Version:  2.0.40 2.2.26 2.4.37 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Linux/include/linux/crypto.h

  1 /*
  2  * Scatterlist Cryptographic API.
  3  *
  4  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  5  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
  6  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
  7  *
  8  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
  9  * and Nettle, by Niels Möller.
 10  * 
 11  * This program is free software; you can redistribute it and/or modify it
 12  * under the terms of the GNU General Public License as published by the Free
 13  * Software Foundation; either version 2 of the License, or (at your option) 
 14  * any later version.
 15  *
 16  */
 17 #ifndef _LINUX_CRYPTO_H
 18 #define _LINUX_CRYPTO_H
 19 
 20 #include <linux/atomic.h>
 21 #include <linux/kernel.h>
 22 #include <linux/list.h>
 23 #include <linux/bug.h>
 24 #include <linux/slab.h>
 25 #include <linux/string.h>
 26 #include <linux/uaccess.h>
 27 
 28 /*
 29  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
 30  * arbitrary modules to be loaded. Loading from userspace may still need the
 31  * unprefixed names, so retains those aliases as well.
 32  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
 33  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
 34  * expands twice on the same line. Instead, use a separate base name for the
 35  * alias.
 36  */
 37 #define MODULE_ALIAS_CRYPTO(name)       \
 38                 __MODULE_INFO(alias, alias_userspace, name);    \
 39                 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
 40 
 41 /*
 42  * Algorithm masks and types.
 43  */
 44 #define CRYPTO_ALG_TYPE_MASK            0x0000000f
 45 #define CRYPTO_ALG_TYPE_CIPHER          0x00000001
 46 #define CRYPTO_ALG_TYPE_COMPRESS        0x00000002
 47 #define CRYPTO_ALG_TYPE_AEAD            0x00000003
 48 #define CRYPTO_ALG_TYPE_BLKCIPHER       0x00000004
 49 #define CRYPTO_ALG_TYPE_ABLKCIPHER      0x00000005
 50 #define CRYPTO_ALG_TYPE_GIVCIPHER       0x00000006
 51 #define CRYPTO_ALG_TYPE_DIGEST          0x00000008
 52 #define CRYPTO_ALG_TYPE_HASH            0x00000008
 53 #define CRYPTO_ALG_TYPE_SHASH           0x00000009
 54 #define CRYPTO_ALG_TYPE_AHASH           0x0000000a
 55 #define CRYPTO_ALG_TYPE_RNG             0x0000000c
 56 #define CRYPTO_ALG_TYPE_AKCIPHER        0x0000000d
 57 
 58 #define CRYPTO_ALG_TYPE_HASH_MASK       0x0000000e
 59 #define CRYPTO_ALG_TYPE_AHASH_MASK      0x0000000c
 60 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK  0x0000000c
 61 
 62 #define CRYPTO_ALG_LARVAL               0x00000010
 63 #define CRYPTO_ALG_DEAD                 0x00000020
 64 #define CRYPTO_ALG_DYING                0x00000040
 65 #define CRYPTO_ALG_ASYNC                0x00000080
 66 
 67 /*
 68  * Set this bit if and only if the algorithm requires another algorithm of
 69  * the same type to handle corner cases.
 70  */
 71 #define CRYPTO_ALG_NEED_FALLBACK        0x00000100
 72 
 73 /*
 74  * This bit is set for symmetric key ciphers that have already been wrapped
 75  * with a generic IV generator to prevent them from being wrapped again.
 76  */
 77 #define CRYPTO_ALG_GENIV                0x00000200
 78 
 79 /*
 80  * Set if the algorithm has passed automated run-time testing.  Note that
 81  * if there is no run-time testing for a given algorithm it is considered
 82  * to have passed.
 83  */
 84 
 85 #define CRYPTO_ALG_TESTED               0x00000400
 86 
 87 /*
 88  * Set if the algorithm is an instance that is build from templates.
 89  */
 90 #define CRYPTO_ALG_INSTANCE             0x00000800
 91 
 92 /* Set this bit if the algorithm provided is hardware accelerated but
 93  * not available to userspace via instruction set or so.
 94  */
 95 #define CRYPTO_ALG_KERN_DRIVER_ONLY     0x00001000
 96 
 97 /*
 98  * Mark a cipher as a service implementation only usable by another
 99  * cipher and never by a normal user of the kernel crypto API
100  */
101 #define CRYPTO_ALG_INTERNAL             0x00002000
102 
103 /*
104  * Transform masks and values (for crt_flags).
105  */
106 #define CRYPTO_TFM_REQ_MASK             0x000fff00
107 #define CRYPTO_TFM_RES_MASK             0xfff00000
108 
109 #define CRYPTO_TFM_REQ_WEAK_KEY         0x00000100
110 #define CRYPTO_TFM_REQ_MAY_SLEEP        0x00000200
111 #define CRYPTO_TFM_REQ_MAY_BACKLOG      0x00000400
112 #define CRYPTO_TFM_RES_WEAK_KEY         0x00100000
113 #define CRYPTO_TFM_RES_BAD_KEY_LEN      0x00200000
114 #define CRYPTO_TFM_RES_BAD_KEY_SCHED    0x00400000
115 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN    0x00800000
116 #define CRYPTO_TFM_RES_BAD_FLAGS        0x01000000
117 
118 /*
119  * Miscellaneous stuff.
120  */
121 #define CRYPTO_MAX_ALG_NAME             64
122 
123 /*
124  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
125  * declaration) is used to ensure that the crypto_tfm context structure is
126  * aligned correctly for the given architecture so that there are no alignment
127  * faults for C data types.  In particular, this is required on platforms such
128  * as arm where pointers are 32-bit aligned but there are data types such as
129  * u64 which require 64-bit alignment.
130  */
131 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
132 
133 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
134 
135 struct scatterlist;
136 struct crypto_ablkcipher;
137 struct crypto_async_request;
138 struct crypto_blkcipher;
139 struct crypto_tfm;
140 struct crypto_type;
141 struct skcipher_givcrypt_request;
142 
143 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
144 
145 /**
146  * DOC: Block Cipher Context Data Structures
147  *
148  * These data structures define the operating context for each block cipher
149  * type.
150  */
151 
152 struct crypto_async_request {
153         struct list_head list;
154         crypto_completion_t complete;
155         void *data;
156         struct crypto_tfm *tfm;
157 
158         u32 flags;
159 };
160 
161 struct ablkcipher_request {
162         struct crypto_async_request base;
163 
164         unsigned int nbytes;
165 
166         void *info;
167 
168         struct scatterlist *src;
169         struct scatterlist *dst;
170 
171         void *__ctx[] CRYPTO_MINALIGN_ATTR;
172 };
173 
174 struct blkcipher_desc {
175         struct crypto_blkcipher *tfm;
176         void *info;
177         u32 flags;
178 };
179 
180 struct cipher_desc {
181         struct crypto_tfm *tfm;
182         void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
183         unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
184                              const u8 *src, unsigned int nbytes);
185         void *info;
186 };
187 
188 /**
189  * DOC: Block Cipher Algorithm Definitions
190  *
191  * These data structures define modular crypto algorithm implementations,
192  * managed via crypto_register_alg() and crypto_unregister_alg().
193  */
194 
195 /**
196  * struct ablkcipher_alg - asynchronous block cipher definition
197  * @min_keysize: Minimum key size supported by the transformation. This is the
198  *               smallest key length supported by this transformation algorithm.
199  *               This must be set to one of the pre-defined values as this is
200  *               not hardware specific. Possible values for this field can be
201  *               found via git grep "_MIN_KEY_SIZE" include/crypto/
202  * @max_keysize: Maximum key size supported by the transformation. This is the
203  *               largest key length supported by this transformation algorithm.
204  *               This must be set to one of the pre-defined values as this is
205  *               not hardware specific. Possible values for this field can be
206  *               found via git grep "_MAX_KEY_SIZE" include/crypto/
207  * @setkey: Set key for the transformation. This function is used to either
208  *          program a supplied key into the hardware or store the key in the
209  *          transformation context for programming it later. Note that this
210  *          function does modify the transformation context. This function can
211  *          be called multiple times during the existence of the transformation
212  *          object, so one must make sure the key is properly reprogrammed into
213  *          the hardware. This function is also responsible for checking the key
214  *          length for validity. In case a software fallback was put in place in
215  *          the @cra_init call, this function might need to use the fallback if
216  *          the algorithm doesn't support all of the key sizes.
217  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
218  *           the supplied scatterlist containing the blocks of data. The crypto
219  *           API consumer is responsible for aligning the entries of the
220  *           scatterlist properly and making sure the chunks are correctly
221  *           sized. In case a software fallback was put in place in the
222  *           @cra_init call, this function might need to use the fallback if
223  *           the algorithm doesn't support all of the key sizes. In case the
224  *           key was stored in transformation context, the key might need to be
225  *           re-programmed into the hardware in this function. This function
226  *           shall not modify the transformation context, as this function may
227  *           be called in parallel with the same transformation object.
228  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
229  *           and the conditions are exactly the same.
230  * @givencrypt: Update the IV for encryption. With this function, a cipher
231  *              implementation may provide the function on how to update the IV
232  *              for encryption.
233  * @givdecrypt: Update the IV for decryption. This is the reverse of
234  *              @givencrypt .
235  * @geniv: The transformation implementation may use an "IV generator" provided
236  *         by the kernel crypto API. Several use cases have a predefined
237  *         approach how IVs are to be updated. For such use cases, the kernel
238  *         crypto API provides ready-to-use implementations that can be
239  *         referenced with this variable.
240  * @ivsize: IV size applicable for transformation. The consumer must provide an
241  *          IV of exactly that size to perform the encrypt or decrypt operation.
242  *
243  * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
244  * mandatory and must be filled.
245  */
246 struct ablkcipher_alg {
247         int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
248                       unsigned int keylen);
249         int (*encrypt)(struct ablkcipher_request *req);
250         int (*decrypt)(struct ablkcipher_request *req);
251         int (*givencrypt)(struct skcipher_givcrypt_request *req);
252         int (*givdecrypt)(struct skcipher_givcrypt_request *req);
253 
254         const char *geniv;
255 
256         unsigned int min_keysize;
257         unsigned int max_keysize;
258         unsigned int ivsize;
259 };
260 
261 /**
262  * struct blkcipher_alg - synchronous block cipher definition
263  * @min_keysize: see struct ablkcipher_alg
264  * @max_keysize: see struct ablkcipher_alg
265  * @setkey: see struct ablkcipher_alg
266  * @encrypt: see struct ablkcipher_alg
267  * @decrypt: see struct ablkcipher_alg
268  * @geniv: see struct ablkcipher_alg
269  * @ivsize: see struct ablkcipher_alg
270  *
271  * All fields except @geniv and @ivsize are mandatory and must be filled.
272  */
273 struct blkcipher_alg {
274         int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
275                       unsigned int keylen);
276         int (*encrypt)(struct blkcipher_desc *desc,
277                        struct scatterlist *dst, struct scatterlist *src,
278                        unsigned int nbytes);
279         int (*decrypt)(struct blkcipher_desc *desc,
280                        struct scatterlist *dst, struct scatterlist *src,
281                        unsigned int nbytes);
282 
283         const char *geniv;
284 
285         unsigned int min_keysize;
286         unsigned int max_keysize;
287         unsigned int ivsize;
288 };
289 
290 /**
291  * struct cipher_alg - single-block symmetric ciphers definition
292  * @cia_min_keysize: Minimum key size supported by the transformation. This is
293  *                   the smallest key length supported by this transformation
294  *                   algorithm. This must be set to one of the pre-defined
295  *                   values as this is not hardware specific. Possible values
296  *                   for this field can be found via git grep "_MIN_KEY_SIZE"
297  *                   include/crypto/
298  * @cia_max_keysize: Maximum key size supported by the transformation. This is
299  *                  the largest key length supported by this transformation
300  *                  algorithm. This must be set to one of the pre-defined values
301  *                  as this is not hardware specific. Possible values for this
302  *                  field can be found via git grep "_MAX_KEY_SIZE"
303  *                  include/crypto/
304  * @cia_setkey: Set key for the transformation. This function is used to either
305  *              program a supplied key into the hardware or store the key in the
306  *              transformation context for programming it later. Note that this
307  *              function does modify the transformation context. This function
308  *              can be called multiple times during the existence of the
309  *              transformation object, so one must make sure the key is properly
310  *              reprogrammed into the hardware. This function is also
311  *              responsible for checking the key length for validity.
312  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
313  *               single block of data, which must be @cra_blocksize big. This
314  *               always operates on a full @cra_blocksize and it is not possible
315  *               to encrypt a block of smaller size. The supplied buffers must
316  *               therefore also be at least of @cra_blocksize size. Both the
317  *               input and output buffers are always aligned to @cra_alignmask.
318  *               In case either of the input or output buffer supplied by user
319  *               of the crypto API is not aligned to @cra_alignmask, the crypto
320  *               API will re-align the buffers. The re-alignment means that a
321  *               new buffer will be allocated, the data will be copied into the
322  *               new buffer, then the processing will happen on the new buffer,
323  *               then the data will be copied back into the original buffer and
324  *               finally the new buffer will be freed. In case a software
325  *               fallback was put in place in the @cra_init call, this function
326  *               might need to use the fallback if the algorithm doesn't support
327  *               all of the key sizes. In case the key was stored in
328  *               transformation context, the key might need to be re-programmed
329  *               into the hardware in this function. This function shall not
330  *               modify the transformation context, as this function may be
331  *               called in parallel with the same transformation object.
332  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
333  *               @cia_encrypt, and the conditions are exactly the same.
334  *
335  * All fields are mandatory and must be filled.
336  */
337 struct cipher_alg {
338         unsigned int cia_min_keysize;
339         unsigned int cia_max_keysize;
340         int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
341                           unsigned int keylen);
342         void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
343         void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
344 };
345 
346 struct compress_alg {
347         int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
348                             unsigned int slen, u8 *dst, unsigned int *dlen);
349         int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
350                               unsigned int slen, u8 *dst, unsigned int *dlen);
351 };
352 
353 
354 #define cra_ablkcipher  cra_u.ablkcipher
355 #define cra_blkcipher   cra_u.blkcipher
356 #define cra_cipher      cra_u.cipher
357 #define cra_compress    cra_u.compress
358 
359 /**
360  * struct crypto_alg - definition of a cryptograpic cipher algorithm
361  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
362  *             CRYPTO_ALG_* flags for the flags which go in here. Those are
363  *             used for fine-tuning the description of the transformation
364  *             algorithm.
365  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
366  *                 of the smallest possible unit which can be transformed with
367  *                 this algorithm. The users must respect this value.
368  *                 In case of HASH transformation, it is possible for a smaller
369  *                 block than @cra_blocksize to be passed to the crypto API for
370  *                 transformation, in case of any other transformation type, an
371  *                 error will be returned upon any attempt to transform smaller
372  *                 than @cra_blocksize chunks.
373  * @cra_ctxsize: Size of the operational context of the transformation. This
374  *               value informs the kernel crypto API about the memory size
375  *               needed to be allocated for the transformation context.
376  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
377  *                 buffer containing the input data for the algorithm must be
378  *                 aligned to this alignment mask. The data buffer for the
379  *                 output data must be aligned to this alignment mask. Note that
380  *                 the Crypto API will do the re-alignment in software, but
381  *                 only under special conditions and there is a performance hit.
382  *                 The re-alignment happens at these occasions for different
383  *                 @cra_u types: cipher -- For both input data and output data
384  *                 buffer; ahash -- For output hash destination buf; shash --
385  *                 For output hash destination buf.
386  *                 This is needed on hardware which is flawed by design and
387  *                 cannot pick data from arbitrary addresses.
388  * @cra_priority: Priority of this transformation implementation. In case
389  *                multiple transformations with same @cra_name are available to
390  *                the Crypto API, the kernel will use the one with highest
391  *                @cra_priority.
392  * @cra_name: Generic name (usable by multiple implementations) of the
393  *            transformation algorithm. This is the name of the transformation
394  *            itself. This field is used by the kernel when looking up the
395  *            providers of particular transformation.
396  * @cra_driver_name: Unique name of the transformation provider. This is the
397  *                   name of the provider of the transformation. This can be any
398  *                   arbitrary value, but in the usual case, this contains the
399  *                   name of the chip or provider and the name of the
400  *                   transformation algorithm.
401  * @cra_type: Type of the cryptographic transformation. This is a pointer to
402  *            struct crypto_type, which implements callbacks common for all
403  *            transformation types. There are multiple options:
404  *            &crypto_blkcipher_type, &crypto_ablkcipher_type,
405  *            &crypto_ahash_type, &crypto_rng_type.
406  *            This field might be empty. In that case, there are no common
407  *            callbacks. This is the case for: cipher, compress, shash.
408  * @cra_u: Callbacks implementing the transformation. This is a union of
409  *         multiple structures. Depending on the type of transformation selected
410  *         by @cra_type and @cra_flags above, the associated structure must be
411  *         filled with callbacks. This field might be empty. This is the case
412  *         for ahash, shash.
413  * @cra_init: Initialize the cryptographic transformation object. This function
414  *            is used to initialize the cryptographic transformation object.
415  *            This function is called only once at the instantiation time, right
416  *            after the transformation context was allocated. In case the
417  *            cryptographic hardware has some special requirements which need to
418  *            be handled by software, this function shall check for the precise
419  *            requirement of the transformation and put any software fallbacks
420  *            in place.
421  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
422  *            counterpart to @cra_init, used to remove various changes set in
423  *            @cra_init.
424  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
425  * @cra_list: internally used
426  * @cra_users: internally used
427  * @cra_refcnt: internally used
428  * @cra_destroy: internally used
429  *
430  * The struct crypto_alg describes a generic Crypto API algorithm and is common
431  * for all of the transformations. Any variable not documented here shall not
432  * be used by a cipher implementation as it is internal to the Crypto API.
433  */
434 struct crypto_alg {
435         struct list_head cra_list;
436         struct list_head cra_users;
437 
438         u32 cra_flags;
439         unsigned int cra_blocksize;
440         unsigned int cra_ctxsize;
441         unsigned int cra_alignmask;
442 
443         int cra_priority;
444         atomic_t cra_refcnt;
445 
446         char cra_name[CRYPTO_MAX_ALG_NAME];
447         char cra_driver_name[CRYPTO_MAX_ALG_NAME];
448 
449         const struct crypto_type *cra_type;
450 
451         union {
452                 struct ablkcipher_alg ablkcipher;
453                 struct blkcipher_alg blkcipher;
454                 struct cipher_alg cipher;
455                 struct compress_alg compress;
456         } cra_u;
457 
458         int (*cra_init)(struct crypto_tfm *tfm);
459         void (*cra_exit)(struct crypto_tfm *tfm);
460         void (*cra_destroy)(struct crypto_alg *alg);
461         
462         struct module *cra_module;
463 } CRYPTO_MINALIGN_ATTR;
464 
465 /*
466  * Algorithm registration interface.
467  */
468 int crypto_register_alg(struct crypto_alg *alg);
469 int crypto_unregister_alg(struct crypto_alg *alg);
470 int crypto_register_algs(struct crypto_alg *algs, int count);
471 int crypto_unregister_algs(struct crypto_alg *algs, int count);
472 
473 /*
474  * Algorithm query interface.
475  */
476 int crypto_has_alg(const char *name, u32 type, u32 mask);
477 
478 /*
479  * Transforms: user-instantiated objects which encapsulate algorithms
480  * and core processing logic.  Managed via crypto_alloc_*() and
481  * crypto_free_*(), as well as the various helpers below.
482  */
483 
484 struct ablkcipher_tfm {
485         int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
486                       unsigned int keylen);
487         int (*encrypt)(struct ablkcipher_request *req);
488         int (*decrypt)(struct ablkcipher_request *req);
489         int (*givencrypt)(struct skcipher_givcrypt_request *req);
490         int (*givdecrypt)(struct skcipher_givcrypt_request *req);
491 
492         struct crypto_ablkcipher *base;
493 
494         unsigned int ivsize;
495         unsigned int reqsize;
496 };
497 
498 struct blkcipher_tfm {
499         void *iv;
500         int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
501                       unsigned int keylen);
502         int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
503                        struct scatterlist *src, unsigned int nbytes);
504         int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
505                        struct scatterlist *src, unsigned int nbytes);
506 };
507 
508 struct cipher_tfm {
509         int (*cit_setkey)(struct crypto_tfm *tfm,
510                           const u8 *key, unsigned int keylen);
511         void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
512         void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
513 };
514 
515 struct compress_tfm {
516         int (*cot_compress)(struct crypto_tfm *tfm,
517                             const u8 *src, unsigned int slen,
518                             u8 *dst, unsigned int *dlen);
519         int (*cot_decompress)(struct crypto_tfm *tfm,
520                               const u8 *src, unsigned int slen,
521                               u8 *dst, unsigned int *dlen);
522 };
523 
524 #define crt_ablkcipher  crt_u.ablkcipher
525 #define crt_blkcipher   crt_u.blkcipher
526 #define crt_cipher      crt_u.cipher
527 #define crt_compress    crt_u.compress
528 
529 struct crypto_tfm {
530 
531         u32 crt_flags;
532         
533         union {
534                 struct ablkcipher_tfm ablkcipher;
535                 struct blkcipher_tfm blkcipher;
536                 struct cipher_tfm cipher;
537                 struct compress_tfm compress;
538         } crt_u;
539 
540         void (*exit)(struct crypto_tfm *tfm);
541         
542         struct crypto_alg *__crt_alg;
543 
544         void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
545 };
546 
547 struct crypto_ablkcipher {
548         struct crypto_tfm base;
549 };
550 
551 struct crypto_blkcipher {
552         struct crypto_tfm base;
553 };
554 
555 struct crypto_cipher {
556         struct crypto_tfm base;
557 };
558 
559 struct crypto_comp {
560         struct crypto_tfm base;
561 };
562 
563 enum {
564         CRYPTOA_UNSPEC,
565         CRYPTOA_ALG,
566         CRYPTOA_TYPE,
567         CRYPTOA_U32,
568         __CRYPTOA_MAX,
569 };
570 
571 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
572 
573 /* Maximum number of (rtattr) parameters for each template. */
574 #define CRYPTO_MAX_ATTRS 32
575 
576 struct crypto_attr_alg {
577         char name[CRYPTO_MAX_ALG_NAME];
578 };
579 
580 struct crypto_attr_type {
581         u32 type;
582         u32 mask;
583 };
584 
585 struct crypto_attr_u32 {
586         u32 num;
587 };
588 
589 /* 
590  * Transform user interface.
591  */
592  
593 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
594 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
595 
596 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
597 {
598         return crypto_destroy_tfm(tfm, tfm);
599 }
600 
601 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
602 
603 /*
604  * Transform helpers which query the underlying algorithm.
605  */
606 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
607 {
608         return tfm->__crt_alg->cra_name;
609 }
610 
611 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
612 {
613         return tfm->__crt_alg->cra_driver_name;
614 }
615 
616 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
617 {
618         return tfm->__crt_alg->cra_priority;
619 }
620 
621 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
622 {
623         return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
624 }
625 
626 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
627 {
628         return tfm->__crt_alg->cra_blocksize;
629 }
630 
631 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
632 {
633         return tfm->__crt_alg->cra_alignmask;
634 }
635 
636 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
637 {
638         return tfm->crt_flags;
639 }
640 
641 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
642 {
643         tfm->crt_flags |= flags;
644 }
645 
646 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
647 {
648         tfm->crt_flags &= ~flags;
649 }
650 
651 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
652 {
653         return tfm->__crt_ctx;
654 }
655 
656 static inline unsigned int crypto_tfm_ctx_alignment(void)
657 {
658         struct crypto_tfm *tfm;
659         return __alignof__(tfm->__crt_ctx);
660 }
661 
662 /*
663  * API wrappers.
664  */
665 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
666         struct crypto_tfm *tfm)
667 {
668         return (struct crypto_ablkcipher *)tfm;
669 }
670 
671 static inline u32 crypto_skcipher_type(u32 type)
672 {
673         type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
674         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
675         return type;
676 }
677 
678 static inline u32 crypto_skcipher_mask(u32 mask)
679 {
680         mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
681         mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
682         return mask;
683 }
684 
685 /**
686  * DOC: Asynchronous Block Cipher API
687  *
688  * Asynchronous block cipher API is used with the ciphers of type
689  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
690  *
691  * Asynchronous cipher operations imply that the function invocation for a
692  * cipher request returns immediately before the completion of the operation.
693  * The cipher request is scheduled as a separate kernel thread and therefore
694  * load-balanced on the different CPUs via the process scheduler. To allow
695  * the kernel crypto API to inform the caller about the completion of a cipher
696  * request, the caller must provide a callback function. That function is
697  * invoked with the cipher handle when the request completes.
698  *
699  * To support the asynchronous operation, additional information than just the
700  * cipher handle must be supplied to the kernel crypto API. That additional
701  * information is given by filling in the ablkcipher_request data structure.
702  *
703  * For the asynchronous block cipher API, the state is maintained with the tfm
704  * cipher handle. A single tfm can be used across multiple calls and in
705  * parallel. For asynchronous block cipher calls, context data supplied and
706  * only used by the caller can be referenced the request data structure in
707  * addition to the IV used for the cipher request. The maintenance of such
708  * state information would be important for a crypto driver implementer to
709  * have, because when calling the callback function upon completion of the
710  * cipher operation, that callback function may need some information about
711  * which operation just finished if it invoked multiple in parallel. This
712  * state information is unused by the kernel crypto API.
713  */
714 
715 /**
716  * crypto_alloc_ablkcipher() - allocate asynchronous block cipher handle
717  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
718  *            ablkcipher cipher
719  * @type: specifies the type of the cipher
720  * @mask: specifies the mask for the cipher
721  *
722  * Allocate a cipher handle for an ablkcipher. The returned struct
723  * crypto_ablkcipher is the cipher handle that is required for any subsequent
724  * API invocation for that ablkcipher.
725  *
726  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
727  *         of an error, PTR_ERR() returns the error code.
728  */
729 struct crypto_ablkcipher *crypto_alloc_ablkcipher(const char *alg_name,
730                                                   u32 type, u32 mask);
731 
732 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
733         struct crypto_ablkcipher *tfm)
734 {
735         return &tfm->base;
736 }
737 
738 /**
739  * crypto_free_ablkcipher() - zeroize and free cipher handle
740  * @tfm: cipher handle to be freed
741  */
742 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
743 {
744         crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
745 }
746 
747 /**
748  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
749  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
750  *            ablkcipher
751  * @type: specifies the type of the cipher
752  * @mask: specifies the mask for the cipher
753  *
754  * Return: true when the ablkcipher is known to the kernel crypto API; false
755  *         otherwise
756  */
757 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
758                                         u32 mask)
759 {
760         return crypto_has_alg(alg_name, crypto_skcipher_type(type),
761                               crypto_skcipher_mask(mask));
762 }
763 
764 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
765         struct crypto_ablkcipher *tfm)
766 {
767         return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
768 }
769 
770 /**
771  * crypto_ablkcipher_ivsize() - obtain IV size
772  * @tfm: cipher handle
773  *
774  * The size of the IV for the ablkcipher referenced by the cipher handle is
775  * returned. This IV size may be zero if the cipher does not need an IV.
776  *
777  * Return: IV size in bytes
778  */
779 static inline unsigned int crypto_ablkcipher_ivsize(
780         struct crypto_ablkcipher *tfm)
781 {
782         return crypto_ablkcipher_crt(tfm)->ivsize;
783 }
784 
785 /**
786  * crypto_ablkcipher_blocksize() - obtain block size of cipher
787  * @tfm: cipher handle
788  *
789  * The block size for the ablkcipher referenced with the cipher handle is
790  * returned. The caller may use that information to allocate appropriate
791  * memory for the data returned by the encryption or decryption operation
792  *
793  * Return: block size of cipher
794  */
795 static inline unsigned int crypto_ablkcipher_blocksize(
796         struct crypto_ablkcipher *tfm)
797 {
798         return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
799 }
800 
801 static inline unsigned int crypto_ablkcipher_alignmask(
802         struct crypto_ablkcipher *tfm)
803 {
804         return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
805 }
806 
807 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
808 {
809         return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
810 }
811 
812 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
813                                                u32 flags)
814 {
815         crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
816 }
817 
818 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
819                                                  u32 flags)
820 {
821         crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
822 }
823 
824 /**
825  * crypto_ablkcipher_setkey() - set key for cipher
826  * @tfm: cipher handle
827  * @key: buffer holding the key
828  * @keylen: length of the key in bytes
829  *
830  * The caller provided key is set for the ablkcipher referenced by the cipher
831  * handle.
832  *
833  * Note, the key length determines the cipher type. Many block ciphers implement
834  * different cipher modes depending on the key size, such as AES-128 vs AES-192
835  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
836  * is performed.
837  *
838  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
839  */
840 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
841                                            const u8 *key, unsigned int keylen)
842 {
843         struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
844 
845         return crt->setkey(crt->base, key, keylen);
846 }
847 
848 /**
849  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
850  * @req: ablkcipher_request out of which the cipher handle is to be obtained
851  *
852  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
853  * data structure.
854  *
855  * Return: crypto_ablkcipher handle
856  */
857 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
858         struct ablkcipher_request *req)
859 {
860         return __crypto_ablkcipher_cast(req->base.tfm);
861 }
862 
863 /**
864  * crypto_ablkcipher_encrypt() - encrypt plaintext
865  * @req: reference to the ablkcipher_request handle that holds all information
866  *       needed to perform the cipher operation
867  *
868  * Encrypt plaintext data using the ablkcipher_request handle. That data
869  * structure and how it is filled with data is discussed with the
870  * ablkcipher_request_* functions.
871  *
872  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
873  */
874 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
875 {
876         struct ablkcipher_tfm *crt =
877                 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
878         return crt->encrypt(req);
879 }
880 
881 /**
882  * crypto_ablkcipher_decrypt() - decrypt ciphertext
883  * @req: reference to the ablkcipher_request handle that holds all information
884  *       needed to perform the cipher operation
885  *
886  * Decrypt ciphertext data using the ablkcipher_request handle. That data
887  * structure and how it is filled with data is discussed with the
888  * ablkcipher_request_* functions.
889  *
890  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
891  */
892 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
893 {
894         struct ablkcipher_tfm *crt =
895                 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
896         return crt->decrypt(req);
897 }
898 
899 /**
900  * DOC: Asynchronous Cipher Request Handle
901  *
902  * The ablkcipher_request data structure contains all pointers to data
903  * required for the asynchronous cipher operation. This includes the cipher
904  * handle (which can be used by multiple ablkcipher_request instances), pointer
905  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
906  * as a handle to the ablkcipher_request_* API calls in a similar way as
907  * ablkcipher handle to the crypto_ablkcipher_* API calls.
908  */
909 
910 /**
911  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
912  * @tfm: cipher handle
913  *
914  * Return: number of bytes
915  */
916 static inline unsigned int crypto_ablkcipher_reqsize(
917         struct crypto_ablkcipher *tfm)
918 {
919         return crypto_ablkcipher_crt(tfm)->reqsize;
920 }
921 
922 /**
923  * ablkcipher_request_set_tfm() - update cipher handle reference in request
924  * @req: request handle to be modified
925  * @tfm: cipher handle that shall be added to the request handle
926  *
927  * Allow the caller to replace the existing ablkcipher handle in the request
928  * data structure with a different one.
929  */
930 static inline void ablkcipher_request_set_tfm(
931         struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
932 {
933         req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
934 }
935 
936 static inline struct ablkcipher_request *ablkcipher_request_cast(
937         struct crypto_async_request *req)
938 {
939         return container_of(req, struct ablkcipher_request, base);
940 }
941 
942 /**
943  * ablkcipher_request_alloc() - allocate request data structure
944  * @tfm: cipher handle to be registered with the request
945  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
946  *
947  * Allocate the request data structure that must be used with the ablkcipher
948  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
949  * handle is registered in the request data structure.
950  *
951  * Return: allocated request handle in case of success; IS_ERR() is true in case
952  *         of an error, PTR_ERR() returns the error code.
953  */
954 static inline struct ablkcipher_request *ablkcipher_request_alloc(
955         struct crypto_ablkcipher *tfm, gfp_t gfp)
956 {
957         struct ablkcipher_request *req;
958 
959         req = kmalloc(sizeof(struct ablkcipher_request) +
960                       crypto_ablkcipher_reqsize(tfm), gfp);
961 
962         if (likely(req))
963                 ablkcipher_request_set_tfm(req, tfm);
964 
965         return req;
966 }
967 
968 /**
969  * ablkcipher_request_free() - zeroize and free request data structure
970  * @req: request data structure cipher handle to be freed
971  */
972 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
973 {
974         kzfree(req);
975 }
976 
977 /**
978  * ablkcipher_request_set_callback() - set asynchronous callback function
979  * @req: request handle
980  * @flags: specify zero or an ORing of the flags
981  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
982  *         increase the wait queue beyond the initial maximum size;
983  *         CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
984  * @compl: callback function pointer to be registered with the request handle
985  * @data: The data pointer refers to memory that is not used by the kernel
986  *        crypto API, but provided to the callback function for it to use. Here,
987  *        the caller can provide a reference to memory the callback function can
988  *        operate on. As the callback function is invoked asynchronously to the
989  *        related functionality, it may need to access data structures of the
990  *        related functionality which can be referenced using this pointer. The
991  *        callback function can access the memory via the "data" field in the
992  *        crypto_async_request data structure provided to the callback function.
993  *
994  * This function allows setting the callback function that is triggered once the
995  * cipher operation completes.
996  *
997  * The callback function is registered with the ablkcipher_request handle and
998  * must comply with the following template
999  *
1000  *      void callback_function(struct crypto_async_request *req, int error)
1001  */
1002 static inline void ablkcipher_request_set_callback(
1003         struct ablkcipher_request *req,
1004         u32 flags, crypto_completion_t compl, void *data)
1005 {
1006         req->base.complete = compl;
1007         req->base.data = data;
1008         req->base.flags = flags;
1009 }
1010 
1011 /**
1012  * ablkcipher_request_set_crypt() - set data buffers
1013  * @req: request handle
1014  * @src: source scatter / gather list
1015  * @dst: destination scatter / gather list
1016  * @nbytes: number of bytes to process from @src
1017  * @iv: IV for the cipher operation which must comply with the IV size defined
1018  *      by crypto_ablkcipher_ivsize
1019  *
1020  * This function allows setting of the source data and destination data
1021  * scatter / gather lists.
1022  *
1023  * For encryption, the source is treated as the plaintext and the
1024  * destination is the ciphertext. For a decryption operation, the use is
1025  * reversed - the source is the ciphertext and the destination is the plaintext.
1026  */
1027 static inline void ablkcipher_request_set_crypt(
1028         struct ablkcipher_request *req,
1029         struct scatterlist *src, struct scatterlist *dst,
1030         unsigned int nbytes, void *iv)
1031 {
1032         req->src = src;
1033         req->dst = dst;
1034         req->nbytes = nbytes;
1035         req->info = iv;
1036 }
1037 
1038 /**
1039  * DOC: Synchronous Block Cipher API
1040  *
1041  * The synchronous block cipher API is used with the ciphers of type
1042  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1043  *
1044  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1045  * used in multiple calls and in parallel, this info should not be changeable
1046  * (unless a lock is used). This applies, for example, to the symmetric key.
1047  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1048  * structure for synchronous blkcipher api. So, its the only state info that can
1049  * be kept for synchronous calls without using a big lock across a tfm.
1050  *
1051  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1052  * consisting of a template (a block chaining mode) and a single block cipher
1053  * primitive (e.g. AES).
1054  *
1055  * The plaintext data buffer and the ciphertext data buffer are pointed to
1056  * by using scatter/gather lists. The cipher operation is performed
1057  * on all segments of the provided scatter/gather lists.
1058  *
1059  * The kernel crypto API supports a cipher operation "in-place" which means that
1060  * the caller may provide the same scatter/gather list for the plaintext and
1061  * cipher text. After the completion of the cipher operation, the plaintext
1062  * data is replaced with the ciphertext data in case of an encryption and vice
1063  * versa for a decryption. The caller must ensure that the scatter/gather lists
1064  * for the output data point to sufficiently large buffers, i.e. multiples of
1065  * the block size of the cipher.
1066  */
1067 
1068 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1069         struct crypto_tfm *tfm)
1070 {
1071         return (struct crypto_blkcipher *)tfm;
1072 }
1073 
1074 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1075         struct crypto_tfm *tfm)
1076 {
1077         BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1078         return __crypto_blkcipher_cast(tfm);
1079 }
1080 
1081 /**
1082  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1083  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1084  *            blkcipher cipher
1085  * @type: specifies the type of the cipher
1086  * @mask: specifies the mask for the cipher
1087  *
1088  * Allocate a cipher handle for a block cipher. The returned struct
1089  * crypto_blkcipher is the cipher handle that is required for any subsequent
1090  * API invocation for that block cipher.
1091  *
1092  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1093  *         of an error, PTR_ERR() returns the error code.
1094  */
1095 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1096         const char *alg_name, u32 type, u32 mask)
1097 {
1098         type &= ~CRYPTO_ALG_TYPE_MASK;
1099         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1100         mask |= CRYPTO_ALG_TYPE_MASK;
1101 
1102         return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1103 }
1104 
1105 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1106         struct crypto_blkcipher *tfm)
1107 {
1108         return &tfm->base;
1109 }
1110 
1111 /**
1112  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1113  * @tfm: cipher handle to be freed
1114  */
1115 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1116 {
1117         crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1118 }
1119 
1120 /**
1121  * crypto_has_blkcipher() - Search for the availability of a block cipher
1122  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1123  *            block cipher
1124  * @type: specifies the type of the cipher
1125  * @mask: specifies the mask for the cipher
1126  *
1127  * Return: true when the block cipher is known to the kernel crypto API; false
1128  *         otherwise
1129  */
1130 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1131 {
1132         type &= ~CRYPTO_ALG_TYPE_MASK;
1133         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1134         mask |= CRYPTO_ALG_TYPE_MASK;
1135 
1136         return crypto_has_alg(alg_name, type, mask);
1137 }
1138 
1139 /**
1140  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1141  * @tfm: cipher handle
1142  *
1143  * Return: The character string holding the name of the cipher
1144  */
1145 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1146 {
1147         return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1148 }
1149 
1150 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1151         struct crypto_blkcipher *tfm)
1152 {
1153         return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1154 }
1155 
1156 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1157         struct crypto_blkcipher *tfm)
1158 {
1159         return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1160 }
1161 
1162 /**
1163  * crypto_blkcipher_ivsize() - obtain IV size
1164  * @tfm: cipher handle
1165  *
1166  * The size of the IV for the block cipher referenced by the cipher handle is
1167  * returned. This IV size may be zero if the cipher does not need an IV.
1168  *
1169  * Return: IV size in bytes
1170  */
1171 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1172 {
1173         return crypto_blkcipher_alg(tfm)->ivsize;
1174 }
1175 
1176 /**
1177  * crypto_blkcipher_blocksize() - obtain block size of cipher
1178  * @tfm: cipher handle
1179  *
1180  * The block size for the block cipher referenced with the cipher handle is
1181  * returned. The caller may use that information to allocate appropriate
1182  * memory for the data returned by the encryption or decryption operation.
1183  *
1184  * Return: block size of cipher
1185  */
1186 static inline unsigned int crypto_blkcipher_blocksize(
1187         struct crypto_blkcipher *tfm)
1188 {
1189         return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1190 }
1191 
1192 static inline unsigned int crypto_blkcipher_alignmask(
1193         struct crypto_blkcipher *tfm)
1194 {
1195         return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1196 }
1197 
1198 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1199 {
1200         return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1201 }
1202 
1203 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1204                                               u32 flags)
1205 {
1206         crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1207 }
1208 
1209 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1210                                                 u32 flags)
1211 {
1212         crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1213 }
1214 
1215 /**
1216  * crypto_blkcipher_setkey() - set key for cipher
1217  * @tfm: cipher handle
1218  * @key: buffer holding the key
1219  * @keylen: length of the key in bytes
1220  *
1221  * The caller provided key is set for the block cipher referenced by the cipher
1222  * handle.
1223  *
1224  * Note, the key length determines the cipher type. Many block ciphers implement
1225  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1226  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1227  * is performed.
1228  *
1229  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1230  */
1231 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1232                                           const u8 *key, unsigned int keylen)
1233 {
1234         return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1235                                                  key, keylen);
1236 }
1237 
1238 /**
1239  * crypto_blkcipher_encrypt() - encrypt plaintext
1240  * @desc: reference to the block cipher handle with meta data
1241  * @dst: scatter/gather list that is filled by the cipher operation with the
1242  *      ciphertext
1243  * @src: scatter/gather list that holds the plaintext
1244  * @nbytes: number of bytes of the plaintext to encrypt.
1245  *
1246  * Encrypt plaintext data using the IV set by the caller with a preceding
1247  * call of crypto_blkcipher_set_iv.
1248  *
1249  * The blkcipher_desc data structure must be filled by the caller and can
1250  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1251  * with the block cipher handle; desc.flags is filled with either
1252  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1253  *
1254  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1255  */
1256 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1257                                            struct scatterlist *dst,
1258                                            struct scatterlist *src,
1259                                            unsigned int nbytes)
1260 {
1261         desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1262         return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1263 }
1264 
1265 /**
1266  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1267  * @desc: reference to the block cipher handle with meta data
1268  * @dst: scatter/gather list that is filled by the cipher operation with the
1269  *      ciphertext
1270  * @src: scatter/gather list that holds the plaintext
1271  * @nbytes: number of bytes of the plaintext to encrypt.
1272  *
1273  * Encrypt plaintext data with the use of an IV that is solely used for this
1274  * cipher operation. Any previously set IV is not used.
1275  *
1276  * The blkcipher_desc data structure must be filled by the caller and can
1277  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1278  * with the block cipher handle; desc.info is filled with the IV to be used for
1279  * the current operation; desc.flags is filled with either
1280  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1281  *
1282  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1283  */
1284 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1285                                               struct scatterlist *dst,
1286                                               struct scatterlist *src,
1287                                               unsigned int nbytes)
1288 {
1289         return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1290 }
1291 
1292 /**
1293  * crypto_blkcipher_decrypt() - decrypt ciphertext
1294  * @desc: reference to the block cipher handle with meta data
1295  * @dst: scatter/gather list that is filled by the cipher operation with the
1296  *      plaintext
1297  * @src: scatter/gather list that holds the ciphertext
1298  * @nbytes: number of bytes of the ciphertext to decrypt.
1299  *
1300  * Decrypt ciphertext data using the IV set by the caller with a preceding
1301  * call of crypto_blkcipher_set_iv.
1302  *
1303  * The blkcipher_desc data structure must be filled by the caller as documented
1304  * for the crypto_blkcipher_encrypt call above.
1305  *
1306  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1307  *
1308  */
1309 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1310                                            struct scatterlist *dst,
1311                                            struct scatterlist *src,
1312                                            unsigned int nbytes)
1313 {
1314         desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1315         return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1316 }
1317 
1318 /**
1319  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1320  * @desc: reference to the block cipher handle with meta data
1321  * @dst: scatter/gather list that is filled by the cipher operation with the
1322  *      plaintext
1323  * @src: scatter/gather list that holds the ciphertext
1324  * @nbytes: number of bytes of the ciphertext to decrypt.
1325  *
1326  * Decrypt ciphertext data with the use of an IV that is solely used for this
1327  * cipher operation. Any previously set IV is not used.
1328  *
1329  * The blkcipher_desc data structure must be filled by the caller as documented
1330  * for the crypto_blkcipher_encrypt_iv call above.
1331  *
1332  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1333  */
1334 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1335                                               struct scatterlist *dst,
1336                                               struct scatterlist *src,
1337                                               unsigned int nbytes)
1338 {
1339         return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1340 }
1341 
1342 /**
1343  * crypto_blkcipher_set_iv() - set IV for cipher
1344  * @tfm: cipher handle
1345  * @src: buffer holding the IV
1346  * @len: length of the IV in bytes
1347  *
1348  * The caller provided IV is set for the block cipher referenced by the cipher
1349  * handle.
1350  */
1351 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1352                                            const u8 *src, unsigned int len)
1353 {
1354         memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1355 }
1356 
1357 /**
1358  * crypto_blkcipher_get_iv() - obtain IV from cipher
1359  * @tfm: cipher handle
1360  * @dst: buffer filled with the IV
1361  * @len: length of the buffer dst
1362  *
1363  * The caller can obtain the IV set for the block cipher referenced by the
1364  * cipher handle and store it into the user-provided buffer. If the buffer
1365  * has an insufficient space, the IV is truncated to fit the buffer.
1366  */
1367 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1368                                            u8 *dst, unsigned int len)
1369 {
1370         memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1371 }
1372 
1373 /**
1374  * DOC: Single Block Cipher API
1375  *
1376  * The single block cipher API is used with the ciphers of type
1377  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1378  *
1379  * Using the single block cipher API calls, operations with the basic cipher
1380  * primitive can be implemented. These cipher primitives exclude any block
1381  * chaining operations including IV handling.
1382  *
1383  * The purpose of this single block cipher API is to support the implementation
1384  * of templates or other concepts that only need to perform the cipher operation
1385  * on one block at a time. Templates invoke the underlying cipher primitive
1386  * block-wise and process either the input or the output data of these cipher
1387  * operations.
1388  */
1389 
1390 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1391 {
1392         return (struct crypto_cipher *)tfm;
1393 }
1394 
1395 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1396 {
1397         BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1398         return __crypto_cipher_cast(tfm);
1399 }
1400 
1401 /**
1402  * crypto_alloc_cipher() - allocate single block cipher handle
1403  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1404  *           single block cipher
1405  * @type: specifies the type of the cipher
1406  * @mask: specifies the mask for the cipher
1407  *
1408  * Allocate a cipher handle for a single block cipher. The returned struct
1409  * crypto_cipher is the cipher handle that is required for any subsequent API
1410  * invocation for that single block cipher.
1411  *
1412  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1413  *         of an error, PTR_ERR() returns the error code.
1414  */
1415 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1416                                                         u32 type, u32 mask)
1417 {
1418         type &= ~CRYPTO_ALG_TYPE_MASK;
1419         type |= CRYPTO_ALG_TYPE_CIPHER;
1420         mask |= CRYPTO_ALG_TYPE_MASK;
1421 
1422         return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1423 }
1424 
1425 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1426 {
1427         return &tfm->base;
1428 }
1429 
1430 /**
1431  * crypto_free_cipher() - zeroize and free the single block cipher handle
1432  * @tfm: cipher handle to be freed
1433  */
1434 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1435 {
1436         crypto_free_tfm(crypto_cipher_tfm(tfm));
1437 }
1438 
1439 /**
1440  * crypto_has_cipher() - Search for the availability of a single block cipher
1441  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1442  *           single block cipher
1443  * @type: specifies the type of the cipher
1444  * @mask: specifies the mask for the cipher
1445  *
1446  * Return: true when the single block cipher is known to the kernel crypto API;
1447  *         false otherwise
1448  */
1449 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1450 {
1451         type &= ~CRYPTO_ALG_TYPE_MASK;
1452         type |= CRYPTO_ALG_TYPE_CIPHER;
1453         mask |= CRYPTO_ALG_TYPE_MASK;
1454 
1455         return crypto_has_alg(alg_name, type, mask);
1456 }
1457 
1458 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1459 {
1460         return &crypto_cipher_tfm(tfm)->crt_cipher;
1461 }
1462 
1463 /**
1464  * crypto_cipher_blocksize() - obtain block size for cipher
1465  * @tfm: cipher handle
1466  *
1467  * The block size for the single block cipher referenced with the cipher handle
1468  * tfm is returned. The caller may use that information to allocate appropriate
1469  * memory for the data returned by the encryption or decryption operation
1470  *
1471  * Return: block size of cipher
1472  */
1473 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1474 {
1475         return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1476 }
1477 
1478 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1479 {
1480         return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1481 }
1482 
1483 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1484 {
1485         return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1486 }
1487 
1488 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1489                                            u32 flags)
1490 {
1491         crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1492 }
1493 
1494 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1495                                              u32 flags)
1496 {
1497         crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1498 }
1499 
1500 /**
1501  * crypto_cipher_setkey() - set key for cipher
1502  * @tfm: cipher handle
1503  * @key: buffer holding the key
1504  * @keylen: length of the key in bytes
1505  *
1506  * The caller provided key is set for the single block cipher referenced by the
1507  * cipher handle.
1508  *
1509  * Note, the key length determines the cipher type. Many block ciphers implement
1510  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1511  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1512  * is performed.
1513  *
1514  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1515  */
1516 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1517                                        const u8 *key, unsigned int keylen)
1518 {
1519         return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1520                                                   key, keylen);
1521 }
1522 
1523 /**
1524  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1525  * @tfm: cipher handle
1526  * @dst: points to the buffer that will be filled with the ciphertext
1527  * @src: buffer holding the plaintext to be encrypted
1528  *
1529  * Invoke the encryption operation of one block. The caller must ensure that
1530  * the plaintext and ciphertext buffers are at least one block in size.
1531  */
1532 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1533                                              u8 *dst, const u8 *src)
1534 {
1535         crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1536                                                 dst, src);
1537 }
1538 
1539 /**
1540  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1541  * @tfm: cipher handle
1542  * @dst: points to the buffer that will be filled with the plaintext
1543  * @src: buffer holding the ciphertext to be decrypted
1544  *
1545  * Invoke the decryption operation of one block. The caller must ensure that
1546  * the plaintext and ciphertext buffers are at least one block in size.
1547  */
1548 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1549                                              u8 *dst, const u8 *src)
1550 {
1551         crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1552                                                 dst, src);
1553 }
1554 
1555 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1556 {
1557         return (struct crypto_comp *)tfm;
1558 }
1559 
1560 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1561 {
1562         BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1563                CRYPTO_ALG_TYPE_MASK);
1564         return __crypto_comp_cast(tfm);
1565 }
1566 
1567 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1568                                                     u32 type, u32 mask)
1569 {
1570         type &= ~CRYPTO_ALG_TYPE_MASK;
1571         type |= CRYPTO_ALG_TYPE_COMPRESS;
1572         mask |= CRYPTO_ALG_TYPE_MASK;
1573 
1574         return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1575 }
1576 
1577 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1578 {
1579         return &tfm->base;
1580 }
1581 
1582 static inline void crypto_free_comp(struct crypto_comp *tfm)
1583 {
1584         crypto_free_tfm(crypto_comp_tfm(tfm));
1585 }
1586 
1587 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1588 {
1589         type &= ~CRYPTO_ALG_TYPE_MASK;
1590         type |= CRYPTO_ALG_TYPE_COMPRESS;
1591         mask |= CRYPTO_ALG_TYPE_MASK;
1592 
1593         return crypto_has_alg(alg_name, type, mask);
1594 }
1595 
1596 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1597 {
1598         return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1599 }
1600 
1601 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1602 {
1603         return &crypto_comp_tfm(tfm)->crt_compress;
1604 }
1605 
1606 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1607                                        const u8 *src, unsigned int slen,
1608                                        u8 *dst, unsigned int *dlen)
1609 {
1610         return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1611                                                   src, slen, dst, dlen);
1612 }
1613 
1614 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1615                                          const u8 *src, unsigned int slen,
1616                                          u8 *dst, unsigned int *dlen)
1617 {
1618         return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1619                                                     src, slen, dst, dlen);
1620 }
1621 
1622 #endif  /* _LINUX_CRYPTO_H */
1623 
1624 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us