Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 #include <uapi/linux/if_bonding.h>
 54 
 55 struct netpoll_info;
 56 struct device;
 57 struct phy_device;
 58 /* 802.11 specific */
 59 struct wireless_dev;
 60 /* 802.15.4 specific */
 61 struct wpan_dev;
 62 struct mpls_dev;
 63 
 64 void netdev_set_default_ethtool_ops(struct net_device *dev,
 65                                     const struct ethtool_ops *ops);
 66 
 67 /* Backlog congestion levels */
 68 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 69 #define NET_RX_DROP             1       /* packet dropped */
 70 
 71 /*
 72  * Transmit return codes: transmit return codes originate from three different
 73  * namespaces:
 74  *
 75  * - qdisc return codes
 76  * - driver transmit return codes
 77  * - errno values
 78  *
 79  * Drivers are allowed to return any one of those in their hard_start_xmit()
 80  * function. Real network devices commonly used with qdiscs should only return
 81  * the driver transmit return codes though - when qdiscs are used, the actual
 82  * transmission happens asynchronously, so the value is not propagated to
 83  * higher layers. Virtual network devices transmit synchronously, in this case
 84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 85  * others are propagated to higher layers.
 86  */
 87 
 88 /* qdisc ->enqueue() return codes. */
 89 #define NET_XMIT_SUCCESS        0x00
 90 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 91 #define NET_XMIT_CN             0x02    /* congestion notification      */
 92 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 93 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 94 
 95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 96  * indicates that the device will soon be dropping packets, or already drops
 97  * some packets of the same priority; prompting us to send less aggressively. */
 98 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 99 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK          0xf0
103 
104 enum netdev_tx {
105         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
106         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
107         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
108         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118         /*
119          * Positive cases with an skb consumed by a driver:
120          * - successful transmission (rc == NETDEV_TX_OK)
121          * - error while transmitting (rc < 0)
122          * - error while queueing to a different device (rc & NET_XMIT_MASK)
123          */
124         if (likely(rc < NET_XMIT_MASK))
125                 return true;
126 
127         return false;
128 }
129 
130 /*
131  *      Compute the worst case header length according to the protocols
132  *      used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *      Old network device statistics. Fields are native words
154  *      (unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158         unsigned long   rx_packets;
159         unsigned long   tx_packets;
160         unsigned long   rx_bytes;
161         unsigned long   tx_bytes;
162         unsigned long   rx_errors;
163         unsigned long   tx_errors;
164         unsigned long   rx_dropped;
165         unsigned long   tx_dropped;
166         unsigned long   multicast;
167         unsigned long   collisions;
168         unsigned long   rx_length_errors;
169         unsigned long   rx_over_errors;
170         unsigned long   rx_crc_errors;
171         unsigned long   rx_frame_errors;
172         unsigned long   rx_fifo_errors;
173         unsigned long   rx_missed_errors;
174         unsigned long   tx_aborted_errors;
175         unsigned long   tx_carrier_errors;
176         unsigned long   tx_fifo_errors;
177         unsigned long   tx_heartbeat_errors;
178         unsigned long   tx_window_errors;
179         unsigned long   rx_compressed;
180         unsigned long   tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197         struct list_head        list;
198         unsigned char           addr[MAX_ADDR_LEN];
199         unsigned char           type;
200 #define NETDEV_HW_ADDR_T_LAN            1
201 #define NETDEV_HW_ADDR_T_SAN            2
202 #define NETDEV_HW_ADDR_T_SLAVE          3
203 #define NETDEV_HW_ADDR_T_UNICAST        4
204 #define NETDEV_HW_ADDR_T_MULTICAST      5
205         bool                    global_use;
206         int                     sync_cnt;
207         int                     refcount;
208         int                     synced;
209         struct rcu_head         rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213         struct list_head        list;
214         int                     count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220         list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233         u16             hh_len;
234         u16             __pad;
235         seqlock_t       hh_lock;
236 
237         /* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD     16
239 #define HH_DATA_OFF(__len) \
240         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260         int     (*create) (struct sk_buff *skb, struct net_device *dev,
261                            unsigned short type, const void *daddr,
262                            const void *saddr, unsigned int len);
263         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265         void    (*cache_update)(struct hh_cache *hh,
266                                 const struct net_device *dev,
267                                 const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276         __LINK_STATE_START,
277         __LINK_STATE_PRESENT,
278         __LINK_STATE_NOCARRIER,
279         __LINK_STATE_LINKWATCH_PENDING,
280         __LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289         char name[IFNAMSIZ];
290         struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300         /* The poll_list must only be managed by the entity which
301          * changes the state of the NAPI_STATE_SCHED bit.  This means
302          * whoever atomically sets that bit can add this napi_struct
303          * to the per-cpu poll_list, and whoever clears that bit
304          * can remove from the list right before clearing the bit.
305          */
306         struct list_head        poll_list;
307 
308         unsigned long           state;
309         int                     weight;
310         unsigned int            gro_count;
311         int                     (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313         spinlock_t              poll_lock;
314         int                     poll_owner;
315 #endif
316         struct net_device       *dev;
317         struct sk_buff          *gro_list;
318         struct sk_buff          *skb;
319         struct hrtimer          timer;
320         struct list_head        dev_list;
321         struct hlist_node       napi_hash_node;
322         unsigned int            napi_id;
323 };
324 
325 enum {
326         NAPI_STATE_SCHED,       /* Poll is scheduled */
327         NAPI_STATE_DISABLE,     /* Disable pending */
328         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
329         NAPI_STATE_HASHED,      /* In NAPI hash */
330 };
331 
332 enum gro_result {
333         GRO_MERGED,
334         GRO_MERGED_FREE,
335         GRO_HELD,
336         GRO_NORMAL,
337         GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383         RX_HANDLER_CONSUMED,
384         RX_HANDLER_ANOTHER,
385         RX_HANDLER_EXACT,
386         RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396         return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *      napi_schedule_prep - check if napi can be scheduled
401  *      @n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410         return !napi_disable_pending(n) &&
411                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *      napi_schedule - schedule NAPI poll
416  *      @n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423         if (napi_schedule_prep(n))
424                 __napi_schedule(n);
425 }
426 
427 /**
428  *      napi_schedule_irqoff - schedule NAPI poll
429  *      @n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435         if (napi_schedule_prep(n))
436                 __napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442         if (napi_schedule_prep(napi)) {
443                 __napi_schedule(napi);
444                 return true;
445         }
446         return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *      napi_complete - NAPI processing complete
453  *      @n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460         return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *      napi_by_id - lookup a NAPI by napi_id
465  *      @napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *      napi_hash_add - add a NAPI to global hashtable
474  *      @napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *      napi_hash_del - remove a NAPI from global table
482  *      @napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *      napi_disable - prevent NAPI from scheduling
491  *      @n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *      napi_enable - enable NAPI scheduling
500  *      @n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508         smp_mb__before_atomic();
509         clear_bit(NAPI_STATE_SCHED, &n->state);
510         clear_bit(NAPI_STATE_NPSVC, &n->state);
511 }
512 
513 #ifdef CONFIG_SMP
514 /**
515  *      napi_synchronize - wait until NAPI is not running
516  *      @n: napi context
517  *
518  * Wait until NAPI is done being scheduled on this context.
519  * Waits till any outstanding processing completes but
520  * does not disable future activations.
521  */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524         while (test_bit(NAPI_STATE_SCHED, &n->state))
525                 msleep(1);
526 }
527 #else
528 # define napi_synchronize(n)    barrier()
529 #endif
530 
531 enum netdev_queue_state_t {
532         __QUEUE_STATE_DRV_XOFF,
533         __QUEUE_STATE_STACK_XOFF,
534         __QUEUE_STATE_FROZEN,
535 };
536 
537 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
540 
541 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543                                         QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545                                         QUEUE_STATE_FROZEN)
546 
547 /*
548  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
549  * netif_tx_* functions below are used to manipulate this flag.  The
550  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551  * queue independently.  The netif_xmit_*stopped functions below are called
552  * to check if the queue has been stopped by the driver or stack (either
553  * of the XOFF bits are set in the state).  Drivers should not need to call
554  * netif_xmit*stopped functions, they should only be using netif_tx_*.
555  */
556 
557 struct netdev_queue {
558 /*
559  * read mostly part
560  */
561         struct net_device       *dev;
562         struct Qdisc __rcu      *qdisc;
563         struct Qdisc            *qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565         struct kobject          kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568         int                     numa_node;
569 #endif
570 /*
571  * write mostly part
572  */
573         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
574         int                     xmit_lock_owner;
575         /*
576          * please use this field instead of dev->trans_start
577          */
578         unsigned long           trans_start;
579 
580         /*
581          * Number of TX timeouts for this queue
582          * (/sys/class/net/DEV/Q/trans_timeout)
583          */
584         unsigned long           trans_timeout;
585 
586         unsigned long           state;
587 
588 #ifdef CONFIG_BQL
589         struct dql              dql;
590 #endif
591         unsigned long           tx_maxrate;
592 } ____cacheline_aligned_in_smp;
593 
594 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 {
596 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
597         return q->numa_node;
598 #else
599         return NUMA_NO_NODE;
600 #endif
601 }
602 
603 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 {
605 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
606         q->numa_node = node;
607 #endif
608 }
609 
610 #ifdef CONFIG_RPS
611 /*
612  * This structure holds an RPS map which can be of variable length.  The
613  * map is an array of CPUs.
614  */
615 struct rps_map {
616         unsigned int len;
617         struct rcu_head rcu;
618         u16 cpus[0];
619 };
620 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
621 
622 /*
623  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
624  * tail pointer for that CPU's input queue at the time of last enqueue, and
625  * a hardware filter index.
626  */
627 struct rps_dev_flow {
628         u16 cpu;
629         u16 filter;
630         unsigned int last_qtail;
631 };
632 #define RPS_NO_FILTER 0xffff
633 
634 /*
635  * The rps_dev_flow_table structure contains a table of flow mappings.
636  */
637 struct rps_dev_flow_table {
638         unsigned int mask;
639         struct rcu_head rcu;
640         struct rps_dev_flow flows[0];
641 };
642 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
643     ((_num) * sizeof(struct rps_dev_flow)))
644 
645 /*
646  * The rps_sock_flow_table contains mappings of flows to the last CPU
647  * on which they were processed by the application (set in recvmsg).
648  * Each entry is a 32bit value. Upper part is the high order bits
649  * of flow hash, lower part is cpu number.
650  * rps_cpu_mask is used to partition the space, depending on number of
651  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
652  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
653  * meaning we use 32-6=26 bits for the hash.
654  */
655 struct rps_sock_flow_table {
656         u32     mask;
657 
658         u32     ents[0] ____cacheline_aligned_in_smp;
659 };
660 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 
662 #define RPS_NO_CPU 0xffff
663 
664 extern u32 rps_cpu_mask;
665 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 
667 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
668                                         u32 hash)
669 {
670         if (table && hash) {
671                 unsigned int index = hash & table->mask;
672                 u32 val = hash & ~rps_cpu_mask;
673 
674                 /* We only give a hint, preemption can change cpu under us */
675                 val |= raw_smp_processor_id();
676 
677                 if (table->ents[index] != val)
678                         table->ents[index] = val;
679         }
680 }
681 
682 #ifdef CONFIG_RFS_ACCEL
683 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
684                          u16 filter_id);
685 #endif
686 #endif /* CONFIG_RPS */
687 
688 /* This structure contains an instance of an RX queue. */
689 struct netdev_rx_queue {
690 #ifdef CONFIG_RPS
691         struct rps_map __rcu            *rps_map;
692         struct rps_dev_flow_table __rcu *rps_flow_table;
693 #endif
694         struct kobject                  kobj;
695         struct net_device               *dev;
696 } ____cacheline_aligned_in_smp;
697 
698 /*
699  * RX queue sysfs structures and functions.
700  */
701 struct rx_queue_attribute {
702         struct attribute attr;
703         ssize_t (*show)(struct netdev_rx_queue *queue,
704             struct rx_queue_attribute *attr, char *buf);
705         ssize_t (*store)(struct netdev_rx_queue *queue,
706             struct rx_queue_attribute *attr, const char *buf, size_t len);
707 };
708 
709 #ifdef CONFIG_XPS
710 /*
711  * This structure holds an XPS map which can be of variable length.  The
712  * map is an array of queues.
713  */
714 struct xps_map {
715         unsigned int len;
716         unsigned int alloc_len;
717         struct rcu_head rcu;
718         u16 queues[0];
719 };
720 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
721 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
722        - sizeof(struct xps_map)) / sizeof(u16))
723 
724 /*
725  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
726  */
727 struct xps_dev_maps {
728         struct rcu_head rcu;
729         struct xps_map __rcu *cpu_map[0];
730 };
731 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
732     (nr_cpu_ids * sizeof(struct xps_map *)))
733 #endif /* CONFIG_XPS */
734 
735 #define TC_MAX_QUEUE    16
736 #define TC_BITMASK      15
737 /* HW offloaded queuing disciplines txq count and offset maps */
738 struct netdev_tc_txq {
739         u16 count;
740         u16 offset;
741 };
742 
743 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 /*
745  * This structure is to hold information about the device
746  * configured to run FCoE protocol stack.
747  */
748 struct netdev_fcoe_hbainfo {
749         char    manufacturer[64];
750         char    serial_number[64];
751         char    hardware_version[64];
752         char    driver_version[64];
753         char    optionrom_version[64];
754         char    firmware_version[64];
755         char    model[256];
756         char    model_description[256];
757 };
758 #endif
759 
760 #define MAX_PHYS_ITEM_ID_LEN 32
761 
762 /* This structure holds a unique identifier to identify some
763  * physical item (port for example) used by a netdevice.
764  */
765 struct netdev_phys_item_id {
766         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
767         unsigned char id_len;
768 };
769 
770 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
771                                             struct netdev_phys_item_id *b)
772 {
773         return a->id_len == b->id_len &&
774                memcmp(a->id, b->id, a->id_len) == 0;
775 }
776 
777 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
778                                        struct sk_buff *skb);
779 
780 /*
781  * This structure defines the management hooks for network devices.
782  * The following hooks can be defined; unless noted otherwise, they are
783  * optional and can be filled with a null pointer.
784  *
785  * int (*ndo_init)(struct net_device *dev);
786  *     This function is called once when network device is registered.
787  *     The network device can use this to any late stage initializaton
788  *     or semantic validattion. It can fail with an error code which will
789  *     be propogated back to register_netdev
790  *
791  * void (*ndo_uninit)(struct net_device *dev);
792  *     This function is called when device is unregistered or when registration
793  *     fails. It is not called if init fails.
794  *
795  * int (*ndo_open)(struct net_device *dev);
796  *     This function is called when network device transistions to the up
797  *     state.
798  *
799  * int (*ndo_stop)(struct net_device *dev);
800  *     This function is called when network device transistions to the down
801  *     state.
802  *
803  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
804  *                               struct net_device *dev);
805  *      Called when a packet needs to be transmitted.
806  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
807  *      the queue before that can happen; it's for obsolete devices and weird
808  *      corner cases, but the stack really does a non-trivial amount
809  *      of useless work if you return NETDEV_TX_BUSY.
810  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
811  *      Required can not be NULL.
812  *
813  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
814  *                         void *accel_priv, select_queue_fallback_t fallback);
815  *      Called to decide which queue to when device supports multiple
816  *      transmit queues.
817  *
818  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
819  *      This function is called to allow device receiver to make
820  *      changes to configuration when multicast or promiscious is enabled.
821  *
822  * void (*ndo_set_rx_mode)(struct net_device *dev);
823  *      This function is called device changes address list filtering.
824  *      If driver handles unicast address filtering, it should set
825  *      IFF_UNICAST_FLT to its priv_flags.
826  *
827  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
828  *      This function  is called when the Media Access Control address
829  *      needs to be changed. If this interface is not defined, the
830  *      mac address can not be changed.
831  *
832  * int (*ndo_validate_addr)(struct net_device *dev);
833  *      Test if Media Access Control address is valid for the device.
834  *
835  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
836  *      Called when a user request an ioctl which can't be handled by
837  *      the generic interface code. If not defined ioctl's return
838  *      not supported error code.
839  *
840  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
841  *      Used to set network devices bus interface parameters. This interface
842  *      is retained for legacy reason, new devices should use the bus
843  *      interface (PCI) for low level management.
844  *
845  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
846  *      Called when a user wants to change the Maximum Transfer Unit
847  *      of a device. If not defined, any request to change MTU will
848  *      will return an error.
849  *
850  * void (*ndo_tx_timeout)(struct net_device *dev);
851  *      Callback uses when the transmitter has not made any progress
852  *      for dev->watchdog ticks.
853  *
854  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
855  *                      struct rtnl_link_stats64 *storage);
856  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
857  *      Called when a user wants to get the network device usage
858  *      statistics. Drivers must do one of the following:
859  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
860  *         rtnl_link_stats64 structure passed by the caller.
861  *      2. Define @ndo_get_stats to update a net_device_stats structure
862  *         (which should normally be dev->stats) and return a pointer to
863  *         it. The structure may be changed asynchronously only if each
864  *         field is written atomically.
865  *      3. Update dev->stats asynchronously and atomically, and define
866  *         neither operation.
867  *
868  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
869  *      If device support VLAN filtering this function is called when a
870  *      VLAN id is registered.
871  *
872  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
873  *      If device support VLAN filtering this function is called when a
874  *      VLAN id is unregistered.
875  *
876  * void (*ndo_poll_controller)(struct net_device *dev);
877  *
878  *      SR-IOV management functions.
879  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
880  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
881  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
882  *                        int max_tx_rate);
883  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
884  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
885  * int (*ndo_get_vf_config)(struct net_device *dev,
886  *                          int vf, struct ifla_vf_info *ivf);
887  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
888  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
889  *                        struct nlattr *port[]);
890  *
891  *      Enable or disable the VF ability to query its RSS Redirection Table and
892  *      Hash Key. This is needed since on some devices VF share this information
893  *      with PF and querying it may adduce a theoretical security risk.
894  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
895  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
896  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
897  *      Called to setup 'tc' number of traffic classes in the net device. This
898  *      is always called from the stack with the rtnl lock held and netif tx
899  *      queues stopped. This allows the netdevice to perform queue management
900  *      safely.
901  *
902  *      Fiber Channel over Ethernet (FCoE) offload functions.
903  * int (*ndo_fcoe_enable)(struct net_device *dev);
904  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
905  *      so the underlying device can perform whatever needed configuration or
906  *      initialization to support acceleration of FCoE traffic.
907  *
908  * int (*ndo_fcoe_disable)(struct net_device *dev);
909  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
910  *      so the underlying device can perform whatever needed clean-ups to
911  *      stop supporting acceleration of FCoE traffic.
912  *
913  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
914  *                           struct scatterlist *sgl, unsigned int sgc);
915  *      Called when the FCoE Initiator wants to initialize an I/O that
916  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
917  *      perform necessary setup and returns 1 to indicate the device is set up
918  *      successfully to perform DDP on this I/O, otherwise this returns 0.
919  *
920  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
921  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
922  *      indicated by the FC exchange id 'xid', so the underlying device can
923  *      clean up and reuse resources for later DDP requests.
924  *
925  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
926  *                            struct scatterlist *sgl, unsigned int sgc);
927  *      Called when the FCoE Target wants to initialize an I/O that
928  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
929  *      perform necessary setup and returns 1 to indicate the device is set up
930  *      successfully to perform DDP on this I/O, otherwise this returns 0.
931  *
932  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
933  *                             struct netdev_fcoe_hbainfo *hbainfo);
934  *      Called when the FCoE Protocol stack wants information on the underlying
935  *      device. This information is utilized by the FCoE protocol stack to
936  *      register attributes with Fiber Channel management service as per the
937  *      FC-GS Fabric Device Management Information(FDMI) specification.
938  *
939  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
940  *      Called when the underlying device wants to override default World Wide
941  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
942  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
943  *      protocol stack to use.
944  *
945  *      RFS acceleration.
946  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
947  *                          u16 rxq_index, u32 flow_id);
948  *      Set hardware filter for RFS.  rxq_index is the target queue index;
949  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
950  *      Return the filter ID on success, or a negative error code.
951  *
952  *      Slave management functions (for bridge, bonding, etc).
953  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
954  *      Called to make another netdev an underling.
955  *
956  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
957  *      Called to release previously enslaved netdev.
958  *
959  *      Feature/offload setting functions.
960  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
961  *              netdev_features_t features);
962  *      Adjusts the requested feature flags according to device-specific
963  *      constraints, and returns the resulting flags. Must not modify
964  *      the device state.
965  *
966  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
967  *      Called to update device configuration to new features. Passed
968  *      feature set might be less than what was returned by ndo_fix_features()).
969  *      Must return >0 or -errno if it changed dev->features itself.
970  *
971  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
972  *                    struct net_device *dev,
973  *                    const unsigned char *addr, u16 vid, u16 flags)
974  *      Adds an FDB entry to dev for addr.
975  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
976  *                    struct net_device *dev,
977  *                    const unsigned char *addr, u16 vid)
978  *      Deletes the FDB entry from dev coresponding to addr.
979  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
980  *                     struct net_device *dev, struct net_device *filter_dev,
981  *                     int idx)
982  *      Used to add FDB entries to dump requests. Implementers should add
983  *      entries to skb and update idx with the number of entries.
984  *
985  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
986  *                           u16 flags)
987  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
988  *                           struct net_device *dev, u32 filter_mask,
989  *                           int nlflags)
990  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
991  *                           u16 flags);
992  *
993  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
994  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
995  *      which do not represent real hardware may define this to allow their
996  *      userspace components to manage their virtual carrier state. Devices
997  *      that determine carrier state from physical hardware properties (eg
998  *      network cables) or protocol-dependent mechanisms (eg
999  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1000  *
1001  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1002  *                             struct netdev_phys_item_id *ppid);
1003  *      Called to get ID of physical port of this device. If driver does
1004  *      not implement this, it is assumed that the hw is not able to have
1005  *      multiple net devices on single physical port.
1006  *
1007  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
1008  *                            sa_family_t sa_family, __be16 port);
1009  *      Called by vxlan to notiy a driver about the UDP port and socket
1010  *      address family that vxlan is listnening to. It is called only when
1011  *      a new port starts listening. The operation is protected by the
1012  *      vxlan_net->sock_lock.
1013  *
1014  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1015  *                            sa_family_t sa_family, __be16 port);
1016  *      Called by vxlan to notify the driver about a UDP port and socket
1017  *      address family that vxlan is not listening to anymore. The operation
1018  *      is protected by the vxlan_net->sock_lock.
1019  *
1020  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1021  *                               struct net_device *dev)
1022  *      Called by upper layer devices to accelerate switching or other
1023  *      station functionality into hardware. 'pdev is the lowerdev
1024  *      to use for the offload and 'dev' is the net device that will
1025  *      back the offload. Returns a pointer to the private structure
1026  *      the upper layer will maintain.
1027  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1028  *      Called by upper layer device to delete the station created
1029  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1030  *      the station and priv is the structure returned by the add
1031  *      operation.
1032  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1033  *                                    struct net_device *dev,
1034  *                                    void *priv);
1035  *      Callback to use for xmit over the accelerated station. This
1036  *      is used in place of ndo_start_xmit on accelerated net
1037  *      devices.
1038  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1039  *                                          struct net_device *dev
1040  *                                          netdev_features_t features);
1041  *      Called by core transmit path to determine if device is capable of
1042  *      performing offload operations on a given packet. This is to give
1043  *      the device an opportunity to implement any restrictions that cannot
1044  *      be otherwise expressed by feature flags. The check is called with
1045  *      the set of features that the stack has calculated and it returns
1046  *      those the driver believes to be appropriate.
1047  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1048  *                           int queue_index, u32 maxrate);
1049  *      Called when a user wants to set a max-rate limitation of specific
1050  *      TX queue.
1051  * int (*ndo_get_iflink)(const struct net_device *dev);
1052  *      Called to get the iflink value of this device.
1053  * void (*ndo_change_proto_down)(struct net_device *dev,
1054  *                                bool proto_down);
1055  *      This function is used to pass protocol port error state information
1056  *      to the switch driver. The switch driver can react to the proto_down
1057  *      by doing a phys down on the associated switch port.
1058  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1059  *      This function is used to get egress tunnel information for given skb.
1060  *      This is useful for retrieving outer tunnel header parameters while
1061  *      sampling packet.
1062  *
1063  */
1064 struct net_device_ops {
1065         int                     (*ndo_init)(struct net_device *dev);
1066         void                    (*ndo_uninit)(struct net_device *dev);
1067         int                     (*ndo_open)(struct net_device *dev);
1068         int                     (*ndo_stop)(struct net_device *dev);
1069         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1070                                                    struct net_device *dev);
1071         u16                     (*ndo_select_queue)(struct net_device *dev,
1072                                                     struct sk_buff *skb,
1073                                                     void *accel_priv,
1074                                                     select_queue_fallback_t fallback);
1075         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1076                                                        int flags);
1077         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1078         int                     (*ndo_set_mac_address)(struct net_device *dev,
1079                                                        void *addr);
1080         int                     (*ndo_validate_addr)(struct net_device *dev);
1081         int                     (*ndo_do_ioctl)(struct net_device *dev,
1082                                                 struct ifreq *ifr, int cmd);
1083         int                     (*ndo_set_config)(struct net_device *dev,
1084                                                   struct ifmap *map);
1085         int                     (*ndo_change_mtu)(struct net_device *dev,
1086                                                   int new_mtu);
1087         int                     (*ndo_neigh_setup)(struct net_device *dev,
1088                                                    struct neigh_parms *);
1089         void                    (*ndo_tx_timeout) (struct net_device *dev);
1090 
1091         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1092                                                      struct rtnl_link_stats64 *storage);
1093         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1094 
1095         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1096                                                        __be16 proto, u16 vid);
1097         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1098                                                         __be16 proto, u16 vid);
1099 #ifdef CONFIG_NET_POLL_CONTROLLER
1100         void                    (*ndo_poll_controller)(struct net_device *dev);
1101         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1102                                                      struct netpoll_info *info);
1103         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1104 #endif
1105 #ifdef CONFIG_NET_RX_BUSY_POLL
1106         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1107 #endif
1108         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1109                                                   int queue, u8 *mac);
1110         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1111                                                    int queue, u16 vlan, u8 qos);
1112         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1113                                                    int vf, int min_tx_rate,
1114                                                    int max_tx_rate);
1115         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1116                                                        int vf, bool setting);
1117         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1118                                                     int vf, bool setting);
1119         int                     (*ndo_get_vf_config)(struct net_device *dev,
1120                                                      int vf,
1121                                                      struct ifla_vf_info *ivf);
1122         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1123                                                          int vf, int link_state);
1124         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1125                                                     int vf,
1126                                                     struct ifla_vf_stats
1127                                                     *vf_stats);
1128         int                     (*ndo_set_vf_port)(struct net_device *dev,
1129                                                    int vf,
1130                                                    struct nlattr *port[]);
1131         int                     (*ndo_get_vf_port)(struct net_device *dev,
1132                                                    int vf, struct sk_buff *skb);
1133         int                     (*ndo_set_vf_rss_query_en)(
1134                                                    struct net_device *dev,
1135                                                    int vf, bool setting);
1136         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1137 #if IS_ENABLED(CONFIG_FCOE)
1138         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1139         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1140         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1141                                                       u16 xid,
1142                                                       struct scatterlist *sgl,
1143                                                       unsigned int sgc);
1144         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1145                                                      u16 xid);
1146         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1147                                                        u16 xid,
1148                                                        struct scatterlist *sgl,
1149                                                        unsigned int sgc);
1150         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1151                                                         struct netdev_fcoe_hbainfo *hbainfo);
1152 #endif
1153 
1154 #if IS_ENABLED(CONFIG_LIBFCOE)
1155 #define NETDEV_FCOE_WWNN 0
1156 #define NETDEV_FCOE_WWPN 1
1157         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1158                                                     u64 *wwn, int type);
1159 #endif
1160 
1161 #ifdef CONFIG_RFS_ACCEL
1162         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1163                                                      const struct sk_buff *skb,
1164                                                      u16 rxq_index,
1165                                                      u32 flow_id);
1166 #endif
1167         int                     (*ndo_add_slave)(struct net_device *dev,
1168                                                  struct net_device *slave_dev);
1169         int                     (*ndo_del_slave)(struct net_device *dev,
1170                                                  struct net_device *slave_dev);
1171         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1172                                                     netdev_features_t features);
1173         int                     (*ndo_set_features)(struct net_device *dev,
1174                                                     netdev_features_t features);
1175         int                     (*ndo_neigh_construct)(struct neighbour *n);
1176         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1177 
1178         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1179                                                struct nlattr *tb[],
1180                                                struct net_device *dev,
1181                                                const unsigned char *addr,
1182                                                u16 vid,
1183                                                u16 flags);
1184         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1185                                                struct nlattr *tb[],
1186                                                struct net_device *dev,
1187                                                const unsigned char *addr,
1188                                                u16 vid);
1189         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1190                                                 struct netlink_callback *cb,
1191                                                 struct net_device *dev,
1192                                                 struct net_device *filter_dev,
1193                                                 int idx);
1194 
1195         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1196                                                       struct nlmsghdr *nlh,
1197                                                       u16 flags);
1198         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1199                                                       u32 pid, u32 seq,
1200                                                       struct net_device *dev,
1201                                                       u32 filter_mask,
1202                                                       int nlflags);
1203         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1204                                                       struct nlmsghdr *nlh,
1205                                                       u16 flags);
1206         int                     (*ndo_change_carrier)(struct net_device *dev,
1207                                                       bool new_carrier);
1208         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1209                                                         struct netdev_phys_item_id *ppid);
1210         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1211                                                           char *name, size_t len);
1212         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1213                                                       sa_family_t sa_family,
1214                                                       __be16 port);
1215         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1216                                                       sa_family_t sa_family,
1217                                                       __be16 port);
1218 
1219         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1220                                                         struct net_device *dev);
1221         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1222                                                         void *priv);
1223 
1224         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1225                                                         struct net_device *dev,
1226                                                         void *priv);
1227         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1228         netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1229                                                        struct net_device *dev,
1230                                                        netdev_features_t features);
1231         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1232                                                       int queue_index,
1233                                                       u32 maxrate);
1234         int                     (*ndo_get_iflink)(const struct net_device *dev);
1235         int                     (*ndo_change_proto_down)(struct net_device *dev,
1236                                                          bool proto_down);
1237         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1238                                                        struct sk_buff *skb);
1239 };
1240 
1241 /**
1242  * enum net_device_priv_flags - &struct net_device priv_flags
1243  *
1244  * These are the &struct net_device, they are only set internally
1245  * by drivers and used in the kernel. These flags are invisible to
1246  * userspace, this means that the order of these flags can change
1247  * during any kernel release.
1248  *
1249  * You should have a pretty good reason to be extending these flags.
1250  *
1251  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1252  * @IFF_EBRIDGE: Ethernet bridging device
1253  * @IFF_BONDING: bonding master or slave
1254  * @IFF_ISATAP: ISATAP interface (RFC4214)
1255  * @IFF_WAN_HDLC: WAN HDLC device
1256  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1257  *      release skb->dst
1258  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1259  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1260  * @IFF_MACVLAN_PORT: device used as macvlan port
1261  * @IFF_BRIDGE_PORT: device used as bridge port
1262  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1263  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1264  * @IFF_UNICAST_FLT: Supports unicast filtering
1265  * @IFF_TEAM_PORT: device used as team port
1266  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1267  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1268  *      change when it's running
1269  * @IFF_MACVLAN: Macvlan device
1270  * @IFF_L3MDEV_MASTER: device is an L3 master device
1271  * @IFF_NO_QUEUE: device can run without qdisc attached
1272  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1273  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1274  */
1275 enum netdev_priv_flags {
1276         IFF_802_1Q_VLAN                 = 1<<0,
1277         IFF_EBRIDGE                     = 1<<1,
1278         IFF_BONDING                     = 1<<2,
1279         IFF_ISATAP                      = 1<<3,
1280         IFF_WAN_HDLC                    = 1<<4,
1281         IFF_XMIT_DST_RELEASE            = 1<<5,
1282         IFF_DONT_BRIDGE                 = 1<<6,
1283         IFF_DISABLE_NETPOLL             = 1<<7,
1284         IFF_MACVLAN_PORT                = 1<<8,
1285         IFF_BRIDGE_PORT                 = 1<<9,
1286         IFF_OVS_DATAPATH                = 1<<10,
1287         IFF_TX_SKB_SHARING              = 1<<11,
1288         IFF_UNICAST_FLT                 = 1<<12,
1289         IFF_TEAM_PORT                   = 1<<13,
1290         IFF_SUPP_NOFCS                  = 1<<14,
1291         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1292         IFF_MACVLAN                     = 1<<16,
1293         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1294         IFF_IPVLAN_MASTER               = 1<<18,
1295         IFF_IPVLAN_SLAVE                = 1<<19,
1296         IFF_L3MDEV_MASTER               = 1<<20,
1297         IFF_NO_QUEUE                    = 1<<21,
1298         IFF_OPENVSWITCH                 = 1<<22,
1299         IFF_L3MDEV_SLAVE                = 1<<23,
1300 };
1301 
1302 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1303 #define IFF_EBRIDGE                     IFF_EBRIDGE
1304 #define IFF_BONDING                     IFF_BONDING
1305 #define IFF_ISATAP                      IFF_ISATAP
1306 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1307 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1308 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1309 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1310 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1311 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1312 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1313 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1314 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1315 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1316 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1317 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1318 #define IFF_MACVLAN                     IFF_MACVLAN
1319 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1320 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1321 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1322 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1323 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1324 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1325 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1326 
1327 /**
1328  *      struct net_device - The DEVICE structure.
1329  *              Actually, this whole structure is a big mistake.  It mixes I/O
1330  *              data with strictly "high-level" data, and it has to know about
1331  *              almost every data structure used in the INET module.
1332  *
1333  *      @name:  This is the first field of the "visible" part of this structure
1334  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1335  *              of the interface.
1336  *
1337  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1338  *      @ifalias:       SNMP alias
1339  *      @mem_end:       Shared memory end
1340  *      @mem_start:     Shared memory start
1341  *      @base_addr:     Device I/O address
1342  *      @irq:           Device IRQ number
1343  *
1344  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1345  *
1346  *      @state:         Generic network queuing layer state, see netdev_state_t
1347  *      @dev_list:      The global list of network devices
1348  *      @napi_list:     List entry, that is used for polling napi devices
1349  *      @unreg_list:    List entry, that is used, when we are unregistering the
1350  *                      device, see the function unregister_netdev
1351  *      @close_list:    List entry, that is used, when we are closing the device
1352  *
1353  *      @adj_list:      Directly linked devices, like slaves for bonding
1354  *      @all_adj_list:  All linked devices, *including* neighbours
1355  *      @features:      Currently active device features
1356  *      @hw_features:   User-changeable features
1357  *
1358  *      @wanted_features:       User-requested features
1359  *      @vlan_features:         Mask of features inheritable by VLAN devices
1360  *
1361  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1362  *                              This field indicates what encapsulation
1363  *                              offloads the hardware is capable of doing,
1364  *                              and drivers will need to set them appropriately.
1365  *
1366  *      @mpls_features: Mask of features inheritable by MPLS
1367  *
1368  *      @ifindex:       interface index
1369  *      @group:         The group, that the device belongs to
1370  *
1371  *      @stats:         Statistics struct, which was left as a legacy, use
1372  *                      rtnl_link_stats64 instead
1373  *
1374  *      @rx_dropped:    Dropped packets by core network,
1375  *                      do not use this in drivers
1376  *      @tx_dropped:    Dropped packets by core network,
1377  *                      do not use this in drivers
1378  *
1379  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1380  *                              instead of ioctl,
1381  *                              see <net/iw_handler.h> for details.
1382  *      @wireless_data: Instance data managed by the core of wireless extensions
1383  *
1384  *      @netdev_ops:    Includes several pointers to callbacks,
1385  *                      if one wants to override the ndo_*() functions
1386  *      @ethtool_ops:   Management operations
1387  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1388  *                      of Layer 2 headers.
1389  *
1390  *      @flags:         Interface flags (a la BSD)
1391  *      @priv_flags:    Like 'flags' but invisible to userspace,
1392  *                      see if.h for the definitions
1393  *      @gflags:        Global flags ( kept as legacy )
1394  *      @padded:        How much padding added by alloc_netdev()
1395  *      @operstate:     RFC2863 operstate
1396  *      @link_mode:     Mapping policy to operstate
1397  *      @if_port:       Selectable AUI, TP, ...
1398  *      @dma:           DMA channel
1399  *      @mtu:           Interface MTU value
1400  *      @type:          Interface hardware type
1401  *      @hard_header_len: Hardware header length, which means that this is the
1402  *                        minimum size of a packet.
1403  *
1404  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1405  *                        cases can this be guaranteed
1406  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1407  *                        cases can this be guaranteed. Some cases also use
1408  *                        LL_MAX_HEADER instead to allocate the skb
1409  *
1410  *      interface address info:
1411  *
1412  *      @perm_addr:             Permanent hw address
1413  *      @addr_assign_type:      Hw address assignment type
1414  *      @addr_len:              Hardware address length
1415  *      @neigh_priv_len;        Used in neigh_alloc(),
1416  *                              initialized only in atm/clip.c
1417  *      @dev_id:                Used to differentiate devices that share
1418  *                              the same link layer address
1419  *      @dev_port:              Used to differentiate devices that share
1420  *                              the same function
1421  *      @addr_list_lock:        XXX: need comments on this one
1422  *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1423  *                              has been enabled due to the need to listen to
1424  *                              additional unicast addresses in a device that
1425  *                              does not implement ndo_set_rx_mode()
1426  *      @uc:                    unicast mac addresses
1427  *      @mc:                    multicast mac addresses
1428  *      @dev_addrs:             list of device hw addresses
1429  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1430  *      @promiscuity:           Number of times, the NIC is told to work in
1431  *                              Promiscuous mode, if it becomes 0 the NIC will
1432  *                              exit from working in Promiscuous mode
1433  *      @allmulti:              Counter, enables or disables allmulticast mode
1434  *
1435  *      @vlan_info:     VLAN info
1436  *      @dsa_ptr:       dsa specific data
1437  *      @tipc_ptr:      TIPC specific data
1438  *      @atalk_ptr:     AppleTalk link
1439  *      @ip_ptr:        IPv4 specific data
1440  *      @dn_ptr:        DECnet specific data
1441  *      @ip6_ptr:       IPv6 specific data
1442  *      @ax25_ptr:      AX.25 specific data
1443  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1444  *
1445  *      @last_rx:       Time of last Rx
1446  *      @dev_addr:      Hw address (before bcast,
1447  *                      because most packets are unicast)
1448  *
1449  *      @_rx:                   Array of RX queues
1450  *      @num_rx_queues:         Number of RX queues
1451  *                              allocated at register_netdev() time
1452  *      @real_num_rx_queues:    Number of RX queues currently active in device
1453  *
1454  *      @rx_handler:            handler for received packets
1455  *      @rx_handler_data:       XXX: need comments on this one
1456  *      @ingress_queue:         XXX: need comments on this one
1457  *      @broadcast:             hw bcast address
1458  *
1459  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1460  *                      indexed by RX queue number. Assigned by driver.
1461  *                      This must only be set if the ndo_rx_flow_steer
1462  *                      operation is defined
1463  *      @index_hlist:           Device index hash chain
1464  *
1465  *      @_tx:                   Array of TX queues
1466  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1467  *      @real_num_tx_queues:    Number of TX queues currently active in device
1468  *      @qdisc:                 Root qdisc from userspace point of view
1469  *      @tx_queue_len:          Max frames per queue allowed
1470  *      @tx_global_lock:        XXX: need comments on this one
1471  *
1472  *      @xps_maps:      XXX: need comments on this one
1473  *
1474  *      @offload_fwd_mark:      Offload device fwding mark
1475  *
1476  *      @trans_start:           Time (in jiffies) of last Tx
1477  *      @watchdog_timeo:        Represents the timeout that is used by
1478  *                              the watchdog ( see dev_watchdog() )
1479  *      @watchdog_timer:        List of timers
1480  *
1481  *      @pcpu_refcnt:           Number of references to this device
1482  *      @todo_list:             Delayed register/unregister
1483  *      @link_watch_list:       XXX: need comments on this one
1484  *
1485  *      @reg_state:             Register/unregister state machine
1486  *      @dismantle:             Device is going to be freed
1487  *      @rtnl_link_state:       This enum represents the phases of creating
1488  *                              a new link
1489  *
1490  *      @destructor:            Called from unregister,
1491  *                              can be used to call free_netdev
1492  *      @npinfo:                XXX: need comments on this one
1493  *      @nd_net:                Network namespace this network device is inside
1494  *
1495  *      @ml_priv:       Mid-layer private
1496  *      @lstats:        Loopback statistics
1497  *      @tstats:        Tunnel statistics
1498  *      @dstats:        Dummy statistics
1499  *      @vstats:        Virtual ethernet statistics
1500  *
1501  *      @garp_port:     GARP
1502  *      @mrp_port:      MRP
1503  *
1504  *      @dev:           Class/net/name entry
1505  *      @sysfs_groups:  Space for optional device, statistics and wireless
1506  *                      sysfs groups
1507  *
1508  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1509  *      @rtnl_link_ops: Rtnl_link_ops
1510  *
1511  *      @gso_max_size:  Maximum size of generic segmentation offload
1512  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1513  *                      NIC for GSO
1514  *      @gso_min_segs:  Minimum number of segments that can be passed to the
1515  *                      NIC for GSO
1516  *
1517  *      @dcbnl_ops:     Data Center Bridging netlink ops
1518  *      @num_tc:        Number of traffic classes in the net device
1519  *      @tc_to_txq:     XXX: need comments on this one
1520  *      @prio_tc_map    XXX: need comments on this one
1521  *
1522  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1523  *
1524  *      @priomap:       XXX: need comments on this one
1525  *      @phydev:        Physical device may attach itself
1526  *                      for hardware timestamping
1527  *
1528  *      @qdisc_tx_busylock:     XXX: need comments on this one
1529  *
1530  *      @proto_down:    protocol port state information can be sent to the
1531  *                      switch driver and used to set the phys state of the
1532  *                      switch port.
1533  *
1534  *      FIXME: cleanup struct net_device such that network protocol info
1535  *      moves out.
1536  */
1537 
1538 struct net_device {
1539         char                    name[IFNAMSIZ];
1540         struct hlist_node       name_hlist;
1541         char                    *ifalias;
1542         /*
1543          *      I/O specific fields
1544          *      FIXME: Merge these and struct ifmap into one
1545          */
1546         unsigned long           mem_end;
1547         unsigned long           mem_start;
1548         unsigned long           base_addr;
1549         int                     irq;
1550 
1551         atomic_t                carrier_changes;
1552 
1553         /*
1554          *      Some hardware also needs these fields (state,dev_list,
1555          *      napi_list,unreg_list,close_list) but they are not
1556          *      part of the usual set specified in Space.c.
1557          */
1558 
1559         unsigned long           state;
1560 
1561         struct list_head        dev_list;
1562         struct list_head        napi_list;
1563         struct list_head        unreg_list;
1564         struct list_head        close_list;
1565         struct list_head        ptype_all;
1566         struct list_head        ptype_specific;
1567 
1568         struct {
1569                 struct list_head upper;
1570                 struct list_head lower;
1571         } adj_list;
1572 
1573         struct {
1574                 struct list_head upper;
1575                 struct list_head lower;
1576         } all_adj_list;
1577 
1578         netdev_features_t       features;
1579         netdev_features_t       hw_features;
1580         netdev_features_t       wanted_features;
1581         netdev_features_t       vlan_features;
1582         netdev_features_t       hw_enc_features;
1583         netdev_features_t       mpls_features;
1584 
1585         int                     ifindex;
1586         int                     group;
1587 
1588         struct net_device_stats stats;
1589 
1590         atomic_long_t           rx_dropped;
1591         atomic_long_t           tx_dropped;
1592 
1593 #ifdef CONFIG_WIRELESS_EXT
1594         const struct iw_handler_def *   wireless_handlers;
1595         struct iw_public_data * wireless_data;
1596 #endif
1597         const struct net_device_ops *netdev_ops;
1598         const struct ethtool_ops *ethtool_ops;
1599 #ifdef CONFIG_NET_SWITCHDEV
1600         const struct switchdev_ops *switchdev_ops;
1601 #endif
1602 #ifdef CONFIG_NET_L3_MASTER_DEV
1603         const struct l3mdev_ops *l3mdev_ops;
1604 #endif
1605 
1606         const struct header_ops *header_ops;
1607 
1608         unsigned int            flags;
1609         unsigned int            priv_flags;
1610 
1611         unsigned short          gflags;
1612         unsigned short          padded;
1613 
1614         unsigned char           operstate;
1615         unsigned char           link_mode;
1616 
1617         unsigned char           if_port;
1618         unsigned char           dma;
1619 
1620         unsigned int            mtu;
1621         unsigned short          type;
1622         unsigned short          hard_header_len;
1623 
1624         unsigned short          needed_headroom;
1625         unsigned short          needed_tailroom;
1626 
1627         /* Interface address info. */
1628         unsigned char           perm_addr[MAX_ADDR_LEN];
1629         unsigned char           addr_assign_type;
1630         unsigned char           addr_len;
1631         unsigned short          neigh_priv_len;
1632         unsigned short          dev_id;
1633         unsigned short          dev_port;
1634         spinlock_t              addr_list_lock;
1635         unsigned char           name_assign_type;
1636         bool                    uc_promisc;
1637         struct netdev_hw_addr_list      uc;
1638         struct netdev_hw_addr_list      mc;
1639         struct netdev_hw_addr_list      dev_addrs;
1640 
1641 #ifdef CONFIG_SYSFS
1642         struct kset             *queues_kset;
1643 #endif
1644         unsigned int            promiscuity;
1645         unsigned int            allmulti;
1646 
1647 
1648         /* Protocol specific pointers */
1649 
1650 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1651         struct vlan_info __rcu  *vlan_info;
1652 #endif
1653 #if IS_ENABLED(CONFIG_NET_DSA)
1654         struct dsa_switch_tree  *dsa_ptr;
1655 #endif
1656 #if IS_ENABLED(CONFIG_TIPC)
1657         struct tipc_bearer __rcu *tipc_ptr;
1658 #endif
1659         void                    *atalk_ptr;
1660         struct in_device __rcu  *ip_ptr;
1661         struct dn_dev __rcu     *dn_ptr;
1662         struct inet6_dev __rcu  *ip6_ptr;
1663         void                    *ax25_ptr;
1664         struct wireless_dev     *ieee80211_ptr;
1665         struct wpan_dev         *ieee802154_ptr;
1666 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1667         struct mpls_dev __rcu   *mpls_ptr;
1668 #endif
1669 
1670 /*
1671  * Cache lines mostly used on receive path (including eth_type_trans())
1672  */
1673         unsigned long           last_rx;
1674 
1675         /* Interface address info used in eth_type_trans() */
1676         unsigned char           *dev_addr;
1677 
1678 
1679 #ifdef CONFIG_SYSFS
1680         struct netdev_rx_queue  *_rx;
1681 
1682         unsigned int            num_rx_queues;
1683         unsigned int            real_num_rx_queues;
1684 
1685 #endif
1686 
1687         unsigned long           gro_flush_timeout;
1688         rx_handler_func_t __rcu *rx_handler;
1689         void __rcu              *rx_handler_data;
1690 
1691 #ifdef CONFIG_NET_CLS_ACT
1692         struct tcf_proto __rcu  *ingress_cl_list;
1693 #endif
1694         struct netdev_queue __rcu *ingress_queue;
1695 #ifdef CONFIG_NETFILTER_INGRESS
1696         struct list_head        nf_hooks_ingress;
1697 #endif
1698 
1699         unsigned char           broadcast[MAX_ADDR_LEN];
1700 #ifdef CONFIG_RFS_ACCEL
1701         struct cpu_rmap         *rx_cpu_rmap;
1702 #endif
1703         struct hlist_node       index_hlist;
1704 
1705 /*
1706  * Cache lines mostly used on transmit path
1707  */
1708         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1709         unsigned int            num_tx_queues;
1710         unsigned int            real_num_tx_queues;
1711         struct Qdisc            *qdisc;
1712         unsigned long           tx_queue_len;
1713         spinlock_t              tx_global_lock;
1714         int                     watchdog_timeo;
1715 
1716 #ifdef CONFIG_XPS
1717         struct xps_dev_maps __rcu *xps_maps;
1718 #endif
1719 
1720 #ifdef CONFIG_NET_SWITCHDEV
1721         u32                     offload_fwd_mark;
1722 #endif
1723 
1724         /* These may be needed for future network-power-down code. */
1725 
1726         /*
1727          * trans_start here is expensive for high speed devices on SMP,
1728          * please use netdev_queue->trans_start instead.
1729          */
1730         unsigned long           trans_start;
1731 
1732         struct timer_list       watchdog_timer;
1733 
1734         int __percpu            *pcpu_refcnt;
1735         struct list_head        todo_list;
1736 
1737         struct list_head        link_watch_list;
1738 
1739         enum { NETREG_UNINITIALIZED=0,
1740                NETREG_REGISTERED,       /* completed register_netdevice */
1741                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1742                NETREG_UNREGISTERED,     /* completed unregister todo */
1743                NETREG_RELEASED,         /* called free_netdev */
1744                NETREG_DUMMY,            /* dummy device for NAPI poll */
1745         } reg_state:8;
1746 
1747         bool dismantle;
1748 
1749         enum {
1750                 RTNL_LINK_INITIALIZED,
1751                 RTNL_LINK_INITIALIZING,
1752         } rtnl_link_state:16;
1753 
1754         void (*destructor)(struct net_device *dev);
1755 
1756 #ifdef CONFIG_NETPOLL
1757         struct netpoll_info __rcu       *npinfo;
1758 #endif
1759 
1760         possible_net_t                  nd_net;
1761 
1762         /* mid-layer private */
1763         union {
1764                 void                                    *ml_priv;
1765                 struct pcpu_lstats __percpu             *lstats;
1766                 struct pcpu_sw_netstats __percpu        *tstats;
1767                 struct pcpu_dstats __percpu             *dstats;
1768                 struct pcpu_vstats __percpu             *vstats;
1769         };
1770 
1771         struct garp_port __rcu  *garp_port;
1772         struct mrp_port __rcu   *mrp_port;
1773 
1774         struct device   dev;
1775         const struct attribute_group *sysfs_groups[4];
1776         const struct attribute_group *sysfs_rx_queue_group;
1777 
1778         const struct rtnl_link_ops *rtnl_link_ops;
1779 
1780         /* for setting kernel sock attribute on TCP connection setup */
1781 #define GSO_MAX_SIZE            65536
1782         unsigned int            gso_max_size;
1783 #define GSO_MAX_SEGS            65535
1784         u16                     gso_max_segs;
1785         u16                     gso_min_segs;
1786 #ifdef CONFIG_DCB
1787         const struct dcbnl_rtnl_ops *dcbnl_ops;
1788 #endif
1789         u8 num_tc;
1790         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1791         u8 prio_tc_map[TC_BITMASK + 1];
1792 
1793 #if IS_ENABLED(CONFIG_FCOE)
1794         unsigned int            fcoe_ddp_xid;
1795 #endif
1796 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1797         struct netprio_map __rcu *priomap;
1798 #endif
1799         struct phy_device *phydev;
1800         struct lock_class_key *qdisc_tx_busylock;
1801         bool proto_down;
1802 };
1803 #define to_net_dev(d) container_of(d, struct net_device, dev)
1804 
1805 #define NETDEV_ALIGN            32
1806 
1807 static inline
1808 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1809 {
1810         return dev->prio_tc_map[prio & TC_BITMASK];
1811 }
1812 
1813 static inline
1814 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1815 {
1816         if (tc >= dev->num_tc)
1817                 return -EINVAL;
1818 
1819         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1820         return 0;
1821 }
1822 
1823 static inline
1824 void netdev_reset_tc(struct net_device *dev)
1825 {
1826         dev->num_tc = 0;
1827         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1828         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1829 }
1830 
1831 static inline
1832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1833 {
1834         if (tc >= dev->num_tc)
1835                 return -EINVAL;
1836 
1837         dev->tc_to_txq[tc].count = count;
1838         dev->tc_to_txq[tc].offset = offset;
1839         return 0;
1840 }
1841 
1842 static inline
1843 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1844 {
1845         if (num_tc > TC_MAX_QUEUE)
1846                 return -EINVAL;
1847 
1848         dev->num_tc = num_tc;
1849         return 0;
1850 }
1851 
1852 static inline
1853 int netdev_get_num_tc(struct net_device *dev)
1854 {
1855         return dev->num_tc;
1856 }
1857 
1858 static inline
1859 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1860                                          unsigned int index)
1861 {
1862         return &dev->_tx[index];
1863 }
1864 
1865 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1866                                                     const struct sk_buff *skb)
1867 {
1868         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1869 }
1870 
1871 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1872                                             void (*f)(struct net_device *,
1873                                                       struct netdev_queue *,
1874                                                       void *),
1875                                             void *arg)
1876 {
1877         unsigned int i;
1878 
1879         for (i = 0; i < dev->num_tx_queues; i++)
1880                 f(dev, &dev->_tx[i], arg);
1881 }
1882 
1883 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1884                                     struct sk_buff *skb,
1885                                     void *accel_priv);
1886 
1887 /*
1888  * Net namespace inlines
1889  */
1890 static inline
1891 struct net *dev_net(const struct net_device *dev)
1892 {
1893         return read_pnet(&dev->nd_net);
1894 }
1895 
1896 static inline
1897 void dev_net_set(struct net_device *dev, struct net *net)
1898 {
1899         write_pnet(&dev->nd_net, net);
1900 }
1901 
1902 static inline bool netdev_uses_dsa(struct net_device *dev)
1903 {
1904 #if IS_ENABLED(CONFIG_NET_DSA)
1905         if (dev->dsa_ptr != NULL)
1906                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1907 #endif
1908         return false;
1909 }
1910 
1911 /**
1912  *      netdev_priv - access network device private data
1913  *      @dev: network device
1914  *
1915  * Get network device private data
1916  */
1917 static inline void *netdev_priv(const struct net_device *dev)
1918 {
1919         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1920 }
1921 
1922 /* Set the sysfs physical device reference for the network logical device
1923  * if set prior to registration will cause a symlink during initialization.
1924  */
1925 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1926 
1927 /* Set the sysfs device type for the network logical device to allow
1928  * fine-grained identification of different network device types. For
1929  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1930  */
1931 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1932 
1933 /* Default NAPI poll() weight
1934  * Device drivers are strongly advised to not use bigger value
1935  */
1936 #define NAPI_POLL_WEIGHT 64
1937 
1938 /**
1939  *      netif_napi_add - initialize a napi context
1940  *      @dev:  network device
1941  *      @napi: napi context
1942  *      @poll: polling function
1943  *      @weight: default weight
1944  *
1945  * netif_napi_add() must be used to initialize a napi context prior to calling
1946  * *any* of the other napi related functions.
1947  */
1948 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1949                     int (*poll)(struct napi_struct *, int), int weight);
1950 
1951 /**
1952  *  netif_napi_del - remove a napi context
1953  *  @napi: napi context
1954  *
1955  *  netif_napi_del() removes a napi context from the network device napi list
1956  */
1957 void netif_napi_del(struct napi_struct *napi);
1958 
1959 struct napi_gro_cb {
1960         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1961         void *frag0;
1962 
1963         /* Length of frag0. */
1964         unsigned int frag0_len;
1965 
1966         /* This indicates where we are processing relative to skb->data. */
1967         int data_offset;
1968 
1969         /* This is non-zero if the packet cannot be merged with the new skb. */
1970         u16     flush;
1971 
1972         /* Save the IP ID here and check when we get to the transport layer */
1973         u16     flush_id;
1974 
1975         /* Number of segments aggregated. */
1976         u16     count;
1977 
1978         /* Start offset for remote checksum offload */
1979         u16     gro_remcsum_start;
1980 
1981         /* jiffies when first packet was created/queued */
1982         unsigned long age;
1983 
1984         /* Used in ipv6_gro_receive() and foo-over-udp */
1985         u16     proto;
1986 
1987         /* This is non-zero if the packet may be of the same flow. */
1988         u8      same_flow:1;
1989 
1990         /* Used in udp_gro_receive */
1991         u8      udp_mark:1;
1992 
1993         /* GRO checksum is valid */
1994         u8      csum_valid:1;
1995 
1996         /* Number of checksums via CHECKSUM_UNNECESSARY */
1997         u8      csum_cnt:3;
1998 
1999         /* Free the skb? */
2000         u8      free:2;
2001 #define NAPI_GRO_FREE             1
2002 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2003 
2004         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2005         u8      is_ipv6:1;
2006 
2007         /* 7 bit hole */
2008 
2009         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2010         __wsum  csum;
2011 
2012         /* used in skb_gro_receive() slow path */
2013         struct sk_buff *last;
2014 };
2015 
2016 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2017 
2018 struct packet_type {
2019         __be16                  type;   /* This is really htons(ether_type). */
2020         struct net_device       *dev;   /* NULL is wildcarded here           */
2021         int                     (*func) (struct sk_buff *,
2022                                          struct net_device *,
2023                                          struct packet_type *,
2024                                          struct net_device *);
2025         bool                    (*id_match)(struct packet_type *ptype,
2026                                             struct sock *sk);
2027         void                    *af_packet_priv;
2028         struct list_head        list;
2029 };
2030 
2031 struct offload_callbacks {
2032         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2033                                                 netdev_features_t features);
2034         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2035                                                  struct sk_buff *skb);
2036         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2037 };
2038 
2039 struct packet_offload {
2040         __be16                   type;  /* This is really htons(ether_type). */
2041         u16                      priority;
2042         struct offload_callbacks callbacks;
2043         struct list_head         list;
2044 };
2045 
2046 struct udp_offload;
2047 
2048 struct udp_offload_callbacks {
2049         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2050                                                  struct sk_buff *skb,
2051                                                  struct udp_offload *uoff);
2052         int                     (*gro_complete)(struct sk_buff *skb,
2053                                                 int nhoff,
2054                                                 struct udp_offload *uoff);
2055 };
2056 
2057 struct udp_offload {
2058         __be16                   port;
2059         u8                       ipproto;
2060         struct udp_offload_callbacks callbacks;
2061 };
2062 
2063 /* often modified stats are per cpu, other are shared (netdev->stats) */
2064 struct pcpu_sw_netstats {
2065         u64     rx_packets;
2066         u64     rx_bytes;
2067         u64     tx_packets;
2068         u64     tx_bytes;
2069         struct u64_stats_sync   syncp;
2070 };
2071 
2072 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2073 ({                                                                      \
2074         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2075         if (pcpu_stats) {                                               \
2076                 int __cpu;                                              \
2077                 for_each_possible_cpu(__cpu) {                          \
2078                         typeof(type) *stat;                             \
2079                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2080                         u64_stats_init(&stat->syncp);                   \
2081                 }                                                       \
2082         }                                                               \
2083         pcpu_stats;                                                     \
2084 })
2085 
2086 #define netdev_alloc_pcpu_stats(type)                                   \
2087         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2088 
2089 #include <linux/notifier.h>
2090 
2091 /* netdevice notifier chain. Please remember to update the rtnetlink
2092  * notification exclusion list in rtnetlink_event() when adding new
2093  * types.
2094  */
2095 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2096 #define NETDEV_DOWN     0x0002
2097 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2098                                    detected a hardware crash and restarted
2099                                    - we can use this eg to kick tcp sessions
2100                                    once done */
2101 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2102 #define NETDEV_REGISTER 0x0005
2103 #define NETDEV_UNREGISTER       0x0006
2104 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2105 #define NETDEV_CHANGEADDR       0x0008
2106 #define NETDEV_GOING_DOWN       0x0009
2107 #define NETDEV_CHANGENAME       0x000A
2108 #define NETDEV_FEAT_CHANGE      0x000B
2109 #define NETDEV_BONDING_FAILOVER 0x000C
2110 #define NETDEV_PRE_UP           0x000D
2111 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2112 #define NETDEV_POST_TYPE_CHANGE 0x000F
2113 #define NETDEV_POST_INIT        0x0010
2114 #define NETDEV_UNREGISTER_FINAL 0x0011
2115 #define NETDEV_RELEASE          0x0012
2116 #define NETDEV_NOTIFY_PEERS     0x0013
2117 #define NETDEV_JOIN             0x0014
2118 #define NETDEV_CHANGEUPPER      0x0015
2119 #define NETDEV_RESEND_IGMP      0x0016
2120 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2121 #define NETDEV_CHANGEINFODATA   0x0018
2122 #define NETDEV_BONDING_INFO     0x0019
2123 #define NETDEV_PRECHANGEUPPER   0x001A
2124 
2125 int register_netdevice_notifier(struct notifier_block *nb);
2126 int unregister_netdevice_notifier(struct notifier_block *nb);
2127 
2128 struct netdev_notifier_info {
2129         struct net_device *dev;
2130 };
2131 
2132 struct netdev_notifier_change_info {
2133         struct netdev_notifier_info info; /* must be first */
2134         unsigned int flags_changed;
2135 };
2136 
2137 struct netdev_notifier_changeupper_info {
2138         struct netdev_notifier_info info; /* must be first */
2139         struct net_device *upper_dev; /* new upper dev */
2140         bool master; /* is upper dev master */
2141         bool linking; /* is the nofication for link or unlink */
2142 };
2143 
2144 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2145                                              struct net_device *dev)
2146 {
2147         info->dev = dev;
2148 }
2149 
2150 static inline struct net_device *
2151 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2152 {
2153         return info->dev;
2154 }
2155 
2156 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2157 
2158 
2159 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2160 
2161 #define for_each_netdev(net, d)         \
2162                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2163 #define for_each_netdev_reverse(net, d) \
2164                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2165 #define for_each_netdev_rcu(net, d)             \
2166                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2167 #define for_each_netdev_safe(net, d, n) \
2168                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2169 #define for_each_netdev_continue(net, d)                \
2170                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2171 #define for_each_netdev_continue_rcu(net, d)            \
2172         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2173 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2174                 for_each_netdev_rcu(&init_net, slave)   \
2175                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2176 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2177 
2178 static inline struct net_device *next_net_device(struct net_device *dev)
2179 {
2180         struct list_head *lh;
2181         struct net *net;
2182 
2183         net = dev_net(dev);
2184         lh = dev->dev_list.next;
2185         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2186 }
2187 
2188 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2189 {
2190         struct list_head *lh;
2191         struct net *net;
2192 
2193         net = dev_net(dev);
2194         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2195         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2196 }
2197 
2198 static inline struct net_device *first_net_device(struct net *net)
2199 {
2200         return list_empty(&net->dev_base_head) ? NULL :
2201                 net_device_entry(net->dev_base_head.next);
2202 }
2203 
2204 static inline struct net_device *first_net_device_rcu(struct net *net)
2205 {
2206         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2207 
2208         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2209 }
2210 
2211 int netdev_boot_setup_check(struct net_device *dev);
2212 unsigned long netdev_boot_base(const char *prefix, int unit);
2213 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2214                                        const char *hwaddr);
2215 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2216 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2217 void dev_add_pack(struct packet_type *pt);
2218 void dev_remove_pack(struct packet_type *pt);
2219 void __dev_remove_pack(struct packet_type *pt);
2220 void dev_add_offload(struct packet_offload *po);
2221 void dev_remove_offload(struct packet_offload *po);
2222 
2223 int dev_get_iflink(const struct net_device *dev);
2224 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2225 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2226                                       unsigned short mask);
2227 struct net_device *dev_get_by_name(struct net *net, const char *name);
2228 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2229 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2230 int dev_alloc_name(struct net_device *dev, const char *name);
2231 int dev_open(struct net_device *dev);
2232 int dev_close(struct net_device *dev);
2233 int dev_close_many(struct list_head *head, bool unlink);
2234 void dev_disable_lro(struct net_device *dev);
2235 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2236 int dev_queue_xmit(struct sk_buff *skb);
2237 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2238 int register_netdevice(struct net_device *dev);
2239 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2240 void unregister_netdevice_many(struct list_head *head);
2241 static inline void unregister_netdevice(struct net_device *dev)
2242 {
2243         unregister_netdevice_queue(dev, NULL);
2244 }
2245 
2246 int netdev_refcnt_read(const struct net_device *dev);
2247 void free_netdev(struct net_device *dev);
2248 void netdev_freemem(struct net_device *dev);
2249 void synchronize_net(void);
2250 int init_dummy_netdev(struct net_device *dev);
2251 
2252 DECLARE_PER_CPU(int, xmit_recursion);
2253 static inline int dev_recursion_level(void)
2254 {
2255         return this_cpu_read(xmit_recursion);
2256 }
2257 
2258 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2259 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2260 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2261 int netdev_get_name(struct net *net, char *name, int ifindex);
2262 int dev_restart(struct net_device *dev);
2263 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2264 
2265 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2266 {
2267         return NAPI_GRO_CB(skb)->data_offset;
2268 }
2269 
2270 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2271 {
2272         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2273 }
2274 
2275 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2276 {
2277         NAPI_GRO_CB(skb)->data_offset += len;
2278 }
2279 
2280 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2281                                         unsigned int offset)
2282 {
2283         return NAPI_GRO_CB(skb)->frag0 + offset;
2284 }
2285 
2286 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2287 {
2288         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2289 }
2290 
2291 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2292                                         unsigned int offset)
2293 {
2294         if (!pskb_may_pull(skb, hlen))
2295                 return NULL;
2296 
2297         NAPI_GRO_CB(skb)->frag0 = NULL;
2298         NAPI_GRO_CB(skb)->frag0_len = 0;
2299         return skb->data + offset;
2300 }
2301 
2302 static inline void *skb_gro_network_header(struct sk_buff *skb)
2303 {
2304         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2305                skb_network_offset(skb);
2306 }
2307 
2308 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2309                                         const void *start, unsigned int len)
2310 {
2311         if (NAPI_GRO_CB(skb)->csum_valid)
2312                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2313                                                   csum_partial(start, len, 0));
2314 }
2315 
2316 /* GRO checksum functions. These are logical equivalents of the normal
2317  * checksum functions (in skbuff.h) except that they operate on the GRO
2318  * offsets and fields in sk_buff.
2319  */
2320 
2321 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2322 
2323 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2324 {
2325         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2326 }
2327 
2328 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2329                                                       bool zero_okay,
2330                                                       __sum16 check)
2331 {
2332         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2333                 skb_checksum_start_offset(skb) <
2334                  skb_gro_offset(skb)) &&
2335                 !skb_at_gro_remcsum_start(skb) &&
2336                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337                 (!zero_okay || check));
2338 }
2339 
2340 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2341                                                            __wsum psum)
2342 {
2343         if (NAPI_GRO_CB(skb)->csum_valid &&
2344             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2345                 return 0;
2346 
2347         NAPI_GRO_CB(skb)->csum = psum;
2348 
2349         return __skb_gro_checksum_complete(skb);
2350 }
2351 
2352 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2353 {
2354         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2355                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2356                 NAPI_GRO_CB(skb)->csum_cnt--;
2357         } else {
2358                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2359                  * verified a new top level checksum or an encapsulated one
2360                  * during GRO. This saves work if we fallback to normal path.
2361                  */
2362                 __skb_incr_checksum_unnecessary(skb);
2363         }
2364 }
2365 
2366 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2367                                     compute_pseudo)                     \
2368 ({                                                                      \
2369         __sum16 __ret = 0;                                              \
2370         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2371                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2372                                 compute_pseudo(skb, proto));            \
2373         if (__ret)                                                      \
2374                 __skb_mark_checksum_bad(skb);                           \
2375         else                                                            \
2376                 skb_gro_incr_csum_unnecessary(skb);                     \
2377         __ret;                                                          \
2378 })
2379 
2380 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2381         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2382 
2383 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2384                                              compute_pseudo)            \
2385         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2386 
2387 #define skb_gro_checksum_simple_validate(skb)                           \
2388         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2389 
2390 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2391 {
2392         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2393                 !NAPI_GRO_CB(skb)->csum_valid);
2394 }
2395 
2396 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2397                                               __sum16 check, __wsum pseudo)
2398 {
2399         NAPI_GRO_CB(skb)->csum = ~pseudo;
2400         NAPI_GRO_CB(skb)->csum_valid = 1;
2401 }
2402 
2403 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2404 do {                                                                    \
2405         if (__skb_gro_checksum_convert_check(skb))                      \
2406                 __skb_gro_checksum_convert(skb, check,                  \
2407                                            compute_pseudo(skb, proto)); \
2408 } while (0)
2409 
2410 struct gro_remcsum {
2411         int offset;
2412         __wsum delta;
2413 };
2414 
2415 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2416 {
2417         grc->offset = 0;
2418         grc->delta = 0;
2419 }
2420 
2421 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2422                                             unsigned int off, size_t hdrlen,
2423                                             int start, int offset,
2424                                             struct gro_remcsum *grc,
2425                                             bool nopartial)
2426 {
2427         __wsum delta;
2428         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2429 
2430         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2431 
2432         if (!nopartial) {
2433                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2434                 return ptr;
2435         }
2436 
2437         ptr = skb_gro_header_fast(skb, off);
2438         if (skb_gro_header_hard(skb, off + plen)) {
2439                 ptr = skb_gro_header_slow(skb, off + plen, off);
2440                 if (!ptr)
2441                         return NULL;
2442         }
2443 
2444         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2445                                start, offset);
2446 
2447         /* Adjust skb->csum since we changed the packet */
2448         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2449 
2450         grc->offset = off + hdrlen + offset;
2451         grc->delta = delta;
2452 
2453         return ptr;
2454 }
2455 
2456 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2457                                            struct gro_remcsum *grc)
2458 {
2459         void *ptr;
2460         size_t plen = grc->offset + sizeof(u16);
2461 
2462         if (!grc->delta)
2463                 return;
2464 
2465         ptr = skb_gro_header_fast(skb, grc->offset);
2466         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2467                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2468                 if (!ptr)
2469                         return;
2470         }
2471 
2472         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2473 }
2474 
2475 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2476                                   unsigned short type,
2477                                   const void *daddr, const void *saddr,
2478                                   unsigned int len)
2479 {
2480         if (!dev->header_ops || !dev->header_ops->create)
2481                 return 0;
2482 
2483         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2484 }
2485 
2486 static inline int dev_parse_header(const struct sk_buff *skb,
2487                                    unsigned char *haddr)
2488 {
2489         const struct net_device *dev = skb->dev;
2490 
2491         if (!dev->header_ops || !dev->header_ops->parse)
2492                 return 0;
2493         return dev->header_ops->parse(skb, haddr);
2494 }
2495 
2496 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2497 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2498 static inline int unregister_gifconf(unsigned int family)
2499 {
2500         return register_gifconf(family, NULL);
2501 }
2502 
2503 #ifdef CONFIG_NET_FLOW_LIMIT
2504 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2505 struct sd_flow_limit {
2506         u64                     count;
2507         unsigned int            num_buckets;
2508         unsigned int            history_head;
2509         u16                     history[FLOW_LIMIT_HISTORY];
2510         u8                      buckets[];
2511 };
2512 
2513 extern int netdev_flow_limit_table_len;
2514 #endif /* CONFIG_NET_FLOW_LIMIT */
2515 
2516 /*
2517  * Incoming packets are placed on per-cpu queues
2518  */
2519 struct softnet_data {
2520         struct list_head        poll_list;
2521         struct sk_buff_head     process_queue;
2522 
2523         /* stats */
2524         unsigned int            processed;
2525         unsigned int            time_squeeze;
2526         unsigned int            cpu_collision;
2527         unsigned int            received_rps;
2528 #ifdef CONFIG_RPS
2529         struct softnet_data     *rps_ipi_list;
2530 #endif
2531 #ifdef CONFIG_NET_FLOW_LIMIT
2532         struct sd_flow_limit __rcu *flow_limit;
2533 #endif
2534         struct Qdisc            *output_queue;
2535         struct Qdisc            **output_queue_tailp;
2536         struct sk_buff          *completion_queue;
2537 
2538 #ifdef CONFIG_RPS
2539         /* Elements below can be accessed between CPUs for RPS */
2540         struct call_single_data csd ____cacheline_aligned_in_smp;
2541         struct softnet_data     *rps_ipi_next;
2542         unsigned int            cpu;
2543         unsigned int            input_queue_head;
2544         unsigned int            input_queue_tail;
2545 #endif
2546         unsigned int            dropped;
2547         struct sk_buff_head     input_pkt_queue;
2548         struct napi_struct      backlog;
2549 
2550 };
2551 
2552 static inline void input_queue_head_incr(struct softnet_data *sd)
2553 {
2554 #ifdef CONFIG_RPS
2555         sd->input_queue_head++;
2556 #endif
2557 }
2558 
2559 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2560                                               unsigned int *qtail)
2561 {
2562 #ifdef CONFIG_RPS
2563         *qtail = ++sd->input_queue_tail;
2564 #endif
2565 }
2566 
2567 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2568 
2569 void __netif_schedule(struct Qdisc *q);
2570 void netif_schedule_queue(struct netdev_queue *txq);
2571 
2572 static inline void netif_tx_schedule_all(struct net_device *dev)
2573 {
2574         unsigned int i;
2575 
2576         for (i = 0; i < dev->num_tx_queues; i++)
2577                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2578 }
2579 
2580 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2581 {
2582         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2583 }
2584 
2585 /**
2586  *      netif_start_queue - allow transmit
2587  *      @dev: network device
2588  *
2589  *      Allow upper layers to call the device hard_start_xmit routine.
2590  */
2591 static inline void netif_start_queue(struct net_device *dev)
2592 {
2593         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2594 }
2595 
2596 static inline void netif_tx_start_all_queues(struct net_device *dev)
2597 {
2598         unsigned int i;
2599 
2600         for (i = 0; i < dev->num_tx_queues; i++) {
2601                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2602                 netif_tx_start_queue(txq);
2603         }
2604 }
2605 
2606 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2607 
2608 /**
2609  *      netif_wake_queue - restart transmit
2610  *      @dev: network device
2611  *
2612  *      Allow upper layers to call the device hard_start_xmit routine.
2613  *      Used for flow control when transmit resources are available.
2614  */
2615 static inline void netif_wake_queue(struct net_device *dev)
2616 {
2617         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2618 }
2619 
2620 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2621 {
2622         unsigned int i;
2623 
2624         for (i = 0; i < dev->num_tx_queues; i++) {
2625                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2626                 netif_tx_wake_queue(txq);
2627         }
2628 }
2629 
2630 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2631 {
2632         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2633 }
2634 
2635 /**
2636  *      netif_stop_queue - stop transmitted packets
2637  *      @dev: network device
2638  *
2639  *      Stop upper layers calling the device hard_start_xmit routine.
2640  *      Used for flow control when transmit resources are unavailable.
2641  */
2642 static inline void netif_stop_queue(struct net_device *dev)
2643 {
2644         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2645 }
2646 
2647 void netif_tx_stop_all_queues(struct net_device *dev);
2648 
2649 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2650 {
2651         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2652 }
2653 
2654 /**
2655  *      netif_queue_stopped - test if transmit queue is flowblocked
2656  *      @dev: network device
2657  *
2658  *      Test if transmit queue on device is currently unable to send.
2659  */
2660 static inline bool netif_queue_stopped(const struct net_device *dev)
2661 {
2662         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2663 }
2664 
2665 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2666 {
2667         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2668 }
2669 
2670 static inline bool
2671 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2672 {
2673         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2674 }
2675 
2676 static inline bool
2677 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2678 {
2679         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2680 }
2681 
2682 /**
2683  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2684  *      @dev_queue: pointer to transmit queue
2685  *
2686  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2687  * to give appropriate hint to the cpu.
2688  */
2689 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2690 {
2691 #ifdef CONFIG_BQL
2692         prefetchw(&dev_queue->dql.num_queued);
2693 #endif
2694 }
2695 
2696 /**
2697  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2698  *      @dev_queue: pointer to transmit queue
2699  *
2700  * BQL enabled drivers might use this helper in their TX completion path,
2701  * to give appropriate hint to the cpu.
2702  */
2703 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2704 {
2705 #ifdef CONFIG_BQL
2706         prefetchw(&dev_queue->dql.limit);
2707 #endif
2708 }
2709 
2710 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2711                                         unsigned int bytes)
2712 {
2713 #ifdef CONFIG_BQL
2714         dql_queued(&dev_queue->dql, bytes);
2715 
2716         if (likely(dql_avail(&dev_queue->dql) >= 0))
2717                 return;
2718 
2719         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2720 
2721         /*
2722          * The XOFF flag must be set before checking the dql_avail below,
2723          * because in netdev_tx_completed_queue we update the dql_completed
2724          * before checking the XOFF flag.
2725          */
2726         smp_mb();
2727 
2728         /* check again in case another CPU has just made room avail */
2729         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2730                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2731 #endif
2732 }
2733 
2734 /**
2735  *      netdev_sent_queue - report the number of bytes queued to hardware
2736  *      @dev: network device
2737  *      @bytes: number of bytes queued to the hardware device queue
2738  *
2739  *      Report the number of bytes queued for sending/completion to the network
2740  *      device hardware queue. @bytes should be a good approximation and should
2741  *      exactly match netdev_completed_queue() @bytes
2742  */
2743 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2744 {
2745         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2746 }
2747 
2748 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2749                                              unsigned int pkts, unsigned int bytes)
2750 {
2751 #ifdef CONFIG_BQL
2752         if (unlikely(!bytes))
2753                 return;
2754 
2755         dql_completed(&dev_queue->dql, bytes);
2756 
2757         /*
2758          * Without the memory barrier there is a small possiblity that
2759          * netdev_tx_sent_queue will miss the update and cause the queue to
2760          * be stopped forever
2761          */
2762         smp_mb();
2763 
2764         if (dql_avail(&dev_queue->dql) < 0)
2765                 return;
2766 
2767         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2768                 netif_schedule_queue(dev_queue);
2769 #endif
2770 }
2771 
2772 /**
2773  *      netdev_completed_queue - report bytes and packets completed by device
2774  *      @dev: network device
2775  *      @pkts: actual number of packets sent over the medium
2776  *      @bytes: actual number of bytes sent over the medium
2777  *
2778  *      Report the number of bytes and packets transmitted by the network device
2779  *      hardware queue over the physical medium, @bytes must exactly match the
2780  *      @bytes amount passed to netdev_sent_queue()
2781  */
2782 static inline void netdev_completed_queue(struct net_device *dev,
2783                                           unsigned int pkts, unsigned int bytes)
2784 {
2785         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2786 }
2787 
2788 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2789 {
2790 #ifdef CONFIG_BQL
2791         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2792         dql_reset(&q->dql);
2793 #endif
2794 }
2795 
2796 /**
2797  *      netdev_reset_queue - reset the packets and bytes count of a network device
2798  *      @dev_queue: network device
2799  *
2800  *      Reset the bytes and packet count of a network device and clear the
2801  *      software flow control OFF bit for this network device
2802  */
2803 static inline void netdev_reset_queue(struct net_device *dev_queue)
2804 {
2805         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2806 }
2807 
2808 /**
2809  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2810  *      @dev: network device
2811  *      @queue_index: given tx queue index
2812  *
2813  *      Returns 0 if given tx queue index >= number of device tx queues,
2814  *      otherwise returns the originally passed tx queue index.
2815  */
2816 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2817 {
2818         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2819                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2820                                      dev->name, queue_index,
2821                                      dev->real_num_tx_queues);
2822                 return 0;
2823         }
2824 
2825         return queue_index;
2826 }
2827 
2828 /**
2829  *      netif_running - test if up
2830  *      @dev: network device
2831  *
2832  *      Test if the device has been brought up.
2833  */
2834 static inline bool netif_running(const struct net_device *dev)
2835 {
2836         return test_bit(__LINK_STATE_START, &dev->state);
2837 }
2838 
2839 /*
2840  * Routines to manage the subqueues on a device.  We only need start
2841  * stop, and a check if it's stopped.  All other device management is
2842  * done at the overall netdevice level.
2843  * Also test the device if we're multiqueue.
2844  */
2845 
2846 /**
2847  *      netif_start_subqueue - allow sending packets on subqueue
2848  *      @dev: network device
2849  *      @queue_index: sub queue index
2850  *
2851  * Start individual transmit queue of a device with multiple transmit queues.
2852  */
2853 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2854 {
2855         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2856 
2857         netif_tx_start_queue(txq);
2858 }
2859 
2860 /**
2861  *      netif_stop_subqueue - stop sending packets on subqueue
2862  *      @dev: network device
2863  *      @queue_index: sub queue index
2864  *
2865  * Stop individual transmit queue of a device with multiple transmit queues.
2866  */
2867 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2868 {
2869         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2870         netif_tx_stop_queue(txq);
2871 }
2872 
2873 /**
2874  *      netif_subqueue_stopped - test status of subqueue
2875  *      @dev: network device
2876  *      @queue_index: sub queue index
2877  *
2878  * Check individual transmit queue of a device with multiple transmit queues.
2879  */
2880 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2881                                             u16 queue_index)
2882 {
2883         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2884 
2885         return netif_tx_queue_stopped(txq);
2886 }
2887 
2888 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2889                                           struct sk_buff *skb)
2890 {
2891         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2892 }
2893 
2894 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2895 
2896 #ifdef CONFIG_XPS
2897 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2898                         u16 index);
2899 #else
2900 static inline int netif_set_xps_queue(struct net_device *dev,
2901                                       const struct cpumask *mask,
2902                                       u16 index)
2903 {
2904         return 0;
2905 }
2906 #endif
2907 
2908 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2909                   unsigned int num_tx_queues);
2910 
2911 /*
2912  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2913  * as a distribution range limit for the returned value.
2914  */
2915 static inline u16 skb_tx_hash(const struct net_device *dev,
2916                               struct sk_buff *skb)
2917 {
2918         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2919 }
2920 
2921 /**
2922  *      netif_is_multiqueue - test if device has multiple transmit queues
2923  *      @dev: network device
2924  *
2925  * Check if device has multiple transmit queues
2926  */
2927 static inline bool netif_is_multiqueue(const struct net_device *dev)
2928 {
2929         return dev->num_tx_queues > 1;
2930 }
2931 
2932 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2933 
2934 #ifdef CONFIG_SYSFS
2935 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2936 #else
2937 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2938                                                 unsigned int rxq)
2939 {
2940         return 0;
2941 }
2942 #endif
2943 
2944 #ifdef CONFIG_SYSFS
2945 static inline unsigned int get_netdev_rx_queue_index(
2946                 struct netdev_rx_queue *queue)
2947 {
2948         struct net_device *dev = queue->dev;
2949         int index = queue - dev->_rx;
2950 
2951         BUG_ON(index >= dev->num_rx_queues);
2952         return index;
2953 }
2954 #endif
2955 
2956 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2957 int netif_get_num_default_rss_queues(void);
2958 
2959 enum skb_free_reason {
2960         SKB_REASON_CONSUMED,
2961         SKB_REASON_DROPPED,
2962 };
2963 
2964 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2965 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2966 
2967 /*
2968  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2969  * interrupt context or with hardware interrupts being disabled.
2970  * (in_irq() || irqs_disabled())
2971  *
2972  * We provide four helpers that can be used in following contexts :
2973  *
2974  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2975  *  replacing kfree_skb(skb)
2976  *
2977  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2978  *  Typically used in place of consume_skb(skb) in TX completion path
2979  *
2980  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2981  *  replacing kfree_skb(skb)
2982  *
2983  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2984  *  and consumed a packet. Used in place of consume_skb(skb)
2985  */
2986 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2987 {
2988         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2989 }
2990 
2991 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2992 {
2993         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2994 }
2995 
2996 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2997 {
2998         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2999 }
3000 
3001 static inline void dev_consume_skb_any(struct sk_buff *skb)
3002 {
3003         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3004 }
3005 
3006 int netif_rx(struct sk_buff *skb);
3007 int netif_rx_ni(struct sk_buff *skb);
3008 int netif_receive_skb(struct sk_buff *skb);
3009 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3010 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3011 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3012 gro_result_t napi_gro_frags(struct napi_struct *napi);
3013 struct packet_offload *gro_find_receive_by_type(__be16 type);
3014 struct packet_offload *gro_find_complete_by_type(__be16 type);
3015 
3016 static inline void napi_free_frags(struct napi_struct *napi)
3017 {
3018         kfree_skb(napi->skb);
3019         napi->skb = NULL;
3020 }
3021 
3022 int netdev_rx_handler_register(struct net_device *dev,
3023                                rx_handler_func_t *rx_handler,
3024                                void *rx_handler_data);
3025 void netdev_rx_handler_unregister(struct net_device *dev);
3026 
3027 bool dev_valid_name(const char *name);
3028 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3029 int dev_ethtool(struct net *net, struct ifreq *);
3030 unsigned int dev_get_flags(const struct net_device *);
3031 int __dev_change_flags(struct net_device *, unsigned int flags);
3032 int dev_change_flags(struct net_device *, unsigned int);
3033 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3034                         unsigned int gchanges);
3035 int dev_change_name(struct net_device *, const char *);
3036 int dev_set_alias(struct net_device *, const char *, size_t);
3037 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3038 int dev_set_mtu(struct net_device *, int);
3039 void dev_set_group(struct net_device *, int);
3040 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3041 int dev_change_carrier(struct net_device *, bool new_carrier);
3042 int dev_get_phys_port_id(struct net_device *dev,
3043                          struct netdev_phys_item_id *ppid);
3044 int dev_get_phys_port_name(struct net_device *dev,
3045                            char *name, size_t len);
3046 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3047 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3048 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3049                                     struct netdev_queue *txq, int *ret);
3050 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3051 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3052 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3053 
3054 extern int              netdev_budget;
3055 
3056 /* Called by rtnetlink.c:rtnl_unlock() */
3057 void netdev_run_todo(void);
3058 
3059 /**
3060  *      dev_put - release reference to device
3061  *      @dev: network device
3062  *
3063  * Release reference to device to allow it to be freed.
3064  */
3065 static inline void dev_put(struct net_device *dev)
3066 {
3067         this_cpu_dec(*dev->pcpu_refcnt);
3068 }
3069 
3070 /**
3071  *      dev_hold - get reference to device
3072  *      @dev: network device
3073  *
3074  * Hold reference to device to keep it from being freed.
3075  */
3076 static inline void dev_hold(struct net_device *dev)
3077 {
3078         this_cpu_inc(*dev->pcpu_refcnt);
3079 }
3080 
3081 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3082  * and _off may be called from IRQ context, but it is caller
3083  * who is responsible for serialization of these calls.
3084  *
3085  * The name carrier is inappropriate, these functions should really be
3086  * called netif_lowerlayer_*() because they represent the state of any
3087  * kind of lower layer not just hardware media.
3088  */
3089 
3090 void linkwatch_init_dev(struct net_device *dev);
3091 void linkwatch_fire_event(struct net_device *dev);
3092 void linkwatch_forget_dev(struct net_device *dev);
3093 
3094 /**
3095  *      netif_carrier_ok - test if carrier present
3096  *      @dev: network device
3097  *
3098  * Check if carrier is present on device
3099  */
3100 static inline bool netif_carrier_ok(const struct net_device *dev)
3101 {
3102         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3103 }
3104 
3105 unsigned long dev_trans_start(struct net_device *dev);
3106 
3107 void __netdev_watchdog_up(struct net_device *dev);
3108 
3109 void netif_carrier_on(struct net_device *dev);
3110 
3111 void netif_carrier_off(struct net_device *dev);
3112 
3113 /**
3114  *      netif_dormant_on - mark device as dormant.
3115  *      @dev: network device
3116  *
3117  * Mark device as dormant (as per RFC2863).
3118  *
3119  * The dormant state indicates that the relevant interface is not
3120  * actually in a condition to pass packets (i.e., it is not 'up') but is
3121  * in a "pending" state, waiting for some external event.  For "on-
3122  * demand" interfaces, this new state identifies the situation where the
3123  * interface is waiting for events to place it in the up state.
3124  *
3125  */
3126 static inline void netif_dormant_on(struct net_device *dev)
3127 {
3128         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3129                 linkwatch_fire_event(dev);
3130 }
3131 
3132 /**
3133  *      netif_dormant_off - set device as not dormant.
3134  *      @dev: network device
3135  *
3136  * Device is not in dormant state.
3137  */
3138 static inline void netif_dormant_off(struct net_device *dev)
3139 {
3140         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3141                 linkwatch_fire_event(dev);
3142 }
3143 
3144 /**
3145  *      netif_dormant - test if carrier present
3146  *      @dev: network device
3147  *
3148  * Check if carrier is present on device
3149  */
3150 static inline bool netif_dormant(const struct net_device *dev)
3151 {
3152         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3153 }
3154 
3155 
3156 /**
3157  *      netif_oper_up - test if device is operational
3158  *      @dev: network device
3159  *
3160  * Check if carrier is operational
3161  */
3162 static inline bool netif_oper_up(const struct net_device *dev)
3163 {
3164         return (dev->operstate == IF_OPER_UP ||
3165                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3166 }
3167 
3168 /**
3169  *      netif_device_present - is device available or removed
3170  *      @dev: network device
3171  *
3172  * Check if device has not been removed from system.
3173  */
3174 static inline bool netif_device_present(struct net_device *dev)
3175 {
3176         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3177 }
3178 
3179 void netif_device_detach(struct net_device *dev);
3180 
3181 void netif_device_attach(struct net_device *dev);
3182 
3183 /*
3184  * Network interface message level settings
3185  */
3186 
3187 enum {
3188         NETIF_MSG_DRV           = 0x0001,
3189         NETIF_MSG_PROBE         = 0x0002,
3190         NETIF_MSG_LINK          = 0x0004,
3191         NETIF_MSG_TIMER         = 0x0008,
3192         NETIF_MSG_IFDOWN        = 0x0010,
3193         NETIF_MSG_IFUP          = 0x0020,
3194         NETIF_MSG_RX_ERR        = 0x0040,
3195         NETIF_MSG_TX_ERR        = 0x0080,
3196         NETIF_MSG_TX_QUEUED     = 0x0100,
3197         NETIF_MSG_INTR          = 0x0200,
3198         NETIF_MSG_TX_DONE       = 0x0400,
3199         NETIF_MSG_RX_STATUS     = 0x0800,
3200         NETIF_MSG_PKTDATA       = 0x1000,
3201         NETIF_MSG_HW            = 0x2000,
3202         NETIF_MSG_WOL           = 0x4000,
3203 };
3204 
3205 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3206 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3207 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3208 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3209 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3210 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3211 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3212 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3213 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3214 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3215 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3216 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3217 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3218 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3219 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3220 
3221 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3222 {
3223         /* use default */
3224         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3225                 return default_msg_enable_bits;
3226         if (debug_value == 0)   /* no output */
3227                 return 0;
3228         /* set low N bits */
3229         return (1 << debug_value) - 1;
3230 }
3231 
3232 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3233 {
3234         spin_lock(&txq->_xmit_lock);
3235         txq->xmit_lock_owner = cpu;
3236 }
3237 
3238 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3239 {
3240         spin_lock_bh(&txq->_xmit_lock);
3241         txq->xmit_lock_owner = smp_processor_id();
3242 }
3243 
3244 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3245 {
3246         bool ok = spin_trylock(&txq->_xmit_lock);
3247         if (likely(ok))
3248                 txq->xmit_lock_owner = smp_processor_id();
3249         return ok;
3250 }
3251 
3252 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3253 {
3254         txq->xmit_lock_owner = -1;
3255         spin_unlock(&txq->_xmit_lock);
3256 }
3257 
3258 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3259 {
3260         txq->xmit_lock_owner = -1;
3261         spin_unlock_bh(&txq->_xmit_lock);
3262 }
3263 
3264 static inline void txq_trans_update(struct netdev_queue *txq)
3265 {
3266         if (txq->xmit_lock_owner != -1)
3267                 txq->trans_start = jiffies;
3268 }
3269 
3270 /**
3271  *      netif_tx_lock - grab network device transmit lock
3272  *      @dev: network device
3273  *
3274  * Get network device transmit lock
3275  */
3276 static inline void netif_tx_lock(struct net_device *dev)
3277 {
3278         unsigned int i;
3279         int cpu;
3280 
3281         spin_lock(&dev->tx_global_lock);
3282         cpu = smp_processor_id();
3283         for (i = 0; i < dev->num_tx_queues; i++) {
3284                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3285 
3286                 /* We are the only thread of execution doing a
3287                  * freeze, but we have to grab the _xmit_lock in
3288                  * order to synchronize with threads which are in
3289                  * the ->hard_start_xmit() handler and already
3290                  * checked the frozen bit.
3291                  */
3292                 __netif_tx_lock(txq, cpu);
3293                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3294                 __netif_tx_unlock(txq);
3295         }
3296 }
3297 
3298 static inline void netif_tx_lock_bh(struct net_device *dev)
3299 {
3300         local_bh_disable();
3301         netif_tx_lock(dev);
3302 }
3303 
3304 static inline void netif_tx_unlock(struct net_device *dev)
3305 {
3306         unsigned int i;
3307 
3308         for (i = 0; i < dev->num_tx_queues; i++) {
3309                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3310 
3311                 /* No need to grab the _xmit_lock here.  If the
3312                  * queue is not stopped for another reason, we
3313                  * force a schedule.
3314                  */
3315                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3316                 netif_schedule_queue(txq);
3317         }
3318         spin_unlock(&dev->tx_global_lock);
3319 }
3320 
3321 static inline void netif_tx_unlock_bh(struct net_device *dev)
3322 {
3323         netif_tx_unlock(dev);
3324         local_bh_enable();
3325 }
3326 
3327 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3328         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3329                 __netif_tx_lock(txq, cpu);              \
3330         }                                               \
3331 }
3332 
3333 #define HARD_TX_TRYLOCK(dev, txq)                       \
3334         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3335                 __netif_tx_trylock(txq) :               \
3336                 true )
3337 
3338 #define HARD_TX_UNLOCK(dev, txq) {                      \
3339         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3340                 __netif_tx_unlock(txq);                 \
3341         }                                               \
3342 }
3343 
3344 static inline void netif_tx_disable(struct net_device *dev)
3345 {
3346         unsigned int i;
3347         int cpu;
3348 
3349         local_bh_disable();
3350         cpu = smp_processor_id();
3351         for (i = 0; i < dev->num_tx_queues; i++) {
3352                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3353 
3354                 __netif_tx_lock(txq, cpu);
3355                 netif_tx_stop_queue(txq);
3356                 __netif_tx_unlock(txq);
3357         }
3358         local_bh_enable();
3359 }
3360 
3361 static inline void netif_addr_lock(struct net_device *dev)
3362 {
3363         spin_lock(&dev->addr_list_lock);
3364 }
3365 
3366 static inline void netif_addr_lock_nested(struct net_device *dev)
3367 {
3368         int subclass = SINGLE_DEPTH_NESTING;
3369 
3370         if (dev->netdev_ops->ndo_get_lock_subclass)
3371                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3372 
3373         spin_lock_nested(&dev->addr_list_lock, subclass);
3374 }
3375 
3376 static inline void netif_addr_lock_bh(struct net_device *dev)
3377 {
3378         spin_lock_bh(&dev->addr_list_lock);
3379 }
3380 
3381 static inline void netif_addr_unlock(struct net_device *dev)
3382 {
3383         spin_unlock(&dev->addr_list_lock);
3384 }
3385 
3386 static inline void netif_addr_unlock_bh(struct net_device *dev)
3387 {
3388         spin_unlock_bh(&dev->addr_list_lock);
3389 }
3390 
3391 /*
3392  * dev_addrs walker. Should be used only for read access. Call with
3393  * rcu_read_lock held.
3394  */
3395 #define for_each_dev_addr(dev, ha) \
3396                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3397 
3398 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3399 
3400 void ether_setup(struct net_device *dev);
3401 
3402 /* Support for loadable net-drivers */
3403 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3404                                     unsigned char name_assign_type,
3405                                     void (*setup)(struct net_device *),
3406                                     unsigned int txqs, unsigned int rxqs);
3407 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3408         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3409 
3410 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3411         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3412                          count)
3413 
3414 int register_netdev(struct net_device *dev);
3415 void unregister_netdev(struct net_device *dev);
3416 
3417 /* General hardware address lists handling functions */
3418 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3419                    struct netdev_hw_addr_list *from_list, int addr_len);
3420 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3421                       struct netdev_hw_addr_list *from_list, int addr_len);
3422 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3423                        struct net_device *dev,
3424                        int (*sync)(struct net_device *, const unsigned char *),
3425                        int (*unsync)(struct net_device *,
3426                                      const unsigned char *));
3427 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3428                           struct net_device *dev,
3429                           int (*unsync)(struct net_device *,
3430                                         const unsigned char *));
3431 void __hw_addr_init(struct netdev_hw_addr_list *list);
3432 
3433 /* Functions used for device addresses handling */
3434 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3435                  unsigned char addr_type);
3436 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3437                  unsigned char addr_type);
3438 void dev_addr_flush(struct net_device *dev);
3439 int dev_addr_init(struct net_device *dev);
3440 
3441 /* Functions used for unicast addresses handling */
3442 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3443 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3444 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3445 int dev_uc_sync(struct net_device *to, struct net_device *from);
3446 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3447 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3448 void dev_uc_flush(struct net_device *dev);
3449 void dev_uc_init(struct net_device *dev);
3450 
3451 /**
3452  *  __dev_uc_sync - Synchonize device's unicast list
3453  *  @dev:  device to sync
3454  *  @sync: function to call if address should be added
3455  *  @unsync: function to call if address should be removed
3456  *
3457  *  Add newly added addresses to the interface, and release
3458  *  addresses that have been deleted.
3459  **/
3460 static inline int __dev_uc_sync(struct net_device *dev,
3461                                 int (*sync)(struct net_device *,
3462                                             const unsigned char *),
3463                                 int (*unsync)(struct net_device *,
3464                                               const unsigned char *))
3465 {
3466         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3467 }
3468 
3469 /**
3470  *  __dev_uc_unsync - Remove synchronized addresses from device
3471  *  @dev:  device to sync
3472  *  @unsync: function to call if address should be removed
3473  *
3474  *  Remove all addresses that were added to the device by dev_uc_sync().
3475  **/
3476 static inline void __dev_uc_unsync(struct net_device *dev,
3477                                    int (*unsync)(struct net_device *,
3478                                                  const unsigned char *))
3479 {
3480         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3481 }
3482 
3483 /* Functions used for multicast addresses handling */
3484 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3485 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3486 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3487 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3488 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3489 int dev_mc_sync(struct net_device *to, struct net_device *from);
3490 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3491 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3492 void dev_mc_flush(struct net_device *dev);
3493 void dev_mc_init(struct net_device *dev);
3494 
3495 /**
3496  *  __dev_mc_sync - Synchonize device's multicast list
3497  *  @dev:  device to sync
3498  *  @sync: function to call if address should be added
3499  *  @unsync: function to call if address should be removed
3500  *
3501  *  Add newly added addresses to the interface, and release
3502  *  addresses that have been deleted.
3503  **/
3504 static inline int __dev_mc_sync(struct net_device *dev,
3505                                 int (*sync)(struct net_device *,
3506                                             const unsigned char *),
3507                                 int (*unsync)(struct net_device *,
3508                                               const unsigned char *))
3509 {
3510         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3511 }
3512 
3513 /**
3514  *  __dev_mc_unsync - Remove synchronized addresses from device
3515  *  @dev:  device to sync
3516  *  @unsync: function to call if address should be removed
3517  *
3518  *  Remove all addresses that were added to the device by dev_mc_sync().
3519  **/
3520 static inline void __dev_mc_unsync(struct net_device *dev,
3521                                    int (*unsync)(struct net_device *,
3522                                                  const unsigned char *))
3523 {
3524         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3525 }
3526 
3527 /* Functions used for secondary unicast and multicast support */
3528 void dev_set_rx_mode(struct net_device *dev);
3529 void __dev_set_rx_mode(struct net_device *dev);
3530 int dev_set_promiscuity(struct net_device *dev, int inc);
3531 int dev_set_allmulti(struct net_device *dev, int inc);
3532 void netdev_state_change(struct net_device *dev);
3533 void netdev_notify_peers(struct net_device *dev);
3534 void netdev_features_change(struct net_device *dev);
3535 /* Load a device via the kmod */
3536 void dev_load(struct net *net, const char *name);
3537 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3538                                         struct rtnl_link_stats64 *storage);
3539 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3540                              const struct net_device_stats *netdev_stats);
3541 
3542 extern int              netdev_max_backlog;
3543 extern int              netdev_tstamp_prequeue;
3544 extern int              weight_p;
3545 extern int              bpf_jit_enable;
3546 
3547 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3548 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3549                                                      struct list_head **iter);
3550 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3551                                                      struct list_head **iter);
3552 
3553 /* iterate through upper list, must be called under RCU read lock */
3554 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3555         for (iter = &(dev)->adj_list.upper, \
3556              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3557              updev; \
3558              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3559 
3560 /* iterate through upper list, must be called under RCU read lock */
3561 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3562         for (iter = &(dev)->all_adj_list.upper, \
3563              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3564              updev; \
3565              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3566 
3567 void *netdev_lower_get_next_private(struct net_device *dev,
3568                                     struct list_head **iter);
3569 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3570                                         struct list_head **iter);
3571 
3572 #define netdev_for_each_lower_private(dev, priv, iter) \
3573         for (iter = (dev)->adj_list.lower.next, \
3574              priv = netdev_lower_get_next_private(dev, &(iter)); \
3575              priv; \
3576              priv = netdev_lower_get_next_private(dev, &(iter)))
3577 
3578 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3579         for (iter = &(dev)->adj_list.lower, \
3580              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3581              priv; \
3582              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3583 
3584 void *netdev_lower_get_next(struct net_device *dev,
3585                                 struct list_head **iter);
3586 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3587         for (iter = &(dev)->adj_list.lower, \
3588              ldev = netdev_lower_get_next(dev, &(iter)); \
3589              ldev; \
3590              ldev = netdev_lower_get_next(dev, &(iter)))
3591 
3592 void *netdev_adjacent_get_private(struct list_head *adj_list);
3593 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3594 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3595 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3596 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3597 int netdev_master_upper_dev_link(struct net_device *dev,
3598                                  struct net_device *upper_dev);
3599 int netdev_master_upper_dev_link_private(struct net_device *dev,
3600                                          struct net_device *upper_dev,
3601                                          void *private);
3602 void netdev_upper_dev_unlink(struct net_device *dev,
3603                              struct net_device *upper_dev);
3604 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3605 void *netdev_lower_dev_get_private(struct net_device *dev,
3606                                    struct net_device *lower_dev);
3607 
3608 /* RSS keys are 40 or 52 bytes long */
3609 #define NETDEV_RSS_KEY_LEN 52
3610 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3611 void netdev_rss_key_fill(void *buffer, size_t len);
3612 
3613 int dev_get_nest_level(struct net_device *dev,
3614                        bool (*type_check)(struct net_device *dev));
3615 int skb_checksum_help(struct sk_buff *skb);
3616 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3617                                   netdev_features_t features, bool tx_path);
3618 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3619                                     netdev_features_t features);
3620 
3621 struct netdev_bonding_info {
3622         ifslave slave;
3623         ifbond  master;
3624 };
3625 
3626 struct netdev_notifier_bonding_info {
3627         struct netdev_notifier_info info; /* must be first */
3628         struct netdev_bonding_info  bonding_info;
3629 };
3630 
3631 void netdev_bonding_info_change(struct net_device *dev,
3632                                 struct netdev_bonding_info *bonding_info);
3633 
3634 static inline
3635 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3636 {
3637         return __skb_gso_segment(skb, features, true);
3638 }
3639 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3640 
3641 static inline bool can_checksum_protocol(netdev_features_t features,
3642                                          __be16 protocol)
3643 {
3644         return ((features & NETIF_F_GEN_CSUM) ||
3645                 ((features & NETIF_F_V4_CSUM) &&
3646                  protocol == htons(ETH_P_IP)) ||
3647                 ((features & NETIF_F_V6_CSUM) &&
3648                  protocol == htons(ETH_P_IPV6)) ||
3649                 ((features & NETIF_F_FCOE_CRC) &&
3650                  protocol == htons(ETH_P_FCOE)));
3651 }
3652 
3653 #ifdef CONFIG_BUG
3654 void netdev_rx_csum_fault(struct net_device *dev);
3655 #else
3656 static inline void netdev_rx_csum_fault(struct net_device *dev)
3657 {
3658 }
3659 #endif
3660 /* rx skb timestamps */
3661 void net_enable_timestamp(void);
3662 void net_disable_timestamp(void);
3663 
3664 #ifdef CONFIG_PROC_FS
3665 int __init dev_proc_init(void);
3666 #else
3667 #define dev_proc_init() 0
3668 #endif
3669 
3670 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3671                                               struct sk_buff *skb, struct net_device *dev,
3672                                               bool more)
3673 {
3674         skb->xmit_more = more ? 1 : 0;
3675         return ops->ndo_start_xmit(skb, dev);
3676 }
3677 
3678 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3679                                             struct netdev_queue *txq, bool more)
3680 {
3681         const struct net_device_ops *ops = dev->netdev_ops;
3682         int rc;
3683 
3684         rc = __netdev_start_xmit(ops, skb, dev, more);
3685         if (rc == NETDEV_TX_OK)
3686                 txq_trans_update(txq);
3687 
3688         return rc;
3689 }
3690 
3691 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3692                                 const void *ns);
3693 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3694                                  const void *ns);
3695 
3696 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3697 {
3698         return netdev_class_create_file_ns(class_attr, NULL);
3699 }
3700 
3701 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3702 {
3703         netdev_class_remove_file_ns(class_attr, NULL);
3704 }
3705 
3706 extern struct kobj_ns_type_operations net_ns_type_operations;
3707 
3708 const char *netdev_drivername(const struct net_device *dev);
3709 
3710 void linkwatch_run_queue(void);
3711 
3712 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3713                                                           netdev_features_t f2)
3714 {
3715         if (f1 & NETIF_F_GEN_CSUM)
3716                 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3717         if (f2 & NETIF_F_GEN_CSUM)
3718                 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3719         f1 &= f2;
3720         if (f1 & NETIF_F_GEN_CSUM)
3721                 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3722 
3723         return f1;
3724 }
3725 
3726 static inline netdev_features_t netdev_get_wanted_features(
3727         struct net_device *dev)
3728 {
3729         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3730 }
3731 netdev_features_t netdev_increment_features(netdev_features_t all,
3732         netdev_features_t one, netdev_features_t mask);
3733 
3734 /* Allow TSO being used on stacked device :
3735  * Performing the GSO segmentation before last device
3736  * is a performance improvement.
3737  */
3738 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3739                                                         netdev_features_t mask)
3740 {
3741         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3742 }
3743 
3744 int __netdev_update_features(struct net_device *dev);
3745 void netdev_update_features(struct net_device *dev);
3746 void netdev_change_features(struct net_device *dev);
3747 
3748 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3749                                         struct net_device *dev);
3750 
3751 netdev_features_t passthru_features_check(struct sk_buff *skb,
3752                                           struct net_device *dev,
3753                                           netdev_features_t features);
3754 netdev_features_t netif_skb_features(struct sk_buff *skb);
3755 
3756 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3757 {
3758         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3759 
3760         /* check flags correspondence */
3761         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3762         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3763         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3764         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3765         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3766         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3767         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3768         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3769         BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3770         BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3771         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3772         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3773         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3774 
3775         return (features & feature) == feature;
3776 }
3777 
3778 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3779 {
3780         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3781                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3782 }
3783 
3784 static inline bool netif_needs_gso(struct sk_buff *skb,
3785                                    netdev_features_t features)
3786 {
3787         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3788                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3789                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3790 }
3791 
3792 static inline void netif_set_gso_max_size(struct net_device *dev,
3793                                           unsigned int size)
3794 {
3795         dev->gso_max_size = size;
3796 }
3797 
3798 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3799                                         int pulled_hlen, u16 mac_offset,
3800                                         int mac_len)
3801 {
3802         skb->protocol = protocol;
3803         skb->encapsulation = 1;
3804         skb_push(skb, pulled_hlen);
3805         skb_reset_transport_header(skb);
3806         skb->mac_header = mac_offset;
3807         skb->network_header = skb->mac_header + mac_len;
3808         skb->mac_len = mac_len;
3809 }
3810 
3811 static inline bool netif_is_macvlan(struct net_device *dev)
3812 {
3813         return dev->priv_flags & IFF_MACVLAN;
3814 }
3815 
3816 static inline bool netif_is_macvlan_port(struct net_device *dev)
3817 {
3818         return dev->priv_flags & IFF_MACVLAN_PORT;
3819 }
3820 
3821 static inline bool netif_is_ipvlan(struct net_device *dev)
3822 {
3823         return dev->priv_flags & IFF_IPVLAN_SLAVE;
3824 }
3825 
3826 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3827 {
3828         return dev->priv_flags & IFF_IPVLAN_MASTER;
3829 }
3830 
3831 static inline bool netif_is_bond_master(struct net_device *dev)
3832 {
3833         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3834 }
3835 
3836 static inline bool netif_is_bond_slave(struct net_device *dev)
3837 {
3838         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3839 }
3840 
3841 static inline bool netif_supports_nofcs(struct net_device *dev)
3842 {
3843         return dev->priv_flags & IFF_SUPP_NOFCS;
3844 }
3845 
3846 static inline bool netif_is_l3_master(const struct net_device *dev)
3847 {
3848         return dev->priv_flags & IFF_L3MDEV_MASTER;
3849 }
3850 
3851 static inline bool netif_is_l3_slave(const struct net_device *dev)
3852 {
3853         return dev->priv_flags & IFF_L3MDEV_SLAVE;
3854 }
3855 
3856 static inline bool netif_is_bridge_master(const struct net_device *dev)
3857 {
3858         return dev->priv_flags & IFF_EBRIDGE;
3859 }
3860 
3861 static inline bool netif_is_bridge_port(const struct net_device *dev)
3862 {
3863         return dev->priv_flags & IFF_BRIDGE_PORT;
3864 }
3865 
3866 static inline bool netif_is_ovs_master(const struct net_device *dev)
3867 {
3868         return dev->priv_flags & IFF_OPENVSWITCH;
3869 }
3870 
3871 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3872 static inline void netif_keep_dst(struct net_device *dev)
3873 {
3874         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3875 }
3876 
3877 extern struct pernet_operations __net_initdata loopback_net_ops;
3878 
3879 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3880 
3881 /* netdev_printk helpers, similar to dev_printk */
3882 
3883 static inline const char *netdev_name(const struct net_device *dev)
3884 {
3885         if (!dev->name[0] || strchr(dev->name, '%'))
3886                 return "(unnamed net_device)";
3887         return dev->name;
3888 }
3889 
3890 static inline const char *netdev_reg_state(const struct net_device *dev)
3891 {
3892         switch (dev->reg_state) {
3893         case NETREG_UNINITIALIZED: return " (uninitialized)";
3894         case NETREG_REGISTERED: return "";
3895         case NETREG_UNREGISTERING: return " (unregistering)";
3896         case NETREG_UNREGISTERED: return " (unregistered)";
3897         case NETREG_RELEASED: return " (released)";
3898         case NETREG_DUMMY: return " (dummy)";
3899         }
3900 
3901         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3902         return " (unknown)";
3903 }
3904 
3905 __printf(3, 4)
3906 void netdev_printk(const char *level, const struct net_device *dev,
3907                    const char *format, ...);
3908 __printf(2, 3)
3909 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3910 __printf(2, 3)
3911 void netdev_alert(const struct net_device *dev, const char *format, ...);
3912 __printf(2, 3)
3913 void netdev_crit(const struct net_device *dev, const char *format, ...);
3914 __printf(2, 3)
3915 void netdev_err(const struct net_device *dev, const char *format, ...);
3916 __printf(2, 3)
3917 void netdev_warn(const struct net_device *dev, const char *format, ...);
3918 __printf(2, 3)
3919 void netdev_notice(const struct net_device *dev, const char *format, ...);
3920 __printf(2, 3)
3921 void netdev_info(const struct net_device *dev, const char *format, ...);
3922 
3923 #define MODULE_ALIAS_NETDEV(device) \
3924         MODULE_ALIAS("netdev-" device)
3925 
3926 #if defined(CONFIG_DYNAMIC_DEBUG)
3927 #define netdev_dbg(__dev, format, args...)                      \
3928 do {                                                            \
3929         dynamic_netdev_dbg(__dev, format, ##args);              \
3930 } while (0)
3931 #elif defined(DEBUG)
3932 #define netdev_dbg(__dev, format, args...)                      \
3933         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3934 #else
3935 #define netdev_dbg(__dev, format, args...)                      \
3936 ({                                                              \
3937         if (0)                                                  \
3938                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3939 })
3940 #endif
3941 
3942 #if defined(VERBOSE_DEBUG)
3943 #define netdev_vdbg     netdev_dbg
3944 #else
3945 
3946 #define netdev_vdbg(dev, format, args...)                       \
3947 ({                                                              \
3948         if (0)                                                  \
3949                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3950         0;                                                      \
3951 })
3952 #endif
3953 
3954 /*
3955  * netdev_WARN() acts like dev_printk(), but with the key difference
3956  * of using a WARN/WARN_ON to get the message out, including the
3957  * file/line information and a backtrace.
3958  */
3959 #define netdev_WARN(dev, format, args...)                       \
3960         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3961              netdev_reg_state(dev), ##args)
3962 
3963 /* netif printk helpers, similar to netdev_printk */
3964 
3965 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3966 do {                                                            \
3967         if (netif_msg_##type(priv))                             \
3968                 netdev_printk(level, (dev), fmt, ##args);       \
3969 } while (0)
3970 
3971 #define netif_level(level, priv, type, dev, fmt, args...)       \
3972 do {                                                            \
3973         if (netif_msg_##type(priv))                             \
3974                 netdev_##level(dev, fmt, ##args);               \
3975 } while (0)
3976 
3977 #define netif_emerg(priv, type, dev, fmt, args...)              \
3978         netif_level(emerg, priv, type, dev, fmt, ##args)
3979 #define netif_alert(priv, type, dev, fmt, args...)              \
3980         netif_level(alert, priv, type, dev, fmt, ##args)
3981 #define netif_crit(priv, type, dev, fmt, args...)               \
3982         netif_level(crit, priv, type, dev, fmt, ##args)
3983 #define netif_err(priv, type, dev, fmt, args...)                \
3984         netif_level(err, priv, type, dev, fmt, ##args)
3985 #define netif_warn(priv, type, dev, fmt, args...)               \
3986         netif_level(warn, priv, type, dev, fmt, ##args)
3987 #define netif_notice(priv, type, dev, fmt, args...)             \
3988         netif_level(notice, priv, type, dev, fmt, ##args)
3989 #define netif_info(priv, type, dev, fmt, args...)               \
3990         netif_level(info, priv, type, dev, fmt, ##args)
3991 
3992 #if defined(CONFIG_DYNAMIC_DEBUG)
3993 #define netif_dbg(priv, type, netdev, format, args...)          \
3994 do {                                                            \
3995         if (netif_msg_##type(priv))                             \
3996                 dynamic_netdev_dbg(netdev, format, ##args);     \
3997 } while (0)
3998 #elif defined(DEBUG)
3999 #define netif_dbg(priv, type, dev, format, args...)             \
4000         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4001 #else
4002 #define netif_dbg(priv, type, dev, format, args...)                     \
4003 ({                                                                      \
4004         if (0)                                                          \
4005                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4006         0;                                                              \
4007 })
4008 #endif
4009 
4010 #if defined(VERBOSE_DEBUG)
4011 #define netif_vdbg      netif_dbg
4012 #else
4013 #define netif_vdbg(priv, type, dev, format, args...)            \
4014 ({                                                              \
4015         if (0)                                                  \
4016                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4017         0;                                                      \
4018 })
4019 #endif
4020 
4021 /*
4022  *      The list of packet types we will receive (as opposed to discard)
4023  *      and the routines to invoke.
4024  *
4025  *      Why 16. Because with 16 the only overlap we get on a hash of the
4026  *      low nibble of the protocol value is RARP/SNAP/X.25.
4027  *
4028  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4029  *             sure which should go first, but I bet it won't make much
4030  *             difference if we are running VLANs.  The good news is that
4031  *             this protocol won't be in the list unless compiled in, so
4032  *             the average user (w/out VLANs) will not be adversely affected.
4033  *             --BLG
4034  *
4035  *              0800    IP
4036  *              8100    802.1Q VLAN
4037  *              0001    802.3
4038  *              0002    AX.25
4039  *              0004    802.2
4040  *              8035    RARP
4041  *              0005    SNAP
4042  *              0805    X.25
4043  *              0806    ARP
4044  *              8137    IPX
4045  *              0009    Localtalk
4046  *              86DD    IPv6
4047  */
4048 #define PTYPE_HASH_SIZE (16)
4049 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4050 
4051 #endif  /* _LINUX_NETDEVICE_H */
4052 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us