
1527         const struct attribute_group *sysfs_groups[4];
1528         /* space for optional per-rx queue attributes */
1529         const struct attribute_group *sysfs_rx_queue_group;
1530 
1531         /* rtnetlink link ops */
1532         const struct rtnl_link_ops *rtnl_link_ops;
1533 
1534         /* for setting kernel sock attribute on TCP connection setup */
1535 #define GSO_MAX_SIZE            65536
1536         unsigned int            gso_max_size;
1537 #define GSO_MAX_SEGS            65535
1538         u16                     gso_max_segs;
1539 
1540 #ifdef CONFIG_DCB
1541         /* Data Center Bridging netlink ops */
1542         const struct dcbnl_rtnl_ops *dcbnl_ops;
1543 #endif
1544         u8 num_tc;
1545         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1546         u8 prio_tc_map[TC_BITMASK + 1];
1547 
1548 #if IS_ENABLED(CONFIG_FCOE)
1549         /* max exchange id for FCoE LRO by ddp */
1550         unsigned int            fcoe_ddp_xid;
1551 #endif
1552 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1553         struct netprio_map __rcu *priomap;
1554 #endif
1555         /* phy device may attach itself for hardware timestamping */
1556         struct phy_device *phydev;
1557 
1558         struct lock_class_key *qdisc_tx_busylock;
1559 
1560         /* group the device belongs to */
1561         int group;
1562 
1563         struct pm_qos_request   pm_qos_req;
1564 };
1565 #define to_net_dev(d) container_of(d, struct net_device, dev)
1566 
1567 #define NETDEV_ALIGN            32
1568 
1569 static inline
1570 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1571 {
1572         return dev->prio_tc_map[prio & TC_BITMASK];
1573 }
1574 
1575 static inline
1576 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1577 {
1578         if (tc >= dev->num_tc)
1579                 return -EINVAL;
1580 
1581         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1582         return 0;
1583 }
1584 
1585 static inline
1586 void netdev_reset_tc(struct net_device *dev)
1587 {
1588         dev->num_tc = 0;
1589         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1590         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1591 }
1592 
1593 static inline
1594 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1595 {
1596         if (tc >= dev->num_tc)
1597                 return -EINVAL;
1598 
1599         dev->tc_to_txq[tc].count = count;
1600         dev->tc_to_txq[tc].offset = offset;
1601         return 0;
1602 }
1603 
1604 static inline
1605 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1606 {
1607         if (num_tc > TC_MAX_QUEUE)
1608                 return -EINVAL;
1609 
1610         dev->num_tc = num_tc;
1611         return 0;
1612 }
1613 
1614 static inline
1615 int netdev_get_num_tc(struct net_device *dev)
1616 {
1617         return dev->num_tc;
1618 }
1619 
1620 static inline
1621 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1622                                          unsigned int index)
1623 {
1624         return &dev->_tx[index];
1625 }
1626 
1627 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1628                                             void (*f)(struct net_device *,
1629                                                       struct netdev_queue *,
1630                                                       void *),
1631                                             void *arg)
1632 {
1633         unsigned int i;
1634 
1635         for (i = 0; i < dev->num_tx_queues; i++)
1636                 f(dev, &dev->_tx[i], arg);
1637 }
1638 
1639 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1640                                     struct sk_buff *skb,
1641                                     void *accel_priv);
1642 
1643 /*
1644  * Net namespace inlines
1645  */
1646 static inline
1647 struct net *dev_net(const struct net_device *dev)
1648 {
1649         return read_pnet(&dev->nd_net);
1650 }
1651 
1652 static inline
1653 void dev_net_set(struct net_device *dev, struct net *net)
1654 {
1655 #ifdef CONFIG_NET_NS
1656         release_net(dev->nd_net);
1657         dev->nd_net = hold_net(net);
1658 #endif
1659 }
1660 
1661 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1662 {
1663 #ifdef CONFIG_NET_DSA_TAG_DSA
1664         if (dev->dsa_ptr != NULL)
1665                 return dsa_uses_dsa_tags(dev->dsa_ptr);
1666 #endif
1667 
1668         return 0;
1669 }
1670 
1671 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1672 {
1673 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1674         if (dev->dsa_ptr != NULL)
1675                 return dsa_uses_trailer_tags(dev->dsa_ptr);
1676 #endif
1677 
1678         return 0;
1679 }
1680 
1681 /**
1682  *      netdev_priv - access network device private data
1683  *      @dev: network device
1684  *
1685  * Get network device private data
1686  */
1687 static inline void *netdev_priv(const struct net_device *dev)
1688 {
1689         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1690 }
1691 
1692 /* Set the sysfs physical device reference for the network logical device
1693  * if set prior to registration will cause a symlink during initialization.
1694  */
1695 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1696 
1697 /* Set the sysfs device type for the network logical device to allow
1698  * fine-grained identification of different network device types. For
1699  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1700  */
1701 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1702 
1703 /* Default NAPI poll() weight
1704  * Device drivers are strongly advised to not use bigger value
1705  */
1706 #define NAPI_POLL_WEIGHT 64
1707 
1708 /**
1709  *      netif_napi_add - initialize a napi context
1710  *      @dev:  network device
1711  *      @napi: napi context
1712  *      @poll: polling function
1713  *      @weight: default weight
1714  *
1715  * netif_napi_add() must be used to initialize a napi context prior to calling
1716  * *any* of the other napi related functions.
1717  */
1718 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1719                     int (*poll)(struct napi_struct *, int), int weight);
1720 
1721 /**
1722  *  netif_napi_del - remove a napi context
1723  *  @napi: napi context
1724  *
1725  *  netif_napi_del() removes a napi context from the network device napi list
1726  */
1727 void netif_napi_del(struct napi_struct *napi);
1728 
1729 struct napi_gro_cb {
1730         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1731         void *frag0;
1732 
1733         /* Length of frag0. */
1734         unsigned int frag0_len;
1735 
1736         /* This indicates where we are processing relative to skb->data. */
1737         int data_offset;
1738 
1739         /* This is non-zero if the packet cannot be merged with the new skb. */
1740         u16     flush;
1741 
1742         /* Save the IP ID here and check when we get to the transport layer */
1743         u16     flush_id;
1744 
1745         /* Number of segments aggregated. */
1746         u16     count;
1747 
1748         /* This is non-zero if the packet may be of the same flow. */
1749         u8      same_flow;
1750 
1751         /* Free the skb? */
1752         u8      free;
1753 #define NAPI_GRO_FREE             1
1754 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1755 
1756         /* jiffies when first packet was created/queued */
1757         unsigned long age;
1758 
1759         /* Used in ipv6_gro_receive() */
1760         u16     proto;
1761 
1762         /* Used in udp_gro_receive */
1763         u16     udp_mark;
1764 
1765         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1766         __wsum  csum;
1767 
1768         /* used in skb_gro_receive() slow path */
1769         struct sk_buff *last;
1770 };
1771 
1772 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1773 
1774 struct packet_type {
1775         __be16                  type;   /* This is really htons(ether_type). */
1776         struct net_device       *dev;   /* NULL is wildcarded here           */
1777         int                     (*func) (struct sk_buff *,
1778                                          struct net_device *,
1779                                          struct packet_type *,
1780                                          struct net_device *);
1781         bool                    (*id_match)(struct packet_type *ptype,
1782                                             struct sock *sk);
1783         void                    *af_packet_priv;
1784         struct list_head        list;
1785 };
1786 
1787 struct offload_callbacks {
1788         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1789                                                 netdev_features_t features);
1790         int                     (*gso_send_check)(struct sk_buff *skb);
1791         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1792                                                struct sk_buff *skb);
1793         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1794 };
1795 
1796 struct packet_offload {
1797         __be16                   type;  /* This is really htons(ether_type). */
1798         struct offload_callbacks callbacks;
1799         struct list_head         list;
1800 };
1801 
1802 struct udp_offload {
1803         __be16                   port;
1804         struct offload_callbacks callbacks;
1805 };
1806 
1807 /* often modified stats are per cpu, other are shared (netdev->stats) */
1808 struct pcpu_sw_netstats {
1809         u64     rx_packets;
1810         u64     rx_bytes;
1811         u64     tx_packets;
1812         u64     tx_bytes;
1813         struct u64_stats_sync   syncp;
1814 };
1815 
1816 #define netdev_alloc_pcpu_stats(type)                           \
1817 ({                                                              \
1818         typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
1819         if (pcpu_stats) {                                       \
1820                 int i;                                          \
1821                 for_each_possible_cpu(i) {                      \
1822                         typeof(type) *stat;                     \
1823                         stat = per_cpu_ptr(pcpu_stats, i);      \
1824                         u64_stats_init(&stat->syncp);           \
1825                 }                                               \
1826         }                                                       \
1827         pcpu_stats;                                             \
1828 })
1829 
1830 #include <linux/notifier.h>
1831 
1832 /* netdevice notifier chain. Please remember to update the rtnetlink
1833  * notification exclusion list in rtnetlink_event() when adding new
1834  * types.
1835  */
1836 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
1837 #define NETDEV_DOWN     0x0002
1838 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
1839                                    detected a hardware crash and restarted
1840                                    - we can use this eg to kick tcp sessions
1841                                    once done */
1842 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
1843 #define NETDEV_REGISTER 0x0005
1844 #define NETDEV_UNREGISTER       0x0006
1845 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
1846 #define NETDEV_CHANGEADDR       0x0008
1847 #define NETDEV_GOING_DOWN       0x0009
1848 #define NETDEV_CHANGENAME       0x000A
1849 #define NETDEV_FEAT_CHANGE      0x000B
1850 #define NETDEV_BONDING_FAILOVER 0x000C
1851 #define NETDEV_PRE_UP           0x000D
1852 #define NETDEV_PRE_TYPE_CHANGE  0x000E
1853 #define NETDEV_POST_TYPE_CHANGE 0x000F
1854 #define NETDEV_POST_INIT        0x0010
1855 #define NETDEV_UNREGISTER_FINAL 0x0011
1856 #define NETDEV_RELEASE          0x0012
1857 #define NETDEV_NOTIFY_PEERS     0x0013
1858 #define NETDEV_JOIN             0x0014
1859 #define NETDEV_CHANGEUPPER      0x0015
1860 #define NETDEV_RESEND_IGMP      0x0016
1861 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
1862 
1863 int register_netdevice_notifier(struct notifier_block *nb);
1864 int unregister_netdevice_notifier(struct notifier_block *nb);
1865 
1866 struct netdev_notifier_info {
1867         struct net_device *dev;
1868 };
1869 
1870 struct netdev_notifier_change_info {
1871         struct netdev_notifier_info info; /* must be first */
1872         unsigned int flags_changed;
1873 };
1874 
1875 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
1876                                              struct net_device *dev)
1877 {
1878         info->dev = dev;
1879 }
1880 
1881 static inline struct net_device *
1882 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
1883 {
1884         return info->dev;
1885 }
1886 
1887 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1888 
1889 
1890 extern rwlock_t                         dev_base_lock;          /* Device list lock */
1891 
1892 #define for_each_netdev(net, d)         \
1893                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1894 #define for_each_netdev_reverse(net, d) \
1895                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1896 #define for_each_netdev_rcu(net, d)             \
1897                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1898 #define for_each_netdev_safe(net, d, n) \
1899                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1900 #define for_each_netdev_continue(net, d)                \
1901                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1902 #define for_each_netdev_continue_rcu(net, d)            \
1903         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1904 #define for_each_netdev_in_bond_rcu(bond, slave)        \
1905                 for_each_netdev_rcu(&init_net, slave)   \
1906                         if (netdev_master_upper_dev_get_rcu(slave) == bond)
1907 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
1908 
1909 static inline struct net_device *next_net_device(struct net_device *dev)
1910 {
1911         struct list_head *lh;
1912         struct net *net;
1913 
1914         net = dev_net(dev);
1915         lh = dev->dev_list.next;
1916         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1917 }
1918 
1919 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1920 {
1921         struct list_head *lh;
1922         struct net *net;
1923 
1924         net = dev_net(dev);
1925         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1926         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1927 }
1928 
1929 static inline struct net_device *first_net_device(struct net *net)
1930 {
1931         return list_empty(&net->dev_base_head) ? NULL :
1932                 net_device_entry(net->dev_base_head.next);
1933 }
1934 
1935 static inline struct net_device *first_net_device_rcu(struct net *net)
1936 {
1937         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1938 
1939         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1940 }
1941 
1942 int netdev_boot_setup_check(struct net_device *dev);
1943 unsigned long netdev_boot_base(const char *prefix, int unit);
1944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1945                                        const char *hwaddr);
1946 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1947 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1948 void dev_add_pack(struct packet_type *pt);
1949 void dev_remove_pack(struct packet_type *pt);
1950 void __dev_remove_pack(struct packet_type *pt);
1951 void dev_add_offload(struct packet_offload *po);
1952 void dev_remove_offload(struct packet_offload *po);
1953 
1954 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1955                                         unsigned short mask);
1956 struct net_device *dev_get_by_name(struct net *net, const char *name);
1957 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1958 struct net_device *__dev_get_by_name(struct net *net, const char *name);
1959 int dev_alloc_name(struct net_device *dev, const char *name);
1960 int dev_open(struct net_device *dev);
1961 int dev_close(struct net_device *dev);
1962 void dev_disable_lro(struct net_device *dev);
1963 int dev_loopback_xmit(struct sk_buff *newskb);
1964 int dev_queue_xmit(struct sk_buff *skb);
1965 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
1966 int register_netdevice(struct net_device *dev);
1967 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
1968 void unregister_netdevice_many(struct list_head *head);
1969 static inline void unregister_netdevice(struct net_device *dev)
1970 {
1971         unregister_netdevice_queue(dev, NULL);
1972 }
1973 
1974 int netdev_refcnt_read(const struct net_device *dev);
1975 void free_netdev(struct net_device *dev);
1976 void netdev_freemem(struct net_device *dev);
1977 void synchronize_net(void);
1978 int init_dummy_netdev(struct net_device *dev);
1979 
1980 struct net_device *dev_get_by_index(struct net *net, int ifindex);
1981 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1983 int netdev_get_name(struct net *net, char *name, int ifindex);
1984 int dev_restart(struct net_device *dev);
1985 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1986 
1987 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1988 {
1989         return NAPI_GRO_CB(skb)->data_offset;
1990 }
1991 
1992 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1993 {
1994         return skb->len - NAPI_GRO_CB(skb)->data_offset;
1995 }
1996 
1997 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1998 {
1999         NAPI_GRO_CB(skb)->data_offset += len;
2000 }
2001 
2002 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2003                                         unsigned int offset)
2004 {
2005         return NAPI_GRO_CB(skb)->frag0 + offset;
2006 }
2007 
2008 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2009 {
2010         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2011 }
2012 
2013 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2014                                         unsigned int offset)
2015 {
2016         if (!pskb_may_pull(skb, hlen))
2017                 return NULL;
2018 
2019         NAPI_GRO_CB(skb)->frag0 = NULL;
2020         NAPI_GRO_CB(skb)->frag0_len = 0;
2021         return skb->data + offset;
2022 }
2023 
2024 static inline void *skb_gro_network_header(struct sk_buff *skb)
2025 {
2026         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2027                skb_network_offset(skb);
2028 }
2029 
2030 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2031                                         const void *start, unsigned int len)
2032 {
2033         if (skb->ip_summed == CHECKSUM_COMPLETE)
2034                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2035                                                   csum_partial(start, len, 0));
2036 }
2037 
2038 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2039                                   unsigned short type,
2040                                   const void *daddr, const void *saddr,
2041                                   unsigned int len)
2042 {
2043         if (!dev->header_ops || !dev->header_ops->create)
2044                 return 0;
2045 
2046         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2047 }
2048 
2049 static inline int dev_parse_header(const struct sk_buff *skb,
2050                                    unsigned char *haddr)
2051 {
2052         const struct net_device *dev = skb->dev;
2053 
2054         if (!dev->header_ops || !dev->header_ops->parse)
2055                 return 0;
2056         return dev->header_ops->parse(skb, haddr);
2057 }
2058 
2059 static inline int dev_rebuild_header(struct sk_buff *skb)
2060 {
2061         const struct net_device *dev = skb->dev;
2062 
2063         if (!dev->header_ops || !dev->header_ops->rebuild)
2064                 return 0;
2065         return dev->header_ops->rebuild(skb);
2066 }
2067 
2068 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2069 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2070 static inline int unregister_gifconf(unsigned int family)
2071 {
2072         return register_gifconf(family, NULL);
2073 }
2074 
2075 #ifdef CONFIG_NET_FLOW_LIMIT
2076 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2077 struct sd_flow_limit {
2078         u64                     count;
2079         unsigned int            num_buckets;
2080         unsigned int            history_head;
2081         u16                     history[FLOW_LIMIT_HISTORY];
2082         u8                      buckets[];
2083 };
2084 
2085 extern int netdev_flow_limit_table_len;
2086 #endif /* CONFIG_NET_FLOW_LIMIT */
2087 
2088 /*
2089  * Incoming packets are placed on per-cpu queues
2090  */
2091 struct softnet_data {
2092         struct Qdisc            *output_queue;
2093         struct Qdisc            **output_queue_tailp;
2094         struct list_head        poll_list;
2095         struct sk_buff          *completion_queue;
2096         struct sk_buff_head     process_queue;
2097 
2098         /* stats */
2099         unsigned int            processed;
2100         unsigned int            time_squeeze;
2101         unsigned int            cpu_collision;
2102         unsigned int            received_rps;
2103 
2104 #ifdef CONFIG_RPS
2105         struct softnet_data     *rps_ipi_list;
2106 
2107         /* Elements below can be accessed between CPUs for RPS */
2108         struct call_single_data csd ____cacheline_aligned_in_smp;
2109         struct softnet_data     *rps_ipi_next;
2110         unsigned int            cpu;
2111         unsigned int            input_queue_head;
2112         unsigned int            input_queue_tail;
2113 #endif
2114         unsigned int            dropped;
2115         struct sk_buff_head     input_pkt_queue;
2116         struct napi_struct      backlog;
2117 
2118 #ifdef CONFIG_NET_FLOW_LIMIT
2119         struct sd_flow_limit __rcu *flow_limit;
2120 #endif
2121 };
2122 
2123 static inline void input_queue_head_incr(struct softnet_data *sd)
2124 {
2125 #ifdef CONFIG_RPS
2126         sd->input_queue_head++;
2127 #endif
2128 }
2129 
2130 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2131                                               unsigned int *qtail)
2132 {
2133 #ifdef CONFIG_RPS
2134         *qtail = ++sd->input_queue_tail;
2135 #endif
2136 }
2137 
2138 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2139 
2140 void __netif_schedule(struct Qdisc *q);
2141 
2142 static inline void netif_schedule_queue(struct netdev_queue *txq)
2143 {
2144         if (!(txq->state & QUEUE_STATE_ANY_XOFF))
2145                 __netif_schedule(txq->qdisc);
2146 }
2147 
2148 static inline void netif_tx_schedule_all(struct net_device *dev)
2149 {
2150         unsigned int i;
2151 
2152         for (i = 0; i < dev->num_tx_queues; i++)
2153                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2154 }
2155 
2156 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2157 {
2158         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2159 }
2160 
2161 /**
2162  *      netif_start_queue - allow transmit
2163  *      @dev: network device
2164  *
2165  *      Allow upper layers to call the device hard_start_xmit routine.
2166  */
2167 static inline void netif_start_queue(struct net_device *dev)
2168 {
2169         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2170 }
2171 
2172 static inline void netif_tx_start_all_queues(struct net_device *dev)
2173 {
2174         unsigned int i;
2175 
2176         for (i = 0; i < dev->num_tx_queues; i++) {
2177                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2178                 netif_tx_start_queue(txq);
2179         }
2180 }
2181 
2182 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2183 {
2184         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
2185                 __netif_schedule(dev_queue->qdisc);
2186 }
2187 
2188 /**
2189  *      netif_wake_queue - restart transmit
2190  *      @dev: network device
2191  *
2192  *      Allow upper layers to call the device hard_start_xmit routine.
2193  *      Used for flow control when transmit resources are available.
2194  */
2195 static inline void netif_wake_queue(struct net_device *dev)
2196 {
2197         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2198 }
2199 
2200 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2201 {
2202         unsigned int i;
2203 
2204         for (i = 0; i < dev->num_tx_queues; i++) {
2205                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2206                 netif_tx_wake_queue(txq);
2207         }
2208 }
2209 
2210 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2211 {
2212         if (WARN_ON(!dev_queue)) {
2213                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2214                 return;
2215         }
2216         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2217 }
2218 
2219 /**
2220  *      netif_stop_queue - stop transmitted packets
2221  *      @dev: network device
2222  *
2223  *      Stop upper layers calling the device hard_start_xmit routine.
2224  *      Used for flow control when transmit resources are unavailable.
2225  */
2226 static inline void netif_stop_queue(struct net_device *dev)
2227 {
2228         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2229 }
2230 
2231 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2232 {
2233         unsigned int i;
2234 
2235         for (i = 0; i < dev->num_tx_queues; i++) {
2236                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2237                 netif_tx_stop_queue(txq);
2238         }
2239 }
2240 
2241 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2242 {
2243         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2244 }
2245 
2246 /**
2247  *      netif_queue_stopped - test if transmit queue is flowblocked
2248  *      @dev: network device
2249  *
2250  *      Test if transmit queue on device is currently unable to send.
2251  */
2252 static inline bool netif_queue_stopped(const struct net_device *dev)
2253 {
2254         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2255 }
2256 
2257 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2258 {
2259         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2260 }
2261 
2262 static inline bool
2263 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2264 {
2265         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2266 }
2267 
2268 static inline bool
2269 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2270 {
2271         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2272 }
2273 
2274 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2275                                         unsigned int bytes)
2276 {
2277 #ifdef CONFIG_BQL
2278         dql_queued(&dev_queue->dql, bytes);
2279 
2280         if (likely(dql_avail(&dev_queue->dql) >= 0))
2281                 return;
2282 
2283         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2284 
2285         /*
2286          * The XOFF flag must be set before checking the dql_avail below,
2287          * because in netdev_tx_completed_queue we update the dql_completed
2288          * before checking the XOFF flag.
2289          */
2290         smp_mb();
2291 
2292         /* check again in case another CPU has just made room avail */
2293         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2294                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2295 #endif
2296 }
2297 
2298 /**
2299  *      netdev_sent_queue - report the number of bytes queued to hardware
2300  *      @dev: network device
2301  *      @bytes: number of bytes queued to the hardware device queue
2302  *
2303  *      Report the number of bytes queued for sending/completion to the network
2304  *      device hardware queue. @bytes should be a good approximation and should
2305  *      exactly match netdev_completed_queue() @bytes
2306  */
2307 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2308 {
2309         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2310 }
2311 
2312 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2313                                              unsigned int pkts, unsigned int bytes)
2314 {
2315 #ifdef CONFIG_BQL
2316         if (unlikely(!bytes))
2317                 return;
2318 
2319         dql_completed(&dev_queue->dql, bytes);
2320 
2321         /*
2322          * Without the memory barrier there is a small possiblity that
2323          * netdev_tx_sent_queue will miss the update and cause the queue to
2324          * be stopped forever
2325          */
2326         smp_mb();
2327 
2328         if (dql_avail(&dev_queue->dql) < 0)
2329                 return;
2330 
2331         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2332                 netif_schedule_queue(dev_queue);
2333 #endif
2334 }
2335 
2336 /**
2337  *      netdev_completed_queue - report bytes and packets completed by device
2338  *      @dev: network device
2339  *      @pkts: actual number of packets sent over the medium
2340  *      @bytes: actual number of bytes sent over the medium
2341  *
2342  *      Report the number of bytes and packets transmitted by the network device
2343  *      hardware queue over the physical medium, @bytes must exactly match the
2344  *      @bytes amount passed to netdev_sent_queue()
2345  */
2346 static inline void netdev_completed_queue(struct net_device *dev,
2347                                           unsigned int pkts, unsigned int bytes)
2348 {
2349         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2350 }
2351 
2352 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2353 {
2354 #ifdef CONFIG_BQL
2355         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2356         dql_reset(&q->dql);
2357 #endif
2358 }
2359 
2360 /**
2361  *      netdev_reset_queue - reset the packets and bytes count of a network device
2362  *      @dev_queue: network device
2363  *
2364  *      Reset the bytes and packet count of a network device and clear the
2365  *      software flow control OFF bit for this network device
2366  */
2367 static inline void netdev_reset_queue(struct net_device *dev_queue)
2368 {
2369         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2370 }
2371 
2372 /**
2373  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2374  *      @dev: network device
2375  *      @queue_index: given tx queue index
2376  *
2377  *      Returns 0 if given tx queue index >= number of device tx queues,
2378  *      otherwise returns the originally passed tx queue index.
2379  */
2380 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2381 {
2382         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2383                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2384                                      dev->name, queue_index,
2385                                      dev->real_num_tx_queues);
2386                 return 0;
2387         }
2388 
2389         return queue_index;
2390 }
2391 
2392 /**
2393  *      netif_running - test if up
2394  *      @dev: network device
2395  *
2396  *      Test if the device has been brought up.
2397  */
2398 static inline bool netif_running(const struct net_device *dev)
2399 {
2400         return test_bit(__LINK_STATE_START, &dev->state);
2401 }
2402 
2403 /*
2404  * Routines to manage the subqueues on a device.  We only need start
2405  * stop, and a check if it's stopped.  All other device management is
2406  * done at the overall netdevice level.
2407  * Also test the device if we're multiqueue.
2408  */
2409 
2410 /**
2411  *      netif_start_subqueue - allow sending packets on subqueue
2412  *      @dev: network device
2413  *      @queue_index: sub queue index
2414  *
2415  * Start individual transmit queue of a device with multiple transmit queues.
2416  */
2417 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2418 {
2419         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2420 
2421         netif_tx_start_queue(txq);
2422 }
2423 
2424 /**
2425  *      netif_stop_subqueue - stop sending packets on subqueue
2426  *      @dev: network device
2427  *      @queue_index: sub queue index
2428  *
2429  * Stop individual transmit queue of a device with multiple transmit queues.
2430  */
2431 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2432 {
2433         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2434         netif_tx_stop_queue(txq);
2435 }
2436 
2437 /**
2438  *      netif_subqueue_stopped - test status of subqueue
2439  *      @dev: network device
2440  *      @queue_index: sub queue index
2441  *
2442  * Check individual transmit queue of a device with multiple transmit queues.
2443  */
2444 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2445                                             u16 queue_index)
2446 {
2447         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2448 
2449         return netif_tx_queue_stopped(txq);
2450 }
2451 
2452 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2453                                           struct sk_buff *skb)
2454 {
2455         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2456 }
2457 
2458 /**
2459  *      netif_wake_subqueue - allow sending packets on subqueue
2460  *      @dev: network device
2461  *      @queue_index: sub queue index
2462  *
2463  * Resume individual transmit queue of a device with multiple transmit queues.
2464  */
2465 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2466 {
2467         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2468         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2469                 __netif_schedule(txq->qdisc);
2470 }
2471 
2472 #ifdef CONFIG_XPS
2473 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2474                         u16 index);
2475 #else
2476 static inline int netif_set_xps_queue(struct net_device *dev,
2477                                       const struct cpumask *mask,
2478                                       u16 index)
2479 {
2480         return 0;
2481 }
2482 #endif
2483 
2484 /*
2485  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2486  * as a distribution range limit for the returned value.
2487  */
2488 static inline u16 skb_tx_hash(const struct net_device *dev,
2489                               const struct sk_buff *skb)
2490 {
2491         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2492 }
2493 
2494 /**
2495  *      netif_is_multiqueue - test if device has multiple transmit queues
2496  *      @dev: network device
2497  *
2498  * Check if device has multiple transmit queues
2499  */
2500 static inline bool netif_is_multiqueue(const struct net_device *dev)
2501 {
2502         return dev->num_tx_queues > 1;
2503 }
2504 
2505 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2506 
2507 #ifdef CONFIG_SYSFS
2508 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2509 #else
2510 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2511                                                 unsigned int rxq)
2512 {
2513         return 0;
2514 }
2515 #endif
2516 
2517 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2518                                              const struct net_device *from_dev)
2519 {
2520         int err;
2521 
2522         err = netif_set_real_num_tx_queues(to_dev,
2523                                            from_dev->real_num_tx_queues);
2524         if (err)
2525                 return err;
2526 #ifdef CONFIG_SYSFS
2527         return netif_set_real_num_rx_queues(to_dev,
2528                                             from_dev->real_num_rx_queues);
2529 #else
2530         return 0;
2531 #endif
2532 }
2533 
2534 #ifdef CONFIG_SYSFS
2535 static inline unsigned int get_netdev_rx_queue_index(
2536                 struct netdev_rx_queue *queue)
2537 {
2538         struct net_device *dev = queue->dev;
2539         int index = queue - dev->_rx;
2540 
2541         BUG_ON(index >= dev->num_rx_queues);
2542         return index;
2543 }
2544 #endif
2545 
2546 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2547 int netif_get_num_default_rss_queues(void);
2548 
2549 enum skb_free_reason {
2550         SKB_REASON_CONSUMED,
2551         SKB_REASON_DROPPED,
2552 };
2553 
2554 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2555 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2556 
2557 /*
2558  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2559  * interrupt context or with hardware interrupts being disabled.
2560  * (in_irq() || irqs_disabled())
2561  *
2562  * We provide four helpers that can be used in following contexts :
2563  *
2564  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2565  *  replacing kfree_skb(skb)
2566  *
2567  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2568  *  Typically used in place of consume_skb(skb) in TX completion path
2569  *
2570  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2571  *  replacing kfree_skb(skb)
2572  *
2573  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2574  *  and consumed a packet. Used in place of consume_skb(skb)
2575  */
2576 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2577 {
2578         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2579 }
2580 
2581 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2582 {
2583         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2584 }
2585 
2586 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2587 {
2588         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2589 }
2590 
2591 static inline void dev_consume_skb_any(struct sk_buff *skb)
2592 {
2593         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2594 }
2595 
2596 int netif_rx(struct sk_buff *skb);
2597 int netif_rx_ni(struct sk_buff *skb);
2598 int netif_receive_skb(struct sk_buff *skb);
2599 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2600 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2601 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2602 gro_result_t napi_gro_frags(struct napi_struct *napi);
2603 struct packet_offload *gro_find_receive_by_type(__be16 type);
2604 struct packet_offload *gro_find_complete_by_type(__be16 type);
2605 
2606 static inline void napi_free_frags(struct napi_struct *napi)
2607 {
2608         kfree_skb(napi->skb);
2609         napi->skb = NULL;
2610 }
2611 
2612 int netdev_rx_handler_register(struct net_device *dev,
2613                                rx_handler_func_t *rx_handler,
2614                                void *rx_handler_data);
2615 void netdev_rx_handler_unregister(struct net_device *dev);
2616 
2617 bool dev_valid_name(const char *name);
2618 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2619 int dev_ethtool(struct net *net, struct ifreq *);
2620 unsigned int dev_get_flags(const struct net_device *);
2621 int __dev_change_flags(struct net_device *, unsigned int flags);
2622 int dev_change_flags(struct net_device *, unsigned int);
2623 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2624                         unsigned int gchanges);
2625 int dev_change_name(struct net_device *, const char *);
2626 int dev_set_alias(struct net_device *, const char *, size_t);
2627 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2628 int dev_set_mtu(struct net_device *, int);
2629 void dev_set_group(struct net_device *, int);
2630 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2631 int dev_change_carrier(struct net_device *, bool new_carrier);
2632 int dev_get_phys_port_id(struct net_device *dev,
2633                          struct netdev_phys_port_id *ppid);
2634 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2635                         struct netdev_queue *txq);
2636 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2637 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2638 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2639 
2640 extern int              netdev_budget;
2641 
2642 /* Called by rtnetlink.c:rtnl_unlock() */
2643 void netdev_run_todo(void);
2644 
2645 /**
2646  *      dev_put - release reference to device
2647  *      @dev: network device
2648  *
2649  * Release reference to device to allow it to be freed.
2650  */
2651 static inline void dev_put(struct net_device *dev)
2652 {
2653         this_cpu_dec(*dev->pcpu_refcnt);
2654 }
2655 
2656 /**
2657  *      dev_hold - get reference to device
2658  *      @dev: network device
2659  *
2660  * Hold reference to device to keep it from being freed.
2661  */
2662 static inline void dev_hold(struct net_device *dev)
2663 {
2664         this_cpu_inc(*dev->pcpu_refcnt);
2665 }
2666 
2667 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2668  * and _off may be called from IRQ context, but it is caller
2669  * who is responsible for serialization of these calls.
2670  *
2671  * The name carrier is inappropriate, these functions should really be
2672  * called netif_lowerlayer_*() because they represent the state of any
2673  * kind of lower layer not just hardware media.
2674  */
2675 
2676 void linkwatch_init_dev(struct net_device *dev);
2677 void linkwatch_fire_event(struct net_device *dev);
2678 void linkwatch_forget_dev(struct net_device *dev);
2679 
2680 /**
2681  *      netif_carrier_ok - test if carrier present
2682  *      @dev: network device
2683  *
2684  * Check if carrier is present on device
2685  */
2686 static inline bool netif_carrier_ok(const struct net_device *dev)
2687 {
2688         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2689 }
2690 
2691 unsigned long dev_trans_start(struct net_device *dev);
2692 
2693 void __netdev_watchdog_up(struct net_device *dev);
2694 
2695 void netif_carrier_on(struct net_device *dev);
2696 
2697 void netif_carrier_off(struct net_device *dev);
2698 
2699 /**
2700  *      netif_dormant_on - mark device as dormant.
2701  *      @dev: network device
2702  *
2703  * Mark device as dormant (as per RFC2863).
2704  *
2705  * The dormant state indicates that the relevant interface is not
2706  * actually in a condition to pass packets (i.e., it is not 'up') but is
2707  * in a "pending" state, waiting for some external event.  For "on-
2708  * demand" interfaces, this new state identifies the situation where the
2709  * interface is waiting for events to place it in the up state.
2710  *
2711  */
2712 static inline void netif_dormant_on(struct net_device *dev)
2713 {
2714         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2715                 linkwatch_fire_event(dev);
2716 }
2717 
2718 /**
2719  *      netif_dormant_off - set device as not dormant.
2720  *      @dev: network device
2721  *
2722  * Device is not in dormant state.
2723  */
2724 static inline void netif_dormant_off(struct net_device *dev)
2725 {
2726         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2727                 linkwatch_fire_event(dev);
2728 }
2729 
2730 /**
2731  *      netif_dormant - test if carrier present
2732  *      @dev: network device
2733  *
2734  * Check if carrier is present on device
2735  */
2736 static inline bool netif_dormant(const struct net_device *dev)
2737 {
2738         return test_bit(__LINK_STATE_DORMANT, &dev->state);
2739 }
2740 
2741 
2742 /**
2743  *      netif_oper_up - test if device is operational
2744  *      @dev: network device
2745  *
2746  * Check if carrier is operational
2747  */
2748 static inline bool netif_oper_up(const struct net_device *dev)
2749 {
2750         return (dev->operstate == IF_OPER_UP ||
2751                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2752 }
2753 
2754 /**
2755  *      netif_device_present - is device available or removed
2756  *      @dev: network device
2757  *
2758  * Check if device has not been removed from system.
2759  */
2760 static inline bool netif_device_present(struct net_device *dev)
2761 {
2762         return test_bit(__LINK_STATE_PRESENT, &dev->state);
2763 }
2764 
2765 void netif_device_detach(struct net_device *dev);
2766 
2767 void netif_device_attach(struct net_device *dev);
2768 
2769 /*
2770  * Network interface message level settings
2771  */
2772 
2773 enum {
2774         NETIF_MSG_DRV           = 0x0001,
2775         NETIF_MSG_PROBE         = 0x0002,
2776         NETIF_MSG_LINK          = 0x0004,
2777         NETIF_MSG_TIMER         = 0x0008,
2778         NETIF_MSG_IFDOWN        = 0x0010,
2779         NETIF_MSG_IFUP          = 0x0020,
2780         NETIF_MSG_RX_ERR        = 0x0040,
2781         NETIF_MSG_TX_ERR        = 0x0080,
2782         NETIF_MSG_TX_QUEUED     = 0x0100,
2783         NETIF_MSG_INTR          = 0x0200,
2784         NETIF_MSG_TX_DONE       = 0x0400,
2785         NETIF_MSG_RX_STATUS     = 0x0800,
2786         NETIF_MSG_PKTDATA       = 0x1000,
2787         NETIF_MSG_HW            = 0x2000,
2788         NETIF_MSG_WOL           = 0x4000,
2789 };
2790 
2791 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
2792 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
2793 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
2794 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
2795 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
2796 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
2797 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
2798 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
2799 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2800 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
2801 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
2802 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2803 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
2804 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
2805 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
2806 
2807 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2808 {
2809         /* use default */
2810         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2811                 return default_msg_enable_bits;
2812         if (debug_value == 0)   /* no output */
2813                 return 0;
2814         /* set low N bits */
2815         return (1 << debug_value) - 1;
2816 }
2817 
2818 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2819 {
2820         spin_lock(&txq->_xmit_lock);
2821         txq->xmit_lock_owner = cpu;
2822 }
2823 
2824 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2825 {
2826         spin_lock_bh(&txq->_xmit_lock);
2827         txq->xmit_lock_owner = smp_processor_id();
2828 }
2829 
2830 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2831 {
2832         bool ok = spin_trylock(&txq->_xmit_lock);
2833         if (likely(ok))
2834                 txq->xmit_lock_owner = smp_processor_id();
2835         return ok;
2836 }
2837 
2838 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2839 {
2840         txq->xmit_lock_owner = -1;
2841         spin_unlock(&txq->_xmit_lock);
2842 }
2843 
2844 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2845 {
2846         txq->xmit_lock_owner = -1;
2847         spin_unlock_bh(&txq->_xmit_lock);
2848 }
2849 
2850 static inline void txq_trans_update(struct netdev_queue *txq)
2851 {
2852         if (txq->xmit_lock_owner != -1)
2853                 txq->trans_start = jiffies;
2854 }
2855 
2856 /**
2857  *      netif_tx_lock - grab network device transmit lock
2858  *      @dev: network device
2859  *
2860  * Get network device transmit lock
2861  */
2862 static inline void netif_tx_lock(struct net_device *dev)
2863 {
2864         unsigned int i;
2865         int cpu;
2866 
2867         spin_lock(&dev->tx_global_lock);
2868         cpu = smp_processor_id();
2869         for (i = 0; i < dev->num_tx_queues; i++) {
2870                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2871 
2872                 /* We are the only thread of execution doing a
2873                  * freeze, but we have to grab the _xmit_lock in
2874                  * order to synchronize with threads which are in
2875                  * the ->hard_start_xmit() handler and already
2876                  * checked the frozen bit.
2877                  */
2878                 __netif_tx_lock(txq, cpu);
2879                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2880                 __netif_tx_unlock(txq);
2881         }
2882 }
2883 
2884 static inline void netif_tx_lock_bh(struct net_device *dev)
2885 {
2886         local_bh_disable();
2887         netif_tx_lock(dev);
2888 }
2889 
2890 static inline void netif_tx_unlock(struct net_device *dev)
2891 {
2892         unsigned int i;
2893 
2894         for (i = 0; i < dev->num_tx_queues; i++) {
2895                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2896 
2897                 /* No need to grab the _xmit_lock here.  If the
2898                  * queue is not stopped for another reason, we
2899                  * force a schedule.
2900                  */
2901                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2902                 netif_schedule_queue(txq);
2903         }
2904         spin_unlock(&dev->tx_global_lock);
2905 }
2906 
2907 static inline void netif_tx_unlock_bh(struct net_device *dev)
2908 {
2909         netif_tx_unlock(dev);
2910         local_bh_enable();
2911 }
2912 
2913 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
2914         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2915                 __netif_tx_lock(txq, cpu);              \
2916         }                                               \
2917 }
2918 
2919 #define HARD_TX_TRYLOCK(dev, txq)                       \
2920         (((dev->features & NETIF_F_LLTX) == 0) ?        \
2921                 __netif_tx_trylock(txq) :               \
2922                 true )
2923 
2924 #define HARD_TX_UNLOCK(dev, txq) {                      \
2925         if ((dev->features & NETIF_F_LLTX) == 0) {      \
2926                 __netif_tx_unlock(txq);                 \
2927         }                                               \
2928 }
2929 
2930 static inline void netif_tx_disable(struct net_device *dev)
2931 {
2932         unsigned int i;
2933         int cpu;
2934 
2935         local_bh_disable();
2936         cpu = smp_processor_id();
2937         for (i = 0; i < dev->num_tx_queues; i++) {
2938                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2939 
2940                 __netif_tx_lock(txq, cpu);
2941                 netif_tx_stop_queue(txq);
2942                 __netif_tx_unlock(txq);
2943         }
2944         local_bh_enable();
2945 }
2946 
2947 static inline void netif_addr_lock(struct net_device *dev)
2948 {
2949         spin_lock(&dev->addr_list_lock);
2950 }
2951 
2952 static inline void netif_addr_lock_nested(struct net_device *dev)
2953 {
2954         int subclass = SINGLE_DEPTH_NESTING;
2955 
2956         if (dev->netdev_ops->ndo_get_lock_subclass)
2957                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
2958 
2959         spin_lock_nested(&dev->addr_list_lock, subclass);
2960 }
2961 
2962 static inline void netif_addr_lock_bh(struct net_device *dev)
2963 {
2964         spin_lock_bh(&dev->addr_list_lock);
2965 }
2966 
2967 static inline void netif_addr_unlock(struct net_device *dev)
2968 {
2969         spin_unlock(&dev->addr_list_lock);
2970 }
2971 
2972 static inline void netif_addr_unlock_bh(struct net_device *dev)
2973 {
2974         spin_unlock_bh(&dev->addr_list_lock);
2975 }
2976 
2977 /*
2978  * dev_addrs walker. Should be used only for read access. Call with
2979  * rcu_read_lock held.
2980  */
2981 #define for_each_dev_addr(dev, ha) \
2982                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2983 
2984 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2985 
2986 void ether_setup(struct net_device *dev);
2987 
2988 /* Support for loadable net-drivers */
2989 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2990                                     void (*setup)(struct net_device *),
2991                                     unsigned int txqs, unsigned int rxqs);
2992 #define alloc_netdev(sizeof_priv, name, setup) \
2993         alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2994 
2995 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2996         alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2997 
2998 int register_netdev(struct net_device *dev);
2999 void unregister_netdev(struct net_device *dev);
3000 
3001 /* General hardware address lists handling functions */
3002 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3003                    struct netdev_hw_addr_list *from_list, int addr_len);
3004 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3005                       struct netdev_hw_addr_list *from_list, int addr_len);
3006 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3007                        struct net_device *dev,
3008                        int (*sync)(struct net_device *, const unsigned char *),
3009                        int (*unsync)(struct net_device *,
3010                                      const unsigned char *));
3011 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3012                           struct net_device *dev,
3013                           int (*unsync)(struct net_device *,
3014                                         const unsigned char *));
3015 void __hw_addr_init(struct netdev_hw_addr_list *list);
3016 
3017 /* Functions used for device addresses handling */
3018 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3019                  unsigned char addr_type);
3020 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3021                  unsigned char addr_type);
3022 void dev_addr_flush(struct net_device *dev);
3023 int dev_addr_init(struct net_device *dev);
3024 
3025 /* Functions used for unicast addresses handling */
3026 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3027 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3028 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3029 int dev_uc_sync(struct net_device *to, struct net_device *from);
3030 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3031 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3032 void dev_uc_flush(struct net_device *dev);
3033 void dev_uc_init(struct net_device *dev);
3034 
3035 /**
3036  *  __dev_uc_sync - Synchonize device's unicast list
3037  *  @dev:  device to sync
3038  *  @sync: function to call if address should be added
3039  *  @unsync: function to call if address should be removed
3040  *
3041  *  Add newly added addresses to the interface, and release
3042  *  addresses that have been deleted.
3043  **/
3044 static inline int __dev_uc_sync(struct net_device *dev,
3045                                 int (*sync)(struct net_device *,
3046                                             const unsigned char *),
3047                                 int (*unsync)(struct net_device *,
3048                                               const unsigned char *))
3049 {
3050         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3051 }
3052 
3053 /**
3054  *  __dev_uc_unsync - Remove synchonized addresses from device
3055  *  @dev:  device to sync
3056  *  @unsync: function to call if address should be removed
3057  *
3058  *  Remove all addresses that were added to the device by dev_uc_sync().
3059  **/
3060 static inline void __dev_uc_unsync(struct net_device *dev,
3061                                    int (*unsync)(struct net_device *,
3062                                                  const unsigned char *))
3063 {
3064         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3065 }
3066 
3067 /* Functions used for multicast addresses handling */
3068 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3069 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3070 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3071 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3072 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3073 int dev_mc_sync(struct net_device *to, struct net_device *from);
3074 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3075 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3076 void dev_mc_flush(struct net_device *dev);
3077 void dev_mc_init(struct net_device *dev);
3078 
3079 /**
3080  *  __dev_mc_sync - Synchonize device's multicast list
3081  *  @dev:  device to sync
3082  *  @sync: function to call if address should be added
3083  *  @unsync: function to call if address should be removed
3084  *
3085  *  Add newly added addresses to the interface, and release
3086  *  addresses that have been deleted.
3087  **/
3088 static inline int __dev_mc_sync(struct net_device *dev,
3089                                 int (*sync)(struct net_device *,
3090                                             const unsigned char *),
3091                                 int (*unsync)(struct net_device *,
3092                                               const unsigned char *))
3093 {
3094         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3095 }
3096 
3097 /**
3098  *  __dev_mc_unsync - Remove synchonized addresses from device
3099  *  @dev:  device to sync
3100  *  @unsync: function to call if address should be removed
3101  *
3102  *  Remove all addresses that were added to the device by dev_mc_sync().
3103  **/
3104 static inline void __dev_mc_unsync(struct net_device *dev,
3105                                    int (*unsync)(struct net_device *,
3106                                                  const unsigned char *))
3107 {
3108         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3109 }
3110 
3111 /* Functions used for secondary unicast and multicast support */
3112 void dev_set_rx_mode(struct net_device *dev);
3113 void __dev_set_rx_mode(struct net_device *dev);
3114 int dev_set_promiscuity(struct net_device *dev, int inc);
3115 int dev_set_allmulti(struct net_device *dev, int inc);
3116 void netdev_state_change(struct net_device *dev);
3117 void netdev_notify_peers(struct net_device *dev);
3118 void netdev_features_change(struct net_device *dev);
3119 /* Load a device via the kmod */
3120 void dev_load(struct net *net, const char *name);
3121 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3122                                         struct rtnl_link_stats64 *storage);
3123 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3124                              const struct net_device_stats *netdev_stats);
3125 
3126 extern int              netdev_max_backlog;
3127 extern int              netdev_tstamp_prequeue;
3128 extern int              weight_p;
3129 extern int              bpf_jit_enable;
3130 
3131 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3132 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3133                                                      struct list_head **iter);
3134 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3135                                                      struct list_head **iter);
3136 
3137 /* iterate through upper list, must be called under RCU read lock */
3138 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3139         for (iter = &(dev)->adj_list.upper, \
3140              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3141              updev; \
3142              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3143 
3144 /* iterate through upper list, must be called under RCU read lock */
3145 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3146         for (iter = &(dev)->all_adj_list.upper, \
3147              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3148              updev; \
3149              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3150 
3151 void *netdev_lower_get_next_private(struct net_device *dev,
3152                                     struct list_head **iter);
3153 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3154                                         struct list_head **iter);
3155 
3156 #define netdev_for_each_lower_private(dev, priv, iter) \
3157         for (iter = (dev)->adj_list.lower.next, \
3158              priv = netdev_lower_get_next_private(dev, &(iter)); \
3159              priv; \
3160              priv = netdev_lower_get_next_private(dev, &(iter)))
3161 
3162 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3163         for (iter = &(dev)->adj_list.lower, \
3164              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3165              priv; \
3166              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3167 
3168 void *netdev_lower_get_next(struct net_device *dev,
3169                                 struct list_head **iter);
3170 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3171         for (iter = &(dev)->adj_list.lower, \
3172              ldev = netdev_lower_get_next(dev, &(iter)); \
3173              ldev; \
3174              ldev = netdev_lower_get_next(dev, &(iter)))
3175 
3176 void *netdev_adjacent_get_private(struct list_head *adj_list);
3177 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3178 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3179 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3180 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3181 int netdev_master_upper_dev_link(struct net_device *dev,
3182                                  struct net_device *upper_dev);
3183 int netdev_master_upper_dev_link_private(struct net_device *dev,
3184                                          struct net_device *upper_dev,
3185                                          void *private);
3186 void netdev_upper_dev_unlink(struct net_device *dev,
3187                              struct net_device *upper_dev);
3188 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3189 void *netdev_lower_dev_get_private(struct net_device *dev,
3190                                    struct net_device *lower_dev);
3191 int dev_get_nest_level(struct net_device *dev,
3192                        bool (*type_check)(struct net_device *dev));
3193 int skb_checksum_help(struct sk_buff *skb);
3194 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3195                                   netdev_features_t features, bool tx_path);
3196 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3197                                     netdev_features_t features);
3198 
3199 static inline
3200 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3201 {
3202         return __skb_gso_segment(skb, features, true);
3203 }
3204 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3205 
3206 static inline bool can_checksum_protocol(netdev_features_t features,
3207                                          __be16 protocol)
3208 {
3209         return ((features & NETIF_F_GEN_CSUM) ||
3210                 ((features & NETIF_F_V4_CSUM) &&
3211                  protocol == htons(ETH_P_IP)) ||
3212                 ((features & NETIF_F_V6_CSUM) &&
3213                  protocol == htons(ETH_P_IPV6)) ||
3214                 ((features & NETIF_F_FCOE_CRC) &&
3215                  protocol == htons(ETH_P_FCOE)));
3216 }
3217 
3218 #ifdef CONFIG_BUG
3219 void netdev_rx_csum_fault(struct net_device *dev);
3220 #else
3221 static inline void netdev_rx_csum_fault(struct net_device *dev)
3222 {
3223 }
3224 #endif
3225 /* rx skb timestamps */
3226 void net_enable_timestamp(void);
3227 void net_disable_timestamp(void);
3228 
3229 #ifdef CONFIG_PROC_FS
3230 int __init dev_proc_init(void);
3231 #else
3232 #define dev_proc_init() 0
3233 #endif
3234 
3235 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3236                                 const void *ns);
3237 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3238                                  const void *ns);
3239 
3240 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3241 {
3242         return netdev_class_create_file_ns(class_attr, NULL);
3243 }
3244 
3245 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3246 {
3247         netdev_class_remove_file_ns(class_attr, NULL);
3248 }
3249 
3250 extern struct kobj_ns_type_operations net_ns_type_operations;
3251 
3252 const char *netdev_drivername(const struct net_device *dev);
3253 
3254 void linkwatch_run_queue(void);
3255 
3256 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3257                                                           netdev_features_t f2)
3258 {
3259         if (f1 & NETIF_F_GEN_CSUM)
3260                 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3261         if (f2 & NETIF_F_GEN_CSUM)
3262                 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3263         f1 &= f2;
3264         if (f1 & NETIF_F_GEN_CSUM)
3265                 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3266 
3267         return f1;
3268 }
3269 
3270 static inline netdev_features_t netdev_get_wanted_features(
3271         struct net_device *dev)
3272 {
3273         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3274 }
3275 netdev_features_t netdev_increment_features(netdev_features_t all,
3276         netdev_features_t one, netdev_features_t mask);
3277 
3278 /* Allow TSO being used on stacked device :
3279  * Performing the GSO segmentation before last device
3280  * is a performance improvement.
3281  */
3282 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3283                                                         netdev_features_t mask)
3284 {
3285         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3286 }
3287 
3288 int __netdev_update_features(struct net_device *dev);
3289 void netdev_update_features(struct net_device *dev);
3290 void netdev_change_features(struct net_device *dev);
3291 
3292 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3293                                         struct net_device *dev);
3294 
3295 netdev_features_t netif_skb_features(struct sk_buff *skb);
3296 
3297 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3298 {
3299         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3300 
3301         /* check flags correspondence */
3302         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3303         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3304         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3305         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3306         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3307         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3308         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3309         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3310         BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3311         BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3312         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3313         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3314         BUILD_BUG_ON(SKB_GSO_MPLS    != (NETIF_F_GSO_MPLS >> NETIF_F_GSO_SHIFT));
3315 
3316         return (features & feature) == feature;
3317 }
3318 
3319 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3320 {
3321         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3322                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3323 }
3324 
3325 static inline bool netif_needs_gso(struct sk_buff *skb,
3326                                    netdev_features_t features)
3327 {
3328         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3329                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3330                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3331 }
3332 
3333 static inline void netif_set_gso_max_size(struct net_device *dev,
3334                                           unsigned int size)
3335 {
3336         dev->gso_max_size = size;
3337 }
3338 
3339 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3340                                         int pulled_hlen, u16 mac_offset,
3341                                         int mac_len)
3342 {
3343         skb->protocol = protocol;
3344         skb->encapsulation = 1;
3345         skb_push(skb, pulled_hlen);
3346         skb_reset_transport_header(skb);
3347         skb->mac_header = mac_offset;
3348         skb->network_header = skb->mac_header + mac_len;
3349         skb->mac_len = mac_len;
3350 }
3351 
3352 static inline bool netif_is_macvlan(struct net_device *dev)
3353 {
3354         return dev->priv_flags & IFF_MACVLAN;
3355 }
3356 
3357 static inline bool netif_is_bond_master(struct net_device *dev)
3358 {
3359         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3360 }
3361 
3362 static inline bool netif_is_bond_slave(struct net_device *dev)
3363 {
3364         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3365 }
3366 
3367 static inline bool netif_supports_nofcs(struct net_device *dev)
3368 {
3369         return dev->priv_flags & IFF_SUPP_NOFCS;
3370 }
3371 
3372 extern struct pernet_operations __net_initdata loopback_net_ops;
3373 
3374 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3375 
3376 /* netdev_printk helpers, similar to dev_printk */
3377 
3378 static inline const char *netdev_name(const struct net_device *dev)
3379 {
3380         if (dev->reg_state != NETREG_REGISTERED)
3381                 return "(unregistered net_device)";
3382         return dev->name;
3383 }
3384 
3385 __printf(3, 4)
3386 int netdev_printk(const char *level, const struct net_device *dev,
3387                   const char *format, ...);
3388 __printf(2, 3)
3389 int netdev_emerg(const struct net_device *dev, const char *format, ...);
3390 __printf(2, 3)
3391 int netdev_alert(const struct net_device *dev, const char *format, ...);
3392 __printf(2, 3)
3393 int netdev_crit(const struct net_device *dev, const char *format, ...);
3394 __printf(2, 3)
3395 int netdev_err(const struct net_device *dev, const char *format, ...);
3396 __printf(2, 3)
3397 int netdev_warn(const struct net_device *dev, const char *format, ...);
3398 __printf(2, 3)
3399 int netdev_notice(const struct net_device *dev, const char *format, ...);
3400 __printf(2, 3)
3401 int netdev_info(const struct net_device *dev, const char *format, ...);
3402 
3403 #define MODULE_ALIAS_NETDEV(device) \
3404         MODULE_ALIAS("netdev-" device)
3405 
3406 #if defined(CONFIG_DYNAMIC_DEBUG)
3407 #define netdev_dbg(__dev, format, args...)                      \
3408 do {                                                            \
3409         dynamic_netdev_dbg(__dev, format, ##args);              \
3410 } while (0)
3411 #elif defined(DEBUG)
3412 #define netdev_dbg(__dev, format, args...)                      \
3413         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3414 #else
3415 #define netdev_dbg(__dev, format, args...)                      \
3416 ({                                                              \
3417         if (0)                                                  \
3418                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3419         0;                                                      \
3420 })
3421 #endif
3422 
3423 #if defined(VERBOSE_DEBUG)
3424 #define netdev_vdbg     netdev_dbg
3425 #else
3426 
3427 #define netdev_vdbg(dev, format, args...)                       \
3428 ({                                                              \
3429         if (0)                                                  \
3430                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3431         0;                                                      \
3432 })
3433 #endif
3434 
3435 /*
3436  * netdev_WARN() acts like dev_printk(), but with the key difference
3437  * of using a WARN/WARN_ON to get the message out, including the
3438  * file/line information and a backtrace.
3439  */
3440 #define netdev_WARN(dev, format, args...)                       \
3441         WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args)
3442 
3443 /* netif printk helpers, similar to netdev_printk */
3444 
3445 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3446 do {                                                            \
3447         if (netif_msg_##type(priv))                             \
3448                 netdev_printk(level, (dev), fmt, ##args);       \
3449 } while (0)
3450 
3451 #define netif_level(level, priv, type, dev, fmt, args...)       \
3452 do {                                                            \
3453         if (netif_msg_##type(priv))                             \
3454                 netdev_##level(dev, fmt, ##args);               \
3455 } while (0)
3456 
3457 #define netif_emerg(priv, type, dev, fmt, args...)              \
3458         netif_level(emerg, priv, type, dev, fmt, ##args)
3459 #define netif_alert(priv, type, dev, fmt, args...)              \
3460         netif_level(alert, priv, type, dev, fmt, ##args)
3461 #define netif_crit(priv, type, dev, fmt, args...)               \
3462         netif_level(crit, priv, type, dev, fmt, ##args)
3463 #define netif_err(priv, type, dev, fmt, args...)                \
3464         netif_level(err, priv, type, dev, fmt, ##args)
3465 #define netif_warn(priv, type, dev, fmt, args...)               \
3466         netif_level(warn, priv, type, dev, fmt, ##args)
3467 #define netif_notice(priv, type, dev, fmt, args...)             \
3468         netif_level(notice, priv, type, dev, fmt, ##args)
3469 #define netif_info(priv, type, dev, fmt, args...)               \
3470         netif_level(info, priv, type, dev, fmt, ##args)
3471 
3472 #if defined(CONFIG_DYNAMIC_DEBUG)
3473 #define netif_dbg(priv, type, netdev, format, args...)          \
3474 do {                                                            \
3475         if (netif_msg_##type(priv))                             \
3476                 dynamic_netdev_dbg(netdev, format, ##args);     \
3477 } while (0)
3478 #elif defined(DEBUG)
3479 #define netif_dbg(priv, type, dev, format, args...)             \
3480         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3481 #else
3482 #define netif_dbg(priv, type, dev, format, args...)                     \
3483 ({                                                                      \
3484         if (0)                                                          \
3485                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3486         0;                                                              \
3487 })
3488 #endif
3489 
3490 #if defined(VERBOSE_DEBUG)
3491 #define netif_vdbg      netif_dbg
3492 #else
3493 #define netif_vdbg(priv, type, dev, format, args...)            \
3494 ({                                                              \
3495         if (0)                                                  \
3496                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3497         0;                                                      \
3498 })
3499 #endif
3500 
3501 /*
3502  *      The list of packet types we will receive (as opposed to discard)
3503  *      and the routines to invoke.
3504  *
3505  *      Why 16. Because with 16 the only overlap we get on a hash of the
3506  *      low nibble of the protocol value is RARP/SNAP/X.25.
3507  *
3508  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3509  *             sure which should go first, but I bet it won't make much
3510  *             difference if we are running VLANs.  The good news is that
3511  *             this protocol won't be in the list unless compiled in, so
3512  *             the average user (w/out VLANs) will not be adversely affected.
3513  *             --BLG
3514  *
3515  *              0800    IP
3516  *              8100    802.1Q VLAN
3517  *              0001    802.3
3518  *              0002    AX.25
3519  *              0004    802.2
3520  *              8035    RARP
3521  *              0005    SNAP
3522  *              0805    X.25
3523  *              0806    ARP
3524  *              8137    IPX
3525  *              0009    Localtalk
3526  *              86DD    IPv6
3527  */
3528 #define PTYPE_HASH_SIZE (16)
3529 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3530 
3531 #endif  /* _LINUX_NETDEVICE_H */
3532 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us