Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/w1/masters/ds2490.c

  1 /*
  2  *      ds2490.c  USB to one wire bridge
  3  *
  4  * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
  5  *
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License as published by
  9  * the Free Software Foundation; either version 2 of the License, or
 10  * (at your option) any later version.
 11  *
 12  * This program is distributed in the hope that it will be useful,
 13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15  * GNU General Public License for more details.
 16  *
 17  * You should have received a copy of the GNU General Public License
 18  * along with this program; if not, write to the Free Software
 19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/kernel.h>
 24 #include <linux/mod_devicetable.h>
 25 #include <linux/usb.h>
 26 #include <linux/slab.h>
 27 
 28 #include "../w1_int.h"
 29 #include "../w1.h"
 30 
 31 /* USB Standard */
 32 /* USB Control request vendor type */
 33 #define VENDOR                          0x40
 34 
 35 /* COMMAND TYPE CODES */
 36 #define CONTROL_CMD                     0x00
 37 #define COMM_CMD                        0x01
 38 #define MODE_CMD                        0x02
 39 
 40 /* CONTROL COMMAND CODES */
 41 #define CTL_RESET_DEVICE                0x0000
 42 #define CTL_START_EXE                   0x0001
 43 #define CTL_RESUME_EXE                  0x0002
 44 #define CTL_HALT_EXE_IDLE               0x0003
 45 #define CTL_HALT_EXE_DONE               0x0004
 46 #define CTL_FLUSH_COMM_CMDS             0x0007
 47 #define CTL_FLUSH_RCV_BUFFER            0x0008
 48 #define CTL_FLUSH_XMT_BUFFER            0x0009
 49 #define CTL_GET_COMM_CMDS               0x000A
 50 
 51 /* MODE COMMAND CODES */
 52 #define MOD_PULSE_EN                    0x0000
 53 #define MOD_SPEED_CHANGE_EN             0x0001
 54 #define MOD_1WIRE_SPEED                 0x0002
 55 #define MOD_STRONG_PU_DURATION          0x0003
 56 #define MOD_PULLDOWN_SLEWRATE           0x0004
 57 #define MOD_PROG_PULSE_DURATION         0x0005
 58 #define MOD_WRITE1_LOWTIME              0x0006
 59 #define MOD_DSOW0_TREC                  0x0007
 60 
 61 /* COMMUNICATION COMMAND CODES */
 62 #define COMM_ERROR_ESCAPE               0x0601
 63 #define COMM_SET_DURATION               0x0012
 64 #define COMM_BIT_IO                     0x0020
 65 #define COMM_PULSE                      0x0030
 66 #define COMM_1_WIRE_RESET               0x0042
 67 #define COMM_BYTE_IO                    0x0052
 68 #define COMM_MATCH_ACCESS               0x0064
 69 #define COMM_BLOCK_IO                   0x0074
 70 #define COMM_READ_STRAIGHT              0x0080
 71 #define COMM_DO_RELEASE                 0x6092
 72 #define COMM_SET_PATH                   0x00A2
 73 #define COMM_WRITE_SRAM_PAGE            0x00B2
 74 #define COMM_WRITE_EPROM                0x00C4
 75 #define COMM_READ_CRC_PROT_PAGE         0x00D4
 76 #define COMM_READ_REDIRECT_PAGE_CRC     0x21E4
 77 #define COMM_SEARCH_ACCESS              0x00F4
 78 
 79 /* Communication command bits */
 80 #define COMM_TYPE                       0x0008
 81 #define COMM_SE                         0x0008
 82 #define COMM_D                          0x0008
 83 #define COMM_Z                          0x0008
 84 #define COMM_CH                         0x0008
 85 #define COMM_SM                         0x0008
 86 #define COMM_R                          0x0008
 87 #define COMM_IM                         0x0001
 88 
 89 #define COMM_PS                         0x4000
 90 #define COMM_PST                        0x4000
 91 #define COMM_CIB                        0x4000
 92 #define COMM_RTS                        0x4000
 93 #define COMM_DT                         0x2000
 94 #define COMM_SPU                        0x1000
 95 #define COMM_F                          0x0800
 96 #define COMM_NTF                        0x0400
 97 #define COMM_ICP                        0x0200
 98 #define COMM_RST                        0x0100
 99 
100 #define PULSE_PROG                      0x01
101 #define PULSE_SPUE                      0x02
102 
103 #define BRANCH_MAIN                     0xCC
104 #define BRANCH_AUX                      0x33
105 
106 /* Status flags */
107 #define ST_SPUA                         0x01  /* Strong Pull-up is active */
108 #define ST_PRGA                         0x02  /* 12V programming pulse is being generated */
109 #define ST_12VP                         0x04  /* external 12V programming voltage is present */
110 #define ST_PMOD                         0x08  /* DS2490 powered from USB and external sources */
111 #define ST_HALT                         0x10  /* DS2490 is currently halted */
112 #define ST_IDLE                         0x20  /* DS2490 is currently idle */
113 #define ST_EPOF                         0x80
114 /* Status transfer size, 16 bytes status, 16 byte result flags */
115 #define ST_SIZE                         0x20
116 
117 /* Result Register flags */
118 #define RR_DETECT                       0xA5 /* New device detected */
119 #define RR_NRS                          0x01 /* Reset no presence or ... */
120 #define RR_SH                           0x02 /* short on reset or set path */
121 #define RR_APP                          0x04 /* alarming presence on reset */
122 #define RR_VPP                          0x08 /* 12V expected not seen */
123 #define RR_CMP                          0x10 /* compare error */
124 #define RR_CRC                          0x20 /* CRC error detected */
125 #define RR_RDP                          0x40 /* redirected page */
126 #define RR_EOS                          0x80 /* end of search error */
127 
128 #define SPEED_NORMAL                    0x00
129 #define SPEED_FLEXIBLE                  0x01
130 #define SPEED_OVERDRIVE                 0x02
131 
132 #define NUM_EP                          4
133 #define EP_CONTROL                      0
134 #define EP_STATUS                       1
135 #define EP_DATA_OUT                     2
136 #define EP_DATA_IN                      3
137 
138 struct ds_device
139 {
140         struct list_head        ds_entry;
141 
142         struct usb_device       *udev;
143         struct usb_interface    *intf;
144 
145         int                     ep[NUM_EP];
146 
147         /* Strong PullUp
148          * 0: pullup not active, else duration in milliseconds
149          */
150         int                     spu_sleep;
151         /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
152          * should be active or not for writes.
153          */
154         u16                     spu_bit;
155 
156         struct w1_bus_master    master;
157 };
158 
159 struct ds_status
160 {
161         u8                      enable;
162         u8                      speed;
163         u8                      pullup_dur;
164         u8                      ppuls_dur;
165         u8                      pulldown_slew;
166         u8                      write1_time;
167         u8                      write0_time;
168         u8                      reserved0;
169         u8                      status;
170         u8                      command0;
171         u8                      command1;
172         u8                      command_buffer_status;
173         u8                      data_out_buffer_status;
174         u8                      data_in_buffer_status;
175         u8                      reserved1;
176         u8                      reserved2;
177 
178 };
179 
180 static struct usb_device_id ds_id_table [] = {
181         { USB_DEVICE(0x04fa, 0x2490) },
182         { },
183 };
184 MODULE_DEVICE_TABLE(usb, ds_id_table);
185 
186 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
187 static void ds_disconnect(struct usb_interface *);
188 
189 static int ds_send_control(struct ds_device *, u16, u16);
190 static int ds_send_control_cmd(struct ds_device *, u16, u16);
191 
192 static LIST_HEAD(ds_devices);
193 static DEFINE_MUTEX(ds_mutex);
194 
195 static struct usb_driver ds_driver = {
196         .name =         "DS9490R",
197         .probe =        ds_probe,
198         .disconnect =   ds_disconnect,
199         .id_table =     ds_id_table,
200 };
201 
202 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
203 {
204         int err;
205 
206         err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
207                         CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
208         if (err < 0) {
209                 printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
210                                 value, index, err);
211                 return err;
212         }
213 
214         return err;
215 }
216 
217 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
218 {
219         int err;
220 
221         err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
222                         MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
223         if (err < 0) {
224                 printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
225                                 value, index, err);
226                 return err;
227         }
228 
229         return err;
230 }
231 
232 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
233 {
234         int err;
235 
236         err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
237                         COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
238         if (err < 0) {
239                 printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
240                                 value, index, err);
241                 return err;
242         }
243 
244         return err;
245 }
246 
247 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
248                                  unsigned char *buf, int size)
249 {
250         int count, err;
251 
252         memset(st, 0, sizeof(*st));
253 
254         count = 0;
255         err = usb_interrupt_msg(dev->udev, usb_rcvintpipe(dev->udev,
256                 dev->ep[EP_STATUS]), buf, size, &count, 100);
257         if (err < 0) {
258                 printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
259                 return err;
260         }
261 
262         if (count >= sizeof(*st))
263                 memcpy(st, buf, sizeof(*st));
264 
265         return count;
266 }
267 
268 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
269 {
270         printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
271 }
272 
273 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
274 {
275         int i;
276 
277         printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
278         for (i=0; i<count; ++i)
279                 printk("%02x ", buf[i]);
280         printk(KERN_INFO "\n");
281 
282         if (count >= 16) {
283                 ds_print_msg(buf, "enable flag", 0);
284                 ds_print_msg(buf, "1-wire speed", 1);
285                 ds_print_msg(buf, "strong pullup duration", 2);
286                 ds_print_msg(buf, "programming pulse duration", 3);
287                 ds_print_msg(buf, "pulldown slew rate control", 4);
288                 ds_print_msg(buf, "write-1 low time", 5);
289                 ds_print_msg(buf, "data sample offset/write-0 recovery time",
290                         6);
291                 ds_print_msg(buf, "reserved (test register)", 7);
292                 ds_print_msg(buf, "device status flags", 8);
293                 ds_print_msg(buf, "communication command byte 1", 9);
294                 ds_print_msg(buf, "communication command byte 2", 10);
295                 ds_print_msg(buf, "communication command buffer status", 11);
296                 ds_print_msg(buf, "1-wire data output buffer status", 12);
297                 ds_print_msg(buf, "1-wire data input buffer status", 13);
298                 ds_print_msg(buf, "reserved", 14);
299                 ds_print_msg(buf, "reserved", 15);
300         }
301         for (i = 16; i < count; ++i) {
302                 if (buf[i] == RR_DETECT) {
303                         ds_print_msg(buf, "new device detect", i);
304                         continue;
305                 }
306                 ds_print_msg(buf, "Result Register Value: ", i);
307                 if (buf[i] & RR_NRS)
308                         printk(KERN_INFO "NRS: Reset no presence or ...\n");
309                 if (buf[i] & RR_SH)
310                         printk(KERN_INFO "SH: short on reset or set path\n");
311                 if (buf[i] & RR_APP)
312                         printk(KERN_INFO "APP: alarming presence on reset\n");
313                 if (buf[i] & RR_VPP)
314                         printk(KERN_INFO "VPP: 12V expected not seen\n");
315                 if (buf[i] & RR_CMP)
316                         printk(KERN_INFO "CMP: compare error\n");
317                 if (buf[i] & RR_CRC)
318                         printk(KERN_INFO "CRC: CRC error detected\n");
319                 if (buf[i] & RR_RDP)
320                         printk(KERN_INFO "RDP: redirected page\n");
321                 if (buf[i] & RR_EOS)
322                         printk(KERN_INFO "EOS: end of search error\n");
323         }
324 }
325 
326 static void ds_reset_device(struct ds_device *dev)
327 {
328         ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
329         /* Always allow strong pullup which allow individual writes to use
330          * the strong pullup.
331          */
332         if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
333                 printk(KERN_ERR "ds_reset_device: "
334                         "Error allowing strong pullup\n");
335         /* Chip strong pullup time was cleared. */
336         if (dev->spu_sleep) {
337                 /* lower 4 bits are 0, see ds_set_pullup */
338                 u8 del = dev->spu_sleep>>4;
339                 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
340                         printk(KERN_ERR "ds_reset_device: "
341                                 "Error setting duration\n");
342         }
343 }
344 
345 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
346 {
347         int count, err;
348         struct ds_status st;
349 
350         /* Careful on size.  If size is less than what is available in
351          * the input buffer, the device fails the bulk transfer and
352          * clears the input buffer.  It could read the maximum size of
353          * the data buffer, but then do you return the first, last, or
354          * some set of the middle size bytes?  As long as the rest of
355          * the code is correct there will be size bytes waiting.  A
356          * call to ds_wait_status will wait until the device is idle
357          * and any data to be received would have been available.
358          */
359         count = 0;
360         err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
361                                 buf, size, &count, 1000);
362         if (err < 0) {
363                 u8 buf[ST_SIZE];
364                 int count;
365 
366                 printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
367                 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
368 
369                 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
370                 ds_dump_status(dev, buf, count);
371                 return err;
372         }
373 
374 #if 0
375         {
376                 int i;
377 
378                 printk("%s: count=%d: ", __func__, count);
379                 for (i=0; i<count; ++i)
380                         printk("%02x ", buf[i]);
381                 printk("\n");
382         }
383 #endif
384         return count;
385 }
386 
387 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
388 {
389         int count, err;
390 
391         count = 0;
392         err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
393         if (err < 0) {
394                 printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
395                         "err=%d.\n", dev->ep[EP_DATA_OUT], err);
396                 return err;
397         }
398 
399         return err;
400 }
401 
402 #if 0
403 
404 int ds_stop_pulse(struct ds_device *dev, int limit)
405 {
406         struct ds_status st;
407         int count = 0, err = 0;
408         u8 buf[ST_SIZE];
409 
410         do {
411                 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
412                 if (err)
413                         break;
414                 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
415                 if (err)
416                         break;
417                 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
418                 if (err)
419                         break;
420 
421                 if ((st.status & ST_SPUA) == 0) {
422                         err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
423                         if (err)
424                                 break;
425                 }
426         } while(++count < limit);
427 
428         return err;
429 }
430 
431 int ds_detect(struct ds_device *dev, struct ds_status *st)
432 {
433         int err;
434 
435         err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
436         if (err)
437                 return err;
438 
439         err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
440         if (err)
441                 return err;
442 
443         err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
444         if (err)
445                 return err;
446 
447         err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
448         if (err)
449                 return err;
450 
451         err = ds_dump_status(dev, st);
452 
453         return err;
454 }
455 
456 #endif  /*  0  */
457 
458 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
459 {
460         u8 buf[ST_SIZE];
461         int err, count = 0;
462 
463         do {
464                 st->status = 0;
465                 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
466 #if 0
467                 if (err >= 0) {
468                         int i;
469                         printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
470                         for (i=0; i<err; ++i)
471                                 printk("%02x ", buf[i]);
472                         printk("\n");
473                 }
474 #endif
475         } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
476 
477         if (err >= 16 && st->status & ST_EPOF) {
478                 printk(KERN_INFO "Resetting device after ST_EPOF.\n");
479                 ds_reset_device(dev);
480                 /* Always dump the device status. */
481                 count = 101;
482         }
483 
484         /* Dump the status for errors or if there is extended return data.
485          * The extended status includes new device detection (maybe someone
486          * can do something with it).
487          */
488         if (err > 16 || count >= 100 || err < 0)
489                 ds_dump_status(dev, buf, err);
490 
491         /* Extended data isn't an error.  Well, a short is, but the dump
492          * would have already told the user that and we can't do anything
493          * about it in software anyway.
494          */
495         if (count >= 100 || err < 0)
496                 return -1;
497         else
498                 return 0;
499 }
500 
501 static int ds_reset(struct ds_device *dev)
502 {
503         int err;
504 
505         /* Other potentionally interesting flags for reset.
506          *
507          * COMM_NTF: Return result register feedback.  This could be used to
508          * detect some conditions such as short, alarming presence, or
509          * detect if a new device was detected.
510          *
511          * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
512          * Select the data transfer rate.
513          */
514         err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
515         if (err)
516                 return err;
517 
518         return 0;
519 }
520 
521 #if 0
522 static int ds_set_speed(struct ds_device *dev, int speed)
523 {
524         int err;
525 
526         if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
527                 return -EINVAL;
528 
529         if (speed != SPEED_OVERDRIVE)
530                 speed = SPEED_FLEXIBLE;
531 
532         speed &= 0xff;
533 
534         err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
535         if (err)
536                 return err;
537 
538         return err;
539 }
540 #endif  /*  0  */
541 
542 static int ds_set_pullup(struct ds_device *dev, int delay)
543 {
544         int err = 0;
545         u8 del = 1 + (u8)(delay >> 4);
546         /* Just storing delay would not get the trunication and roundup. */
547         int ms = del<<4;
548 
549         /* Enable spu_bit if a delay is set. */
550         dev->spu_bit = delay ? COMM_SPU : 0;
551         /* If delay is zero, it has already been disabled, if the time is
552          * the same as the hardware was last programmed to, there is also
553          * nothing more to do.  Compare with the recalculated value ms
554          * rather than del or delay which can have a different value.
555          */
556         if (delay == 0 || ms == dev->spu_sleep)
557                 return err;
558 
559         err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
560         if (err)
561                 return err;
562 
563         dev->spu_sleep = ms;
564 
565         return err;
566 }
567 
568 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
569 {
570         int err;
571         struct ds_status st;
572 
573         err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
574                 0);
575         if (err)
576                 return err;
577 
578         ds_wait_status(dev, &st);
579 
580         err = ds_recv_data(dev, tbit, sizeof(*tbit));
581         if (err < 0)
582                 return err;
583 
584         return 0;
585 }
586 
587 #if 0
588 static int ds_write_bit(struct ds_device *dev, u8 bit)
589 {
590         int err;
591         struct ds_status st;
592 
593         /* Set COMM_ICP to write without a readback.  Note, this will
594          * produce one time slot, a down followed by an up with COMM_D
595          * only determing the timing.
596          */
597         err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
598                 (bit ? COMM_D : 0), 0);
599         if (err)
600                 return err;
601 
602         ds_wait_status(dev, &st);
603 
604         return 0;
605 }
606 #endif
607 
608 static int ds_write_byte(struct ds_device *dev, u8 byte)
609 {
610         int err;
611         struct ds_status st;
612         u8 rbyte;
613 
614         err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
615         if (err)
616                 return err;
617 
618         if (dev->spu_bit)
619                 msleep(dev->spu_sleep);
620 
621         err = ds_wait_status(dev, &st);
622         if (err)
623                 return err;
624 
625         err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
626         if (err < 0)
627                 return err;
628 
629         return !(byte == rbyte);
630 }
631 
632 static int ds_read_byte(struct ds_device *dev, u8 *byte)
633 {
634         int err;
635         struct ds_status st;
636 
637         err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
638         if (err)
639                 return err;
640 
641         ds_wait_status(dev, &st);
642 
643         err = ds_recv_data(dev, byte, sizeof(*byte));
644         if (err < 0)
645                 return err;
646 
647         return 0;
648 }
649 
650 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
651 {
652         struct ds_status st;
653         int err;
654 
655         if (len > 64*1024)
656                 return -E2BIG;
657 
658         memset(buf, 0xFF, len);
659 
660         err = ds_send_data(dev, buf, len);
661         if (err < 0)
662                 return err;
663 
664         err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
665         if (err)
666                 return err;
667 
668         ds_wait_status(dev, &st);
669 
670         memset(buf, 0x00, len);
671         err = ds_recv_data(dev, buf, len);
672 
673         return err;
674 }
675 
676 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
677 {
678         int err;
679         struct ds_status st;
680 
681         err = ds_send_data(dev, buf, len);
682         if (err < 0)
683                 return err;
684 
685         err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
686         if (err)
687                 return err;
688 
689         if (dev->spu_bit)
690                 msleep(dev->spu_sleep);
691 
692         ds_wait_status(dev, &st);
693 
694         err = ds_recv_data(dev, buf, len);
695         if (err < 0)
696                 return err;
697 
698         return !(err == len);
699 }
700 
701 static void ds9490r_search(void *data, struct w1_master *master,
702         u8 search_type, w1_slave_found_callback callback)
703 {
704         /* When starting with an existing id, the first id returned will
705          * be that device (if it is still on the bus most likely).
706          *
707          * If the number of devices found is less than or equal to the
708          * search_limit, that number of IDs will be returned.  If there are
709          * more, search_limit IDs will be returned followed by a non-zero
710          * discrepency value.
711          */
712         struct ds_device *dev = data;
713         int err;
714         u16 value, index;
715         struct ds_status st;
716         u8 st_buf[ST_SIZE];
717         int search_limit;
718         int found = 0;
719         int i;
720 
721         /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
722          * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
723          */
724         const unsigned long jtime = msecs_to_jiffies(1000*8/75);
725         /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
726          * packet size.
727          */
728         u64 buf[2*64/8];
729 
730         mutex_lock(&master->bus_mutex);
731 
732         /* address to start searching at */
733         if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
734                 goto search_out;
735         master->search_id = 0;
736 
737         value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
738                 COMM_RTS;
739         search_limit = master->max_slave_count;
740         if (search_limit > 255)
741                 search_limit = 0;
742         index = search_type | (search_limit << 8);
743         if (ds_send_control(dev, value, index) < 0)
744                 goto search_out;
745 
746         do {
747                 schedule_timeout(jtime);
748 
749                 if (ds_recv_status_nodump(dev, &st, st_buf, sizeof(st_buf)) <
750                         sizeof(st)) {
751                         break;
752                 }
753 
754                 if (st.data_in_buffer_status) {
755                         /* Bulk in can receive partial ids, but when it does
756                          * they fail crc and will be discarded anyway.
757                          * That has only been seen when status in buffer
758                          * is 0 and bulk is read anyway, so don't read
759                          * bulk without first checking if status says there
760                          * is data to read.
761                          */
762                         err = ds_recv_data(dev, (u8 *)buf, sizeof(buf));
763                         if (err < 0)
764                                 break;
765                         for (i = 0; i < err/8; ++i) {
766                                 ++found;
767                                 if (found <= search_limit)
768                                         callback(master, buf[i]);
769                                 /* can't know if there will be a discrepancy
770                                  * value after until the next id */
771                                 if (found == search_limit)
772                                         master->search_id = buf[i];
773                         }
774                 }
775 
776                 if (test_bit(W1_ABORT_SEARCH, &master->flags))
777                         break;
778         } while (!(st.status & (ST_IDLE | ST_HALT)));
779 
780         /* only continue the search if some weren't found */
781         if (found <= search_limit) {
782                 master->search_id = 0;
783         } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
784                 /* Only max_slave_count will be scanned in a search,
785                  * but it will start where it left off next search
786                  * until all ids are identified and then it will start
787                  * over.  A continued search will report the previous
788                  * last id as the first id (provided it is still on the
789                  * bus).
790                  */
791                 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
792                         "will continue next search.\n", __func__,
793                         master->max_slave_count);
794                 set_bit(W1_WARN_MAX_COUNT, &master->flags);
795         }
796 search_out:
797         mutex_unlock(&master->bus_mutex);
798 }
799 
800 #if 0
801 static int ds_match_access(struct ds_device *dev, u64 init)
802 {
803         int err;
804         struct ds_status st;
805 
806         err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
807         if (err)
808                 return err;
809 
810         ds_wait_status(dev, &st);
811 
812         err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
813         if (err)
814                 return err;
815 
816         ds_wait_status(dev, &st);
817 
818         return 0;
819 }
820 
821 static int ds_set_path(struct ds_device *dev, u64 init)
822 {
823         int err;
824         struct ds_status st;
825         u8 buf[9];
826 
827         memcpy(buf, &init, 8);
828         buf[8] = BRANCH_MAIN;
829 
830         err = ds_send_data(dev, buf, sizeof(buf));
831         if (err)
832                 return err;
833 
834         ds_wait_status(dev, &st);
835 
836         err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
837         if (err)
838                 return err;
839 
840         ds_wait_status(dev, &st);
841 
842         return 0;
843 }
844 
845 #endif  /*  0  */
846 
847 static u8 ds9490r_touch_bit(void *data, u8 bit)
848 {
849         u8 ret;
850         struct ds_device *dev = data;
851 
852         if (ds_touch_bit(dev, bit, &ret))
853                 return 0;
854 
855         return ret;
856 }
857 
858 #if 0
859 static void ds9490r_write_bit(void *data, u8 bit)
860 {
861         struct ds_device *dev = data;
862 
863         ds_write_bit(dev, bit);
864 }
865 
866 static u8 ds9490r_read_bit(void *data)
867 {
868         struct ds_device *dev = data;
869         int err;
870         u8 bit = 0;
871 
872         err = ds_touch_bit(dev, 1, &bit);
873         if (err)
874                 return 0;
875 
876         return bit & 1;
877 }
878 #endif
879 
880 static void ds9490r_write_byte(void *data, u8 byte)
881 {
882         struct ds_device *dev = data;
883 
884         ds_write_byte(dev, byte);
885 }
886 
887 static u8 ds9490r_read_byte(void *data)
888 {
889         struct ds_device *dev = data;
890         int err;
891         u8 byte = 0;
892 
893         err = ds_read_byte(dev, &byte);
894         if (err)
895                 return 0;
896 
897         return byte;
898 }
899 
900 static void ds9490r_write_block(void *data, const u8 *buf, int len)
901 {
902         struct ds_device *dev = data;
903 
904         ds_write_block(dev, (u8 *)buf, len);
905 }
906 
907 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
908 {
909         struct ds_device *dev = data;
910         int err;
911 
912         err = ds_read_block(dev, buf, len);
913         if (err < 0)
914                 return 0;
915 
916         return len;
917 }
918 
919 static u8 ds9490r_reset(void *data)
920 {
921         struct ds_device *dev = data;
922         int err;
923 
924         err = ds_reset(dev);
925         if (err)
926                 return 1;
927 
928         return 0;
929 }
930 
931 static u8 ds9490r_set_pullup(void *data, int delay)
932 {
933         struct ds_device *dev = data;
934 
935         if (ds_set_pullup(dev, delay))
936                 return 1;
937 
938         return 0;
939 }
940 
941 static int ds_w1_init(struct ds_device *dev)
942 {
943         memset(&dev->master, 0, sizeof(struct w1_bus_master));
944 
945         /* Reset the device as it can be in a bad state.
946          * This is necessary because a block write will wait for data
947          * to be placed in the output buffer and block any later
948          * commands which will keep accumulating and the device will
949          * not be idle.  Another case is removing the ds2490 module
950          * while a bus search is in progress, somehow a few commands
951          * get through, but the input transfers fail leaving data in
952          * the input buffer.  This will cause the next read to fail
953          * see the note in ds_recv_data.
954          */
955         ds_reset_device(dev);
956 
957         dev->master.data        = dev;
958         dev->master.touch_bit   = &ds9490r_touch_bit;
959         /* read_bit and write_bit in w1_bus_master are expected to set and
960          * sample the line level.  For write_bit that means it is expected to
961          * set it to that value and leave it there.  ds2490 only supports an
962          * individual time slot at the lowest level.  The requirement from
963          * pulling the bus state down to reading the state is 15us, something
964          * that isn't realistic on the USB bus anyway.
965         dev->master.read_bit    = &ds9490r_read_bit;
966         dev->master.write_bit   = &ds9490r_write_bit;
967         */
968         dev->master.read_byte   = &ds9490r_read_byte;
969         dev->master.write_byte  = &ds9490r_write_byte;
970         dev->master.read_block  = &ds9490r_read_block;
971         dev->master.write_block = &ds9490r_write_block;
972         dev->master.reset_bus   = &ds9490r_reset;
973         dev->master.set_pullup  = &ds9490r_set_pullup;
974         dev->master.search      = &ds9490r_search;
975 
976         return w1_add_master_device(&dev->master);
977 }
978 
979 static void ds_w1_fini(struct ds_device *dev)
980 {
981         w1_remove_master_device(&dev->master);
982 }
983 
984 static int ds_probe(struct usb_interface *intf,
985                     const struct usb_device_id *udev_id)
986 {
987         struct usb_device *udev = interface_to_usbdev(intf);
988         struct usb_endpoint_descriptor *endpoint;
989         struct usb_host_interface *iface_desc;
990         struct ds_device *dev;
991         int i, err, alt;
992 
993         dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
994         if (!dev) {
995                 printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
996                 return -ENOMEM;
997         }
998         dev->udev = usb_get_dev(udev);
999         if (!dev->udev) {
1000                 err = -ENOMEM;
1001                 goto err_out_free;
1002         }
1003         memset(dev->ep, 0, sizeof(dev->ep));
1004 
1005         usb_set_intfdata(intf, dev);
1006 
1007         err = usb_reset_configuration(dev->udev);
1008         if (err) {
1009                 dev_err(&dev->udev->dev,
1010                         "Failed to reset configuration: err=%d.\n", err);
1011                 goto err_out_clear;
1012         }
1013 
1014         /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1015         alt = 3;
1016         err = usb_set_interface(dev->udev,
1017                 intf->altsetting[alt].desc.bInterfaceNumber, alt);
1018         if (err) {
1019                 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1020                         "for %d interface: err=%d.\n", alt,
1021                         intf->altsetting[alt].desc.bInterfaceNumber, err);
1022                 goto err_out_clear;
1023         }
1024 
1025         iface_desc = &intf->altsetting[alt];
1026         if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1027                 printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
1028                 err = -EINVAL;
1029                 goto err_out_clear;
1030         }
1031 
1032         /*
1033          * This loop doesn'd show control 0 endpoint,
1034          * so we will fill only 1-3 endpoints entry.
1035          */
1036         for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1037                 endpoint = &iface_desc->endpoint[i].desc;
1038 
1039                 dev->ep[i+1] = endpoint->bEndpointAddress;
1040 #if 0
1041                 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1042                         i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1043                         (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1044                         endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1045 #endif
1046         }
1047 
1048         err = ds_w1_init(dev);
1049         if (err)
1050                 goto err_out_clear;
1051 
1052         mutex_lock(&ds_mutex);
1053         list_add_tail(&dev->ds_entry, &ds_devices);
1054         mutex_unlock(&ds_mutex);
1055 
1056         return 0;
1057 
1058 err_out_clear:
1059         usb_set_intfdata(intf, NULL);
1060         usb_put_dev(dev->udev);
1061 err_out_free:
1062         kfree(dev);
1063         return err;
1064 }
1065 
1066 static void ds_disconnect(struct usb_interface *intf)
1067 {
1068         struct ds_device *dev;
1069 
1070         dev = usb_get_intfdata(intf);
1071         if (!dev)
1072                 return;
1073 
1074         mutex_lock(&ds_mutex);
1075         list_del(&dev->ds_entry);
1076         mutex_unlock(&ds_mutex);
1077 
1078         ds_w1_fini(dev);
1079 
1080         usb_set_intfdata(intf, NULL);
1081 
1082         usb_put_dev(dev->udev);
1083         kfree(dev);
1084 }
1085 
1086 module_usb_driver(ds_driver);
1087 
1088 MODULE_LICENSE("GPL");
1089 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1090 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1091 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us