Version:  2.0.40 2.2.26 2.4.37 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Linux/fs/udf/super.c

  1 /*
  2  * super.c
  3  *
  4  * PURPOSE
  5  *  Super block routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * DESCRIPTION
  8  *  OSTA-UDF(tm) = Optical Storage Technology Association
  9  *  Universal Disk Format.
 10  *
 11  *  This code is based on version 2.00 of the UDF specification,
 12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 13  *    http://www.osta.org/
 14  *    http://www.ecma.ch/
 15  *    http://www.iso.org/
 16  *
 17  * COPYRIGHT
 18  *  This file is distributed under the terms of the GNU General Public
 19  *  License (GPL). Copies of the GPL can be obtained from:
 20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 21  *  Each contributing author retains all rights to their own work.
 22  *
 23  *  (C) 1998 Dave Boynton
 24  *  (C) 1998-2004 Ben Fennema
 25  *  (C) 2000 Stelias Computing Inc
 26  *
 27  * HISTORY
 28  *
 29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 30  *                added some debugging.
 31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 32  *  10/16/98      attempting some multi-session support
 33  *  10/17/98      added freespace count for "df"
 34  *  11/11/98 gr   added novrs option
 35  *  11/26/98 dgb  added fileset,anchor mount options
 36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
 37  *                vol descs. rewrote option handling based on isofs
 38  *  12/20/98      find the free space bitmap (if it exists)
 39  */
 40 
 41 #include "udfdecl.h"
 42 
 43 #include <linux/blkdev.h>
 44 #include <linux/slab.h>
 45 #include <linux/kernel.h>
 46 #include <linux/module.h>
 47 #include <linux/parser.h>
 48 #include <linux/stat.h>
 49 #include <linux/cdrom.h>
 50 #include <linux/nls.h>
 51 #include <linux/vfs.h>
 52 #include <linux/vmalloc.h>
 53 #include <linux/errno.h>
 54 #include <linux/mount.h>
 55 #include <linux/seq_file.h>
 56 #include <linux/bitmap.h>
 57 #include <linux/crc-itu-t.h>
 58 #include <linux/log2.h>
 59 #include <asm/byteorder.h>
 60 
 61 #include "udf_sb.h"
 62 #include "udf_i.h"
 63 
 64 #include <linux/init.h>
 65 #include <linux/uaccess.h>
 66 
 67 #define VDS_POS_PRIMARY_VOL_DESC        0
 68 #define VDS_POS_UNALLOC_SPACE_DESC      1
 69 #define VDS_POS_LOGICAL_VOL_DESC        2
 70 #define VDS_POS_PARTITION_DESC          3
 71 #define VDS_POS_IMP_USE_VOL_DESC        4
 72 #define VDS_POS_VOL_DESC_PTR            5
 73 #define VDS_POS_TERMINATING_DESC        6
 74 #define VDS_POS_LENGTH                  7
 75 
 76 #define UDF_DEFAULT_BLOCKSIZE 2048
 77 
 78 #define VSD_FIRST_SECTOR_OFFSET         32768
 79 #define VSD_MAX_SECTOR_OFFSET           0x800000
 80 
 81 /*
 82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
 83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
 84  * hopefully don't limit any real use of rewritten inode on write-once media
 85  * but avoid looping for too long on corrupted media.
 86  */
 87 #define UDF_MAX_TD_NESTING 64
 88 #define UDF_MAX_LVID_NESTING 1000
 89 
 90 enum { UDF_MAX_LINKS = 0xffff };
 91 
 92 /* These are the "meat" - everything else is stuffing */
 93 static int udf_fill_super(struct super_block *, void *, int);
 94 static void udf_put_super(struct super_block *);
 95 static int udf_sync_fs(struct super_block *, int);
 96 static int udf_remount_fs(struct super_block *, int *, char *);
 97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
 99                             struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101                              struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107 
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110         struct logicalVolIntegrityDesc *lvid;
111         unsigned int partnum;
112         unsigned int offset;
113 
114         if (!UDF_SB(sb)->s_lvid_bh)
115                 return NULL;
116         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117         partnum = le32_to_cpu(lvid->numOfPartitions);
118         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119              offsetof(struct logicalVolIntegrityDesc, impUse)) /
120              (2 * sizeof(uint32_t)) < partnum) {
121                 udf_err(sb, "Logical volume integrity descriptor corrupted "
122                         "(numOfPartitions = %u)!\n", partnum);
123                 return NULL;
124         }
125         /* The offset is to skip freeSpaceTable and sizeTable arrays */
126         offset = partnum * 2 * sizeof(uint32_t);
127         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129 
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132                       int flags, const char *dev_name, void *data)
133 {
134         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136 
137 static struct file_system_type udf_fstype = {
138         .owner          = THIS_MODULE,
139         .name           = "udf",
140         .mount          = udf_mount,
141         .kill_sb        = kill_block_super,
142         .fs_flags       = FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145 
146 static struct kmem_cache *udf_inode_cachep;
147 
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150         struct udf_inode_info *ei;
151         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152         if (!ei)
153                 return NULL;
154 
155         ei->i_unique = 0;
156         ei->i_lenExtents = 0;
157         ei->i_next_alloc_block = 0;
158         ei->i_next_alloc_goal = 0;
159         ei->i_strat4096 = 0;
160         init_rwsem(&ei->i_data_sem);
161         ei->cached_extent.lstart = -1;
162         spin_lock_init(&ei->i_extent_cache_lock);
163 
164         return &ei->vfs_inode;
165 }
166 
167 static void udf_i_callback(struct rcu_head *head)
168 {
169         struct inode *inode = container_of(head, struct inode, i_rcu);
170         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172 
173 static void udf_destroy_inode(struct inode *inode)
174 {
175         call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177 
178 static void init_once(void *foo)
179 {
180         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181 
182         ei->i_ext.i_data = NULL;
183         inode_init_once(&ei->vfs_inode);
184 }
185 
186 static int __init init_inodecache(void)
187 {
188         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189                                              sizeof(struct udf_inode_info),
190                                              0, (SLAB_RECLAIM_ACCOUNT |
191                                                  SLAB_MEM_SPREAD |
192                                                  SLAB_ACCOUNT),
193                                              init_once);
194         if (!udf_inode_cachep)
195                 return -ENOMEM;
196         return 0;
197 }
198 
199 static void destroy_inodecache(void)
200 {
201         /*
202          * Make sure all delayed rcu free inodes are flushed before we
203          * destroy cache.
204          */
205         rcu_barrier();
206         kmem_cache_destroy(udf_inode_cachep);
207 }
208 
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211         .alloc_inode    = udf_alloc_inode,
212         .destroy_inode  = udf_destroy_inode,
213         .write_inode    = udf_write_inode,
214         .evict_inode    = udf_evict_inode,
215         .put_super      = udf_put_super,
216         .sync_fs        = udf_sync_fs,
217         .statfs         = udf_statfs,
218         .remount_fs     = udf_remount_fs,
219         .show_options   = udf_show_options,
220 };
221 
222 struct udf_options {
223         unsigned char novrs;
224         unsigned int blocksize;
225         unsigned int session;
226         unsigned int lastblock;
227         unsigned int anchor;
228         unsigned int volume;
229         unsigned short partition;
230         unsigned int fileset;
231         unsigned int rootdir;
232         unsigned int flags;
233         umode_t umask;
234         kgid_t gid;
235         kuid_t uid;
236         umode_t fmode;
237         umode_t dmode;
238         struct nls_table *nls_map;
239 };
240 
241 static int __init init_udf_fs(void)
242 {
243         int err;
244 
245         err = init_inodecache();
246         if (err)
247                 goto out1;
248         err = register_filesystem(&udf_fstype);
249         if (err)
250                 goto out;
251 
252         return 0;
253 
254 out:
255         destroy_inodecache();
256 
257 out1:
258         return err;
259 }
260 
261 static void __exit exit_udf_fs(void)
262 {
263         unregister_filesystem(&udf_fstype);
264         destroy_inodecache();
265 }
266 
267 module_init(init_udf_fs)
268 module_exit(exit_udf_fs)
269 
270 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271 {
272         struct udf_sb_info *sbi = UDF_SB(sb);
273 
274         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275                                   GFP_KERNEL);
276         if (!sbi->s_partmaps) {
277                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278                         count);
279                 sbi->s_partitions = 0;
280                 return -ENOMEM;
281         }
282 
283         sbi->s_partitions = count;
284         return 0;
285 }
286 
287 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288 {
289         int i;
290         int nr_groups = bitmap->s_nr_groups;
291 
292         for (i = 0; i < nr_groups; i++)
293                 if (bitmap->s_block_bitmap[i])
294                         brelse(bitmap->s_block_bitmap[i]);
295 
296         kvfree(bitmap);
297 }
298 
299 static void udf_free_partition(struct udf_part_map *map)
300 {
301         int i;
302         struct udf_meta_data *mdata;
303 
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305                 iput(map->s_uspace.s_table);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307                 iput(map->s_fspace.s_table);
308         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312         if (map->s_partition_type == UDF_SPARABLE_MAP15)
313                 for (i = 0; i < 4; i++)
314                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315         else if (map->s_partition_type == UDF_METADATA_MAP25) {
316                 mdata = &map->s_type_specific.s_metadata;
317                 iput(mdata->s_metadata_fe);
318                 mdata->s_metadata_fe = NULL;
319 
320                 iput(mdata->s_mirror_fe);
321                 mdata->s_mirror_fe = NULL;
322 
323                 iput(mdata->s_bitmap_fe);
324                 mdata->s_bitmap_fe = NULL;
325         }
326 }
327 
328 static void udf_sb_free_partitions(struct super_block *sb)
329 {
330         struct udf_sb_info *sbi = UDF_SB(sb);
331         int i;
332         if (sbi->s_partmaps == NULL)
333                 return;
334         for (i = 0; i < sbi->s_partitions; i++)
335                 udf_free_partition(&sbi->s_partmaps[i]);
336         kfree(sbi->s_partmaps);
337         sbi->s_partmaps = NULL;
338 }
339 
340 static int udf_show_options(struct seq_file *seq, struct dentry *root)
341 {
342         struct super_block *sb = root->d_sb;
343         struct udf_sb_info *sbi = UDF_SB(sb);
344 
345         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346                 seq_puts(seq, ",nostrict");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350                 seq_puts(seq, ",unhide");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352                 seq_puts(seq, ",undelete");
353         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354                 seq_puts(seq, ",noadinicb");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356                 seq_puts(seq, ",shortad");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358                 seq_puts(seq, ",uid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360                 seq_puts(seq, ",uid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362                 seq_puts(seq, ",gid=forget");
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364                 seq_puts(seq, ",gid=ignore");
365         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369         if (sbi->s_umask != 0)
370                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371         if (sbi->s_fmode != UDF_INVALID_MODE)
372                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373         if (sbi->s_dmode != UDF_INVALID_MODE)
374                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376                 seq_printf(seq, ",session=%u", sbi->s_session);
377         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379         if (sbi->s_anchor != 0)
380                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381         /*
382          * volume, partition, fileset and rootdir seem to be ignored
383          * currently
384          */
385         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386                 seq_puts(seq, ",utf8");
387         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389 
390         return 0;
391 }
392 
393 /*
394  * udf_parse_options
395  *
396  * PURPOSE
397  *      Parse mount options.
398  *
399  * DESCRIPTION
400  *      The following mount options are supported:
401  *
402  *      gid=            Set the default group.
403  *      umask=          Set the default umask.
404  *      mode=           Set the default file permissions.
405  *      dmode=          Set the default directory permissions.
406  *      uid=            Set the default user.
407  *      bs=             Set the block size.
408  *      unhide          Show otherwise hidden files.
409  *      undelete        Show deleted files in lists.
410  *      adinicb         Embed data in the inode (default)
411  *      noadinicb       Don't embed data in the inode
412  *      shortad         Use short ad's
413  *      longad          Use long ad's (default)
414  *      nostrict        Unset strict conformance
415  *      iocharset=      Set the NLS character set
416  *
417  *      The remaining are for debugging and disaster recovery:
418  *
419  *      novrs           Skip volume sequence recognition
420  *
421  *      The following expect a offset from 0.
422  *
423  *      session=        Set the CDROM session (default= last session)
424  *      anchor=         Override standard anchor location. (default= 256)
425  *      volume=         Override the VolumeDesc location. (unused)
426  *      partition=      Override the PartitionDesc location. (unused)
427  *      lastblock=      Set the last block of the filesystem/
428  *
429  *      The following expect a offset from the partition root.
430  *
431  *      fileset=        Override the fileset block location. (unused)
432  *      rootdir=        Override the root directory location. (unused)
433  *              WARNING: overriding the rootdir to a non-directory may
434  *              yield highly unpredictable results.
435  *
436  * PRE-CONDITIONS
437  *      options         Pointer to mount options string.
438  *      uopts           Pointer to mount options variable.
439  *
440  * POST-CONDITIONS
441  *      <return>        1       Mount options parsed okay.
442  *      <return>        0       Error parsing mount options.
443  *
444  * HISTORY
445  *      July 1, 1997 - Andrew E. Mileski
446  *      Written, tested, and released.
447  */
448 
449 enum {
450         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454         Opt_rootdir, Opt_utf8, Opt_iocharset,
455         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456         Opt_fmode, Opt_dmode
457 };
458 
459 static const match_table_t tokens = {
460         {Opt_novrs,     "novrs"},
461         {Opt_nostrict,  "nostrict"},
462         {Opt_bs,        "bs=%u"},
463         {Opt_unhide,    "unhide"},
464         {Opt_undelete,  "undelete"},
465         {Opt_noadinicb, "noadinicb"},
466         {Opt_adinicb,   "adinicb"},
467         {Opt_shortad,   "shortad"},
468         {Opt_longad,    "longad"},
469         {Opt_uforget,   "uid=forget"},
470         {Opt_uignore,   "uid=ignore"},
471         {Opt_gforget,   "gid=forget"},
472         {Opt_gignore,   "gid=ignore"},
473         {Opt_gid,       "gid=%u"},
474         {Opt_uid,       "uid=%u"},
475         {Opt_umask,     "umask=%o"},
476         {Opt_session,   "session=%u"},
477         {Opt_lastblock, "lastblock=%u"},
478         {Opt_anchor,    "anchor=%u"},
479         {Opt_volume,    "volume=%u"},
480         {Opt_partition, "partition=%u"},
481         {Opt_fileset,   "fileset=%u"},
482         {Opt_rootdir,   "rootdir=%u"},
483         {Opt_utf8,      "utf8"},
484         {Opt_iocharset, "iocharset=%s"},
485         {Opt_fmode,     "mode=%o"},
486         {Opt_dmode,     "dmode=%o"},
487         {Opt_err,       NULL}
488 };
489 
490 static int udf_parse_options(char *options, struct udf_options *uopt,
491                              bool remount)
492 {
493         char *p;
494         int option;
495 
496         uopt->novrs = 0;
497         uopt->partition = 0xFFFF;
498         uopt->session = 0xFFFFFFFF;
499         uopt->lastblock = 0;
500         uopt->anchor = 0;
501         uopt->volume = 0xFFFFFFFF;
502         uopt->rootdir = 0xFFFFFFFF;
503         uopt->fileset = 0xFFFFFFFF;
504         uopt->nls_map = NULL;
505 
506         if (!options)
507                 return 1;
508 
509         while ((p = strsep(&options, ",")) != NULL) {
510                 substring_t args[MAX_OPT_ARGS];
511                 int token;
512                 unsigned n;
513                 if (!*p)
514                         continue;
515 
516                 token = match_token(p, tokens, args);
517                 switch (token) {
518                 case Opt_novrs:
519                         uopt->novrs = 1;
520                         break;
521                 case Opt_bs:
522                         if (match_int(&args[0], &option))
523                                 return 0;
524                         n = option;
525                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526                                 return 0;
527                         uopt->blocksize = n;
528                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529                         break;
530                 case Opt_unhide:
531                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532                         break;
533                 case Opt_undelete:
534                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535                         break;
536                 case Opt_noadinicb:
537                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538                         break;
539                 case Opt_adinicb:
540                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541                         break;
542                 case Opt_shortad:
543                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544                         break;
545                 case Opt_longad:
546                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547                         break;
548                 case Opt_gid:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->gid = make_kgid(current_user_ns(), option);
552                         if (!gid_valid(uopt->gid))
553                                 return 0;
554                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
555                         break;
556                 case Opt_uid:
557                         if (match_int(args, &option))
558                                 return 0;
559                         uopt->uid = make_kuid(current_user_ns(), option);
560                         if (!uid_valid(uopt->uid))
561                                 return 0;
562                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
563                         break;
564                 case Opt_umask:
565                         if (match_octal(args, &option))
566                                 return 0;
567                         uopt->umask = option;
568                         break;
569                 case Opt_nostrict:
570                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571                         break;
572                 case Opt_session:
573                         if (match_int(args, &option))
574                                 return 0;
575                         uopt->session = option;
576                         if (!remount)
577                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578                         break;
579                 case Opt_lastblock:
580                         if (match_int(args, &option))
581                                 return 0;
582                         uopt->lastblock = option;
583                         if (!remount)
584                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585                         break;
586                 case Opt_anchor:
587                         if (match_int(args, &option))
588                                 return 0;
589                         uopt->anchor = option;
590                         break;
591                 case Opt_volume:
592                         if (match_int(args, &option))
593                                 return 0;
594                         uopt->volume = option;
595                         break;
596                 case Opt_partition:
597                         if (match_int(args, &option))
598                                 return 0;
599                         uopt->partition = option;
600                         break;
601                 case Opt_fileset:
602                         if (match_int(args, &option))
603                                 return 0;
604                         uopt->fileset = option;
605                         break;
606                 case Opt_rootdir:
607                         if (match_int(args, &option))
608                                 return 0;
609                         uopt->rootdir = option;
610                         break;
611                 case Opt_utf8:
612                         uopt->flags |= (1 << UDF_FLAG_UTF8);
613                         break;
614 #ifdef CONFIG_UDF_NLS
615                 case Opt_iocharset:
616                         uopt->nls_map = load_nls(args[0].from);
617                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618                         break;
619 #endif
620                 case Opt_uignore:
621                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622                         break;
623                 case Opt_uforget:
624                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625                         break;
626                 case Opt_gignore:
627                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628                         break;
629                 case Opt_gforget:
630                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631                         break;
632                 case Opt_fmode:
633                         if (match_octal(args, &option))
634                                 return 0;
635                         uopt->fmode = option & 0777;
636                         break;
637                 case Opt_dmode:
638                         if (match_octal(args, &option))
639                                 return 0;
640                         uopt->dmode = option & 0777;
641                         break;
642                 default:
643                         pr_err("bad mount option \"%s\" or missing value\n", p);
644                         return 0;
645                 }
646         }
647         return 1;
648 }
649 
650 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651 {
652         struct udf_options uopt;
653         struct udf_sb_info *sbi = UDF_SB(sb);
654         int error = 0;
655         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656 
657         sync_filesystem(sb);
658         if (lvidiu) {
659                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661                         return -EACCES;
662         }
663 
664         uopt.flags = sbi->s_flags;
665         uopt.uid   = sbi->s_uid;
666         uopt.gid   = sbi->s_gid;
667         uopt.umask = sbi->s_umask;
668         uopt.fmode = sbi->s_fmode;
669         uopt.dmode = sbi->s_dmode;
670 
671         if (!udf_parse_options(options, &uopt, true))
672                 return -EINVAL;
673 
674         write_lock(&sbi->s_cred_lock);
675         sbi->s_flags = uopt.flags;
676         sbi->s_uid   = uopt.uid;
677         sbi->s_gid   = uopt.gid;
678         sbi->s_umask = uopt.umask;
679         sbi->s_fmode = uopt.fmode;
680         sbi->s_dmode = uopt.dmode;
681         write_unlock(&sbi->s_cred_lock);
682 
683         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684                 goto out_unlock;
685 
686         if (*flags & MS_RDONLY)
687                 udf_close_lvid(sb);
688         else
689                 udf_open_lvid(sb);
690 
691 out_unlock:
692         return error;
693 }
694 
695 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697 static loff_t udf_check_vsd(struct super_block *sb)
698 {
699         struct volStructDesc *vsd = NULL;
700         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701         int sectorsize;
702         struct buffer_head *bh = NULL;
703         int nsr02 = 0;
704         int nsr03 = 0;
705         struct udf_sb_info *sbi;
706 
707         sbi = UDF_SB(sb);
708         if (sb->s_blocksize < sizeof(struct volStructDesc))
709                 sectorsize = sizeof(struct volStructDesc);
710         else
711                 sectorsize = sb->s_blocksize;
712 
713         sector += (sbi->s_session << sb->s_blocksize_bits);
714 
715         udf_debug("Starting at sector %u (%ld byte sectors)\n",
716                   (unsigned int)(sector >> sb->s_blocksize_bits),
717                   sb->s_blocksize);
718         /* Process the sequence (if applicable). The hard limit on the sector
719          * offset is arbitrary, hopefully large enough so that all valid UDF
720          * filesystems will be recognised. There is no mention of an upper
721          * bound to the size of the volume recognition area in the standard.
722          *  The limit will prevent the code to read all the sectors of a
723          * specially crafted image (like a bluray disc full of CD001 sectors),
724          * potentially causing minutes or even hours of uninterruptible I/O
725          * activity. This actually happened with uninitialised SSD partitions
726          * (all 0xFF) before the check for the limit and all valid IDs were
727          * added */
728         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729              sector += sectorsize) {
730                 /* Read a block */
731                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732                 if (!bh)
733                         break;
734 
735                 /* Look for ISO  descriptors */
736                 vsd = (struct volStructDesc *)(bh->b_data +
737                                               (sector & (sb->s_blocksize - 1)));
738 
739                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740                                     VSD_STD_ID_LEN)) {
741                         switch (vsd->structType) {
742                         case 0:
743                                 udf_debug("ISO9660 Boot Record found\n");
744                                 break;
745                         case 1:
746                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747                                 break;
748                         case 2:
749                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750                                 break;
751                         case 3:
752                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753                                 break;
754                         case 255:
755                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756                                 break;
757                         default:
758                                 udf_debug("ISO9660 VRS (%u) found\n",
759                                           vsd->structType);
760                                 break;
761                         }
762                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763                                     VSD_STD_ID_LEN))
764                         ; /* nothing */
765                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766                                     VSD_STD_ID_LEN)) {
767                         brelse(bh);
768                         break;
769                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770                                     VSD_STD_ID_LEN))
771                         nsr02 = sector;
772                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773                                     VSD_STD_ID_LEN))
774                         nsr03 = sector;
775                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776                                     VSD_STD_ID_LEN))
777                         ; /* nothing */
778                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779                                     VSD_STD_ID_LEN))
780                         ; /* nothing */
781                 else {
782                         /* invalid id : end of volume recognition area */
783                         brelse(bh);
784                         break;
785                 }
786                 brelse(bh);
787         }
788 
789         if (nsr03)
790                 return nsr03;
791         else if (nsr02)
792                 return nsr02;
793         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794                         VSD_FIRST_SECTOR_OFFSET)
795                 return -1;
796         else
797                 return 0;
798 }
799 
800 static int udf_find_fileset(struct super_block *sb,
801                             struct kernel_lb_addr *fileset,
802                             struct kernel_lb_addr *root)
803 {
804         struct buffer_head *bh = NULL;
805         long lastblock;
806         uint16_t ident;
807         struct udf_sb_info *sbi;
808 
809         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810             fileset->partitionReferenceNum != 0xFFFF) {
811                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812 
813                 if (!bh) {
814                         return 1;
815                 } else if (ident != TAG_IDENT_FSD) {
816                         brelse(bh);
817                         return 1;
818                 }
819 
820         }
821 
822         sbi = UDF_SB(sb);
823         if (!bh) {
824                 /* Search backwards through the partitions */
825                 struct kernel_lb_addr newfileset;
826 
827 /* --> cvg: FIXME - is it reasonable? */
828                 return 1;
829 
830                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831                      (newfileset.partitionReferenceNum != 0xFFFF &&
832                       fileset->logicalBlockNum == 0xFFFFFFFF &&
833                       fileset->partitionReferenceNum == 0xFFFF);
834                      newfileset.partitionReferenceNum--) {
835                         lastblock = sbi->s_partmaps
836                                         [newfileset.partitionReferenceNum]
837                                                 .s_partition_len;
838                         newfileset.logicalBlockNum = 0;
839 
840                         do {
841                                 bh = udf_read_ptagged(sb, &newfileset, 0,
842                                                       &ident);
843                                 if (!bh) {
844                                         newfileset.logicalBlockNum++;
845                                         continue;
846                                 }
847 
848                                 switch (ident) {
849                                 case TAG_IDENT_SBD:
850                                 {
851                                         struct spaceBitmapDesc *sp;
852                                         sp = (struct spaceBitmapDesc *)
853                                                                 bh->b_data;
854                                         newfileset.logicalBlockNum += 1 +
855                                                 ((le32_to_cpu(sp->numOfBytes) +
856                                                   sizeof(struct spaceBitmapDesc)
857                                                   - 1) >> sb->s_blocksize_bits);
858                                         brelse(bh);
859                                         break;
860                                 }
861                                 case TAG_IDENT_FSD:
862                                         *fileset = newfileset;
863                                         break;
864                                 default:
865                                         newfileset.logicalBlockNum++;
866                                         brelse(bh);
867                                         bh = NULL;
868                                         break;
869                                 }
870                         } while (newfileset.logicalBlockNum < lastblock &&
871                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
872                                  fileset->partitionReferenceNum == 0xFFFF);
873                 }
874         }
875 
876         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877              fileset->partitionReferenceNum != 0xFFFF) && bh) {
878                 udf_debug("Fileset at block=%d, partition=%d\n",
879                           fileset->logicalBlockNum,
880                           fileset->partitionReferenceNum);
881 
882                 sbi->s_partition = fileset->partitionReferenceNum;
883                 udf_load_fileset(sb, bh, root);
884                 brelse(bh);
885                 return 0;
886         }
887         return 1;
888 }
889 
890 /*
891  * Load primary Volume Descriptor Sequence
892  *
893  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894  * should be tried.
895  */
896 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897 {
898         struct primaryVolDesc *pvoldesc;
899         uint8_t *outstr;
900         struct buffer_head *bh;
901         uint16_t ident;
902         int ret = -ENOMEM;
903 
904         outstr = kmalloc(128, GFP_NOFS);
905         if (!outstr)
906                 return -ENOMEM;
907 
908         bh = udf_read_tagged(sb, block, block, &ident);
909         if (!bh) {
910                 ret = -EAGAIN;
911                 goto out2;
912         }
913 
914         if (ident != TAG_IDENT_PVD) {
915                 ret = -EIO;
916                 goto out_bh;
917         }
918 
919         pvoldesc = (struct primaryVolDesc *)bh->b_data;
920 
921         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922                               pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929         }
930 
931         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932         if (ret < 0)
933                 goto out_bh;
934 
935         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937 
938         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939         if (ret < 0)
940                 goto out_bh;
941 
942         outstr[ret] = 0;
943         udf_debug("volSetIdent[] = '%s'\n", outstr);
944 
945         ret = 0;
946 out_bh:
947         brelse(bh);
948 out2:
949         kfree(outstr);
950         return ret;
951 }
952 
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954                                         u32 meta_file_loc, u32 partition_ref)
955 {
956         struct kernel_lb_addr addr;
957         struct inode *metadata_fe;
958 
959         addr.logicalBlockNum = meta_file_loc;
960         addr.partitionReferenceNum = partition_ref;
961 
962         metadata_fe = udf_iget_special(sb, &addr);
963 
964         if (IS_ERR(metadata_fe)) {
965                 udf_warn(sb, "metadata inode efe not found\n");
966                 return metadata_fe;
967         }
968         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970                 iput(metadata_fe);
971                 return ERR_PTR(-EIO);
972         }
973 
974         return metadata_fe;
975 }
976 
977 static int udf_load_metadata_files(struct super_block *sb, int partition,
978                                    int type1_index)
979 {
980         struct udf_sb_info *sbi = UDF_SB(sb);
981         struct udf_part_map *map;
982         struct udf_meta_data *mdata;
983         struct kernel_lb_addr addr;
984         struct inode *fe;
985 
986         map = &sbi->s_partmaps[partition];
987         mdata = &map->s_type_specific.s_metadata;
988         mdata->s_phys_partition_ref = type1_index;
989 
990         /* metadata address */
991         udf_debug("Metadata file location: block = %d part = %d\n",
992                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
993 
994         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
995                                          mdata->s_phys_partition_ref);
996         if (IS_ERR(fe)) {
997                 /* mirror file entry */
998                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
999                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
1000 
1001                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1002                                                  mdata->s_phys_partition_ref);
1003 
1004                 if (IS_ERR(fe)) {
1005                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1006                         return PTR_ERR(fe);
1007                 }
1008                 mdata->s_mirror_fe = fe;
1009         } else
1010                 mdata->s_metadata_fe = fe;
1011 
1012 
1013         /*
1014          * bitmap file entry
1015          * Note:
1016          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1017         */
1018         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1019                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1020                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1021 
1022                 udf_debug("Bitmap file location: block = %d part = %d\n",
1023                           addr.logicalBlockNum, addr.partitionReferenceNum);
1024 
1025                 fe = udf_iget_special(sb, &addr);
1026                 if (IS_ERR(fe)) {
1027                         if (sb->s_flags & MS_RDONLY)
1028                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1029                         else {
1030                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1031                                 return PTR_ERR(fe);
1032                         }
1033                 } else
1034                         mdata->s_bitmap_fe = fe;
1035         }
1036 
1037         udf_debug("udf_load_metadata_files Ok\n");
1038         return 0;
1039 }
1040 
1041 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1042                              struct kernel_lb_addr *root)
1043 {
1044         struct fileSetDesc *fset;
1045 
1046         fset = (struct fileSetDesc *)bh->b_data;
1047 
1048         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1049 
1050         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1051 
1052         udf_debug("Rootdir at block=%d, partition=%d\n",
1053                   root->logicalBlockNum, root->partitionReferenceNum);
1054 }
1055 
1056 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1057 {
1058         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1059         return DIV_ROUND_UP(map->s_partition_len +
1060                             (sizeof(struct spaceBitmapDesc) << 3),
1061                             sb->s_blocksize * 8);
1062 }
1063 
1064 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1065 {
1066         struct udf_bitmap *bitmap;
1067         int nr_groups;
1068         int size;
1069 
1070         nr_groups = udf_compute_nr_groups(sb, index);
1071         size = sizeof(struct udf_bitmap) +
1072                 (sizeof(struct buffer_head *) * nr_groups);
1073 
1074         if (size <= PAGE_SIZE)
1075                 bitmap = kzalloc(size, GFP_KERNEL);
1076         else
1077                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1078 
1079         if (bitmap == NULL)
1080                 return NULL;
1081 
1082         bitmap->s_nr_groups = nr_groups;
1083         return bitmap;
1084 }
1085 
1086 static int udf_fill_partdesc_info(struct super_block *sb,
1087                 struct partitionDesc *p, int p_index)
1088 {
1089         struct udf_part_map *map;
1090         struct udf_sb_info *sbi = UDF_SB(sb);
1091         struct partitionHeaderDesc *phd;
1092 
1093         map = &sbi->s_partmaps[p_index];
1094 
1095         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1096         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1097 
1098         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1099                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1100         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1101                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1102         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1103                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1104         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1105                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1106 
1107         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1108                   p_index, map->s_partition_type,
1109                   map->s_partition_root, map->s_partition_len);
1110 
1111         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1112             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1113                 return 0;
1114 
1115         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116         if (phd->unallocSpaceTable.extLength) {
1117                 struct kernel_lb_addr loc = {
1118                         .logicalBlockNum = le32_to_cpu(
1119                                 phd->unallocSpaceTable.extPosition),
1120                         .partitionReferenceNum = p_index,
1121                 };
1122                 struct inode *inode;
1123 
1124                 inode = udf_iget_special(sb, &loc);
1125                 if (IS_ERR(inode)) {
1126                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127                                   p_index);
1128                         return PTR_ERR(inode);
1129                 }
1130                 map->s_uspace.s_table = inode;
1131                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1133                           p_index, map->s_uspace.s_table->i_ino);
1134         }
1135 
1136         if (phd->unallocSpaceBitmap.extLength) {
1137                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138                 if (!bitmap)
1139                         return -ENOMEM;
1140                 map->s_uspace.s_bitmap = bitmap;
1141                 bitmap->s_extPosition = le32_to_cpu(
1142                                 phd->unallocSpaceBitmap.extPosition);
1143                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1145                           p_index, bitmap->s_extPosition);
1146         }
1147 
1148         if (phd->partitionIntegrityTable.extLength)
1149                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1150 
1151         if (phd->freedSpaceTable.extLength) {
1152                 struct kernel_lb_addr loc = {
1153                         .logicalBlockNum = le32_to_cpu(
1154                                 phd->freedSpaceTable.extPosition),
1155                         .partitionReferenceNum = p_index,
1156                 };
1157                 struct inode *inode;
1158 
1159                 inode = udf_iget_special(sb, &loc);
1160                 if (IS_ERR(inode)) {
1161                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1162                                   p_index);
1163                         return PTR_ERR(inode);
1164                 }
1165                 map->s_fspace.s_table = inode;
1166                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1167                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1168                           p_index, map->s_fspace.s_table->i_ino);
1169         }
1170 
1171         if (phd->freedSpaceBitmap.extLength) {
1172                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1173                 if (!bitmap)
1174                         return -ENOMEM;
1175                 map->s_fspace.s_bitmap = bitmap;
1176                 bitmap->s_extPosition = le32_to_cpu(
1177                                 phd->freedSpaceBitmap.extPosition);
1178                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1179                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1180                           p_index, bitmap->s_extPosition);
1181         }
1182         return 0;
1183 }
1184 
1185 static void udf_find_vat_block(struct super_block *sb, int p_index,
1186                                int type1_index, sector_t start_block)
1187 {
1188         struct udf_sb_info *sbi = UDF_SB(sb);
1189         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1190         sector_t vat_block;
1191         struct kernel_lb_addr ino;
1192         struct inode *inode;
1193 
1194         /*
1195          * VAT file entry is in the last recorded block. Some broken disks have
1196          * it a few blocks before so try a bit harder...
1197          */
1198         ino.partitionReferenceNum = type1_index;
1199         for (vat_block = start_block;
1200              vat_block >= map->s_partition_root &&
1201              vat_block >= start_block - 3; vat_block--) {
1202                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1203                 inode = udf_iget_special(sb, &ino);
1204                 if (!IS_ERR(inode)) {
1205                         sbi->s_vat_inode = inode;
1206                         break;
1207                 }
1208         }
1209 }
1210 
1211 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1212 {
1213         struct udf_sb_info *sbi = UDF_SB(sb);
1214         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1215         struct buffer_head *bh = NULL;
1216         struct udf_inode_info *vati;
1217         uint32_t pos;
1218         struct virtualAllocationTable20 *vat20;
1219         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1220 
1221         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1222         if (!sbi->s_vat_inode &&
1223             sbi->s_last_block != blocks - 1) {
1224                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1225                           (unsigned long)sbi->s_last_block,
1226                           (unsigned long)blocks - 1);
1227                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1228         }
1229         if (!sbi->s_vat_inode)
1230                 return -EIO;
1231 
1232         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1233                 map->s_type_specific.s_virtual.s_start_offset = 0;
1234                 map->s_type_specific.s_virtual.s_num_entries =
1235                         (sbi->s_vat_inode->i_size - 36) >> 2;
1236         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1237                 vati = UDF_I(sbi->s_vat_inode);
1238                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1239                         pos = udf_block_map(sbi->s_vat_inode, 0);
1240                         bh = sb_bread(sb, pos);
1241                         if (!bh)
1242                                 return -EIO;
1243                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1244                 } else {
1245                         vat20 = (struct virtualAllocationTable20 *)
1246                                                         vati->i_ext.i_data;
1247                 }
1248 
1249                 map->s_type_specific.s_virtual.s_start_offset =
1250                         le16_to_cpu(vat20->lengthHeader);
1251                 map->s_type_specific.s_virtual.s_num_entries =
1252                         (sbi->s_vat_inode->i_size -
1253                                 map->s_type_specific.s_virtual.
1254                                         s_start_offset) >> 2;
1255                 brelse(bh);
1256         }
1257         return 0;
1258 }
1259 
1260 /*
1261  * Load partition descriptor block
1262  *
1263  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1264  * sequence.
1265  */
1266 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1267 {
1268         struct buffer_head *bh;
1269         struct partitionDesc *p;
1270         struct udf_part_map *map;
1271         struct udf_sb_info *sbi = UDF_SB(sb);
1272         int i, type1_idx;
1273         uint16_t partitionNumber;
1274         uint16_t ident;
1275         int ret;
1276 
1277         bh = udf_read_tagged(sb, block, block, &ident);
1278         if (!bh)
1279                 return -EAGAIN;
1280         if (ident != TAG_IDENT_PD) {
1281                 ret = 0;
1282                 goto out_bh;
1283         }
1284 
1285         p = (struct partitionDesc *)bh->b_data;
1286         partitionNumber = le16_to_cpu(p->partitionNumber);
1287 
1288         /* First scan for TYPE1 and SPARABLE partitions */
1289         for (i = 0; i < sbi->s_partitions; i++) {
1290                 map = &sbi->s_partmaps[i];
1291                 udf_debug("Searching map: (%d == %d)\n",
1292                           map->s_partition_num, partitionNumber);
1293                 if (map->s_partition_num == partitionNumber &&
1294                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1295                      map->s_partition_type == UDF_SPARABLE_MAP15))
1296                         break;
1297         }
1298 
1299         if (i >= sbi->s_partitions) {
1300                 udf_debug("Partition (%d) not found in partition map\n",
1301                           partitionNumber);
1302                 ret = 0;
1303                 goto out_bh;
1304         }
1305 
1306         ret = udf_fill_partdesc_info(sb, p, i);
1307         if (ret < 0)
1308                 goto out_bh;
1309 
1310         /*
1311          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1312          * PHYSICAL partitions are already set up
1313          */
1314         type1_idx = i;
1315 #ifdef UDFFS_DEBUG
1316         map = NULL; /* supress 'maybe used uninitialized' warning */
1317 #endif
1318         for (i = 0; i < sbi->s_partitions; i++) {
1319                 map = &sbi->s_partmaps[i];
1320 
1321                 if (map->s_partition_num == partitionNumber &&
1322                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1323                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1324                      map->s_partition_type == UDF_METADATA_MAP25))
1325                         break;
1326         }
1327 
1328         if (i >= sbi->s_partitions) {
1329                 ret = 0;
1330                 goto out_bh;
1331         }
1332 
1333         ret = udf_fill_partdesc_info(sb, p, i);
1334         if (ret < 0)
1335                 goto out_bh;
1336 
1337         if (map->s_partition_type == UDF_METADATA_MAP25) {
1338                 ret = udf_load_metadata_files(sb, i, type1_idx);
1339                 if (ret < 0) {
1340                         udf_err(sb, "error loading MetaData partition map %d\n",
1341                                 i);
1342                         goto out_bh;
1343                 }
1344         } else {
1345                 /*
1346                  * If we have a partition with virtual map, we don't handle
1347                  * writing to it (we overwrite blocks instead of relocating
1348                  * them).
1349                  */
1350                 if (!(sb->s_flags & MS_RDONLY)) {
1351                         ret = -EACCES;
1352                         goto out_bh;
1353                 }
1354                 ret = udf_load_vat(sb, i, type1_idx);
1355                 if (ret < 0)
1356                         goto out_bh;
1357         }
1358         ret = 0;
1359 out_bh:
1360         /* In case loading failed, we handle cleanup in udf_fill_super */
1361         brelse(bh);
1362         return ret;
1363 }
1364 
1365 static int udf_load_sparable_map(struct super_block *sb,
1366                                  struct udf_part_map *map,
1367                                  struct sparablePartitionMap *spm)
1368 {
1369         uint32_t loc;
1370         uint16_t ident;
1371         struct sparingTable *st;
1372         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1373         int i;
1374         struct buffer_head *bh;
1375 
1376         map->s_partition_type = UDF_SPARABLE_MAP15;
1377         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1378         if (!is_power_of_2(sdata->s_packet_len)) {
1379                 udf_err(sb, "error loading logical volume descriptor: "
1380                         "Invalid packet length %u\n",
1381                         (unsigned)sdata->s_packet_len);
1382                 return -EIO;
1383         }
1384         if (spm->numSparingTables > 4) {
1385                 udf_err(sb, "error loading logical volume descriptor: "
1386                         "Too many sparing tables (%d)\n",
1387                         (int)spm->numSparingTables);
1388                 return -EIO;
1389         }
1390 
1391         for (i = 0; i < spm->numSparingTables; i++) {
1392                 loc = le32_to_cpu(spm->locSparingTable[i]);
1393                 bh = udf_read_tagged(sb, loc, loc, &ident);
1394                 if (!bh)
1395                         continue;
1396 
1397                 st = (struct sparingTable *)bh->b_data;
1398                 if (ident != 0 ||
1399                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1400                             strlen(UDF_ID_SPARING)) ||
1401                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1402                                                         sb->s_blocksize) {
1403                         brelse(bh);
1404                         continue;
1405                 }
1406 
1407                 sdata->s_spar_map[i] = bh;
1408         }
1409         map->s_partition_func = udf_get_pblock_spar15;
1410         return 0;
1411 }
1412 
1413 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1414                                struct kernel_lb_addr *fileset)
1415 {
1416         struct logicalVolDesc *lvd;
1417         int i, offset;
1418         uint8_t type;
1419         struct udf_sb_info *sbi = UDF_SB(sb);
1420         struct genericPartitionMap *gpm;
1421         uint16_t ident;
1422         struct buffer_head *bh;
1423         unsigned int table_len;
1424         int ret;
1425 
1426         bh = udf_read_tagged(sb, block, block, &ident);
1427         if (!bh)
1428                 return -EAGAIN;
1429         BUG_ON(ident != TAG_IDENT_LVD);
1430         lvd = (struct logicalVolDesc *)bh->b_data;
1431         table_len = le32_to_cpu(lvd->mapTableLength);
1432         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1433                 udf_err(sb, "error loading logical volume descriptor: "
1434                         "Partition table too long (%u > %lu)\n", table_len,
1435                         sb->s_blocksize - sizeof(*lvd));
1436                 ret = -EIO;
1437                 goto out_bh;
1438         }
1439 
1440         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1441         if (ret)
1442                 goto out_bh;
1443 
1444         for (i = 0, offset = 0;
1445              i < sbi->s_partitions && offset < table_len;
1446              i++, offset += gpm->partitionMapLength) {
1447                 struct udf_part_map *map = &sbi->s_partmaps[i];
1448                 gpm = (struct genericPartitionMap *)
1449                                 &(lvd->partitionMaps[offset]);
1450                 type = gpm->partitionMapType;
1451                 if (type == 1) {
1452                         struct genericPartitionMap1 *gpm1 =
1453                                 (struct genericPartitionMap1 *)gpm;
1454                         map->s_partition_type = UDF_TYPE1_MAP15;
1455                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1456                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1457                         map->s_partition_func = NULL;
1458                 } else if (type == 2) {
1459                         struct udfPartitionMap2 *upm2 =
1460                                                 (struct udfPartitionMap2 *)gpm;
1461                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1462                                                 strlen(UDF_ID_VIRTUAL))) {
1463                                 u16 suf =
1464                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1465                                                         identSuffix)[0]);
1466                                 if (suf < 0x0200) {
1467                                         map->s_partition_type =
1468                                                         UDF_VIRTUAL_MAP15;
1469                                         map->s_partition_func =
1470                                                         udf_get_pblock_virt15;
1471                                 } else {
1472                                         map->s_partition_type =
1473                                                         UDF_VIRTUAL_MAP20;
1474                                         map->s_partition_func =
1475                                                         udf_get_pblock_virt20;
1476                                 }
1477                         } else if (!strncmp(upm2->partIdent.ident,
1478                                                 UDF_ID_SPARABLE,
1479                                                 strlen(UDF_ID_SPARABLE))) {
1480                                 ret = udf_load_sparable_map(sb, map,
1481                                         (struct sparablePartitionMap *)gpm);
1482                                 if (ret < 0)
1483                                         goto out_bh;
1484                         } else if (!strncmp(upm2->partIdent.ident,
1485                                                 UDF_ID_METADATA,
1486                                                 strlen(UDF_ID_METADATA))) {
1487                                 struct udf_meta_data *mdata =
1488                                         &map->s_type_specific.s_metadata;
1489                                 struct metadataPartitionMap *mdm =
1490                                                 (struct metadataPartitionMap *)
1491                                                 &(lvd->partitionMaps[offset]);
1492                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1493                                           i, type, UDF_ID_METADATA);
1494 
1495                                 map->s_partition_type = UDF_METADATA_MAP25;
1496                                 map->s_partition_func = udf_get_pblock_meta25;
1497 
1498                                 mdata->s_meta_file_loc   =
1499                                         le32_to_cpu(mdm->metadataFileLoc);
1500                                 mdata->s_mirror_file_loc =
1501                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1502                                 mdata->s_bitmap_file_loc =
1503                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1504                                 mdata->s_alloc_unit_size =
1505                                         le32_to_cpu(mdm->allocUnitSize);
1506                                 mdata->s_align_unit_size =
1507                                         le16_to_cpu(mdm->alignUnitSize);
1508                                 if (mdm->flags & 0x01)
1509                                         mdata->s_flags |= MF_DUPLICATE_MD;
1510 
1511                                 udf_debug("Metadata Ident suffix=0x%x\n",
1512                                           le16_to_cpu(*(__le16 *)
1513                                                       mdm->partIdent.identSuffix));
1514                                 udf_debug("Metadata part num=%d\n",
1515                                           le16_to_cpu(mdm->partitionNum));
1516                                 udf_debug("Metadata part alloc unit size=%d\n",
1517                                           le32_to_cpu(mdm->allocUnitSize));
1518                                 udf_debug("Metadata file loc=%d\n",
1519                                           le32_to_cpu(mdm->metadataFileLoc));
1520                                 udf_debug("Mirror file loc=%d\n",
1521                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1522                                 udf_debug("Bitmap file loc=%d\n",
1523                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1524                                 udf_debug("Flags: %d %d\n",
1525                                           mdata->s_flags, mdm->flags);
1526                         } else {
1527                                 udf_debug("Unknown ident: %s\n",
1528                                           upm2->partIdent.ident);
1529                                 continue;
1530                         }
1531                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1532                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1533                 }
1534                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1535                           i, map->s_partition_num, type, map->s_volumeseqnum);
1536         }
1537 
1538         if (fileset) {
1539                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1540 
1541                 *fileset = lelb_to_cpu(la->extLocation);
1542                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1543                           fileset->logicalBlockNum,
1544                           fileset->partitionReferenceNum);
1545         }
1546         if (lvd->integritySeqExt.extLength)
1547                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1548         ret = 0;
1549 out_bh:
1550         brelse(bh);
1551         return ret;
1552 }
1553 
1554 /*
1555  * Find the prevailing Logical Volume Integrity Descriptor.
1556  */
1557 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1558 {
1559         struct buffer_head *bh, *final_bh;
1560         uint16_t ident;
1561         struct udf_sb_info *sbi = UDF_SB(sb);
1562         struct logicalVolIntegrityDesc *lvid;
1563         int indirections = 0;
1564 
1565         while (++indirections <= UDF_MAX_LVID_NESTING) {
1566                 final_bh = NULL;
1567                 while (loc.extLength > 0 &&
1568                         (bh = udf_read_tagged(sb, loc.extLocation,
1569                                         loc.extLocation, &ident))) {
1570                         if (ident != TAG_IDENT_LVID) {
1571                                 brelse(bh);
1572                                 break;
1573                         }
1574 
1575                         brelse(final_bh);
1576                         final_bh = bh;
1577 
1578                         loc.extLength -= sb->s_blocksize;
1579                         loc.extLocation++;
1580                 }
1581 
1582                 if (!final_bh)
1583                         return;
1584 
1585                 brelse(sbi->s_lvid_bh);
1586                 sbi->s_lvid_bh = final_bh;
1587 
1588                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1589                 if (lvid->nextIntegrityExt.extLength == 0)
1590                         return;
1591 
1592                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1593         }
1594 
1595         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1596                 UDF_MAX_LVID_NESTING);
1597         brelse(sbi->s_lvid_bh);
1598         sbi->s_lvid_bh = NULL;
1599 }
1600 
1601 
1602 /*
1603  * Process a main/reserve volume descriptor sequence.
1604  *   @block             First block of first extent of the sequence.
1605  *   @lastblock         Lastblock of first extent of the sequence.
1606  *   @fileset           There we store extent containing root fileset
1607  *
1608  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1609  * sequence
1610  */
1611 static noinline int udf_process_sequence(
1612                 struct super_block *sb,
1613                 sector_t block, sector_t lastblock,
1614                 struct kernel_lb_addr *fileset)
1615 {
1616         struct buffer_head *bh = NULL;
1617         struct udf_vds_record vds[VDS_POS_LENGTH];
1618         struct udf_vds_record *curr;
1619         struct generic_desc *gd;
1620         struct volDescPtr *vdp;
1621         bool done = false;
1622         uint32_t vdsn;
1623         uint16_t ident;
1624         long next_s = 0, next_e = 0;
1625         int ret;
1626         unsigned int indirections = 0;
1627 
1628         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1629 
1630         /*
1631          * Read the main descriptor sequence and find which descriptors
1632          * are in it.
1633          */
1634         for (; (!done && block <= lastblock); block++) {
1635 
1636                 bh = udf_read_tagged(sb, block, block, &ident);
1637                 if (!bh) {
1638                         udf_err(sb,
1639                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1640                                 (unsigned long long)block);
1641                         return -EAGAIN;
1642                 }
1643 
1644                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1645                 gd = (struct generic_desc *)bh->b_data;
1646                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1647                 switch (ident) {
1648                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1649                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1650                         if (vdsn >= curr->volDescSeqNum) {
1651                                 curr->volDescSeqNum = vdsn;
1652                                 curr->block = block;
1653                         }
1654                         break;
1655                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1656                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1657                         if (vdsn >= curr->volDescSeqNum) {
1658                                 curr->volDescSeqNum = vdsn;
1659                                 curr->block = block;
1660 
1661                                 vdp = (struct volDescPtr *)bh->b_data;
1662                                 next_s = le32_to_cpu(
1663                                         vdp->nextVolDescSeqExt.extLocation);
1664                                 next_e = le32_to_cpu(
1665                                         vdp->nextVolDescSeqExt.extLength);
1666                                 next_e = next_e >> sb->s_blocksize_bits;
1667                                 next_e += next_s;
1668                         }
1669                         break;
1670                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1671                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1672                         if (vdsn >= curr->volDescSeqNum) {
1673                                 curr->volDescSeqNum = vdsn;
1674                                 curr->block = block;
1675                         }
1676                         break;
1677                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1678                         curr = &vds[VDS_POS_PARTITION_DESC];
1679                         if (!curr->block)
1680                                 curr->block = block;
1681                         break;
1682                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1683                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1684                         if (vdsn >= curr->volDescSeqNum) {
1685                                 curr->volDescSeqNum = vdsn;
1686                                 curr->block = block;
1687                         }
1688                         break;
1689                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1690                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1691                         if (vdsn >= curr->volDescSeqNum) {
1692                                 curr->volDescSeqNum = vdsn;
1693                                 curr->block = block;
1694                         }
1695                         break;
1696                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1697                         if (++indirections > UDF_MAX_TD_NESTING) {
1698                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1699                                 brelse(bh);
1700                                 return -EIO;
1701                         }
1702 
1703                         vds[VDS_POS_TERMINATING_DESC].block = block;
1704                         if (next_e) {
1705                                 block = next_s;
1706                                 lastblock = next_e;
1707                                 next_s = next_e = 0;
1708                         } else
1709                                 done = true;
1710                         break;
1711                 }
1712                 brelse(bh);
1713         }
1714         /*
1715          * Now read interesting descriptors again and process them
1716          * in a suitable order
1717          */
1718         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1719                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1720                 return -EAGAIN;
1721         }
1722         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1723         if (ret < 0)
1724                 return ret;
1725 
1726         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1727                 ret = udf_load_logicalvol(sb,
1728                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1729                                           fileset);
1730                 if (ret < 0)
1731                         return ret;
1732         }
1733 
1734         if (vds[VDS_POS_PARTITION_DESC].block) {
1735                 /*
1736                  * We rescan the whole descriptor sequence to find
1737                  * partition descriptor blocks and process them.
1738                  */
1739                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1740                      block < vds[VDS_POS_TERMINATING_DESC].block;
1741                      block++) {
1742                         ret = udf_load_partdesc(sb, block);
1743                         if (ret < 0)
1744                                 return ret;
1745                 }
1746         }
1747 
1748         return 0;
1749 }
1750 
1751 /*
1752  * Load Volume Descriptor Sequence described by anchor in bh
1753  *
1754  * Returns <0 on error, 0 on success
1755  */
1756 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1757                              struct kernel_lb_addr *fileset)
1758 {
1759         struct anchorVolDescPtr *anchor;
1760         sector_t main_s, main_e, reserve_s, reserve_e;
1761         int ret;
1762 
1763         anchor = (struct anchorVolDescPtr *)bh->b_data;
1764 
1765         /* Locate the main sequence */
1766         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1767         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1768         main_e = main_e >> sb->s_blocksize_bits;
1769         main_e += main_s;
1770 
1771         /* Locate the reserve sequence */
1772         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1773         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1774         reserve_e = reserve_e >> sb->s_blocksize_bits;
1775         reserve_e += reserve_s;
1776 
1777         /* Process the main & reserve sequences */
1778         /* responsible for finding the PartitionDesc(s) */
1779         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1780         if (ret != -EAGAIN)
1781                 return ret;
1782         udf_sb_free_partitions(sb);
1783         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1784         if (ret < 0) {
1785                 udf_sb_free_partitions(sb);
1786                 /* No sequence was OK, return -EIO */
1787                 if (ret == -EAGAIN)
1788                         ret = -EIO;
1789         }
1790         return ret;
1791 }
1792 
1793 /*
1794  * Check whether there is an anchor block in the given block and
1795  * load Volume Descriptor Sequence if so.
1796  *
1797  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1798  * block
1799  */
1800 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1801                                   struct kernel_lb_addr *fileset)
1802 {
1803         struct buffer_head *bh;
1804         uint16_t ident;
1805         int ret;
1806 
1807         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1808             udf_fixed_to_variable(block) >=
1809             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1810                 return -EAGAIN;
1811 
1812         bh = udf_read_tagged(sb, block, block, &ident);
1813         if (!bh)
1814                 return -EAGAIN;
1815         if (ident != TAG_IDENT_AVDP) {
1816                 brelse(bh);
1817                 return -EAGAIN;
1818         }
1819         ret = udf_load_sequence(sb, bh, fileset);
1820         brelse(bh);
1821         return ret;
1822 }
1823 
1824 /*
1825  * Search for an anchor volume descriptor pointer.
1826  *
1827  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1828  * of anchors.
1829  */
1830 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1831                             struct kernel_lb_addr *fileset)
1832 {
1833         sector_t last[6];
1834         int i;
1835         struct udf_sb_info *sbi = UDF_SB(sb);
1836         int last_count = 0;
1837         int ret;
1838 
1839         /* First try user provided anchor */
1840         if (sbi->s_anchor) {
1841                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1842                 if (ret != -EAGAIN)
1843                         return ret;
1844         }
1845         /*
1846          * according to spec, anchor is in either:
1847          *     block 256
1848          *     lastblock-256
1849          *     lastblock
1850          *  however, if the disc isn't closed, it could be 512.
1851          */
1852         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1853         if (ret != -EAGAIN)
1854                 return ret;
1855         /*
1856          * The trouble is which block is the last one. Drives often misreport
1857          * this so we try various possibilities.
1858          */
1859         last[last_count++] = *lastblock;
1860         if (*lastblock >= 1)
1861                 last[last_count++] = *lastblock - 1;
1862         last[last_count++] = *lastblock + 1;
1863         if (*lastblock >= 2)
1864                 last[last_count++] = *lastblock - 2;
1865         if (*lastblock >= 150)
1866                 last[last_count++] = *lastblock - 150;
1867         if (*lastblock >= 152)
1868                 last[last_count++] = *lastblock - 152;
1869 
1870         for (i = 0; i < last_count; i++) {
1871                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1872                                 sb->s_blocksize_bits)
1873                         continue;
1874                 ret = udf_check_anchor_block(sb, last[i], fileset);
1875                 if (ret != -EAGAIN) {
1876                         if (!ret)
1877                                 *lastblock = last[i];
1878                         return ret;
1879                 }
1880                 if (last[i] < 256)
1881                         continue;
1882                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1883                 if (ret != -EAGAIN) {
1884                         if (!ret)
1885                                 *lastblock = last[i];
1886                         return ret;
1887                 }
1888         }
1889 
1890         /* Finally try block 512 in case media is open */
1891         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1892 }
1893 
1894 /*
1895  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1896  * area specified by it. The function expects sbi->s_lastblock to be the last
1897  * block on the media.
1898  *
1899  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1900  * was not found.
1901  */
1902 static int udf_find_anchor(struct super_block *sb,
1903                            struct kernel_lb_addr *fileset)
1904 {
1905         struct udf_sb_info *sbi = UDF_SB(sb);
1906         sector_t lastblock = sbi->s_last_block;
1907         int ret;
1908 
1909         ret = udf_scan_anchors(sb, &lastblock, fileset);
1910         if (ret != -EAGAIN)
1911                 goto out;
1912 
1913         /* No anchor found? Try VARCONV conversion of block numbers */
1914         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1915         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1916         /* Firstly, we try to not convert number of the last block */
1917         ret = udf_scan_anchors(sb, &lastblock, fileset);
1918         if (ret != -EAGAIN)
1919                 goto out;
1920 
1921         lastblock = sbi->s_last_block;
1922         /* Secondly, we try with converted number of the last block */
1923         ret = udf_scan_anchors(sb, &lastblock, fileset);
1924         if (ret < 0) {
1925                 /* VARCONV didn't help. Clear it. */
1926                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1927         }
1928 out:
1929         if (ret == 0)
1930                 sbi->s_last_block = lastblock;
1931         return ret;
1932 }
1933 
1934 /*
1935  * Check Volume Structure Descriptor, find Anchor block and load Volume
1936  * Descriptor Sequence.
1937  *
1938  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1939  * block was not found.
1940  */
1941 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1942                         int silent, struct kernel_lb_addr *fileset)
1943 {
1944         struct udf_sb_info *sbi = UDF_SB(sb);
1945         loff_t nsr_off;
1946         int ret;
1947 
1948         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1949                 if (!silent)
1950                         udf_warn(sb, "Bad block size\n");
1951                 return -EINVAL;
1952         }
1953         sbi->s_last_block = uopt->lastblock;
1954         if (!uopt->novrs) {
1955                 /* Check that it is NSR02 compliant */
1956                 nsr_off = udf_check_vsd(sb);
1957                 if (!nsr_off) {
1958                         if (!silent)
1959                                 udf_warn(sb, "No VRS found\n");
1960                         return 0;
1961                 }
1962                 if (nsr_off == -1)
1963                         udf_debug("Failed to read sector at offset %d. "
1964                                   "Assuming open disc. Skipping validity "
1965                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1966                 if (!sbi->s_last_block)
1967                         sbi->s_last_block = udf_get_last_block(sb);
1968         } else {
1969                 udf_debug("Validity check skipped because of novrs option\n");
1970         }
1971 
1972         /* Look for anchor block and load Volume Descriptor Sequence */
1973         sbi->s_anchor = uopt->anchor;
1974         ret = udf_find_anchor(sb, fileset);
1975         if (ret < 0) {
1976                 if (!silent && ret == -EAGAIN)
1977                         udf_warn(sb, "No anchor found\n");
1978                 return ret;
1979         }
1980         return 0;
1981 }
1982 
1983 static void udf_open_lvid(struct super_block *sb)
1984 {
1985         struct udf_sb_info *sbi = UDF_SB(sb);
1986         struct buffer_head *bh = sbi->s_lvid_bh;
1987         struct logicalVolIntegrityDesc *lvid;
1988         struct logicalVolIntegrityDescImpUse *lvidiu;
1989 
1990         if (!bh)
1991                 return;
1992         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1993         lvidiu = udf_sb_lvidiu(sb);
1994         if (!lvidiu)
1995                 return;
1996 
1997         mutex_lock(&sbi->s_alloc_mutex);
1998         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1999         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2000         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2001                                 CURRENT_TIME);
2002         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2003 
2004         lvid->descTag.descCRC = cpu_to_le16(
2005                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006                         le16_to_cpu(lvid->descTag.descCRCLength)));
2007 
2008         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009         mark_buffer_dirty(bh);
2010         sbi->s_lvid_dirty = 0;
2011         mutex_unlock(&sbi->s_alloc_mutex);
2012         /* Make opening of filesystem visible on the media immediately */
2013         sync_dirty_buffer(bh);
2014 }
2015 
2016 static void udf_close_lvid(struct super_block *sb)
2017 {
2018         struct udf_sb_info *sbi = UDF_SB(sb);
2019         struct buffer_head *bh = sbi->s_lvid_bh;
2020         struct logicalVolIntegrityDesc *lvid;
2021         struct logicalVolIntegrityDescImpUse *lvidiu;
2022 
2023         if (!bh)
2024                 return;
2025         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2026         lvidiu = udf_sb_lvidiu(sb);
2027         if (!lvidiu)
2028                 return;
2029 
2030         mutex_lock(&sbi->s_alloc_mutex);
2031         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2032         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2033         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2034         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2035                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2036         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2037                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2038         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2039                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2040         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2041 
2042         lvid->descTag.descCRC = cpu_to_le16(
2043                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2044                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2045 
2046         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2047         /*
2048          * We set buffer uptodate unconditionally here to avoid spurious
2049          * warnings from mark_buffer_dirty() when previous EIO has marked
2050          * the buffer as !uptodate
2051          */
2052         set_buffer_uptodate(bh);
2053         mark_buffer_dirty(bh);
2054         sbi->s_lvid_dirty = 0;
2055         mutex_unlock(&sbi->s_alloc_mutex);
2056         /* Make closing of filesystem visible on the media immediately */
2057         sync_dirty_buffer(bh);
2058 }
2059 
2060 u64 lvid_get_unique_id(struct super_block *sb)
2061 {
2062         struct buffer_head *bh;
2063         struct udf_sb_info *sbi = UDF_SB(sb);
2064         struct logicalVolIntegrityDesc *lvid;
2065         struct logicalVolHeaderDesc *lvhd;
2066         u64 uniqueID;
2067         u64 ret;
2068 
2069         bh = sbi->s_lvid_bh;
2070         if (!bh)
2071                 return 0;
2072 
2073         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2074         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2075 
2076         mutex_lock(&sbi->s_alloc_mutex);
2077         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2078         if (!(++uniqueID & 0xFFFFFFFF))
2079                 uniqueID += 16;
2080         lvhd->uniqueID = cpu_to_le64(uniqueID);
2081         mutex_unlock(&sbi->s_alloc_mutex);
2082         mark_buffer_dirty(bh);
2083 
2084         return ret;
2085 }
2086 
2087 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2088 {
2089         int ret = -EINVAL;
2090         struct inode *inode = NULL;
2091         struct udf_options uopt;
2092         struct kernel_lb_addr rootdir, fileset;
2093         struct udf_sb_info *sbi;
2094         bool lvid_open = false;
2095 
2096         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2097         uopt.uid = INVALID_UID;
2098         uopt.gid = INVALID_GID;
2099         uopt.umask = 0;
2100         uopt.fmode = UDF_INVALID_MODE;
2101         uopt.dmode = UDF_INVALID_MODE;
2102 
2103         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2104         if (!sbi)
2105                 return -ENOMEM;
2106 
2107         sb->s_fs_info = sbi;
2108 
2109         mutex_init(&sbi->s_alloc_mutex);
2110 
2111         if (!udf_parse_options((char *)options, &uopt, false))
2112                 goto parse_options_failure;
2113 
2114         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2115             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2116                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2117                 goto parse_options_failure;
2118         }
2119 #ifdef CONFIG_UDF_NLS
2120         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2121                 uopt.nls_map = load_nls_default();
2122                 if (!uopt.nls_map)
2123                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2124                 else
2125                         udf_debug("Using default NLS map\n");
2126         }
2127 #endif
2128         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2129                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2130 
2131         fileset.logicalBlockNum = 0xFFFFFFFF;
2132         fileset.partitionReferenceNum = 0xFFFF;
2133 
2134         sbi->s_flags = uopt.flags;
2135         sbi->s_uid = uopt.uid;
2136         sbi->s_gid = uopt.gid;
2137         sbi->s_umask = uopt.umask;
2138         sbi->s_fmode = uopt.fmode;
2139         sbi->s_dmode = uopt.dmode;
2140         sbi->s_nls_map = uopt.nls_map;
2141         rwlock_init(&sbi->s_cred_lock);
2142 
2143         if (uopt.session == 0xFFFFFFFF)
2144                 sbi->s_session = udf_get_last_session(sb);
2145         else
2146                 sbi->s_session = uopt.session;
2147 
2148         udf_debug("Multi-session=%d\n", sbi->s_session);
2149 
2150         /* Fill in the rest of the superblock */
2151         sb->s_op = &udf_sb_ops;
2152         sb->s_export_op = &udf_export_ops;
2153 
2154         sb->s_magic = UDF_SUPER_MAGIC;
2155         sb->s_time_gran = 1000;
2156 
2157         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2158                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2159         } else {
2160                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2161                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2162                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2163                         if (!silent)
2164                                 pr_notice("Rescanning with blocksize %d\n",
2165                                           UDF_DEFAULT_BLOCKSIZE);
2166                         brelse(sbi->s_lvid_bh);
2167                         sbi->s_lvid_bh = NULL;
2168                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2169                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2170                 }
2171         }
2172         if (ret < 0) {
2173                 if (ret == -EAGAIN) {
2174                         udf_warn(sb, "No partition found (1)\n");
2175                         ret = -EINVAL;
2176                 }
2177                 goto error_out;
2178         }
2179 
2180         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2181 
2182         if (sbi->s_lvid_bh) {
2183                 struct logicalVolIntegrityDescImpUse *lvidiu =
2184                                                         udf_sb_lvidiu(sb);
2185                 uint16_t minUDFReadRev;
2186                 uint16_t minUDFWriteRev;
2187 
2188                 if (!lvidiu) {
2189                         ret = -EINVAL;
2190                         goto error_out;
2191                 }
2192                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2193                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2194                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2195                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2196                                 minUDFReadRev,
2197                                 UDF_MAX_READ_VERSION);
2198                         ret = -EINVAL;
2199                         goto error_out;
2200                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2201                            !(sb->s_flags & MS_RDONLY)) {
2202                         ret = -EACCES;
2203                         goto error_out;
2204                 }
2205 
2206                 sbi->s_udfrev = minUDFWriteRev;
2207 
2208                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2209                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2210                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2211                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2212         }
2213 
2214         if (!sbi->s_partitions) {
2215                 udf_warn(sb, "No partition found (2)\n");
2216                 ret = -EINVAL;
2217                 goto error_out;
2218         }
2219 
2220         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2221                         UDF_PART_FLAG_READ_ONLY &&
2222             !(sb->s_flags & MS_RDONLY)) {
2223                 ret = -EACCES;
2224                 goto error_out;
2225         }
2226 
2227         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2228                 udf_warn(sb, "No fileset found\n");
2229                 ret = -EINVAL;
2230                 goto error_out;
2231         }
2232 
2233         if (!silent) {
2234                 struct timestamp ts;
2235                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2236                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2237                          sbi->s_volume_ident,
2238                          le16_to_cpu(ts.year), ts.month, ts.day,
2239                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2240         }
2241         if (!(sb->s_flags & MS_RDONLY)) {
2242                 udf_open_lvid(sb);
2243                 lvid_open = true;
2244         }
2245 
2246         /* Assign the root inode */
2247         /* assign inodes by physical block number */
2248         /* perhaps it's not extensible enough, but for now ... */
2249         inode = udf_iget(sb, &rootdir);
2250         if (IS_ERR(inode)) {
2251                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2252                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2253                 ret = PTR_ERR(inode);
2254                 goto error_out;
2255         }
2256 
2257         /* Allocate a dentry for the root inode */
2258         sb->s_root = d_make_root(inode);
2259         if (!sb->s_root) {
2260                 udf_err(sb, "Couldn't allocate root dentry\n");
2261                 ret = -ENOMEM;
2262                 goto error_out;
2263         }
2264         sb->s_maxbytes = MAX_LFS_FILESIZE;
2265         sb->s_max_links = UDF_MAX_LINKS;
2266         return 0;
2267 
2268 error_out:
2269         iput(sbi->s_vat_inode);
2270 parse_options_failure:
2271 #ifdef CONFIG_UDF_NLS
2272         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2273                 unload_nls(sbi->s_nls_map);
2274 #endif
2275         if (lvid_open)
2276                 udf_close_lvid(sb);
2277         brelse(sbi->s_lvid_bh);
2278         udf_sb_free_partitions(sb);
2279         kfree(sbi);
2280         sb->s_fs_info = NULL;
2281 
2282         return ret;
2283 }
2284 
2285 void _udf_err(struct super_block *sb, const char *function,
2286               const char *fmt, ...)
2287 {
2288         struct va_format vaf;
2289         va_list args;
2290 
2291         va_start(args, fmt);
2292 
2293         vaf.fmt = fmt;
2294         vaf.va = &args;
2295 
2296         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2297 
2298         va_end(args);
2299 }
2300 
2301 void _udf_warn(struct super_block *sb, const char *function,
2302                const char *fmt, ...)
2303 {
2304         struct va_format vaf;
2305         va_list args;
2306 
2307         va_start(args, fmt);
2308 
2309         vaf.fmt = fmt;
2310         vaf.va = &args;
2311 
2312         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2313 
2314         va_end(args);
2315 }
2316 
2317 static void udf_put_super(struct super_block *sb)
2318 {
2319         struct udf_sb_info *sbi;
2320 
2321         sbi = UDF_SB(sb);
2322 
2323         iput(sbi->s_vat_inode);
2324 #ifdef CONFIG_UDF_NLS
2325         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2326                 unload_nls(sbi->s_nls_map);
2327 #endif
2328         if (!(sb->s_flags & MS_RDONLY))
2329                 udf_close_lvid(sb);
2330         brelse(sbi->s_lvid_bh);
2331         udf_sb_free_partitions(sb);
2332         mutex_destroy(&sbi->s_alloc_mutex);
2333         kfree(sb->s_fs_info);
2334         sb->s_fs_info = NULL;
2335 }
2336 
2337 static int udf_sync_fs(struct super_block *sb, int wait)
2338 {
2339         struct udf_sb_info *sbi = UDF_SB(sb);
2340 
2341         mutex_lock(&sbi->s_alloc_mutex);
2342         if (sbi->s_lvid_dirty) {
2343                 /*
2344                  * Blockdevice will be synced later so we don't have to submit
2345                  * the buffer for IO
2346                  */
2347                 mark_buffer_dirty(sbi->s_lvid_bh);
2348                 sbi->s_lvid_dirty = 0;
2349         }
2350         mutex_unlock(&sbi->s_alloc_mutex);
2351 
2352         return 0;
2353 }
2354 
2355 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2356 {
2357         struct super_block *sb = dentry->d_sb;
2358         struct udf_sb_info *sbi = UDF_SB(sb);
2359         struct logicalVolIntegrityDescImpUse *lvidiu;
2360         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2361 
2362         lvidiu = udf_sb_lvidiu(sb);
2363         buf->f_type = UDF_SUPER_MAGIC;
2364         buf->f_bsize = sb->s_blocksize;
2365         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2366         buf->f_bfree = udf_count_free(sb);
2367         buf->f_bavail = buf->f_bfree;
2368         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2369                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2370                         + buf->f_bfree;
2371         buf->f_ffree = buf->f_bfree;
2372         buf->f_namelen = UDF_NAME_LEN;
2373         buf->f_fsid.val[0] = (u32)id;
2374         buf->f_fsid.val[1] = (u32)(id >> 32);
2375 
2376         return 0;
2377 }
2378 
2379 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2380                                           struct udf_bitmap *bitmap)
2381 {
2382         struct buffer_head *bh = NULL;
2383         unsigned int accum = 0;
2384         int index;
2385         int block = 0, newblock;
2386         struct kernel_lb_addr loc;
2387         uint32_t bytes;
2388         uint8_t *ptr;
2389         uint16_t ident;
2390         struct spaceBitmapDesc *bm;
2391 
2392         loc.logicalBlockNum = bitmap->s_extPosition;
2393         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2394         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2395 
2396         if (!bh) {
2397                 udf_err(sb, "udf_count_free failed\n");
2398                 goto out;
2399         } else if (ident != TAG_IDENT_SBD) {
2400                 brelse(bh);
2401                 udf_err(sb, "udf_count_free failed\n");
2402                 goto out;
2403         }
2404 
2405         bm = (struct spaceBitmapDesc *)bh->b_data;
2406         bytes = le32_to_cpu(bm->numOfBytes);
2407         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2408         ptr = (uint8_t *)bh->b_data;
2409 
2410         while (bytes > 0) {
2411                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2412                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2413                                         cur_bytes * 8);
2414                 bytes -= cur_bytes;
2415                 if (bytes) {
2416                         brelse(bh);
2417                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2418                         bh = udf_tread(sb, newblock);
2419                         if (!bh) {
2420                                 udf_debug("read failed\n");
2421                                 goto out;
2422                         }
2423                         index = 0;
2424                         ptr = (uint8_t *)bh->b_data;
2425                 }
2426         }
2427         brelse(bh);
2428 out:
2429         return accum;
2430 }
2431 
2432 static unsigned int udf_count_free_table(struct super_block *sb,
2433                                          struct inode *table)
2434 {
2435         unsigned int accum = 0;
2436         uint32_t elen;
2437         struct kernel_lb_addr eloc;
2438         int8_t etype;
2439         struct extent_position epos;
2440 
2441         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2442         epos.block = UDF_I(table)->i_location;
2443         epos.offset = sizeof(struct unallocSpaceEntry);
2444         epos.bh = NULL;
2445 
2446         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2447                 accum += (elen >> table->i_sb->s_blocksize_bits);
2448 
2449         brelse(epos.bh);
2450         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2451 
2452         return accum;
2453 }
2454 
2455 static unsigned int udf_count_free(struct super_block *sb)
2456 {
2457         unsigned int accum = 0;
2458         struct udf_sb_info *sbi;
2459         struct udf_part_map *map;
2460 
2461         sbi = UDF_SB(sb);
2462         if (sbi->s_lvid_bh) {
2463                 struct logicalVolIntegrityDesc *lvid =
2464                         (struct logicalVolIntegrityDesc *)
2465                         sbi->s_lvid_bh->b_data;
2466                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2467                         accum = le32_to_cpu(
2468                                         lvid->freeSpaceTable[sbi->s_partition]);
2469                         if (accum == 0xFFFFFFFF)
2470                                 accum = 0;
2471                 }
2472         }
2473 
2474         if (accum)
2475                 return accum;
2476 
2477         map = &sbi->s_partmaps[sbi->s_partition];
2478         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2479                 accum += udf_count_free_bitmap(sb,
2480                                                map->s_uspace.s_bitmap);
2481         }
2482         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2483                 accum += udf_count_free_bitmap(sb,
2484                                                map->s_fspace.s_bitmap);
2485         }
2486         if (accum)
2487                 return accum;
2488 
2489         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2490                 accum += udf_count_free_table(sb,
2491                                               map->s_uspace.s_table);
2492         }
2493         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2494                 accum += udf_count_free_table(sb,
2495                                               map->s_fspace.s_table);
2496         }
2497 
2498         return accum;
2499 }
2500 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us