Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/fs/udf/super.c

  1 /*
  2  * super.c
  3  *
  4  * PURPOSE
  5  *  Super block routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * DESCRIPTION
  8  *  OSTA-UDF(tm) = Optical Storage Technology Association
  9  *  Universal Disk Format.
 10  *
 11  *  This code is based on version 2.00 of the UDF specification,
 12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 13  *    http://www.osta.org/
 14  *    http://www.ecma.ch/
 15  *    http://www.iso.org/
 16  *
 17  * COPYRIGHT
 18  *  This file is distributed under the terms of the GNU General Public
 19  *  License (GPL). Copies of the GPL can be obtained from:
 20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 21  *  Each contributing author retains all rights to their own work.
 22  *
 23  *  (C) 1998 Dave Boynton
 24  *  (C) 1998-2004 Ben Fennema
 25  *  (C) 2000 Stelias Computing Inc
 26  *
 27  * HISTORY
 28  *
 29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 30  *                added some debugging.
 31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 32  *  10/16/98      attempting some multi-session support
 33  *  10/17/98      added freespace count for "df"
 34  *  11/11/98 gr   added novrs option
 35  *  11/26/98 dgb  added fileset,anchor mount options
 36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
 37  *                vol descs. rewrote option handling based on isofs
 38  *  12/20/98      find the free space bitmap (if it exists)
 39  */
 40 
 41 #include "udfdecl.h"
 42 
 43 #include <linux/blkdev.h>
 44 #include <linux/slab.h>
 45 #include <linux/kernel.h>
 46 #include <linux/module.h>
 47 #include <linux/parser.h>
 48 #include <linux/stat.h>
 49 #include <linux/cdrom.h>
 50 #include <linux/nls.h>
 51 #include <linux/buffer_head.h>
 52 #include <linux/vfs.h>
 53 #include <linux/vmalloc.h>
 54 #include <linux/errno.h>
 55 #include <linux/mount.h>
 56 #include <linux/seq_file.h>
 57 #include <linux/bitmap.h>
 58 #include <linux/crc-itu-t.h>
 59 #include <linux/log2.h>
 60 #include <asm/byteorder.h>
 61 
 62 #include "udf_sb.h"
 63 #include "udf_i.h"
 64 
 65 #include <linux/init.h>
 66 #include <asm/uaccess.h>
 67 
 68 #define VDS_POS_PRIMARY_VOL_DESC        0
 69 #define VDS_POS_UNALLOC_SPACE_DESC      1
 70 #define VDS_POS_LOGICAL_VOL_DESC        2
 71 #define VDS_POS_PARTITION_DESC          3
 72 #define VDS_POS_IMP_USE_VOL_DESC        4
 73 #define VDS_POS_VOL_DESC_PTR            5
 74 #define VDS_POS_TERMINATING_DESC        6
 75 #define VDS_POS_LENGTH                  7
 76 
 77 #define UDF_DEFAULT_BLOCKSIZE 2048
 78 
 79 #define VSD_FIRST_SECTOR_OFFSET         32768
 80 #define VSD_MAX_SECTOR_OFFSET           0x800000
 81 
 82 enum { UDF_MAX_LINKS = 0xffff };
 83 
 84 /* These are the "meat" - everything else is stuffing */
 85 static int udf_fill_super(struct super_block *, void *, int);
 86 static void udf_put_super(struct super_block *);
 87 static int udf_sync_fs(struct super_block *, int);
 88 static int udf_remount_fs(struct super_block *, int *, char *);
 89 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 90 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
 91                             struct kernel_lb_addr *);
 92 static void udf_load_fileset(struct super_block *, struct buffer_head *,
 93                              struct kernel_lb_addr *);
 94 static void udf_open_lvid(struct super_block *);
 95 static void udf_close_lvid(struct super_block *);
 96 static unsigned int udf_count_free(struct super_block *);
 97 static int udf_statfs(struct dentry *, struct kstatfs *);
 98 static int udf_show_options(struct seq_file *, struct dentry *);
 99 
100 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
101 {
102         struct logicalVolIntegrityDesc *lvid;
103         unsigned int partnum;
104         unsigned int offset;
105 
106         if (!UDF_SB(sb)->s_lvid_bh)
107                 return NULL;
108         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
109         partnum = le32_to_cpu(lvid->numOfPartitions);
110         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
111              offsetof(struct logicalVolIntegrityDesc, impUse)) /
112              (2 * sizeof(uint32_t)) < partnum) {
113                 udf_err(sb, "Logical volume integrity descriptor corrupted "
114                         "(numOfPartitions = %u)!\n", partnum);
115                 return NULL;
116         }
117         /* The offset is to skip freeSpaceTable and sizeTable arrays */
118         offset = partnum * 2 * sizeof(uint32_t);
119         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
120 }
121 
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124                       int flags, const char *dev_name, void *data)
125 {
126         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128 
129 static struct file_system_type udf_fstype = {
130         .owner          = THIS_MODULE,
131         .name           = "udf",
132         .mount          = udf_mount,
133         .kill_sb        = kill_block_super,
134         .fs_flags       = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137 
138 static struct kmem_cache *udf_inode_cachep;
139 
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142         struct udf_inode_info *ei;
143         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144         if (!ei)
145                 return NULL;
146 
147         ei->i_unique = 0;
148         ei->i_lenExtents = 0;
149         ei->i_next_alloc_block = 0;
150         ei->i_next_alloc_goal = 0;
151         ei->i_strat4096 = 0;
152         init_rwsem(&ei->i_data_sem);
153         ei->cached_extent.lstart = -1;
154         spin_lock_init(&ei->i_extent_cache_lock);
155 
156         return &ei->vfs_inode;
157 }
158 
159 static void udf_i_callback(struct rcu_head *head)
160 {
161         struct inode *inode = container_of(head, struct inode, i_rcu);
162         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 }
164 
165 static void udf_destroy_inode(struct inode *inode)
166 {
167         call_rcu(&inode->i_rcu, udf_i_callback);
168 }
169 
170 static void init_once(void *foo)
171 {
172         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
173 
174         ei->i_ext.i_data = NULL;
175         inode_init_once(&ei->vfs_inode);
176 }
177 
178 static int __init init_inodecache(void)
179 {
180         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
181                                              sizeof(struct udf_inode_info),
182                                              0, (SLAB_RECLAIM_ACCOUNT |
183                                                  SLAB_MEM_SPREAD),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189 
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199 
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212 
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231 
232 static int __init init_udf_fs(void)
233 {
234         int err;
235 
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242 
243         return 0;
244 
245 out:
246         destroy_inodecache();
247 
248 out1:
249         return err;
250 }
251 
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257 
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260 
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264 
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273 
274         sbi->s_partitions = count;
275         return 0;
276 }
277 
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
283                                                 nr_groups);
284 
285         for (i = 0; i < nr_groups; i++)
286                 if (bitmap->s_block_bitmap[i])
287                         brelse(bitmap->s_block_bitmap[i]);
288 
289         if (size <= PAGE_SIZE)
290                 kfree(bitmap);
291         else
292                 vfree(bitmap);
293 }
294 
295 static void udf_free_partition(struct udf_part_map *map)
296 {
297         int i;
298         struct udf_meta_data *mdata;
299 
300         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
301                 iput(map->s_uspace.s_table);
302         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
303                 iput(map->s_fspace.s_table);
304         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
305                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
306         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
307                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
308         if (map->s_partition_type == UDF_SPARABLE_MAP15)
309                 for (i = 0; i < 4; i++)
310                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
311         else if (map->s_partition_type == UDF_METADATA_MAP25) {
312                 mdata = &map->s_type_specific.s_metadata;
313                 iput(mdata->s_metadata_fe);
314                 mdata->s_metadata_fe = NULL;
315 
316                 iput(mdata->s_mirror_fe);
317                 mdata->s_mirror_fe = NULL;
318 
319                 iput(mdata->s_bitmap_fe);
320                 mdata->s_bitmap_fe = NULL;
321         }
322 }
323 
324 static void udf_sb_free_partitions(struct super_block *sb)
325 {
326         struct udf_sb_info *sbi = UDF_SB(sb);
327         int i;
328         if (sbi->s_partmaps == NULL)
329                 return;
330         for (i = 0; i < sbi->s_partitions; i++)
331                 udf_free_partition(&sbi->s_partmaps[i]);
332         kfree(sbi->s_partmaps);
333         sbi->s_partmaps = NULL;
334 }
335 
336 static int udf_show_options(struct seq_file *seq, struct dentry *root)
337 {
338         struct super_block *sb = root->d_sb;
339         struct udf_sb_info *sbi = UDF_SB(sb);
340 
341         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
342                 seq_puts(seq, ",nostrict");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
344                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
346                 seq_puts(seq, ",unhide");
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
348                 seq_puts(seq, ",undelete");
349         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
350                 seq_puts(seq, ",noadinicb");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
352                 seq_puts(seq, ",shortad");
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
354                 seq_puts(seq, ",uid=forget");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
356                 seq_puts(seq, ",uid=ignore");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
358                 seq_puts(seq, ",gid=forget");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
360                 seq_puts(seq, ",gid=ignore");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
362                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
364                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
365         if (sbi->s_umask != 0)
366                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
367         if (sbi->s_fmode != UDF_INVALID_MODE)
368                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
369         if (sbi->s_dmode != UDF_INVALID_MODE)
370                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
371         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
372                 seq_printf(seq, ",session=%u", sbi->s_session);
373         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
374                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
375         if (sbi->s_anchor != 0)
376                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
377         /*
378          * volume, partition, fileset and rootdir seem to be ignored
379          * currently
380          */
381         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
382                 seq_puts(seq, ",utf8");
383         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
384                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
385 
386         return 0;
387 }
388 
389 /*
390  * udf_parse_options
391  *
392  * PURPOSE
393  *      Parse mount options.
394  *
395  * DESCRIPTION
396  *      The following mount options are supported:
397  *
398  *      gid=            Set the default group.
399  *      umask=          Set the default umask.
400  *      mode=           Set the default file permissions.
401  *      dmode=          Set the default directory permissions.
402  *      uid=            Set the default user.
403  *      bs=             Set the block size.
404  *      unhide          Show otherwise hidden files.
405  *      undelete        Show deleted files in lists.
406  *      adinicb         Embed data in the inode (default)
407  *      noadinicb       Don't embed data in the inode
408  *      shortad         Use short ad's
409  *      longad          Use long ad's (default)
410  *      nostrict        Unset strict conformance
411  *      iocharset=      Set the NLS character set
412  *
413  *      The remaining are for debugging and disaster recovery:
414  *
415  *      novrs           Skip volume sequence recognition
416  *
417  *      The following expect a offset from 0.
418  *
419  *      session=        Set the CDROM session (default= last session)
420  *      anchor=         Override standard anchor location. (default= 256)
421  *      volume=         Override the VolumeDesc location. (unused)
422  *      partition=      Override the PartitionDesc location. (unused)
423  *      lastblock=      Set the last block of the filesystem/
424  *
425  *      The following expect a offset from the partition root.
426  *
427  *      fileset=        Override the fileset block location. (unused)
428  *      rootdir=        Override the root directory location. (unused)
429  *              WARNING: overriding the rootdir to a non-directory may
430  *              yield highly unpredictable results.
431  *
432  * PRE-CONDITIONS
433  *      options         Pointer to mount options string.
434  *      uopts           Pointer to mount options variable.
435  *
436  * POST-CONDITIONS
437  *      <return>        1       Mount options parsed okay.
438  *      <return>        0       Error parsing mount options.
439  *
440  * HISTORY
441  *      July 1, 1997 - Andrew E. Mileski
442  *      Written, tested, and released.
443  */
444 
445 enum {
446         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
447         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
448         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
449         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
450         Opt_rootdir, Opt_utf8, Opt_iocharset,
451         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
452         Opt_fmode, Opt_dmode
453 };
454 
455 static const match_table_t tokens = {
456         {Opt_novrs,     "novrs"},
457         {Opt_nostrict,  "nostrict"},
458         {Opt_bs,        "bs=%u"},
459         {Opt_unhide,    "unhide"},
460         {Opt_undelete,  "undelete"},
461         {Opt_noadinicb, "noadinicb"},
462         {Opt_adinicb,   "adinicb"},
463         {Opt_shortad,   "shortad"},
464         {Opt_longad,    "longad"},
465         {Opt_uforget,   "uid=forget"},
466         {Opt_uignore,   "uid=ignore"},
467         {Opt_gforget,   "gid=forget"},
468         {Opt_gignore,   "gid=ignore"},
469         {Opt_gid,       "gid=%u"},
470         {Opt_uid,       "uid=%u"},
471         {Opt_umask,     "umask=%o"},
472         {Opt_session,   "session=%u"},
473         {Opt_lastblock, "lastblock=%u"},
474         {Opt_anchor,    "anchor=%u"},
475         {Opt_volume,    "volume=%u"},
476         {Opt_partition, "partition=%u"},
477         {Opt_fileset,   "fileset=%u"},
478         {Opt_rootdir,   "rootdir=%u"},
479         {Opt_utf8,      "utf8"},
480         {Opt_iocharset, "iocharset=%s"},
481         {Opt_fmode,     "mode=%o"},
482         {Opt_dmode,     "dmode=%o"},
483         {Opt_err,       NULL}
484 };
485 
486 static int udf_parse_options(char *options, struct udf_options *uopt,
487                              bool remount)
488 {
489         char *p;
490         int option;
491 
492         uopt->novrs = 0;
493         uopt->partition = 0xFFFF;
494         uopt->session = 0xFFFFFFFF;
495         uopt->lastblock = 0;
496         uopt->anchor = 0;
497         uopt->volume = 0xFFFFFFFF;
498         uopt->rootdir = 0xFFFFFFFF;
499         uopt->fileset = 0xFFFFFFFF;
500         uopt->nls_map = NULL;
501 
502         if (!options)
503                 return 1;
504 
505         while ((p = strsep(&options, ",")) != NULL) {
506                 substring_t args[MAX_OPT_ARGS];
507                 int token;
508                 unsigned n;
509                 if (!*p)
510                         continue;
511 
512                 token = match_token(p, tokens, args);
513                 switch (token) {
514                 case Opt_novrs:
515                         uopt->novrs = 1;
516                         break;
517                 case Opt_bs:
518                         if (match_int(&args[0], &option))
519                                 return 0;
520                         n = option;
521                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
522                                 return 0;
523                         uopt->blocksize = n;
524                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
525                         break;
526                 case Opt_unhide:
527                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
528                         break;
529                 case Opt_undelete:
530                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
531                         break;
532                 case Opt_noadinicb:
533                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
534                         break;
535                 case Opt_adinicb:
536                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
537                         break;
538                 case Opt_shortad:
539                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
540                         break;
541                 case Opt_longad:
542                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
543                         break;
544                 case Opt_gid:
545                         if (match_int(args, &option))
546                                 return 0;
547                         uopt->gid = make_kgid(current_user_ns(), option);
548                         if (!gid_valid(uopt->gid))
549                                 return 0;
550                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
551                         break;
552                 case Opt_uid:
553                         if (match_int(args, &option))
554                                 return 0;
555                         uopt->uid = make_kuid(current_user_ns(), option);
556                         if (!uid_valid(uopt->uid))
557                                 return 0;
558                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
559                         break;
560                 case Opt_umask:
561                         if (match_octal(args, &option))
562                                 return 0;
563                         uopt->umask = option;
564                         break;
565                 case Opt_nostrict:
566                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
567                         break;
568                 case Opt_session:
569                         if (match_int(args, &option))
570                                 return 0;
571                         uopt->session = option;
572                         if (!remount)
573                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
574                         break;
575                 case Opt_lastblock:
576                         if (match_int(args, &option))
577                                 return 0;
578                         uopt->lastblock = option;
579                         if (!remount)
580                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
581                         break;
582                 case Opt_anchor:
583                         if (match_int(args, &option))
584                                 return 0;
585                         uopt->anchor = option;
586                         break;
587                 case Opt_volume:
588                         if (match_int(args, &option))
589                                 return 0;
590                         uopt->volume = option;
591                         break;
592                 case Opt_partition:
593                         if (match_int(args, &option))
594                                 return 0;
595                         uopt->partition = option;
596                         break;
597                 case Opt_fileset:
598                         if (match_int(args, &option))
599                                 return 0;
600                         uopt->fileset = option;
601                         break;
602                 case Opt_rootdir:
603                         if (match_int(args, &option))
604                                 return 0;
605                         uopt->rootdir = option;
606                         break;
607                 case Opt_utf8:
608                         uopt->flags |= (1 << UDF_FLAG_UTF8);
609                         break;
610 #ifdef CONFIG_UDF_NLS
611                 case Opt_iocharset:
612                         uopt->nls_map = load_nls(args[0].from);
613                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
614                         break;
615 #endif
616                 case Opt_uignore:
617                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
618                         break;
619                 case Opt_uforget:
620                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
621                         break;
622                 case Opt_gignore:
623                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
624                         break;
625                 case Opt_gforget:
626                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
627                         break;
628                 case Opt_fmode:
629                         if (match_octal(args, &option))
630                                 return 0;
631                         uopt->fmode = option & 0777;
632                         break;
633                 case Opt_dmode:
634                         if (match_octal(args, &option))
635                                 return 0;
636                         uopt->dmode = option & 0777;
637                         break;
638                 default:
639                         pr_err("bad mount option \"%s\" or missing value\n", p);
640                         return 0;
641                 }
642         }
643         return 1;
644 }
645 
646 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
647 {
648         struct udf_options uopt;
649         struct udf_sb_info *sbi = UDF_SB(sb);
650         int error = 0;
651         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
652 
653         sync_filesystem(sb);
654         if (lvidiu) {
655                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
656                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
657                         return -EACCES;
658         }
659 
660         uopt.flags = sbi->s_flags;
661         uopt.uid   = sbi->s_uid;
662         uopt.gid   = sbi->s_gid;
663         uopt.umask = sbi->s_umask;
664         uopt.fmode = sbi->s_fmode;
665         uopt.dmode = sbi->s_dmode;
666 
667         if (!udf_parse_options(options, &uopt, true))
668                 return -EINVAL;
669 
670         write_lock(&sbi->s_cred_lock);
671         sbi->s_flags = uopt.flags;
672         sbi->s_uid   = uopt.uid;
673         sbi->s_gid   = uopt.gid;
674         sbi->s_umask = uopt.umask;
675         sbi->s_fmode = uopt.fmode;
676         sbi->s_dmode = uopt.dmode;
677         write_unlock(&sbi->s_cred_lock);
678 
679         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
680                 goto out_unlock;
681 
682         if (*flags & MS_RDONLY)
683                 udf_close_lvid(sb);
684         else
685                 udf_open_lvid(sb);
686 
687 out_unlock:
688         return error;
689 }
690 
691 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
692 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
693 static loff_t udf_check_vsd(struct super_block *sb)
694 {
695         struct volStructDesc *vsd = NULL;
696         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
697         int sectorsize;
698         struct buffer_head *bh = NULL;
699         int nsr02 = 0;
700         int nsr03 = 0;
701         struct udf_sb_info *sbi;
702 
703         sbi = UDF_SB(sb);
704         if (sb->s_blocksize < sizeof(struct volStructDesc))
705                 sectorsize = sizeof(struct volStructDesc);
706         else
707                 sectorsize = sb->s_blocksize;
708 
709         sector += (sbi->s_session << sb->s_blocksize_bits);
710 
711         udf_debug("Starting at sector %u (%ld byte sectors)\n",
712                   (unsigned int)(sector >> sb->s_blocksize_bits),
713                   sb->s_blocksize);
714         /* Process the sequence (if applicable). The hard limit on the sector
715          * offset is arbitrary, hopefully large enough so that all valid UDF
716          * filesystems will be recognised. There is no mention of an upper
717          * bound to the size of the volume recognition area in the standard.
718          *  The limit will prevent the code to read all the sectors of a
719          * specially crafted image (like a bluray disc full of CD001 sectors),
720          * potentially causing minutes or even hours of uninterruptible I/O
721          * activity. This actually happened with uninitialised SSD partitions
722          * (all 0xFF) before the check for the limit and all valid IDs were
723          * added */
724         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
725              sector += sectorsize) {
726                 /* Read a block */
727                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
728                 if (!bh)
729                         break;
730 
731                 /* Look for ISO  descriptors */
732                 vsd = (struct volStructDesc *)(bh->b_data +
733                                               (sector & (sb->s_blocksize - 1)));
734 
735                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
736                                     VSD_STD_ID_LEN)) {
737                         switch (vsd->structType) {
738                         case 0:
739                                 udf_debug("ISO9660 Boot Record found\n");
740                                 break;
741                         case 1:
742                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
743                                 break;
744                         case 2:
745                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
746                                 break;
747                         case 3:
748                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
749                                 break;
750                         case 255:
751                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
752                                 break;
753                         default:
754                                 udf_debug("ISO9660 VRS (%u) found\n",
755                                           vsd->structType);
756                                 break;
757                         }
758                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
759                                     VSD_STD_ID_LEN))
760                         ; /* nothing */
761                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
762                                     VSD_STD_ID_LEN)) {
763                         brelse(bh);
764                         break;
765                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
766                                     VSD_STD_ID_LEN))
767                         nsr02 = sector;
768                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
769                                     VSD_STD_ID_LEN))
770                         nsr03 = sector;
771                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
772                                     VSD_STD_ID_LEN))
773                         ; /* nothing */
774                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
775                                     VSD_STD_ID_LEN))
776                         ; /* nothing */
777                 else {
778                         /* invalid id : end of volume recognition area */
779                         brelse(bh);
780                         break;
781                 }
782                 brelse(bh);
783         }
784 
785         if (nsr03)
786                 return nsr03;
787         else if (nsr02)
788                 return nsr02;
789         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
790                         VSD_FIRST_SECTOR_OFFSET)
791                 return -1;
792         else
793                 return 0;
794 }
795 
796 static int udf_find_fileset(struct super_block *sb,
797                             struct kernel_lb_addr *fileset,
798                             struct kernel_lb_addr *root)
799 {
800         struct buffer_head *bh = NULL;
801         long lastblock;
802         uint16_t ident;
803         struct udf_sb_info *sbi;
804 
805         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
806             fileset->partitionReferenceNum != 0xFFFF) {
807                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
808 
809                 if (!bh) {
810                         return 1;
811                 } else if (ident != TAG_IDENT_FSD) {
812                         brelse(bh);
813                         return 1;
814                 }
815 
816         }
817 
818         sbi = UDF_SB(sb);
819         if (!bh) {
820                 /* Search backwards through the partitions */
821                 struct kernel_lb_addr newfileset;
822 
823 /* --> cvg: FIXME - is it reasonable? */
824                 return 1;
825 
826                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
827                      (newfileset.partitionReferenceNum != 0xFFFF &&
828                       fileset->logicalBlockNum == 0xFFFFFFFF &&
829                       fileset->partitionReferenceNum == 0xFFFF);
830                      newfileset.partitionReferenceNum--) {
831                         lastblock = sbi->s_partmaps
832                                         [newfileset.partitionReferenceNum]
833                                                 .s_partition_len;
834                         newfileset.logicalBlockNum = 0;
835 
836                         do {
837                                 bh = udf_read_ptagged(sb, &newfileset, 0,
838                                                       &ident);
839                                 if (!bh) {
840                                         newfileset.logicalBlockNum++;
841                                         continue;
842                                 }
843 
844                                 switch (ident) {
845                                 case TAG_IDENT_SBD:
846                                 {
847                                         struct spaceBitmapDesc *sp;
848                                         sp = (struct spaceBitmapDesc *)
849                                                                 bh->b_data;
850                                         newfileset.logicalBlockNum += 1 +
851                                                 ((le32_to_cpu(sp->numOfBytes) +
852                                                   sizeof(struct spaceBitmapDesc)
853                                                   - 1) >> sb->s_blocksize_bits);
854                                         brelse(bh);
855                                         break;
856                                 }
857                                 case TAG_IDENT_FSD:
858                                         *fileset = newfileset;
859                                         break;
860                                 default:
861                                         newfileset.logicalBlockNum++;
862                                         brelse(bh);
863                                         bh = NULL;
864                                         break;
865                                 }
866                         } while (newfileset.logicalBlockNum < lastblock &&
867                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
868                                  fileset->partitionReferenceNum == 0xFFFF);
869                 }
870         }
871 
872         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
873              fileset->partitionReferenceNum != 0xFFFF) && bh) {
874                 udf_debug("Fileset at block=%d, partition=%d\n",
875                           fileset->logicalBlockNum,
876                           fileset->partitionReferenceNum);
877 
878                 sbi->s_partition = fileset->partitionReferenceNum;
879                 udf_load_fileset(sb, bh, root);
880                 brelse(bh);
881                 return 0;
882         }
883         return 1;
884 }
885 
886 /*
887  * Load primary Volume Descriptor Sequence
888  *
889  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
890  * should be tried.
891  */
892 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
893 {
894         struct primaryVolDesc *pvoldesc;
895         struct ustr *instr, *outstr;
896         struct buffer_head *bh;
897         uint16_t ident;
898         int ret = -ENOMEM;
899 
900         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
901         if (!instr)
902                 return -ENOMEM;
903 
904         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
905         if (!outstr)
906                 goto out1;
907 
908         bh = udf_read_tagged(sb, block, block, &ident);
909         if (!bh) {
910                 ret = -EAGAIN;
911                 goto out2;
912         }
913 
914         if (ident != TAG_IDENT_PVD) {
915                 ret = -EIO;
916                 goto out_bh;
917         }
918 
919         pvoldesc = (struct primaryVolDesc *)bh->b_data;
920 
921         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922                               pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929         }
930 
931         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
932                 if (udf_CS0toUTF8(outstr, instr)) {
933                         strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
934                                 outstr->u_len > 31 ? 31 : outstr->u_len);
935                         udf_debug("volIdent[] = '%s'\n",
936                                   UDF_SB(sb)->s_volume_ident);
937                 }
938 
939         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
940                 if (udf_CS0toUTF8(outstr, instr))
941                         udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
942 
943         ret = 0;
944 out_bh:
945         brelse(bh);
946 out2:
947         kfree(outstr);
948 out1:
949         kfree(instr);
950         return ret;
951 }
952 
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954                                         u32 meta_file_loc, u32 partition_num)
955 {
956         struct kernel_lb_addr addr;
957         struct inode *metadata_fe;
958 
959         addr.logicalBlockNum = meta_file_loc;
960         addr.partitionReferenceNum = partition_num;
961 
962         metadata_fe = udf_iget(sb, &addr);
963 
964         if (metadata_fe == NULL)
965                 udf_warn(sb, "metadata inode efe not found\n");
966         else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
967                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
968                 iput(metadata_fe);
969                 metadata_fe = NULL;
970         }
971 
972         return metadata_fe;
973 }
974 
975 static int udf_load_metadata_files(struct super_block *sb, int partition)
976 {
977         struct udf_sb_info *sbi = UDF_SB(sb);
978         struct udf_part_map *map;
979         struct udf_meta_data *mdata;
980         struct kernel_lb_addr addr;
981 
982         map = &sbi->s_partmaps[partition];
983         mdata = &map->s_type_specific.s_metadata;
984 
985         /* metadata address */
986         udf_debug("Metadata file location: block = %d part = %d\n",
987                   mdata->s_meta_file_loc, map->s_partition_num);
988 
989         mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
990                 mdata->s_meta_file_loc, map->s_partition_num);
991 
992         if (mdata->s_metadata_fe == NULL) {
993                 /* mirror file entry */
994                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
995                           mdata->s_mirror_file_loc, map->s_partition_num);
996 
997                 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
998                         mdata->s_mirror_file_loc, map->s_partition_num);
999 
1000                 if (mdata->s_mirror_fe == NULL) {
1001                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002                         return -EIO;
1003                 }
1004         }
1005 
1006         /*
1007          * bitmap file entry
1008          * Note:
1009          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1010         */
1011         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1012                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1013                 addr.partitionReferenceNum = map->s_partition_num;
1014 
1015                 udf_debug("Bitmap file location: block = %d part = %d\n",
1016                           addr.logicalBlockNum, addr.partitionReferenceNum);
1017 
1018                 mdata->s_bitmap_fe = udf_iget(sb, &addr);
1019                 if (mdata->s_bitmap_fe == NULL) {
1020                         if (sb->s_flags & MS_RDONLY)
1021                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1022                         else {
1023                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1024                                 return -EIO;
1025                         }
1026                 }
1027         }
1028 
1029         udf_debug("udf_load_metadata_files Ok\n");
1030         return 0;
1031 }
1032 
1033 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1034                              struct kernel_lb_addr *root)
1035 {
1036         struct fileSetDesc *fset;
1037 
1038         fset = (struct fileSetDesc *)bh->b_data;
1039 
1040         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1041 
1042         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1043 
1044         udf_debug("Rootdir at block=%d, partition=%d\n",
1045                   root->logicalBlockNum, root->partitionReferenceNum);
1046 }
1047 
1048 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1049 {
1050         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1051         return DIV_ROUND_UP(map->s_partition_len +
1052                             (sizeof(struct spaceBitmapDesc) << 3),
1053                             sb->s_blocksize * 8);
1054 }
1055 
1056 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1057 {
1058         struct udf_bitmap *bitmap;
1059         int nr_groups;
1060         int size;
1061 
1062         nr_groups = udf_compute_nr_groups(sb, index);
1063         size = sizeof(struct udf_bitmap) +
1064                 (sizeof(struct buffer_head *) * nr_groups);
1065 
1066         if (size <= PAGE_SIZE)
1067                 bitmap = kzalloc(size, GFP_KERNEL);
1068         else
1069                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1070 
1071         if (bitmap == NULL)
1072                 return NULL;
1073 
1074         bitmap->s_nr_groups = nr_groups;
1075         return bitmap;
1076 }
1077 
1078 static int udf_fill_partdesc_info(struct super_block *sb,
1079                 struct partitionDesc *p, int p_index)
1080 {
1081         struct udf_part_map *map;
1082         struct udf_sb_info *sbi = UDF_SB(sb);
1083         struct partitionHeaderDesc *phd;
1084 
1085         map = &sbi->s_partmaps[p_index];
1086 
1087         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089 
1090         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098 
1099         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1100                   p_index, map->s_partition_type,
1101                   map->s_partition_root, map->s_partition_len);
1102 
1103         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1104             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1105                 return 0;
1106 
1107         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1108         if (phd->unallocSpaceTable.extLength) {
1109                 struct kernel_lb_addr loc = {
1110                         .logicalBlockNum = le32_to_cpu(
1111                                 phd->unallocSpaceTable.extPosition),
1112                         .partitionReferenceNum = p_index,
1113                 };
1114 
1115                 map->s_uspace.s_table = udf_iget(sb, &loc);
1116                 if (!map->s_uspace.s_table) {
1117                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1118                                   p_index);
1119                         return -EIO;
1120                 }
1121                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1122                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1123                           p_index, map->s_uspace.s_table->i_ino);
1124         }
1125 
1126         if (phd->unallocSpaceBitmap.extLength) {
1127                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1128                 if (!bitmap)
1129                         return -ENOMEM;
1130                 map->s_uspace.s_bitmap = bitmap;
1131                 bitmap->s_extPosition = le32_to_cpu(
1132                                 phd->unallocSpaceBitmap.extPosition);
1133                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1134                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1135                           p_index, bitmap->s_extPosition);
1136         }
1137 
1138         if (phd->partitionIntegrityTable.extLength)
1139                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1140 
1141         if (phd->freedSpaceTable.extLength) {
1142                 struct kernel_lb_addr loc = {
1143                         .logicalBlockNum = le32_to_cpu(
1144                                 phd->freedSpaceTable.extPosition),
1145                         .partitionReferenceNum = p_index,
1146                 };
1147 
1148                 map->s_fspace.s_table = udf_iget(sb, &loc);
1149                 if (!map->s_fspace.s_table) {
1150                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1151                                   p_index);
1152                         return -EIO;
1153                 }
1154 
1155                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157                           p_index, map->s_fspace.s_table->i_ino);
1158         }
1159 
1160         if (phd->freedSpaceBitmap.extLength) {
1161                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162                 if (!bitmap)
1163                         return -ENOMEM;
1164                 map->s_fspace.s_bitmap = bitmap;
1165                 bitmap->s_extPosition = le32_to_cpu(
1166                                 phd->freedSpaceBitmap.extPosition);
1167                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169                           p_index, bitmap->s_extPosition);
1170         }
1171         return 0;
1172 }
1173 
1174 static void udf_find_vat_block(struct super_block *sb, int p_index,
1175                                int type1_index, sector_t start_block)
1176 {
1177         struct udf_sb_info *sbi = UDF_SB(sb);
1178         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179         sector_t vat_block;
1180         struct kernel_lb_addr ino;
1181 
1182         /*
1183          * VAT file entry is in the last recorded block. Some broken disks have
1184          * it a few blocks before so try a bit harder...
1185          */
1186         ino.partitionReferenceNum = type1_index;
1187         for (vat_block = start_block;
1188              vat_block >= map->s_partition_root &&
1189              vat_block >= start_block - 3 &&
1190              !sbi->s_vat_inode; vat_block--) {
1191                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1192                 sbi->s_vat_inode = udf_iget(sb, &ino);
1193         }
1194 }
1195 
1196 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1197 {
1198         struct udf_sb_info *sbi = UDF_SB(sb);
1199         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1200         struct buffer_head *bh = NULL;
1201         struct udf_inode_info *vati;
1202         uint32_t pos;
1203         struct virtualAllocationTable20 *vat20;
1204         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1205 
1206         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1207         if (!sbi->s_vat_inode &&
1208             sbi->s_last_block != blocks - 1) {
1209                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1210                           (unsigned long)sbi->s_last_block,
1211                           (unsigned long)blocks - 1);
1212                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1213         }
1214         if (!sbi->s_vat_inode)
1215                 return -EIO;
1216 
1217         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1218                 map->s_type_specific.s_virtual.s_start_offset = 0;
1219                 map->s_type_specific.s_virtual.s_num_entries =
1220                         (sbi->s_vat_inode->i_size - 36) >> 2;
1221         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1222                 vati = UDF_I(sbi->s_vat_inode);
1223                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1224                         pos = udf_block_map(sbi->s_vat_inode, 0);
1225                         bh = sb_bread(sb, pos);
1226                         if (!bh)
1227                                 return -EIO;
1228                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1229                 } else {
1230                         vat20 = (struct virtualAllocationTable20 *)
1231                                                         vati->i_ext.i_data;
1232                 }
1233 
1234                 map->s_type_specific.s_virtual.s_start_offset =
1235                         le16_to_cpu(vat20->lengthHeader);
1236                 map->s_type_specific.s_virtual.s_num_entries =
1237                         (sbi->s_vat_inode->i_size -
1238                                 map->s_type_specific.s_virtual.
1239                                         s_start_offset) >> 2;
1240                 brelse(bh);
1241         }
1242         return 0;
1243 }
1244 
1245 /*
1246  * Load partition descriptor block
1247  *
1248  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1249  * sequence.
1250  */
1251 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1252 {
1253         struct buffer_head *bh;
1254         struct partitionDesc *p;
1255         struct udf_part_map *map;
1256         struct udf_sb_info *sbi = UDF_SB(sb);
1257         int i, type1_idx;
1258         uint16_t partitionNumber;
1259         uint16_t ident;
1260         int ret;
1261 
1262         bh = udf_read_tagged(sb, block, block, &ident);
1263         if (!bh)
1264                 return -EAGAIN;
1265         if (ident != TAG_IDENT_PD) {
1266                 ret = 0;
1267                 goto out_bh;
1268         }
1269 
1270         p = (struct partitionDesc *)bh->b_data;
1271         partitionNumber = le16_to_cpu(p->partitionNumber);
1272 
1273         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1274         for (i = 0; i < sbi->s_partitions; i++) {
1275                 map = &sbi->s_partmaps[i];
1276                 udf_debug("Searching map: (%d == %d)\n",
1277                           map->s_partition_num, partitionNumber);
1278                 if (map->s_partition_num == partitionNumber &&
1279                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1280                      map->s_partition_type == UDF_SPARABLE_MAP15))
1281                         break;
1282         }
1283 
1284         if (i >= sbi->s_partitions) {
1285                 udf_debug("Partition (%d) not found in partition map\n",
1286                           partitionNumber);
1287                 ret = 0;
1288                 goto out_bh;
1289         }
1290 
1291         ret = udf_fill_partdesc_info(sb, p, i);
1292         if (ret < 0)
1293                 goto out_bh;
1294 
1295         /*
1296          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1297          * PHYSICAL partitions are already set up
1298          */
1299         type1_idx = i;
1300 #ifdef UDFFS_DEBUG
1301         map = NULL; /* supress 'maybe used uninitialized' warning */
1302 #endif
1303         for (i = 0; i < sbi->s_partitions; i++) {
1304                 map = &sbi->s_partmaps[i];
1305 
1306                 if (map->s_partition_num == partitionNumber &&
1307                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1308                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1309                      map->s_partition_type == UDF_METADATA_MAP25))
1310                         break;
1311         }
1312 
1313         if (i >= sbi->s_partitions) {
1314                 ret = 0;
1315                 goto out_bh;
1316         }
1317 
1318         ret = udf_fill_partdesc_info(sb, p, i);
1319         if (ret < 0)
1320                 goto out_bh;
1321 
1322         if (map->s_partition_type == UDF_METADATA_MAP25) {
1323                 ret = udf_load_metadata_files(sb, i);
1324                 if (ret < 0) {
1325                         udf_err(sb, "error loading MetaData partition map %d\n",
1326                                 i);
1327                         goto out_bh;
1328                 }
1329         } else {
1330                 /*
1331                  * If we have a partition with virtual map, we don't handle
1332                  * writing to it (we overwrite blocks instead of relocating
1333                  * them).
1334                  */
1335                 if (!(sb->s_flags & MS_RDONLY)) {
1336                         ret = -EACCES;
1337                         goto out_bh;
1338                 }
1339                 ret = udf_load_vat(sb, i, type1_idx);
1340                 if (ret < 0)
1341                         goto out_bh;
1342         }
1343         ret = 0;
1344 out_bh:
1345         /* In case loading failed, we handle cleanup in udf_fill_super */
1346         brelse(bh);
1347         return ret;
1348 }
1349 
1350 static int udf_load_sparable_map(struct super_block *sb,
1351                                  struct udf_part_map *map,
1352                                  struct sparablePartitionMap *spm)
1353 {
1354         uint32_t loc;
1355         uint16_t ident;
1356         struct sparingTable *st;
1357         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1358         int i;
1359         struct buffer_head *bh;
1360 
1361         map->s_partition_type = UDF_SPARABLE_MAP15;
1362         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1363         if (!is_power_of_2(sdata->s_packet_len)) {
1364                 udf_err(sb, "error loading logical volume descriptor: "
1365                         "Invalid packet length %u\n",
1366                         (unsigned)sdata->s_packet_len);
1367                 return -EIO;
1368         }
1369         if (spm->numSparingTables > 4) {
1370                 udf_err(sb, "error loading logical volume descriptor: "
1371                         "Too many sparing tables (%d)\n",
1372                         (int)spm->numSparingTables);
1373                 return -EIO;
1374         }
1375 
1376         for (i = 0; i < spm->numSparingTables; i++) {
1377                 loc = le32_to_cpu(spm->locSparingTable[i]);
1378                 bh = udf_read_tagged(sb, loc, loc, &ident);
1379                 if (!bh)
1380                         continue;
1381 
1382                 st = (struct sparingTable *)bh->b_data;
1383                 if (ident != 0 ||
1384                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1385                             strlen(UDF_ID_SPARING)) ||
1386                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1387                                                         sb->s_blocksize) {
1388                         brelse(bh);
1389                         continue;
1390                 }
1391 
1392                 sdata->s_spar_map[i] = bh;
1393         }
1394         map->s_partition_func = udf_get_pblock_spar15;
1395         return 0;
1396 }
1397 
1398 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1399                                struct kernel_lb_addr *fileset)
1400 {
1401         struct logicalVolDesc *lvd;
1402         int i, offset;
1403         uint8_t type;
1404         struct udf_sb_info *sbi = UDF_SB(sb);
1405         struct genericPartitionMap *gpm;
1406         uint16_t ident;
1407         struct buffer_head *bh;
1408         unsigned int table_len;
1409         int ret;
1410 
1411         bh = udf_read_tagged(sb, block, block, &ident);
1412         if (!bh)
1413                 return -EAGAIN;
1414         BUG_ON(ident != TAG_IDENT_LVD);
1415         lvd = (struct logicalVolDesc *)bh->b_data;
1416         table_len = le32_to_cpu(lvd->mapTableLength);
1417         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1418                 udf_err(sb, "error loading logical volume descriptor: "
1419                         "Partition table too long (%u > %lu)\n", table_len,
1420                         sb->s_blocksize - sizeof(*lvd));
1421                 ret = -EIO;
1422                 goto out_bh;
1423         }
1424 
1425         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1426         if (ret)
1427                 goto out_bh;
1428 
1429         for (i = 0, offset = 0;
1430              i < sbi->s_partitions && offset < table_len;
1431              i++, offset += gpm->partitionMapLength) {
1432                 struct udf_part_map *map = &sbi->s_partmaps[i];
1433                 gpm = (struct genericPartitionMap *)
1434                                 &(lvd->partitionMaps[offset]);
1435                 type = gpm->partitionMapType;
1436                 if (type == 1) {
1437                         struct genericPartitionMap1 *gpm1 =
1438                                 (struct genericPartitionMap1 *)gpm;
1439                         map->s_partition_type = UDF_TYPE1_MAP15;
1440                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1441                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1442                         map->s_partition_func = NULL;
1443                 } else if (type == 2) {
1444                         struct udfPartitionMap2 *upm2 =
1445                                                 (struct udfPartitionMap2 *)gpm;
1446                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1447                                                 strlen(UDF_ID_VIRTUAL))) {
1448                                 u16 suf =
1449                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1450                                                         identSuffix)[0]);
1451                                 if (suf < 0x0200) {
1452                                         map->s_partition_type =
1453                                                         UDF_VIRTUAL_MAP15;
1454                                         map->s_partition_func =
1455                                                         udf_get_pblock_virt15;
1456                                 } else {
1457                                         map->s_partition_type =
1458                                                         UDF_VIRTUAL_MAP20;
1459                                         map->s_partition_func =
1460                                                         udf_get_pblock_virt20;
1461                                 }
1462                         } else if (!strncmp(upm2->partIdent.ident,
1463                                                 UDF_ID_SPARABLE,
1464                                                 strlen(UDF_ID_SPARABLE))) {
1465                                 ret = udf_load_sparable_map(sb, map,
1466                                         (struct sparablePartitionMap *)gpm);
1467                                 if (ret < 0)
1468                                         goto out_bh;
1469                         } else if (!strncmp(upm2->partIdent.ident,
1470                                                 UDF_ID_METADATA,
1471                                                 strlen(UDF_ID_METADATA))) {
1472                                 struct udf_meta_data *mdata =
1473                                         &map->s_type_specific.s_metadata;
1474                                 struct metadataPartitionMap *mdm =
1475                                                 (struct metadataPartitionMap *)
1476                                                 &(lvd->partitionMaps[offset]);
1477                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1478                                           i, type, UDF_ID_METADATA);
1479 
1480                                 map->s_partition_type = UDF_METADATA_MAP25;
1481                                 map->s_partition_func = udf_get_pblock_meta25;
1482 
1483                                 mdata->s_meta_file_loc   =
1484                                         le32_to_cpu(mdm->metadataFileLoc);
1485                                 mdata->s_mirror_file_loc =
1486                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1487                                 mdata->s_bitmap_file_loc =
1488                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1489                                 mdata->s_alloc_unit_size =
1490                                         le32_to_cpu(mdm->allocUnitSize);
1491                                 mdata->s_align_unit_size =
1492                                         le16_to_cpu(mdm->alignUnitSize);
1493                                 if (mdm->flags & 0x01)
1494                                         mdata->s_flags |= MF_DUPLICATE_MD;
1495 
1496                                 udf_debug("Metadata Ident suffix=0x%x\n",
1497                                           le16_to_cpu(*(__le16 *)
1498                                                       mdm->partIdent.identSuffix));
1499                                 udf_debug("Metadata part num=%d\n",
1500                                           le16_to_cpu(mdm->partitionNum));
1501                                 udf_debug("Metadata part alloc unit size=%d\n",
1502                                           le32_to_cpu(mdm->allocUnitSize));
1503                                 udf_debug("Metadata file loc=%d\n",
1504                                           le32_to_cpu(mdm->metadataFileLoc));
1505                                 udf_debug("Mirror file loc=%d\n",
1506                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1507                                 udf_debug("Bitmap file loc=%d\n",
1508                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1509                                 udf_debug("Flags: %d %d\n",
1510                                           mdata->s_flags, mdm->flags);
1511                         } else {
1512                                 udf_debug("Unknown ident: %s\n",
1513                                           upm2->partIdent.ident);
1514                                 continue;
1515                         }
1516                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1517                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1518                 }
1519                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1520                           i, map->s_partition_num, type, map->s_volumeseqnum);
1521         }
1522 
1523         if (fileset) {
1524                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1525 
1526                 *fileset = lelb_to_cpu(la->extLocation);
1527                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1528                           fileset->logicalBlockNum,
1529                           fileset->partitionReferenceNum);
1530         }
1531         if (lvd->integritySeqExt.extLength)
1532                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1533         ret = 0;
1534 out_bh:
1535         brelse(bh);
1536         return ret;
1537 }
1538 
1539 /*
1540  * udf_load_logicalvolint
1541  *
1542  */
1543 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1544 {
1545         struct buffer_head *bh = NULL;
1546         uint16_t ident;
1547         struct udf_sb_info *sbi = UDF_SB(sb);
1548         struct logicalVolIntegrityDesc *lvid;
1549 
1550         while (loc.extLength > 0 &&
1551                (bh = udf_read_tagged(sb, loc.extLocation,
1552                                      loc.extLocation, &ident)) &&
1553                ident == TAG_IDENT_LVID) {
1554                 sbi->s_lvid_bh = bh;
1555                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1556 
1557                 if (lvid->nextIntegrityExt.extLength)
1558                         udf_load_logicalvolint(sb,
1559                                 leea_to_cpu(lvid->nextIntegrityExt));
1560 
1561                 if (sbi->s_lvid_bh != bh)
1562                         brelse(bh);
1563                 loc.extLength -= sb->s_blocksize;
1564                 loc.extLocation++;
1565         }
1566         if (sbi->s_lvid_bh != bh)
1567                 brelse(bh);
1568 }
1569 
1570 /*
1571  * Process a main/reserve volume descriptor sequence.
1572  *   @block             First block of first extent of the sequence.
1573  *   @lastblock         Lastblock of first extent of the sequence.
1574  *   @fileset           There we store extent containing root fileset
1575  *
1576  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1577  * sequence
1578  */
1579 static noinline int udf_process_sequence(
1580                 struct super_block *sb,
1581                 sector_t block, sector_t lastblock,
1582                 struct kernel_lb_addr *fileset)
1583 {
1584         struct buffer_head *bh = NULL;
1585         struct udf_vds_record vds[VDS_POS_LENGTH];
1586         struct udf_vds_record *curr;
1587         struct generic_desc *gd;
1588         struct volDescPtr *vdp;
1589         int done = 0;
1590         uint32_t vdsn;
1591         uint16_t ident;
1592         long next_s = 0, next_e = 0;
1593         int ret;
1594 
1595         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1596 
1597         /*
1598          * Read the main descriptor sequence and find which descriptors
1599          * are in it.
1600          */
1601         for (; (!done && block <= lastblock); block++) {
1602 
1603                 bh = udf_read_tagged(sb, block, block, &ident);
1604                 if (!bh) {
1605                         udf_err(sb,
1606                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1607                                 (unsigned long long)block);
1608                         return -EAGAIN;
1609                 }
1610 
1611                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1612                 gd = (struct generic_desc *)bh->b_data;
1613                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1614                 switch (ident) {
1615                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1616                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1617                         if (vdsn >= curr->volDescSeqNum) {
1618                                 curr->volDescSeqNum = vdsn;
1619                                 curr->block = block;
1620                         }
1621                         break;
1622                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1623                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1624                         if (vdsn >= curr->volDescSeqNum) {
1625                                 curr->volDescSeqNum = vdsn;
1626                                 curr->block = block;
1627 
1628                                 vdp = (struct volDescPtr *)bh->b_data;
1629                                 next_s = le32_to_cpu(
1630                                         vdp->nextVolDescSeqExt.extLocation);
1631                                 next_e = le32_to_cpu(
1632                                         vdp->nextVolDescSeqExt.extLength);
1633                                 next_e = next_e >> sb->s_blocksize_bits;
1634                                 next_e += next_s;
1635                         }
1636                         break;
1637                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1638                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1639                         if (vdsn >= curr->volDescSeqNum) {
1640                                 curr->volDescSeqNum = vdsn;
1641                                 curr->block = block;
1642                         }
1643                         break;
1644                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1645                         curr = &vds[VDS_POS_PARTITION_DESC];
1646                         if (!curr->block)
1647                                 curr->block = block;
1648                         break;
1649                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1651                         if (vdsn >= curr->volDescSeqNum) {
1652                                 curr->volDescSeqNum = vdsn;
1653                                 curr->block = block;
1654                         }
1655                         break;
1656                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1657                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1658                         if (vdsn >= curr->volDescSeqNum) {
1659                                 curr->volDescSeqNum = vdsn;
1660                                 curr->block = block;
1661                         }
1662                         break;
1663                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1664                         vds[VDS_POS_TERMINATING_DESC].block = block;
1665                         if (next_e) {
1666                                 block = next_s;
1667                                 lastblock = next_e;
1668                                 next_s = next_e = 0;
1669                         } else
1670                                 done = 1;
1671                         break;
1672                 }
1673                 brelse(bh);
1674         }
1675         /*
1676          * Now read interesting descriptors again and process them
1677          * in a suitable order
1678          */
1679         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1680                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1681                 return -EAGAIN;
1682         }
1683         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1684         if (ret < 0)
1685                 return ret;
1686 
1687         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1688                 ret = udf_load_logicalvol(sb,
1689                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1690                                           fileset);
1691                 if (ret < 0)
1692                         return ret;
1693         }
1694 
1695         if (vds[VDS_POS_PARTITION_DESC].block) {
1696                 /*
1697                  * We rescan the whole descriptor sequence to find
1698                  * partition descriptor blocks and process them.
1699                  */
1700                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1701                      block < vds[VDS_POS_TERMINATING_DESC].block;
1702                      block++) {
1703                         ret = udf_load_partdesc(sb, block);
1704                         if (ret < 0)
1705                                 return ret;
1706                 }
1707         }
1708 
1709         return 0;
1710 }
1711 
1712 /*
1713  * Load Volume Descriptor Sequence described by anchor in bh
1714  *
1715  * Returns <0 on error, 0 on success
1716  */
1717 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1718                              struct kernel_lb_addr *fileset)
1719 {
1720         struct anchorVolDescPtr *anchor;
1721         sector_t main_s, main_e, reserve_s, reserve_e;
1722         int ret;
1723 
1724         anchor = (struct anchorVolDescPtr *)bh->b_data;
1725 
1726         /* Locate the main sequence */
1727         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1728         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1729         main_e = main_e >> sb->s_blocksize_bits;
1730         main_e += main_s;
1731 
1732         /* Locate the reserve sequence */
1733         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1734         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1735         reserve_e = reserve_e >> sb->s_blocksize_bits;
1736         reserve_e += reserve_s;
1737 
1738         /* Process the main & reserve sequences */
1739         /* responsible for finding the PartitionDesc(s) */
1740         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1741         if (ret != -EAGAIN)
1742                 return ret;
1743         udf_sb_free_partitions(sb);
1744         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1745         if (ret < 0) {
1746                 udf_sb_free_partitions(sb);
1747                 /* No sequence was OK, return -EIO */
1748                 if (ret == -EAGAIN)
1749                         ret = -EIO;
1750         }
1751         return ret;
1752 }
1753 
1754 /*
1755  * Check whether there is an anchor block in the given block and
1756  * load Volume Descriptor Sequence if so.
1757  *
1758  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1759  * block
1760  */
1761 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1762                                   struct kernel_lb_addr *fileset)
1763 {
1764         struct buffer_head *bh;
1765         uint16_t ident;
1766         int ret;
1767 
1768         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1769             udf_fixed_to_variable(block) >=
1770             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1771                 return -EAGAIN;
1772 
1773         bh = udf_read_tagged(sb, block, block, &ident);
1774         if (!bh)
1775                 return -EAGAIN;
1776         if (ident != TAG_IDENT_AVDP) {
1777                 brelse(bh);
1778                 return -EAGAIN;
1779         }
1780         ret = udf_load_sequence(sb, bh, fileset);
1781         brelse(bh);
1782         return ret;
1783 }
1784 
1785 /*
1786  * Search for an anchor volume descriptor pointer.
1787  *
1788  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1789  * of anchors.
1790  */
1791 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1792                             struct kernel_lb_addr *fileset)
1793 {
1794         sector_t last[6];
1795         int i;
1796         struct udf_sb_info *sbi = UDF_SB(sb);
1797         int last_count = 0;
1798         int ret;
1799 
1800         /* First try user provided anchor */
1801         if (sbi->s_anchor) {
1802                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1803                 if (ret != -EAGAIN)
1804                         return ret;
1805         }
1806         /*
1807          * according to spec, anchor is in either:
1808          *     block 256
1809          *     lastblock-256
1810          *     lastblock
1811          *  however, if the disc isn't closed, it could be 512.
1812          */
1813         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1814         if (ret != -EAGAIN)
1815                 return ret;
1816         /*
1817          * The trouble is which block is the last one. Drives often misreport
1818          * this so we try various possibilities.
1819          */
1820         last[last_count++] = *lastblock;
1821         if (*lastblock >= 1)
1822                 last[last_count++] = *lastblock - 1;
1823         last[last_count++] = *lastblock + 1;
1824         if (*lastblock >= 2)
1825                 last[last_count++] = *lastblock - 2;
1826         if (*lastblock >= 150)
1827                 last[last_count++] = *lastblock - 150;
1828         if (*lastblock >= 152)
1829                 last[last_count++] = *lastblock - 152;
1830 
1831         for (i = 0; i < last_count; i++) {
1832                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1833                                 sb->s_blocksize_bits)
1834                         continue;
1835                 ret = udf_check_anchor_block(sb, last[i], fileset);
1836                 if (ret != -EAGAIN) {
1837                         if (!ret)
1838                                 *lastblock = last[i];
1839                         return ret;
1840                 }
1841                 if (last[i] < 256)
1842                         continue;
1843                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1844                 if (ret != -EAGAIN) {
1845                         if (!ret)
1846                                 *lastblock = last[i];
1847                         return ret;
1848                 }
1849         }
1850 
1851         /* Finally try block 512 in case media is open */
1852         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1853 }
1854 
1855 /*
1856  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1857  * area specified by it. The function expects sbi->s_lastblock to be the last
1858  * block on the media.
1859  *
1860  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1861  * was not found.
1862  */
1863 static int udf_find_anchor(struct super_block *sb,
1864                            struct kernel_lb_addr *fileset)
1865 {
1866         struct udf_sb_info *sbi = UDF_SB(sb);
1867         sector_t lastblock = sbi->s_last_block;
1868         int ret;
1869 
1870         ret = udf_scan_anchors(sb, &lastblock, fileset);
1871         if (ret != -EAGAIN)
1872                 goto out;
1873 
1874         /* No anchor found? Try VARCONV conversion of block numbers */
1875         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1876         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1877         /* Firstly, we try to not convert number of the last block */
1878         ret = udf_scan_anchors(sb, &lastblock, fileset);
1879         if (ret != -EAGAIN)
1880                 goto out;
1881 
1882         lastblock = sbi->s_last_block;
1883         /* Secondly, we try with converted number of the last block */
1884         ret = udf_scan_anchors(sb, &lastblock, fileset);
1885         if (ret < 0) {
1886                 /* VARCONV didn't help. Clear it. */
1887                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1888         }
1889 out:
1890         if (ret == 0)
1891                 sbi->s_last_block = lastblock;
1892         return ret;
1893 }
1894 
1895 /*
1896  * Check Volume Structure Descriptor, find Anchor block and load Volume
1897  * Descriptor Sequence.
1898  *
1899  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1900  * block was not found.
1901  */
1902 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1903                         int silent, struct kernel_lb_addr *fileset)
1904 {
1905         struct udf_sb_info *sbi = UDF_SB(sb);
1906         loff_t nsr_off;
1907         int ret;
1908 
1909         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1910                 if (!silent)
1911                         udf_warn(sb, "Bad block size\n");
1912                 return -EINVAL;
1913         }
1914         sbi->s_last_block = uopt->lastblock;
1915         if (!uopt->novrs) {
1916                 /* Check that it is NSR02 compliant */
1917                 nsr_off = udf_check_vsd(sb);
1918                 if (!nsr_off) {
1919                         if (!silent)
1920                                 udf_warn(sb, "No VRS found\n");
1921                         return 0;
1922                 }
1923                 if (nsr_off == -1)
1924                         udf_debug("Failed to read sector at offset %d. "
1925                                   "Assuming open disc. Skipping validity "
1926                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1927                 if (!sbi->s_last_block)
1928                         sbi->s_last_block = udf_get_last_block(sb);
1929         } else {
1930                 udf_debug("Validity check skipped because of novrs option\n");
1931         }
1932 
1933         /* Look for anchor block and load Volume Descriptor Sequence */
1934         sbi->s_anchor = uopt->anchor;
1935         ret = udf_find_anchor(sb, fileset);
1936         if (ret < 0) {
1937                 if (!silent && ret == -EAGAIN)
1938                         udf_warn(sb, "No anchor found\n");
1939                 return ret;
1940         }
1941         return 0;
1942 }
1943 
1944 static void udf_open_lvid(struct super_block *sb)
1945 {
1946         struct udf_sb_info *sbi = UDF_SB(sb);
1947         struct buffer_head *bh = sbi->s_lvid_bh;
1948         struct logicalVolIntegrityDesc *lvid;
1949         struct logicalVolIntegrityDescImpUse *lvidiu;
1950 
1951         if (!bh)
1952                 return;
1953         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1954         lvidiu = udf_sb_lvidiu(sb);
1955         if (!lvidiu)
1956                 return;
1957 
1958         mutex_lock(&sbi->s_alloc_mutex);
1959         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1960         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1961         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1962                                 CURRENT_TIME);
1963         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1964 
1965         lvid->descTag.descCRC = cpu_to_le16(
1966                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1967                         le16_to_cpu(lvid->descTag.descCRCLength)));
1968 
1969         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1970         mark_buffer_dirty(bh);
1971         sbi->s_lvid_dirty = 0;
1972         mutex_unlock(&sbi->s_alloc_mutex);
1973         /* Make opening of filesystem visible on the media immediately */
1974         sync_dirty_buffer(bh);
1975 }
1976 
1977 static void udf_close_lvid(struct super_block *sb)
1978 {
1979         struct udf_sb_info *sbi = UDF_SB(sb);
1980         struct buffer_head *bh = sbi->s_lvid_bh;
1981         struct logicalVolIntegrityDesc *lvid;
1982         struct logicalVolIntegrityDescImpUse *lvidiu;
1983 
1984         if (!bh)
1985                 return;
1986         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1987         lvidiu = udf_sb_lvidiu(sb);
1988         if (!lvidiu)
1989                 return;
1990 
1991         mutex_lock(&sbi->s_alloc_mutex);
1992         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1993         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1994         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1995         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1996                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1997         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1998                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1999         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2000                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2001         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2002 
2003         lvid->descTag.descCRC = cpu_to_le16(
2004                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2005                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2006 
2007         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2008         /*
2009          * We set buffer uptodate unconditionally here to avoid spurious
2010          * warnings from mark_buffer_dirty() when previous EIO has marked
2011          * the buffer as !uptodate
2012          */
2013         set_buffer_uptodate(bh);
2014         mark_buffer_dirty(bh);
2015         sbi->s_lvid_dirty = 0;
2016         mutex_unlock(&sbi->s_alloc_mutex);
2017         /* Make closing of filesystem visible on the media immediately */
2018         sync_dirty_buffer(bh);
2019 }
2020 
2021 u64 lvid_get_unique_id(struct super_block *sb)
2022 {
2023         struct buffer_head *bh;
2024         struct udf_sb_info *sbi = UDF_SB(sb);
2025         struct logicalVolIntegrityDesc *lvid;
2026         struct logicalVolHeaderDesc *lvhd;
2027         u64 uniqueID;
2028         u64 ret;
2029 
2030         bh = sbi->s_lvid_bh;
2031         if (!bh)
2032                 return 0;
2033 
2034         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2035         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2036 
2037         mutex_lock(&sbi->s_alloc_mutex);
2038         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2039         if (!(++uniqueID & 0xFFFFFFFF))
2040                 uniqueID += 16;
2041         lvhd->uniqueID = cpu_to_le64(uniqueID);
2042         mutex_unlock(&sbi->s_alloc_mutex);
2043         mark_buffer_dirty(bh);
2044 
2045         return ret;
2046 }
2047 
2048 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2049 {
2050         int ret = -EINVAL;
2051         struct inode *inode = NULL;
2052         struct udf_options uopt;
2053         struct kernel_lb_addr rootdir, fileset;
2054         struct udf_sb_info *sbi;
2055 
2056         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2057         uopt.uid = INVALID_UID;
2058         uopt.gid = INVALID_GID;
2059         uopt.umask = 0;
2060         uopt.fmode = UDF_INVALID_MODE;
2061         uopt.dmode = UDF_INVALID_MODE;
2062 
2063         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2064         if (!sbi)
2065                 return -ENOMEM;
2066 
2067         sb->s_fs_info = sbi;
2068 
2069         mutex_init(&sbi->s_alloc_mutex);
2070 
2071         if (!udf_parse_options((char *)options, &uopt, false))
2072                 goto error_out;
2073 
2074         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2075             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2076                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2077                 goto error_out;
2078         }
2079 #ifdef CONFIG_UDF_NLS
2080         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2081                 uopt.nls_map = load_nls_default();
2082                 if (!uopt.nls_map)
2083                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2084                 else
2085                         udf_debug("Using default NLS map\n");
2086         }
2087 #endif
2088         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2089                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2090 
2091         fileset.logicalBlockNum = 0xFFFFFFFF;
2092         fileset.partitionReferenceNum = 0xFFFF;
2093 
2094         sbi->s_flags = uopt.flags;
2095         sbi->s_uid = uopt.uid;
2096         sbi->s_gid = uopt.gid;
2097         sbi->s_umask = uopt.umask;
2098         sbi->s_fmode = uopt.fmode;
2099         sbi->s_dmode = uopt.dmode;
2100         sbi->s_nls_map = uopt.nls_map;
2101         rwlock_init(&sbi->s_cred_lock);
2102 
2103         if (uopt.session == 0xFFFFFFFF)
2104                 sbi->s_session = udf_get_last_session(sb);
2105         else
2106                 sbi->s_session = uopt.session;
2107 
2108         udf_debug("Multi-session=%d\n", sbi->s_session);
2109 
2110         /* Fill in the rest of the superblock */
2111         sb->s_op = &udf_sb_ops;
2112         sb->s_export_op = &udf_export_ops;
2113 
2114         sb->s_magic = UDF_SUPER_MAGIC;
2115         sb->s_time_gran = 1000;
2116 
2117         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2118                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2119         } else {
2120                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2121                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2122                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2123                         if (!silent)
2124                                 pr_notice("Rescanning with blocksize %d\n",
2125                                           UDF_DEFAULT_BLOCKSIZE);
2126                         brelse(sbi->s_lvid_bh);
2127                         sbi->s_lvid_bh = NULL;
2128                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2129                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2130                 }
2131         }
2132         if (ret < 0) {
2133                 if (ret == -EAGAIN) {
2134                         udf_warn(sb, "No partition found (1)\n");
2135                         ret = -EINVAL;
2136                 }
2137                 goto error_out;
2138         }
2139 
2140         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2141 
2142         if (sbi->s_lvid_bh) {
2143                 struct logicalVolIntegrityDescImpUse *lvidiu =
2144                                                         udf_sb_lvidiu(sb);
2145                 uint16_t minUDFReadRev;
2146                 uint16_t minUDFWriteRev;
2147 
2148                 if (!lvidiu) {
2149                         ret = -EINVAL;
2150                         goto error_out;
2151                 }
2152                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2153                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2154                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2155                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2156                                 minUDFReadRev,
2157                                 UDF_MAX_READ_VERSION);
2158                         ret = -EINVAL;
2159                         goto error_out;
2160                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2161                            !(sb->s_flags & MS_RDONLY)) {
2162                         ret = -EACCES;
2163                         goto error_out;
2164                 }
2165 
2166                 sbi->s_udfrev = minUDFWriteRev;
2167 
2168                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2169                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2170                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2171                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2172         }
2173 
2174         if (!sbi->s_partitions) {
2175                 udf_warn(sb, "No partition found (2)\n");
2176                 ret = -EINVAL;
2177                 goto error_out;
2178         }
2179 
2180         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2181                         UDF_PART_FLAG_READ_ONLY &&
2182             !(sb->s_flags & MS_RDONLY)) {
2183                 ret = -EACCES;
2184                 goto error_out;
2185         }
2186 
2187         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2188                 udf_warn(sb, "No fileset found\n");
2189                 ret = -EINVAL;
2190                 goto error_out;
2191         }
2192 
2193         if (!silent) {
2194                 struct timestamp ts;
2195                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2196                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2197                          sbi->s_volume_ident,
2198                          le16_to_cpu(ts.year), ts.month, ts.day,
2199                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2200         }
2201         if (!(sb->s_flags & MS_RDONLY))
2202                 udf_open_lvid(sb);
2203 
2204         /* Assign the root inode */
2205         /* assign inodes by physical block number */
2206         /* perhaps it's not extensible enough, but for now ... */
2207         inode = udf_iget(sb, &rootdir);
2208         if (!inode) {
2209                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2210                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2211                 ret = -EIO;
2212                 goto error_out;
2213         }
2214 
2215         /* Allocate a dentry for the root inode */
2216         sb->s_root = d_make_root(inode);
2217         if (!sb->s_root) {
2218                 udf_err(sb, "Couldn't allocate root dentry\n");
2219                 ret = -ENOMEM;
2220                 goto error_out;
2221         }
2222         sb->s_maxbytes = MAX_LFS_FILESIZE;
2223         sb->s_max_links = UDF_MAX_LINKS;
2224         return 0;
2225 
2226 error_out:
2227         if (sbi->s_vat_inode)
2228                 iput(sbi->s_vat_inode);
2229 #ifdef CONFIG_UDF_NLS
2230         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2231                 unload_nls(sbi->s_nls_map);
2232 #endif
2233         if (!(sb->s_flags & MS_RDONLY))
2234                 udf_close_lvid(sb);
2235         brelse(sbi->s_lvid_bh);
2236         udf_sb_free_partitions(sb);
2237         kfree(sbi);
2238         sb->s_fs_info = NULL;
2239 
2240         return ret;
2241 }
2242 
2243 void _udf_err(struct super_block *sb, const char *function,
2244               const char *fmt, ...)
2245 {
2246         struct va_format vaf;
2247         va_list args;
2248 
2249         va_start(args, fmt);
2250 
2251         vaf.fmt = fmt;
2252         vaf.va = &args;
2253 
2254         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2255 
2256         va_end(args);
2257 }
2258 
2259 void _udf_warn(struct super_block *sb, const char *function,
2260                const char *fmt, ...)
2261 {
2262         struct va_format vaf;
2263         va_list args;
2264 
2265         va_start(args, fmt);
2266 
2267         vaf.fmt = fmt;
2268         vaf.va = &args;
2269 
2270         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2271 
2272         va_end(args);
2273 }
2274 
2275 static void udf_put_super(struct super_block *sb)
2276 {
2277         struct udf_sb_info *sbi;
2278 
2279         sbi = UDF_SB(sb);
2280 
2281         if (sbi->s_vat_inode)
2282                 iput(sbi->s_vat_inode);
2283 #ifdef CONFIG_UDF_NLS
2284         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2285                 unload_nls(sbi->s_nls_map);
2286 #endif
2287         if (!(sb->s_flags & MS_RDONLY))
2288                 udf_close_lvid(sb);
2289         brelse(sbi->s_lvid_bh);
2290         udf_sb_free_partitions(sb);
2291         kfree(sb->s_fs_info);
2292         sb->s_fs_info = NULL;
2293 }
2294 
2295 static int udf_sync_fs(struct super_block *sb, int wait)
2296 {
2297         struct udf_sb_info *sbi = UDF_SB(sb);
2298 
2299         mutex_lock(&sbi->s_alloc_mutex);
2300         if (sbi->s_lvid_dirty) {
2301                 /*
2302                  * Blockdevice will be synced later so we don't have to submit
2303                  * the buffer for IO
2304                  */
2305                 mark_buffer_dirty(sbi->s_lvid_bh);
2306                 sbi->s_lvid_dirty = 0;
2307         }
2308         mutex_unlock(&sbi->s_alloc_mutex);
2309 
2310         return 0;
2311 }
2312 
2313 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2314 {
2315         struct super_block *sb = dentry->d_sb;
2316         struct udf_sb_info *sbi = UDF_SB(sb);
2317         struct logicalVolIntegrityDescImpUse *lvidiu;
2318         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2319 
2320         lvidiu = udf_sb_lvidiu(sb);
2321         buf->f_type = UDF_SUPER_MAGIC;
2322         buf->f_bsize = sb->s_blocksize;
2323         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2324         buf->f_bfree = udf_count_free(sb);
2325         buf->f_bavail = buf->f_bfree;
2326         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2327                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2328                         + buf->f_bfree;
2329         buf->f_ffree = buf->f_bfree;
2330         buf->f_namelen = UDF_NAME_LEN - 2;
2331         buf->f_fsid.val[0] = (u32)id;
2332         buf->f_fsid.val[1] = (u32)(id >> 32);
2333 
2334         return 0;
2335 }
2336 
2337 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2338                                           struct udf_bitmap *bitmap)
2339 {
2340         struct buffer_head *bh = NULL;
2341         unsigned int accum = 0;
2342         int index;
2343         int block = 0, newblock;
2344         struct kernel_lb_addr loc;
2345         uint32_t bytes;
2346         uint8_t *ptr;
2347         uint16_t ident;
2348         struct spaceBitmapDesc *bm;
2349 
2350         loc.logicalBlockNum = bitmap->s_extPosition;
2351         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2352         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2353 
2354         if (!bh) {
2355                 udf_err(sb, "udf_count_free failed\n");
2356                 goto out;
2357         } else if (ident != TAG_IDENT_SBD) {
2358                 brelse(bh);
2359                 udf_err(sb, "udf_count_free failed\n");
2360                 goto out;
2361         }
2362 
2363         bm = (struct spaceBitmapDesc *)bh->b_data;
2364         bytes = le32_to_cpu(bm->numOfBytes);
2365         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2366         ptr = (uint8_t *)bh->b_data;
2367 
2368         while (bytes > 0) {
2369                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2370                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2371                                         cur_bytes * 8);
2372                 bytes -= cur_bytes;
2373                 if (bytes) {
2374                         brelse(bh);
2375                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2376                         bh = udf_tread(sb, newblock);
2377                         if (!bh) {
2378                                 udf_debug("read failed\n");
2379                                 goto out;
2380                         }
2381                         index = 0;
2382                         ptr = (uint8_t *)bh->b_data;
2383                 }
2384         }
2385         brelse(bh);
2386 out:
2387         return accum;
2388 }
2389 
2390 static unsigned int udf_count_free_table(struct super_block *sb,
2391                                          struct inode *table)
2392 {
2393         unsigned int accum = 0;
2394         uint32_t elen;
2395         struct kernel_lb_addr eloc;
2396         int8_t etype;
2397         struct extent_position epos;
2398 
2399         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2400         epos.block = UDF_I(table)->i_location;
2401         epos.offset = sizeof(struct unallocSpaceEntry);
2402         epos.bh = NULL;
2403 
2404         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2405                 accum += (elen >> table->i_sb->s_blocksize_bits);
2406 
2407         brelse(epos.bh);
2408         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2409 
2410         return accum;
2411 }
2412 
2413 static unsigned int udf_count_free(struct super_block *sb)
2414 {
2415         unsigned int accum = 0;
2416         struct udf_sb_info *sbi;
2417         struct udf_part_map *map;
2418 
2419         sbi = UDF_SB(sb);
2420         if (sbi->s_lvid_bh) {
2421                 struct logicalVolIntegrityDesc *lvid =
2422                         (struct logicalVolIntegrityDesc *)
2423                         sbi->s_lvid_bh->b_data;
2424                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2425                         accum = le32_to_cpu(
2426                                         lvid->freeSpaceTable[sbi->s_partition]);
2427                         if (accum == 0xFFFFFFFF)
2428                                 accum = 0;
2429                 }
2430         }
2431 
2432         if (accum)
2433                 return accum;
2434 
2435         map = &sbi->s_partmaps[sbi->s_partition];
2436         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2437                 accum += udf_count_free_bitmap(sb,
2438                                                map->s_uspace.s_bitmap);
2439         }
2440         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2441                 accum += udf_count_free_bitmap(sb,
2442                                                map->s_fspace.s_bitmap);
2443         }
2444         if (accum)
2445                 return accum;
2446 
2447         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2448                 accum += udf_count_free_table(sb,
2449                                               map->s_uspace.s_table);
2450         }
2451         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2452                 accum += udf_count_free_table(sb,
2453                                               map->s_fspace.s_table);
2454         }
2455 
2456         return accum;
2457 }
2458 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us