Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/include/linux/netdevice.h

  1 /*
  2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
  3  *              operating system.  INET is implemented using the  BSD Socket
  4  *              interface as the means of communication with the user level.
  5  *
  6  *              Definitions for the Interfaces handler.
  7  *
  8  * Version:     @(#)dev.h       1.0.10  08/12/93
  9  *
 10  * Authors:     Ross Biro
 11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
 14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
 15  *              Bjorn Ekwall. <bj0rn@blox.se>
 16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
 17  *
 18  *              This program is free software; you can redistribute it and/or
 19  *              modify it under the terms of the GNU General Public License
 20  *              as published by the Free Software Foundation; either version
 21  *              2 of the License, or (at your option) any later version.
 22  *
 23  *              Moved to /usr/include/linux for NET3
 24  */
 25 #ifndef _LINUX_NETDEVICE_H
 26 #define _LINUX_NETDEVICE_H
 27 
 28 #include <linux/timer.h>
 29 #include <linux/bug.h>
 30 #include <linux/delay.h>
 31 #include <linux/atomic.h>
 32 #include <linux/prefetch.h>
 33 #include <asm/cache.h>
 34 #include <asm/byteorder.h>
 35 
 36 #include <linux/percpu.h>
 37 #include <linux/rculist.h>
 38 #include <linux/dmaengine.h>
 39 #include <linux/workqueue.h>
 40 #include <linux/dynamic_queue_limits.h>
 41 
 42 #include <linux/ethtool.h>
 43 #include <net/net_namespace.h>
 44 #include <net/dsa.h>
 45 #ifdef CONFIG_DCB
 46 #include <net/dcbnl.h>
 47 #endif
 48 #include <net/netprio_cgroup.h>
 49 
 50 #include <linux/netdev_features.h>
 51 #include <linux/neighbour.h>
 52 #include <uapi/linux/netdevice.h>
 53 #include <uapi/linux/if_bonding.h>
 54 
 55 struct netpoll_info;
 56 struct device;
 57 struct phy_device;
 58 /* 802.11 specific */
 59 struct wireless_dev;
 60 /* 802.15.4 specific */
 61 struct wpan_dev;
 62 struct mpls_dev;
 63 
 64 void netdev_set_default_ethtool_ops(struct net_device *dev,
 65                                     const struct ethtool_ops *ops);
 66 
 67 /* Backlog congestion levels */
 68 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
 69 #define NET_RX_DROP             1       /* packet dropped */
 70 
 71 /*
 72  * Transmit return codes: transmit return codes originate from three different
 73  * namespaces:
 74  *
 75  * - qdisc return codes
 76  * - driver transmit return codes
 77  * - errno values
 78  *
 79  * Drivers are allowed to return any one of those in their hard_start_xmit()
 80  * function. Real network devices commonly used with qdiscs should only return
 81  * the driver transmit return codes though - when qdiscs are used, the actual
 82  * transmission happens asynchronously, so the value is not propagated to
 83  * higher layers. Virtual network devices transmit synchronously, in this case
 84  * the driver transmit return codes are consumed by dev_queue_xmit(), all
 85  * others are propagated to higher layers.
 86  */
 87 
 88 /* qdisc ->enqueue() return codes. */
 89 #define NET_XMIT_SUCCESS        0x00
 90 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
 91 #define NET_XMIT_CN             0x02    /* congestion notification      */
 92 #define NET_XMIT_POLICED        0x03    /* skb is shot by police        */
 93 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
 94 
 95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
 96  * indicates that the device will soon be dropping packets, or already drops
 97  * some packets of the same priority; prompting us to send less aggressively. */
 98 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
 99 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100 
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK          0xf0
103 
104 enum netdev_tx {
105         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
106         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
107         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
108         NETDEV_TX_LOCKED = 0x20,        /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111 
112 /*
113  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115  */
116 static inline bool dev_xmit_complete(int rc)
117 {
118         /*
119          * Positive cases with an skb consumed by a driver:
120          * - successful transmission (rc == NETDEV_TX_OK)
121          * - error while transmitting (rc < 0)
122          * - error while queueing to a different device (rc & NET_XMIT_MASK)
123          */
124         if (likely(rc < NET_XMIT_MASK))
125                 return true;
126 
127         return false;
128 }
129 
130 /*
131  *      Compute the worst case header length according to the protocols
132  *      used.
133  */
134 
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 #  define LL_MAX_HEADER 128
138 # else
139 #  define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144 
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151 
152 /*
153  *      Old network device statistics. Fields are native words
154  *      (unsigned long) so they can be read and written atomically.
155  */
156 
157 struct net_device_stats {
158         unsigned long   rx_packets;
159         unsigned long   tx_packets;
160         unsigned long   rx_bytes;
161         unsigned long   tx_bytes;
162         unsigned long   rx_errors;
163         unsigned long   tx_errors;
164         unsigned long   rx_dropped;
165         unsigned long   tx_dropped;
166         unsigned long   multicast;
167         unsigned long   collisions;
168         unsigned long   rx_length_errors;
169         unsigned long   rx_over_errors;
170         unsigned long   rx_crc_errors;
171         unsigned long   rx_frame_errors;
172         unsigned long   rx_fifo_errors;
173         unsigned long   rx_missed_errors;
174         unsigned long   tx_aborted_errors;
175         unsigned long   tx_carrier_errors;
176         unsigned long   tx_fifo_errors;
177         unsigned long   tx_heartbeat_errors;
178         unsigned long   tx_window_errors;
179         unsigned long   rx_compressed;
180         unsigned long   tx_compressed;
181 };
182 
183 
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186 
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191 
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195 
196 struct netdev_hw_addr {
197         struct list_head        list;
198         unsigned char           addr[MAX_ADDR_LEN];
199         unsigned char           type;
200 #define NETDEV_HW_ADDR_T_LAN            1
201 #define NETDEV_HW_ADDR_T_SAN            2
202 #define NETDEV_HW_ADDR_T_SLAVE          3
203 #define NETDEV_HW_ADDR_T_UNICAST        4
204 #define NETDEV_HW_ADDR_T_MULTICAST      5
205         bool                    global_use;
206         int                     sync_cnt;
207         int                     refcount;
208         int                     synced;
209         struct rcu_head         rcu_head;
210 };
211 
212 struct netdev_hw_addr_list {
213         struct list_head        list;
214         int                     count;
215 };
216 
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220         list_for_each_entry(ha, &(l)->list, list)
221 
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226 
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231 
232 struct hh_cache {
233         u16             hh_len;
234         u16             __pad;
235         seqlock_t       hh_lock;
236 
237         /* cached hardware header; allow for machine alignment needs.        */
238 #define HH_DATA_MOD     16
239 #define HH_DATA_OFF(__len) \
240         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245 
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247  * Alternative is:
248  *   dev->hard_header_len ? (dev->hard_header_len +
249  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250  *
251  * We could use other alignment values, but we must maintain the
252  * relationship HH alignment <= LL alignment.
253  */
254 #define LL_RESERVED_SPACE(dev) \
255         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 
259 struct header_ops {
260         int     (*create) (struct sk_buff *skb, struct net_device *dev,
261                            unsigned short type, const void *daddr,
262                            const void *saddr, unsigned int len);
263         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265         void    (*cache_update)(struct hh_cache *hh,
266                                 const struct net_device *dev,
267                                 const unsigned char *haddr);
268 };
269 
270 /* These flag bits are private to the generic network queueing
271  * layer, they may not be explicitly referenced by any other
272  * code.
273  */
274 
275 enum netdev_state_t {
276         __LINK_STATE_START,
277         __LINK_STATE_PRESENT,
278         __LINK_STATE_NOCARRIER,
279         __LINK_STATE_LINKWATCH_PENDING,
280         __LINK_STATE_DORMANT,
281 };
282 
283 
284 /*
285  * This structure holds at boot time configured netdevice settings. They
286  * are then used in the device probing.
287  */
288 struct netdev_boot_setup {
289         char name[IFNAMSIZ];
290         struct ifmap map;
291 };
292 #define NETDEV_BOOT_SETUP_MAX 8
293 
294 int __init netdev_boot_setup(char *str);
295 
296 /*
297  * Structure for NAPI scheduling similar to tasklet but with weighting
298  */
299 struct napi_struct {
300         /* The poll_list must only be managed by the entity which
301          * changes the state of the NAPI_STATE_SCHED bit.  This means
302          * whoever atomically sets that bit can add this napi_struct
303          * to the per-cpu poll_list, and whoever clears that bit
304          * can remove from the list right before clearing the bit.
305          */
306         struct list_head        poll_list;
307 
308         unsigned long           state;
309         int                     weight;
310         unsigned int            gro_count;
311         int                     (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313         spinlock_t              poll_lock;
314         int                     poll_owner;
315 #endif
316         struct net_device       *dev;
317         struct sk_buff          *gro_list;
318         struct sk_buff          *skb;
319         struct hrtimer          timer;
320         struct list_head        dev_list;
321         struct hlist_node       napi_hash_node;
322         unsigned int            napi_id;
323 };
324 
325 enum {
326         NAPI_STATE_SCHED,       /* Poll is scheduled */
327         NAPI_STATE_DISABLE,     /* Disable pending */
328         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
329         NAPI_STATE_HASHED,      /* In NAPI hash */
330 };
331 
332 enum gro_result {
333         GRO_MERGED,
334         GRO_MERGED_FREE,
335         GRO_HELD,
336         GRO_NORMAL,
337         GRO_DROP,
338 };
339 typedef enum gro_result gro_result_t;
340 
341 /*
342  * enum rx_handler_result - Possible return values for rx_handlers.
343  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344  * further.
345  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346  * case skb->dev was changed by rx_handler.
347  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
349  *
350  * rx_handlers are functions called from inside __netif_receive_skb(), to do
351  * special processing of the skb, prior to delivery to protocol handlers.
352  *
353  * Currently, a net_device can only have a single rx_handler registered. Trying
354  * to register a second rx_handler will return -EBUSY.
355  *
356  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357  * To unregister a rx_handler on a net_device, use
358  * netdev_rx_handler_unregister().
359  *
360  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361  * do with the skb.
362  *
363  * If the rx_handler consumed to skb in some way, it should return
364  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365  * the skb to be delivered in some other ways.
366  *
367  * If the rx_handler changed skb->dev, to divert the skb to another
368  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369  * new device will be called if it exists.
370  *
371  * If the rx_handler consider the skb should be ignored, it should return
372  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373  * are registered on exact device (ptype->dev == skb->dev).
374  *
375  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376  * delivered, it should return RX_HANDLER_PASS.
377  *
378  * A device without a registered rx_handler will behave as if rx_handler
379  * returned RX_HANDLER_PASS.
380  */
381 
382 enum rx_handler_result {
383         RX_HANDLER_CONSUMED,
384         RX_HANDLER_ANOTHER,
385         RX_HANDLER_EXACT,
386         RX_HANDLER_PASS,
387 };
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
390 
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
393 
394 static inline bool napi_disable_pending(struct napi_struct *n)
395 {
396         return test_bit(NAPI_STATE_DISABLE, &n->state);
397 }
398 
399 /**
400  *      napi_schedule_prep - check if napi can be scheduled
401  *      @n: napi context
402  *
403  * Test if NAPI routine is already running, and if not mark
404  * it as running.  This is used as a condition variable
405  * insure only one NAPI poll instance runs.  We also make
406  * sure there is no pending NAPI disable.
407  */
408 static inline bool napi_schedule_prep(struct napi_struct *n)
409 {
410         return !napi_disable_pending(n) &&
411                 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
412 }
413 
414 /**
415  *      napi_schedule - schedule NAPI poll
416  *      @n: napi context
417  *
418  * Schedule NAPI poll routine to be called if it is not already
419  * running.
420  */
421 static inline void napi_schedule(struct napi_struct *n)
422 {
423         if (napi_schedule_prep(n))
424                 __napi_schedule(n);
425 }
426 
427 /**
428  *      napi_schedule_irqoff - schedule NAPI poll
429  *      @n: napi context
430  *
431  * Variant of napi_schedule(), assuming hard irqs are masked.
432  */
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
434 {
435         if (napi_schedule_prep(n))
436                 __napi_schedule_irqoff(n);
437 }
438 
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
440 static inline bool napi_reschedule(struct napi_struct *napi)
441 {
442         if (napi_schedule_prep(napi)) {
443                 __napi_schedule(napi);
444                 return true;
445         }
446         return false;
447 }
448 
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
451 /**
452  *      napi_complete - NAPI processing complete
453  *      @n: napi context
454  *
455  * Mark NAPI processing as complete.
456  * Consider using napi_complete_done() instead.
457  */
458 static inline void napi_complete(struct napi_struct *n)
459 {
460         return napi_complete_done(n, 0);
461 }
462 
463 /**
464  *      napi_by_id - lookup a NAPI by napi_id
465  *      @napi_id: hashed napi_id
466  *
467  * lookup @napi_id in napi_hash table
468  * must be called under rcu_read_lock()
469  */
470 struct napi_struct *napi_by_id(unsigned int napi_id);
471 
472 /**
473  *      napi_hash_add - add a NAPI to global hashtable
474  *      @napi: napi context
475  *
476  * generate a new napi_id and store a @napi under it in napi_hash
477  */
478 void napi_hash_add(struct napi_struct *napi);
479 
480 /**
481  *      napi_hash_del - remove a NAPI from global table
482  *      @napi: napi context
483  *
484  * Warning: caller must observe rcu grace period
485  * before freeing memory containing @napi
486  */
487 void napi_hash_del(struct napi_struct *napi);
488 
489 /**
490  *      napi_disable - prevent NAPI from scheduling
491  *      @n: napi context
492  *
493  * Stop NAPI from being scheduled on this context.
494  * Waits till any outstanding processing completes.
495  */
496 void napi_disable(struct napi_struct *n);
497 
498 /**
499  *      napi_enable - enable NAPI scheduling
500  *      @n: napi context
501  *
502  * Resume NAPI from being scheduled on this context.
503  * Must be paired with napi_disable.
504  */
505 static inline void napi_enable(struct napi_struct *n)
506 {
507         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508         smp_mb__before_atomic();
509         clear_bit(NAPI_STATE_SCHED, &n->state);
510 }
511 
512 #ifdef CONFIG_SMP
513 /**
514  *      napi_synchronize - wait until NAPI is not running
515  *      @n: napi context
516  *
517  * Wait until NAPI is done being scheduled on this context.
518  * Waits till any outstanding processing completes but
519  * does not disable future activations.
520  */
521 static inline void napi_synchronize(const struct napi_struct *n)
522 {
523         while (test_bit(NAPI_STATE_SCHED, &n->state))
524                 msleep(1);
525 }
526 #else
527 # define napi_synchronize(n)    barrier()
528 #endif
529 
530 enum netdev_queue_state_t {
531         __QUEUE_STATE_DRV_XOFF,
532         __QUEUE_STATE_STACK_XOFF,
533         __QUEUE_STATE_FROZEN,
534 };
535 
536 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
539 
540 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542                                         QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544                                         QUEUE_STATE_FROZEN)
545 
546 /*
547  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
548  * netif_tx_* functions below are used to manipulate this flag.  The
549  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550  * queue independently.  The netif_xmit_*stopped functions below are called
551  * to check if the queue has been stopped by the driver or stack (either
552  * of the XOFF bits are set in the state).  Drivers should not need to call
553  * netif_xmit*stopped functions, they should only be using netif_tx_*.
554  */
555 
556 struct netdev_queue {
557 /*
558  * read mostly part
559  */
560         struct net_device       *dev;
561         struct Qdisc __rcu      *qdisc;
562         struct Qdisc            *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564         struct kobject          kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567         int                     numa_node;
568 #endif
569 /*
570  * write mostly part
571  */
572         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
573         int                     xmit_lock_owner;
574         /*
575          * please use this field instead of dev->trans_start
576          */
577         unsigned long           trans_start;
578 
579         /*
580          * Number of TX timeouts for this queue
581          * (/sys/class/net/DEV/Q/trans_timeout)
582          */
583         unsigned long           trans_timeout;
584 
585         unsigned long           state;
586 
587 #ifdef CONFIG_BQL
588         struct dql              dql;
589 #endif
590         unsigned long           tx_maxrate;
591 } ____cacheline_aligned_in_smp;
592 
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596         return q->numa_node;
597 #else
598         return NUMA_NO_NODE;
599 #endif
600 }
601 
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605         q->numa_node = node;
606 #endif
607 }
608 
609 #ifdef CONFIG_RPS
610 /*
611  * This structure holds an RPS map which can be of variable length.  The
612  * map is an array of CPUs.
613  */
614 struct rps_map {
615         unsigned int len;
616         struct rcu_head rcu;
617         u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620 
621 /*
622  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623  * tail pointer for that CPU's input queue at the time of last enqueue, and
624  * a hardware filter index.
625  */
626 struct rps_dev_flow {
627         u16 cpu;
628         u16 filter;
629         unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632 
633 /*
634  * The rps_dev_flow_table structure contains a table of flow mappings.
635  */
636 struct rps_dev_flow_table {
637         unsigned int mask;
638         struct rcu_head rcu;
639         struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642     ((_num) * sizeof(struct rps_dev_flow)))
643 
644 /*
645  * The rps_sock_flow_table contains mappings of flows to the last CPU
646  * on which they were processed by the application (set in recvmsg).
647  * Each entry is a 32bit value. Upper part is the high order bits
648  * of flow hash, lower part is cpu number.
649  * rps_cpu_mask is used to partition the space, depending on number of
650  * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651  * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652  * meaning we use 32-6=26 bits for the hash.
653  */
654 struct rps_sock_flow_table {
655         u32     mask;
656 
657         u32     ents[0] ____cacheline_aligned_in_smp;
658 };
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
660 
661 #define RPS_NO_CPU 0xffff
662 
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
665 
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667                                         u32 hash)
668 {
669         if (table && hash) {
670                 unsigned int index = hash & table->mask;
671                 u32 val = hash & ~rps_cpu_mask;
672 
673                 /* We only give a hint, preemption can change cpu under us */
674                 val |= raw_smp_processor_id();
675 
676                 if (table->ents[index] != val)
677                         table->ents[index] = val;
678         }
679 }
680 
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683                          u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
686 
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690         struct rps_map __rcu            *rps_map;
691         struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693         struct kobject                  kobj;
694         struct net_device               *dev;
695 } ____cacheline_aligned_in_smp;
696 
697 /*
698  * RX queue sysfs structures and functions.
699  */
700 struct rx_queue_attribute {
701         struct attribute attr;
702         ssize_t (*show)(struct netdev_rx_queue *queue,
703             struct rx_queue_attribute *attr, char *buf);
704         ssize_t (*store)(struct netdev_rx_queue *queue,
705             struct rx_queue_attribute *attr, const char *buf, size_t len);
706 };
707 
708 #ifdef CONFIG_XPS
709 /*
710  * This structure holds an XPS map which can be of variable length.  The
711  * map is an array of queues.
712  */
713 struct xps_map {
714         unsigned int len;
715         unsigned int alloc_len;
716         struct rcu_head rcu;
717         u16 queues[0];
718 };
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))    \
721     / sizeof(u16))
722 
723 /*
724  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
725  */
726 struct xps_dev_maps {
727         struct rcu_head rcu;
728         struct xps_map __rcu *cpu_map[0];
729 };
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +                \
731     (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
733 
734 #define TC_MAX_QUEUE    16
735 #define TC_BITMASK      15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738         u16 count;
739         u16 offset;
740 };
741 
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
743 /*
744  * This structure is to hold information about the device
745  * configured to run FCoE protocol stack.
746  */
747 struct netdev_fcoe_hbainfo {
748         char    manufacturer[64];
749         char    serial_number[64];
750         char    hardware_version[64];
751         char    driver_version[64];
752         char    optionrom_version[64];
753         char    firmware_version[64];
754         char    model[256];
755         char    model_description[256];
756 };
757 #endif
758 
759 #define MAX_PHYS_ITEM_ID_LEN 32
760 
761 /* This structure holds a unique identifier to identify some
762  * physical item (port for example) used by a netdevice.
763  */
764 struct netdev_phys_item_id {
765         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766         unsigned char id_len;
767 };
768 
769 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
770                                        struct sk_buff *skb);
771 
772 /*
773  * This structure defines the management hooks for network devices.
774  * The following hooks can be defined; unless noted otherwise, they are
775  * optional and can be filled with a null pointer.
776  *
777  * int (*ndo_init)(struct net_device *dev);
778  *     This function is called once when network device is registered.
779  *     The network device can use this to any late stage initializaton
780  *     or semantic validattion. It can fail with an error code which will
781  *     be propogated back to register_netdev
782  *
783  * void (*ndo_uninit)(struct net_device *dev);
784  *     This function is called when device is unregistered or when registration
785  *     fails. It is not called if init fails.
786  *
787  * int (*ndo_open)(struct net_device *dev);
788  *     This function is called when network device transistions to the up
789  *     state.
790  *
791  * int (*ndo_stop)(struct net_device *dev);
792  *     This function is called when network device transistions to the down
793  *     state.
794  *
795  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
796  *                               struct net_device *dev);
797  *      Called when a packet needs to be transmitted.
798  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
799  *      the queue before that can happen; it's for obsolete devices and weird
800  *      corner cases, but the stack really does a non-trivial amount
801  *      of useless work if you return NETDEV_TX_BUSY.
802  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
803  *      Required can not be NULL.
804  *
805  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
806  *                         void *accel_priv, select_queue_fallback_t fallback);
807  *      Called to decide which queue to when device supports multiple
808  *      transmit queues.
809  *
810  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
811  *      This function is called to allow device receiver to make
812  *      changes to configuration when multicast or promiscious is enabled.
813  *
814  * void (*ndo_set_rx_mode)(struct net_device *dev);
815  *      This function is called device changes address list filtering.
816  *      If driver handles unicast address filtering, it should set
817  *      IFF_UNICAST_FLT to its priv_flags.
818  *
819  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
820  *      This function  is called when the Media Access Control address
821  *      needs to be changed. If this interface is not defined, the
822  *      mac address can not be changed.
823  *
824  * int (*ndo_validate_addr)(struct net_device *dev);
825  *      Test if Media Access Control address is valid for the device.
826  *
827  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
828  *      Called when a user request an ioctl which can't be handled by
829  *      the generic interface code. If not defined ioctl's return
830  *      not supported error code.
831  *
832  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
833  *      Used to set network devices bus interface parameters. This interface
834  *      is retained for legacy reason, new devices should use the bus
835  *      interface (PCI) for low level management.
836  *
837  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
838  *      Called when a user wants to change the Maximum Transfer Unit
839  *      of a device. If not defined, any request to change MTU will
840  *      will return an error.
841  *
842  * void (*ndo_tx_timeout)(struct net_device *dev);
843  *      Callback uses when the transmitter has not made any progress
844  *      for dev->watchdog ticks.
845  *
846  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
847  *                      struct rtnl_link_stats64 *storage);
848  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
849  *      Called when a user wants to get the network device usage
850  *      statistics. Drivers must do one of the following:
851  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
852  *         rtnl_link_stats64 structure passed by the caller.
853  *      2. Define @ndo_get_stats to update a net_device_stats structure
854  *         (which should normally be dev->stats) and return a pointer to
855  *         it. The structure may be changed asynchronously only if each
856  *         field is written atomically.
857  *      3. Update dev->stats asynchronously and atomically, and define
858  *         neither operation.
859  *
860  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
861  *      If device support VLAN filtering this function is called when a
862  *      VLAN id is registered.
863  *
864  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
865  *      If device support VLAN filtering this function is called when a
866  *      VLAN id is unregistered.
867  *
868  * void (*ndo_poll_controller)(struct net_device *dev);
869  *
870  *      SR-IOV management functions.
871  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
872  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
873  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
874  *                        int max_tx_rate);
875  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
876  * int (*ndo_get_vf_config)(struct net_device *dev,
877  *                          int vf, struct ifla_vf_info *ivf);
878  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
879  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
880  *                        struct nlattr *port[]);
881  *
882  *      Enable or disable the VF ability to query its RSS Redirection Table and
883  *      Hash Key. This is needed since on some devices VF share this information
884  *      with PF and querying it may adduce a theoretical security risk.
885  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
886  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
887  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
888  *      Called to setup 'tc' number of traffic classes in the net device. This
889  *      is always called from the stack with the rtnl lock held and netif tx
890  *      queues stopped. This allows the netdevice to perform queue management
891  *      safely.
892  *
893  *      Fiber Channel over Ethernet (FCoE) offload functions.
894  * int (*ndo_fcoe_enable)(struct net_device *dev);
895  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
896  *      so the underlying device can perform whatever needed configuration or
897  *      initialization to support acceleration of FCoE traffic.
898  *
899  * int (*ndo_fcoe_disable)(struct net_device *dev);
900  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
901  *      so the underlying device can perform whatever needed clean-ups to
902  *      stop supporting acceleration of FCoE traffic.
903  *
904  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
905  *                           struct scatterlist *sgl, unsigned int sgc);
906  *      Called when the FCoE Initiator wants to initialize an I/O that
907  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
908  *      perform necessary setup and returns 1 to indicate the device is set up
909  *      successfully to perform DDP on this I/O, otherwise this returns 0.
910  *
911  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
912  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
913  *      indicated by the FC exchange id 'xid', so the underlying device can
914  *      clean up and reuse resources for later DDP requests.
915  *
916  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
917  *                            struct scatterlist *sgl, unsigned int sgc);
918  *      Called when the FCoE Target wants to initialize an I/O that
919  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
920  *      perform necessary setup and returns 1 to indicate the device is set up
921  *      successfully to perform DDP on this I/O, otherwise this returns 0.
922  *
923  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
924  *                             struct netdev_fcoe_hbainfo *hbainfo);
925  *      Called when the FCoE Protocol stack wants information on the underlying
926  *      device. This information is utilized by the FCoE protocol stack to
927  *      register attributes with Fiber Channel management service as per the
928  *      FC-GS Fabric Device Management Information(FDMI) specification.
929  *
930  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
931  *      Called when the underlying device wants to override default World Wide
932  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
933  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
934  *      protocol stack to use.
935  *
936  *      RFS acceleration.
937  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
938  *                          u16 rxq_index, u32 flow_id);
939  *      Set hardware filter for RFS.  rxq_index is the target queue index;
940  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
941  *      Return the filter ID on success, or a negative error code.
942  *
943  *      Slave management functions (for bridge, bonding, etc).
944  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
945  *      Called to make another netdev an underling.
946  *
947  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
948  *      Called to release previously enslaved netdev.
949  *
950  *      Feature/offload setting functions.
951  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
952  *              netdev_features_t features);
953  *      Adjusts the requested feature flags according to device-specific
954  *      constraints, and returns the resulting flags. Must not modify
955  *      the device state.
956  *
957  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
958  *      Called to update device configuration to new features. Passed
959  *      feature set might be less than what was returned by ndo_fix_features()).
960  *      Must return >0 or -errno if it changed dev->features itself.
961  *
962  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
963  *                    struct net_device *dev,
964  *                    const unsigned char *addr, u16 vid, u16 flags)
965  *      Adds an FDB entry to dev for addr.
966  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
967  *                    struct net_device *dev,
968  *                    const unsigned char *addr, u16 vid)
969  *      Deletes the FDB entry from dev coresponding to addr.
970  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
971  *                     struct net_device *dev, struct net_device *filter_dev,
972  *                     int idx)
973  *      Used to add FDB entries to dump requests. Implementers should add
974  *      entries to skb and update idx with the number of entries.
975  *
976  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
977  *                           u16 flags)
978  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
979  *                           struct net_device *dev, u32 filter_mask,
980  *                           int nlflags)
981  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
982  *                           u16 flags);
983  *
984  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
985  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
986  *      which do not represent real hardware may define this to allow their
987  *      userspace components to manage their virtual carrier state. Devices
988  *      that determine carrier state from physical hardware properties (eg
989  *      network cables) or protocol-dependent mechanisms (eg
990  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
991  *
992  * int (*ndo_get_phys_port_id)(struct net_device *dev,
993  *                             struct netdev_phys_item_id *ppid);
994  *      Called to get ID of physical port of this device. If driver does
995  *      not implement this, it is assumed that the hw is not able to have
996  *      multiple net devices on single physical port.
997  *
998  * void (*ndo_add_vxlan_port)(struct  net_device *dev,
999  *                            sa_family_t sa_family, __be16 port);
1000  *      Called by vxlan to notiy a driver about the UDP port and socket
1001  *      address family that vxlan is listnening to. It is called only when
1002  *      a new port starts listening. The operation is protected by the
1003  *      vxlan_net->sock_lock.
1004  *
1005  * void (*ndo_del_vxlan_port)(struct  net_device *dev,
1006  *                            sa_family_t sa_family, __be16 port);
1007  *      Called by vxlan to notify the driver about a UDP port and socket
1008  *      address family that vxlan is not listening to anymore. The operation
1009  *      is protected by the vxlan_net->sock_lock.
1010  *
1011  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1012  *                               struct net_device *dev)
1013  *      Called by upper layer devices to accelerate switching or other
1014  *      station functionality into hardware. 'pdev is the lowerdev
1015  *      to use for the offload and 'dev' is the net device that will
1016  *      back the offload. Returns a pointer to the private structure
1017  *      the upper layer will maintain.
1018  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1019  *      Called by upper layer device to delete the station created
1020  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1021  *      the station and priv is the structure returned by the add
1022  *      operation.
1023  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1024  *                                    struct net_device *dev,
1025  *                                    void *priv);
1026  *      Callback to use for xmit over the accelerated station. This
1027  *      is used in place of ndo_start_xmit on accelerated net
1028  *      devices.
1029  * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1030  *                                          struct net_device *dev
1031  *                                          netdev_features_t features);
1032  *      Called by core transmit path to determine if device is capable of
1033  *      performing offload operations on a given packet. This is to give
1034  *      the device an opportunity to implement any restrictions that cannot
1035  *      be otherwise expressed by feature flags. The check is called with
1036  *      the set of features that the stack has calculated and it returns
1037  *      those the driver believes to be appropriate.
1038  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1039  *                           int queue_index, u32 maxrate);
1040  *      Called when a user wants to set a max-rate limitation of specific
1041  *      TX queue.
1042  * int (*ndo_get_iflink)(const struct net_device *dev);
1043  *      Called to get the iflink value of this device.
1044  */
1045 struct net_device_ops {
1046         int                     (*ndo_init)(struct net_device *dev);
1047         void                    (*ndo_uninit)(struct net_device *dev);
1048         int                     (*ndo_open)(struct net_device *dev);
1049         int                     (*ndo_stop)(struct net_device *dev);
1050         netdev_tx_t             (*ndo_start_xmit) (struct sk_buff *skb,
1051                                                    struct net_device *dev);
1052         u16                     (*ndo_select_queue)(struct net_device *dev,
1053                                                     struct sk_buff *skb,
1054                                                     void *accel_priv,
1055                                                     select_queue_fallback_t fallback);
1056         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1057                                                        int flags);
1058         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1059         int                     (*ndo_set_mac_address)(struct net_device *dev,
1060                                                        void *addr);
1061         int                     (*ndo_validate_addr)(struct net_device *dev);
1062         int                     (*ndo_do_ioctl)(struct net_device *dev,
1063                                                 struct ifreq *ifr, int cmd);
1064         int                     (*ndo_set_config)(struct net_device *dev,
1065                                                   struct ifmap *map);
1066         int                     (*ndo_change_mtu)(struct net_device *dev,
1067                                                   int new_mtu);
1068         int                     (*ndo_neigh_setup)(struct net_device *dev,
1069                                                    struct neigh_parms *);
1070         void                    (*ndo_tx_timeout) (struct net_device *dev);
1071 
1072         struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1073                                                      struct rtnl_link_stats64 *storage);
1074         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1075 
1076         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1077                                                        __be16 proto, u16 vid);
1078         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1079                                                         __be16 proto, u16 vid);
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081         void                    (*ndo_poll_controller)(struct net_device *dev);
1082         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1083                                                      struct netpoll_info *info);
1084         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1085 #endif
1086 #ifdef CONFIG_NET_RX_BUSY_POLL
1087         int                     (*ndo_busy_poll)(struct napi_struct *dev);
1088 #endif
1089         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1090                                                   int queue, u8 *mac);
1091         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1092                                                    int queue, u16 vlan, u8 qos);
1093         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1094                                                    int vf, int min_tx_rate,
1095                                                    int max_tx_rate);
1096         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1097                                                        int vf, bool setting);
1098         int                     (*ndo_get_vf_config)(struct net_device *dev,
1099                                                      int vf,
1100                                                      struct ifla_vf_info *ivf);
1101         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1102                                                          int vf, int link_state);
1103         int                     (*ndo_set_vf_port)(struct net_device *dev,
1104                                                    int vf,
1105                                                    struct nlattr *port[]);
1106         int                     (*ndo_get_vf_port)(struct net_device *dev,
1107                                                    int vf, struct sk_buff *skb);
1108         int                     (*ndo_set_vf_rss_query_en)(
1109                                                    struct net_device *dev,
1110                                                    int vf, bool setting);
1111         int                     (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1112 #if IS_ENABLED(CONFIG_FCOE)
1113         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1114         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1115         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1116                                                       u16 xid,
1117                                                       struct scatterlist *sgl,
1118                                                       unsigned int sgc);
1119         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1120                                                      u16 xid);
1121         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1122                                                        u16 xid,
1123                                                        struct scatterlist *sgl,
1124                                                        unsigned int sgc);
1125         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126                                                         struct netdev_fcoe_hbainfo *hbainfo);
1127 #endif
1128 
1129 #if IS_ENABLED(CONFIG_LIBFCOE)
1130 #define NETDEV_FCOE_WWNN 0
1131 #define NETDEV_FCOE_WWPN 1
1132         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1133                                                     u64 *wwn, int type);
1134 #endif
1135 
1136 #ifdef CONFIG_RFS_ACCEL
1137         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1138                                                      const struct sk_buff *skb,
1139                                                      u16 rxq_index,
1140                                                      u32 flow_id);
1141 #endif
1142         int                     (*ndo_add_slave)(struct net_device *dev,
1143                                                  struct net_device *slave_dev);
1144         int                     (*ndo_del_slave)(struct net_device *dev,
1145                                                  struct net_device *slave_dev);
1146         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1147                                                     netdev_features_t features);
1148         int                     (*ndo_set_features)(struct net_device *dev,
1149                                                     netdev_features_t features);
1150         int                     (*ndo_neigh_construct)(struct neighbour *n);
1151         void                    (*ndo_neigh_destroy)(struct neighbour *n);
1152 
1153         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1154                                                struct nlattr *tb[],
1155                                                struct net_device *dev,
1156                                                const unsigned char *addr,
1157                                                u16 vid,
1158                                                u16 flags);
1159         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1160                                                struct nlattr *tb[],
1161                                                struct net_device *dev,
1162                                                const unsigned char *addr,
1163                                                u16 vid);
1164         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1165                                                 struct netlink_callback *cb,
1166                                                 struct net_device *dev,
1167                                                 struct net_device *filter_dev,
1168                                                 int idx);
1169 
1170         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1171                                                       struct nlmsghdr *nlh,
1172                                                       u16 flags);
1173         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1174                                                       u32 pid, u32 seq,
1175                                                       struct net_device *dev,
1176                                                       u32 filter_mask,
1177                                                       int nlflags);
1178         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1179                                                       struct nlmsghdr *nlh,
1180                                                       u16 flags);
1181         int                     (*ndo_change_carrier)(struct net_device *dev,
1182                                                       bool new_carrier);
1183         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1184                                                         struct netdev_phys_item_id *ppid);
1185         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1186                                                           char *name, size_t len);
1187         void                    (*ndo_add_vxlan_port)(struct  net_device *dev,
1188                                                       sa_family_t sa_family,
1189                                                       __be16 port);
1190         void                    (*ndo_del_vxlan_port)(struct  net_device *dev,
1191                                                       sa_family_t sa_family,
1192                                                       __be16 port);
1193 
1194         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1195                                                         struct net_device *dev);
1196         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1197                                                         void *priv);
1198 
1199         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1200                                                         struct net_device *dev,
1201                                                         void *priv);
1202         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1203         netdev_features_t       (*ndo_features_check) (struct sk_buff *skb,
1204                                                        struct net_device *dev,
1205                                                        netdev_features_t features);
1206         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1207                                                       int queue_index,
1208                                                       u32 maxrate);
1209         int                     (*ndo_get_iflink)(const struct net_device *dev);
1210 };
1211 
1212 /**
1213  * enum net_device_priv_flags - &struct net_device priv_flags
1214  *
1215  * These are the &struct net_device, they are only set internally
1216  * by drivers and used in the kernel. These flags are invisible to
1217  * userspace, this means that the order of these flags can change
1218  * during any kernel release.
1219  *
1220  * You should have a pretty good reason to be extending these flags.
1221  *
1222  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1223  * @IFF_EBRIDGE: Ethernet bridging device
1224  * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1225  * @IFF_MASTER_8023AD: bonding master, 802.3ad
1226  * @IFF_MASTER_ALB: bonding master, balance-alb
1227  * @IFF_BONDING: bonding master or slave
1228  * @IFF_SLAVE_NEEDARP: need ARPs for validation
1229  * @IFF_ISATAP: ISATAP interface (RFC4214)
1230  * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1231  * @IFF_WAN_HDLC: WAN HDLC device
1232  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1233  *      release skb->dst
1234  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1235  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1236  * @IFF_MACVLAN_PORT: device used as macvlan port
1237  * @IFF_BRIDGE_PORT: device used as bridge port
1238  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1239  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1240  * @IFF_UNICAST_FLT: Supports unicast filtering
1241  * @IFF_TEAM_PORT: device used as team port
1242  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1243  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1244  *      change when it's running
1245  * @IFF_MACVLAN: Macvlan device
1246  */
1247 enum netdev_priv_flags {
1248         IFF_802_1Q_VLAN                 = 1<<0,
1249         IFF_EBRIDGE                     = 1<<1,
1250         IFF_SLAVE_INACTIVE              = 1<<2,
1251         IFF_MASTER_8023AD               = 1<<3,
1252         IFF_MASTER_ALB                  = 1<<4,
1253         IFF_BONDING                     = 1<<5,
1254         IFF_SLAVE_NEEDARP               = 1<<6,
1255         IFF_ISATAP                      = 1<<7,
1256         IFF_MASTER_ARPMON               = 1<<8,
1257         IFF_WAN_HDLC                    = 1<<9,
1258         IFF_XMIT_DST_RELEASE            = 1<<10,
1259         IFF_DONT_BRIDGE                 = 1<<11,
1260         IFF_DISABLE_NETPOLL             = 1<<12,
1261         IFF_MACVLAN_PORT                = 1<<13,
1262         IFF_BRIDGE_PORT                 = 1<<14,
1263         IFF_OVS_DATAPATH                = 1<<15,
1264         IFF_TX_SKB_SHARING              = 1<<16,
1265         IFF_UNICAST_FLT                 = 1<<17,
1266         IFF_TEAM_PORT                   = 1<<18,
1267         IFF_SUPP_NOFCS                  = 1<<19,
1268         IFF_LIVE_ADDR_CHANGE            = 1<<20,
1269         IFF_MACVLAN                     = 1<<21,
1270         IFF_XMIT_DST_RELEASE_PERM       = 1<<22,
1271         IFF_IPVLAN_MASTER               = 1<<23,
1272         IFF_IPVLAN_SLAVE                = 1<<24,
1273 };
1274 
1275 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1276 #define IFF_EBRIDGE                     IFF_EBRIDGE
1277 #define IFF_SLAVE_INACTIVE              IFF_SLAVE_INACTIVE
1278 #define IFF_MASTER_8023AD               IFF_MASTER_8023AD
1279 #define IFF_MASTER_ALB                  IFF_MASTER_ALB
1280 #define IFF_BONDING                     IFF_BONDING
1281 #define IFF_SLAVE_NEEDARP               IFF_SLAVE_NEEDARP
1282 #define IFF_ISATAP                      IFF_ISATAP
1283 #define IFF_MASTER_ARPMON               IFF_MASTER_ARPMON
1284 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1285 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1286 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1287 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1288 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1289 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1290 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1291 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1292 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1293 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1294 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1295 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1296 #define IFF_MACVLAN                     IFF_MACVLAN
1297 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1298 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1299 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1300 
1301 /**
1302  *      struct net_device - The DEVICE structure.
1303  *              Actually, this whole structure is a big mistake.  It mixes I/O
1304  *              data with strictly "high-level" data, and it has to know about
1305  *              almost every data structure used in the INET module.
1306  *
1307  *      @name:  This is the first field of the "visible" part of this structure
1308  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1309  *              of the interface.
1310  *
1311  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1312  *      @ifalias:       SNMP alias
1313  *      @mem_end:       Shared memory end
1314  *      @mem_start:     Shared memory start
1315  *      @base_addr:     Device I/O address
1316  *      @irq:           Device IRQ number
1317  *
1318  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1319  *
1320  *      @state:         Generic network queuing layer state, see netdev_state_t
1321  *      @dev_list:      The global list of network devices
1322  *      @napi_list:     List entry, that is used for polling napi devices
1323  *      @unreg_list:    List entry, that is used, when we are unregistering the
1324  *                      device, see the function unregister_netdev
1325  *      @close_list:    List entry, that is used, when we are closing the device
1326  *
1327  *      @adj_list:      Directly linked devices, like slaves for bonding
1328  *      @all_adj_list:  All linked devices, *including* neighbours
1329  *      @features:      Currently active device features
1330  *      @hw_features:   User-changeable features
1331  *
1332  *      @wanted_features:       User-requested features
1333  *      @vlan_features:         Mask of features inheritable by VLAN devices
1334  *
1335  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1336  *                              This field indicates what encapsulation
1337  *                              offloads the hardware is capable of doing,
1338  *                              and drivers will need to set them appropriately.
1339  *
1340  *      @mpls_features: Mask of features inheritable by MPLS
1341  *
1342  *      @ifindex:       interface index
1343  *      @group:         The group, that the device belongs to
1344  *
1345  *      @stats:         Statistics struct, which was left as a legacy, use
1346  *                      rtnl_link_stats64 instead
1347  *
1348  *      @rx_dropped:    Dropped packets by core network,
1349  *                      do not use this in drivers
1350  *      @tx_dropped:    Dropped packets by core network,
1351  *                      do not use this in drivers
1352  *
1353  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1354  *                              instead of ioctl,
1355  *                              see <net/iw_handler.h> for details.
1356  *      @wireless_data: Instance data managed by the core of wireless extensions
1357  *
1358  *      @netdev_ops:    Includes several pointers to callbacks,
1359  *                      if one wants to override the ndo_*() functions
1360  *      @ethtool_ops:   Management operations
1361  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1362  *                      of Layer 2 headers.
1363  *
1364  *      @flags:         Interface flags (a la BSD)
1365  *      @priv_flags:    Like 'flags' but invisible to userspace,
1366  *                      see if.h for the definitions
1367  *      @gflags:        Global flags ( kept as legacy )
1368  *      @padded:        How much padding added by alloc_netdev()
1369  *      @operstate:     RFC2863 operstate
1370  *      @link_mode:     Mapping policy to operstate
1371  *      @if_port:       Selectable AUI, TP, ...
1372  *      @dma:           DMA channel
1373  *      @mtu:           Interface MTU value
1374  *      @type:          Interface hardware type
1375  *      @hard_header_len: Hardware header length
1376  *
1377  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1378  *                        cases can this be guaranteed
1379  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1380  *                        cases can this be guaranteed. Some cases also use
1381  *                        LL_MAX_HEADER instead to allocate the skb
1382  *
1383  *      interface address info:
1384  *
1385  *      @perm_addr:             Permanent hw address
1386  *      @addr_assign_type:      Hw address assignment type
1387  *      @addr_len:              Hardware address length
1388  *      @neigh_priv_len;        Used in neigh_alloc(),
1389  *                              initialized only in atm/clip.c
1390  *      @dev_id:                Used to differentiate devices that share
1391  *                              the same link layer address
1392  *      @dev_port:              Used to differentiate devices that share
1393  *                              the same function
1394  *      @addr_list_lock:        XXX: need comments on this one
1395  *      @uc_promisc:            Counter, that indicates, that promiscuous mode
1396  *                              has been enabled due to the need to listen to
1397  *                              additional unicast addresses in a device that
1398  *                              does not implement ndo_set_rx_mode()
1399  *      @uc:                    unicast mac addresses
1400  *      @mc:                    multicast mac addresses
1401  *      @dev_addrs:             list of device hw addresses
1402  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1403  *      @promiscuity:           Number of times, the NIC is told to work in
1404  *                              Promiscuous mode, if it becomes 0 the NIC will
1405  *                              exit from working in Promiscuous mode
1406  *      @allmulti:              Counter, enables or disables allmulticast mode
1407  *
1408  *      @vlan_info:     VLAN info
1409  *      @dsa_ptr:       dsa specific data
1410  *      @tipc_ptr:      TIPC specific data
1411  *      @atalk_ptr:     AppleTalk link
1412  *      @ip_ptr:        IPv4 specific data
1413  *      @dn_ptr:        DECnet specific data
1414  *      @ip6_ptr:       IPv6 specific data
1415  *      @ax25_ptr:      AX.25 specific data
1416  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1417  *
1418  *      @last_rx:       Time of last Rx
1419  *      @dev_addr:      Hw address (before bcast,
1420  *                      because most packets are unicast)
1421  *
1422  *      @_rx:                   Array of RX queues
1423  *      @num_rx_queues:         Number of RX queues
1424  *                              allocated at register_netdev() time
1425  *      @real_num_rx_queues:    Number of RX queues currently active in device
1426  *
1427  *      @rx_handler:            handler for received packets
1428  *      @rx_handler_data:       XXX: need comments on this one
1429  *      @ingress_queue:         XXX: need comments on this one
1430  *      @broadcast:             hw bcast address
1431  *
1432  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1433  *                      indexed by RX queue number. Assigned by driver.
1434  *                      This must only be set if the ndo_rx_flow_steer
1435  *                      operation is defined
1436  *      @index_hlist:           Device index hash chain
1437  *
1438  *      @_tx:                   Array of TX queues
1439  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1440  *      @real_num_tx_queues:    Number of TX queues currently active in device
1441  *      @qdisc:                 Root qdisc from userspace point of view
1442  *      @tx_queue_len:          Max frames per queue allowed
1443  *      @tx_global_lock:        XXX: need comments on this one
1444  *
1445  *      @xps_maps:      XXX: need comments on this one
1446  *
1447  *      @trans_start:           Time (in jiffies) of last Tx
1448  *      @watchdog_timeo:        Represents the timeout that is used by
1449  *                              the watchdog ( see dev_watchdog() )
1450  *      @watchdog_timer:        List of timers
1451  *
1452  *      @pcpu_refcnt:           Number of references to this device
1453  *      @todo_list:             Delayed register/unregister
1454  *      @link_watch_list:       XXX: need comments on this one
1455  *
1456  *      @reg_state:             Register/unregister state machine
1457  *      @dismantle:             Device is going to be freed
1458  *      @rtnl_link_state:       This enum represents the phases of creating
1459  *                              a new link
1460  *
1461  *      @destructor:            Called from unregister,
1462  *                              can be used to call free_netdev
1463  *      @npinfo:                XXX: need comments on this one
1464  *      @nd_net:                Network namespace this network device is inside
1465  *
1466  *      @ml_priv:       Mid-layer private
1467  *      @lstats:        Loopback statistics
1468  *      @tstats:        Tunnel statistics
1469  *      @dstats:        Dummy statistics
1470  *      @vstats:        Virtual ethernet statistics
1471  *
1472  *      @garp_port:     GARP
1473  *      @mrp_port:      MRP
1474  *
1475  *      @dev:           Class/net/name entry
1476  *      @sysfs_groups:  Space for optional device, statistics and wireless
1477  *                      sysfs groups
1478  *
1479  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1480  *      @rtnl_link_ops: Rtnl_link_ops
1481  *
1482  *      @gso_max_size:  Maximum size of generic segmentation offload
1483  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1484  *                      NIC for GSO
1485  *      @gso_min_segs:  Minimum number of segments that can be passed to the
1486  *                      NIC for GSO
1487  *
1488  *      @dcbnl_ops:     Data Center Bridging netlink ops
1489  *      @num_tc:        Number of traffic classes in the net device
1490  *      @tc_to_txq:     XXX: need comments on this one
1491  *      @prio_tc_map    XXX: need comments on this one
1492  *
1493  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1494  *
1495  *      @priomap:       XXX: need comments on this one
1496  *      @phydev:        Physical device may attach itself
1497  *                      for hardware timestamping
1498  *
1499  *      @qdisc_tx_busylock:     XXX: need comments on this one
1500  *
1501  *      FIXME: cleanup struct net_device such that network protocol info
1502  *      moves out.
1503  */
1504 
1505 struct net_device {
1506         char                    name[IFNAMSIZ];
1507         struct hlist_node       name_hlist;
1508         char                    *ifalias;
1509         /*
1510          *      I/O specific fields
1511          *      FIXME: Merge these and struct ifmap into one
1512          */
1513         unsigned long           mem_end;
1514         unsigned long           mem_start;
1515         unsigned long           base_addr;
1516         int                     irq;
1517 
1518         atomic_t                carrier_changes;
1519 
1520         /*
1521          *      Some hardware also needs these fields (state,dev_list,
1522          *      napi_list,unreg_list,close_list) but they are not
1523          *      part of the usual set specified in Space.c.
1524          */
1525 
1526         unsigned long           state;
1527 
1528         struct list_head        dev_list;
1529         struct list_head        napi_list;
1530         struct list_head        unreg_list;
1531         struct list_head        close_list;
1532         struct list_head        ptype_all;
1533         struct list_head        ptype_specific;
1534 
1535         struct {
1536                 struct list_head upper;
1537                 struct list_head lower;
1538         } adj_list;
1539 
1540         struct {
1541                 struct list_head upper;
1542                 struct list_head lower;
1543         } all_adj_list;
1544 
1545         netdev_features_t       features;
1546         netdev_features_t       hw_features;
1547         netdev_features_t       wanted_features;
1548         netdev_features_t       vlan_features;
1549         netdev_features_t       hw_enc_features;
1550         netdev_features_t       mpls_features;
1551 
1552         int                     ifindex;
1553         int                     group;
1554 
1555         struct net_device_stats stats;
1556 
1557         atomic_long_t           rx_dropped;
1558         atomic_long_t           tx_dropped;
1559 
1560 #ifdef CONFIG_WIRELESS_EXT
1561         const struct iw_handler_def *   wireless_handlers;
1562         struct iw_public_data * wireless_data;
1563 #endif
1564         const struct net_device_ops *netdev_ops;
1565         const struct ethtool_ops *ethtool_ops;
1566 #ifdef CONFIG_NET_SWITCHDEV
1567         const struct swdev_ops *swdev_ops;
1568 #endif
1569 
1570         const struct header_ops *header_ops;
1571 
1572         unsigned int            flags;
1573         unsigned int            priv_flags;
1574 
1575         unsigned short          gflags;
1576         unsigned short          padded;
1577 
1578         unsigned char           operstate;
1579         unsigned char           link_mode;
1580 
1581         unsigned char           if_port;
1582         unsigned char           dma;
1583 
1584         unsigned int            mtu;
1585         unsigned short          type;
1586         unsigned short          hard_header_len;
1587 
1588         unsigned short          needed_headroom;
1589         unsigned short          needed_tailroom;
1590 
1591         /* Interface address info. */
1592         unsigned char           perm_addr[MAX_ADDR_LEN];
1593         unsigned char           addr_assign_type;
1594         unsigned char           addr_len;
1595         unsigned short          neigh_priv_len;
1596         unsigned short          dev_id;
1597         unsigned short          dev_port;
1598         spinlock_t              addr_list_lock;
1599         unsigned char           name_assign_type;
1600         bool                    uc_promisc;
1601         struct netdev_hw_addr_list      uc;
1602         struct netdev_hw_addr_list      mc;
1603         struct netdev_hw_addr_list      dev_addrs;
1604 
1605 #ifdef CONFIG_SYSFS
1606         struct kset             *queues_kset;
1607 #endif
1608         unsigned int            promiscuity;
1609         unsigned int            allmulti;
1610 
1611 
1612         /* Protocol specific pointers */
1613 
1614 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1615         struct vlan_info __rcu  *vlan_info;
1616 #endif
1617 #if IS_ENABLED(CONFIG_NET_DSA)
1618         struct dsa_switch_tree  *dsa_ptr;
1619 #endif
1620 #if IS_ENABLED(CONFIG_TIPC)
1621         struct tipc_bearer __rcu *tipc_ptr;
1622 #endif
1623         void                    *atalk_ptr;
1624         struct in_device __rcu  *ip_ptr;
1625         struct dn_dev __rcu     *dn_ptr;
1626         struct inet6_dev __rcu  *ip6_ptr;
1627         void                    *ax25_ptr;
1628         struct wireless_dev     *ieee80211_ptr;
1629         struct wpan_dev         *ieee802154_ptr;
1630 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1631         struct mpls_dev __rcu   *mpls_ptr;
1632 #endif
1633 
1634 /*
1635  * Cache lines mostly used on receive path (including eth_type_trans())
1636  */
1637         unsigned long           last_rx;
1638 
1639         /* Interface address info used in eth_type_trans() */
1640         unsigned char           *dev_addr;
1641 
1642 
1643 #ifdef CONFIG_SYSFS
1644         struct netdev_rx_queue  *_rx;
1645 
1646         unsigned int            num_rx_queues;
1647         unsigned int            real_num_rx_queues;
1648 
1649 #endif
1650 
1651         unsigned long           gro_flush_timeout;
1652         rx_handler_func_t __rcu *rx_handler;
1653         void __rcu              *rx_handler_data;
1654 
1655         struct netdev_queue __rcu *ingress_queue;
1656         unsigned char           broadcast[MAX_ADDR_LEN];
1657 #ifdef CONFIG_RFS_ACCEL
1658         struct cpu_rmap         *rx_cpu_rmap;
1659 #endif
1660         struct hlist_node       index_hlist;
1661 
1662 /*
1663  * Cache lines mostly used on transmit path
1664  */
1665         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1666         unsigned int            num_tx_queues;
1667         unsigned int            real_num_tx_queues;
1668         struct Qdisc            *qdisc;
1669         unsigned long           tx_queue_len;
1670         spinlock_t              tx_global_lock;
1671         int                     watchdog_timeo;
1672 
1673 #ifdef CONFIG_XPS
1674         struct xps_dev_maps __rcu *xps_maps;
1675 #endif
1676 
1677         /* These may be needed for future network-power-down code. */
1678 
1679         /*
1680          * trans_start here is expensive for high speed devices on SMP,
1681          * please use netdev_queue->trans_start instead.
1682          */
1683         unsigned long           trans_start;
1684 
1685         struct timer_list       watchdog_timer;
1686 
1687         int __percpu            *pcpu_refcnt;
1688         struct list_head        todo_list;
1689 
1690         struct list_head        link_watch_list;
1691 
1692         enum { NETREG_UNINITIALIZED=0,
1693                NETREG_REGISTERED,       /* completed register_netdevice */
1694                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1695                NETREG_UNREGISTERED,     /* completed unregister todo */
1696                NETREG_RELEASED,         /* called free_netdev */
1697                NETREG_DUMMY,            /* dummy device for NAPI poll */
1698         } reg_state:8;
1699 
1700         bool dismantle;
1701 
1702         enum {
1703                 RTNL_LINK_INITIALIZED,
1704                 RTNL_LINK_INITIALIZING,
1705         } rtnl_link_state:16;
1706 
1707         void (*destructor)(struct net_device *dev);
1708 
1709 #ifdef CONFIG_NETPOLL
1710         struct netpoll_info __rcu       *npinfo;
1711 #endif
1712 
1713         possible_net_t                  nd_net;
1714 
1715         /* mid-layer private */
1716         union {
1717                 void                                    *ml_priv;
1718                 struct pcpu_lstats __percpu             *lstats;
1719                 struct pcpu_sw_netstats __percpu        *tstats;
1720                 struct pcpu_dstats __percpu             *dstats;
1721                 struct pcpu_vstats __percpu             *vstats;
1722         };
1723 
1724         struct garp_port __rcu  *garp_port;
1725         struct mrp_port __rcu   *mrp_port;
1726 
1727         struct device   dev;
1728         const struct attribute_group *sysfs_groups[4];
1729         const struct attribute_group *sysfs_rx_queue_group;
1730 
1731         const struct rtnl_link_ops *rtnl_link_ops;
1732 
1733         /* for setting kernel sock attribute on TCP connection setup */
1734 #define GSO_MAX_SIZE            65536
1735         unsigned int            gso_max_size;
1736 #define GSO_MAX_SEGS            65535
1737         u16                     gso_max_segs;
1738         u16                     gso_min_segs;
1739 #ifdef CONFIG_DCB
1740         const struct dcbnl_rtnl_ops *dcbnl_ops;
1741 #endif
1742         u8 num_tc;
1743         struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1744         u8 prio_tc_map[TC_BITMASK + 1];
1745 
1746 #if IS_ENABLED(CONFIG_FCOE)
1747         unsigned int            fcoe_ddp_xid;
1748 #endif
1749 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1750         struct netprio_map __rcu *priomap;
1751 #endif
1752         struct phy_device *phydev;
1753         struct lock_class_key *qdisc_tx_busylock;
1754 };
1755 #define to_net_dev(d) container_of(d, struct net_device, dev)
1756 
1757 #define NETDEV_ALIGN            32
1758 
1759 static inline
1760 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1761 {
1762         return dev->prio_tc_map[prio & TC_BITMASK];
1763 }
1764 
1765 static inline
1766 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1767 {
1768         if (tc >= dev->num_tc)
1769                 return -EINVAL;
1770 
1771         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1772         return 0;
1773 }
1774 
1775 static inline
1776 void netdev_reset_tc(struct net_device *dev)
1777 {
1778         dev->num_tc = 0;
1779         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1780         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1781 }
1782 
1783 static inline
1784 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1785 {
1786         if (tc >= dev->num_tc)
1787                 return -EINVAL;
1788 
1789         dev->tc_to_txq[tc].count = count;
1790         dev->tc_to_txq[tc].offset = offset;
1791         return 0;
1792 }
1793 
1794 static inline
1795 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1796 {
1797         if (num_tc > TC_MAX_QUEUE)
1798                 return -EINVAL;
1799 
1800         dev->num_tc = num_tc;
1801         return 0;
1802 }
1803 
1804 static inline
1805 int netdev_get_num_tc(struct net_device *dev)
1806 {
1807         return dev->num_tc;
1808 }
1809 
1810 static inline
1811 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1812                                          unsigned int index)
1813 {
1814         return &dev->_tx[index];
1815 }
1816 
1817 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1818                                                     const struct sk_buff *skb)
1819 {
1820         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1821 }
1822 
1823 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1824                                             void (*f)(struct net_device *,
1825                                                       struct netdev_queue *,
1826                                                       void *),
1827                                             void *arg)
1828 {
1829         unsigned int i;
1830 
1831         for (i = 0; i < dev->num_tx_queues; i++)
1832                 f(dev, &dev->_tx[i], arg);
1833 }
1834 
1835 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1836                                     struct sk_buff *skb,
1837                                     void *accel_priv);
1838 
1839 /*
1840  * Net namespace inlines
1841  */
1842 static inline
1843 struct net *dev_net(const struct net_device *dev)
1844 {
1845         return read_pnet(&dev->nd_net);
1846 }
1847 
1848 static inline
1849 void dev_net_set(struct net_device *dev, struct net *net)
1850 {
1851         write_pnet(&dev->nd_net, net);
1852 }
1853 
1854 static inline bool netdev_uses_dsa(struct net_device *dev)
1855 {
1856 #if IS_ENABLED(CONFIG_NET_DSA)
1857         if (dev->dsa_ptr != NULL)
1858                 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1859 #endif
1860         return false;
1861 }
1862 
1863 /**
1864  *      netdev_priv - access network device private data
1865  *      @dev: network device
1866  *
1867  * Get network device private data
1868  */
1869 static inline void *netdev_priv(const struct net_device *dev)
1870 {
1871         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1872 }
1873 
1874 /* Set the sysfs physical device reference for the network logical device
1875  * if set prior to registration will cause a symlink during initialization.
1876  */
1877 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
1878 
1879 /* Set the sysfs device type for the network logical device to allow
1880  * fine-grained identification of different network device types. For
1881  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1882  */
1883 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
1884 
1885 /* Default NAPI poll() weight
1886  * Device drivers are strongly advised to not use bigger value
1887  */
1888 #define NAPI_POLL_WEIGHT 64
1889 
1890 /**
1891  *      netif_napi_add - initialize a napi context
1892  *      @dev:  network device
1893  *      @napi: napi context
1894  *      @poll: polling function
1895  *      @weight: default weight
1896  *
1897  * netif_napi_add() must be used to initialize a napi context prior to calling
1898  * *any* of the other napi related functions.
1899  */
1900 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1901                     int (*poll)(struct napi_struct *, int), int weight);
1902 
1903 /**
1904  *  netif_napi_del - remove a napi context
1905  *  @napi: napi context
1906  *
1907  *  netif_napi_del() removes a napi context from the network device napi list
1908  */
1909 void netif_napi_del(struct napi_struct *napi);
1910 
1911 struct napi_gro_cb {
1912         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1913         void *frag0;
1914 
1915         /* Length of frag0. */
1916         unsigned int frag0_len;
1917 
1918         /* This indicates where we are processing relative to skb->data. */
1919         int data_offset;
1920 
1921         /* This is non-zero if the packet cannot be merged with the new skb. */
1922         u16     flush;
1923 
1924         /* Save the IP ID here and check when we get to the transport layer */
1925         u16     flush_id;
1926 
1927         /* Number of segments aggregated. */
1928         u16     count;
1929 
1930         /* Start offset for remote checksum offload */
1931         u16     gro_remcsum_start;
1932 
1933         /* jiffies when first packet was created/queued */
1934         unsigned long age;
1935 
1936         /* Used in ipv6_gro_receive() and foo-over-udp */
1937         u16     proto;
1938 
1939         /* This is non-zero if the packet may be of the same flow. */
1940         u8      same_flow:1;
1941 
1942         /* Used in udp_gro_receive */
1943         u8      udp_mark:1;
1944 
1945         /* GRO checksum is valid */
1946         u8      csum_valid:1;
1947 
1948         /* Number of checksums via CHECKSUM_UNNECESSARY */
1949         u8      csum_cnt:3;
1950 
1951         /* Free the skb? */
1952         u8      free:2;
1953 #define NAPI_GRO_FREE             1
1954 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1955 
1956         /* Used in foo-over-udp, set in udp[46]_gro_receive */
1957         u8      is_ipv6:1;
1958 
1959         /* 7 bit hole */
1960 
1961         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1962         __wsum  csum;
1963 
1964         /* used in skb_gro_receive() slow path */
1965         struct sk_buff *last;
1966 };
1967 
1968 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1969 
1970 struct packet_type {
1971         __be16                  type;   /* This is really htons(ether_type). */
1972         struct net_device       *dev;   /* NULL is wildcarded here           */
1973         int                     (*func) (struct sk_buff *,
1974                                          struct net_device *,
1975                                          struct packet_type *,
1976                                          struct net_device *);
1977         bool                    (*id_match)(struct packet_type *ptype,
1978                                             struct sock *sk);
1979         void                    *af_packet_priv;
1980         struct list_head        list;
1981 };
1982 
1983 struct offload_callbacks {
1984         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
1985                                                 netdev_features_t features);
1986         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
1987                                                  struct sk_buff *skb);
1988         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
1989 };
1990 
1991 struct packet_offload {
1992         __be16                   type;  /* This is really htons(ether_type). */
1993         struct offload_callbacks callbacks;
1994         struct list_head         list;
1995 };
1996 
1997 struct udp_offload;
1998 
1999 struct udp_offload_callbacks {
2000         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2001                                                  struct sk_buff *skb,
2002                                                  struct udp_offload *uoff);
2003         int                     (*gro_complete)(struct sk_buff *skb,
2004                                                 int nhoff,
2005                                                 struct udp_offload *uoff);
2006 };
2007 
2008 struct udp_offload {
2009         __be16                   port;
2010         u8                       ipproto;
2011         struct udp_offload_callbacks callbacks;
2012 };
2013 
2014 /* often modified stats are per cpu, other are shared (netdev->stats) */
2015 struct pcpu_sw_netstats {
2016         u64     rx_packets;
2017         u64     rx_bytes;
2018         u64     tx_packets;
2019         u64     tx_bytes;
2020         struct u64_stats_sync   syncp;
2021 };
2022 
2023 #define netdev_alloc_pcpu_stats(type)                           \
2024 ({                                                              \
2025         typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2026         if (pcpu_stats) {                                       \
2027                 int __cpu;                                      \
2028                 for_each_possible_cpu(__cpu) {                  \
2029                         typeof(type) *stat;                     \
2030                         stat = per_cpu_ptr(pcpu_stats, __cpu);  \
2031                         u64_stats_init(&stat->syncp);           \
2032                 }                                               \
2033         }                                                       \
2034         pcpu_stats;                                             \
2035 })
2036 
2037 #include <linux/notifier.h>
2038 
2039 /* netdevice notifier chain. Please remember to update the rtnetlink
2040  * notification exclusion list in rtnetlink_event() when adding new
2041  * types.
2042  */
2043 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2044 #define NETDEV_DOWN     0x0002
2045 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2046                                    detected a hardware crash and restarted
2047                                    - we can use this eg to kick tcp sessions
2048                                    once done */
2049 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2050 #define NETDEV_REGISTER 0x0005
2051 #define NETDEV_UNREGISTER       0x0006
2052 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2053 #define NETDEV_CHANGEADDR       0x0008
2054 #define NETDEV_GOING_DOWN       0x0009
2055 #define NETDEV_CHANGENAME       0x000A
2056 #define NETDEV_FEAT_CHANGE      0x000B
2057 #define NETDEV_BONDING_FAILOVER 0x000C
2058 #define NETDEV_PRE_UP           0x000D
2059 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2060 #define NETDEV_POST_TYPE_CHANGE 0x000F
2061 #define NETDEV_POST_INIT        0x0010
2062 #define NETDEV_UNREGISTER_FINAL 0x0011
2063 #define NETDEV_RELEASE          0x0012
2064 #define NETDEV_NOTIFY_PEERS     0x0013
2065 #define NETDEV_JOIN             0x0014
2066 #define NETDEV_CHANGEUPPER      0x0015
2067 #define NETDEV_RESEND_IGMP      0x0016
2068 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2069 #define NETDEV_CHANGEINFODATA   0x0018
2070 #define NETDEV_BONDING_INFO     0x0019
2071 
2072 int register_netdevice_notifier(struct notifier_block *nb);
2073 int unregister_netdevice_notifier(struct notifier_block *nb);
2074 
2075 struct netdev_notifier_info {
2076         struct net_device *dev;
2077 };
2078 
2079 struct netdev_notifier_change_info {
2080         struct netdev_notifier_info info; /* must be first */
2081         unsigned int flags_changed;
2082 };
2083 
2084 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2085                                              struct net_device *dev)
2086 {
2087         info->dev = dev;
2088 }
2089 
2090 static inline struct net_device *
2091 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2092 {
2093         return info->dev;
2094 }
2095 
2096 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2097 
2098 
2099 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2100 
2101 #define for_each_netdev(net, d)         \
2102                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2103 #define for_each_netdev_reverse(net, d) \
2104                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2105 #define for_each_netdev_rcu(net, d)             \
2106                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2107 #define for_each_netdev_safe(net, d, n) \
2108                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2109 #define for_each_netdev_continue(net, d)                \
2110                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2111 #define for_each_netdev_continue_rcu(net, d)            \
2112         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2113 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2114                 for_each_netdev_rcu(&init_net, slave)   \
2115                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2116 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2117 
2118 static inline struct net_device *next_net_device(struct net_device *dev)
2119 {
2120         struct list_head *lh;
2121         struct net *net;
2122 
2123         net = dev_net(dev);
2124         lh = dev->dev_list.next;
2125         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2126 }
2127 
2128 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2129 {
2130         struct list_head *lh;
2131         struct net *net;
2132 
2133         net = dev_net(dev);
2134         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2135         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2136 }
2137 
2138 static inline struct net_device *first_net_device(struct net *net)
2139 {
2140         return list_empty(&net->dev_base_head) ? NULL :
2141                 net_device_entry(net->dev_base_head.next);
2142 }
2143 
2144 static inline struct net_device *first_net_device_rcu(struct net *net)
2145 {
2146         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2147 
2148         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2149 }
2150 
2151 int netdev_boot_setup_check(struct net_device *dev);
2152 unsigned long netdev_boot_base(const char *prefix, int unit);
2153 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2154                                        const char *hwaddr);
2155 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2156 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2157 void dev_add_pack(struct packet_type *pt);
2158 void dev_remove_pack(struct packet_type *pt);
2159 void __dev_remove_pack(struct packet_type *pt);
2160 void dev_add_offload(struct packet_offload *po);
2161 void dev_remove_offload(struct packet_offload *po);
2162 
2163 int dev_get_iflink(const struct net_device *dev);
2164 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2165                                       unsigned short mask);
2166 struct net_device *dev_get_by_name(struct net *net, const char *name);
2167 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2168 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2169 int dev_alloc_name(struct net_device *dev, const char *name);
2170 int dev_open(struct net_device *dev);
2171 int dev_close(struct net_device *dev);
2172 int dev_close_many(struct list_head *head, bool unlink);
2173 void dev_disable_lro(struct net_device *dev);
2174 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2175 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2176 static inline int dev_queue_xmit(struct sk_buff *skb)
2177 {
2178         return dev_queue_xmit_sk(skb->sk, skb);
2179 }
2180 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2181 int register_netdevice(struct net_device *dev);
2182 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2183 void unregister_netdevice_many(struct list_head *head);
2184 static inline void unregister_netdevice(struct net_device *dev)
2185 {
2186         unregister_netdevice_queue(dev, NULL);
2187 }
2188 
2189 int netdev_refcnt_read(const struct net_device *dev);
2190 void free_netdev(struct net_device *dev);
2191 void netdev_freemem(struct net_device *dev);
2192 void synchronize_net(void);
2193 int init_dummy_netdev(struct net_device *dev);
2194 
2195 DECLARE_PER_CPU(int, xmit_recursion);
2196 static inline int dev_recursion_level(void)
2197 {
2198         return this_cpu_read(xmit_recursion);
2199 }
2200 
2201 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2202 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2203 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2204 int netdev_get_name(struct net *net, char *name, int ifindex);
2205 int dev_restart(struct net_device *dev);
2206 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2207 
2208 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2209 {
2210         return NAPI_GRO_CB(skb)->data_offset;
2211 }
2212 
2213 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2214 {
2215         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2216 }
2217 
2218 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2219 {
2220         NAPI_GRO_CB(skb)->data_offset += len;
2221 }
2222 
2223 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2224                                         unsigned int offset)
2225 {
2226         return NAPI_GRO_CB(skb)->frag0 + offset;
2227 }
2228 
2229 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2230 {
2231         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2232 }
2233 
2234 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2235                                         unsigned int offset)
2236 {
2237         if (!pskb_may_pull(skb, hlen))
2238                 return NULL;
2239 
2240         NAPI_GRO_CB(skb)->frag0 = NULL;
2241         NAPI_GRO_CB(skb)->frag0_len = 0;
2242         return skb->data + offset;
2243 }
2244 
2245 static inline void *skb_gro_network_header(struct sk_buff *skb)
2246 {
2247         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2248                skb_network_offset(skb);
2249 }
2250 
2251 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2252                                         const void *start, unsigned int len)
2253 {
2254         if (NAPI_GRO_CB(skb)->csum_valid)
2255                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2256                                                   csum_partial(start, len, 0));
2257 }
2258 
2259 /* GRO checksum functions. These are logical equivalents of the normal
2260  * checksum functions (in skbuff.h) except that they operate on the GRO
2261  * offsets and fields in sk_buff.
2262  */
2263 
2264 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2265 
2266 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2267 {
2268         return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2269                 skb_gro_offset(skb));
2270 }
2271 
2272 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2273                                                       bool zero_okay,
2274                                                       __sum16 check)
2275 {
2276         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2277                 skb_checksum_start_offset(skb) <
2278                  skb_gro_offset(skb)) &&
2279                 !skb_at_gro_remcsum_start(skb) &&
2280                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2281                 (!zero_okay || check));
2282 }
2283 
2284 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2285                                                            __wsum psum)
2286 {
2287         if (NAPI_GRO_CB(skb)->csum_valid &&
2288             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2289                 return 0;
2290 
2291         NAPI_GRO_CB(skb)->csum = psum;
2292 
2293         return __skb_gro_checksum_complete(skb);
2294 }
2295 
2296 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2297 {
2298         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2299                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2300                 NAPI_GRO_CB(skb)->csum_cnt--;
2301         } else {
2302                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2303                  * verified a new top level checksum or an encapsulated one
2304                  * during GRO. This saves work if we fallback to normal path.
2305                  */
2306                 __skb_incr_checksum_unnecessary(skb);
2307         }
2308 }
2309 
2310 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2311                                     compute_pseudo)                     \
2312 ({                                                                      \
2313         __sum16 __ret = 0;                                              \
2314         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2315                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2316                                 compute_pseudo(skb, proto));            \
2317         if (__ret)                                                      \
2318                 __skb_mark_checksum_bad(skb);                           \
2319         else                                                            \
2320                 skb_gro_incr_csum_unnecessary(skb);                     \
2321         __ret;                                                          \
2322 })
2323 
2324 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2325         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2326 
2327 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2328                                              compute_pseudo)            \
2329         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2330 
2331 #define skb_gro_checksum_simple_validate(skb)                           \
2332         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2333 
2334 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2335 {
2336         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2337                 !NAPI_GRO_CB(skb)->csum_valid);
2338 }
2339 
2340 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2341                                               __sum16 check, __wsum pseudo)
2342 {
2343         NAPI_GRO_CB(skb)->csum = ~pseudo;
2344         NAPI_GRO_CB(skb)->csum_valid = 1;
2345 }
2346 
2347 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2348 do {                                                                    \
2349         if (__skb_gro_checksum_convert_check(skb))                      \
2350                 __skb_gro_checksum_convert(skb, check,                  \
2351                                            compute_pseudo(skb, proto)); \
2352 } while (0)
2353 
2354 struct gro_remcsum {
2355         int offset;
2356         __wsum delta;
2357 };
2358 
2359 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2360 {
2361         grc->offset = 0;
2362         grc->delta = 0;
2363 }
2364 
2365 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2366                                            int start, int offset,
2367                                            struct gro_remcsum *grc,
2368                                            bool nopartial)
2369 {
2370         __wsum delta;
2371 
2372         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2373 
2374         if (!nopartial) {
2375                 NAPI_GRO_CB(skb)->gro_remcsum_start =
2376                     ((unsigned char *)ptr + start) - skb->head;
2377                 return;
2378         }
2379 
2380         delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2381 
2382         /* Adjust skb->csum since we changed the packet */
2383         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2384 
2385         grc->offset = (ptr + offset) - (void *)skb->head;
2386         grc->delta = delta;
2387 }
2388 
2389 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2390                                            struct gro_remcsum *grc)
2391 {
2392         if (!grc->delta)
2393                 return;
2394 
2395         remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2396 }
2397 
2398 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2399                                   unsigned short type,
2400                                   const void *daddr, const void *saddr,
2401                                   unsigned int len)
2402 {
2403         if (!dev->header_ops || !dev->header_ops->create)
2404                 return 0;
2405 
2406         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2407 }
2408 
2409 static inline int dev_parse_header(const struct sk_buff *skb,
2410                                    unsigned char *haddr)
2411 {
2412         const struct net_device *dev = skb->dev;
2413 
2414         if (!dev->header_ops || !dev->header_ops->parse)
2415                 return 0;
2416         return dev->header_ops->parse(skb, haddr);
2417 }
2418 
2419 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2420 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2421 static inline int unregister_gifconf(unsigned int family)
2422 {
2423         return register_gifconf(family, NULL);
2424 }
2425 
2426 #ifdef CONFIG_NET_FLOW_LIMIT
2427 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2428 struct sd_flow_limit {
2429         u64                     count;
2430         unsigned int            num_buckets;
2431         unsigned int            history_head;
2432         u16                     history[FLOW_LIMIT_HISTORY];
2433         u8                      buckets[];
2434 };
2435 
2436 extern int netdev_flow_limit_table_len;
2437 #endif /* CONFIG_NET_FLOW_LIMIT */
2438 
2439 /*
2440  * Incoming packets are placed on per-cpu queues
2441  */
2442 struct softnet_data {
2443         struct list_head        poll_list;
2444         struct sk_buff_head     process_queue;
2445 
2446         /* stats */
2447         unsigned int            processed;
2448         unsigned int            time_squeeze;
2449         unsigned int            cpu_collision;
2450         unsigned int            received_rps;
2451 #ifdef CONFIG_RPS
2452         struct softnet_data     *rps_ipi_list;
2453 #endif
2454 #ifdef CONFIG_NET_FLOW_LIMIT
2455         struct sd_flow_limit __rcu *flow_limit;
2456 #endif
2457         struct Qdisc            *output_queue;
2458         struct Qdisc            **output_queue_tailp;
2459         struct sk_buff          *completion_queue;
2460 
2461 #ifdef CONFIG_RPS
2462         /* Elements below can be accessed between CPUs for RPS */
2463         struct call_single_data csd ____cacheline_aligned_in_smp;
2464         struct softnet_data     *rps_ipi_next;
2465         unsigned int            cpu;
2466         unsigned int            input_queue_head;
2467         unsigned int            input_queue_tail;
2468 #endif
2469         unsigned int            dropped;
2470         struct sk_buff_head     input_pkt_queue;
2471         struct napi_struct      backlog;
2472 
2473 };
2474 
2475 static inline void input_queue_head_incr(struct softnet_data *sd)
2476 {
2477 #ifdef CONFIG_RPS
2478         sd->input_queue_head++;
2479 #endif
2480 }
2481 
2482 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2483                                               unsigned int *qtail)
2484 {
2485 #ifdef CONFIG_RPS
2486         *qtail = ++sd->input_queue_tail;
2487 #endif
2488 }
2489 
2490 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2491 
2492 void __netif_schedule(struct Qdisc *q);
2493 void netif_schedule_queue(struct netdev_queue *txq);
2494 
2495 static inline void netif_tx_schedule_all(struct net_device *dev)
2496 {
2497         unsigned int i;
2498 
2499         for (i = 0; i < dev->num_tx_queues; i++)
2500                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2501 }
2502 
2503 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2504 {
2505         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2506 }
2507 
2508 /**
2509  *      netif_start_queue - allow transmit
2510  *      @dev: network device
2511  *
2512  *      Allow upper layers to call the device hard_start_xmit routine.
2513  */
2514 static inline void netif_start_queue(struct net_device *dev)
2515 {
2516         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2517 }
2518 
2519 static inline void netif_tx_start_all_queues(struct net_device *dev)
2520 {
2521         unsigned int i;
2522 
2523         for (i = 0; i < dev->num_tx_queues; i++) {
2524                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2525                 netif_tx_start_queue(txq);
2526         }
2527 }
2528 
2529 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2530 
2531 /**
2532  *      netif_wake_queue - restart transmit
2533  *      @dev: network device
2534  *
2535  *      Allow upper layers to call the device hard_start_xmit routine.
2536  *      Used for flow control when transmit resources are available.
2537  */
2538 static inline void netif_wake_queue(struct net_device *dev)
2539 {
2540         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2541 }
2542 
2543 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2544 {
2545         unsigned int i;
2546 
2547         for (i = 0; i < dev->num_tx_queues; i++) {
2548                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2549                 netif_tx_wake_queue(txq);
2550         }
2551 }
2552 
2553 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2554 {
2555         if (WARN_ON(!dev_queue)) {
2556                 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2557                 return;
2558         }
2559         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2560 }
2561 
2562 /**
2563  *      netif_stop_queue - stop transmitted packets
2564  *      @dev: network device
2565  *
2566  *      Stop upper layers calling the device hard_start_xmit routine.
2567  *      Used for flow control when transmit resources are unavailable.
2568  */
2569 static inline void netif_stop_queue(struct net_device *dev)
2570 {
2571         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2572 }
2573 
2574 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2575 {
2576         unsigned int i;
2577 
2578         for (i = 0; i < dev->num_tx_queues; i++) {
2579                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2580                 netif_tx_stop_queue(txq);
2581         }
2582 }
2583 
2584 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2585 {
2586         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2587 }
2588 
2589 /**
2590  *      netif_queue_stopped - test if transmit queue is flowblocked
2591  *      @dev: network device
2592  *
2593  *      Test if transmit queue on device is currently unable to send.
2594  */
2595 static inline bool netif_queue_stopped(const struct net_device *dev)
2596 {
2597         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2598 }
2599 
2600 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2601 {
2602         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2603 }
2604 
2605 static inline bool
2606 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2607 {
2608         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2609 }
2610 
2611 static inline bool
2612 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2613 {
2614         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2615 }
2616 
2617 /**
2618  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2619  *      @dev_queue: pointer to transmit queue
2620  *
2621  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2622  * to give appropriate hint to the cpu.
2623  */
2624 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2625 {
2626 #ifdef CONFIG_BQL
2627         prefetchw(&dev_queue->dql.num_queued);
2628 #endif
2629 }
2630 
2631 /**
2632  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2633  *      @dev_queue: pointer to transmit queue
2634  *
2635  * BQL enabled drivers might use this helper in their TX completion path,
2636  * to give appropriate hint to the cpu.
2637  */
2638 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2639 {
2640 #ifdef CONFIG_BQL
2641         prefetchw(&dev_queue->dql.limit);
2642 #endif
2643 }
2644 
2645 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2646                                         unsigned int bytes)
2647 {
2648 #ifdef CONFIG_BQL
2649         dql_queued(&dev_queue->dql, bytes);
2650 
2651         if (likely(dql_avail(&dev_queue->dql) >= 0))
2652                 return;
2653 
2654         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2655 
2656         /*
2657          * The XOFF flag must be set before checking the dql_avail below,
2658          * because in netdev_tx_completed_queue we update the dql_completed
2659          * before checking the XOFF flag.
2660          */
2661         smp_mb();
2662 
2663         /* check again in case another CPU has just made room avail */
2664         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2665                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2666 #endif
2667 }
2668 
2669 /**
2670  *      netdev_sent_queue - report the number of bytes queued to hardware
2671  *      @dev: network device
2672  *      @bytes: number of bytes queued to the hardware device queue
2673  *
2674  *      Report the number of bytes queued for sending/completion to the network
2675  *      device hardware queue. @bytes should be a good approximation and should
2676  *      exactly match netdev_completed_queue() @bytes
2677  */
2678 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2679 {
2680         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2681 }
2682 
2683 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2684                                              unsigned int pkts, unsigned int bytes)
2685 {
2686 #ifdef CONFIG_BQL
2687         if (unlikely(!bytes))
2688                 return;
2689 
2690         dql_completed(&dev_queue->dql, bytes);
2691 
2692         /*
2693          * Without the memory barrier there is a small possiblity that
2694          * netdev_tx_sent_queue will miss the update and cause the queue to
2695          * be stopped forever
2696          */
2697         smp_mb();
2698 
2699         if (dql_avail(&dev_queue->dql) < 0)
2700                 return;
2701 
2702         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2703                 netif_schedule_queue(dev_queue);
2704 #endif
2705 }
2706 
2707 /**
2708  *      netdev_completed_queue - report bytes and packets completed by device
2709  *      @dev: network device
2710  *      @pkts: actual number of packets sent over the medium
2711  *      @bytes: actual number of bytes sent over the medium
2712  *
2713  *      Report the number of bytes and packets transmitted by the network device
2714  *      hardware queue over the physical medium, @bytes must exactly match the
2715  *      @bytes amount passed to netdev_sent_queue()
2716  */
2717 static inline void netdev_completed_queue(struct net_device *dev,
2718                                           unsigned int pkts, unsigned int bytes)
2719 {
2720         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2721 }
2722 
2723 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2724 {
2725 #ifdef CONFIG_BQL
2726         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2727         dql_reset(&q->dql);
2728 #endif
2729 }
2730 
2731 /**
2732  *      netdev_reset_queue - reset the packets and bytes count of a network device
2733  *      @dev_queue: network device
2734  *
2735  *      Reset the bytes and packet count of a network device and clear the
2736  *      software flow control OFF bit for this network device
2737  */
2738 static inline void netdev_reset_queue(struct net_device *dev_queue)
2739 {
2740         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2741 }
2742 
2743 /**
2744  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
2745  *      @dev: network device
2746  *      @queue_index: given tx queue index
2747  *
2748  *      Returns 0 if given tx queue index >= number of device tx queues,
2749  *      otherwise returns the originally passed tx queue index.
2750  */
2751 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2752 {
2753         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2754                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2755                                      dev->name, queue_index,
2756                                      dev->real_num_tx_queues);
2757                 return 0;
2758         }
2759 
2760         return queue_index;
2761 }
2762 
2763 /**
2764  *      netif_running - test if up
2765  *      @dev: network device
2766  *
2767  *      Test if the device has been brought up.
2768  */
2769 static inline bool netif_running(const struct net_device *dev)
2770 {
2771         return test_bit(__LINK_STATE_START, &dev->state);
2772 }
2773 
2774 /*
2775  * Routines to manage the subqueues on a device.  We only need start
2776  * stop, and a check if it's stopped.  All other device management is
2777  * done at the overall netdevice level.
2778  * Also test the device if we're multiqueue.
2779  */
2780 
2781 /**
2782  *      netif_start_subqueue - allow sending packets on subqueue
2783  *      @dev: network device
2784  *      @queue_index: sub queue index
2785  *
2786  * Start individual transmit queue of a device with multiple transmit queues.
2787  */
2788 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2789 {
2790         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2791 
2792         netif_tx_start_queue(txq);
2793 }
2794 
2795 /**
2796  *      netif_stop_subqueue - stop sending packets on subqueue
2797  *      @dev: network device
2798  *      @queue_index: sub queue index
2799  *
2800  * Stop individual transmit queue of a device with multiple transmit queues.
2801  */
2802 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2803 {
2804         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2805         netif_tx_stop_queue(txq);
2806 }
2807 
2808 /**
2809  *      netif_subqueue_stopped - test status of subqueue
2810  *      @dev: network device
2811  *      @queue_index: sub queue index
2812  *
2813  * Check individual transmit queue of a device with multiple transmit queues.
2814  */
2815 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2816                                             u16 queue_index)
2817 {
2818         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2819 
2820         return netif_tx_queue_stopped(txq);
2821 }
2822 
2823 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2824                                           struct sk_buff *skb)
2825 {
2826         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2827 }
2828 
2829 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2830 
2831 #ifdef CONFIG_XPS
2832 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2833                         u16 index);
2834 #else
2835 static inline int netif_set_xps_queue(struct net_device *dev,
2836                                       const struct cpumask *mask,
2837                                       u16 index)
2838 {
2839         return 0;
2840 }
2841 #endif
2842 
2843 /*
2844  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2845  * as a distribution range limit for the returned value.
2846  */
2847 static inline u16 skb_tx_hash(const struct net_device *dev,
2848                               struct sk_buff *skb)
2849 {
2850         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2851 }
2852 
2853 /**
2854  *      netif_is_multiqueue - test if device has multiple transmit queues
2855  *      @dev: network device
2856  *
2857  * Check if device has multiple transmit queues
2858  */
2859 static inline bool netif_is_multiqueue(const struct net_device *dev)
2860 {
2861         return dev->num_tx_queues > 1;
2862 }
2863 
2864 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2865 
2866 #ifdef CONFIG_SYSFS
2867 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2868 #else
2869 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2870                                                 unsigned int rxq)
2871 {
2872         return 0;
2873 }
2874 #endif
2875 
2876 #ifdef CONFIG_SYSFS
2877 static inline unsigned int get_netdev_rx_queue_index(
2878                 struct netdev_rx_queue *queue)
2879 {
2880         struct net_device *dev = queue->dev;
2881         int index = queue - dev->_rx;
2882 
2883         BUG_ON(index >= dev->num_rx_queues);
2884         return index;
2885 }
2886 #endif
2887 
2888 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
2889 int netif_get_num_default_rss_queues(void);
2890 
2891 enum skb_free_reason {
2892         SKB_REASON_CONSUMED,
2893         SKB_REASON_DROPPED,
2894 };
2895 
2896 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2897 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2898 
2899 /*
2900  * It is not allowed to call kfree_skb() or consume_skb() from hardware
2901  * interrupt context or with hardware interrupts being disabled.
2902  * (in_irq() || irqs_disabled())
2903  *
2904  * We provide four helpers that can be used in following contexts :
2905  *
2906  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2907  *  replacing kfree_skb(skb)
2908  *
2909  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2910  *  Typically used in place of consume_skb(skb) in TX completion path
2911  *
2912  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2913  *  replacing kfree_skb(skb)
2914  *
2915  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2916  *  and consumed a packet. Used in place of consume_skb(skb)
2917  */
2918 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2919 {
2920         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2921 }
2922 
2923 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2924 {
2925         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2926 }
2927 
2928 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2929 {
2930         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2931 }
2932 
2933 static inline void dev_consume_skb_any(struct sk_buff *skb)
2934 {
2935         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2936 }
2937 
2938 int netif_rx(struct sk_buff *skb);
2939 int netif_rx_ni(struct sk_buff *skb);
2940 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2941 static inline int netif_receive_skb(struct sk_buff *skb)
2942 {
2943         return netif_receive_skb_sk(skb->sk, skb);
2944 }
2945 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2946 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2947 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2948 gro_result_t napi_gro_frags(struct napi_struct *napi);
2949 struct packet_offload *gro_find_receive_by_type(__be16 type);
2950 struct packet_offload *gro_find_complete_by_type(__be16 type);
2951 
2952 static inline void napi_free_frags(struct napi_struct *napi)
2953 {
2954         kfree_skb(napi->skb);
2955         napi->skb = NULL;
2956 }
2957 
2958 int netdev_rx_handler_register(struct net_device *dev,
2959                                rx_handler_func_t *rx_handler,
2960                                void *rx_handler_data);
2961 void netdev_rx_handler_unregister(struct net_device *dev);
2962 
2963 bool dev_valid_name(const char *name);
2964 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2965 int dev_ethtool(struct net *net, struct ifreq *);
2966 unsigned int dev_get_flags(const struct net_device *);
2967 int __dev_change_flags(struct net_device *, unsigned int flags);
2968 int dev_change_flags(struct net_device *, unsigned int);
2969 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2970                         unsigned int gchanges);
2971 int dev_change_name(struct net_device *, const char *);
2972 int dev_set_alias(struct net_device *, const char *, size_t);
2973 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2974 int dev_set_mtu(struct net_device *, int);
2975 void dev_set_group(struct net_device *, int);
2976 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2977 int dev_change_carrier(struct net_device *, bool new_carrier);
2978 int dev_get_phys_port_id(struct net_device *dev,
2979                          struct netdev_phys_item_id *ppid);
2980 int dev_get_phys_port_name(struct net_device *dev,
2981                            char *name, size_t len);
2982 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2983 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2984                                     struct netdev_queue *txq, int *ret);
2985 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2986 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2987 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2988 
2989 extern int              netdev_budget;
2990 
2991 /* Called by rtnetlink.c:rtnl_unlock() */
2992 void netdev_run_todo(void);
2993 
2994 /**
2995  *      dev_put - release reference to device
2996  *      @dev: network device
2997  *
2998  * Release reference to device to allow it to be freed.
2999  */
3000 static inline void dev_put(struct net_device *dev)
3001 {
3002         this_cpu_dec(*dev->pcpu_refcnt);
3003 }
3004 
3005 /**
3006  *      dev_hold - get reference to device
3007  *      @dev: network device
3008  *
3009  * Hold reference to device to keep it from being freed.
3010  */
3011 static inline void dev_hold(struct net_device *dev)
3012 {
3013         this_cpu_inc(*dev->pcpu_refcnt);
3014 }
3015 
3016 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3017  * and _off may be called from IRQ context, but it is caller
3018  * who is responsible for serialization of these calls.
3019  *
3020  * The name carrier is inappropriate, these functions should really be
3021  * called netif_lowerlayer_*() because they represent the state of any
3022  * kind of lower layer not just hardware media.
3023  */
3024 
3025 void linkwatch_init_dev(struct net_device *dev);
3026 void linkwatch_fire_event(struct net_device *dev);
3027 void linkwatch_forget_dev(struct net_device *dev);
3028 
3029 /**
3030  *      netif_carrier_ok - test if carrier present
3031  *      @dev: network device
3032  *
3033  * Check if carrier is present on device
3034  */
3035 static inline bool netif_carrier_ok(const struct net_device *dev)
3036 {
3037         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3038 }
3039 
3040 unsigned long dev_trans_start(struct net_device *dev);
3041 
3042 void __netdev_watchdog_up(struct net_device *dev);
3043 
3044 void netif_carrier_on(struct net_device *dev);
3045 
3046 void netif_carrier_off(struct net_device *dev);
3047 
3048 /**
3049  *      netif_dormant_on - mark device as dormant.
3050  *      @dev: network device
3051  *
3052  * Mark device as dormant (as per RFC2863).
3053  *
3054  * The dormant state indicates that the relevant interface is not
3055  * actually in a condition to pass packets (i.e., it is not 'up') but is
3056  * in a "pending" state, waiting for some external event.  For "on-
3057  * demand" interfaces, this new state identifies the situation where the
3058  * interface is waiting for events to place it in the up state.
3059  *
3060  */
3061 static inline void netif_dormant_on(struct net_device *dev)
3062 {
3063         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3064                 linkwatch_fire_event(dev);
3065 }
3066 
3067 /**
3068  *      netif_dormant_off - set device as not dormant.
3069  *      @dev: network device
3070  *
3071  * Device is not in dormant state.
3072  */
3073 static inline void netif_dormant_off(struct net_device *dev)
3074 {
3075         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3076                 linkwatch_fire_event(dev);
3077 }
3078 
3079 /**
3080  *      netif_dormant - test if carrier present
3081  *      @dev: network device
3082  *
3083  * Check if carrier is present on device
3084  */
3085 static inline bool netif_dormant(const struct net_device *dev)
3086 {
3087         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3088 }
3089 
3090 
3091 /**
3092  *      netif_oper_up - test if device is operational
3093  *      @dev: network device
3094  *
3095  * Check if carrier is operational
3096  */
3097 static inline bool netif_oper_up(const struct net_device *dev)
3098 {
3099         return (dev->operstate == IF_OPER_UP ||
3100                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3101 }
3102 
3103 /**
3104  *      netif_device_present - is device available or removed
3105  *      @dev: network device
3106  *
3107  * Check if device has not been removed from system.
3108  */
3109 static inline bool netif_device_present(struct net_device *dev)
3110 {
3111         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3112 }
3113 
3114 void netif_device_detach(struct net_device *dev);
3115 
3116 void netif_device_attach(struct net_device *dev);
3117 
3118 /*
3119  * Network interface message level settings
3120  */
3121 
3122 enum {
3123         NETIF_MSG_DRV           = 0x0001,
3124         NETIF_MSG_PROBE         = 0x0002,
3125         NETIF_MSG_LINK          = 0x0004,
3126         NETIF_MSG_TIMER         = 0x0008,
3127         NETIF_MSG_IFDOWN        = 0x0010,
3128         NETIF_MSG_IFUP          = 0x0020,
3129         NETIF_MSG_RX_ERR        = 0x0040,
3130         NETIF_MSG_TX_ERR        = 0x0080,
3131         NETIF_MSG_TX_QUEUED     = 0x0100,
3132         NETIF_MSG_INTR          = 0x0200,
3133         NETIF_MSG_TX_DONE       = 0x0400,
3134         NETIF_MSG_RX_STATUS     = 0x0800,
3135         NETIF_MSG_PKTDATA       = 0x1000,
3136         NETIF_MSG_HW            = 0x2000,
3137         NETIF_MSG_WOL           = 0x4000,
3138 };
3139 
3140 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3141 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3142 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3143 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3144 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3145 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3146 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3147 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3148 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3149 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3150 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3151 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3152 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3153 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3154 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3155 
3156 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3157 {
3158         /* use default */
3159         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3160                 return default_msg_enable_bits;
3161         if (debug_value == 0)   /* no output */
3162                 return 0;
3163         /* set low N bits */
3164         return (1 << debug_value) - 1;
3165 }
3166 
3167 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3168 {
3169         spin_lock(&txq->_xmit_lock);
3170         txq->xmit_lock_owner = cpu;
3171 }
3172 
3173 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3174 {
3175         spin_lock_bh(&txq->_xmit_lock);
3176         txq->xmit_lock_owner = smp_processor_id();
3177 }
3178 
3179 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3180 {
3181         bool ok = spin_trylock(&txq->_xmit_lock);
3182         if (likely(ok))
3183                 txq->xmit_lock_owner = smp_processor_id();
3184         return ok;
3185 }
3186 
3187 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3188 {
3189         txq->xmit_lock_owner = -1;
3190         spin_unlock(&txq->_xmit_lock);
3191 }
3192 
3193 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3194 {
3195         txq->xmit_lock_owner = -1;
3196         spin_unlock_bh(&txq->_xmit_lock);
3197 }
3198 
3199 static inline void txq_trans_update(struct netdev_queue *txq)
3200 {
3201         if (txq->xmit_lock_owner != -1)
3202                 txq->trans_start = jiffies;
3203 }
3204 
3205 /**
3206  *      netif_tx_lock - grab network device transmit lock
3207  *      @dev: network device
3208  *
3209  * Get network device transmit lock
3210  */
3211 static inline void netif_tx_lock(struct net_device *dev)
3212 {
3213         unsigned int i;
3214         int cpu;
3215 
3216         spin_lock(&dev->tx_global_lock);
3217         cpu = smp_processor_id();
3218         for (i = 0; i < dev->num_tx_queues; i++) {
3219                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3220 
3221                 /* We are the only thread of execution doing a
3222                  * freeze, but we have to grab the _xmit_lock in
3223                  * order to synchronize with threads which are in
3224                  * the ->hard_start_xmit() handler and already
3225                  * checked the frozen bit.
3226                  */
3227                 __netif_tx_lock(txq, cpu);
3228                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3229                 __netif_tx_unlock(txq);
3230         }
3231 }
3232 
3233 static inline void netif_tx_lock_bh(struct net_device *dev)
3234 {
3235         local_bh_disable();
3236         netif_tx_lock(dev);
3237 }
3238 
3239 static inline void netif_tx_unlock(struct net_device *dev)
3240 {
3241         unsigned int i;
3242 
3243         for (i = 0; i < dev->num_tx_queues; i++) {
3244                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3245 
3246                 /* No need to grab the _xmit_lock here.  If the
3247                  * queue is not stopped for another reason, we
3248                  * force a schedule.
3249                  */
3250                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3251                 netif_schedule_queue(txq);
3252         }
3253         spin_unlock(&dev->tx_global_lock);
3254 }
3255 
3256 static inline void netif_tx_unlock_bh(struct net_device *dev)
3257 {
3258         netif_tx_unlock(dev);
3259         local_bh_enable();
3260 }
3261 
3262 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3263         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3264                 __netif_tx_lock(txq, cpu);              \
3265         }                                               \
3266 }
3267 
3268 #define HARD_TX_TRYLOCK(dev, txq)                       \
3269         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3270                 __netif_tx_trylock(txq) :               \
3271                 true )
3272 
3273 #define HARD_TX_UNLOCK(dev, txq) {                      \
3274         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3275                 __netif_tx_unlock(txq);                 \
3276         }                                               \
3277 }
3278 
3279 static inline void netif_tx_disable(struct net_device *dev)
3280 {
3281         unsigned int i;
3282         int cpu;
3283 
3284         local_bh_disable();
3285         cpu = smp_processor_id();
3286         for (i = 0; i < dev->num_tx_queues; i++) {
3287                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3288 
3289                 __netif_tx_lock(txq, cpu);
3290                 netif_tx_stop_queue(txq);
3291                 __netif_tx_unlock(txq);
3292         }
3293         local_bh_enable();
3294 }
3295 
3296 static inline void netif_addr_lock(struct net_device *dev)
3297 {
3298         spin_lock(&dev->addr_list_lock);
3299 }
3300 
3301 static inline void netif_addr_lock_nested(struct net_device *dev)
3302 {
3303         int subclass = SINGLE_DEPTH_NESTING;
3304 
3305         if (dev->netdev_ops->ndo_get_lock_subclass)
3306                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3307 
3308         spin_lock_nested(&dev->addr_list_lock, subclass);
3309 }
3310 
3311 static inline void netif_addr_lock_bh(struct net_device *dev)
3312 {
3313         spin_lock_bh(&dev->addr_list_lock);
3314 }
3315 
3316 static inline void netif_addr_unlock(struct net_device *dev)
3317 {
3318         spin_unlock(&dev->addr_list_lock);
3319 }
3320 
3321 static inline void netif_addr_unlock_bh(struct net_device *dev)
3322 {
3323         spin_unlock_bh(&dev->addr_list_lock);
3324 }
3325 
3326 /*
3327  * dev_addrs walker. Should be used only for read access. Call with
3328  * rcu_read_lock held.
3329  */
3330 #define for_each_dev_addr(dev, ha) \
3331                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3332 
3333 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3334 
3335 void ether_setup(struct net_device *dev);
3336 
3337 /* Support for loadable net-drivers */
3338 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3339                                     unsigned char name_assign_type,
3340                                     void (*setup)(struct net_device *),
3341                                     unsigned int txqs, unsigned int rxqs);
3342 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3343         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3344 
3345 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3346         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3347                          count)
3348 
3349 int register_netdev(struct net_device *dev);
3350 void unregister_netdev(struct net_device *dev);
3351 
3352 /* General hardware address lists handling functions */
3353 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3354                    struct netdev_hw_addr_list *from_list, int addr_len);
3355 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3356                       struct netdev_hw_addr_list *from_list, int addr_len);
3357 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3358                        struct net_device *dev,
3359                        int (*sync)(struct net_device *, const unsigned char *),
3360                        int (*unsync)(struct net_device *,
3361                                      const unsigned char *));
3362 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3363                           struct net_device *dev,
3364                           int (*unsync)(struct net_device *,
3365                                         const unsigned char *));
3366 void __hw_addr_init(struct netdev_hw_addr_list *list);
3367 
3368 /* Functions used for device addresses handling */
3369 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3370                  unsigned char addr_type);
3371 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3372                  unsigned char addr_type);
3373 void dev_addr_flush(struct net_device *dev);
3374 int dev_addr_init(struct net_device *dev);
3375 
3376 /* Functions used for unicast addresses handling */
3377 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3378 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3379 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3380 int dev_uc_sync(struct net_device *to, struct net_device *from);
3381 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3382 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3383 void dev_uc_flush(struct net_device *dev);
3384 void dev_uc_init(struct net_device *dev);
3385 
3386 /**
3387  *  __dev_uc_sync - Synchonize device's unicast list
3388  *  @dev:  device to sync
3389  *  @sync: function to call if address should be added
3390  *  @unsync: function to call if address should be removed
3391  *
3392  *  Add newly added addresses to the interface, and release
3393  *  addresses that have been deleted.
3394  **/
3395 static inline int __dev_uc_sync(struct net_device *dev,
3396                                 int (*sync)(struct net_device *,
3397                                             const unsigned char *),
3398                                 int (*unsync)(struct net_device *,
3399                                               const unsigned char *))
3400 {
3401         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3402 }
3403 
3404 /**
3405  *  __dev_uc_unsync - Remove synchronized addresses from device
3406  *  @dev:  device to sync
3407  *  @unsync: function to call if address should be removed
3408  *
3409  *  Remove all addresses that were added to the device by dev_uc_sync().
3410  **/
3411 static inline void __dev_uc_unsync(struct net_device *dev,
3412                                    int (*unsync)(struct net_device *,
3413                                                  const unsigned char *))
3414 {
3415         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3416 }
3417 
3418 /* Functions used for multicast addresses handling */
3419 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3420 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3421 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3422 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3423 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3424 int dev_mc_sync(struct net_device *to, struct net_device *from);
3425 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3426 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3427 void dev_mc_flush(struct net_device *dev);
3428 void dev_mc_init(struct net_device *dev);
3429 
3430 /**
3431  *  __dev_mc_sync - Synchonize device's multicast list
3432  *  @dev:  device to sync
3433  *  @sync: function to call if address should be added
3434  *  @unsync: function to call if address should be removed
3435  *
3436  *  Add newly added addresses to the interface, and release
3437  *  addresses that have been deleted.
3438  **/
3439 static inline int __dev_mc_sync(struct net_device *dev,
3440                                 int (*sync)(struct net_device *,
3441                                             const unsigned char *),
3442                                 int (*unsync)(struct net_device *,
3443                                               const unsigned char *))
3444 {
3445         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3446 }
3447 
3448 /**
3449  *  __dev_mc_unsync - Remove synchronized addresses from device
3450  *  @dev:  device to sync
3451  *  @unsync: function to call if address should be removed
3452  *
3453  *  Remove all addresses that were added to the device by dev_mc_sync().
3454  **/
3455 static inline void __dev_mc_unsync(struct net_device *dev,
3456                                    int (*unsync)(struct net_device *,
3457                                                  const unsigned char *))
3458 {
3459         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3460 }
3461 
3462 /* Functions used for secondary unicast and multicast support */
3463 void dev_set_rx_mode(struct net_device *dev);
3464 void __dev_set_rx_mode(struct net_device *dev);
3465 int dev_set_promiscuity(struct net_device *dev, int inc);
3466 int dev_set_allmulti(struct net_device *dev, int inc);
3467 void netdev_state_change(struct net_device *dev);
3468 void netdev_notify_peers(struct net_device *dev);
3469 void netdev_features_change(struct net_device *dev);
3470 /* Load a device via the kmod */
3471 void dev_load(struct net *net, const char *name);
3472 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3473                                         struct rtnl_link_stats64 *storage);
3474 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3475                              const struct net_device_stats *netdev_stats);
3476 
3477 extern int              netdev_max_backlog;
3478 extern int              netdev_tstamp_prequeue;
3479 extern int              weight_p;
3480 extern int              bpf_jit_enable;
3481 
3482 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3483 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3484                                                      struct list_head **iter);
3485 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3486                                                      struct list_head **iter);
3487 
3488 /* iterate through upper list, must be called under RCU read lock */
3489 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3490         for (iter = &(dev)->adj_list.upper, \
3491              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3492              updev; \
3493              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3494 
3495 /* iterate through upper list, must be called under RCU read lock */
3496 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3497         for (iter = &(dev)->all_adj_list.upper, \
3498              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3499              updev; \
3500              updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3501 
3502 void *netdev_lower_get_next_private(struct net_device *dev,
3503                                     struct list_head **iter);
3504 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3505                                         struct list_head **iter);
3506 
3507 #define netdev_for_each_lower_private(dev, priv, iter) \
3508         for (iter = (dev)->adj_list.lower.next, \
3509              priv = netdev_lower_get_next_private(dev, &(iter)); \
3510              priv; \
3511              priv = netdev_lower_get_next_private(dev, &(iter)))
3512 
3513 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3514         for (iter = &(dev)->adj_list.lower, \
3515              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3516              priv; \
3517              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3518 
3519 void *netdev_lower_get_next(struct net_device *dev,
3520                                 struct list_head **iter);
3521 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3522         for (iter = &(dev)->adj_list.lower, \
3523              ldev = netdev_lower_get_next(dev, &(iter)); \
3524              ldev; \
3525              ldev = netdev_lower_get_next(dev, &(iter)))
3526 
3527 void *netdev_adjacent_get_private(struct list_head *adj_list);
3528 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3529 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3530 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3531 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3532 int netdev_master_upper_dev_link(struct net_device *dev,
3533                                  struct net_device *upper_dev);
3534 int netdev_master_upper_dev_link_private(struct net_device *dev,
3535                                          struct net_device *upper_dev,
3536                                          void *private);
3537 void netdev_upper_dev_unlink(struct net_device *dev,
3538                              struct net_device *upper_dev);
3539 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3540 void *netdev_lower_dev_get_private(struct net_device *dev,
3541                                    struct net_device *lower_dev);
3542 
3543 /* RSS keys are 40 or 52 bytes long */
3544 #define NETDEV_RSS_KEY_LEN 52
3545 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3546 void netdev_rss_key_fill(void *buffer, size_t len);
3547 
3548 int dev_get_nest_level(struct net_device *dev,
3549                        bool (*type_check)(struct net_device *dev));
3550 int skb_checksum_help(struct sk_buff *skb);
3551 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3552                                   netdev_features_t features, bool tx_path);
3553 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3554                                     netdev_features_t features);
3555 
3556 struct netdev_bonding_info {
3557         ifslave slave;
3558         ifbond  master;
3559 };
3560 
3561 struct netdev_notifier_bonding_info {
3562         struct netdev_notifier_info info; /* must be first */
3563         struct netdev_bonding_info  bonding_info;
3564 };
3565 
3566 void netdev_bonding_info_change(struct net_device *dev,
3567                                 struct netdev_bonding_info *bonding_info);
3568 
3569 static inline
3570 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3571 {
3572         return __skb_gso_segment(skb, features, true);
3573 }
3574 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3575 
3576 static inline bool can_checksum_protocol(netdev_features_t features,
3577                                          __be16 protocol)
3578 {
3579         return ((features & NETIF_F_GEN_CSUM) ||
3580                 ((features & NETIF_F_V4_CSUM) &&
3581                  protocol == htons(ETH_P_IP)) ||
3582                 ((features & NETIF_F_V6_CSUM) &&
3583                  protocol == htons(ETH_P_IPV6)) ||
3584                 ((features & NETIF_F_FCOE_CRC) &&
3585                  protocol == htons(ETH_P_FCOE)));
3586 }
3587 
3588 #ifdef CONFIG_BUG
3589 void netdev_rx_csum_fault(struct net_device *dev);
3590 #else
3591 static inline void netdev_rx_csum_fault(struct net_device *dev)
3592 {
3593 }
3594 #endif
3595 /* rx skb timestamps */
3596 void net_enable_timestamp(void);
3597 void net_disable_timestamp(void);
3598 
3599 #ifdef CONFIG_PROC_FS
3600 int __init dev_proc_init(void);
3601 #else
3602 #define dev_proc_init() 0
3603 #endif
3604 
3605 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3606                                               struct sk_buff *skb, struct net_device *dev,
3607                                               bool more)
3608 {
3609         skb->xmit_more = more ? 1 : 0;
3610         return ops->ndo_start_xmit(skb, dev);
3611 }
3612 
3613 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3614                                             struct netdev_queue *txq, bool more)
3615 {
3616         const struct net_device_ops *ops = dev->netdev_ops;
3617         int rc;
3618 
3619         rc = __netdev_start_xmit(ops, skb, dev, more);
3620         if (rc == NETDEV_TX_OK)
3621                 txq_trans_update(txq);
3622 
3623         return rc;
3624 }
3625 
3626 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3627                                 const void *ns);
3628 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3629                                  const void *ns);
3630 
3631 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3632 {
3633         return netdev_class_create_file_ns(class_attr, NULL);
3634 }
3635 
3636 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3637 {
3638         netdev_class_remove_file_ns(class_attr, NULL);
3639 }
3640 
3641 extern struct kobj_ns_type_operations net_ns_type_operations;
3642 
3643 const char *netdev_drivername(const struct net_device *dev);
3644 
3645 void linkwatch_run_queue(void);
3646 
3647 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3648                                                           netdev_features_t f2)
3649 {
3650         if (f1 & NETIF_F_GEN_CSUM)
3651                 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3652         if (f2 & NETIF_F_GEN_CSUM)
3653                 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3654         f1 &= f2;
3655         if (f1 & NETIF_F_GEN_CSUM)
3656                 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3657 
3658         return f1;
3659 }
3660 
3661 static inline netdev_features_t netdev_get_wanted_features(
3662         struct net_device *dev)
3663 {
3664         return (dev->features & ~dev->hw_features) | dev->wanted_features;
3665 }
3666 netdev_features_t netdev_increment_features(netdev_features_t all,
3667         netdev_features_t one, netdev_features_t mask);
3668 
3669 /* Allow TSO being used on stacked device :
3670  * Performing the GSO segmentation before last device
3671  * is a performance improvement.
3672  */
3673 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3674                                                         netdev_features_t mask)
3675 {
3676         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3677 }
3678 
3679 int __netdev_update_features(struct net_device *dev);
3680 void netdev_update_features(struct net_device *dev);
3681 void netdev_change_features(struct net_device *dev);
3682 
3683 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3684                                         struct net_device *dev);
3685 
3686 netdev_features_t passthru_features_check(struct sk_buff *skb,
3687                                           struct net_device *dev,
3688                                           netdev_features_t features);
3689 netdev_features_t netif_skb_features(struct sk_buff *skb);
3690 
3691 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3692 {
3693         netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3694 
3695         /* check flags correspondence */
3696         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3697         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3698         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3699         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3700         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3701         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3702         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3703         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3704         BUILD_BUG_ON(SKB_GSO_IPIP    != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3705         BUILD_BUG_ON(SKB_GSO_SIT     != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3706         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3707         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3708         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3709 
3710         return (features & feature) == feature;
3711 }
3712 
3713 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3714 {
3715         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3716                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3717 }
3718 
3719 static inline bool netif_needs_gso(struct sk_buff *skb,
3720                                    netdev_features_t features)
3721 {
3722         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3723                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3724                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3725 }
3726 
3727 static inline void netif_set_gso_max_size(struct net_device *dev,
3728                                           unsigned int size)
3729 {
3730         dev->gso_max_size = size;
3731 }
3732 
3733 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3734                                         int pulled_hlen, u16 mac_offset,
3735                                         int mac_len)
3736 {
3737         skb->protocol = protocol;
3738         skb->encapsulation = 1;
3739         skb_push(skb, pulled_hlen);
3740         skb_reset_transport_header(skb);
3741         skb->mac_header = mac_offset;
3742         skb->network_header = skb->mac_header + mac_len;
3743         skb->mac_len = mac_len;
3744 }
3745 
3746 static inline bool netif_is_macvlan(struct net_device *dev)
3747 {
3748         return dev->priv_flags & IFF_MACVLAN;
3749 }
3750 
3751 static inline bool netif_is_macvlan_port(struct net_device *dev)
3752 {
3753         return dev->priv_flags & IFF_MACVLAN_PORT;
3754 }
3755 
3756 static inline bool netif_is_ipvlan(struct net_device *dev)
3757 {
3758         return dev->priv_flags & IFF_IPVLAN_SLAVE;
3759 }
3760 
3761 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3762 {
3763         return dev->priv_flags & IFF_IPVLAN_MASTER;
3764 }
3765 
3766 static inline bool netif_is_bond_master(struct net_device *dev)
3767 {
3768         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3769 }
3770 
3771 static inline bool netif_is_bond_slave(struct net_device *dev)
3772 {
3773         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3774 }
3775 
3776 static inline bool netif_supports_nofcs(struct net_device *dev)
3777 {
3778         return dev->priv_flags & IFF_SUPP_NOFCS;
3779 }
3780 
3781 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3782 static inline void netif_keep_dst(struct net_device *dev)
3783 {
3784         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3785 }
3786 
3787 extern struct pernet_operations __net_initdata loopback_net_ops;
3788 
3789 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3790 
3791 /* netdev_printk helpers, similar to dev_printk */
3792 
3793 static inline const char *netdev_name(const struct net_device *dev)
3794 {
3795         if (!dev->name[0] || strchr(dev->name, '%'))
3796                 return "(unnamed net_device)";
3797         return dev->name;
3798 }
3799 
3800 static inline const char *netdev_reg_state(const struct net_device *dev)
3801 {
3802         switch (dev->reg_state) {
3803         case NETREG_UNINITIALIZED: return " (uninitialized)";
3804         case NETREG_REGISTERED: return "";
3805         case NETREG_UNREGISTERING: return " (unregistering)";
3806         case NETREG_UNREGISTERED: return " (unregistered)";
3807         case NETREG_RELEASED: return " (released)";
3808         case NETREG_DUMMY: return " (dummy)";
3809         }
3810 
3811         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3812         return " (unknown)";
3813 }
3814 
3815 __printf(3, 4)
3816 void netdev_printk(const char *level, const struct net_device *dev,
3817                    const char *format, ...);
3818 __printf(2, 3)
3819 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3820 __printf(2, 3)
3821 void netdev_alert(const struct net_device *dev, const char *format, ...);
3822 __printf(2, 3)
3823 void netdev_crit(const struct net_device *dev, const char *format, ...);
3824 __printf(2, 3)
3825 void netdev_err(const struct net_device *dev, const char *format, ...);
3826 __printf(2, 3)
3827 void netdev_warn(const struct net_device *dev, const char *format, ...);
3828 __printf(2, 3)
3829 void netdev_notice(const struct net_device *dev, const char *format, ...);
3830 __printf(2, 3)
3831 void netdev_info(const struct net_device *dev, const char *format, ...);
3832 
3833 #define MODULE_ALIAS_NETDEV(device) \
3834         MODULE_ALIAS("netdev-" device)
3835 
3836 #if defined(CONFIG_DYNAMIC_DEBUG)
3837 #define netdev_dbg(__dev, format, args...)                      \
3838 do {                                                            \
3839         dynamic_netdev_dbg(__dev, format, ##args);              \
3840 } while (0)
3841 #elif defined(DEBUG)
3842 #define netdev_dbg(__dev, format, args...)                      \
3843         netdev_printk(KERN_DEBUG, __dev, format, ##args)
3844 #else
3845 #define netdev_dbg(__dev, format, args...)                      \
3846 ({                                                              \
3847         if (0)                                                  \
3848                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3849 })
3850 #endif
3851 
3852 #if defined(VERBOSE_DEBUG)
3853 #define netdev_vdbg     netdev_dbg
3854 #else
3855 
3856 #define netdev_vdbg(dev, format, args...)                       \
3857 ({                                                              \
3858         if (0)                                                  \
3859                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3860         0;                                                      \
3861 })
3862 #endif
3863 
3864 /*
3865  * netdev_WARN() acts like dev_printk(), but with the key difference
3866  * of using a WARN/WARN_ON to get the message out, including the
3867  * file/line information and a backtrace.
3868  */
3869 #define netdev_WARN(dev, format, args...)                       \
3870         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
3871              netdev_reg_state(dev), ##args)
3872 
3873 /* netif printk helpers, similar to netdev_printk */
3874 
3875 #define netif_printk(priv, type, level, dev, fmt, args...)      \
3876 do {                                                            \
3877         if (netif_msg_##type(priv))                             \
3878                 netdev_printk(level, (dev), fmt, ##args);       \
3879 } while (0)
3880 
3881 #define netif_level(level, priv, type, dev, fmt, args...)       \
3882 do {                                                            \
3883         if (netif_msg_##type(priv))                             \
3884                 netdev_##level(dev, fmt, ##args);               \
3885 } while (0)
3886 
3887 #define netif_emerg(priv, type, dev, fmt, args...)              \
3888         netif_level(emerg, priv, type, dev, fmt, ##args)
3889 #define netif_alert(priv, type, dev, fmt, args...)              \
3890         netif_level(alert, priv, type, dev, fmt, ##args)
3891 #define netif_crit(priv, type, dev, fmt, args...)               \
3892         netif_level(crit, priv, type, dev, fmt, ##args)
3893 #define netif_err(priv, type, dev, fmt, args...)                \
3894         netif_level(err, priv, type, dev, fmt, ##args)
3895 #define netif_warn(priv, type, dev, fmt, args...)               \
3896         netif_level(warn, priv, type, dev, fmt, ##args)
3897 #define netif_notice(priv, type, dev, fmt, args...)             \
3898         netif_level(notice, priv, type, dev, fmt, ##args)
3899 #define netif_info(priv, type, dev, fmt, args...)               \
3900         netif_level(info, priv, type, dev, fmt, ##args)
3901 
3902 #if defined(CONFIG_DYNAMIC_DEBUG)
3903 #define netif_dbg(priv, type, netdev, format, args...)          \
3904 do {                                                            \
3905         if (netif_msg_##type(priv))                             \
3906                 dynamic_netdev_dbg(netdev, format, ##args);     \
3907 } while (0)
3908 #elif defined(DEBUG)
3909 #define netif_dbg(priv, type, dev, format, args...)             \
3910         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3911 #else
3912 #define netif_dbg(priv, type, dev, format, args...)                     \
3913 ({                                                                      \
3914         if (0)                                                          \
3915                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3916         0;                                                              \
3917 })
3918 #endif
3919 
3920 #if defined(VERBOSE_DEBUG)
3921 #define netif_vdbg      netif_dbg
3922 #else
3923 #define netif_vdbg(priv, type, dev, format, args...)            \
3924 ({                                                              \
3925         if (0)                                                  \
3926                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3927         0;                                                      \
3928 })
3929 #endif
3930 
3931 /*
3932  *      The list of packet types we will receive (as opposed to discard)
3933  *      and the routines to invoke.
3934  *
3935  *      Why 16. Because with 16 the only overlap we get on a hash of the
3936  *      low nibble of the protocol value is RARP/SNAP/X.25.
3937  *
3938  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
3939  *             sure which should go first, but I bet it won't make much
3940  *             difference if we are running VLANs.  The good news is that
3941  *             this protocol won't be in the list unless compiled in, so
3942  *             the average user (w/out VLANs) will not be adversely affected.
3943  *             --BLG
3944  *
3945  *              0800    IP
3946  *              8100    802.1Q VLAN
3947  *              0001    802.3
3948  *              0002    AX.25
3949  *              0004    802.2
3950  *              8035    RARP
3951  *              0005    SNAP
3952  *              0805    X.25
3953  *              0806    ARP
3954  *              8137    IPX
3955  *              0009    Localtalk
3956  *              86DD    IPv6
3957  */
3958 #define PTYPE_HASH_SIZE (16)
3959 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3960 
3961 #endif  /* _LINUX_NETDEVICE_H */
3962 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us