Version:  2.0.40 2.2.26 2.4.37 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Linux/fs/udf/super.c

  1 /*
  2  * super.c
  3  *
  4  * PURPOSE
  5  *  Super block routines for the OSTA-UDF(tm) filesystem.
  6  *
  7  * DESCRIPTION
  8  *  OSTA-UDF(tm) = Optical Storage Technology Association
  9  *  Universal Disk Format.
 10  *
 11  *  This code is based on version 2.00 of the UDF specification,
 12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
 13  *    http://www.osta.org/
 14  *    http://www.ecma.ch/
 15  *    http://www.iso.org/
 16  *
 17  * COPYRIGHT
 18  *  This file is distributed under the terms of the GNU General Public
 19  *  License (GPL). Copies of the GPL can be obtained from:
 20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 21  *  Each contributing author retains all rights to their own work.
 22  *
 23  *  (C) 1998 Dave Boynton
 24  *  (C) 1998-2004 Ben Fennema
 25  *  (C) 2000 Stelias Computing Inc
 26  *
 27  * HISTORY
 28  *
 29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
 30  *                added some debugging.
 31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
 32  *  10/16/98      attempting some multi-session support
 33  *  10/17/98      added freespace count for "df"
 34  *  11/11/98 gr   added novrs option
 35  *  11/26/98 dgb  added fileset,anchor mount options
 36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
 37  *                vol descs. rewrote option handling based on isofs
 38  *  12/20/98      find the free space bitmap (if it exists)
 39  */
 40 
 41 #include "udfdecl.h"
 42 
 43 #include <linux/blkdev.h>
 44 #include <linux/slab.h>
 45 #include <linux/kernel.h>
 46 #include <linux/module.h>
 47 #include <linux/parser.h>
 48 #include <linux/stat.h>
 49 #include <linux/cdrom.h>
 50 #include <linux/nls.h>
 51 #include <linux/vfs.h>
 52 #include <linux/vmalloc.h>
 53 #include <linux/errno.h>
 54 #include <linux/mount.h>
 55 #include <linux/seq_file.h>
 56 #include <linux/bitmap.h>
 57 #include <linux/crc-itu-t.h>
 58 #include <linux/log2.h>
 59 #include <asm/byteorder.h>
 60 
 61 #include "udf_sb.h"
 62 #include "udf_i.h"
 63 
 64 #include <linux/init.h>
 65 #include <linux/uaccess.h>
 66 
 67 #define VDS_POS_PRIMARY_VOL_DESC        0
 68 #define VDS_POS_UNALLOC_SPACE_DESC      1
 69 #define VDS_POS_LOGICAL_VOL_DESC        2
 70 #define VDS_POS_PARTITION_DESC          3
 71 #define VDS_POS_IMP_USE_VOL_DESC        4
 72 #define VDS_POS_VOL_DESC_PTR            5
 73 #define VDS_POS_TERMINATING_DESC        6
 74 #define VDS_POS_LENGTH                  7
 75 
 76 #define UDF_DEFAULT_BLOCKSIZE 2048
 77 
 78 #define VSD_FIRST_SECTOR_OFFSET         32768
 79 #define VSD_MAX_SECTOR_OFFSET           0x800000
 80 
 81 enum { UDF_MAX_LINKS = 0xffff };
 82 
 83 /* These are the "meat" - everything else is stuffing */
 84 static int udf_fill_super(struct super_block *, void *, int);
 85 static void udf_put_super(struct super_block *);
 86 static int udf_sync_fs(struct super_block *, int);
 87 static int udf_remount_fs(struct super_block *, int *, char *);
 88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
 89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
 90                             struct kernel_lb_addr *);
 91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
 92                              struct kernel_lb_addr *);
 93 static void udf_open_lvid(struct super_block *);
 94 static void udf_close_lvid(struct super_block *);
 95 static unsigned int udf_count_free(struct super_block *);
 96 static int udf_statfs(struct dentry *, struct kstatfs *);
 97 static int udf_show_options(struct seq_file *, struct dentry *);
 98 
 99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101         struct logicalVolIntegrityDesc *lvid;
102         unsigned int partnum;
103         unsigned int offset;
104 
105         if (!UDF_SB(sb)->s_lvid_bh)
106                 return NULL;
107         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108         partnum = le32_to_cpu(lvid->numOfPartitions);
109         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110              offsetof(struct logicalVolIntegrityDesc, impUse)) /
111              (2 * sizeof(uint32_t)) < partnum) {
112                 udf_err(sb, "Logical volume integrity descriptor corrupted "
113                         "(numOfPartitions = %u)!\n", partnum);
114                 return NULL;
115         }
116         /* The offset is to skip freeSpaceTable and sizeTable arrays */
117         offset = partnum * 2 * sizeof(uint32_t);
118         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120 
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127 
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136 
137 static struct kmem_cache *udf_inode_cachep;
138 
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145 
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_next_alloc_block = 0;
149         ei->i_next_alloc_goal = 0;
150         ei->i_strat4096 = 0;
151         init_rwsem(&ei->i_data_sem);
152         ei->cached_extent.lstart = -1;
153         spin_lock_init(&ei->i_extent_cache_lock);
154 
155         return &ei->vfs_inode;
156 }
157 
158 static void udf_i_callback(struct rcu_head *head)
159 {
160         struct inode *inode = container_of(head, struct inode, i_rcu);
161         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163 
164 static void udf_destroy_inode(struct inode *inode)
165 {
166         call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168 
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172 
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176 
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD |
183                                                  SLAB_ACCOUNT),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189 
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199 
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212 
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int volume;
220         unsigned short partition;
221         unsigned int fileset;
222         unsigned int rootdir;
223         unsigned int flags;
224         umode_t umask;
225         kgid_t gid;
226         kuid_t uid;
227         umode_t fmode;
228         umode_t dmode;
229         struct nls_table *nls_map;
230 };
231 
232 static int __init init_udf_fs(void)
233 {
234         int err;
235 
236         err = init_inodecache();
237         if (err)
238                 goto out1;
239         err = register_filesystem(&udf_fstype);
240         if (err)
241                 goto out;
242 
243         return 0;
244 
245 out:
246         destroy_inodecache();
247 
248 out1:
249         return err;
250 }
251 
252 static void __exit exit_udf_fs(void)
253 {
254         unregister_filesystem(&udf_fstype);
255         destroy_inodecache();
256 }
257 
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260 
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263         struct udf_sb_info *sbi = UDF_SB(sb);
264 
265         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266                                   GFP_KERNEL);
267         if (!sbi->s_partmaps) {
268                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269                         count);
270                 sbi->s_partitions = 0;
271                 return -ENOMEM;
272         }
273 
274         sbi->s_partitions = count;
275         return 0;
276 }
277 
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280         int i;
281         int nr_groups = bitmap->s_nr_groups;
282 
283         for (i = 0; i < nr_groups; i++)
284                 if (bitmap->s_block_bitmap[i])
285                         brelse(bitmap->s_block_bitmap[i]);
286 
287         kvfree(bitmap);
288 }
289 
290 static void udf_free_partition(struct udf_part_map *map)
291 {
292         int i;
293         struct udf_meta_data *mdata;
294 
295         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
296                 iput(map->s_uspace.s_table);
297         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
298                 iput(map->s_fspace.s_table);
299         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
300                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
301         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
302                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
303         if (map->s_partition_type == UDF_SPARABLE_MAP15)
304                 for (i = 0; i < 4; i++)
305                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
306         else if (map->s_partition_type == UDF_METADATA_MAP25) {
307                 mdata = &map->s_type_specific.s_metadata;
308                 iput(mdata->s_metadata_fe);
309                 mdata->s_metadata_fe = NULL;
310 
311                 iput(mdata->s_mirror_fe);
312                 mdata->s_mirror_fe = NULL;
313 
314                 iput(mdata->s_bitmap_fe);
315                 mdata->s_bitmap_fe = NULL;
316         }
317 }
318 
319 static void udf_sb_free_partitions(struct super_block *sb)
320 {
321         struct udf_sb_info *sbi = UDF_SB(sb);
322         int i;
323         if (sbi->s_partmaps == NULL)
324                 return;
325         for (i = 0; i < sbi->s_partitions; i++)
326                 udf_free_partition(&sbi->s_partmaps[i]);
327         kfree(sbi->s_partmaps);
328         sbi->s_partmaps = NULL;
329 }
330 
331 static int udf_show_options(struct seq_file *seq, struct dentry *root)
332 {
333         struct super_block *sb = root->d_sb;
334         struct udf_sb_info *sbi = UDF_SB(sb);
335 
336         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
337                 seq_puts(seq, ",nostrict");
338         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
339                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
340         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
341                 seq_puts(seq, ",unhide");
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
343                 seq_puts(seq, ",undelete");
344         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
345                 seq_puts(seq, ",noadinicb");
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
347                 seq_puts(seq, ",shortad");
348         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
349                 seq_puts(seq, ",uid=forget");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
351                 seq_puts(seq, ",uid=ignore");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
353                 seq_puts(seq, ",gid=forget");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
355                 seq_puts(seq, ",gid=ignore");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
357                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
359                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
360         if (sbi->s_umask != 0)
361                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
362         if (sbi->s_fmode != UDF_INVALID_MODE)
363                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
364         if (sbi->s_dmode != UDF_INVALID_MODE)
365                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
366         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
367                 seq_printf(seq, ",session=%u", sbi->s_session);
368         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
369                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
370         if (sbi->s_anchor != 0)
371                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
372         /*
373          * volume, partition, fileset and rootdir seem to be ignored
374          * currently
375          */
376         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
377                 seq_puts(seq, ",utf8");
378         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
379                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
380 
381         return 0;
382 }
383 
384 /*
385  * udf_parse_options
386  *
387  * PURPOSE
388  *      Parse mount options.
389  *
390  * DESCRIPTION
391  *      The following mount options are supported:
392  *
393  *      gid=            Set the default group.
394  *      umask=          Set the default umask.
395  *      mode=           Set the default file permissions.
396  *      dmode=          Set the default directory permissions.
397  *      uid=            Set the default user.
398  *      bs=             Set the block size.
399  *      unhide          Show otherwise hidden files.
400  *      undelete        Show deleted files in lists.
401  *      adinicb         Embed data in the inode (default)
402  *      noadinicb       Don't embed data in the inode
403  *      shortad         Use short ad's
404  *      longad          Use long ad's (default)
405  *      nostrict        Unset strict conformance
406  *      iocharset=      Set the NLS character set
407  *
408  *      The remaining are for debugging and disaster recovery:
409  *
410  *      novrs           Skip volume sequence recognition
411  *
412  *      The following expect a offset from 0.
413  *
414  *      session=        Set the CDROM session (default= last session)
415  *      anchor=         Override standard anchor location. (default= 256)
416  *      volume=         Override the VolumeDesc location. (unused)
417  *      partition=      Override the PartitionDesc location. (unused)
418  *      lastblock=      Set the last block of the filesystem/
419  *
420  *      The following expect a offset from the partition root.
421  *
422  *      fileset=        Override the fileset block location. (unused)
423  *      rootdir=        Override the root directory location. (unused)
424  *              WARNING: overriding the rootdir to a non-directory may
425  *              yield highly unpredictable results.
426  *
427  * PRE-CONDITIONS
428  *      options         Pointer to mount options string.
429  *      uopts           Pointer to mount options variable.
430  *
431  * POST-CONDITIONS
432  *      <return>        1       Mount options parsed okay.
433  *      <return>        0       Error parsing mount options.
434  *
435  * HISTORY
436  *      July 1, 1997 - Andrew E. Mileski
437  *      Written, tested, and released.
438  */
439 
440 enum {
441         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
442         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
443         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
444         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
445         Opt_rootdir, Opt_utf8, Opt_iocharset,
446         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
447         Opt_fmode, Opt_dmode
448 };
449 
450 static const match_table_t tokens = {
451         {Opt_novrs,     "novrs"},
452         {Opt_nostrict,  "nostrict"},
453         {Opt_bs,        "bs=%u"},
454         {Opt_unhide,    "unhide"},
455         {Opt_undelete,  "undelete"},
456         {Opt_noadinicb, "noadinicb"},
457         {Opt_adinicb,   "adinicb"},
458         {Opt_shortad,   "shortad"},
459         {Opt_longad,    "longad"},
460         {Opt_uforget,   "uid=forget"},
461         {Opt_uignore,   "uid=ignore"},
462         {Opt_gforget,   "gid=forget"},
463         {Opt_gignore,   "gid=ignore"},
464         {Opt_gid,       "gid=%u"},
465         {Opt_uid,       "uid=%u"},
466         {Opt_umask,     "umask=%o"},
467         {Opt_session,   "session=%u"},
468         {Opt_lastblock, "lastblock=%u"},
469         {Opt_anchor,    "anchor=%u"},
470         {Opt_volume,    "volume=%u"},
471         {Opt_partition, "partition=%u"},
472         {Opt_fileset,   "fileset=%u"},
473         {Opt_rootdir,   "rootdir=%u"},
474         {Opt_utf8,      "utf8"},
475         {Opt_iocharset, "iocharset=%s"},
476         {Opt_fmode,     "mode=%o"},
477         {Opt_dmode,     "dmode=%o"},
478         {Opt_err,       NULL}
479 };
480 
481 static int udf_parse_options(char *options, struct udf_options *uopt,
482                              bool remount)
483 {
484         char *p;
485         int option;
486 
487         uopt->novrs = 0;
488         uopt->partition = 0xFFFF;
489         uopt->session = 0xFFFFFFFF;
490         uopt->lastblock = 0;
491         uopt->anchor = 0;
492         uopt->volume = 0xFFFFFFFF;
493         uopt->rootdir = 0xFFFFFFFF;
494         uopt->fileset = 0xFFFFFFFF;
495         uopt->nls_map = NULL;
496 
497         if (!options)
498                 return 1;
499 
500         while ((p = strsep(&options, ",")) != NULL) {
501                 substring_t args[MAX_OPT_ARGS];
502                 int token;
503                 unsigned n;
504                 if (!*p)
505                         continue;
506 
507                 token = match_token(p, tokens, args);
508                 switch (token) {
509                 case Opt_novrs:
510                         uopt->novrs = 1;
511                         break;
512                 case Opt_bs:
513                         if (match_int(&args[0], &option))
514                                 return 0;
515                         n = option;
516                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
517                                 return 0;
518                         uopt->blocksize = n;
519                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
520                         break;
521                 case Opt_unhide:
522                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
523                         break;
524                 case Opt_undelete:
525                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
526                         break;
527                 case Opt_noadinicb:
528                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
529                         break;
530                 case Opt_adinicb:
531                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
532                         break;
533                 case Opt_shortad:
534                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
535                         break;
536                 case Opt_longad:
537                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
538                         break;
539                 case Opt_gid:
540                         if (match_int(args, &option))
541                                 return 0;
542                         uopt->gid = make_kgid(current_user_ns(), option);
543                         if (!gid_valid(uopt->gid))
544                                 return 0;
545                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
546                         break;
547                 case Opt_uid:
548                         if (match_int(args, &option))
549                                 return 0;
550                         uopt->uid = make_kuid(current_user_ns(), option);
551                         if (!uid_valid(uopt->uid))
552                                 return 0;
553                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
554                         break;
555                 case Opt_umask:
556                         if (match_octal(args, &option))
557                                 return 0;
558                         uopt->umask = option;
559                         break;
560                 case Opt_nostrict:
561                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
562                         break;
563                 case Opt_session:
564                         if (match_int(args, &option))
565                                 return 0;
566                         uopt->session = option;
567                         if (!remount)
568                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
569                         break;
570                 case Opt_lastblock:
571                         if (match_int(args, &option))
572                                 return 0;
573                         uopt->lastblock = option;
574                         if (!remount)
575                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
576                         break;
577                 case Opt_anchor:
578                         if (match_int(args, &option))
579                                 return 0;
580                         uopt->anchor = option;
581                         break;
582                 case Opt_volume:
583                         if (match_int(args, &option))
584                                 return 0;
585                         uopt->volume = option;
586                         break;
587                 case Opt_partition:
588                         if (match_int(args, &option))
589                                 return 0;
590                         uopt->partition = option;
591                         break;
592                 case Opt_fileset:
593                         if (match_int(args, &option))
594                                 return 0;
595                         uopt->fileset = option;
596                         break;
597                 case Opt_rootdir:
598                         if (match_int(args, &option))
599                                 return 0;
600                         uopt->rootdir = option;
601                         break;
602                 case Opt_utf8:
603                         uopt->flags |= (1 << UDF_FLAG_UTF8);
604                         break;
605 #ifdef CONFIG_UDF_NLS
606                 case Opt_iocharset:
607                         uopt->nls_map = load_nls(args[0].from);
608                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
609                         break;
610 #endif
611                 case Opt_uignore:
612                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
613                         break;
614                 case Opt_uforget:
615                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
616                         break;
617                 case Opt_gignore:
618                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
619                         break;
620                 case Opt_gforget:
621                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
622                         break;
623                 case Opt_fmode:
624                         if (match_octal(args, &option))
625                                 return 0;
626                         uopt->fmode = option & 0777;
627                         break;
628                 case Opt_dmode:
629                         if (match_octal(args, &option))
630                                 return 0;
631                         uopt->dmode = option & 0777;
632                         break;
633                 default:
634                         pr_err("bad mount option \"%s\" or missing value\n", p);
635                         return 0;
636                 }
637         }
638         return 1;
639 }
640 
641 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
642 {
643         struct udf_options uopt;
644         struct udf_sb_info *sbi = UDF_SB(sb);
645         int error = 0;
646         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
647 
648         sync_filesystem(sb);
649         if (lvidiu) {
650                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652                         return -EACCES;
653         }
654 
655         uopt.flags = sbi->s_flags;
656         uopt.uid   = sbi->s_uid;
657         uopt.gid   = sbi->s_gid;
658         uopt.umask = sbi->s_umask;
659         uopt.fmode = sbi->s_fmode;
660         uopt.dmode = sbi->s_dmode;
661 
662         if (!udf_parse_options(options, &uopt, true))
663                 return -EINVAL;
664 
665         write_lock(&sbi->s_cred_lock);
666         sbi->s_flags = uopt.flags;
667         sbi->s_uid   = uopt.uid;
668         sbi->s_gid   = uopt.gid;
669         sbi->s_umask = uopt.umask;
670         sbi->s_fmode = uopt.fmode;
671         sbi->s_dmode = uopt.dmode;
672         write_unlock(&sbi->s_cred_lock);
673 
674         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675                 goto out_unlock;
676 
677         if (*flags & MS_RDONLY)
678                 udf_close_lvid(sb);
679         else
680                 udf_open_lvid(sb);
681 
682 out_unlock:
683         return error;
684 }
685 
686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688 static loff_t udf_check_vsd(struct super_block *sb)
689 {
690         struct volStructDesc *vsd = NULL;
691         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692         int sectorsize;
693         struct buffer_head *bh = NULL;
694         int nsr02 = 0;
695         int nsr03 = 0;
696         struct udf_sb_info *sbi;
697 
698         sbi = UDF_SB(sb);
699         if (sb->s_blocksize < sizeof(struct volStructDesc))
700                 sectorsize = sizeof(struct volStructDesc);
701         else
702                 sectorsize = sb->s_blocksize;
703 
704         sector += (sbi->s_session << sb->s_blocksize_bits);
705 
706         udf_debug("Starting at sector %u (%ld byte sectors)\n",
707                   (unsigned int)(sector >> sb->s_blocksize_bits),
708                   sb->s_blocksize);
709         /* Process the sequence (if applicable). The hard limit on the sector
710          * offset is arbitrary, hopefully large enough so that all valid UDF
711          * filesystems will be recognised. There is no mention of an upper
712          * bound to the size of the volume recognition area in the standard.
713          *  The limit will prevent the code to read all the sectors of a
714          * specially crafted image (like a bluray disc full of CD001 sectors),
715          * potentially causing minutes or even hours of uninterruptible I/O
716          * activity. This actually happened with uninitialised SSD partitions
717          * (all 0xFF) before the check for the limit and all valid IDs were
718          * added */
719         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720              sector += sectorsize) {
721                 /* Read a block */
722                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723                 if (!bh)
724                         break;
725 
726                 /* Look for ISO  descriptors */
727                 vsd = (struct volStructDesc *)(bh->b_data +
728                                               (sector & (sb->s_blocksize - 1)));
729 
730                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731                                     VSD_STD_ID_LEN)) {
732                         switch (vsd->structType) {
733                         case 0:
734                                 udf_debug("ISO9660 Boot Record found\n");
735                                 break;
736                         case 1:
737                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
738                                 break;
739                         case 2:
740                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741                                 break;
742                         case 3:
743                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
744                                 break;
745                         case 255:
746                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747                                 break;
748                         default:
749                                 udf_debug("ISO9660 VRS (%u) found\n",
750                                           vsd->structType);
751                                 break;
752                         }
753                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754                                     VSD_STD_ID_LEN))
755                         ; /* nothing */
756                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757                                     VSD_STD_ID_LEN)) {
758                         brelse(bh);
759                         break;
760                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761                                     VSD_STD_ID_LEN))
762                         nsr02 = sector;
763                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764                                     VSD_STD_ID_LEN))
765                         nsr03 = sector;
766                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767                                     VSD_STD_ID_LEN))
768                         ; /* nothing */
769                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770                                     VSD_STD_ID_LEN))
771                         ; /* nothing */
772                 else {
773                         /* invalid id : end of volume recognition area */
774                         brelse(bh);
775                         break;
776                 }
777                 brelse(bh);
778         }
779 
780         if (nsr03)
781                 return nsr03;
782         else if (nsr02)
783                 return nsr02;
784         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785                         VSD_FIRST_SECTOR_OFFSET)
786                 return -1;
787         else
788                 return 0;
789 }
790 
791 static int udf_find_fileset(struct super_block *sb,
792                             struct kernel_lb_addr *fileset,
793                             struct kernel_lb_addr *root)
794 {
795         struct buffer_head *bh = NULL;
796         long lastblock;
797         uint16_t ident;
798         struct udf_sb_info *sbi;
799 
800         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801             fileset->partitionReferenceNum != 0xFFFF) {
802                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
803 
804                 if (!bh) {
805                         return 1;
806                 } else if (ident != TAG_IDENT_FSD) {
807                         brelse(bh);
808                         return 1;
809                 }
810 
811         }
812 
813         sbi = UDF_SB(sb);
814         if (!bh) {
815                 /* Search backwards through the partitions */
816                 struct kernel_lb_addr newfileset;
817 
818 /* --> cvg: FIXME - is it reasonable? */
819                 return 1;
820 
821                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822                      (newfileset.partitionReferenceNum != 0xFFFF &&
823                       fileset->logicalBlockNum == 0xFFFFFFFF &&
824                       fileset->partitionReferenceNum == 0xFFFF);
825                      newfileset.partitionReferenceNum--) {
826                         lastblock = sbi->s_partmaps
827                                         [newfileset.partitionReferenceNum]
828                                                 .s_partition_len;
829                         newfileset.logicalBlockNum = 0;
830 
831                         do {
832                                 bh = udf_read_ptagged(sb, &newfileset, 0,
833                                                       &ident);
834                                 if (!bh) {
835                                         newfileset.logicalBlockNum++;
836                                         continue;
837                                 }
838 
839                                 switch (ident) {
840                                 case TAG_IDENT_SBD:
841                                 {
842                                         struct spaceBitmapDesc *sp;
843                                         sp = (struct spaceBitmapDesc *)
844                                                                 bh->b_data;
845                                         newfileset.logicalBlockNum += 1 +
846                                                 ((le32_to_cpu(sp->numOfBytes) +
847                                                   sizeof(struct spaceBitmapDesc)
848                                                   - 1) >> sb->s_blocksize_bits);
849                                         brelse(bh);
850                                         break;
851                                 }
852                                 case TAG_IDENT_FSD:
853                                         *fileset = newfileset;
854                                         break;
855                                 default:
856                                         newfileset.logicalBlockNum++;
857                                         brelse(bh);
858                                         bh = NULL;
859                                         break;
860                                 }
861                         } while (newfileset.logicalBlockNum < lastblock &&
862                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
863                                  fileset->partitionReferenceNum == 0xFFFF);
864                 }
865         }
866 
867         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868              fileset->partitionReferenceNum != 0xFFFF) && bh) {
869                 udf_debug("Fileset at block=%d, partition=%d\n",
870                           fileset->logicalBlockNum,
871                           fileset->partitionReferenceNum);
872 
873                 sbi->s_partition = fileset->partitionReferenceNum;
874                 udf_load_fileset(sb, bh, root);
875                 brelse(bh);
876                 return 0;
877         }
878         return 1;
879 }
880 
881 /*
882  * Load primary Volume Descriptor Sequence
883  *
884  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885  * should be tried.
886  */
887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888 {
889         struct primaryVolDesc *pvoldesc;
890         uint8_t *outstr;
891         struct buffer_head *bh;
892         uint16_t ident;
893         int ret = -ENOMEM;
894 
895         outstr = kmalloc(128, GFP_NOFS);
896         if (!outstr)
897                 return -ENOMEM;
898 
899         bh = udf_read_tagged(sb, block, block, &ident);
900         if (!bh) {
901                 ret = -EAGAIN;
902                 goto out2;
903         }
904 
905         if (ident != TAG_IDENT_PVD) {
906                 ret = -EIO;
907                 goto out_bh;
908         }
909 
910         pvoldesc = (struct primaryVolDesc *)bh->b_data;
911 
912         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
913                               pvoldesc->recordingDateAndTime)) {
914 #ifdef UDFFS_DEBUG
915                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
916                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
917                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
918                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
919 #endif
920         }
921 
922         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
923         if (ret < 0)
924                 goto out_bh;
925 
926         strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
927         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
928 
929         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
930         if (ret < 0)
931                 goto out_bh;
932 
933         outstr[ret] = 0;
934         udf_debug("volSetIdent[] = '%s'\n", outstr);
935 
936         ret = 0;
937 out_bh:
938         brelse(bh);
939 out2:
940         kfree(outstr);
941         return ret;
942 }
943 
944 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
945                                         u32 meta_file_loc, u32 partition_num)
946 {
947         struct kernel_lb_addr addr;
948         struct inode *metadata_fe;
949 
950         addr.logicalBlockNum = meta_file_loc;
951         addr.partitionReferenceNum = partition_num;
952 
953         metadata_fe = udf_iget_special(sb, &addr);
954 
955         if (IS_ERR(metadata_fe)) {
956                 udf_warn(sb, "metadata inode efe not found\n");
957                 return metadata_fe;
958         }
959         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
960                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
961                 iput(metadata_fe);
962                 return ERR_PTR(-EIO);
963         }
964 
965         return metadata_fe;
966 }
967 
968 static int udf_load_metadata_files(struct super_block *sb, int partition)
969 {
970         struct udf_sb_info *sbi = UDF_SB(sb);
971         struct udf_part_map *map;
972         struct udf_meta_data *mdata;
973         struct kernel_lb_addr addr;
974         struct inode *fe;
975 
976         map = &sbi->s_partmaps[partition];
977         mdata = &map->s_type_specific.s_metadata;
978 
979         /* metadata address */
980         udf_debug("Metadata file location: block = %d part = %d\n",
981                   mdata->s_meta_file_loc, map->s_partition_num);
982 
983         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
984                                          map->s_partition_num);
985         if (IS_ERR(fe)) {
986                 /* mirror file entry */
987                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
988                           mdata->s_mirror_file_loc, map->s_partition_num);
989 
990                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
991                                                  map->s_partition_num);
992 
993                 if (IS_ERR(fe)) {
994                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
995                         return PTR_ERR(fe);
996                 }
997                 mdata->s_mirror_fe = fe;
998         } else
999                 mdata->s_metadata_fe = fe;
1000 
1001 
1002         /*
1003          * bitmap file entry
1004          * Note:
1005          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1006         */
1007         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1008                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1009                 addr.partitionReferenceNum = map->s_partition_num;
1010 
1011                 udf_debug("Bitmap file location: block = %d part = %d\n",
1012                           addr.logicalBlockNum, addr.partitionReferenceNum);
1013 
1014                 fe = udf_iget_special(sb, &addr);
1015                 if (IS_ERR(fe)) {
1016                         if (sb->s_flags & MS_RDONLY)
1017                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1018                         else {
1019                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1020                                 return PTR_ERR(fe);
1021                         }
1022                 } else
1023                         mdata->s_bitmap_fe = fe;
1024         }
1025 
1026         udf_debug("udf_load_metadata_files Ok\n");
1027         return 0;
1028 }
1029 
1030 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1031                              struct kernel_lb_addr *root)
1032 {
1033         struct fileSetDesc *fset;
1034 
1035         fset = (struct fileSetDesc *)bh->b_data;
1036 
1037         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1038 
1039         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1040 
1041         udf_debug("Rootdir at block=%d, partition=%d\n",
1042                   root->logicalBlockNum, root->partitionReferenceNum);
1043 }
1044 
1045 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1046 {
1047         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1048         return DIV_ROUND_UP(map->s_partition_len +
1049                             (sizeof(struct spaceBitmapDesc) << 3),
1050                             sb->s_blocksize * 8);
1051 }
1052 
1053 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1054 {
1055         struct udf_bitmap *bitmap;
1056         int nr_groups;
1057         int size;
1058 
1059         nr_groups = udf_compute_nr_groups(sb, index);
1060         size = sizeof(struct udf_bitmap) +
1061                 (sizeof(struct buffer_head *) * nr_groups);
1062 
1063         if (size <= PAGE_SIZE)
1064                 bitmap = kzalloc(size, GFP_KERNEL);
1065         else
1066                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1067 
1068         if (bitmap == NULL)
1069                 return NULL;
1070 
1071         bitmap->s_nr_groups = nr_groups;
1072         return bitmap;
1073 }
1074 
1075 static int udf_fill_partdesc_info(struct super_block *sb,
1076                 struct partitionDesc *p, int p_index)
1077 {
1078         struct udf_part_map *map;
1079         struct udf_sb_info *sbi = UDF_SB(sb);
1080         struct partitionHeaderDesc *phd;
1081 
1082         map = &sbi->s_partmaps[p_index];
1083 
1084         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1085         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1086 
1087         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1088                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1090                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1091         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1092                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1093         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1094                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1095 
1096         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1097                   p_index, map->s_partition_type,
1098                   map->s_partition_root, map->s_partition_len);
1099 
1100         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1101             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1102                 return 0;
1103 
1104         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1105         if (phd->unallocSpaceTable.extLength) {
1106                 struct kernel_lb_addr loc = {
1107                         .logicalBlockNum = le32_to_cpu(
1108                                 phd->unallocSpaceTable.extPosition),
1109                         .partitionReferenceNum = p_index,
1110                 };
1111                 struct inode *inode;
1112 
1113                 inode = udf_iget_special(sb, &loc);
1114                 if (IS_ERR(inode)) {
1115                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1116                                   p_index);
1117                         return PTR_ERR(inode);
1118                 }
1119                 map->s_uspace.s_table = inode;
1120                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1121                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1122                           p_index, map->s_uspace.s_table->i_ino);
1123         }
1124 
1125         if (phd->unallocSpaceBitmap.extLength) {
1126                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1127                 if (!bitmap)
1128                         return -ENOMEM;
1129                 map->s_uspace.s_bitmap = bitmap;
1130                 bitmap->s_extPosition = le32_to_cpu(
1131                                 phd->unallocSpaceBitmap.extPosition);
1132                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1133                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1134                           p_index, bitmap->s_extPosition);
1135         }
1136 
1137         if (phd->partitionIntegrityTable.extLength)
1138                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1139 
1140         if (phd->freedSpaceTable.extLength) {
1141                 struct kernel_lb_addr loc = {
1142                         .logicalBlockNum = le32_to_cpu(
1143                                 phd->freedSpaceTable.extPosition),
1144                         .partitionReferenceNum = p_index,
1145                 };
1146                 struct inode *inode;
1147 
1148                 inode = udf_iget_special(sb, &loc);
1149                 if (IS_ERR(inode)) {
1150                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1151                                   p_index);
1152                         return PTR_ERR(inode);
1153                 }
1154                 map->s_fspace.s_table = inode;
1155                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157                           p_index, map->s_fspace.s_table->i_ino);
1158         }
1159 
1160         if (phd->freedSpaceBitmap.extLength) {
1161                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162                 if (!bitmap)
1163                         return -ENOMEM;
1164                 map->s_fspace.s_bitmap = bitmap;
1165                 bitmap->s_extPosition = le32_to_cpu(
1166                                 phd->freedSpaceBitmap.extPosition);
1167                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169                           p_index, bitmap->s_extPosition);
1170         }
1171         return 0;
1172 }
1173 
1174 static void udf_find_vat_block(struct super_block *sb, int p_index,
1175                                int type1_index, sector_t start_block)
1176 {
1177         struct udf_sb_info *sbi = UDF_SB(sb);
1178         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179         sector_t vat_block;
1180         struct kernel_lb_addr ino;
1181         struct inode *inode;
1182 
1183         /*
1184          * VAT file entry is in the last recorded block. Some broken disks have
1185          * it a few blocks before so try a bit harder...
1186          */
1187         ino.partitionReferenceNum = type1_index;
1188         for (vat_block = start_block;
1189              vat_block >= map->s_partition_root &&
1190              vat_block >= start_block - 3; vat_block--) {
1191                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1192                 inode = udf_iget_special(sb, &ino);
1193                 if (!IS_ERR(inode)) {
1194                         sbi->s_vat_inode = inode;
1195                         break;
1196                 }
1197         }
1198 }
1199 
1200 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1201 {
1202         struct udf_sb_info *sbi = UDF_SB(sb);
1203         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1204         struct buffer_head *bh = NULL;
1205         struct udf_inode_info *vati;
1206         uint32_t pos;
1207         struct virtualAllocationTable20 *vat20;
1208         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1209 
1210         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1211         if (!sbi->s_vat_inode &&
1212             sbi->s_last_block != blocks - 1) {
1213                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1214                           (unsigned long)sbi->s_last_block,
1215                           (unsigned long)blocks - 1);
1216                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1217         }
1218         if (!sbi->s_vat_inode)
1219                 return -EIO;
1220 
1221         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1222                 map->s_type_specific.s_virtual.s_start_offset = 0;
1223                 map->s_type_specific.s_virtual.s_num_entries =
1224                         (sbi->s_vat_inode->i_size - 36) >> 2;
1225         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1226                 vati = UDF_I(sbi->s_vat_inode);
1227                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1228                         pos = udf_block_map(sbi->s_vat_inode, 0);
1229                         bh = sb_bread(sb, pos);
1230                         if (!bh)
1231                                 return -EIO;
1232                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1233                 } else {
1234                         vat20 = (struct virtualAllocationTable20 *)
1235                                                         vati->i_ext.i_data;
1236                 }
1237 
1238                 map->s_type_specific.s_virtual.s_start_offset =
1239                         le16_to_cpu(vat20->lengthHeader);
1240                 map->s_type_specific.s_virtual.s_num_entries =
1241                         (sbi->s_vat_inode->i_size -
1242                                 map->s_type_specific.s_virtual.
1243                                         s_start_offset) >> 2;
1244                 brelse(bh);
1245         }
1246         return 0;
1247 }
1248 
1249 /*
1250  * Load partition descriptor block
1251  *
1252  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1253  * sequence.
1254  */
1255 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1256 {
1257         struct buffer_head *bh;
1258         struct partitionDesc *p;
1259         struct udf_part_map *map;
1260         struct udf_sb_info *sbi = UDF_SB(sb);
1261         int i, type1_idx;
1262         uint16_t partitionNumber;
1263         uint16_t ident;
1264         int ret;
1265 
1266         bh = udf_read_tagged(sb, block, block, &ident);
1267         if (!bh)
1268                 return -EAGAIN;
1269         if (ident != TAG_IDENT_PD) {
1270                 ret = 0;
1271                 goto out_bh;
1272         }
1273 
1274         p = (struct partitionDesc *)bh->b_data;
1275         partitionNumber = le16_to_cpu(p->partitionNumber);
1276 
1277         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1278         for (i = 0; i < sbi->s_partitions; i++) {
1279                 map = &sbi->s_partmaps[i];
1280                 udf_debug("Searching map: (%d == %d)\n",
1281                           map->s_partition_num, partitionNumber);
1282                 if (map->s_partition_num == partitionNumber &&
1283                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1284                      map->s_partition_type == UDF_SPARABLE_MAP15))
1285                         break;
1286         }
1287 
1288         if (i >= sbi->s_partitions) {
1289                 udf_debug("Partition (%d) not found in partition map\n",
1290                           partitionNumber);
1291                 ret = 0;
1292                 goto out_bh;
1293         }
1294 
1295         ret = udf_fill_partdesc_info(sb, p, i);
1296         if (ret < 0)
1297                 goto out_bh;
1298 
1299         /*
1300          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1301          * PHYSICAL partitions are already set up
1302          */
1303         type1_idx = i;
1304 #ifdef UDFFS_DEBUG
1305         map = NULL; /* supress 'maybe used uninitialized' warning */
1306 #endif
1307         for (i = 0; i < sbi->s_partitions; i++) {
1308                 map = &sbi->s_partmaps[i];
1309 
1310                 if (map->s_partition_num == partitionNumber &&
1311                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1312                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1313                      map->s_partition_type == UDF_METADATA_MAP25))
1314                         break;
1315         }
1316 
1317         if (i >= sbi->s_partitions) {
1318                 ret = 0;
1319                 goto out_bh;
1320         }
1321 
1322         ret = udf_fill_partdesc_info(sb, p, i);
1323         if (ret < 0)
1324                 goto out_bh;
1325 
1326         if (map->s_partition_type == UDF_METADATA_MAP25) {
1327                 ret = udf_load_metadata_files(sb, i);
1328                 if (ret < 0) {
1329                         udf_err(sb, "error loading MetaData partition map %d\n",
1330                                 i);
1331                         goto out_bh;
1332                 }
1333         } else {
1334                 /*
1335                  * If we have a partition with virtual map, we don't handle
1336                  * writing to it (we overwrite blocks instead of relocating
1337                  * them).
1338                  */
1339                 if (!(sb->s_flags & MS_RDONLY)) {
1340                         ret = -EACCES;
1341                         goto out_bh;
1342                 }
1343                 ret = udf_load_vat(sb, i, type1_idx);
1344                 if (ret < 0)
1345                         goto out_bh;
1346         }
1347         ret = 0;
1348 out_bh:
1349         /* In case loading failed, we handle cleanup in udf_fill_super */
1350         brelse(bh);
1351         return ret;
1352 }
1353 
1354 static int udf_load_sparable_map(struct super_block *sb,
1355                                  struct udf_part_map *map,
1356                                  struct sparablePartitionMap *spm)
1357 {
1358         uint32_t loc;
1359         uint16_t ident;
1360         struct sparingTable *st;
1361         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1362         int i;
1363         struct buffer_head *bh;
1364 
1365         map->s_partition_type = UDF_SPARABLE_MAP15;
1366         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1367         if (!is_power_of_2(sdata->s_packet_len)) {
1368                 udf_err(sb, "error loading logical volume descriptor: "
1369                         "Invalid packet length %u\n",
1370                         (unsigned)sdata->s_packet_len);
1371                 return -EIO;
1372         }
1373         if (spm->numSparingTables > 4) {
1374                 udf_err(sb, "error loading logical volume descriptor: "
1375                         "Too many sparing tables (%d)\n",
1376                         (int)spm->numSparingTables);
1377                 return -EIO;
1378         }
1379 
1380         for (i = 0; i < spm->numSparingTables; i++) {
1381                 loc = le32_to_cpu(spm->locSparingTable[i]);
1382                 bh = udf_read_tagged(sb, loc, loc, &ident);
1383                 if (!bh)
1384                         continue;
1385 
1386                 st = (struct sparingTable *)bh->b_data;
1387                 if (ident != 0 ||
1388                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1389                             strlen(UDF_ID_SPARING)) ||
1390                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1391                                                         sb->s_blocksize) {
1392                         brelse(bh);
1393                         continue;
1394                 }
1395 
1396                 sdata->s_spar_map[i] = bh;
1397         }
1398         map->s_partition_func = udf_get_pblock_spar15;
1399         return 0;
1400 }
1401 
1402 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1403                                struct kernel_lb_addr *fileset)
1404 {
1405         struct logicalVolDesc *lvd;
1406         int i, offset;
1407         uint8_t type;
1408         struct udf_sb_info *sbi = UDF_SB(sb);
1409         struct genericPartitionMap *gpm;
1410         uint16_t ident;
1411         struct buffer_head *bh;
1412         unsigned int table_len;
1413         int ret;
1414 
1415         bh = udf_read_tagged(sb, block, block, &ident);
1416         if (!bh)
1417                 return -EAGAIN;
1418         BUG_ON(ident != TAG_IDENT_LVD);
1419         lvd = (struct logicalVolDesc *)bh->b_data;
1420         table_len = le32_to_cpu(lvd->mapTableLength);
1421         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1422                 udf_err(sb, "error loading logical volume descriptor: "
1423                         "Partition table too long (%u > %lu)\n", table_len,
1424                         sb->s_blocksize - sizeof(*lvd));
1425                 ret = -EIO;
1426                 goto out_bh;
1427         }
1428 
1429         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1430         if (ret)
1431                 goto out_bh;
1432 
1433         for (i = 0, offset = 0;
1434              i < sbi->s_partitions && offset < table_len;
1435              i++, offset += gpm->partitionMapLength) {
1436                 struct udf_part_map *map = &sbi->s_partmaps[i];
1437                 gpm = (struct genericPartitionMap *)
1438                                 &(lvd->partitionMaps[offset]);
1439                 type = gpm->partitionMapType;
1440                 if (type == 1) {
1441                         struct genericPartitionMap1 *gpm1 =
1442                                 (struct genericPartitionMap1 *)gpm;
1443                         map->s_partition_type = UDF_TYPE1_MAP15;
1444                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1445                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1446                         map->s_partition_func = NULL;
1447                 } else if (type == 2) {
1448                         struct udfPartitionMap2 *upm2 =
1449                                                 (struct udfPartitionMap2 *)gpm;
1450                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1451                                                 strlen(UDF_ID_VIRTUAL))) {
1452                                 u16 suf =
1453                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1454                                                         identSuffix)[0]);
1455                                 if (suf < 0x0200) {
1456                                         map->s_partition_type =
1457                                                         UDF_VIRTUAL_MAP15;
1458                                         map->s_partition_func =
1459                                                         udf_get_pblock_virt15;
1460                                 } else {
1461                                         map->s_partition_type =
1462                                                         UDF_VIRTUAL_MAP20;
1463                                         map->s_partition_func =
1464                                                         udf_get_pblock_virt20;
1465                                 }
1466                         } else if (!strncmp(upm2->partIdent.ident,
1467                                                 UDF_ID_SPARABLE,
1468                                                 strlen(UDF_ID_SPARABLE))) {
1469                                 ret = udf_load_sparable_map(sb, map,
1470                                         (struct sparablePartitionMap *)gpm);
1471                                 if (ret < 0)
1472                                         goto out_bh;
1473                         } else if (!strncmp(upm2->partIdent.ident,
1474                                                 UDF_ID_METADATA,
1475                                                 strlen(UDF_ID_METADATA))) {
1476                                 struct udf_meta_data *mdata =
1477                                         &map->s_type_specific.s_metadata;
1478                                 struct metadataPartitionMap *mdm =
1479                                                 (struct metadataPartitionMap *)
1480                                                 &(lvd->partitionMaps[offset]);
1481                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1482                                           i, type, UDF_ID_METADATA);
1483 
1484                                 map->s_partition_type = UDF_METADATA_MAP25;
1485                                 map->s_partition_func = udf_get_pblock_meta25;
1486 
1487                                 mdata->s_meta_file_loc   =
1488                                         le32_to_cpu(mdm->metadataFileLoc);
1489                                 mdata->s_mirror_file_loc =
1490                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1491                                 mdata->s_bitmap_file_loc =
1492                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1493                                 mdata->s_alloc_unit_size =
1494                                         le32_to_cpu(mdm->allocUnitSize);
1495                                 mdata->s_align_unit_size =
1496                                         le16_to_cpu(mdm->alignUnitSize);
1497                                 if (mdm->flags & 0x01)
1498                                         mdata->s_flags |= MF_DUPLICATE_MD;
1499 
1500                                 udf_debug("Metadata Ident suffix=0x%x\n",
1501                                           le16_to_cpu(*(__le16 *)
1502                                                       mdm->partIdent.identSuffix));
1503                                 udf_debug("Metadata part num=%d\n",
1504                                           le16_to_cpu(mdm->partitionNum));
1505                                 udf_debug("Metadata part alloc unit size=%d\n",
1506                                           le32_to_cpu(mdm->allocUnitSize));
1507                                 udf_debug("Metadata file loc=%d\n",
1508                                           le32_to_cpu(mdm->metadataFileLoc));
1509                                 udf_debug("Mirror file loc=%d\n",
1510                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1511                                 udf_debug("Bitmap file loc=%d\n",
1512                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1513                                 udf_debug("Flags: %d %d\n",
1514                                           mdata->s_flags, mdm->flags);
1515                         } else {
1516                                 udf_debug("Unknown ident: %s\n",
1517                                           upm2->partIdent.ident);
1518                                 continue;
1519                         }
1520                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1521                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1522                 }
1523                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1524                           i, map->s_partition_num, type, map->s_volumeseqnum);
1525         }
1526 
1527         if (fileset) {
1528                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1529 
1530                 *fileset = lelb_to_cpu(la->extLocation);
1531                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1532                           fileset->logicalBlockNum,
1533                           fileset->partitionReferenceNum);
1534         }
1535         if (lvd->integritySeqExt.extLength)
1536                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1537         ret = 0;
1538 out_bh:
1539         brelse(bh);
1540         return ret;
1541 }
1542 
1543 /*
1544  * udf_load_logicalvolint
1545  *
1546  */
1547 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1548 {
1549         struct buffer_head *bh = NULL;
1550         uint16_t ident;
1551         struct udf_sb_info *sbi = UDF_SB(sb);
1552         struct logicalVolIntegrityDesc *lvid;
1553 
1554         while (loc.extLength > 0 &&
1555                (bh = udf_read_tagged(sb, loc.extLocation,
1556                                      loc.extLocation, &ident)) &&
1557                ident == TAG_IDENT_LVID) {
1558                 sbi->s_lvid_bh = bh;
1559                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1560 
1561                 if (lvid->nextIntegrityExt.extLength)
1562                         udf_load_logicalvolint(sb,
1563                                 leea_to_cpu(lvid->nextIntegrityExt));
1564 
1565                 if (sbi->s_lvid_bh != bh)
1566                         brelse(bh);
1567                 loc.extLength -= sb->s_blocksize;
1568                 loc.extLocation++;
1569         }
1570         if (sbi->s_lvid_bh != bh)
1571                 brelse(bh);
1572 }
1573 
1574 /*
1575  * Maximum number of Terminating Descriptor redirections. The chosen number is
1576  * arbitrary - just that we hopefully don't limit any real use of rewritten
1577  * inode on write-once media but avoid looping for too long on corrupted media.
1578  */
1579 #define UDF_MAX_TD_NESTING 64
1580 
1581 /*
1582  * Process a main/reserve volume descriptor sequence.
1583  *   @block             First block of first extent of the sequence.
1584  *   @lastblock         Lastblock of first extent of the sequence.
1585  *   @fileset           There we store extent containing root fileset
1586  *
1587  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1588  * sequence
1589  */
1590 static noinline int udf_process_sequence(
1591                 struct super_block *sb,
1592                 sector_t block, sector_t lastblock,
1593                 struct kernel_lb_addr *fileset)
1594 {
1595         struct buffer_head *bh = NULL;
1596         struct udf_vds_record vds[VDS_POS_LENGTH];
1597         struct udf_vds_record *curr;
1598         struct generic_desc *gd;
1599         struct volDescPtr *vdp;
1600         bool done = false;
1601         uint32_t vdsn;
1602         uint16_t ident;
1603         long next_s = 0, next_e = 0;
1604         int ret;
1605         unsigned int indirections = 0;
1606 
1607         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1608 
1609         /*
1610          * Read the main descriptor sequence and find which descriptors
1611          * are in it.
1612          */
1613         for (; (!done && block <= lastblock); block++) {
1614 
1615                 bh = udf_read_tagged(sb, block, block, &ident);
1616                 if (!bh) {
1617                         udf_err(sb,
1618                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1619                                 (unsigned long long)block);
1620                         return -EAGAIN;
1621                 }
1622 
1623                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1624                 gd = (struct generic_desc *)bh->b_data;
1625                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1626                 switch (ident) {
1627                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1629                         if (vdsn >= curr->volDescSeqNum) {
1630                                 curr->volDescSeqNum = vdsn;
1631                                 curr->block = block;
1632                         }
1633                         break;
1634                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1635                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1636                         if (vdsn >= curr->volDescSeqNum) {
1637                                 curr->volDescSeqNum = vdsn;
1638                                 curr->block = block;
1639 
1640                                 vdp = (struct volDescPtr *)bh->b_data;
1641                                 next_s = le32_to_cpu(
1642                                         vdp->nextVolDescSeqExt.extLocation);
1643                                 next_e = le32_to_cpu(
1644                                         vdp->nextVolDescSeqExt.extLength);
1645                                 next_e = next_e >> sb->s_blocksize_bits;
1646                                 next_e += next_s;
1647                         }
1648                         break;
1649                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1651                         if (vdsn >= curr->volDescSeqNum) {
1652                                 curr->volDescSeqNum = vdsn;
1653                                 curr->block = block;
1654                         }
1655                         break;
1656                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657                         curr = &vds[VDS_POS_PARTITION_DESC];
1658                         if (!curr->block)
1659                                 curr->block = block;
1660                         break;
1661                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1663                         if (vdsn >= curr->volDescSeqNum) {
1664                                 curr->volDescSeqNum = vdsn;
1665                                 curr->block = block;
1666                         }
1667                         break;
1668                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1669                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1670                         if (vdsn >= curr->volDescSeqNum) {
1671                                 curr->volDescSeqNum = vdsn;
1672                                 curr->block = block;
1673                         }
1674                         break;
1675                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1676                         if (++indirections > UDF_MAX_TD_NESTING) {
1677                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1678                                 brelse(bh);
1679                                 return -EIO;
1680                         }
1681 
1682                         vds[VDS_POS_TERMINATING_DESC].block = block;
1683                         if (next_e) {
1684                                 block = next_s;
1685                                 lastblock = next_e;
1686                                 next_s = next_e = 0;
1687                         } else
1688                                 done = true;
1689                         break;
1690                 }
1691                 brelse(bh);
1692         }
1693         /*
1694          * Now read interesting descriptors again and process them
1695          * in a suitable order
1696          */
1697         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1698                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1699                 return -EAGAIN;
1700         }
1701         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1702         if (ret < 0)
1703                 return ret;
1704 
1705         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1706                 ret = udf_load_logicalvol(sb,
1707                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1708                                           fileset);
1709                 if (ret < 0)
1710                         return ret;
1711         }
1712 
1713         if (vds[VDS_POS_PARTITION_DESC].block) {
1714                 /*
1715                  * We rescan the whole descriptor sequence to find
1716                  * partition descriptor blocks and process them.
1717                  */
1718                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1719                      block < vds[VDS_POS_TERMINATING_DESC].block;
1720                      block++) {
1721                         ret = udf_load_partdesc(sb, block);
1722                         if (ret < 0)
1723                                 return ret;
1724                 }
1725         }
1726 
1727         return 0;
1728 }
1729 
1730 /*
1731  * Load Volume Descriptor Sequence described by anchor in bh
1732  *
1733  * Returns <0 on error, 0 on success
1734  */
1735 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1736                              struct kernel_lb_addr *fileset)
1737 {
1738         struct anchorVolDescPtr *anchor;
1739         sector_t main_s, main_e, reserve_s, reserve_e;
1740         int ret;
1741 
1742         anchor = (struct anchorVolDescPtr *)bh->b_data;
1743 
1744         /* Locate the main sequence */
1745         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1746         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1747         main_e = main_e >> sb->s_blocksize_bits;
1748         main_e += main_s;
1749 
1750         /* Locate the reserve sequence */
1751         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1752         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1753         reserve_e = reserve_e >> sb->s_blocksize_bits;
1754         reserve_e += reserve_s;
1755 
1756         /* Process the main & reserve sequences */
1757         /* responsible for finding the PartitionDesc(s) */
1758         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1759         if (ret != -EAGAIN)
1760                 return ret;
1761         udf_sb_free_partitions(sb);
1762         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1763         if (ret < 0) {
1764                 udf_sb_free_partitions(sb);
1765                 /* No sequence was OK, return -EIO */
1766                 if (ret == -EAGAIN)
1767                         ret = -EIO;
1768         }
1769         return ret;
1770 }
1771 
1772 /*
1773  * Check whether there is an anchor block in the given block and
1774  * load Volume Descriptor Sequence if so.
1775  *
1776  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1777  * block
1778  */
1779 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1780                                   struct kernel_lb_addr *fileset)
1781 {
1782         struct buffer_head *bh;
1783         uint16_t ident;
1784         int ret;
1785 
1786         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1787             udf_fixed_to_variable(block) >=
1788             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1789                 return -EAGAIN;
1790 
1791         bh = udf_read_tagged(sb, block, block, &ident);
1792         if (!bh)
1793                 return -EAGAIN;
1794         if (ident != TAG_IDENT_AVDP) {
1795                 brelse(bh);
1796                 return -EAGAIN;
1797         }
1798         ret = udf_load_sequence(sb, bh, fileset);
1799         brelse(bh);
1800         return ret;
1801 }
1802 
1803 /*
1804  * Search for an anchor volume descriptor pointer.
1805  *
1806  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1807  * of anchors.
1808  */
1809 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1810                             struct kernel_lb_addr *fileset)
1811 {
1812         sector_t last[6];
1813         int i;
1814         struct udf_sb_info *sbi = UDF_SB(sb);
1815         int last_count = 0;
1816         int ret;
1817 
1818         /* First try user provided anchor */
1819         if (sbi->s_anchor) {
1820                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1821                 if (ret != -EAGAIN)
1822                         return ret;
1823         }
1824         /*
1825          * according to spec, anchor is in either:
1826          *     block 256
1827          *     lastblock-256
1828          *     lastblock
1829          *  however, if the disc isn't closed, it could be 512.
1830          */
1831         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1832         if (ret != -EAGAIN)
1833                 return ret;
1834         /*
1835          * The trouble is which block is the last one. Drives often misreport
1836          * this so we try various possibilities.
1837          */
1838         last[last_count++] = *lastblock;
1839         if (*lastblock >= 1)
1840                 last[last_count++] = *lastblock - 1;
1841         last[last_count++] = *lastblock + 1;
1842         if (*lastblock >= 2)
1843                 last[last_count++] = *lastblock - 2;
1844         if (*lastblock >= 150)
1845                 last[last_count++] = *lastblock - 150;
1846         if (*lastblock >= 152)
1847                 last[last_count++] = *lastblock - 152;
1848 
1849         for (i = 0; i < last_count; i++) {
1850                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1851                                 sb->s_blocksize_bits)
1852                         continue;
1853                 ret = udf_check_anchor_block(sb, last[i], fileset);
1854                 if (ret != -EAGAIN) {
1855                         if (!ret)
1856                                 *lastblock = last[i];
1857                         return ret;
1858                 }
1859                 if (last[i] < 256)
1860                         continue;
1861                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1862                 if (ret != -EAGAIN) {
1863                         if (!ret)
1864                                 *lastblock = last[i];
1865                         return ret;
1866                 }
1867         }
1868 
1869         /* Finally try block 512 in case media is open */
1870         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1871 }
1872 
1873 /*
1874  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1875  * area specified by it. The function expects sbi->s_lastblock to be the last
1876  * block on the media.
1877  *
1878  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1879  * was not found.
1880  */
1881 static int udf_find_anchor(struct super_block *sb,
1882                            struct kernel_lb_addr *fileset)
1883 {
1884         struct udf_sb_info *sbi = UDF_SB(sb);
1885         sector_t lastblock = sbi->s_last_block;
1886         int ret;
1887 
1888         ret = udf_scan_anchors(sb, &lastblock, fileset);
1889         if (ret != -EAGAIN)
1890                 goto out;
1891 
1892         /* No anchor found? Try VARCONV conversion of block numbers */
1893         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1894         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1895         /* Firstly, we try to not convert number of the last block */
1896         ret = udf_scan_anchors(sb, &lastblock, fileset);
1897         if (ret != -EAGAIN)
1898                 goto out;
1899 
1900         lastblock = sbi->s_last_block;
1901         /* Secondly, we try with converted number of the last block */
1902         ret = udf_scan_anchors(sb, &lastblock, fileset);
1903         if (ret < 0) {
1904                 /* VARCONV didn't help. Clear it. */
1905                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1906         }
1907 out:
1908         if (ret == 0)
1909                 sbi->s_last_block = lastblock;
1910         return ret;
1911 }
1912 
1913 /*
1914  * Check Volume Structure Descriptor, find Anchor block and load Volume
1915  * Descriptor Sequence.
1916  *
1917  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1918  * block was not found.
1919  */
1920 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1921                         int silent, struct kernel_lb_addr *fileset)
1922 {
1923         struct udf_sb_info *sbi = UDF_SB(sb);
1924         loff_t nsr_off;
1925         int ret;
1926 
1927         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1928                 if (!silent)
1929                         udf_warn(sb, "Bad block size\n");
1930                 return -EINVAL;
1931         }
1932         sbi->s_last_block = uopt->lastblock;
1933         if (!uopt->novrs) {
1934                 /* Check that it is NSR02 compliant */
1935                 nsr_off = udf_check_vsd(sb);
1936                 if (!nsr_off) {
1937                         if (!silent)
1938                                 udf_warn(sb, "No VRS found\n");
1939                         return 0;
1940                 }
1941                 if (nsr_off == -1)
1942                         udf_debug("Failed to read sector at offset %d. "
1943                                   "Assuming open disc. Skipping validity "
1944                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1945                 if (!sbi->s_last_block)
1946                         sbi->s_last_block = udf_get_last_block(sb);
1947         } else {
1948                 udf_debug("Validity check skipped because of novrs option\n");
1949         }
1950 
1951         /* Look for anchor block and load Volume Descriptor Sequence */
1952         sbi->s_anchor = uopt->anchor;
1953         ret = udf_find_anchor(sb, fileset);
1954         if (ret < 0) {
1955                 if (!silent && ret == -EAGAIN)
1956                         udf_warn(sb, "No anchor found\n");
1957                 return ret;
1958         }
1959         return 0;
1960 }
1961 
1962 static void udf_open_lvid(struct super_block *sb)
1963 {
1964         struct udf_sb_info *sbi = UDF_SB(sb);
1965         struct buffer_head *bh = sbi->s_lvid_bh;
1966         struct logicalVolIntegrityDesc *lvid;
1967         struct logicalVolIntegrityDescImpUse *lvidiu;
1968 
1969         if (!bh)
1970                 return;
1971         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972         lvidiu = udf_sb_lvidiu(sb);
1973         if (!lvidiu)
1974                 return;
1975 
1976         mutex_lock(&sbi->s_alloc_mutex);
1977         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1980                                 CURRENT_TIME);
1981         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1982 
1983         lvid->descTag.descCRC = cpu_to_le16(
1984                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1985                         le16_to_cpu(lvid->descTag.descCRCLength)));
1986 
1987         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988         mark_buffer_dirty(bh);
1989         sbi->s_lvid_dirty = 0;
1990         mutex_unlock(&sbi->s_alloc_mutex);
1991         /* Make opening of filesystem visible on the media immediately */
1992         sync_dirty_buffer(bh);
1993 }
1994 
1995 static void udf_close_lvid(struct super_block *sb)
1996 {
1997         struct udf_sb_info *sbi = UDF_SB(sb);
1998         struct buffer_head *bh = sbi->s_lvid_bh;
1999         struct logicalVolIntegrityDesc *lvid;
2000         struct logicalVolIntegrityDescImpUse *lvidiu;
2001 
2002         if (!bh)
2003                 return;
2004         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2005         lvidiu = udf_sb_lvidiu(sb);
2006         if (!lvidiu)
2007                 return;
2008 
2009         mutex_lock(&sbi->s_alloc_mutex);
2010         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2011         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2012         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2013         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2014                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2015         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2016                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2017         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2018                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2019         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2020 
2021         lvid->descTag.descCRC = cpu_to_le16(
2022                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2024 
2025         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026         /*
2027          * We set buffer uptodate unconditionally here to avoid spurious
2028          * warnings from mark_buffer_dirty() when previous EIO has marked
2029          * the buffer as !uptodate
2030          */
2031         set_buffer_uptodate(bh);
2032         mark_buffer_dirty(bh);
2033         sbi->s_lvid_dirty = 0;
2034         mutex_unlock(&sbi->s_alloc_mutex);
2035         /* Make closing of filesystem visible on the media immediately */
2036         sync_dirty_buffer(bh);
2037 }
2038 
2039 u64 lvid_get_unique_id(struct super_block *sb)
2040 {
2041         struct buffer_head *bh;
2042         struct udf_sb_info *sbi = UDF_SB(sb);
2043         struct logicalVolIntegrityDesc *lvid;
2044         struct logicalVolHeaderDesc *lvhd;
2045         u64 uniqueID;
2046         u64 ret;
2047 
2048         bh = sbi->s_lvid_bh;
2049         if (!bh)
2050                 return 0;
2051 
2052         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054 
2055         mutex_lock(&sbi->s_alloc_mutex);
2056         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057         if (!(++uniqueID & 0xFFFFFFFF))
2058                 uniqueID += 16;
2059         lvhd->uniqueID = cpu_to_le64(uniqueID);
2060         mutex_unlock(&sbi->s_alloc_mutex);
2061         mark_buffer_dirty(bh);
2062 
2063         return ret;
2064 }
2065 
2066 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067 {
2068         int ret = -EINVAL;
2069         struct inode *inode = NULL;
2070         struct udf_options uopt;
2071         struct kernel_lb_addr rootdir, fileset;
2072         struct udf_sb_info *sbi;
2073         bool lvid_open = false;
2074 
2075         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076         uopt.uid = INVALID_UID;
2077         uopt.gid = INVALID_GID;
2078         uopt.umask = 0;
2079         uopt.fmode = UDF_INVALID_MODE;
2080         uopt.dmode = UDF_INVALID_MODE;
2081 
2082         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2083         if (!sbi)
2084                 return -ENOMEM;
2085 
2086         sb->s_fs_info = sbi;
2087 
2088         mutex_init(&sbi->s_alloc_mutex);
2089 
2090         if (!udf_parse_options((char *)options, &uopt, false))
2091                 goto parse_options_failure;
2092 
2093         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2094             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2095                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2096                 goto parse_options_failure;
2097         }
2098 #ifdef CONFIG_UDF_NLS
2099         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2100                 uopt.nls_map = load_nls_default();
2101                 if (!uopt.nls_map)
2102                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2103                 else
2104                         udf_debug("Using default NLS map\n");
2105         }
2106 #endif
2107         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2109 
2110         fileset.logicalBlockNum = 0xFFFFFFFF;
2111         fileset.partitionReferenceNum = 0xFFFF;
2112 
2113         sbi->s_flags = uopt.flags;
2114         sbi->s_uid = uopt.uid;
2115         sbi->s_gid = uopt.gid;
2116         sbi->s_umask = uopt.umask;
2117         sbi->s_fmode = uopt.fmode;
2118         sbi->s_dmode = uopt.dmode;
2119         sbi->s_nls_map = uopt.nls_map;
2120         rwlock_init(&sbi->s_cred_lock);
2121 
2122         if (uopt.session == 0xFFFFFFFF)
2123                 sbi->s_session = udf_get_last_session(sb);
2124         else
2125                 sbi->s_session = uopt.session;
2126 
2127         udf_debug("Multi-session=%d\n", sbi->s_session);
2128 
2129         /* Fill in the rest of the superblock */
2130         sb->s_op = &udf_sb_ops;
2131         sb->s_export_op = &udf_export_ops;
2132 
2133         sb->s_magic = UDF_SUPER_MAGIC;
2134         sb->s_time_gran = 1000;
2135 
2136         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138         } else {
2139                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2141                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2142                         if (!silent)
2143                                 pr_notice("Rescanning with blocksize %d\n",
2144                                           UDF_DEFAULT_BLOCKSIZE);
2145                         brelse(sbi->s_lvid_bh);
2146                         sbi->s_lvid_bh = NULL;
2147                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2148                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2149                 }
2150         }
2151         if (ret < 0) {
2152                 if (ret == -EAGAIN) {
2153                         udf_warn(sb, "No partition found (1)\n");
2154                         ret = -EINVAL;
2155                 }
2156                 goto error_out;
2157         }
2158 
2159         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2160 
2161         if (sbi->s_lvid_bh) {
2162                 struct logicalVolIntegrityDescImpUse *lvidiu =
2163                                                         udf_sb_lvidiu(sb);
2164                 uint16_t minUDFReadRev;
2165                 uint16_t minUDFWriteRev;
2166 
2167                 if (!lvidiu) {
2168                         ret = -EINVAL;
2169                         goto error_out;
2170                 }
2171                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2172                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2173                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2174                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2175                                 minUDFReadRev,
2176                                 UDF_MAX_READ_VERSION);
2177                         ret = -EINVAL;
2178                         goto error_out;
2179                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2180                            !(sb->s_flags & MS_RDONLY)) {
2181                         ret = -EACCES;
2182                         goto error_out;
2183                 }
2184 
2185                 sbi->s_udfrev = minUDFWriteRev;
2186 
2187                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2188                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2189                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2190                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2191         }
2192 
2193         if (!sbi->s_partitions) {
2194                 udf_warn(sb, "No partition found (2)\n");
2195                 ret = -EINVAL;
2196                 goto error_out;
2197         }
2198 
2199         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2200                         UDF_PART_FLAG_READ_ONLY &&
2201             !(sb->s_flags & MS_RDONLY)) {
2202                 ret = -EACCES;
2203                 goto error_out;
2204         }
2205 
2206         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2207                 udf_warn(sb, "No fileset found\n");
2208                 ret = -EINVAL;
2209                 goto error_out;
2210         }
2211 
2212         if (!silent) {
2213                 struct timestamp ts;
2214                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2215                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2216                          sbi->s_volume_ident,
2217                          le16_to_cpu(ts.year), ts.month, ts.day,
2218                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2219         }
2220         if (!(sb->s_flags & MS_RDONLY)) {
2221                 udf_open_lvid(sb);
2222                 lvid_open = true;
2223         }
2224 
2225         /* Assign the root inode */
2226         /* assign inodes by physical block number */
2227         /* perhaps it's not extensible enough, but for now ... */
2228         inode = udf_iget(sb, &rootdir);
2229         if (IS_ERR(inode)) {
2230                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2231                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2232                 ret = PTR_ERR(inode);
2233                 goto error_out;
2234         }
2235 
2236         /* Allocate a dentry for the root inode */
2237         sb->s_root = d_make_root(inode);
2238         if (!sb->s_root) {
2239                 udf_err(sb, "Couldn't allocate root dentry\n");
2240                 ret = -ENOMEM;
2241                 goto error_out;
2242         }
2243         sb->s_maxbytes = MAX_LFS_FILESIZE;
2244         sb->s_max_links = UDF_MAX_LINKS;
2245         return 0;
2246 
2247 error_out:
2248         iput(sbi->s_vat_inode);
2249 parse_options_failure:
2250 #ifdef CONFIG_UDF_NLS
2251         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2252                 unload_nls(sbi->s_nls_map);
2253 #endif
2254         if (lvid_open)
2255                 udf_close_lvid(sb);
2256         brelse(sbi->s_lvid_bh);
2257         udf_sb_free_partitions(sb);
2258         kfree(sbi);
2259         sb->s_fs_info = NULL;
2260 
2261         return ret;
2262 }
2263 
2264 void _udf_err(struct super_block *sb, const char *function,
2265               const char *fmt, ...)
2266 {
2267         struct va_format vaf;
2268         va_list args;
2269 
2270         va_start(args, fmt);
2271 
2272         vaf.fmt = fmt;
2273         vaf.va = &args;
2274 
2275         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2276 
2277         va_end(args);
2278 }
2279 
2280 void _udf_warn(struct super_block *sb, const char *function,
2281                const char *fmt, ...)
2282 {
2283         struct va_format vaf;
2284         va_list args;
2285 
2286         va_start(args, fmt);
2287 
2288         vaf.fmt = fmt;
2289         vaf.va = &args;
2290 
2291         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2292 
2293         va_end(args);
2294 }
2295 
2296 static void udf_put_super(struct super_block *sb)
2297 {
2298         struct udf_sb_info *sbi;
2299 
2300         sbi = UDF_SB(sb);
2301 
2302         iput(sbi->s_vat_inode);
2303 #ifdef CONFIG_UDF_NLS
2304         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2305                 unload_nls(sbi->s_nls_map);
2306 #endif
2307         if (!(sb->s_flags & MS_RDONLY))
2308                 udf_close_lvid(sb);
2309         brelse(sbi->s_lvid_bh);
2310         udf_sb_free_partitions(sb);
2311         mutex_destroy(&sbi->s_alloc_mutex);
2312         kfree(sb->s_fs_info);
2313         sb->s_fs_info = NULL;
2314 }
2315 
2316 static int udf_sync_fs(struct super_block *sb, int wait)
2317 {
2318         struct udf_sb_info *sbi = UDF_SB(sb);
2319 
2320         mutex_lock(&sbi->s_alloc_mutex);
2321         if (sbi->s_lvid_dirty) {
2322                 /*
2323                  * Blockdevice will be synced later so we don't have to submit
2324                  * the buffer for IO
2325                  */
2326                 mark_buffer_dirty(sbi->s_lvid_bh);
2327                 sbi->s_lvid_dirty = 0;
2328         }
2329         mutex_unlock(&sbi->s_alloc_mutex);
2330 
2331         return 0;
2332 }
2333 
2334 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2335 {
2336         struct super_block *sb = dentry->d_sb;
2337         struct udf_sb_info *sbi = UDF_SB(sb);
2338         struct logicalVolIntegrityDescImpUse *lvidiu;
2339         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2340 
2341         lvidiu = udf_sb_lvidiu(sb);
2342         buf->f_type = UDF_SUPER_MAGIC;
2343         buf->f_bsize = sb->s_blocksize;
2344         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2345         buf->f_bfree = udf_count_free(sb);
2346         buf->f_bavail = buf->f_bfree;
2347         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2348                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2349                         + buf->f_bfree;
2350         buf->f_ffree = buf->f_bfree;
2351         buf->f_namelen = UDF_NAME_LEN;
2352         buf->f_fsid.val[0] = (u32)id;
2353         buf->f_fsid.val[1] = (u32)(id >> 32);
2354 
2355         return 0;
2356 }
2357 
2358 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2359                                           struct udf_bitmap *bitmap)
2360 {
2361         struct buffer_head *bh = NULL;
2362         unsigned int accum = 0;
2363         int index;
2364         int block = 0, newblock;
2365         struct kernel_lb_addr loc;
2366         uint32_t bytes;
2367         uint8_t *ptr;
2368         uint16_t ident;
2369         struct spaceBitmapDesc *bm;
2370 
2371         loc.logicalBlockNum = bitmap->s_extPosition;
2372         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2373         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2374 
2375         if (!bh) {
2376                 udf_err(sb, "udf_count_free failed\n");
2377                 goto out;
2378         } else if (ident != TAG_IDENT_SBD) {
2379                 brelse(bh);
2380                 udf_err(sb, "udf_count_free failed\n");
2381                 goto out;
2382         }
2383 
2384         bm = (struct spaceBitmapDesc *)bh->b_data;
2385         bytes = le32_to_cpu(bm->numOfBytes);
2386         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2387         ptr = (uint8_t *)bh->b_data;
2388 
2389         while (bytes > 0) {
2390                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2391                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2392                                         cur_bytes * 8);
2393                 bytes -= cur_bytes;
2394                 if (bytes) {
2395                         brelse(bh);
2396                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2397                         bh = udf_tread(sb, newblock);
2398                         if (!bh) {
2399                                 udf_debug("read failed\n");
2400                                 goto out;
2401                         }
2402                         index = 0;
2403                         ptr = (uint8_t *)bh->b_data;
2404                 }
2405         }
2406         brelse(bh);
2407 out:
2408         return accum;
2409 }
2410 
2411 static unsigned int udf_count_free_table(struct super_block *sb,
2412                                          struct inode *table)
2413 {
2414         unsigned int accum = 0;
2415         uint32_t elen;
2416         struct kernel_lb_addr eloc;
2417         int8_t etype;
2418         struct extent_position epos;
2419 
2420         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2421         epos.block = UDF_I(table)->i_location;
2422         epos.offset = sizeof(struct unallocSpaceEntry);
2423         epos.bh = NULL;
2424 
2425         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2426                 accum += (elen >> table->i_sb->s_blocksize_bits);
2427 
2428         brelse(epos.bh);
2429         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2430 
2431         return accum;
2432 }
2433 
2434 static unsigned int udf_count_free(struct super_block *sb)
2435 {
2436         unsigned int accum = 0;
2437         struct udf_sb_info *sbi;
2438         struct udf_part_map *map;
2439 
2440         sbi = UDF_SB(sb);
2441         if (sbi->s_lvid_bh) {
2442                 struct logicalVolIntegrityDesc *lvid =
2443                         (struct logicalVolIntegrityDesc *)
2444                         sbi->s_lvid_bh->b_data;
2445                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2446                         accum = le32_to_cpu(
2447                                         lvid->freeSpaceTable[sbi->s_partition]);
2448                         if (accum == 0xFFFFFFFF)
2449                                 accum = 0;
2450                 }
2451         }
2452 
2453         if (accum)
2454                 return accum;
2455 
2456         map = &sbi->s_partmaps[sbi->s_partition];
2457         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2458                 accum += udf_count_free_bitmap(sb,
2459                                                map->s_uspace.s_bitmap);
2460         }
2461         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2462                 accum += udf_count_free_bitmap(sb,
2463                                                map->s_fspace.s_bitmap);
2464         }
2465         if (accum)
2466                 return accum;
2467 
2468         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2469                 accum += udf_count_free_table(sb,
2470                                               map->s_uspace.s_table);
2471         }
2472         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2473                 accum += udf_count_free_table(sb,
2474                                               map->s_fspace.s_table);
2475         }
2476 
2477         return accum;
2478 }
2479 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us