Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/include/linux/mtd/mtd.h

  1 /*
  2  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
  3  *
  4  * This program is free software; you can redistribute it and/or modify
  5  * it under the terms of the GNU General Public License as published by
  6  * the Free Software Foundation; either version 2 of the License, or
  7  * (at your option) any later version.
  8  *
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, write to the Free Software
 16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17  *
 18  */
 19 
 20 #ifndef __MTD_MTD_H__
 21 #define __MTD_MTD_H__
 22 
 23 #include <linux/types.h>
 24 #include <linux/uio.h>
 25 #include <linux/notifier.h>
 26 #include <linux/device.h>
 27 
 28 #include <mtd/mtd-abi.h>
 29 
 30 #include <asm/div64.h>
 31 
 32 #define MTD_ERASE_PENDING       0x01
 33 #define MTD_ERASING             0x02
 34 #define MTD_ERASE_SUSPEND       0x04
 35 #define MTD_ERASE_DONE          0x08
 36 #define MTD_ERASE_FAILED        0x10
 37 
 38 #define MTD_FAIL_ADDR_UNKNOWN -1LL
 39 
 40 /*
 41  * If the erase fails, fail_addr might indicate exactly which block failed. If
 42  * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
 43  * or was not specific to any particular block.
 44  */
 45 struct erase_info {
 46         struct mtd_info *mtd;
 47         uint64_t addr;
 48         uint64_t len;
 49         uint64_t fail_addr;
 50         u_long time;
 51         u_long retries;
 52         unsigned dev;
 53         unsigned cell;
 54         void (*callback) (struct erase_info *self);
 55         u_long priv;
 56         u_char state;
 57         struct erase_info *next;
 58 };
 59 
 60 struct mtd_erase_region_info {
 61         uint64_t offset;                /* At which this region starts, from the beginning of the MTD */
 62         uint32_t erasesize;             /* For this region */
 63         uint32_t numblocks;             /* Number of blocks of erasesize in this region */
 64         unsigned long *lockmap;         /* If keeping bitmap of locks */
 65 };
 66 
 67 /**
 68  * struct mtd_oob_ops - oob operation operands
 69  * @mode:       operation mode
 70  *
 71  * @len:        number of data bytes to write/read
 72  *
 73  * @retlen:     number of data bytes written/read
 74  *
 75  * @ooblen:     number of oob bytes to write/read
 76  * @oobretlen:  number of oob bytes written/read
 77  * @ooboffs:    offset of oob data in the oob area (only relevant when
 78  *              mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
 79  * @datbuf:     data buffer - if NULL only oob data are read/written
 80  * @oobbuf:     oob data buffer
 81  *
 82  * Note, it is allowed to read more than one OOB area at one go, but not write.
 83  * The interface assumes that the OOB write requests program only one page's
 84  * OOB area.
 85  */
 86 struct mtd_oob_ops {
 87         unsigned int    mode;
 88         size_t          len;
 89         size_t          retlen;
 90         size_t          ooblen;
 91         size_t          oobretlen;
 92         uint32_t        ooboffs;
 93         uint8_t         *datbuf;
 94         uint8_t         *oobbuf;
 95 };
 96 
 97 #define MTD_MAX_OOBFREE_ENTRIES_LARGE   32
 98 #define MTD_MAX_ECCPOS_ENTRIES_LARGE    640
 99 /**
100  * struct mtd_oob_region - oob region definition
101  * @offset: region offset
102  * @length: region length
103  *
104  * This structure describes a region of the OOB area, and is used
105  * to retrieve ECC or free bytes sections.
106  * Each section is defined by an offset within the OOB area and a
107  * length.
108  */
109 struct mtd_oob_region {
110         u32 offset;
111         u32 length;
112 };
113 
114 /*
115  * struct mtd_ooblayout_ops - NAND OOB layout operations
116  * @ecc: function returning an ECC region in the OOB area.
117  *       Should return -ERANGE if %section exceeds the total number of
118  *       ECC sections.
119  * @free: function returning a free region in the OOB area.
120  *        Should return -ERANGE if %section exceeds the total number of
121  *        free sections.
122  */
123 struct mtd_ooblayout_ops {
124         int (*ecc)(struct mtd_info *mtd, int section,
125                    struct mtd_oob_region *oobecc);
126         int (*free)(struct mtd_info *mtd, int section,
127                     struct mtd_oob_region *oobfree);
128 };
129 
130 /**
131  * struct mtd_pairing_info - page pairing information
132  *
133  * @pair: pair id
134  * @group: group id
135  *
136  * The term "pair" is used here, even though TLC NANDs might group pages by 3
137  * (3 bits in a single cell). A pair should regroup all pages that are sharing
138  * the same cell. Pairs are then indexed in ascending order.
139  *
140  * @group is defining the position of a page in a given pair. It can also be
141  * seen as the bit position in the cell: page attached to bit 0 belongs to
142  * group 0, page attached to bit 1 belongs to group 1, etc.
143  *
144  * Example:
145  * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
146  *
147  *              group-0         group-1
148  *
149  *  pair-0      page-0          page-4
150  *  pair-1      page-1          page-5
151  *  pair-2      page-2          page-8
152  *  ...
153  *  pair-127    page-251        page-255
154  *
155  *
156  * Note that the "group" and "pair" terms were extracted from Samsung and
157  * Hynix datasheets, and might be referenced under other names in other
158  * datasheets (Micron is describing this concept as "shared pages").
159  */
160 struct mtd_pairing_info {
161         int pair;
162         int group;
163 };
164 
165 /**
166  * struct mtd_pairing_scheme - page pairing scheme description
167  *
168  * @ngroups: number of groups. Should be related to the number of bits
169  *           per cell.
170  * @get_info: converts a write-unit (page number within an erase block) into
171  *            mtd_pairing information (pair + group). This function should
172  *            fill the info parameter based on the wunit index or return
173  *            -EINVAL if the wunit parameter is invalid.
174  * @get_wunit: converts pairing information into a write-unit (page) number.
175  *             This function should return the wunit index pointed by the
176  *             pairing information described in the info argument. It should
177  *             return -EINVAL, if there's no wunit corresponding to the
178  *             passed pairing information.
179  *
180  * See mtd_pairing_info documentation for a detailed explanation of the
181  * pair and group concepts.
182  *
183  * The mtd_pairing_scheme structure provides a generic solution to represent
184  * NAND page pairing scheme. Instead of exposing two big tables to do the
185  * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
186  * implement the ->get_info() and ->get_wunit() functions.
187  *
188  * MTD users will then be able to query these information by using the
189  * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
190  *
191  * @ngroups is here to help MTD users iterating over all the pages in a
192  * given pair. This value can be retrieved by MTD users using the
193  * mtd_pairing_groups() helper.
194  *
195  * Examples are given in the mtd_pairing_info_to_wunit() and
196  * mtd_wunit_to_pairing_info() documentation.
197  */
198 struct mtd_pairing_scheme {
199         int ngroups;
200         int (*get_info)(struct mtd_info *mtd, int wunit,
201                         struct mtd_pairing_info *info);
202         int (*get_wunit)(struct mtd_info *mtd,
203                          const struct mtd_pairing_info *info);
204 };
205 
206 struct module;  /* only needed for owner field in mtd_info */
207 
208 struct mtd_info {
209         u_char type;
210         uint32_t flags;
211         uint64_t size;   // Total size of the MTD
212 
213         /* "Major" erase size for the device. Naïve users may take this
214          * to be the only erase size available, or may use the more detailed
215          * information below if they desire
216          */
217         uint32_t erasesize;
218         /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
219          * though individual bits can be cleared), in case of NAND flash it is
220          * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
221          * it is of ECC block size, etc. It is illegal to have writesize = 0.
222          * Any driver registering a struct mtd_info must ensure a writesize of
223          * 1 or larger.
224          */
225         uint32_t writesize;
226 
227         /*
228          * Size of the write buffer used by the MTD. MTD devices having a write
229          * buffer can write multiple writesize chunks at a time. E.g. while
230          * writing 4 * writesize bytes to a device with 2 * writesize bytes
231          * buffer the MTD driver can (but doesn't have to) do 2 writesize
232          * operations, but not 4. Currently, all NANDs have writebufsize
233          * equivalent to writesize (NAND page size). Some NOR flashes do have
234          * writebufsize greater than writesize.
235          */
236         uint32_t writebufsize;
237 
238         uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
239         uint32_t oobavail;  // Available OOB bytes per block
240 
241         /*
242          * If erasesize is a power of 2 then the shift is stored in
243          * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
244          */
245         unsigned int erasesize_shift;
246         unsigned int writesize_shift;
247         /* Masks based on erasesize_shift and writesize_shift */
248         unsigned int erasesize_mask;
249         unsigned int writesize_mask;
250 
251         /*
252          * read ops return -EUCLEAN if max number of bitflips corrected on any
253          * one region comprising an ecc step equals or exceeds this value.
254          * Settable by driver, else defaults to ecc_strength.  User can override
255          * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
256          * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
257          */
258         unsigned int bitflip_threshold;
259 
260         // Kernel-only stuff starts here.
261         const char *name;
262         int index;
263 
264         /* OOB layout description */
265         const struct mtd_ooblayout_ops *ooblayout;
266 
267         /* NAND pairing scheme, only provided for MLC/TLC NANDs */
268         const struct mtd_pairing_scheme *pairing;
269 
270         /* the ecc step size. */
271         unsigned int ecc_step_size;
272 
273         /* max number of correctible bit errors per ecc step */
274         unsigned int ecc_strength;
275 
276         /* Data for variable erase regions. If numeraseregions is zero,
277          * it means that the whole device has erasesize as given above.
278          */
279         int numeraseregions;
280         struct mtd_erase_region_info *eraseregions;
281 
282         /*
283          * Do not call via these pointers, use corresponding mtd_*()
284          * wrappers instead.
285          */
286         int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
287         int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
288                        size_t *retlen, void **virt, resource_size_t *phys);
289         int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
290         unsigned long (*_get_unmapped_area) (struct mtd_info *mtd,
291                                              unsigned long len,
292                                              unsigned long offset,
293                                              unsigned long flags);
294         int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
295                       size_t *retlen, u_char *buf);
296         int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
297                        size_t *retlen, const u_char *buf);
298         int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
299                              size_t *retlen, const u_char *buf);
300         int (*_read_oob) (struct mtd_info *mtd, loff_t from,
301                           struct mtd_oob_ops *ops);
302         int (*_write_oob) (struct mtd_info *mtd, loff_t to,
303                            struct mtd_oob_ops *ops);
304         int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
305                                     size_t *retlen, struct otp_info *buf);
306         int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
307                                     size_t len, size_t *retlen, u_char *buf);
308         int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
309                                     size_t *retlen, struct otp_info *buf);
310         int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
311                                     size_t len, size_t *retlen, u_char *buf);
312         int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
313                                      size_t len, size_t *retlen, u_char *buf);
314         int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
315                                     size_t len);
316         int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
317                         unsigned long count, loff_t to, size_t *retlen);
318         void (*_sync) (struct mtd_info *mtd);
319         int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
320         int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
321         int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
322         int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
323         int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
324         int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
325         int (*_suspend) (struct mtd_info *mtd);
326         void (*_resume) (struct mtd_info *mtd);
327         void (*_reboot) (struct mtd_info *mtd);
328         /*
329          * If the driver is something smart, like UBI, it may need to maintain
330          * its own reference counting. The below functions are only for driver.
331          */
332         int (*_get_device) (struct mtd_info *mtd);
333         void (*_put_device) (struct mtd_info *mtd);
334 
335         /* Backing device capabilities for this device
336          * - provides mmap capabilities
337          */
338         struct backing_dev_info *backing_dev_info;
339 
340         struct notifier_block reboot_notifier;  /* default mode before reboot */
341 
342         /* ECC status information */
343         struct mtd_ecc_stats ecc_stats;
344         /* Subpage shift (NAND) */
345         int subpage_sft;
346 
347         void *priv;
348 
349         struct module *owner;
350         struct device dev;
351         int usecount;
352 };
353 
354 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
355                       struct mtd_oob_region *oobecc);
356 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
357                                  int *section,
358                                  struct mtd_oob_region *oobregion);
359 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
360                                const u8 *oobbuf, int start, int nbytes);
361 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
362                                u8 *oobbuf, int start, int nbytes);
363 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
364                        struct mtd_oob_region *oobfree);
365 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
366                                 const u8 *oobbuf, int start, int nbytes);
367 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
368                                 u8 *oobbuf, int start, int nbytes);
369 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
370 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
371 
372 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
373                                      const struct mtd_ooblayout_ops *ooblayout)
374 {
375         mtd->ooblayout = ooblayout;
376 }
377 
378 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
379                                 const struct mtd_pairing_scheme *pairing)
380 {
381         mtd->pairing = pairing;
382 }
383 
384 static inline void mtd_set_of_node(struct mtd_info *mtd,
385                                    struct device_node *np)
386 {
387         mtd->dev.of_node = np;
388 }
389 
390 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
391 {
392         return mtd->dev.of_node;
393 }
394 
395 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
396 {
397         return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
398 }
399 
400 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
401                               struct mtd_pairing_info *info);
402 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
403                               const struct mtd_pairing_info *info);
404 int mtd_pairing_groups(struct mtd_info *mtd);
405 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
406 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
407               void **virt, resource_size_t *phys);
408 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
409 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
410                                     unsigned long offset, unsigned long flags);
411 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
412              u_char *buf);
413 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
414               const u_char *buf);
415 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
416                     const u_char *buf);
417 
418 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
419 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
420 
421 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
422                            struct otp_info *buf);
423 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
424                            size_t *retlen, u_char *buf);
425 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
426                            struct otp_info *buf);
427 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
428                            size_t *retlen, u_char *buf);
429 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
430                             size_t *retlen, u_char *buf);
431 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
432 
433 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
434                unsigned long count, loff_t to, size_t *retlen);
435 
436 static inline void mtd_sync(struct mtd_info *mtd)
437 {
438         if (mtd->_sync)
439                 mtd->_sync(mtd);
440 }
441 
442 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
443 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
444 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
445 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
446 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
447 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
448 
449 static inline int mtd_suspend(struct mtd_info *mtd)
450 {
451         return mtd->_suspend ? mtd->_suspend(mtd) : 0;
452 }
453 
454 static inline void mtd_resume(struct mtd_info *mtd)
455 {
456         if (mtd->_resume)
457                 mtd->_resume(mtd);
458 }
459 
460 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
461 {
462         if (mtd->erasesize_shift)
463                 return sz >> mtd->erasesize_shift;
464         do_div(sz, mtd->erasesize);
465         return sz;
466 }
467 
468 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
469 {
470         if (mtd->erasesize_shift)
471                 return sz & mtd->erasesize_mask;
472         return do_div(sz, mtd->erasesize);
473 }
474 
475 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
476 {
477         if (mtd->writesize_shift)
478                 return sz >> mtd->writesize_shift;
479         do_div(sz, mtd->writesize);
480         return sz;
481 }
482 
483 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
484 {
485         if (mtd->writesize_shift)
486                 return sz & mtd->writesize_mask;
487         return do_div(sz, mtd->writesize);
488 }
489 
490 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
491 {
492         return mtd->erasesize / mtd->writesize;
493 }
494 
495 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
496 {
497         return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
498 }
499 
500 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
501                                          int wunit)
502 {
503         return base + (wunit * mtd->writesize);
504 }
505 
506 
507 static inline int mtd_has_oob(const struct mtd_info *mtd)
508 {
509         return mtd->_read_oob && mtd->_write_oob;
510 }
511 
512 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
513 {
514         return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
515 }
516 
517 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
518 {
519         return !!mtd->_block_isbad;
520 }
521 
522         /* Kernel-side ioctl definitions */
523 
524 struct mtd_partition;
525 struct mtd_part_parser_data;
526 
527 extern int mtd_device_parse_register(struct mtd_info *mtd,
528                                      const char * const *part_probe_types,
529                                      struct mtd_part_parser_data *parser_data,
530                                      const struct mtd_partition *defparts,
531                                      int defnr_parts);
532 #define mtd_device_register(master, parts, nr_parts)    \
533         mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
534 extern int mtd_device_unregister(struct mtd_info *master);
535 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
536 extern int __get_mtd_device(struct mtd_info *mtd);
537 extern void __put_mtd_device(struct mtd_info *mtd);
538 extern struct mtd_info *get_mtd_device_nm(const char *name);
539 extern void put_mtd_device(struct mtd_info *mtd);
540 
541 
542 struct mtd_notifier {
543         void (*add)(struct mtd_info *mtd);
544         void (*remove)(struct mtd_info *mtd);
545         struct list_head list;
546 };
547 
548 
549 extern void register_mtd_user (struct mtd_notifier *new);
550 extern int unregister_mtd_user (struct mtd_notifier *old);
551 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
552 
553 void mtd_erase_callback(struct erase_info *instr);
554 
555 static inline int mtd_is_bitflip(int err) {
556         return err == -EUCLEAN;
557 }
558 
559 static inline int mtd_is_eccerr(int err) {
560         return err == -EBADMSG;
561 }
562 
563 static inline int mtd_is_bitflip_or_eccerr(int err) {
564         return mtd_is_bitflip(err) || mtd_is_eccerr(err);
565 }
566 
567 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
568 
569 #endif /* __MTD_MTD_H__ */
570 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us