Version:  2.0.40 2.2.26 2.4.37 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Linux/drivers/usb/host/fotg210-hcd.c

  1 /*
  2  * Faraday FOTG210 EHCI-like driver
  3  *
  4  * Copyright (c) 2013 Faraday Technology Corporation
  5  *
  6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
  7  *         Feng-Hsin Chiang <john453@faraday-tech.com>
  8  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
  9  *
 10  * Most of code borrowed from the Linux-3.7 EHCI driver
 11  *
 12  * This program is free software; you can redistribute it and/or modify it
 13  * under the terms of the GNU General Public License as published by the
 14  * Free Software Foundation; either version 2 of the License, or (at your
 15  * option) any later version.
 16  *
 17  * This program is distributed in the hope that it will be useful, but
 18  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 19  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 20  * for more details.
 21  *
 22  * You should have received a copy of the GNU General Public License
 23  * along with this program; if not, write to the Free Software Foundation,
 24  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 25  */
 26 #include <linux/module.h>
 27 #include <linux/device.h>
 28 #include <linux/dmapool.h>
 29 #include <linux/kernel.h>
 30 #include <linux/delay.h>
 31 #include <linux/ioport.h>
 32 #include <linux/sched.h>
 33 #include <linux/vmalloc.h>
 34 #include <linux/errno.h>
 35 #include <linux/init.h>
 36 #include <linux/hrtimer.h>
 37 #include <linux/list.h>
 38 #include <linux/interrupt.h>
 39 #include <linux/usb.h>
 40 #include <linux/usb/hcd.h>
 41 #include <linux/moduleparam.h>
 42 #include <linux/dma-mapping.h>
 43 #include <linux/debugfs.h>
 44 #include <linux/slab.h>
 45 #include <linux/uaccess.h>
 46 #include <linux/platform_device.h>
 47 #include <linux/io.h>
 48 
 49 #include <asm/byteorder.h>
 50 #include <asm/irq.h>
 51 #include <asm/unaligned.h>
 52 
 53 /*-------------------------------------------------------------------------*/
 54 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
 55 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
 56 
 57 static const char       hcd_name[] = "fotg210_hcd";
 58 
 59 #undef FOTG210_URB_TRACE
 60 
 61 #define FOTG210_STATS
 62 
 63 /* magic numbers that can affect system performance */
 64 #define FOTG210_TUNE_CERR               3 /* 0-3 qtd retries; 0 == don't stop */
 65 #define FOTG210_TUNE_RL_HS              4 /* nak throttle; see 4.9 */
 66 #define FOTG210_TUNE_RL_TT              0
 67 #define FOTG210_TUNE_MULT_HS    1       /* 1-3 transactions/uframe; 4.10.3 */
 68 #define FOTG210_TUNE_MULT_TT    1
 69 /*
 70  * Some drivers think it's safe to schedule isochronous transfers more than
 71  * 256 ms into the future (partly as a result of an old bug in the scheduling
 72  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
 73  * length of 512 frames instead of 256.
 74  */
 75 #define FOTG210_TUNE_FLS                1 /* (medium) 512-frame schedule */
 76 
 77 /* Initial IRQ latency:  faster than hw default */
 78 static int log2_irq_thresh;             /* 0 to 6 */
 79 module_param(log2_irq_thresh, int, S_IRUGO);
 80 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
 81 
 82 /* initial park setting:  slower than hw default */
 83 static unsigned park;
 84 module_param(park, uint, S_IRUGO);
 85 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
 86 
 87 /* for link power management(LPM) feature */
 88 static unsigned int hird;
 89 module_param(hird, int, S_IRUGO);
 90 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
 91 
 92 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
 93 
 94 #include "fotg210.h"
 95 
 96 /*-------------------------------------------------------------------------*/
 97 
 98 #define fotg210_dbg(fotg210, fmt, args...) \
 99         dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
100 #define fotg210_err(fotg210, fmt, args...) \
101         dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
102 #define fotg210_info(fotg210, fmt, args...) \
103         dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
104 #define fotg210_warn(fotg210, fmt, args...) \
105         dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
106 
107 /* check the values in the HCSPARAMS register
108  * (host controller _Structural_ parameters)
109  * see EHCI spec, Table 2-4 for each value
110  */
111 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
112 {
113         u32     params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
114 
115         fotg210_dbg(fotg210,
116                 "%s hcs_params 0x%x ports=%d\n",
117                 label, params,
118                 HCS_N_PORTS(params)
119                 );
120 }
121 
122 /* check the values in the HCCPARAMS register
123  * (host controller _Capability_ parameters)
124  * see EHCI Spec, Table 2-5 for each value
125  * */
126 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
127 {
128         u32     params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
129 
130         fotg210_dbg(fotg210,
131                 "%s hcc_params %04x uframes %s%s\n",
132                 label,
133                 params,
134                 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
135                 HCC_CANPARK(params) ? " park" : "");
136 }
137 
138 static void __maybe_unused
139 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
140 {
141         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
142                 hc32_to_cpup(fotg210, &qtd->hw_next),
143                 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
144                 hc32_to_cpup(fotg210, &qtd->hw_token),
145                 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
146         if (qtd->hw_buf[1])
147                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
148                         hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
149                         hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
150                         hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
151                         hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
152 }
153 
154 static void __maybe_unused
155 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
156 {
157         struct fotg210_qh_hw *hw = qh->hw;
158 
159         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
160                 qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
161         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
162 }
163 
164 static void __maybe_unused
165 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
166 {
167         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
168                 label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
169                 itd->urb);
170         fotg210_dbg(fotg210,
171                 "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
172                 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
173                 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
174                 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
175                 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
176                 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
177                 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
178                 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
179                 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
180         fotg210_dbg(fotg210,
181                 "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
182                 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
183                 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
184                 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
185                 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
186                 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
187                 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
188                 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
189         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
190                 itd->index[0], itd->index[1], itd->index[2],
191                 itd->index[3], itd->index[4], itd->index[5],
192                 itd->index[6], itd->index[7]);
193 }
194 
195 static int __maybe_unused
196 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
197 {
198         return scnprintf(buf, len,
199                 "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
200                 label, label[0] ? " " : "", status,
201                 (status & STS_ASS) ? " Async" : "",
202                 (status & STS_PSS) ? " Periodic" : "",
203                 (status & STS_RECL) ? " Recl" : "",
204                 (status & STS_HALT) ? " Halt" : "",
205                 (status & STS_IAA) ? " IAA" : "",
206                 (status & STS_FATAL) ? " FATAL" : "",
207                 (status & STS_FLR) ? " FLR" : "",
208                 (status & STS_PCD) ? " PCD" : "",
209                 (status & STS_ERR) ? " ERR" : "",
210                 (status & STS_INT) ? " INT" : ""
211                 );
212 }
213 
214 static int __maybe_unused
215 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
216 {
217         return scnprintf(buf, len,
218                 "%s%sintrenable %02x%s%s%s%s%s%s",
219                 label, label[0] ? " " : "", enable,
220                 (enable & STS_IAA) ? " IAA" : "",
221                 (enable & STS_FATAL) ? " FATAL" : "",
222                 (enable & STS_FLR) ? " FLR" : "",
223                 (enable & STS_PCD) ? " PCD" : "",
224                 (enable & STS_ERR) ? " ERR" : "",
225                 (enable & STS_INT) ? " INT" : ""
226                 );
227 }
228 
229 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
230 
231 static int
232 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
233 {
234         return scnprintf(buf, len,
235                 "%s%scommand %07x %s=%d ithresh=%d%s%s%s "
236                 "period=%s%s %s",
237                 label, label[0] ? " " : "", command,
238                 (command & CMD_PARK) ? " park" : "(park)",
239                 CMD_PARK_CNT(command),
240                 (command >> 16) & 0x3f,
241                 (command & CMD_IAAD) ? " IAAD" : "",
242                 (command & CMD_ASE) ? " Async" : "",
243                 (command & CMD_PSE) ? " Periodic" : "",
244                 fls_strings[(command >> 2) & 0x3],
245                 (command & CMD_RESET) ? " Reset" : "",
246                 (command & CMD_RUN) ? "RUN" : "HALT"
247                 );
248 }
249 
250 static char
251 *dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
252 {
253         char    *sig;
254 
255         /* signaling state */
256         switch (status & (3 << 10)) {
257         case 0 << 10:
258                 sig = "se0";
259                 break;
260         case 1 << 10:
261                 sig = "k";
262                 break; /* low speed */
263         case 2 << 10:
264                 sig = "j";
265                 break;
266         default:
267                 sig = "?";
268                 break;
269         }
270 
271         scnprintf(buf, len,
272                 "%s%sport:%d status %06x %d "
273                 "sig=%s%s%s%s%s%s%s%s",
274                 label, label[0] ? " " : "", port, status,
275                 status>>25,/*device address */
276                 sig,
277                 (status & PORT_RESET) ? " RESET" : "",
278                 (status & PORT_SUSPEND) ? " SUSPEND" : "",
279                 (status & PORT_RESUME) ? " RESUME" : "",
280                 (status & PORT_PEC) ? " PEC" : "",
281                 (status & PORT_PE) ? " PE" : "",
282                 (status & PORT_CSC) ? " CSC" : "",
283                 (status & PORT_CONNECT) ? " CONNECT" : "");
284         return buf;
285 }
286 
287 /* functions have the "wrong" filename when they're output... */
288 #define dbg_status(fotg210, label, status) { \
289         char _buf[80]; \
290         dbg_status_buf(_buf, sizeof(_buf), label, status); \
291         fotg210_dbg(fotg210, "%s\n", _buf); \
292 }
293 
294 #define dbg_cmd(fotg210, label, command) { \
295         char _buf[80]; \
296         dbg_command_buf(_buf, sizeof(_buf), label, command); \
297         fotg210_dbg(fotg210, "%s\n", _buf); \
298 }
299 
300 #define dbg_port(fotg210, label, port, status) { \
301         char _buf[80]; \
302         fotg210_dbg(fotg210, "%s\n", dbg_port_buf(_buf, sizeof(_buf), label, port, status) ); \
303 }
304 
305 /*-------------------------------------------------------------------------*/
306 
307 /* troubleshooting help: expose state in debugfs */
308 
309 static int debug_async_open(struct inode *, struct file *);
310 static int debug_periodic_open(struct inode *, struct file *);
311 static int debug_registers_open(struct inode *, struct file *);
312 static int debug_async_open(struct inode *, struct file *);
313 
314 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
315 static int debug_close(struct inode *, struct file *);
316 
317 static const struct file_operations debug_async_fops = {
318         .owner          = THIS_MODULE,
319         .open           = debug_async_open,
320         .read           = debug_output,
321         .release        = debug_close,
322         .llseek         = default_llseek,
323 };
324 static const struct file_operations debug_periodic_fops = {
325         .owner          = THIS_MODULE,
326         .open           = debug_periodic_open,
327         .read           = debug_output,
328         .release        = debug_close,
329         .llseek         = default_llseek,
330 };
331 static const struct file_operations debug_registers_fops = {
332         .owner          = THIS_MODULE,
333         .open           = debug_registers_open,
334         .read           = debug_output,
335         .release        = debug_close,
336         .llseek         = default_llseek,
337 };
338 
339 static struct dentry *fotg210_debug_root;
340 
341 struct debug_buffer {
342         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
343         struct usb_bus *bus;
344         struct mutex mutex;     /* protect filling of buffer */
345         size_t count;           /* number of characters filled into buffer */
346         char *output_buf;
347         size_t alloc_size;
348 };
349 
350 #define speed_char(info1)({ char tmp; \
351                 switch (info1 & (3 << 12)) { \
352                 case QH_FULL_SPEED:     \
353                         tmp = 'f'; break; \
354                 case QH_LOW_SPEED:      \
355                         tmp = 'l'; break; \
356                 case QH_HIGH_SPEED:     \
357                         tmp = 'h'; break; \
358                 default:                \
359                         tmp = '?'; break; \
360                 } tmp; })
361 
362 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
363 {
364         __u32 v = hc32_to_cpu(fotg210, token);
365 
366         if (v & QTD_STS_ACTIVE)
367                 return '*';
368         if (v & QTD_STS_HALT)
369                 return '-';
370         if (!IS_SHORT_READ(v))
371                 return ' ';
372         /* tries to advance through hw_alt_next */
373         return '/';
374 }
375 
376 static void qh_lines(
377         struct fotg210_hcd *fotg210,
378         struct fotg210_qh *qh,
379         char **nextp,
380         unsigned *sizep
381 )
382 {
383         u32                     scratch;
384         u32                     hw_curr;
385         struct fotg210_qtd      *td;
386         unsigned                temp;
387         unsigned                size = *sizep;
388         char                    *next = *nextp;
389         char                    mark;
390         __le32                  list_end = FOTG210_LIST_END(fotg210);
391         struct fotg210_qh_hw    *hw = qh->hw;
392 
393         if (hw->hw_qtd_next == list_end)        /* NEC does this */
394                 mark = '@';
395         else
396                 mark = token_mark(fotg210, hw->hw_token);
397         if (mark == '/') {      /* qh_alt_next controls qh advance? */
398                 if ((hw->hw_alt_next & QTD_MASK(fotg210))
399                                 == fotg210->async->hw->hw_alt_next)
400                         mark = '#';     /* blocked */
401                 else if (hw->hw_alt_next == list_end)
402                         mark = '.';     /* use hw_qtd_next */
403                 /* else alt_next points to some other qtd */
404         }
405         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
406         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
407         temp = scnprintf(next, size,
408                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
409                         qh, scratch & 0x007f,
410                         speed_char(scratch),
411                         (scratch >> 8) & 0x000f,
412                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
413                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
414                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
415                                 ? "data1" : "data0",
416                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
417         size -= temp;
418         next += temp;
419 
420         /* hc may be modifying the list as we read it ... */
421         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
422                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
423                 mark = ' ';
424                 if (hw_curr == td->qtd_dma)
425                         mark = '*';
426                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
427                         mark = '+';
428                 else if (QTD_LENGTH(scratch)) {
429                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
430                                 mark = '#';
431                         else if (td->hw_alt_next != list_end)
432                                 mark = '/';
433                 }
434                 temp = snprintf(next, size,
435                                 "\n\t%p%c%s len=%d %08x urb %p",
436                                 td, mark, ({ char *tmp;
437                                  switch ((scratch>>8)&0x03) {
438                                  case 0:
439                                         tmp = "out";
440                                         break;
441                                  case 1:
442                                         tmp = "in";
443                                         break;
444                                  case 2:
445                                         tmp = "setup";
446                                         break;
447                                  default:
448                                         tmp = "?";
449                                         break;
450                                  } tmp; }),
451                                 (scratch >> 16) & 0x7fff,
452                                 scratch,
453                                 td->urb);
454                 if (size < temp)
455                         temp = size;
456                 size -= temp;
457                 next += temp;
458                 if (temp == size)
459                         goto done;
460         }
461 
462         temp = snprintf(next, size, "\n");
463         if (size < temp)
464                 temp = size;
465         size -= temp;
466         next += temp;
467 
468 done:
469         *sizep = size;
470         *nextp = next;
471 }
472 
473 static ssize_t fill_async_buffer(struct debug_buffer *buf)
474 {
475         struct usb_hcd          *hcd;
476         struct fotg210_hcd      *fotg210;
477         unsigned long           flags;
478         unsigned                temp, size;
479         char                    *next;
480         struct fotg210_qh               *qh;
481 
482         hcd = bus_to_hcd(buf->bus);
483         fotg210 = hcd_to_fotg210(hcd);
484         next = buf->output_buf;
485         size = buf->alloc_size;
486 
487         *next = 0;
488 
489         /* dumps a snapshot of the async schedule.
490          * usually empty except for long-term bulk reads, or head.
491          * one QH per line, and TDs we know about
492          */
493         spin_lock_irqsave(&fotg210->lock, flags);
494         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
495              qh = qh->qh_next.qh)
496                 qh_lines(fotg210, qh, &next, &size);
497         if (fotg210->async_unlink && size > 0) {
498                 temp = scnprintf(next, size, "\nunlink =\n");
499                 size -= temp;
500                 next += temp;
501 
502                 for (qh = fotg210->async_unlink; size > 0 && qh;
503                                 qh = qh->unlink_next)
504                         qh_lines(fotg210, qh, &next, &size);
505         }
506         spin_unlock_irqrestore(&fotg210->lock, flags);
507 
508         return strlen(buf->output_buf);
509 }
510 
511 #define DBG_SCHED_LIMIT 64
512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513 {
514         struct usb_hcd          *hcd;
515         struct fotg210_hcd              *fotg210;
516         unsigned long           flags;
517         union fotg210_shadow    p, *seen;
518         unsigned                temp, size, seen_count;
519         char                    *next;
520         unsigned                i;
521         __hc32                  tag;
522 
523         seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
524         if (!seen)
525                 return 0;
526         seen_count = 0;
527 
528         hcd = bus_to_hcd(buf->bus);
529         fotg210 = hcd_to_fotg210(hcd);
530         next = buf->output_buf;
531         size = buf->alloc_size;
532 
533         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
534         size -= temp;
535         next += temp;
536 
537         /* dump a snapshot of the periodic schedule.
538          * iso changes, interrupt usually doesn't.
539          */
540         spin_lock_irqsave(&fotg210->lock, flags);
541         for (i = 0; i < fotg210->periodic_size; i++) {
542                 p = fotg210->pshadow[i];
543                 if (likely(!p.ptr))
544                         continue;
545                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
546 
547                 temp = scnprintf(next, size, "%4d: ", i);
548                 size -= temp;
549                 next += temp;
550 
551                 do {
552                         struct fotg210_qh_hw *hw;
553 
554                         switch (hc32_to_cpu(fotg210, tag)) {
555                         case Q_TYPE_QH:
556                                 hw = p.qh->hw;
557                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
558                                                 p.qh->period,
559                                                 hc32_to_cpup(fotg210,
560                                                         &hw->hw_info2)
561                                                         /* uframe masks */
562                                                         & (QH_CMASK | QH_SMASK),
563                                                 p.qh);
564                                 size -= temp;
565                                 next += temp;
566                                 /* don't repeat what follows this qh */
567                                 for (temp = 0; temp < seen_count; temp++) {
568                                         if (seen[temp].ptr != p.ptr)
569                                                 continue;
570                                         if (p.qh->qh_next.ptr) {
571                                                 temp = scnprintf(next, size,
572                                                         " ...");
573                                                 size -= temp;
574                                                 next += temp;
575                                         }
576                                         break;
577                                 }
578                                 /* show more info the first time around */
579                                 if (temp == seen_count) {
580                                         u32     scratch = hc32_to_cpup(fotg210,
581                                                         &hw->hw_info1);
582                                         struct fotg210_qtd      *qtd;
583                                         char            *type = "";
584 
585                                         /* count tds, get ep direction */
586                                         temp = 0;
587                                         list_for_each_entry(qtd,
588                                                         &p.qh->qtd_list,
589                                                         qtd_list) {
590                                                 temp++;
591                                                 switch (0x03 & (hc32_to_cpu(
592                                                         fotg210,
593                                                         qtd->hw_token) >> 8)) {
594                                                 case 0:
595                                                         type = "out";
596                                                         continue;
597                                                 case 1:
598                                                         type = "in";
599                                                         continue;
600                                                 }
601                                         }
602 
603                                         temp = scnprintf(next, size,
604                                                 "(%c%d ep%d%s "
605                                                 "[%d/%d] q%d p%d)",
606                                                 speed_char(scratch),
607                                                 scratch & 0x007f,
608                                                 (scratch >> 8) & 0x000f, type,
609                                                 p.qh->usecs, p.qh->c_usecs,
610                                                 temp,
611                                                 0x7ff & (scratch >> 16));
612 
613                                         if (seen_count < DBG_SCHED_LIMIT)
614                                                 seen[seen_count++].qh = p.qh;
615                                 } else
616                                         temp = 0;
617                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
618                                 p = p.qh->qh_next;
619                                 break;
620                         case Q_TYPE_FSTN:
621                                 temp = scnprintf(next, size,
622                                         " fstn-%8x/%p", p.fstn->hw_prev,
623                                         p.fstn);
624                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
625                                 p = p.fstn->fstn_next;
626                                 break;
627                         case Q_TYPE_ITD:
628                                 temp = scnprintf(next, size,
629                                         " itd/%p", p.itd);
630                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
631                                 p = p.itd->itd_next;
632                                 break;
633                         }
634                         size -= temp;
635                         next += temp;
636                 } while (p.ptr);
637 
638                 temp = scnprintf(next, size, "\n");
639                 size -= temp;
640                 next += temp;
641         }
642         spin_unlock_irqrestore(&fotg210->lock, flags);
643         kfree(seen);
644 
645         return buf->alloc_size - size;
646 }
647 #undef DBG_SCHED_LIMIT
648 
649 static const char *rh_state_string(struct fotg210_hcd *fotg210)
650 {
651         switch (fotg210->rh_state) {
652         case FOTG210_RH_HALTED:
653                 return "halted";
654         case FOTG210_RH_SUSPENDED:
655                 return "suspended";
656         case FOTG210_RH_RUNNING:
657                 return "running";
658         case FOTG210_RH_STOPPING:
659                 return "stopping";
660         }
661         return "?";
662 }
663 
664 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
665 {
666         struct usb_hcd          *hcd;
667         struct fotg210_hcd      *fotg210;
668         unsigned long           flags;
669         unsigned                temp, size, i;
670         char                    *next, scratch[80];
671         static const char       fmt[] = "%*s\n";
672         static const char       label[] = "";
673 
674         hcd = bus_to_hcd(buf->bus);
675         fotg210 = hcd_to_fotg210(hcd);
676         next = buf->output_buf;
677         size = buf->alloc_size;
678 
679         spin_lock_irqsave(&fotg210->lock, flags);
680 
681         if (!HCD_HW_ACCESSIBLE(hcd)) {
682                 size = scnprintf(next, size,
683                         "bus %s, device %s\n"
684                         "%s\n"
685                         "SUSPENDED(no register access)\n",
686                         hcd->self.controller->bus->name,
687                         dev_name(hcd->self.controller),
688                         hcd->product_desc);
689                 goto done;
690         }
691 
692         /* Capability Registers */
693         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
694                                               &fotg210->caps->hc_capbase));
695         temp = scnprintf(next, size,
696                 "bus %s, device %s\n"
697                 "%s\n"
698                 "EHCI %x.%02x, rh state %s\n",
699                 hcd->self.controller->bus->name,
700                 dev_name(hcd->self.controller),
701                 hcd->product_desc,
702                 i >> 8, i & 0x0ff, rh_state_string(fotg210));
703         size -= temp;
704         next += temp;
705 
706         /* FIXME interpret both types of params */
707         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
708         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
709         size -= temp;
710         next += temp;
711 
712         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
713         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
714         size -= temp;
715         next += temp;
716 
717         /* Operational Registers */
718         temp = dbg_status_buf(scratch, sizeof(scratch), label,
719                         fotg210_readl(fotg210, &fotg210->regs->status));
720         temp = scnprintf(next, size, fmt, temp, scratch);
721         size -= temp;
722         next += temp;
723 
724         temp = dbg_command_buf(scratch, sizeof(scratch), label,
725                         fotg210_readl(fotg210, &fotg210->regs->command));
726         temp = scnprintf(next, size, fmt, temp, scratch);
727         size -= temp;
728         next += temp;
729 
730         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
731                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
732         temp = scnprintf(next, size, fmt, temp, scratch);
733         size -= temp;
734         next += temp;
735 
736         temp = scnprintf(next, size, "uframe %04x\n",
737                         fotg210_read_frame_index(fotg210));
738         size -= temp;
739         next += temp;
740 
741         if (fotg210->async_unlink) {
742                 temp = scnprintf(next, size, "async unlink qh %p\n",
743                                 fotg210->async_unlink);
744                 size -= temp;
745                 next += temp;
746         }
747 
748 #ifdef FOTG210_STATS
749         temp = scnprintf(next, size,
750                 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
751                 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
752                 fotg210->stats.lost_iaa);
753         size -= temp;
754         next += temp;
755 
756         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
757                 fotg210->stats.complete, fotg210->stats.unlink);
758         size -= temp;
759         next += temp;
760 #endif
761 
762 done:
763         spin_unlock_irqrestore(&fotg210->lock, flags);
764 
765         return buf->alloc_size - size;
766 }
767 
768 static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
769                                 ssize_t (*fill_func)(struct debug_buffer *))
770 {
771         struct debug_buffer *buf;
772 
773         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
774 
775         if (buf) {
776                 buf->bus = bus;
777                 buf->fill_func = fill_func;
778                 mutex_init(&buf->mutex);
779                 buf->alloc_size = PAGE_SIZE;
780         }
781 
782         return buf;
783 }
784 
785 static int fill_buffer(struct debug_buffer *buf)
786 {
787         int ret = 0;
788 
789         if (!buf->output_buf)
790                 buf->output_buf = vmalloc(buf->alloc_size);
791 
792         if (!buf->output_buf) {
793                 ret = -ENOMEM;
794                 goto out;
795         }
796 
797         ret = buf->fill_func(buf);
798 
799         if (ret >= 0) {
800                 buf->count = ret;
801                 ret = 0;
802         }
803 
804 out:
805         return ret;
806 }
807 
808 static ssize_t debug_output(struct file *file, char __user *user_buf,
809                             size_t len, loff_t *offset)
810 {
811         struct debug_buffer *buf = file->private_data;
812         int ret = 0;
813 
814         mutex_lock(&buf->mutex);
815         if (buf->count == 0) {
816                 ret = fill_buffer(buf);
817                 if (ret != 0) {
818                         mutex_unlock(&buf->mutex);
819                         goto out;
820                 }
821         }
822         mutex_unlock(&buf->mutex);
823 
824         ret = simple_read_from_buffer(user_buf, len, offset,
825                                       buf->output_buf, buf->count);
826 
827 out:
828         return ret;
829 
830 }
831 
832 static int debug_close(struct inode *inode, struct file *file)
833 {
834         struct debug_buffer *buf = file->private_data;
835 
836         if (buf) {
837                 vfree(buf->output_buf);
838                 kfree(buf);
839         }
840 
841         return 0;
842 }
843 static int debug_async_open(struct inode *inode, struct file *file)
844 {
845         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
846 
847         return file->private_data ? 0 : -ENOMEM;
848 }
849 
850 static int debug_periodic_open(struct inode *inode, struct file *file)
851 {
852         struct debug_buffer *buf;
853         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
854         if (!buf)
855                 return -ENOMEM;
856 
857         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
858         file->private_data = buf;
859         return 0;
860 }
861 
862 static int debug_registers_open(struct inode *inode, struct file *file)
863 {
864         file->private_data = alloc_buffer(inode->i_private,
865                                           fill_registers_buffer);
866 
867         return file->private_data ? 0 : -ENOMEM;
868 }
869 
870 static inline void create_debug_files(struct fotg210_hcd *fotg210)
871 {
872         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
873 
874         fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
875                                                 fotg210_debug_root);
876         if (!fotg210->debug_dir)
877                 return;
878 
879         if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
880                                                 &debug_async_fops))
881                 goto file_error;
882 
883         if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
884                                                 &debug_periodic_fops))
885                 goto file_error;
886 
887         if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
888                                                     &debug_registers_fops))
889                 goto file_error;
890 
891         return;
892 
893 file_error:
894         debugfs_remove_recursive(fotg210->debug_dir);
895 }
896 
897 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
898 {
899         debugfs_remove_recursive(fotg210->debug_dir);
900 }
901 
902 /*-------------------------------------------------------------------------*/
903 
904 /*
905  * handshake - spin reading hc until handshake completes or fails
906  * @ptr: address of hc register to be read
907  * @mask: bits to look at in result of read
908  * @done: value of those bits when handshake succeeds
909  * @usec: timeout in microseconds
910  *
911  * Returns negative errno, or zero on success
912  *
913  * Success happens when the "mask" bits have the specified value (hardware
914  * handshake done).  There are two failure modes:  "usec" have passed (major
915  * hardware flakeout), or the register reads as all-ones (hardware removed).
916  *
917  * That last failure should_only happen in cases like physical cardbus eject
918  * before driver shutdown. But it also seems to be caused by bugs in cardbus
919  * bridge shutdown:  shutting down the bridge before the devices using it.
920  */
921 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
922                       u32 mask, u32 done, int usec)
923 {
924         u32     result;
925 
926         do {
927                 result = fotg210_readl(fotg210, ptr);
928                 if (result == ~(u32)0)          /* card removed */
929                         return -ENODEV;
930                 result &= mask;
931                 if (result == done)
932                         return 0;
933                 udelay(1);
934                 usec--;
935         } while (usec > 0);
936         return -ETIMEDOUT;
937 }
938 
939 /*
940  * Force HC to halt state from unknown (EHCI spec section 2.3).
941  * Must be called with interrupts enabled and the lock not held.
942  */
943 static int fotg210_halt(struct fotg210_hcd *fotg210)
944 {
945         u32     temp;
946 
947         spin_lock_irq(&fotg210->lock);
948 
949         /* disable any irqs left enabled by previous code */
950         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
951 
952         /*
953          * This routine gets called during probe before fotg210->command
954          * has been initialized, so we can't rely on its value.
955          */
956         fotg210->command &= ~CMD_RUN;
957         temp = fotg210_readl(fotg210, &fotg210->regs->command);
958         temp &= ~(CMD_RUN | CMD_IAAD);
959         fotg210_writel(fotg210, temp, &fotg210->regs->command);
960 
961         spin_unlock_irq(&fotg210->lock);
962         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
963 
964         return handshake(fotg210, &fotg210->regs->status,
965                           STS_HALT, STS_HALT, 16 * 125);
966 }
967 
968 /*
969  * Reset a non-running (STS_HALT == 1) controller.
970  * Must be called with interrupts enabled and the lock not held.
971  */
972 static int fotg210_reset(struct fotg210_hcd *fotg210)
973 {
974         int     retval;
975         u32     command = fotg210_readl(fotg210, &fotg210->regs->command);
976 
977         /* If the EHCI debug controller is active, special care must be
978          * taken before and after a host controller reset */
979         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
980                 fotg210->debug = NULL;
981 
982         command |= CMD_RESET;
983         dbg_cmd(fotg210, "reset", command);
984         fotg210_writel(fotg210, command, &fotg210->regs->command);
985         fotg210->rh_state = FOTG210_RH_HALTED;
986         fotg210->next_statechange = jiffies;
987         retval = handshake(fotg210, &fotg210->regs->command,
988                             CMD_RESET, 0, 250 * 1000);
989 
990         if (retval)
991                 return retval;
992 
993         if (fotg210->debug)
994                 dbgp_external_startup(fotg210_to_hcd(fotg210));
995 
996         fotg210->port_c_suspend = fotg210->suspended_ports =
997                         fotg210->resuming_ports = 0;
998         return retval;
999 }
1000 
1001 /*
1002  * Idle the controller (turn off the schedules).
1003  * Must be called with interrupts enabled and the lock not held.
1004  */
1005 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
1006 {
1007         u32     temp;
1008 
1009         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1010                 return;
1011 
1012         /* wait for any schedule enables/disables to take effect */
1013         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
1014         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
1015                   16 * 125);
1016 
1017         /* then disable anything that's still active */
1018         spin_lock_irq(&fotg210->lock);
1019         fotg210->command &= ~(CMD_ASE | CMD_PSE);
1020         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1021         spin_unlock_irq(&fotg210->lock);
1022 
1023         /* hardware can take 16 microframes to turn off ... */
1024         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1025                   16 * 125);
1026 }
1027 
1028 /*-------------------------------------------------------------------------*/
1029 
1030 static void end_unlink_async(struct fotg210_hcd *fotg210);
1031 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1032 static void fotg210_work(struct fotg210_hcd *fotg210);
1033 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1034                               struct fotg210_qh *qh);
1035 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1036 
1037 /*-------------------------------------------------------------------------*/
1038 
1039 /* Set a bit in the USBCMD register */
1040 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1041 {
1042         fotg210->command |= bit;
1043         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1044 
1045         /* unblock posted write */
1046         fotg210_readl(fotg210, &fotg210->regs->command);
1047 }
1048 
1049 /* Clear a bit in the USBCMD register */
1050 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1051 {
1052         fotg210->command &= ~bit;
1053         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1054 
1055         /* unblock posted write */
1056         fotg210_readl(fotg210, &fotg210->regs->command);
1057 }
1058 
1059 /*-------------------------------------------------------------------------*/
1060 
1061 /*
1062  * EHCI timer support...  Now using hrtimers.
1063  *
1064  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1065  * the timer routine runs, it checks each possible event; events that are
1066  * currently enabled and whose expiration time has passed get handled.
1067  * The set of enabled events is stored as a collection of bitflags in
1068  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1069  * increasing delay values (ranging between 1 ms and 100 ms).
1070  *
1071  * Rather than implementing a sorted list or tree of all pending events,
1072  * we keep track only of the lowest-numbered pending event, in
1073  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1074  * expiration time is set to the timeout value for this event.
1075  *
1076  * As a result, events might not get handled right away; the actual delay
1077  * could be anywhere up to twice the requested delay.  This doesn't
1078  * matter, because none of the events are especially time-critical.  The
1079  * ones that matter most all have a delay of 1 ms, so they will be
1080  * handled after 2 ms at most, which is okay.  In addition to this, we
1081  * allow for an expiration range of 1 ms.
1082  */
1083 
1084 /*
1085  * Delay lengths for the hrtimer event types.
1086  * Keep this list sorted by delay length, in the same order as
1087  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1088  */
1089 static unsigned event_delays_ns[] = {
1090         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1091         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1092         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1093         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1094         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1095         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1096         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1097         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1098         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1099         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1100 };
1101 
1102 /* Enable a pending hrtimer event */
1103 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1104                 bool resched)
1105 {
1106         ktime_t         *timeout = &fotg210->hr_timeouts[event];
1107 
1108         if (resched)
1109                 *timeout = ktime_add(ktime_get(),
1110                                 ktime_set(0, event_delays_ns[event]));
1111         fotg210->enabled_hrtimer_events |= (1 << event);
1112 
1113         /* Track only the lowest-numbered pending event */
1114         if (event < fotg210->next_hrtimer_event) {
1115                 fotg210->next_hrtimer_event = event;
1116                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1117                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1118         }
1119 }
1120 
1121 
1122 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1123 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1124 {
1125         unsigned        actual, want;
1126 
1127         /* Don't enable anything if the controller isn't running (e.g., died) */
1128         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1129                 return;
1130 
1131         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1132         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1133 
1134         if (want != actual) {
1135 
1136                 /* Poll again later, but give up after about 20 ms */
1137                 if (fotg210->ASS_poll_count++ < 20) {
1138                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1139                                              true);
1140                         return;
1141                 }
1142                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1143                                 want, actual);
1144         }
1145         fotg210->ASS_poll_count = 0;
1146 
1147         /* The status is up-to-date; restart or stop the schedule as needed */
1148         if (want == 0) {        /* Stopped */
1149                 if (fotg210->async_count > 0)
1150                         fotg210_set_command_bit(fotg210, CMD_ASE);
1151 
1152         } else {                /* Running */
1153                 if (fotg210->async_count == 0) {
1154 
1155                         /* Turn off the schedule after a while */
1156                         fotg210_enable_event(fotg210,
1157                                              FOTG210_HRTIMER_DISABLE_ASYNC,
1158                                              true);
1159                 }
1160         }
1161 }
1162 
1163 /* Turn off the async schedule after a brief delay */
1164 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1165 {
1166         fotg210_clear_command_bit(fotg210, CMD_ASE);
1167 }
1168 
1169 
1170 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1171 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1172 {
1173         unsigned        actual, want;
1174 
1175         /* Don't do anything if the controller isn't running (e.g., died) */
1176         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1177                 return;
1178 
1179         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1180         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1181 
1182         if (want != actual) {
1183 
1184                 /* Poll again later, but give up after about 20 ms */
1185                 if (fotg210->PSS_poll_count++ < 20) {
1186                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1187                                              true);
1188                         return;
1189                 }
1190                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1191                                 want, actual);
1192         }
1193         fotg210->PSS_poll_count = 0;
1194 
1195         /* The status is up-to-date; restart or stop the schedule as needed */
1196         if (want == 0) {        /* Stopped */
1197                 if (fotg210->periodic_count > 0)
1198                         fotg210_set_command_bit(fotg210, CMD_PSE);
1199 
1200         } else {                /* Running */
1201                 if (fotg210->periodic_count == 0) {
1202 
1203                         /* Turn off the schedule after a while */
1204                         fotg210_enable_event(fotg210,
1205                                              FOTG210_HRTIMER_DISABLE_PERIODIC,
1206                                              true);
1207                 }
1208         }
1209 }
1210 
1211 /* Turn off the periodic schedule after a brief delay */
1212 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1213 {
1214         fotg210_clear_command_bit(fotg210, CMD_PSE);
1215 }
1216 
1217 
1218 /* Poll the STS_HALT status bit; see when a dead controller stops */
1219 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1220 {
1221         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1222 
1223                 /* Give up after a few milliseconds */
1224                 if (fotg210->died_poll_count++ < 5) {
1225                         /* Try again later */
1226                         fotg210_enable_event(fotg210,
1227                                              FOTG210_HRTIMER_POLL_DEAD, true);
1228                         return;
1229                 }
1230                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1231         }
1232 
1233         /* Clean up the mess */
1234         fotg210->rh_state = FOTG210_RH_HALTED;
1235         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1236         fotg210_work(fotg210);
1237         end_unlink_async(fotg210);
1238 
1239         /* Not in process context, so don't try to reset the controller */
1240 }
1241 
1242 
1243 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1244 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1245 {
1246         bool            stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1247 
1248         /*
1249          * Process all the QHs on the intr_unlink list that were added
1250          * before the current unlink cycle began.  The list is in
1251          * temporal order, so stop when we reach the first entry in the
1252          * current cycle.  But if the root hub isn't running then
1253          * process all the QHs on the list.
1254          */
1255         fotg210->intr_unlinking = true;
1256         while (fotg210->intr_unlink) {
1257                 struct fotg210_qh       *qh = fotg210->intr_unlink;
1258 
1259                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1260                         break;
1261                 fotg210->intr_unlink = qh->unlink_next;
1262                 qh->unlink_next = NULL;
1263                 end_unlink_intr(fotg210, qh);
1264         }
1265 
1266         /* Handle remaining entries later */
1267         if (fotg210->intr_unlink) {
1268                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1269                                      true);
1270                 ++fotg210->intr_unlink_cycle;
1271         }
1272         fotg210->intr_unlinking = false;
1273 }
1274 
1275 
1276 /* Start another free-iTDs/siTDs cycle */
1277 static void start_free_itds(struct fotg210_hcd *fotg210)
1278 {
1279         if (!(fotg210->enabled_hrtimer_events &
1280                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1281                 fotg210->last_itd_to_free = list_entry(
1282                                 fotg210->cached_itd_list.prev,
1283                                 struct fotg210_itd, itd_list);
1284                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1285         }
1286 }
1287 
1288 /* Wait for controller to stop using old iTDs and siTDs */
1289 static void end_free_itds(struct fotg210_hcd *fotg210)
1290 {
1291         struct fotg210_itd              *itd, *n;
1292 
1293         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1294                 fotg210->last_itd_to_free = NULL;
1295 
1296         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1297                 list_del(&itd->itd_list);
1298                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1299                 if (itd == fotg210->last_itd_to_free)
1300                         break;
1301         }
1302 
1303         if (!list_empty(&fotg210->cached_itd_list))
1304                 start_free_itds(fotg210);
1305 }
1306 
1307 
1308 /* Handle lost (or very late) IAA interrupts */
1309 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1310 {
1311         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1312                 return;
1313 
1314         /*
1315          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1316          * So we need this watchdog, but must protect it against both
1317          * (a) SMP races against real IAA firing and retriggering, and
1318          * (b) clean HC shutdown, when IAA watchdog was pending.
1319          */
1320         if (fotg210->async_iaa) {
1321                 u32 cmd, status;
1322 
1323                 /* If we get here, IAA is *REALLY* late.  It's barely
1324                  * conceivable that the system is so busy that CMD_IAAD
1325                  * is still legitimately set, so let's be sure it's
1326                  * clear before we read STS_IAA.  (The HC should clear
1327                  * CMD_IAAD when it sets STS_IAA.)
1328                  */
1329                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1330 
1331                 /*
1332                  * If IAA is set here it either legitimately triggered
1333                  * after the watchdog timer expired (_way_ late, so we'll
1334                  * still count it as lost) ... or a silicon erratum:
1335                  * - VIA seems to set IAA without triggering the IRQ;
1336                  * - IAAD potentially cleared without setting IAA.
1337                  */
1338                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1339                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1340                         COUNT(fotg210->stats.lost_iaa);
1341                         fotg210_writel(fotg210, STS_IAA,
1342                                        &fotg210->regs->status);
1343                 }
1344 
1345                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1346                                 status, cmd);
1347                 end_unlink_async(fotg210);
1348         }
1349 }
1350 
1351 
1352 /* Enable the I/O watchdog, if appropriate */
1353 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1354 {
1355         /* Not needed if the controller isn't running or it's already enabled */
1356         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1357                         (fotg210->enabled_hrtimer_events &
1358                                 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1359                 return;
1360 
1361         /*
1362          * Isochronous transfers always need the watchdog.
1363          * For other sorts we use it only if the flag is set.
1364          */
1365         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1366                         fotg210->async_count + fotg210->intr_count > 0))
1367                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1368                                      true);
1369 }
1370 
1371 
1372 /*
1373  * Handler functions for the hrtimer event types.
1374  * Keep this array in the same order as the event types indexed by
1375  * enum fotg210_hrtimer_event in fotg210.h.
1376  */
1377 static void (*event_handlers[])(struct fotg210_hcd *) = {
1378         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1379         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1380         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1381         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1382         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1383         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1384         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1385         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1386         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1387         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1388 };
1389 
1390 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1391 {
1392         struct fotg210_hcd *fotg210 =
1393                         container_of(t, struct fotg210_hcd, hrtimer);
1394         ktime_t         now;
1395         unsigned long   events;
1396         unsigned long   flags;
1397         unsigned        e;
1398 
1399         spin_lock_irqsave(&fotg210->lock, flags);
1400 
1401         events = fotg210->enabled_hrtimer_events;
1402         fotg210->enabled_hrtimer_events = 0;
1403         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1404 
1405         /*
1406          * Check each pending event.  If its time has expired, handle
1407          * the event; otherwise re-enable it.
1408          */
1409         now = ktime_get();
1410         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1411                 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1412                         event_handlers[e](fotg210);
1413                 else
1414                         fotg210_enable_event(fotg210, e, false);
1415         }
1416 
1417         spin_unlock_irqrestore(&fotg210->lock, flags);
1418         return HRTIMER_NORESTART;
1419 }
1420 
1421 /*-------------------------------------------------------------------------*/
1422 
1423 #define fotg210_bus_suspend     NULL
1424 #define fotg210_bus_resume      NULL
1425 
1426 /*-------------------------------------------------------------------------*/
1427 
1428 static int check_reset_complete(
1429         struct fotg210_hcd      *fotg210,
1430         int             index,
1431         u32 __iomem     *status_reg,
1432         int             port_status
1433 ) {
1434         if (!(port_status & PORT_CONNECT))
1435                 return port_status;
1436 
1437         /* if reset finished and it's still not enabled -- handoff */
1438         if (!(port_status & PORT_PE)) {
1439                 /* with integrated TT, there's nobody to hand it to! */
1440                 fotg210_dbg(fotg210,
1441                         "Failed to enable port %d on root hub TT\n",
1442                         index+1);
1443                 return port_status;
1444         } else {
1445                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1446                         index + 1);
1447         }
1448 
1449         return port_status;
1450 }
1451 
1452 /*-------------------------------------------------------------------------*/
1453 
1454 
1455 /* build "status change" packet (one or two bytes) from HC registers */
1456 
1457 static int
1458 fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1459 {
1460         struct fotg210_hcd      *fotg210 = hcd_to_fotg210(hcd);
1461         u32             temp, status;
1462         u32             mask;
1463         int             retval = 1;
1464         unsigned long   flags;
1465 
1466         /* init status to no-changes */
1467         buf[0] = 0;
1468 
1469         /* Inform the core about resumes-in-progress by returning
1470          * a non-zero value even if there are no status changes.
1471          */
1472         status = fotg210->resuming_ports;
1473 
1474         mask = PORT_CSC | PORT_PEC;
1475         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1476 
1477         /* no hub change reports (bit 0) for now (power, ...) */
1478 
1479         /* port N changes (bit N)? */
1480         spin_lock_irqsave(&fotg210->lock, flags);
1481 
1482         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1483 
1484         /*
1485          * Return status information even for ports with OWNER set.
1486          * Otherwise khubd wouldn't see the disconnect event when a
1487          * high-speed device is switched over to the companion
1488          * controller by the user.
1489          */
1490 
1491         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
1492                         || (fotg210->reset_done[0] && time_after_eq(
1493                                 jiffies, fotg210->reset_done[0]))) {
1494                 buf[0] |= 1 << 1;
1495                 status = STS_PCD;
1496         }
1497         /* FIXME autosuspend idle root hubs */
1498         spin_unlock_irqrestore(&fotg210->lock, flags);
1499         return status ? retval : 0;
1500 }
1501 
1502 /*-------------------------------------------------------------------------*/
1503 
1504 static void
1505 fotg210_hub_descriptor(
1506         struct fotg210_hcd              *fotg210,
1507         struct usb_hub_descriptor       *desc
1508 ) {
1509         int             ports = HCS_N_PORTS(fotg210->hcs_params);
1510         u16             temp;
1511 
1512         desc->bDescriptorType = 0x29;
1513         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1514         desc->bHubContrCurrent = 0;
1515 
1516         desc->bNbrPorts = ports;
1517         temp = 1 + (ports / 8);
1518         desc->bDescLength = 7 + 2 * temp;
1519 
1520         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1521         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1522         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1523 
1524         temp = 0x0008;          /* per-port overcurrent reporting */
1525         temp |= 0x0002;         /* no power switching */
1526         desc->wHubCharacteristics = cpu_to_le16(temp);
1527 }
1528 
1529 /*-------------------------------------------------------------------------*/
1530 
1531 static int fotg210_hub_control(
1532         struct usb_hcd  *hcd,
1533         u16             typeReq,
1534         u16             wValue,
1535         u16             wIndex,
1536         char            *buf,
1537         u16             wLength
1538 ) {
1539         struct fotg210_hcd      *fotg210 = hcd_to_fotg210(hcd);
1540         int             ports = HCS_N_PORTS(fotg210->hcs_params);
1541         u32 __iomem     *status_reg = &fotg210->regs->port_status;
1542         u32             temp, temp1, status;
1543         unsigned long   flags;
1544         int             retval = 0;
1545         unsigned        selector;
1546 
1547         /*
1548          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1549          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1550          * (track current state ourselves) ... blink for diagnostics,
1551          * power, "this is the one", etc.  EHCI spec supports this.
1552          */
1553 
1554         spin_lock_irqsave(&fotg210->lock, flags);
1555         switch (typeReq) {
1556         case ClearHubFeature:
1557                 switch (wValue) {
1558                 case C_HUB_LOCAL_POWER:
1559                 case C_HUB_OVER_CURRENT:
1560                         /* no hub-wide feature/status flags */
1561                         break;
1562                 default:
1563                         goto error;
1564                 }
1565                 break;
1566         case ClearPortFeature:
1567                 if (!wIndex || wIndex > ports)
1568                         goto error;
1569                 wIndex--;
1570                 temp = fotg210_readl(fotg210, status_reg);
1571                 temp &= ~PORT_RWC_BITS;
1572 
1573                 /*
1574                  * Even if OWNER is set, so the port is owned by the
1575                  * companion controller, khubd needs to be able to clear
1576                  * the port-change status bits (especially
1577                  * USB_PORT_STAT_C_CONNECTION).
1578                  */
1579 
1580                 switch (wValue) {
1581                 case USB_PORT_FEAT_ENABLE:
1582                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1583                         break;
1584                 case USB_PORT_FEAT_C_ENABLE:
1585                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1586                         break;
1587                 case USB_PORT_FEAT_SUSPEND:
1588                         if (temp & PORT_RESET)
1589                                 goto error;
1590                         if (!(temp & PORT_SUSPEND))
1591                                 break;
1592                         if ((temp & PORT_PE) == 0)
1593                                 goto error;
1594 
1595                         /* resume signaling for 20 msec */
1596                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1597                         fotg210->reset_done[wIndex] = jiffies
1598                                         + msecs_to_jiffies(20);
1599                         break;
1600                 case USB_PORT_FEAT_C_SUSPEND:
1601                         clear_bit(wIndex, &fotg210->port_c_suspend);
1602                         break;
1603                 case USB_PORT_FEAT_C_CONNECTION:
1604                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1605                         break;
1606                 case USB_PORT_FEAT_C_OVER_CURRENT:
1607                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1608                                        &fotg210->regs->otgisr);
1609                         break;
1610                 case USB_PORT_FEAT_C_RESET:
1611                         /* GetPortStatus clears reset */
1612                         break;
1613                 default:
1614                         goto error;
1615                 }
1616                 fotg210_readl(fotg210, &fotg210->regs->command);
1617                 break;
1618         case GetHubDescriptor:
1619                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1620                         buf);
1621                 break;
1622         case GetHubStatus:
1623                 /* no hub-wide feature/status flags */
1624                 memset(buf, 0, 4);
1625                 /*cpu_to_le32s ((u32 *) buf); */
1626                 break;
1627         case GetPortStatus:
1628                 if (!wIndex || wIndex > ports)
1629                         goto error;
1630                 wIndex--;
1631                 status = 0;
1632                 temp = fotg210_readl(fotg210, status_reg);
1633 
1634                 /* wPortChange bits */
1635                 if (temp & PORT_CSC)
1636                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1637                 if (temp & PORT_PEC)
1638                         status |= USB_PORT_STAT_C_ENABLE << 16;
1639 
1640                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1641                 if (temp1 & OTGISR_OVC)
1642                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1643 
1644                 /* whoever resumes must GetPortStatus to complete it!! */
1645                 if (temp & PORT_RESUME) {
1646 
1647                         /* Remote Wakeup received? */
1648                         if (!fotg210->reset_done[wIndex]) {
1649                                 /* resume signaling for 20 msec */
1650                                 fotg210->reset_done[wIndex] = jiffies
1651                                                 + msecs_to_jiffies(20);
1652                                 /* check the port again */
1653                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1654                                                 fotg210->reset_done[wIndex]);
1655                         }
1656 
1657                         /* resume completed? */
1658                         else if (time_after_eq(jiffies,
1659                                         fotg210->reset_done[wIndex])) {
1660                                 clear_bit(wIndex, &fotg210->suspended_ports);
1661                                 set_bit(wIndex, &fotg210->port_c_suspend);
1662                                 fotg210->reset_done[wIndex] = 0;
1663 
1664                                 /* stop resume signaling */
1665                                 temp = fotg210_readl(fotg210, status_reg);
1666                                 fotg210_writel(fotg210,
1667                                         temp & ~(PORT_RWC_BITS | PORT_RESUME),
1668                                         status_reg);
1669                                 clear_bit(wIndex, &fotg210->resuming_ports);
1670                                 retval = handshake(fotg210, status_reg,
1671                                            PORT_RESUME, 0, 2000 /* 2msec */);
1672                                 if (retval != 0) {
1673                                         fotg210_err(fotg210,
1674                                                 "port %d resume error %d\n",
1675                                                 wIndex + 1, retval);
1676                                         goto error;
1677                                 }
1678                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1679                         }
1680                 }
1681 
1682                 /* whoever resets must GetPortStatus to complete it!! */
1683                 if ((temp & PORT_RESET)
1684                                 && time_after_eq(jiffies,
1685                                         fotg210->reset_done[wIndex])) {
1686                         status |= USB_PORT_STAT_C_RESET << 16;
1687                         fotg210->reset_done[wIndex] = 0;
1688                         clear_bit(wIndex, &fotg210->resuming_ports);
1689 
1690                         /* force reset to complete */
1691                         fotg210_writel(fotg210,
1692                                        temp & ~(PORT_RWC_BITS | PORT_RESET),
1693                                        status_reg);
1694                         /* REVISIT:  some hardware needs 550+ usec to clear
1695                          * this bit; seems too long to spin routinely...
1696                          */
1697                         retval = handshake(fotg210, status_reg,
1698                                         PORT_RESET, 0, 1000);
1699                         if (retval != 0) {
1700                                 fotg210_err(fotg210, "port %d reset error %d\n",
1701                                         wIndex + 1, retval);
1702                                 goto error;
1703                         }
1704 
1705                         /* see what we found out */
1706                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1707                                         fotg210_readl(fotg210, status_reg));
1708                 }
1709 
1710                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1711                         fotg210->reset_done[wIndex] = 0;
1712                         clear_bit(wIndex, &fotg210->resuming_ports);
1713                 }
1714 
1715                 /* transfer dedicated ports to the companion hc */
1716                 if ((temp & PORT_CONNECT) &&
1717                                 test_bit(wIndex, &fotg210->companion_ports)) {
1718                         temp &= ~PORT_RWC_BITS;
1719                         fotg210_writel(fotg210, temp, status_reg);
1720                         fotg210_dbg(fotg210, "port %d --> companion\n",
1721                                     wIndex + 1);
1722                         temp = fotg210_readl(fotg210, status_reg);
1723                 }
1724 
1725                 /*
1726                  * Even if OWNER is set, there's no harm letting khubd
1727                  * see the wPortStatus values (they should all be 0 except
1728                  * for PORT_POWER anyway).
1729                  */
1730 
1731                 if (temp & PORT_CONNECT) {
1732                         status |= USB_PORT_STAT_CONNECTION;
1733                         status |= fotg210_port_speed(fotg210, temp);
1734                 }
1735                 if (temp & PORT_PE)
1736                         status |= USB_PORT_STAT_ENABLE;
1737 
1738                 /* maybe the port was unsuspended without our knowledge */
1739                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1740                         status |= USB_PORT_STAT_SUSPEND;
1741                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1742                         clear_bit(wIndex, &fotg210->suspended_ports);
1743                         clear_bit(wIndex, &fotg210->resuming_ports);
1744                         fotg210->reset_done[wIndex] = 0;
1745                         if (temp & PORT_PE)
1746                                 set_bit(wIndex, &fotg210->port_c_suspend);
1747                 }
1748 
1749                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1750                 if (temp1 & OTGISR_OVC)
1751                         status |= USB_PORT_STAT_OVERCURRENT;
1752                 if (temp & PORT_RESET)
1753                         status |= USB_PORT_STAT_RESET;
1754                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1755                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1756 
1757                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1758                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1759                 put_unaligned_le32(status, buf);
1760                 break;
1761         case SetHubFeature:
1762                 switch (wValue) {
1763                 case C_HUB_LOCAL_POWER:
1764                 case C_HUB_OVER_CURRENT:
1765                         /* no hub-wide feature/status flags */
1766                         break;
1767                 default:
1768                         goto error;
1769                 }
1770                 break;
1771         case SetPortFeature:
1772                 selector = wIndex >> 8;
1773                 wIndex &= 0xff;
1774 
1775                 if (!wIndex || wIndex > ports)
1776                         goto error;
1777                 wIndex--;
1778                 temp = fotg210_readl(fotg210, status_reg);
1779                 temp &= ~PORT_RWC_BITS;
1780                 switch (wValue) {
1781                 case USB_PORT_FEAT_SUSPEND:
1782                         if ((temp & PORT_PE) == 0
1783                                         || (temp & PORT_RESET) != 0)
1784                                 goto error;
1785 
1786                         /* After above check the port must be connected.
1787                          * Set appropriate bit thus could put phy into low power
1788                          * mode if we have hostpc feature
1789                          */
1790                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1791                                        status_reg);
1792                         set_bit(wIndex, &fotg210->suspended_ports);
1793                         break;
1794                 case USB_PORT_FEAT_RESET:
1795                         if (temp & PORT_RESUME)
1796                                 goto error;
1797                         /* line status bits may report this as low speed,
1798                          * which can be fine if this root hub has a
1799                          * transaction translator built in.
1800                          */
1801                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1802                         temp |= PORT_RESET;
1803                         temp &= ~PORT_PE;
1804 
1805                         /*
1806                          * caller must wait, then call GetPortStatus
1807                          * usb 2.0 spec says 50 ms resets on root
1808                          */
1809                         fotg210->reset_done[wIndex] = jiffies
1810                                         + msecs_to_jiffies(50);
1811                         fotg210_writel(fotg210, temp, status_reg);
1812                         break;
1813 
1814                 /* For downstream facing ports (these):  one hub port is put
1815                  * into test mode according to USB2 11.24.2.13, then the hub
1816                  * must be reset (which for root hub now means rmmod+modprobe,
1817                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1818                  * about the EHCI-specific stuff.
1819                  */
1820                 case USB_PORT_FEAT_TEST:
1821                         if (!selector || selector > 5)
1822                                 goto error;
1823                         spin_unlock_irqrestore(&fotg210->lock, flags);
1824                         fotg210_quiesce(fotg210);
1825                         spin_lock_irqsave(&fotg210->lock, flags);
1826 
1827                         /* Put all enabled ports into suspend */
1828                         temp = fotg210_readl(fotg210, status_reg) &
1829                                 ~PORT_RWC_BITS;
1830                         if (temp & PORT_PE)
1831                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1832                                                 status_reg);
1833 
1834                         spin_unlock_irqrestore(&fotg210->lock, flags);
1835                         fotg210_halt(fotg210);
1836                         spin_lock_irqsave(&fotg210->lock, flags);
1837 
1838                         temp = fotg210_readl(fotg210, status_reg);
1839                         temp |= selector << 16;
1840                         fotg210_writel(fotg210, temp, status_reg);
1841                         break;
1842 
1843                 default:
1844                         goto error;
1845                 }
1846                 fotg210_readl(fotg210, &fotg210->regs->command);
1847                 break;
1848 
1849         default:
1850 error:
1851                 /* "stall" on error */
1852                 retval = -EPIPE;
1853         }
1854         spin_unlock_irqrestore(&fotg210->lock, flags);
1855         return retval;
1856 }
1857 
1858 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1859                 int portnum)
1860 {
1861         return;
1862 }
1863 
1864 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1865                 int portnum)
1866 {
1867         return 0;
1868 }
1869 /*-------------------------------------------------------------------------*/
1870 /*
1871  * There's basically three types of memory:
1872  *      - data used only by the HCD ... kmalloc is fine
1873  *      - async and periodic schedules, shared by HC and HCD ... these
1874  *        need to use dma_pool or dma_alloc_coherent
1875  *      - driver buffers, read/written by HC ... single shot DMA mapped
1876  *
1877  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1878  * No memory seen by this driver is pageable.
1879  */
1880 
1881 /*-------------------------------------------------------------------------*/
1882 
1883 /* Allocate the key transfer structures from the previously allocated pool */
1884 
1885 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1886                                     struct fotg210_qtd *qtd, dma_addr_t dma)
1887 {
1888         memset(qtd, 0, sizeof(*qtd));
1889         qtd->qtd_dma = dma;
1890         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1891         qtd->hw_next = FOTG210_LIST_END(fotg210);
1892         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1893         INIT_LIST_HEAD(&qtd->qtd_list);
1894 }
1895 
1896 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1897                                              gfp_t flags)
1898 {
1899         struct fotg210_qtd              *qtd;
1900         dma_addr_t              dma;
1901 
1902         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1903         if (qtd != NULL)
1904                 fotg210_qtd_init(fotg210, qtd, dma);
1905 
1906         return qtd;
1907 }
1908 
1909 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1910                                     struct fotg210_qtd *qtd)
1911 {
1912         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1913 }
1914 
1915 
1916 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1917 {
1918         /* clean qtds first, and know this is not linked */
1919         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1920                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1921                 BUG();
1922         }
1923         if (qh->dummy)
1924                 fotg210_qtd_free(fotg210, qh->dummy);
1925         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1926         kfree(qh);
1927 }
1928 
1929 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1930                                            gfp_t flags)
1931 {
1932         struct fotg210_qh               *qh;
1933         dma_addr_t              dma;
1934 
1935         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1936         if (!qh)
1937                 goto done;
1938         qh->hw = (struct fotg210_qh_hw *)
1939                 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1940         if (!qh->hw)
1941                 goto fail;
1942         memset(qh->hw, 0, sizeof(*qh->hw));
1943         qh->qh_dma = dma;
1944         INIT_LIST_HEAD(&qh->qtd_list);
1945 
1946         /* dummy td enables safe urb queuing */
1947         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1948         if (qh->dummy == NULL) {
1949                 fotg210_dbg(fotg210, "no dummy td\n");
1950                 goto fail1;
1951         }
1952 done:
1953         return qh;
1954 fail1:
1955         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1956 fail:
1957         kfree(qh);
1958         return NULL;
1959 }
1960 
1961 /*-------------------------------------------------------------------------*/
1962 
1963 /* The queue heads and transfer descriptors are managed from pools tied
1964  * to each of the "per device" structures.
1965  * This is the initialisation and cleanup code.
1966  */
1967 
1968 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1969 {
1970         if (fotg210->async)
1971                 qh_destroy(fotg210, fotg210->async);
1972         fotg210->async = NULL;
1973 
1974         if (fotg210->dummy)
1975                 qh_destroy(fotg210, fotg210->dummy);
1976         fotg210->dummy = NULL;
1977 
1978         /* DMA consistent memory and pools */
1979         if (fotg210->qtd_pool)
1980                 dma_pool_destroy(fotg210->qtd_pool);
1981         fotg210->qtd_pool = NULL;
1982 
1983         if (fotg210->qh_pool) {
1984                 dma_pool_destroy(fotg210->qh_pool);
1985                 fotg210->qh_pool = NULL;
1986         }
1987 
1988         if (fotg210->itd_pool)
1989                 dma_pool_destroy(fotg210->itd_pool);
1990         fotg210->itd_pool = NULL;
1991 
1992         if (fotg210->periodic)
1993                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1994                         fotg210->periodic_size * sizeof(u32),
1995                         fotg210->periodic, fotg210->periodic_dma);
1996         fotg210->periodic = NULL;
1997 
1998         /* shadow periodic table */
1999         kfree(fotg210->pshadow);
2000         fotg210->pshadow = NULL;
2001 }
2002 
2003 /* remember to add cleanup code (above) if you add anything here */
2004 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
2005 {
2006         int i;
2007 
2008         /* QTDs for control/bulk/intr transfers */
2009         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
2010                         fotg210_to_hcd(fotg210)->self.controller,
2011                         sizeof(struct fotg210_qtd),
2012                         32 /* byte alignment (for hw parts) */,
2013                         4096 /* can't cross 4K */);
2014         if (!fotg210->qtd_pool)
2015                 goto fail;
2016 
2017         /* QHs for control/bulk/intr transfers */
2018         fotg210->qh_pool = dma_pool_create("fotg210_qh",
2019                         fotg210_to_hcd(fotg210)->self.controller,
2020                         sizeof(struct fotg210_qh_hw),
2021                         32 /* byte alignment (for hw parts) */,
2022                         4096 /* can't cross 4K */);
2023         if (!fotg210->qh_pool)
2024                 goto fail;
2025 
2026         fotg210->async = fotg210_qh_alloc(fotg210, flags);
2027         if (!fotg210->async)
2028                 goto fail;
2029 
2030         /* ITD for high speed ISO transfers */
2031         fotg210->itd_pool = dma_pool_create("fotg210_itd",
2032                         fotg210_to_hcd(fotg210)->self.controller,
2033                         sizeof(struct fotg210_itd),
2034                         64 /* byte alignment (for hw parts) */,
2035                         4096 /* can't cross 4K */);
2036         if (!fotg210->itd_pool)
2037                 goto fail;
2038 
2039         /* Hardware periodic table */
2040         fotg210->periodic = (__le32 *)
2041                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
2042                         fotg210->periodic_size * sizeof(__le32),
2043                         &fotg210->periodic_dma, 0);
2044         if (fotg210->periodic == NULL)
2045                 goto fail;
2046 
2047         for (i = 0; i < fotg210->periodic_size; i++)
2048                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
2049 
2050         /* software shadow of hardware table */
2051         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
2052                                    flags);
2053         if (fotg210->pshadow != NULL)
2054                 return 0;
2055 
2056 fail:
2057         fotg210_dbg(fotg210, "couldn't init memory\n");
2058         fotg210_mem_cleanup(fotg210);
2059         return -ENOMEM;
2060 }
2061 /*-------------------------------------------------------------------------*/
2062 /*
2063  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2064  *
2065  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2066  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2067  * buffers needed for the larger number).  We use one QH per endpoint, queue
2068  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2069  *
2070  * ISO traffic uses "ISO TD" (itd) records, and (along with
2071  * interrupts) needs careful scheduling.  Performance improvements can be
2072  * an ongoing challenge.  That's in "ehci-sched.c".
2073  *
2074  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2075  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2076  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2077  * buffer low/full speed data so the host collects it at high speed.
2078  */
2079 
2080 /*-------------------------------------------------------------------------*/
2081 
2082 /* fill a qtd, returning how much of the buffer we were able to queue up */
2083 
2084 static int
2085 qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
2086                   size_t len, int token, int maxpacket)
2087 {
2088         int     i, count;
2089         u64     addr = buf;
2090 
2091         /* one buffer entry per 4K ... first might be short or unaligned */
2092         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2093         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2094         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2095         if (likely(len < count))                /* ... iff needed */
2096                 count = len;
2097         else {
2098                 buf +=  0x1000;
2099                 buf &= ~0x0fff;
2100 
2101                 /* per-qtd limit: from 16K to 20K (best alignment) */
2102                 for (i = 1; count < len && i < 5; i++) {
2103                         addr = buf;
2104                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2105                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2106                                         (u32)(addr >> 32));
2107                         buf += 0x1000;
2108                         if ((count + 0x1000) < len)
2109                                 count += 0x1000;
2110                         else
2111                                 count = len;
2112                 }
2113 
2114                 /* short packets may only terminate transfers */
2115                 if (count != len)
2116                         count -= (count % maxpacket);
2117         }
2118         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2119         qtd->length = count;
2120 
2121         return count;
2122 }
2123 
2124 /*-------------------------------------------------------------------------*/
2125 
2126 static inline void
2127 qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
2128           struct fotg210_qtd *qtd)
2129 {
2130         struct fotg210_qh_hw *hw = qh->hw;
2131 
2132         /* writes to an active overlay are unsafe */
2133         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2134 
2135         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2136         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2137 
2138         /* Except for control endpoints, we make hardware maintain data
2139          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2140          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2141          * ever clear it.
2142          */
2143         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2144                 unsigned        is_out, epnum;
2145 
2146                 is_out = qh->is_out;
2147                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2148                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2149                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2150                         usb_settoggle(qh->dev, epnum, is_out, 1);
2151                 }
2152         }
2153 
2154         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2155 }
2156 
2157 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2158  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2159  * recovery (including urb dequeue) would need software changes to a QH...
2160  */
2161 static void
2162 qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2163 {
2164         struct fotg210_qtd *qtd;
2165 
2166         if (list_empty(&qh->qtd_list))
2167                 qtd = qh->dummy;
2168         else {
2169                 qtd = list_entry(qh->qtd_list.next,
2170                                 struct fotg210_qtd, qtd_list);
2171                 /*
2172                  * first qtd may already be partially processed.
2173                  * If we come here during unlink, the QH overlay region
2174                  * might have reference to the just unlinked qtd. The
2175                  * qtd is updated in qh_completions(). Update the QH
2176                  * overlay here.
2177                  */
2178                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2179                         qh->hw->hw_qtd_next = qtd->hw_next;
2180                         qtd = NULL;
2181                 }
2182         }
2183 
2184         if (qtd)
2185                 qh_update(fotg210, qh, qtd);
2186 }
2187 
2188 /*-------------------------------------------------------------------------*/
2189 
2190 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2191 
2192 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2193                 struct usb_host_endpoint *ep)
2194 {
2195         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
2196         struct fotg210_qh               *qh = ep->hcpriv;
2197         unsigned long           flags;
2198 
2199         spin_lock_irqsave(&fotg210->lock, flags);
2200         qh->clearing_tt = 0;
2201         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2202                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2203                 qh_link_async(fotg210, qh);
2204         spin_unlock_irqrestore(&fotg210->lock, flags);
2205 }
2206 
2207 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2208                                     struct fotg210_qh *qh,
2209                                     struct urb *urb, u32 token)
2210 {
2211 
2212         /* If an async split transaction gets an error or is unlinked,
2213          * the TT buffer may be left in an indeterminate state.  We
2214          * have to clear the TT buffer.
2215          *
2216          * Note: this routine is never called for Isochronous transfers.
2217          */
2218         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2219                 struct usb_device *tt = urb->dev->tt->hub;
2220                 dev_dbg(&tt->dev,
2221                         "clear tt buffer port %d, a%d ep%d t%08x\n",
2222                         urb->dev->ttport, urb->dev->devnum,
2223                         usb_pipeendpoint(urb->pipe), token);
2224 
2225                 if (urb->dev->tt->hub !=
2226                     fotg210_to_hcd(fotg210)->self.root_hub) {
2227                         if (usb_hub_clear_tt_buffer(urb) == 0)
2228                                 qh->clearing_tt = 1;
2229                 }
2230         }
2231 }
2232 
2233 static int qtd_copy_status(
2234         struct fotg210_hcd *fotg210,
2235         struct urb *urb,
2236         size_t length,
2237         u32 token
2238 )
2239 {
2240         int     status = -EINPROGRESS;
2241 
2242         /* count IN/OUT bytes, not SETUP (even short packets) */
2243         if (likely(QTD_PID(token) != 2))
2244                 urb->actual_length += length - QTD_LENGTH(token);
2245 
2246         /* don't modify error codes */
2247         if (unlikely(urb->unlinked))
2248                 return status;
2249 
2250         /* force cleanup after short read; not always an error */
2251         if (unlikely(IS_SHORT_READ(token)))
2252                 status = -EREMOTEIO;
2253 
2254         /* serious "can't proceed" faults reported by the hardware */
2255         if (token & QTD_STS_HALT) {
2256                 if (token & QTD_STS_BABBLE) {
2257                         /* FIXME "must" disable babbling device's port too */
2258                         status = -EOVERFLOW;
2259                 /* CERR nonzero + halt --> stall */
2260                 } else if (QTD_CERR(token)) {
2261                         status = -EPIPE;
2262 
2263                 /* In theory, more than one of the following bits can be set
2264                  * since they are sticky and the transaction is retried.
2265                  * Which to test first is rather arbitrary.
2266                  */
2267                 } else if (token & QTD_STS_MMF) {
2268                         /* fs/ls interrupt xfer missed the complete-split */
2269                         status = -EPROTO;
2270                 } else if (token & QTD_STS_DBE) {
2271                         status = (QTD_PID(token) == 1) /* IN ? */
2272                                 ? -ENOSR  /* hc couldn't read data */
2273                                 : -ECOMM; /* hc couldn't write data */
2274                 } else if (token & QTD_STS_XACT) {
2275                         /* timeout, bad CRC, wrong PID, etc */
2276                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2277                                 urb->dev->devpath,
2278                                 usb_pipeendpoint(urb->pipe),
2279                                 usb_pipein(urb->pipe) ? "in" : "out");
2280                         status = -EPROTO;
2281                 } else {        /* unknown */
2282                         status = -EPROTO;
2283                 }
2284 
2285                 fotg210_dbg(fotg210,
2286                         "dev%d ep%d%s qtd token %08x --> status %d\n",
2287                         usb_pipedevice(urb->pipe),
2288                         usb_pipeendpoint(urb->pipe),
2289                         usb_pipein(urb->pipe) ? "in" : "out",
2290                         token, status);
2291         }
2292 
2293         return status;
2294 }
2295 
2296 static void
2297 fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
2298 __releases(fotg210->lock)
2299 __acquires(fotg210->lock)
2300 {
2301         if (likely(urb->hcpriv != NULL)) {
2302                 struct fotg210_qh       *qh = (struct fotg210_qh *) urb->hcpriv;
2303 
2304                 /* S-mask in a QH means it's an interrupt urb */
2305                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2306 
2307                         /* ... update hc-wide periodic stats (for usbfs) */
2308                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2309                 }
2310         }
2311 
2312         if (unlikely(urb->unlinked)) {
2313                 COUNT(fotg210->stats.unlink);
2314         } else {
2315                 /* report non-error and short read status as zero */
2316                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2317                         status = 0;
2318                 COUNT(fotg210->stats.complete);
2319         }
2320 
2321 #ifdef FOTG210_URB_TRACE
2322         fotg210_dbg(fotg210,
2323                 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2324                 __func__, urb->dev->devpath, urb,
2325                 usb_pipeendpoint(urb->pipe),
2326                 usb_pipein(urb->pipe) ? "in" : "out",
2327                 status,
2328                 urb->actual_length, urb->transfer_buffer_length);
2329 #endif
2330 
2331         /* complete() can reenter this HCD */
2332         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2333         spin_unlock(&fotg210->lock);
2334         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2335         spin_lock(&fotg210->lock);
2336 }
2337 
2338 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2339 
2340 /*
2341  * Process and free completed qtds for a qh, returning URBs to drivers.
2342  * Chases up to qh->hw_current.  Returns number of completions called,
2343  * indicating how much "real" work we did.
2344  */
2345 static unsigned
2346 qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2347 {
2348         struct fotg210_qtd              *last, *end = qh->dummy;
2349         struct list_head        *entry, *tmp;
2350         int                     last_status;
2351         int                     stopped;
2352         unsigned                count = 0;
2353         u8                      state;
2354         struct fotg210_qh_hw    *hw = qh->hw;
2355 
2356         if (unlikely(list_empty(&qh->qtd_list)))
2357                 return count;
2358 
2359         /* completions (or tasks on other cpus) must never clobber HALT
2360          * till we've gone through and cleaned everything up, even when
2361          * they add urbs to this qh's queue or mark them for unlinking.
2362          *
2363          * NOTE:  unlinking expects to be done in queue order.
2364          *
2365          * It's a bug for qh->qh_state to be anything other than
2366          * QH_STATE_IDLE, unless our caller is scan_async() or
2367          * scan_intr().
2368          */
2369         state = qh->qh_state;
2370         qh->qh_state = QH_STATE_COMPLETING;
2371         stopped = (state == QH_STATE_IDLE);
2372 
2373  rescan:
2374         last = NULL;
2375         last_status = -EINPROGRESS;
2376         qh->needs_rescan = 0;
2377 
2378         /* remove de-activated QTDs from front of queue.
2379          * after faults (including short reads), cleanup this urb
2380          * then let the queue advance.
2381          * if queue is stopped, handles unlinks.
2382          */
2383         list_for_each_safe(entry, tmp, &qh->qtd_list) {
2384                 struct fotg210_qtd      *qtd;
2385                 struct urb      *urb;
2386                 u32             token = 0;
2387 
2388                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2389                 urb = qtd->urb;
2390 
2391                 /* clean up any state from previous QTD ...*/
2392                 if (last) {
2393                         if (likely(last->urb != urb)) {
2394                                 fotg210_urb_done(fotg210, last->urb,
2395                                                  last_status);
2396                                 count++;
2397                                 last_status = -EINPROGRESS;
2398                         }
2399                         fotg210_qtd_free(fotg210, last);
2400                         last = NULL;
2401                 }
2402 
2403                 /* ignore urbs submitted during completions we reported */
2404                 if (qtd == end)
2405                         break;
2406 
2407                 /* hardware copies qtd out of qh overlay */
2408                 rmb();
2409                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2410 
2411                 /* always clean up qtds the hc de-activated */
2412  retry_xacterr:
2413                 if ((token & QTD_STS_ACTIVE) == 0) {
2414 
2415                         /* Report Data Buffer Error: non-fatal but useful */
2416                         if (token & QTD_STS_DBE)
2417                                 fotg210_dbg(fotg210,
2418                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2419                                         urb,
2420                                         usb_endpoint_num(&urb->ep->desc),
2421                                         usb_endpoint_dir_in(&urb->ep->desc)
2422                                                 ? "in" : "out",
2423                                         urb->transfer_buffer_length,
2424                                         qtd,
2425                                         qh);
2426 
2427                         /* on STALL, error, and short reads this urb must
2428                          * complete and all its qtds must be recycled.
2429                          */
2430                         if ((token & QTD_STS_HALT) != 0) {
2431 
2432                                 /* retry transaction errors until we
2433                                  * reach the software xacterr limit
2434                                  */
2435                                 if ((token & QTD_STS_XACT) &&
2436                                         QTD_CERR(token) == 0 &&
2437                                         ++qh->xacterrs < QH_XACTERR_MAX &&
2438                                         !urb->unlinked) {
2439                                         fotg210_dbg(fotg210,
2440         "detected XactErr len %zu/%zu retry %d\n",
2441         qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
2442 
2443                                         /* reset the token in the qtd and the
2444                                          * qh overlay (which still contains
2445                                          * the qtd) so that we pick up from
2446                                          * where we left off
2447                                          */
2448                                         token &= ~QTD_STS_HALT;
2449                                         token |= QTD_STS_ACTIVE |
2450                                                  (FOTG210_TUNE_CERR << 10);
2451                                         qtd->hw_token = cpu_to_hc32(fotg210,
2452                                                         token);
2453                                         wmb();
2454                                         hw->hw_token = cpu_to_hc32(fotg210,
2455                                                         token);
2456                                         goto retry_xacterr;
2457                                 }
2458                                 stopped = 1;
2459 
2460                         /* magic dummy for some short reads; qh won't advance.
2461                          * that silicon quirk can kick in with this dummy too.
2462                          *
2463                          * other short reads won't stop the queue, including
2464                          * control transfers (status stage handles that) or
2465                          * most other single-qtd reads ... the queue stops if
2466                          * URB_SHORT_NOT_OK was set so the driver submitting
2467                          * the urbs could clean it up.
2468                          */
2469                         } else if (IS_SHORT_READ(token)
2470                                         && !(qtd->hw_alt_next
2471                                                 & FOTG210_LIST_END(fotg210))) {
2472                                 stopped = 1;
2473                         }
2474 
2475                 /* stop scanning when we reach qtds the hc is using */
2476                 } else if (likely(!stopped
2477                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2478                         break;
2479 
2480                 /* scan the whole queue for unlinks whenever it stops */
2481                 } else {
2482                         stopped = 1;
2483 
2484                         /* cancel everything if we halt, suspend, etc */
2485                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2486                                 last_status = -ESHUTDOWN;
2487 
2488                         /* this qtd is active; skip it unless a previous qtd
2489                          * for its urb faulted, or its urb was canceled.
2490                          */
2491                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2492                                 continue;
2493 
2494                         /* qh unlinked; token in overlay may be most current */
2495                         if (state == QH_STATE_IDLE
2496                                         && cpu_to_hc32(fotg210, qtd->qtd_dma)
2497                                                 == hw->hw_current) {
2498                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2499 
2500                                 /* An unlink may leave an incomplete
2501                                  * async transaction in the TT buffer.
2502                                  * We have to clear it.
2503                                  */
2504                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2505                                                         token);
2506                         }
2507                 }
2508 
2509                 /* unless we already know the urb's status, collect qtd status
2510                  * and update count of bytes transferred.  in common short read
2511                  * cases with only one data qtd (including control transfers),
2512                  * queue processing won't halt.  but with two or more qtds (for
2513                  * example, with a 32 KB transfer), when the first qtd gets a
2514                  * short read the second must be removed by hand.
2515                  */
2516                 if (last_status == -EINPROGRESS) {
2517                         last_status = qtd_copy_status(fotg210, urb,
2518                                         qtd->length, token);
2519                         if (last_status == -EREMOTEIO
2520                                         && (qtd->hw_alt_next
2521                                                 & FOTG210_LIST_END(fotg210)))
2522                                 last_status = -EINPROGRESS;
2523 
2524                         /* As part of low/full-speed endpoint-halt processing
2525                          * we must clear the TT buffer (11.17.5).
2526                          */
2527                         if (unlikely(last_status != -EINPROGRESS &&
2528                                         last_status != -EREMOTEIO)) {
2529                                 /* The TT's in some hubs malfunction when they
2530                                  * receive this request following a STALL (they
2531                                  * stop sending isochronous packets).  Since a
2532                                  * STALL can't leave the TT buffer in a busy
2533                                  * state (if you believe Figures 11-48 - 11-51
2534                                  * in the USB 2.0 spec), we won't clear the TT
2535                                  * buffer in this case.  Strictly speaking this
2536                                  * is a violation of the spec.
2537                                  */
2538                                 if (last_status != -EPIPE)
2539                                         fotg210_clear_tt_buffer(fotg210, qh,
2540                                                                 urb, token);
2541                         }
2542                 }
2543 
2544                 /* if we're removing something not at the queue head,
2545                  * patch the hardware queue pointer.
2546                  */
2547                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2548                         last = list_entry(qtd->qtd_list.prev,
2549                                         struct fotg210_qtd, qtd_list);
2550                         last->hw_next = qtd->hw_next;
2551                 }
2552 
2553                 /* remove qtd; it's recycled after possible urb completion */
2554                 list_del(&qtd->qtd_list);
2555                 last = qtd;
2556 
2557                 /* reinit the xacterr counter for the next qtd */
2558                 qh->xacterrs = 0;
2559         }
2560 
2561         /* last urb's completion might still need calling */
2562         if (likely(last != NULL)) {
2563                 fotg210_urb_done(fotg210, last->urb, last_status);
2564                 count++;
2565                 fotg210_qtd_free(fotg210, last);
2566         }
2567 
2568         /* Do we need to rescan for URBs dequeued during a giveback? */
2569         if (unlikely(qh->needs_rescan)) {
2570                 /* If the QH is already unlinked, do the rescan now. */
2571                 if (state == QH_STATE_IDLE)
2572                         goto rescan;
2573 
2574                 /* Otherwise we have to wait until the QH is fully unlinked.
2575                  * Our caller will start an unlink if qh->needs_rescan is
2576                  * set.  But if an unlink has already started, nothing needs
2577                  * to be done.
2578                  */
2579                 if (state != QH_STATE_LINKED)
2580                         qh->needs_rescan = 0;
2581         }
2582 
2583         /* restore original state; caller must unlink or relink */
2584         qh->qh_state = state;
2585 
2586         /* be sure the hardware's done with the qh before refreshing
2587          * it after fault cleanup, or recovering from silicon wrongly
2588          * overlaying the dummy qtd (which reduces DMA chatter).
2589          */
2590         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2591                 switch (state) {
2592                 case QH_STATE_IDLE:
2593                         qh_refresh(fotg210, qh);
2594                         break;
2595                 case QH_STATE_LINKED:
2596                         /* We won't refresh a QH that's linked (after the HC
2597                          * stopped the queue).  That avoids a race:
2598                          *  - HC reads first part of QH;
2599                          *  - CPU updates that first part and the token;
2600                          *  - HC reads rest of that QH, including token
2601                          * Result:  HC gets an inconsistent image, and then
2602                          * DMAs to/from the wrong memory (corrupting it).
2603                          *
2604                          * That should be rare for interrupt transfers,
2605                          * except maybe high bandwidth ...
2606                          */
2607 
2608                         /* Tell the caller to start an unlink */
2609                         qh->needs_rescan = 1;
2610                         break;
2611                 /* otherwise, unlink already started */
2612                 }
2613         }
2614 
2615         return count;
2616 }
2617 
2618 /*-------------------------------------------------------------------------*/
2619 
2620 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2621 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2622 /* ... and packet size, for any kind of endpoint descriptor */
2623 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2624 
2625 /*
2626  * reverse of qh_urb_transaction:  free a list of TDs.
2627  * used for cleanup after errors, before HC sees an URB's TDs.
2628  */
2629 static void qtd_list_free(
2630         struct fotg210_hcd              *fotg210,
2631         struct urb              *urb,
2632         struct list_head        *qtd_list
2633 ) {
2634         struct list_head        *entry, *temp;
2635 
2636         list_for_each_safe(entry, temp, qtd_list) {
2637                 struct fotg210_qtd      *qtd;
2638 
2639                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2640                 list_del(&qtd->qtd_list);
2641                 fotg210_qtd_free(fotg210, qtd);
2642         }
2643 }
2644 
2645 /*
2646  * create a list of filled qtds for this URB; won't link into qh.
2647  */
2648 static struct list_head *
2649 qh_urb_transaction(
2650         struct fotg210_hcd              *fotg210,
2651         struct urb              *urb,
2652         struct list_head        *head,
2653         gfp_t                   flags
2654 ) {
2655         struct fotg210_qtd              *qtd, *qtd_prev;
2656         dma_addr_t              buf;
2657         int                     len, this_sg_len, maxpacket;
2658         int                     is_input;
2659         u32                     token;
2660         int                     i;
2661         struct scatterlist      *sg;
2662 
2663         /*
2664          * URBs map to sequences of QTDs:  one logical transaction
2665          */
2666         qtd = fotg210_qtd_alloc(fotg210, flags);
2667         if (unlikely(!qtd))
2668                 return NULL;
2669         list_add_tail(&qtd->qtd_list, head);
2670         qtd->urb = urb;
2671 
2672         token = QTD_STS_ACTIVE;
2673         token |= (FOTG210_TUNE_CERR << 10);
2674         /* for split transactions, SplitXState initialized to zero */
2675 
2676         len = urb->transfer_buffer_length;
2677         is_input = usb_pipein(urb->pipe);
2678         if (usb_pipecontrol(urb->pipe)) {
2679                 /* SETUP pid */
2680                 qtd_fill(fotg210, qtd, urb->setup_dma,
2681                                 sizeof(struct usb_ctrlrequest),
2682                                 token | (2 /* "setup" */ << 8), 8);
2683 
2684                 /* ... and always at least one more pid */
2685                 token ^= QTD_TOGGLE;
2686                 qtd_prev = qtd;
2687                 qtd = fotg210_qtd_alloc(fotg210, flags);
2688                 if (unlikely(!qtd))
2689                         goto cleanup;
2690                 qtd->urb = urb;
2691                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2692                 list_add_tail(&qtd->qtd_list, head);
2693 
2694                 /* for zero length DATA stages, STATUS is always IN */
2695                 if (len == 0)
2696                         token |= (1 /* "in" */ << 8);
2697         }
2698 
2699         /*
2700          * data transfer stage:  buffer setup
2701          */
2702         i = urb->num_mapped_sgs;
2703         if (len > 0 && i > 0) {
2704                 sg = urb->sg;
2705                 buf = sg_dma_address(sg);
2706 
2707                 /* urb->transfer_buffer_length may be smaller than the
2708                  * size of the scatterlist (or vice versa)
2709                  */
2710                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2711         } else {
2712                 sg = NULL;
2713                 buf = urb->transfer_dma;
2714                 this_sg_len = len;
2715         }
2716 
2717         if (is_input)
2718                 token |= (1 /* "in" */ << 8);
2719         /* else it's already initted to "out" pid (0 << 8) */
2720 
2721         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2722 
2723         /*
2724          * buffer gets wrapped in one or more qtds;
2725          * last one may be "short" (including zero len)
2726          * and may serve as a control status ack
2727          */
2728         for (;;) {
2729                 int this_qtd_len;
2730 
2731                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2732                                 maxpacket);
2733                 this_sg_len -= this_qtd_len;
2734                 len -= this_qtd_len;
2735                 buf += this_qtd_len;
2736 
2737                 /*
2738                  * short reads advance to a "magic" dummy instead of the next
2739                  * qtd ... that forces the queue to stop, for manual cleanup.
2740                  * (this will usually be overridden later.)
2741                  */
2742                 if (is_input)
2743                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2744 
2745                 /* qh makes control packets use qtd toggle; maybe switch it */
2746                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2747                         token ^= QTD_TOGGLE;
2748 
2749                 if (likely(this_sg_len <= 0)) {
2750                         if (--i <= 0 || len <= 0)
2751                                 break;
2752                         sg = sg_next(sg);
2753                         buf = sg_dma_address(sg);
2754                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2755                 }
2756 
2757                 qtd_prev = qtd;
2758                 qtd = fotg210_qtd_alloc(fotg210, flags);
2759                 if (unlikely(!qtd))
2760                         goto cleanup;
2761                 qtd->urb = urb;
2762                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2763                 list_add_tail(&qtd->qtd_list, head);
2764         }
2765 
2766         /*
2767          * unless the caller requires manual cleanup after short reads,
2768          * have the alt_next mechanism keep the queue running after the
2769          * last data qtd (the only one, for control and most other cases).
2770          */
2771         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
2772                                 || usb_pipecontrol(urb->pipe)))
2773                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2774 
2775         /*
2776          * control requests may need a terminating data "status" ack;
2777          * other OUT ones may need a terminating short packet
2778          * (zero length).
2779          */
2780         if (likely(urb->transfer_buffer_length != 0)) {
2781                 int     one_more = 0;
2782 
2783                 if (usb_pipecontrol(urb->pipe)) {
2784                         one_more = 1;
2785                         token ^= 0x0100;        /* "in" <--> "out"  */
2786                         token |= QTD_TOGGLE;    /* force DATA1 */
2787                 } else if (usb_pipeout(urb->pipe)
2788                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2789                                 && !(urb->transfer_buffer_length % maxpacket)) {
2790                         one_more = 1;
2791                 }
2792                 if (one_more) {
2793                         qtd_prev = qtd;
2794                         qtd = fotg210_qtd_alloc(fotg210, flags);
2795                         if (unlikely(!qtd))
2796                                 goto cleanup;
2797                         qtd->urb = urb;
2798                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2799                         list_add_tail(&qtd->qtd_list, head);
2800 
2801                         /* never any data in such packets */
2802                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2803                 }
2804         }
2805 
2806         /* by default, enable interrupt on urb completion */
2807         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2808                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2809         return head;
2810 
2811 cleanup:
2812         qtd_list_free(fotg210, urb, head);
2813         return NULL;
2814 }
2815 
2816 /*-------------------------------------------------------------------------*/
2817 /*
2818  * Would be best to create all qh's from config descriptors,
2819  * when each interface/altsetting is established.  Unlink
2820  * any previous qh and cancel its urbs first; endpoints are
2821  * implicitly reset then (data toggle too).
2822  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2823 */
2824 
2825 
2826 /*
2827  * Each QH holds a qtd list; a QH is used for everything except iso.
2828  *
2829  * For interrupt urbs, the scheduler must set the microframe scheduling
2830  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2831  * just one microframe in the s-mask.  For split interrupt transactions
2832  * there are additional complications: c-mask, maybe FSTNs.
2833  */
2834 static struct fotg210_qh *
2835 qh_make(
2836         struct fotg210_hcd              *fotg210,
2837         struct urb              *urb,
2838         gfp_t                   flags
2839 ) {
2840         struct fotg210_qh               *qh = fotg210_qh_alloc(fotg210, flags);
2841         u32                     info1 = 0, info2 = 0;
2842         int                     is_input, type;
2843         int                     maxp = 0;
2844         struct usb_tt           *tt = urb->dev->tt;
2845         struct fotg210_qh_hw    *hw;
2846 
2847         if (!qh)
2848                 return qh;
2849 
2850         /*
2851          * init endpoint/device data for this QH
2852          */
2853         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2854         info1 |= usb_pipedevice(urb->pipe) << 0;
2855 
2856         is_input = usb_pipein(urb->pipe);
2857         type = usb_pipetype(urb->pipe);
2858         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2859 
2860         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2861          * acts like up to 3KB, but is built from smaller packets.
2862          */
2863         if (max_packet(maxp) > 1024) {
2864                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2865                             max_packet(maxp));
2866                 goto done;
2867         }
2868 
2869         /* Compute interrupt scheduling parameters just once, and save.
2870          * - allowing for high bandwidth, how many nsec/uframe are used?
2871          * - split transactions need a second CSPLIT uframe; same question
2872          * - splits also need a schedule gap (for full/low speed I/O)
2873          * - qh has a polling interval
2874          *
2875          * For control/bulk requests, the HC or TT handles these.
2876          */
2877         if (type == PIPE_INTERRUPT) {
2878                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2879                                 is_input, 0,
2880                                 hb_mult(maxp) * max_packet(maxp)));
2881                 qh->start = NO_FRAME;
2882 
2883                 if (urb->dev->speed == USB_SPEED_HIGH) {
2884                         qh->c_usecs = 0;
2885                         qh->gap_uf = 0;
2886 
2887                         qh->period = urb->interval >> 3;
2888                         if (qh->period == 0 && urb->interval != 1) {
2889                                 /* NOTE interval 2 or 4 uframes could work.
2890                                  * But interval 1 scheduling is simpler, and
2891                                  * includes high bandwidth.
2892                                  */
2893                                 urb->interval = 1;
2894                         } else if (qh->period > fotg210->periodic_size) {
2895                                 qh->period = fotg210->periodic_size;
2896                                 urb->interval = qh->period << 3;
2897                         }
2898                 } else {
2899                         int             think_time;
2900 
2901                         /* gap is f(FS/LS transfer times) */
2902                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2903                                         is_input, 0, maxp) / (125 * 1000);
2904 
2905                         /* FIXME this just approximates SPLIT/CSPLIT times */
2906                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2907                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2908                                 qh->usecs = HS_USECS(1);
2909                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2910                                 qh->usecs += HS_USECS(1);
2911                                 qh->c_usecs = HS_USECS(0);
2912                         }
2913 
2914                         think_time = tt ? tt->think_time : 0;
2915                         qh->tt_usecs = NS_TO_US(think_time +
2916                                         usb_calc_bus_time(urb->dev->speed,
2917                                         is_input, 0, max_packet(maxp)));
2918                         qh->period = urb->interval;
2919                         if (qh->period > fotg210->periodic_size) {
2920                                 qh->period = fotg210->periodic_size;
2921                                 urb->interval = qh->period;
2922                         }
2923                 }
2924         }
2925 
2926         /* support for tt scheduling, and access to toggles */
2927         qh->dev = urb->dev;
2928 
2929         /* using TT? */
2930         switch (urb->dev->speed) {
2931         case USB_SPEED_LOW:
2932                 info1 |= QH_LOW_SPEED;
2933                 /* FALL THROUGH */
2934 
2935         case USB_SPEED_FULL:
2936                 /* EPS 0 means "full" */
2937                 if (type != PIPE_INTERRUPT)
2938                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2939                 if (type == PIPE_CONTROL) {
2940                         info1 |= QH_CONTROL_EP;         /* for TT */
2941                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2942                 }
2943                 info1 |= maxp << 16;
2944 
2945                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2946 
2947                 /* Some Freescale processors have an erratum in which the
2948                  * port number in the queue head was 0..N-1 instead of 1..N.
2949                  */
2950                 if (fotg210_has_fsl_portno_bug(fotg210))
2951                         info2 |= (urb->dev->ttport-1) << 23;
2952                 else
2953                         info2 |= urb->dev->ttport << 23;
2954 
2955                 /* set the address of the TT; for TDI's integrated
2956                  * root hub tt, leave it zeroed.
2957                  */
2958                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2959                         info2 |= tt->hub->devnum << 16;
2960 
2961                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2962 
2963                 break;
2964 
2965         case USB_SPEED_HIGH:            /* no TT involved */
2966                 info1 |= QH_HIGH_SPEED;
2967                 if (type == PIPE_CONTROL) {
2968                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2969                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2970                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2971                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2972                 } else if (type == PIPE_BULK) {
2973                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2974                         /* The USB spec says that high speed bulk endpoints
2975                          * always use 512 byte maxpacket.  But some device
2976                          * vendors decided to ignore that, and MSFT is happy
2977                          * to help them do so.  So now people expect to use
2978                          * such nonconformant devices with Linux too; sigh.
2979                          */
2980                         info1 |= max_packet(maxp) << 16;
2981                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2982                 } else {                /* PIPE_INTERRUPT */
2983                         info1 |= max_packet(maxp) << 16;
2984                         info2 |= hb_mult(maxp) << 30;
2985                 }
2986                 break;
2987         default:
2988                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2989                         urb->dev->speed);
2990 done:
2991                 qh_destroy(fotg210, qh);
2992                 return NULL;
2993         }
2994 
2995         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2996 
2997         /* init as live, toggle clear, advance to dummy */
2998         qh->qh_state = QH_STATE_IDLE;
2999         hw = qh->hw;
3000         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
3001         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
3002         qh->is_out = !is_input;
3003         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
3004         qh_refresh(fotg210, qh);
3005         return qh;
3006 }
3007 
3008 /*-------------------------------------------------------------------------*/
3009 
3010 static void enable_async(struct fotg210_hcd *fotg210)
3011 {
3012         if (fotg210->async_count++)
3013                 return;
3014 
3015         /* Stop waiting to turn off the async schedule */
3016         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
3017 
3018         /* Don't start the schedule until ASS is 0 */
3019         fotg210_poll_ASS(fotg210);
3020         turn_on_io_watchdog(fotg210);
3021 }
3022 
3023 static void disable_async(struct fotg210_hcd *fotg210)
3024 {
3025         if (--fotg210->async_count)
3026                 return;
3027 
3028         /* The async schedule and async_unlink list are supposed to be empty */
3029         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
3030 
3031         /* Don't turn off the schedule until ASS is 1 */
3032         fotg210_poll_ASS(fotg210);
3033 }
3034 
3035 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
3036 
3037 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3038 {
3039         __hc32          dma = QH_NEXT(fotg210, qh->qh_dma);
3040         struct fotg210_qh       *head;
3041 
3042         /* Don't link a QH if there's a Clear-TT-Buffer pending */
3043         if (unlikely(qh->clearing_tt))
3044                 return;
3045 
3046         WARN_ON(qh->qh_state != QH_STATE_IDLE);
3047 
3048         /* clear halt and/or toggle; and maybe recover from silicon quirk */
3049         qh_refresh(fotg210, qh);
3050 
3051         /* splice right after start */
3052         head = fotg210->async;
3053         qh->qh_next = head->qh_next;
3054         qh->hw->hw_next = head->hw->hw_next;
3055         wmb();
3056 
3057         head->qh_next.qh = qh;
3058         head->hw->hw_next = dma;
3059 
3060         qh->xacterrs = 0;
3061         qh->qh_state = QH_STATE_LINKED;
3062         /* qtd completions reported later by interrupt */
3063 
3064         enable_async(fotg210);
3065 }
3066 
3067 /*-------------------------------------------------------------------------*/
3068 
3069 /*
3070  * For control/bulk/interrupt, return QH with these TDs appended.
3071  * Allocates and initializes the QH if necessary.
3072  * Returns null if it can't allocate a QH it needs to.
3073  * If the QH has TDs (urbs) already, that's great.
3074  */
3075 static struct fotg210_qh *qh_append_tds(
3076         struct fotg210_hcd              *fotg210,
3077         struct urb              *urb,
3078         struct list_head        *qtd_list,
3079         int                     epnum,
3080         void                    **ptr
3081 )
3082 {
3083         struct fotg210_qh               *qh = NULL;
3084         __hc32                  qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
3085 
3086         qh = (struct fotg210_qh *) *ptr;
3087         if (unlikely(qh == NULL)) {
3088                 /* can't sleep here, we have fotg210->lock... */
3089                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
3090                 *ptr = qh;
3091         }
3092         if (likely(qh != NULL)) {
3093                 struct fotg210_qtd      *qtd;
3094 
3095                 if (unlikely(list_empty(qtd_list)))
3096                         qtd = NULL;
3097                 else
3098                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
3099                                         qtd_list);
3100 
3101                 /* control qh may need patching ... */
3102                 if (unlikely(epnum == 0)) {
3103                         /* usb_reset_device() briefly reverts to address 0 */
3104                         if (usb_pipedevice(urb->pipe) == 0)
3105                                 qh->hw->hw_info1 &= ~qh_addr_mask;
3106                 }
3107 
3108                 /* just one way to queue requests: swap with the dummy qtd.
3109                  * only hc or qh_refresh() ever modify the overlay.
3110                  */
3111                 if (likely(qtd != NULL)) {
3112                         struct fotg210_qtd              *dummy;
3113                         dma_addr_t              dma;
3114                         __hc32                  token;
3115 
3116                         /* to avoid racing the HC, use the dummy td instead of
3117                          * the first td of our list (becomes new dummy).  both
3118                          * tds stay deactivated until we're done, when the
3119                          * HC is allowed to fetch the old dummy (4.10.2).
3120                          */
3121                         token = qtd->hw_token;
3122                         qtd->hw_token = HALT_BIT(fotg210);
3123 
3124                         dummy = qh->dummy;
3125 
3126                         dma = dummy->qtd_dma;
3127                         *dummy = *qtd;
3128                         dummy->qtd_dma = dma;
3129 
3130                         list_del(&qtd->qtd_list);
3131                         list_add(&dummy->qtd_list, qtd_list);
3132                         list_splice_tail(qtd_list, &qh->qtd_list);
3133 
3134                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3135                         qh->dummy = qtd;
3136 
3137                         /* hc must see the new dummy at list end */
3138                         dma = qtd->qtd_dma;
3139                         qtd = list_entry(qh->qtd_list.prev,
3140                                         struct fotg210_qtd, qtd_list);
3141                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3142 
3143                         /* let the hc process these next qtds */
3144                         wmb();
3145                         dummy->hw_token = token;
3146 
3147                         urb->hcpriv = qh;
3148                 }
3149         }
3150         return qh;
3151 }
3152 
3153 /*-------------------------------------------------------------------------*/
3154 
3155 static int
3156 submit_async(
3157         struct fotg210_hcd              *fotg210,
3158         struct urb              *urb,
3159         struct list_head        *qtd_list,
3160         gfp_t                   mem_flags
3161 ) {
3162         int                     epnum;
3163         unsigned long           flags;
3164         struct fotg210_qh               *qh = NULL;
3165         int                     rc;
3166 
3167         epnum = urb->ep->desc.bEndpointAddress;
3168 
3169 #ifdef FOTG210_URB_TRACE
3170         {
3171                 struct fotg210_qtd *qtd;
3172                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3173                 fotg210_dbg(fotg210,
3174                          "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3175                          __func__, urb->dev->devpath, urb,
3176                          epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
3177                          urb->transfer_buffer_length,
3178                          qtd, urb->ep->hcpriv);
3179         }
3180 #endif
3181 
3182         spin_lock_irqsave(&fotg210->lock, flags);
3183         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3184                 rc = -ESHUTDOWN;
3185                 goto done;
3186         }
3187         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3188         if (unlikely(rc))
3189                 goto done;
3190 
3191         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3192         if (unlikely(qh == NULL)) {
3193                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3194                 rc = -ENOMEM;
3195                 goto done;
3196         }
3197 
3198         /* Control/bulk operations through TTs don't need scheduling,
3199          * the HC and TT handle it when the TT has a buffer ready.
3200          */
3201         if (likely(qh->qh_state == QH_STATE_IDLE))
3202                 qh_link_async(fotg210, qh);
3203  done:
3204         spin_unlock_irqrestore(&fotg210->lock, flags);
3205         if (unlikely(qh == NULL))
3206                 qtd_list_free(fotg210, urb, qtd_list);
3207         return rc;
3208 }
3209 
3210 /*-------------------------------------------------------------------------*/
3211 
3212 static void single_unlink_async(struct fotg210_hcd *fotg210,
3213                                 struct fotg210_qh *qh)
3214 {
3215         struct fotg210_qh               *prev;
3216 
3217         /* Add to the end of the list of QHs waiting for the next IAAD */
3218         qh->qh_state = QH_STATE_UNLINK;
3219         if (fotg210->async_unlink)
3220                 fotg210->async_unlink_last->unlink_next = qh;
3221         else
3222                 fotg210->async_unlink = qh;
3223         fotg210->async_unlink_last = qh;
3224 
3225         /* Unlink it from the schedule */
3226         prev = fotg210->async;
3227         while (prev->qh_next.qh != qh)
3228                 prev = prev->qh_next.qh;
3229 
3230         prev->hw->hw_next = qh->hw->hw_next;
3231         prev->qh_next = qh->qh_next;
3232         if (fotg210->qh_scan_next == qh)
3233                 fotg210->qh_scan_next = qh->qh_next.qh;
3234 }
3235 
3236 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3237 {
3238         /*
3239          * Do nothing if an IAA cycle is already running or
3240          * if one will be started shortly.
3241          */
3242         if (fotg210->async_iaa || fotg210->async_unlinking)
3243                 return;
3244 
3245         /* Do all the waiting QHs at once */
3246         fotg210->async_iaa = fotg210->async_unlink;
3247         fotg210->async_unlink = NULL;
3248 
3249         /* If the controller isn't running, we don't have to wait for it */
3250         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3251                 if (!nested)            /* Avoid recursion */
3252                         end_unlink_async(fotg210);
3253 
3254         /* Otherwise start a new IAA cycle */
3255         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3256                 /* Make sure the unlinks are all visible to the hardware */
3257                 wmb();
3258 
3259                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3260                                 &fotg210->regs->command);
3261                 fotg210_readl(fotg210, &fotg210->regs->command);
3262                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3263                                      true);
3264         }
3265 }
3266 
3267 /* the async qh for the qtds being unlinked are now gone from the HC */
3268 
3269 static void end_unlink_async(struct fotg210_hcd *fotg210)
3270 {
3271         struct fotg210_qh               *qh;
3272 
3273         /* Process the idle QHs */
3274  restart:
3275         fotg210->async_unlinking = true;
3276         while (fotg210->async_iaa) {
3277                 qh = fotg210->async_iaa;
3278                 fotg210->async_iaa = qh->unlink_next;
3279                 qh->unlink_next = NULL;
3280 
3281                 qh->qh_state = QH_STATE_IDLE;
3282                 qh->qh_next.qh = NULL;
3283 
3284                 qh_completions(fotg210, qh);
3285                 if (!list_empty(&qh->qtd_list) &&
3286                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3287                         qh_link_async(fotg210, qh);
3288                 disable_async(fotg210);
3289         }
3290         fotg210->async_unlinking = false;
3291 
3292         /* Start a new IAA cycle if any QHs are waiting for it */
3293         if (fotg210->async_unlink) {
3294                 start_iaa_cycle(fotg210, true);
3295                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3296                         goto restart;
3297         }
3298 }
3299 
3300 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3301 {
3302         struct fotg210_qh *qh, *next;
3303         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3304         bool check_unlinks_later = false;
3305 
3306         /* Unlink all the async QHs that have been empty for a timer cycle */
3307         next = fotg210->async->qh_next.qh;
3308         while (next) {
3309                 qh = next;
3310                 next = qh->qh_next.qh;
3311 
3312                 if (list_empty(&qh->qtd_list) &&
3313                                 qh->qh_state == QH_STATE_LINKED) {
3314                         if (!stopped && qh->unlink_cycle ==
3315                                         fotg210->async_unlink_cycle)
3316                                 check_unlinks_later = true;
3317                         else
3318                                 single_unlink_async(fotg210, qh);
3319                 }
3320         }
3321 
3322         /* Start a new IAA cycle if any QHs are waiting for it */
3323         if (fotg210->async_unlink)
3324                 start_iaa_cycle(fotg210, false);
3325 
3326         /* QHs that haven't been empty for long enough will be handled later */
3327         if (check_unlinks_later) {
3328                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3329                                      true);
3330                 ++fotg210->async_unlink_cycle;
3331         }
3332 }
3333 
3334 /* makes sure the async qh will become idle */
3335 /* caller must own fotg210->lock */
3336 
3337 static void start_unlink_async(struct fotg210_hcd *fotg210,
3338                                struct fotg210_qh *qh)
3339 {
3340         /*
3341          * If the QH isn't linked then there's nothing we can do
3342          * unless we were called during a giveback, in which case
3343          * qh_completions() has to deal with it.
3344          */
3345         if (qh->qh_state != QH_STATE_LINKED) {
3346                 if (qh->qh_state == QH_STATE_COMPLETING)
3347                         qh->needs_rescan = 1;
3348                 return;
3349         }
3350 
3351         single_unlink_async(fotg210, qh);
3352         start_iaa_cycle(fotg210, false);
3353 }
3354 
3355 /*-------------------------------------------------------------------------*/
3356 
3357 static void scan_async(struct fotg210_hcd *fotg210)
3358 {
3359         struct fotg210_qh               *qh;
3360         bool                    check_unlinks_later = false;
3361 
3362         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3363         while (fotg210->qh_scan_next) {
3364                 qh = fotg210->qh_scan_next;
3365                 fotg210->qh_scan_next = qh->qh_next.qh;
3366  rescan:
3367                 /* clean any finished work for this qh */
3368                 if (!list_empty(&qh->qtd_list)) {
3369                         int temp;
3370 
3371                         /*
3372                          * Unlinks could happen here; completion reporting
3373                          * drops the lock.  That's why fotg210->qh_scan_next
3374                          * always holds the next qh to scan; if the next qh
3375                          * gets unlinked then fotg210->qh_scan_next is adjusted
3376                          * in single_unlink_async().
3377                          */
3378                         temp = qh_completions(fotg210, qh);
3379                         if (qh->needs_rescan) {
3380                                 start_unlink_async(fotg210, qh);
3381                         } else if (list_empty(&qh->qtd_list)
3382                                         && qh->qh_state == QH_STATE_LINKED) {
3383                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3384                                 check_unlinks_later = true;
3385                         } else if (temp != 0)
3386                                 goto rescan;
3387                 }
3388         }
3389 
3390         /*
3391          * Unlink empty entries, reducing DMA usage as well
3392          * as HCD schedule-scanning costs.  Delay for any qh
3393          * we just scanned, there's a not-unusual case that it
3394          * doesn't stay idle for long.
3395          */
3396         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3397                         !(fotg210->enabled_hrtimer_events &
3398                                 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3399                 fotg210_enable_event(fotg210,
3400                                      FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3401                 ++fotg210->async_unlink_cycle;
3402         }
3403 }
3404 /*-------------------------------------------------------------------------*/
3405 /*
3406  * EHCI scheduled transaction support:  interrupt, iso, split iso
3407  * These are called "periodic" transactions in the EHCI spec.
3408  *
3409  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3410  * with the "asynchronous" transaction support (control/bulk transfers).
3411  * The only real difference is in how interrupt transfers are scheduled.
3412  *
3413  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3414  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3415  * pre-calculated schedule data to make appending to the queue be quick.
3416  */
3417 
3418 static int fotg210_get_frame(struct usb_hcd *hcd);
3419 
3420 /*-------------------------------------------------------------------------*/
3421 
3422 /*
3423  * periodic_next_shadow - return "next" pointer on shadow list
3424  * @periodic: host pointer to qh/itd
3425  * @tag: hardware tag for type of this record
3426  */
3427 static union fotg210_shadow *
3428 periodic_next_shadow(struct fotg210_hcd *fotg210,
3429                      union fotg210_shadow *periodic, __hc32 tag)
3430 {
3431         switch (hc32_to_cpu(fotg210, tag)) {
3432         case Q_TYPE_QH:
3433                 return &periodic->qh->qh_next;
3434         case Q_TYPE_FSTN:
3435                 return &periodic->fstn->fstn_next;
3436         default:
3437                 return &periodic->itd->itd_next;
3438         }
3439 }
3440 
3441 static __hc32 *
3442 shadow_next_periodic(struct fotg210_hcd *fotg210,
3443                      union fotg210_shadow *periodic, __hc32 tag)
3444 {
3445         switch (hc32_to_cpu(fotg210, tag)) {
3446         /* our fotg210_shadow.qh is actually software part */
3447         case Q_TYPE_QH:
3448                 return &periodic->qh->hw->hw_next;
3449         /* others are hw parts */
3450         default:
3451                 return periodic->hw_next;
3452         }
3453 }
3454 
3455 /* caller must hold fotg210->lock */
3456 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3457                             void *ptr)
3458 {
3459         union fotg210_shadow    *prev_p = &fotg210->pshadow[frame];
3460         __hc32                  *hw_p = &fotg210->periodic[frame];
3461         union fotg210_shadow    here = *prev_p;
3462 
3463         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3464         while (here.ptr && here.ptr != ptr) {
3465                 prev_p = periodic_next_shadow(fotg210, prev_p,
3466                                 Q_NEXT_TYPE(fotg210, *hw_p));
3467                 hw_p = shadow_next_periodic(fotg210, &here,
3468                                 Q_NEXT_TYPE(fotg210, *hw_p));
3469                 here = *prev_p;
3470         }
3471         /* an interrupt entry (at list end) could have been shared */
3472         if (!here.ptr)
3473                 return;
3474 
3475         /* update shadow and hardware lists ... the old "next" pointers
3476          * from ptr may still be in use, the caller updates them.
3477          */
3478         *prev_p = *periodic_next_shadow(fotg210, &here,
3479                         Q_NEXT_TYPE(fotg210, *hw_p));
3480 
3481         *hw_p = *shadow_next_periodic(fotg210, &here,
3482                                 Q_NEXT_TYPE(fotg210, *hw_p));
3483 }
3484 
3485 /* how many of the uframe's 125 usecs are allocated? */
3486 static unsigned short
3487 periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
3488 {
3489         __hc32                  *hw_p = &fotg210->periodic[frame];
3490         union fotg210_shadow    *q = &fotg210->pshadow[frame];
3491         unsigned                usecs = 0;
3492         struct fotg210_qh_hw    *hw;
3493 
3494         while (q->ptr) {
3495                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3496                 case Q_TYPE_QH:
3497                         hw = q->qh->hw;
3498                         /* is it in the S-mask? */
3499                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3500                                 usecs += q->qh->usecs;
3501                         /* ... or C-mask? */
3502                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3503                                         1 << (8 + uframe)))
3504                                 usecs += q->qh->c_usecs;
3505                         hw_p = &hw->hw_next;
3506                         q = &q->qh->qh_next;
3507                         break;
3508                 /* case Q_TYPE_FSTN: */
3509                 default:
3510                         /* for "save place" FSTNs, count the relevant INTR
3511                          * bandwidth from the previous frame
3512                          */
3513                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3514                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3515 
3516                         hw_p = &q->fstn->hw_next;
3517                         q = &q->fstn->fstn_next;
3518                         break;
3519                 case Q_TYPE_ITD:
3520                         if (q->itd->hw_transaction[uframe])
3521                                 usecs += q->itd->stream->usecs;
3522                         hw_p = &q->itd->hw_next;
3523                         q = &q->itd->itd_next;
3524                         break;
3525                 }
3526         }
3527         if (usecs > fotg210->uframe_periodic_max)
3528                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3529                         frame * 8 + uframe, usecs);
3530         return usecs;
3531 }
3532 
3533 /*-------------------------------------------------------------------------*/
3534 
3535 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3536 {
3537         if (!dev1->tt || !dev2->tt)
3538                 return 0;
3539         if (dev1->tt != dev2->tt)
3540                 return 0;
3541         if (dev1->tt->multi)
3542                 return dev1->ttport == dev2->ttport;
3543         else
3544                 return 1;
3545 }
3546 
3547 /* return true iff the device's transaction translator is available
3548  * for a periodic transfer starting at the specified frame, using
3549  * all the uframes in the mask.
3550  */
3551 static int tt_no_collision(
3552         struct fotg210_hcd              *fotg210,
3553         unsigned                period,
3554         struct usb_device       *dev,
3555         unsigned                frame,
3556         u32                     uf_mask
3557 )
3558 {
3559         if (period == 0)        /* error */
3560                 return 0;
3561 
3562         /* note bandwidth wastage:  split never follows csplit
3563          * (different dev or endpoint) until the next uframe.
3564          * calling convention doesn't make that distinction.
3565          */
3566         for (; frame < fotg210->periodic_size; frame += period) {
3567                 union fotg210_shadow    here;
3568                 __hc32                  type;
3569                 struct fotg210_qh_hw    *hw;
3570 
3571                 here = fotg210->pshadow[frame];
3572                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3573                 while (here.ptr) {
3574                         switch (hc32_to_cpu(fotg210, type)) {
3575                         case Q_TYPE_ITD:
3576                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3577                                 here = here.itd->itd_next;
3578                                 continue;
3579                         case Q_TYPE_QH:
3580                                 hw = here.qh->hw;
3581                                 if (same_tt(dev, here.qh->dev)) {
3582                                         u32             mask;
3583 
3584                                         mask = hc32_to_cpu(fotg210,
3585                                                         hw->hw_info2);
3586                                         /* "knows" no gap is needed */
3587                                         mask |= mask >> 8;
3588                                         if (mask & uf_mask)
3589                                                 break;
3590                                 }
3591                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3592                                 here = here.qh->qh_next;
3593                                 continue;
3594                         /* case Q_TYPE_FSTN: */
3595                         default:
3596                                 fotg210_dbg(fotg210,
3597                                         "periodic frame %d bogus type %d\n",
3598                                         frame, type);
3599                         }
3600 
3601                         /* collision or error */
3602                         return 0;
3603                 }
3604         }
3605 
3606         /* no collision */
3607         return 1;
3608 }
3609 
3610 /*-------------------------------------------------------------------------*/
3611 
3612 static void enable_periodic(struct fotg210_hcd *fotg210)
3613 {
3614         if (fotg210->periodic_count++)
3615                 return;
3616 
3617         /* Stop waiting to turn off the periodic schedule */
3618         fotg210->enabled_hrtimer_events &=
3619                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3620 
3621         /* Don't start the schedule until PSS is 0 */
3622         fotg210_poll_PSS(fotg210);
3623         turn_on_io_watchdog(fotg210);
3624 }
3625 
3626 static void disable_periodic(struct fotg210_hcd *fotg210)
3627 {
3628         if (--fotg210->periodic_count)
3629                 return;
3630 
3631         /* Don't turn off the schedule until PSS is 1 */
3632         fotg210_poll_PSS(fotg210);
3633 }
3634 
3635 /*-------------------------------------------------------------------------*/
3636 
3637 /* periodic schedule slots have iso tds (normal or split) first, then a
3638  * sparse tree for active interrupt transfers.
3639  *
3640  * this just links in a qh; caller guarantees uframe masks are set right.
3641  * no FSTN support (yet; fotg210 0.96+)
3642  */
3643 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3644 {
3645         unsigned        i;
3646         unsigned        period = qh->period;
3647 
3648         dev_dbg(&qh->dev->dev,
3649                 "link qh%d-%04x/%p start %d [%d/%d us]\n",
3650                 period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
3651                         & (QH_CMASK | QH_SMASK),
3652                 qh, qh->start, qh->usecs, qh->c_usecs);
3653 
3654         /* high bandwidth, or otherwise every microframe */
3655         if (period == 0)
3656                 period = 1;
3657 
3658         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3659                 union fotg210_shadow    *prev = &fotg210->pshadow[i];
3660                 __hc32                  *hw_p = &fotg210->periodic[i];
3661                 union fotg210_shadow    here = *prev;
3662                 __hc32                  type = 0;
3663 
3664                 /* skip the iso nodes at list head */
3665                 while (here.ptr) {
3666                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3667                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3668                                 break;
3669                         prev = periodic_next_shadow(fotg210, prev, type);
3670                         hw_p = shadow_next_periodic(fotg210, &here, type);
3671                         here = *prev;
3672                 }
3673 
3674                 /* sorting each branch by period (slow-->fast)
3675                  * enables sharing interior tree nodes
3676                  */
3677                 while (here.ptr && qh != here.qh) {
3678                         if (qh->period > here.qh->period)
3679                                 break;
3680                         prev = &here.qh->qh_next;
3681                         hw_p = &here.qh->hw->hw_next;
3682                         here = *prev;
3683                 }
3684                 /* link in this qh, unless some earlier pass did that */
3685                 if (qh != here.qh) {
3686                         qh->qh_next = here;
3687                         if (here.qh)
3688                                 qh->hw->hw_next = *hw_p;
3689                         wmb();
3690                         prev->qh = qh;
3691                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3692                 }
3693         }
3694         qh->qh_state = QH_STATE_LINKED;
3695         qh->xacterrs = 0;
3696 
3697         /* update per-qh bandwidth for usbfs */
3698         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3699                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3700                 : (qh->usecs * 8);
3701 
3702         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3703 
3704         /* maybe enable periodic schedule processing */
3705         ++fotg210->intr_count;
3706         enable_periodic(fotg210);
3707 }
3708 
3709 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3710                                struct fotg210_qh *qh)
3711 {
3712         unsigned        i;
3713         unsigned        period;
3714 
3715         /*
3716          * If qh is for a low/full-speed device, simply unlinking it
3717          * could interfere with an ongoing split transaction.  To unlink
3718          * it safely would require setting the QH_INACTIVATE bit and
3719          * waiting at least one frame, as described in EHCI 4.12.2.5.
3720          *
3721          * We won't bother with any of this.  Instead, we assume that the
3722          * only reason for unlinking an interrupt QH while the current URB
3723          * is still active is to dequeue all the URBs (flush the whole
3724          * endpoint queue).
3725          *
3726          * If rebalancing the periodic schedule is ever implemented, this
3727          * approach will no longer be valid.
3728          */
3729 
3730         /* high bandwidth, or otherwise part of every microframe */
3731         period = qh->period;
3732         if (!period)
3733                 period = 1;
3734 
3735         for (i = qh->start; i < fotg210->periodic_size; i += period)
3736                 periodic_unlink(fotg210, i, qh);
3737 
3738         /* update per-qh bandwidth for usbfs */
3739         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3740                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3741                 : (qh->usecs * 8);
3742 
3743         dev_dbg(&qh->dev->dev,
3744                 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3745                 qh->period,
3746                 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3747                 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
3748 
3749         /* qh->qh_next still "live" to HC */
3750         qh->qh_state = QH_STATE_UNLINK;
3751         qh->qh_next.ptr = NULL;
3752 
3753         if (fotg210->qh_scan_next == qh)
3754                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3755                                 struct fotg210_qh, intr_node);
3756         list_del(&qh->intr_node);
3757 }
3758 
3759 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3760                               struct fotg210_qh *qh)
3761 {
3762         /* If the QH isn't linked then there's nothing we can do
3763          * unless we were called during a giveback, in which case
3764          * qh_completions() has to deal with it.
3765          */
3766         if (qh->qh_state != QH_STATE_LINKED) {
3767                 if (qh->qh_state == QH_STATE_COMPLETING)
3768                         qh->needs_rescan = 1;
3769                 return;
3770         }
3771 
3772         qh_unlink_periodic(fotg210, qh);
3773 
3774         /* Make sure the unlinks are visible before starting the timer */
3775         wmb();
3776 
3777         /*
3778          * The EHCI spec doesn't say how long it takes the controller to
3779          * stop accessing an unlinked interrupt QH.  The timer delay is
3780          * 9 uframes; presumably that will be long enough.
3781          */
3782         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3783 
3784         /* New entries go at the end of the intr_unlink list */
3785         if (fotg210->intr_unlink)
3786                 fotg210->intr_unlink_last->unlink_next = qh;
3787         else
3788                 fotg210->intr_unlink = qh;
3789         fotg210->intr_unlink_last = qh;
3790 
3791         if (fotg210->intr_unlinking)
3792                 ;       /* Avoid recursive calls */
3793         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3794                 fotg210_handle_intr_unlinks(fotg210);
3795         else if (fotg210->intr_unlink == qh) {
3796                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3797                                      true);
3798                 ++fotg210->intr_unlink_cycle;
3799         }
3800 }
3801 
3802 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3803 {
3804         struct fotg210_qh_hw    *hw = qh->hw;
3805         int                     rc;
3806 
3807         qh->qh_state = QH_STATE_IDLE;
3808         hw->hw_next = FOTG210_LIST_END(fotg210);
3809 
3810         qh_completions(fotg210, qh);
3811 
3812         /* reschedule QH iff another request is queued */
3813         if (!list_empty(&qh->qtd_list) &&
3814             fotg210->rh_state == FOTG210_RH_RUNNING) {
3815                 rc = qh_schedule(fotg210, qh);
3816 
3817                 /* An error here likely indicates handshake failure
3818                  * or no space left in the schedule.  Neither fault
3819                  * should happen often ...
3820                  *
3821                  * FIXME kill the now-dysfunctional queued urbs
3822                  */
3823                 if (rc != 0)
3824                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3825                                         qh, rc);
3826         }
3827 
3828         /* maybe turn off periodic schedule */
3829         --fotg210->intr_count;
3830         disable_periodic(fotg210);
3831 }
3832 
3833 /*-------------------------------------------------------------------------*/
3834 
3835 static int check_period(
3836         struct fotg210_hcd *fotg210,
3837         unsigned        frame,
3838         unsigned        uframe,
3839         unsigned        period,
3840         unsigned        usecs
3841 ) {
3842         int             claimed;
3843 
3844         /* complete split running into next frame?
3845          * given FSTN support, we could sometimes check...
3846          */
3847         if (uframe >= 8)
3848                 return 0;
3849 
3850         /* convert "usecs we need" to "max already claimed" */
3851         usecs = fotg210->uframe_periodic_max - usecs;
3852 
3853         /* we "know" 2 and 4 uframe intervals were rejected; so
3854          * for period 0, check _every_ microframe in the schedule.
3855          */
3856         if (unlikely(period == 0)) {
3857                 do {
3858                         for (uframe = 0; uframe < 7; uframe++) {
3859                                 claimed = periodic_usecs(fotg210, frame,
3860                                                          uframe);
3861                                 if (claimed > usecs)
3862                                         return 0;
3863                         }
3864                 } while ((frame += 1) < fotg210->periodic_size);
3865 
3866         /* just check the specified uframe, at that period */
3867         } else {
3868                 do {
3869                         claimed = periodic_usecs(fotg210, frame, uframe);
3870                         if (claimed > usecs)
3871                                 return 0;
3872                 } while ((frame += period) < fotg210->periodic_size);
3873         }
3874 
3875         /* success! */
3876         return 1;
3877 }
3878 
3879 static int check_intr_schedule(
3880         struct fotg210_hcd              *fotg210,
3881         unsigned                frame,
3882         unsigned                uframe,
3883         const struct fotg210_qh *qh,
3884         __hc32                  *c_maskp
3885 )
3886 {
3887         int             retval = -ENOSPC;
3888         u8              mask = 0;
3889 
3890         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3891                 goto done;
3892 
3893         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3894                 goto done;
3895         if (!qh->c_usecs) {
3896                 retval = 0;
3897                 *c_maskp = 0;
3898                 goto done;
3899         }
3900 
3901         /* Make sure this tt's buffer is also available for CSPLITs.
3902          * We pessimize a bit; probably the typical full speed case
3903          * doesn't need the second CSPLIT.
3904          *
3905          * NOTE:  both SPLIT and CSPLIT could be checked in just
3906          * one smart pass...
3907          */
3908         mask = 0x03 << (uframe + qh->gap_uf);
3909         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3910 
3911         mask |= 1 << uframe;
3912         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3913                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3914                                         qh->period, qh->c_usecs))
3915                         goto done;
3916                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3917                                         qh->period, qh->c_usecs))
3918                         goto done;
3919                 retval = 0;
3920         }
3921 done:
3922         return retval;
3923 }
3924 
3925 /* "first fit" scheduling policy used the first time through,
3926  * or when the previous schedule slot can't be re-used.
3927  */
3928 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3929 {
3930         int             status;
3931         unsigned        uframe;
3932         __hc32          c_mask;
3933         unsigned        frame;          /* 0..(qh->period - 1), or NO_FRAME */
3934         struct fotg210_qh_hw    *hw = qh->hw;
3935 
3936         qh_refresh(fotg210, qh);
3937         hw->hw_next = FOTG210_LIST_END(fotg210);
3938         frame = qh->start;
3939 
3940         /* reuse the previous schedule slots, if we can */
3941         if (frame < qh->period) {
3942                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3943                 status = check_intr_schedule(fotg210, frame, --uframe,
3944                                 qh, &c_mask);
3945         } else {
3946                 uframe = 0;
3947                 c_mask = 0;
3948                 status = -ENOSPC;
3949         }
3950 
3951         /* else scan the schedule to find a group of slots such that all
3952          * uframes have enough periodic bandwidth available.
3953          */
3954         if (status) {
3955                 /* "normal" case, uframing flexible except with splits */
3956                 if (qh->period) {
3957                         int             i;
3958 
3959                         for (i = qh->period; status && i > 0; --i) {
3960                                 frame = ++fotg210->random_frame % qh->period;
3961                                 for (uframe = 0; uframe < 8; uframe++) {
3962                                         status = check_intr_schedule(fotg210,
3963                                                         frame, uframe, qh,
3964                                                         &c_mask);
3965                                         if (status == 0)
3966                                                 break;
3967                                 }
3968                         }
3969 
3970                 /* qh->period == 0 means every uframe */
3971                 } else {
3972                         frame = 0;
3973                         status = check_intr_schedule(fotg210, 0, 0, qh,
3974                                                      &c_mask);
3975                 }
3976                 if (status)
3977                         goto done;
3978                 qh->start = frame;
3979 
3980                 /* reset S-frame and (maybe) C-frame masks */
3981                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3982                 hw->hw_info2 |= qh->period
3983                         ? cpu_to_hc32(fotg210, 1 << uframe)
3984                         : cpu_to_hc32(fotg210, QH_SMASK);
3985                 hw->hw_info2 |= c_mask;
3986         } else
3987                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3988 
3989         /* stuff into the periodic schedule */
3990         qh_link_periodic(fotg210, qh);
3991 done:
3992         return status;
3993 }
3994 
3995 static int intr_submit(
3996         struct fotg210_hcd              *fotg210,
3997         struct urb              *urb,
3998         struct list_head        *qtd_list,
3999         gfp_t                   mem_flags
4000 ) {
4001         unsigned                epnum;
4002         unsigned long           flags;
4003         struct fotg210_qh               *qh;
4004         int                     status;
4005         struct list_head        empty;
4006 
4007         /* get endpoint and transfer/schedule data */
4008         epnum = urb->ep->desc.bEndpointAddress;
4009 
4010         spin_lock_irqsave(&fotg210->lock, flags);
4011 
4012         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4013                 status = -ESHUTDOWN;
4014                 goto done_not_linked;
4015         }
4016         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4017         if (unlikely(status))
4018                 goto done_not_linked;
4019 
4020         /* get qh and force any scheduling errors */
4021         INIT_LIST_HEAD(&empty);
4022         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
4023         if (qh == NULL) {
4024                 status = -ENOMEM;
4025                 goto done;
4026         }
4027         if (qh->qh_state == QH_STATE_IDLE) {
4028                 status = qh_schedule(fotg210, qh);
4029                 if (status)
4030                         goto done;
4031         }
4032 
4033         /* then queue the urb's tds to the qh */
4034         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
4035         BUG_ON(qh == NULL);
4036 
4037         /* ... update usbfs periodic stats */
4038         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
4039 
4040 done:
4041         if (unlikely(status))
4042                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4043 done_not_linked:
4044         spin_unlock_irqrestore(&fotg210->lock, flags);
4045         if (status)
4046                 qtd_list_free(fotg210, urb, qtd_list);
4047 
4048         return status;
4049 }
4050 
4051 static void scan_intr(struct fotg210_hcd *fotg210)
4052 {
4053         struct fotg210_qh               *qh;
4054 
4055         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
4056                                  &fotg210->intr_qh_list, intr_node) {
4057  rescan:
4058                 /* clean any finished work for this qh */
4059                 if (!list_empty(&qh->qtd_list)) {
4060                         int temp;
4061 
4062                         /*
4063                          * Unlinks could happen here; completion reporting
4064                          * drops the lock.  That's why fotg210->qh_scan_next
4065                          * always holds the next qh to scan; if the next qh
4066                          * gets unlinked then fotg210->qh_scan_next is adjusted
4067                          * in qh_unlink_periodic().
4068                          */
4069                         temp = qh_completions(fotg210, qh);
4070                         if (unlikely(qh->needs_rescan ||
4071                                         (list_empty(&qh->qtd_list) &&
4072                                          qh->qh_state == QH_STATE_LINKED)))
4073                                 start_unlink_intr(fotg210, qh);
4074                         else if (temp != 0)
4075                                 goto rescan;
4076                 }
4077         }
4078 }
4079 
4080 /*-------------------------------------------------------------------------*/
4081 
4082 /* fotg210_iso_stream ops work with both ITD and SITD */
4083 
4084 static struct fotg210_iso_stream *
4085 iso_stream_alloc(gfp_t mem_flags)
4086 {
4087         struct fotg210_iso_stream *stream;
4088 
4089         stream = kzalloc(sizeof(*stream), mem_flags);
4090         if (likely(stream != NULL)) {
4091                 INIT_LIST_HEAD(&stream->td_list);
4092                 INIT_LIST_HEAD(&stream->free_list);
4093                 stream->next_uframe = -1;
4094         }
4095         return stream;
4096 }
4097 
4098 static void
4099 iso_stream_init(
4100         struct fotg210_hcd              *fotg210,
4101         struct fotg210_iso_stream       *stream,
4102         struct usb_device       *dev,
4103         int                     pipe,
4104         unsigned                interval
4105 )
4106 {
4107         u32                     buf1;
4108         unsigned                epnum, maxp;
4109         int                     is_input;
4110         long                    bandwidth;
4111         unsigned                multi;
4112 
4113         /*
4114          * this might be a "high bandwidth" highspeed endpoint,
4115          * as encoded in the ep descriptor's wMaxPacket field
4116          */
4117         epnum = usb_pipeendpoint(pipe);
4118         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
4119         maxp = usb_maxpacket(dev, pipe, !is_input);
4120         if (is_input)
4121                 buf1 = (1 << 11);
4122         else
4123                 buf1 = 0;
4124 
4125         maxp = max_packet(maxp);
4126         multi = hb_mult(maxp);
4127         buf1 |= maxp;
4128         maxp *= multi;
4129 
4130         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
4131         stream->buf1 = cpu_to_hc32(fotg210, buf1);
4132         stream->buf2 = cpu_to_hc32(fotg210, multi);
4133 
4134         /* usbfs wants to report the average usecs per frame tied up
4135          * when transfers on this endpoint are scheduled ...
4136          */
4137         if (dev->speed == USB_SPEED_FULL) {
4138                 interval <<= 3;
4139                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
4140                                 is_input, 1, maxp));
4141                 stream->usecs /= 8;
4142         } else {
4143                 stream->highspeed = 1;
4144                 stream->usecs = HS_USECS_ISO(maxp);
4145         }
4146         bandwidth = stream->usecs * 8;
4147         bandwidth /= interval;
4148 
4149         stream->bandwidth = bandwidth;
4150         stream->udev = dev;
4151         stream->bEndpointAddress = is_input | epnum;
4152         stream->interval = interval;
4153         stream->maxp = maxp;
4154 }
4155 
4156 static struct fotg210_iso_stream *
4157 iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
4158 {
4159         unsigned                epnum;
4160         struct fotg210_iso_stream       *stream;
4161         struct usb_host_endpoint *ep;
4162         unsigned long           flags;
4163 
4164         epnum = usb_pipeendpoint(urb->pipe);
4165         if (usb_pipein(urb->pipe))
4166                 ep = urb->dev->ep_in[epnum];
4167         else
4168                 ep = urb->dev->ep_out[epnum];
4169 
4170         spin_lock_irqsave(&fotg210->lock, flags);
4171         stream = ep->hcpriv;
4172 
4173         if (unlikely(stream == NULL)) {
4174                 stream = iso_stream_alloc(GFP_ATOMIC);
4175                 if (likely(stream != NULL)) {
4176                         ep->hcpriv = stream;
4177                         stream->ep = ep;
4178                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4179                                         urb->interval);
4180                 }
4181 
4182         /* if dev->ep[epnum] is a QH, hw is set */
4183         } else if (unlikely(stream->hw != NULL)) {
4184                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4185                         urb->dev->devpath, epnum,
4186                         usb_pipein(urb->pipe) ? "in" : "out");
4187                 stream = NULL;
4188         }
4189 
4190         spin_unlock_irqrestore(&fotg210->lock, flags);
4191         return stream;
4192 }
4193 
4194 /*-------------------------------------------------------------------------*/
4195 
4196 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4197 
4198 static struct fotg210_iso_sched *
4199 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
4200 {
4201         struct fotg210_iso_sched        *iso_sched;
4202         int                     size = sizeof(*iso_sched);
4203 
4204         size += packets * sizeof(struct fotg210_iso_packet);
4205         iso_sched = kzalloc(size, mem_flags);
4206         if (likely(iso_sched != NULL))
4207                 INIT_LIST_HEAD(&iso_sched->td_list);
4208 
4209         return iso_sched;
4210 }
4211 
4212 static inline void
4213 itd_sched_init(
4214         struct fotg210_hcd              *fotg210,
4215         struct fotg210_iso_sched        *iso_sched,
4216         struct fotg210_iso_stream       *stream,
4217         struct urb              *urb
4218 )
4219 {
4220         unsigned        i;
4221         dma_addr_t      dma = urb->transfer_dma;
4222 
4223         /* how many uframes are needed for these transfers */
4224         iso_sched->span = urb->number_of_packets * stream->interval;
4225 
4226         /* figure out per-uframe itd fields that we'll need later
4227          * when we fit new itds into the schedule.
4228          */
4229         for (i = 0; i < urb->number_of_packets; i++) {
4230                 struct fotg210_iso_packet       *uframe = &iso_sched->packet[i];
4231                 unsigned                length;
4232                 dma_addr_t              buf;
4233                 u32                     trans;
4234 
4235                 length = urb->iso_frame_desc[i].length;
4236                 buf = dma + urb->iso_frame_desc[i].offset;
4237 
4238                 trans = FOTG210_ISOC_ACTIVE;
4239                 trans |= buf & 0x0fff;
4240                 if (unlikely(((i + 1) == urb->number_of_packets))
4241                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4242                         trans |= FOTG210_ITD_IOC;
4243                 trans |= length << 16;
4244                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4245 
4246                 /* might need to cross a buffer page within a uframe */
4247                 uframe->bufp = (buf & ~(u64)0x0fff);
4248                 buf += length;
4249                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4250                         uframe->cross = 1;
4251         }
4252 }
4253 
4254 static void
4255 iso_sched_free(
4256         struct fotg210_iso_stream       *stream,
4257         struct fotg210_iso_sched        *iso_sched
4258 )
4259 {
4260         if (!iso_sched)
4261                 return;
4262         /* caller must hold fotg210->lock!*/
4263         list_splice(&iso_sched->td_list, &stream->free_list);
4264         kfree(iso_sched);
4265 }
4266 
4267 static int
4268 itd_urb_transaction(
4269         struct fotg210_iso_stream       *stream,
4270         struct fotg210_hcd              *fotg210,
4271         struct urb              *urb,
4272         gfp_t                   mem_flags
4273 )
4274 {
4275         struct fotg210_itd              *itd;
4276         dma_addr_t              itd_dma;
4277         int                     i;
4278         unsigned                num_itds;
4279         struct fotg210_iso_sched        *sched;
4280         unsigned long           flags;
4281 
4282         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4283         if (unlikely(sched == NULL))
4284                 return -ENOMEM;
4285 
4286         itd_sched_init(fotg210, sched, stream, urb);
4287 
4288         if (urb->interval < 8)
4289                 num_itds = 1 + (sched->span + 7) / 8;
4290         else
4291                 num_itds = urb->number_of_packets;
4292 
4293         /* allocate/init ITDs */
4294         spin_lock_irqsave(&fotg210->lock, flags);
4295         for (i = 0; i < num_itds; i++) {
4296 
4297                 /*
4298                  * Use iTDs from the free list, but not iTDs that may
4299                  * still be in use by the hardware.
4300                  */
4301                 if (likely(!list_empty(&stream->free_list))) {
4302                         itd = list_first_entry(&stream->free_list,
4303                                         struct fotg210_itd, itd_list);
4304                         if (itd->frame == fotg210->now_frame)
4305                                 goto alloc_itd;
4306                         list_del(&itd->itd_list);
4307                         itd_dma = itd->itd_dma;
4308                 } else {
4309  alloc_itd:
4310                         spin_unlock_irqrestore(&fotg210->lock, flags);
4311                         itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4312                                         &itd_dma);
4313                         spin_lock_irqsave(&fotg210->lock, flags);
4314                         if (!itd) {
4315                                 iso_sched_free(stream, sched);
4316                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4317                                 return -ENOMEM;
4318                         }
4319                 }
4320 
4321                 memset(itd, 0, sizeof(*itd));
4322                 itd->itd_dma = itd_dma;
4323                 list_add(&itd->itd_list, &sched->td_list);
4324         }
4325         spin_unlock_irqrestore(&fotg210->lock, flags);
4326 
4327         /* temporarily store schedule info in hcpriv */
4328         urb->hcpriv = sched;
4329         urb->error_count = 0;
4330         return 0;
4331 }
4332 
4333 /*-------------------------------------------------------------------------*/
4334 
4335 static inline int
4336 itd_slot_ok(
4337         struct fotg210_hcd              *fotg210,
4338         u32                     mod,
4339         u32                     uframe,
4340         u8                      usecs,
4341         u32                     period
4342 )
4343 {
4344         uframe %= period;
4345         do {
4346                 /* can't commit more than uframe_periodic_max usec */
4347                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4348                                 > (fotg210->uframe_periodic_max - usecs))
4349                         return 0;
4350 
4351                 /* we know urb->interval is 2^N uframes */
4352                 uframe += period;
4353         } while (uframe < mod);
4354         return 1;
4355 }
4356 
4357 /*
4358  * This scheduler plans almost as far into the future as it has actual
4359  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4360  * "as small as possible" to be cache-friendlier.)  That limits the size
4361  * transfers you can stream reliably; avoid more than 64 msec per urb.
4362  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4363  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4364  * and other factors); or more than about 230 msec total (for portability,
4365  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4366  */
4367 
4368 #define SCHEDULE_SLOP   80      /* microframes */
4369 
4370 static int
4371 iso_stream_schedule(
4372         struct fotg210_hcd              *fotg210,
4373         struct urb              *urb,
4374         struct fotg210_iso_stream       *stream
4375 )
4376 {
4377         u32                     now, next, start, period, span;
4378         int                     status;
4379         unsigned                mod = fotg210->periodic_size << 3;
4380         struct fotg210_iso_sched        *sched = urb->hcpriv;
4381 
4382         period = urb->interval;
4383         span = sched->span;
4384 
4385         if (span > mod - SCHEDULE_SLOP) {
4386                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4387                 status = -EFBIG;
4388                 goto fail;
4389         }
4390 
4391         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4392 
4393         /* Typical case: reuse current schedule, stream is still active.
4394          * Hopefully there are no gaps from the host falling behind
4395          * (irq delays etc), but if there are we'll take the next
4396          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4397          */
4398         if (likely(!list_empty(&stream->td_list))) {
4399                 u32     excess;
4400 
4401                 /* For high speed devices, allow scheduling within the
4402                  * isochronous scheduling threshold.  For full speed devices
4403                  * and Intel PCI-based controllers, don't (work around for
4404                  * Intel ICH9 bug).
4405                  */
4406                 if (!stream->highspeed && fotg210->fs_i_thresh)
4407                         next = now + fotg210->i_thresh;
4408                 else
4409                         next = now;
4410 
4411                 /* Fell behind (by up to twice the slop amount)?
4412                  * We decide based on the time of the last currently-scheduled
4413                  * slot, not the time of the next available slot.
4414                  */
4415                 excess = (stream->next_uframe - period - next) & (mod - 1);
4416                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4417                         start = next + excess - mod + period *
4418                                         DIV_ROUND_UP(mod - excess, period);
4419                 else
4420                         start = next + excess + period;
4421                 if (start - now >= mod) {
4422                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4423                                         urb, start - now - period, period,
4424                                         mod);
4425                         status = -EFBIG;
4426                         goto fail;
4427                 }
4428         }
4429 
4430         /* need to schedule; when's the next (u)frame we could start?
4431          * this is bigger than fotg210->i_thresh allows; scheduling itself
4432          * isn't free, the slop should handle reasonably slow cpus.  it
4433          * can also help high bandwidth if the dma and irq loads don't
4434          * jump until after the queue is primed.
4435          */
4436         else {
4437                 int done = 0;
4438                 start = SCHEDULE_SLOP + (now & ~0x07);
4439 
4440                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4441 
4442                 /* find a uframe slot with enough bandwidth.
4443                  * Early uframes are more precious because full-speed
4444                  * iso IN transfers can't use late uframes,
4445                  * and therefore they should be allocated last.
4446                  */
4447                 next = start;
4448                 start += period;
4449                 do {
4450                         start--;
4451                         /* check schedule: enough space? */
4452                         if (itd_slot_ok(fotg210, mod, start,
4453                                         stream->usecs, period))
4454                                 done = 1;
4455                 } while (start > next && !done);
4456 
4457                 /* no room in the schedule */
4458                 if (!done) {
4459                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4460                                 urb, now, now + mod);
4461                         status = -ENOSPC;
4462                         goto fail;
4463                 }
4464         }
4465 
4466         /* Tried to schedule too far into the future? */
4467         if (unlikely(start - now + span - period
4468                                 >= mod - 2 * SCHEDULE_SLOP)) {
4469                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4470                                 urb, start - now, span - period,
4471                                 mod - 2 * SCHEDULE_SLOP);
4472                 status = -EFBIG;
4473                 goto fail;
4474         }
4475 
4476         stream->next_uframe = start & (mod - 1);
4477 
4478         /* report high speed start in uframes; full speed, in frames */
4479         urb->start_frame = stream->next_uframe;
4480         if (!stream->highspeed)
4481                 urb->start_frame >>= 3;
4482 
4483         /* Make sure scan_isoc() sees these */
4484         if (fotg210->isoc_count == 0)
4485                 fotg210->next_frame = now >> 3;
4486         return 0;
4487 
4488  fail:
4489         iso_sched_free(stream, sched);
4490         urb->hcpriv = NULL;
4491         return status;
4492 }
4493 
4494 /*-------------------------------------------------------------------------*/
4495 
4496 static inline void
4497 itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
4498                 struct fotg210_itd *itd)
4499 {
4500         int i;
4501 
4502         /* it's been recently zeroed */
4503         itd->hw_next = FOTG210_LIST_END(fotg210);
4504         itd->hw_bufp[0] = stream->buf0;
4505         itd->hw_bufp[1] = stream->buf1;
4506         itd->hw_bufp[2] = stream->buf2;
4507 
4508         for (i = 0; i < 8; i++)
4509                 itd->index[i] = -1;
4510 
4511         /* All other fields are filled when scheduling */
4512 }
4513 
4514 static inline void
4515 itd_patch(
4516         struct fotg210_hcd              *fotg210,
4517         struct fotg210_itd              *itd,
4518         struct fotg210_iso_sched        *iso_sched,
4519         unsigned                index,
4520         u16                     uframe
4521 )
4522 {
4523         struct fotg210_iso_packet       *uf = &iso_sched->packet[index];
4524         unsigned                pg = itd->pg;
4525 
4526         uframe &= 0x07;
4527         itd->index[uframe] = index;
4528 
4529         itd->hw_transaction[uframe] = uf->transaction;
4530         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4531         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4532         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4533 
4534         /* iso_frame_desc[].offset must be strictly increasing */
4535         if (unlikely(uf->cross)) {
4536                 u64     bufp = uf->bufp + 4096;
4537 
4538                 itd->pg = ++pg;
4539                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4540                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4541         }
4542 }
4543 
4544 static inline void
4545 itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
4546 {
4547         union fotg210_shadow    *prev = &fotg210->pshadow[frame];
4548         __hc32                  *hw_p = &fotg210->periodic[frame];
4549         union fotg210_shadow    here = *prev;
4550         __hc32                  type = 0;
4551 
4552         /* skip any iso nodes which might belong to previous microframes */
4553         while (here.ptr) {
4554                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4555                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4556                         break;
4557                 prev = periodic_next_shadow(fotg210, prev, type);
4558                 hw_p = shadow_next_periodic(fotg210, &here, type);
4559                 here = *prev;
4560         }
4561 
4562         itd->itd_next = here;
4563         itd->hw_next = *hw_p;
4564         prev->itd = itd;
4565         itd->frame = frame;
4566         wmb();
4567         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4568 }
4569 
4570 /* fit urb's itds into the selected schedule slot; activate as needed */
4571 static void itd_link_urb(
4572         struct fotg210_hcd              *fotg210,
4573         struct urb              *urb,
4574         unsigned                mod,
4575         struct fotg210_iso_stream       *stream
4576 )
4577 {
4578         int                     packet;
4579         unsigned                next_uframe, uframe, frame;
4580         struct fotg210_iso_sched        *iso_sched = urb->hcpriv;
4581         struct fotg210_itd              *itd;
4582 
4583         next_uframe = stream->next_uframe & (mod - 1);
4584 
4585         if (unlikely(list_empty(&stream->td_list))) {
4586                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4587                                 += stream->bandwidth;
4588                 fotg210_dbg(fotg210,
4589                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4590                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4591                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4592                         urb->interval,
4593                         next_uframe >> 3, next_uframe & 0x7);
4594         }
4595 
4596         /* fill iTDs uframe by uframe */
4597         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4598                 if (itd == NULL) {
4599                         /* ASSERT:  we have all necessary itds */
4600 
4601                         /* ASSERT:  no itds for this endpoint in this uframe */
4602 
4603                         itd = list_entry(iso_sched->td_list.next,
4604                                         struct fotg210_itd, itd_list);
4605                         list_move_tail(&itd->itd_list, &stream->td_list);
4606                         itd->stream = stream;
4607                         itd->urb = urb;
4608                         itd_init(fotg210, stream, itd);
4609                 }
4610 
4611                 uframe = next_uframe & 0x07;
4612                 frame = next_uframe >> 3;
4613 
4614                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4615 
4616                 next_uframe += stream->interval;
4617                 next_uframe &= mod - 1;
4618                 packet++;
4619 
4620                 /* link completed itds into the schedule */
4621                 if (((next_uframe >> 3) != frame)
4622                                 || packet == urb->number_of_packets) {
4623                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4624                                  itd);
4625                         itd = NULL;
4626                 }
4627         }
4628         stream->next_uframe = next_uframe;
4629 
4630         /* don't need that schedule data any more */
4631         iso_sched_free(stream, iso_sched);
4632         urb->hcpriv = NULL;
4633 
4634         ++fotg210->isoc_count;
4635         enable_periodic(fotg210);
4636 }
4637 
4638 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4639                   FOTG210_ISOC_XACTERR)
4640 
4641 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4642  * and hence its completion callback probably added things to the hardware
4643  * schedule.
4644  *
4645  * Note that we carefully avoid recycling this descriptor until after any
4646  * completion callback runs, so that it won't be reused quickly.  That is,
4647  * assuming (a) no more than two urbs per frame on this endpoint, and also
4648  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4649  * corrupts things if you reuse completed descriptors very quickly...
4650  */
4651 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4652 {
4653         struct urb                              *urb = itd->urb;
4654         struct usb_iso_packet_descriptor        *desc;
4655         u32                                     t;
4656         unsigned                                uframe;
4657         int                                     urb_index = -1;
4658         struct fotg210_iso_stream                       *stream = itd->stream;
4659         struct usb_device                       *dev;
4660         bool                                    retval = false;
4661 
4662         /* for each uframe with a packet */
4663         for (uframe = 0; uframe < 8; uframe++) {
4664                 if (likely(itd->index[uframe] == -1))
4665                         continue;
4666                 urb_index = itd->index[uframe];
4667                 desc = &urb->iso_frame_desc[urb_index];
4668 
4669                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4670                 itd->hw_transaction[uframe] = 0;
4671 
4672                 /* report transfer status */
4673                 if (unlikely(t & ISO_ERRS)) {
4674                         urb->error_count++;
4675                         if (t & FOTG210_ISOC_BUF_ERR)
4676                                 desc->status = usb_pipein(urb->pipe)
4677                                         ? -ENOSR  /* hc couldn't read */
4678                                         : -ECOMM; /* hc couldn't write */
4679                         else if (t & FOTG210_ISOC_BABBLE)
4680                                 desc->status = -EOVERFLOW;
4681                         else /* (t & FOTG210_ISOC_XACTERR) */
4682                                 desc->status = -EPROTO;
4683 
4684                         /* HC need not update length with this error */
4685                         if (!(t & FOTG210_ISOC_BABBLE)) {
4686                                 desc->actual_length =
4687                                         fotg210_itdlen(urb, desc, t);
4688                                 urb->actual_length += desc->actual_length;
4689                         }
4690                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4691                         desc->status = 0;
4692                         desc->actual_length = fotg210_itdlen(urb, desc, t);
4693                         urb->actual_length += desc->actual_length;
4694                 } else {
4695                         /* URB was too late */
4696                         desc->status = -EXDEV;
4697                 }
4698         }
4699 
4700         /* handle completion now? */
4701         if (likely((urb_index + 1) != urb->number_of_packets))
4702                 goto done;
4703 
4704         /* ASSERT: it's really the last itd for this urb
4705         list_for_each_entry (itd, &stream->td_list, itd_list)
4706                 BUG_ON (itd->urb == urb);
4707          */
4708 
4709         /* give urb back to the driver; completion often (re)submits */
4710         dev = urb->dev;
4711         fotg210_urb_done(fotg210, urb, 0);
4712         retval = true;
4713         urb = NULL;
4714 
4715         --fotg210->isoc_count;
4716         disable_periodic(fotg210);
4717 
4718         if (unlikely(list_is_singular(&stream->td_list))) {
4719                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4720                                 -= stream->bandwidth;
4721                 fotg210_dbg(fotg210,
4722                         "deschedule devp %s ep%d%s-iso\n",
4723                         dev->devpath, stream->bEndpointAddress & 0x0f,
4724                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4725         }
4726 
4727 done:
4728         itd->urb = NULL;
4729 
4730         /* Add to the end of the free list for later reuse */
4731         list_move_tail(&itd->itd_list, &stream->free_list);
4732 
4733         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4734         if (list_empty(&stream->td_list)) {
4735                 list_splice_tail_init(&stream->free_list,
4736                                 &fotg210->cached_itd_list);
4737                 start_free_itds(fotg210);
4738         }
4739 
4740         return retval;
4741 }
4742 
4743 /*-------------------------------------------------------------------------*/
4744 
4745 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4746         gfp_t mem_flags)
4747 {
4748         int                     status = -EINVAL;
4749         unsigned long           flags;
4750         struct fotg210_iso_stream       *stream;
4751 
4752         /* Get iso_stream head */
4753         stream = iso_stream_find(fotg210, urb);
4754         if (unlikely(stream == NULL)) {
4755                 fotg210_dbg(fotg210, "can't get iso stream\n");
4756                 return -ENOMEM;
4757         }
4758         if (unlikely(urb->interval != stream->interval &&
4759                       fotg210_port_speed(fotg210, 0) ==
4760                                 USB_PORT_STAT_HIGH_SPEED)) {
4761                         fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4762                                 stream->interval, urb->interval);
4763                         goto done;
4764         }
4765 
4766 #ifdef FOTG210_URB_TRACE
4767         fotg210_dbg(fotg210,
4768                 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4769                 __func__, urb->dev->devpath, urb,
4770                 usb_pipeendpoint(urb->pipe),
4771                 usb_pipein(urb->pipe) ? "in" : "out",
4772                 urb->transfer_buffer_length,
4773                 urb->number_of_packets, urb->interval,
4774                 stream);
4775 #endif
4776 
4777         /* allocate ITDs w/o locking anything */
4778         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4779         if (unlikely(status < 0)) {
4780                 fotg210_dbg(fotg210, "can't init itds\n");
4781                 goto done;
4782         }
4783 
4784         /* schedule ... need to lock */
4785         spin_lock_irqsave(&fotg210->lock, flags);
4786         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4787                 status = -ESHUTDOWN;
4788                 goto done_not_linked;
4789         }
4790         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4791         if (unlikely(status))
4792                 goto done_not_linked;
4793         status = iso_stream_schedule(fotg210, urb, stream);
4794         if (likely(status == 0))
4795                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4796         else
4797                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4798  done_not_linked:
4799         spin_unlock_irqrestore(&fotg210->lock, flags);
4800  done:
4801         return status;
4802 }
4803 
4804 /*-------------------------------------------------------------------------*/
4805 
4806 static void scan_isoc(struct fotg210_hcd *fotg210)
4807 {
4808         unsigned        uf, now_frame, frame;
4809         unsigned        fmask = fotg210->periodic_size - 1;
4810         bool            modified, live;
4811 
4812         /*
4813          * When running, scan from last scan point up to "now"
4814          * else clean up by scanning everything that's left.
4815          * Touches as few pages as possible:  cache-friendly.
4816          */
4817         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4818                 uf = fotg210_read_frame_index(fotg210);
4819                 now_frame = (uf >> 3) & fmask;
4820                 live = true;
4821         } else  {
4822                 now_frame = (fotg210->next_frame - 1) & fmask;
4823                 live = false;
4824         }
4825         fotg210->now_frame = now_frame;
4826 
4827         frame = fotg210->next_frame;
4828         for (;;) {
4829                 union fotg210_shadow    q, *q_p;
4830                 __hc32                  type, *hw_p;
4831 
4832 restart:
4833                 /* scan each element in frame's queue for completions */
4834                 q_p = &fotg210->pshadow[frame];
4835                 hw_p = &fotg210->periodic[frame];
4836                 q.ptr = q_p->ptr;
4837                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4838                 modified = false;
4839 
4840                 while (q.ptr != NULL) {
4841                         switch (hc32_to_cpu(fotg210, type)) {
4842                         case Q_TYPE_ITD:
4843                                 /* If this ITD is still active, leave it for
4844                                  * later processing ... check the next entry.
4845                                  * No need to check for activity unless the
4846                                  * frame is current.
4847                                  */
4848                                 if (frame == now_frame && live) {
4849                                         rmb();
4850                                         for (uf = 0; uf < 8; uf++) {
4851                                                 if (q.itd->hw_transaction[uf] &
4852                                                             ITD_ACTIVE(fotg210))
4853                                                         break;
4854                                         }
4855                                         if (uf < 8) {
4856                                                 q_p = &q.itd->itd_next;
4857                                                 hw_p = &q.itd->hw_next;
4858                                                 type = Q_NEXT_TYPE(fotg210,
4859                                                         q.itd->hw_next);
4860                                                 q = *q_p;
4861                                                 break;
4862                                         }
4863                                 }
4864 
4865                                 /* Take finished ITDs out of the schedule
4866                                  * and process them:  recycle, maybe report
4867                                  * URB completion.  HC won't cache the
4868                                  * pointer for much longer, if at all.
4869                                  */
4870                                 *q_p = q.itd->itd_next;
4871                                 *hw_p = q.itd->hw_next;
4872                                 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4873                                 wmb();
4874                                 modified = itd_complete(fotg210, q.itd);
4875                                 q = *q_p;
4876                                 break;
4877                         default:
4878                                 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4879                                         type, frame, q.ptr);
4880                                 /* FALL THROUGH */
4881                         case Q_TYPE_QH:
4882                         case Q_TYPE_FSTN:
4883                                 /* End of the iTDs and siTDs */
4884                                 q.ptr = NULL;
4885                                 break;
4886                         }
4887 
4888                         /* assume completion callbacks modify the queue */
4889                         if (unlikely(modified && fotg210->isoc_count > 0))
4890                                 goto restart;
4891                 }
4892 
4893                 /* Stop when we have reached the current frame */
4894                 if (frame == now_frame)
4895                         break;
4896                 frame = (frame + 1) & fmask;
4897         }
4898         fotg210->next_frame = now_frame;
4899 }
4900 /*-------------------------------------------------------------------------*/
4901 /*
4902  * Display / Set uframe_periodic_max
4903  */
4904 static ssize_t show_uframe_periodic_max(struct device *dev,
4905                                         struct device_attribute *attr,
4906                                         char *buf)
4907 {
4908         struct fotg210_hcd              *fotg210;
4909         int                     n;
4910 
4911         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4912         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4913         return n;
4914 }
4915 
4916 
4917 static ssize_t store_uframe_periodic_max(struct device *dev,
4918                                         struct device_attribute *attr,
4919                                         const char *buf, size_t count)
4920 {
4921         struct fotg210_hcd      *fotg210;
4922         unsigned                uframe_periodic_max;
4923         unsigned                frame, uframe;
4924         unsigned short          allocated_max;
4925         unsigned long           flags;
4926         ssize_t                 ret;
4927 
4928         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4929         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4930                 return -EINVAL;
4931 
4932         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4933                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4934                              uframe_periodic_max);
4935                 return -EINVAL;
4936         }
4937 
4938         ret = -EINVAL;
4939 
4940         /*
4941          * lock, so that our checking does not race with possible periodic
4942          * bandwidth allocation through submitting new urbs.
4943          */
4944         spin_lock_irqsave(&fotg210->lock, flags);
4945 
4946         /*
4947          * for request to decrease max periodic bandwidth, we have to check
4948          * every microframe in the schedule to see whether the decrease is
4949          * possible.
4950          */
4951         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4952                 allocated_max = 0;
4953 
4954                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4955                         for (uframe = 0; uframe < 7; ++uframe)
4956                                 allocated_max = max(allocated_max,
4957                                                     periodic_usecs(fotg210, frame, uframe));
4958 
4959                 if (allocated_max > uframe_periodic_max) {
4960                         fotg210_info(fotg210,
4961                                 "cannot decrease uframe_periodic_max becase "
4962                                 "periodic bandwidth is already allocated "
4963                                 "(%u > %u)\n",
4964                                 allocated_max, uframe_periodic_max);
4965                         goto out_unlock;
4966                 }
4967         }
4968 
4969         /* increasing is always ok */
4970 
4971         fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4972                      100 * uframe_periodic_max/125, uframe_periodic_max);
4973 
4974         if (uframe_periodic_max != 100)
4975                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4976 
4977         fotg210->uframe_periodic_max = uframe_periodic_max;
4978         ret = count;
4979 
4980 out_unlock:
4981         spin_unlock_irqrestore(&fotg210->lock, flags);
4982         return ret;
4983 }
4984 
4985 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4986                    store_uframe_periodic_max);
4987 
4988 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4989 {
4990         struct device   *controller = fotg210_to_hcd(fotg210)->self.controller;
4991         int     i = 0;
4992 
4993         if (i)
4994                 goto out;
4995 
4996         i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4997 out:
4998         return i;
4999 }
5000 
5001 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
5002 {
5003         struct device   *controller = fotg210_to_hcd(fotg210)->self.controller;
5004 
5005         device_remove_file(controller, &dev_attr_uframe_periodic_max);
5006 }
5007 /*-------------------------------------------------------------------------*/
5008 
5009 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
5010  * The firmware seems to think that powering off is a wakeup event!
5011  * This routine turns off remote wakeup and everything else, on all ports.
5012  */
5013 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
5014 {
5015         u32 __iomem *status_reg = &fotg210->regs->port_status;
5016 
5017         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
5018 }
5019 
5020 /*
5021  * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5022  * Must be called with interrupts enabled and the lock not held.
5023  */
5024 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
5025 {
5026         fotg210_halt(fotg210);
5027 
5028         spin_lock_irq(&fotg210->lock);
5029         fotg210->rh_state = FOTG210_RH_HALTED;
5030         fotg210_turn_off_all_ports(fotg210);
5031         spin_unlock_irq(&fotg210->lock);
5032 }
5033 
5034 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5035  * This forcibly disables dma and IRQs, helping kexec and other cases
5036  * where the next system software may expect clean state.
5037  */
5038 static void fotg210_shutdown(struct usb_hcd *hcd)
5039 {
5040         struct fotg210_hcd      *fotg210 = hcd_to_fotg210(hcd);
5041 
5042         spin_lock_irq(&fotg210->lock);
5043         fotg210->shutdown = true;
5044         fotg210->rh_state = FOTG210_RH_STOPPING;
5045         fotg210->enabled_hrtimer_events = 0;
5046         spin_unlock_irq(&fotg210->lock);
5047 
5048         fotg210_silence_controller(fotg210);
5049 
5050         hrtimer_cancel(&fotg210->hrtimer);
5051 }
5052 
5053 /*-------------------------------------------------------------------------*/
5054 
5055 /*
5056  * fotg210_work is called from some interrupts, timers, and so on.
5057  * it calls driver completion functions, after dropping fotg210->lock.
5058  */
5059 static void fotg210_work(struct fotg210_hcd *fotg210)
5060 {
5061         /* another CPU may drop fotg210->lock during a schedule scan while
5062          * it reports urb completions.  this flag guards against bogus
5063          * attempts at re-entrant schedule scanning.
5064          */
5065         if (fotg210->scanning) {
5066                 fotg210->need_rescan = true;
5067                 return;
5068         }
5069         fotg210->scanning = true;
5070 
5071  rescan:
5072         fotg210->need_rescan = false;
5073         if (fotg210->async_count)
5074                 scan_async(fotg210);
5075         if (fotg210->intr_count > 0)
5076                 scan_intr(fotg210);
5077         if (fotg210->isoc_count > 0)
5078                 scan_isoc(fotg210);
5079         if (fotg210->need_rescan)
5080                 goto rescan;
5081         fotg210->scanning = false;
5082 
5083         /* the IO watchdog guards against hardware or driver bugs that
5084          * misplace IRQs, and should let us run completely without IRQs.
5085          * such lossage has been observed on both VT6202 and VT8235.
5086          */
5087         turn_on_io_watchdog(fotg210);
5088 }
5089 
5090 /*
5091  * Called when the fotg210_hcd module is removed.
5092  */
5093 static void fotg210_stop(struct usb_hcd *hcd)
5094 {
5095         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5096 
5097         fotg210_dbg(fotg210, "stop\n");
5098 
5099         /* no more interrupts ... */
5100 
5101         spin_lock_irq(&fotg210->lock);
5102         fotg210->enabled_hrtimer_events = 0;
5103         spin_unlock_irq(&fotg210->lock);
5104 
5105         fotg210_quiesce(fotg210);
5106         fotg210_silence_controller(fotg210);
5107         fotg210_reset(fotg210);
5108 
5109         hrtimer_cancel(&fotg210->hrtimer);
5110         remove_sysfs_files(fotg210);
5111         remove_debug_files(fotg210);
5112 
5113         /* root hub is shut down separately (first, when possible) */
5114         spin_lock_irq(&fotg210->lock);
5115         end_free_itds(fotg210);
5116         spin_unlock_irq(&fotg210->lock);
5117         fotg210_mem_cleanup(fotg210);
5118 
5119 #ifdef  FOTG210_STATS
5120         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5121                 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
5122                 fotg210->stats.lost_iaa);
5123         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
5124                 fotg210->stats.complete, fotg210->stats.unlink);
5125 #endif
5126 
5127         dbg_status(fotg210, "fotg210_stop completed",
5128                     fotg210_readl(fotg210, &fotg210->regs->status));
5129 }
5130 
5131 /* one-time init, only for memory state */
5132 static int hcd_fotg210_init(struct usb_hcd *hcd)
5133 {
5134         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5135         u32                     temp;
5136         int                     retval;
5137         u32                     hcc_params;
5138         struct fotg210_qh_hw    *hw;
5139 
5140         spin_lock_init(&fotg210->lock);
5141 
5142         /*
5143          * keep io watchdog by default, those good HCDs could turn off it later
5144          */
5145         fotg210->need_io_watchdog = 1;
5146 
5147         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
5148         fotg210->hrtimer.function = fotg210_hrtimer_func;
5149         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
5150 
5151         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5152 
5153         /*
5154          * by default set standard 80% (== 100 usec/uframe) max periodic
5155          * bandwidth as required by USB 2.0
5156          */
5157         fotg210->uframe_periodic_max = 100;
5158 
5159         /*
5160          * hw default: 1K periodic list heads, one per frame.
5161          * periodic_size can shrink by USBCMD update if hcc_params allows.
5162          */
5163         fotg210->periodic_size = DEFAULT_I_TDPS;
5164         INIT_LIST_HEAD(&fotg210->intr_qh_list);
5165         INIT_LIST_HEAD(&fotg210->cached_itd_list);
5166 
5167         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5168                 /* periodic schedule size can be smaller than default */
5169                 switch (FOTG210_TUNE_FLS) {
5170                 case 0:
5171                         fotg210->periodic_size = 1024;
5172                         break;
5173                 case 1:
5174                         fotg210->periodic_size = 512;
5175                         break;
5176                 case 2:
5177                         fotg210->periodic_size = 256;
5178                         break;
5179                 default:
5180                         BUG();
5181                 }
5182         }
5183         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
5184         if (retval < 0)
5185                 return retval;
5186 
5187         /* controllers may cache some of the periodic schedule ... */
5188         fotg210->i_thresh = 2;
5189 
5190         /*
5191          * dedicate a qh for the async ring head, since we couldn't unlink
5192          * a 'real' qh without stopping the async schedule [4.8].  use it
5193          * as the 'reclamation list head' too.
5194          * its dummy is used in hw_alt_next of many tds, to prevent the qh
5195          * from automatically advancing to the next td after short reads.
5196          */
5197         fotg210->async->qh_next.qh = NULL;
5198         hw = fotg210->async->hw;
5199         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5200         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5201         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5202         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5203         fotg210->async->qh_state = QH_STATE_LINKED;
5204         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5205 
5206         /* clear interrupt enables, set irq latency */
5207         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5208                 log2_irq_thresh = 0;
5209         temp = 1 << (16 + log2_irq_thresh);
5210         if (HCC_CANPARK(hcc_params)) {
5211                 /* HW default park == 3, on hardware that supports it (like
5212                  * NVidia and ALI silicon), maximizes throughput on the async
5213                  * schedule by avoiding QH fetches between transfers.
5214                  *
5215                  * With fast usb storage devices and NForce2, "park" seems to
5216                  * make problems:  throughput reduction (!), data errors...
5217                  */
5218                 if (park) {
5219                         park = min_t(unsigned, park, 3);
5220                         temp |= CMD_PARK;
5221                         temp |= park << 8;
5222                 }
5223                 fotg210_dbg(fotg210, "park %d\n", park);
5224         }
5225         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5226                 /* periodic schedule size can be smaller than default */
5227                 temp &= ~(3 << 2);
5228                 temp |= (FOTG210_TUNE_FLS << 2);
5229         }
5230         fotg210->command = temp;
5231 
5232         /* Accept arbitrarily long scatter-gather lists */
5233         if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5234                 hcd->self.sg_tablesize = ~0;
5235         return 0;
5236 }
5237 
5238 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5239 static int fotg210_run(struct usb_hcd *hcd)
5240 {
5241         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5242         u32                     temp;
5243         u32                     hcc_params;
5244 
5245         hcd->uses_new_polling = 1;
5246 
5247         /* EHCI spec section 4.1 */
5248 
5249         fotg210_writel(fotg210, fotg210->periodic_dma,
5250                        &fotg210->regs->frame_list);
5251         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5252                        &fotg210->regs->async_next);
5253 
5254         /*
5255          * hcc_params controls whether fotg210->regs->segment must (!!!)
5256          * be used; it constrains QH/ITD/SITD and QTD locations.
5257          * pci_pool consistent memory always uses segment zero.
5258          * streaming mappings for I/O buffers, like pci_map_single(),
5259          * can return segments above 4GB, if the device allows.
5260          *
5261          * NOTE:  the dma mask is visible through dma_supported(), so
5262          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5263          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5264          * host side drivers though.
5265          */
5266         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5267 
5268         /*
5269          * Philips, Intel, and maybe others need CMD_RUN before the
5270          * root hub will detect new devices (why?); NEC doesn't
5271          */
5272         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5273         fotg210->command |= CMD_RUN;
5274         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5275         dbg_cmd(fotg210, "init", fotg210->command);
5276 
5277         /*
5278          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5279          * are explicitly handed to companion controller(s), so no TT is
5280          * involved with the root hub.  (Except where one is integrated,
5281          * and there's no companion controller unless maybe for USB OTG.)
5282          *
5283          * Turning on the CF flag will transfer ownership of all ports
5284          * from the companions to the EHCI controller.  If any of the
5285          * companions are in the middle of a port reset at the time, it
5286          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5287          * guarantees that no resets are in progress.  After we set CF,
5288          * a short delay lets the hardware catch up; new resets shouldn't
5289          * be started before the port switching actions could complete.
5290          */
5291         down_write(&ehci_cf_port_reset_rwsem);
5292         fotg210->rh_state = FOTG210_RH_RUNNING;
5293         /* unblock posted writes */
5294         fotg210_readl(fotg210, &fotg210->regs->command);
5295         msleep(5);
5296         up_write(&ehci_cf_port_reset_rwsem);
5297         fotg210->last_periodic_enable = ktime_get_real();
5298 
5299         temp = HC_VERSION(fotg210,
5300                           fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5301         fotg210_info(fotg210,
5302                 "USB %x.%x started, EHCI %x.%02x\n",
5303                 ((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
5304                 temp >> 8, temp & 0xff);
5305 
5306         fotg210_writel(fotg210, INTR_MASK,
5307                     &fotg210->regs->intr_enable); /* Turn On Interrupts */
5308 
5309         /* GRR this is run-once init(), being done every time the HC starts.
5310          * So long as they're part of class devices, we can't do it init()
5311          * since the class device isn't created that early.
5312          */
5313         create_debug_files(fotg210);
5314         create_sysfs_files(fotg210);
5315 
5316         return 0;
5317 }
5318 
5319 static int fotg210_setup(struct usb_hcd *hcd)
5320 {
5321         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5322         int retval;
5323 
5324         fotg210->regs = (void __iomem *)fotg210->caps +
5325             HC_LENGTH(fotg210,
5326                       fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5327         dbg_hcs_params(fotg210, "reset");
5328         dbg_hcc_params(fotg210, "reset");
5329 
5330         /* cache this readonly data; minimize chip reads */
5331         fotg210->hcs_params = fotg210_readl(fotg210,
5332                                             &fotg210->caps->hcs_params);
5333 
5334         fotg210->sbrn = HCD_USB2;
5335 
5336         /* data structure init */
5337         retval = hcd_fotg210_init(hcd);
5338         if (retval)
5339                 return retval;
5340 
5341         retval = fotg210_halt(fotg210);
5342         if (retval)
5343                 return retval;
5344 
5345         fotg210_reset(fotg210);
5346 
5347         return 0;
5348 }
5349 
5350 /*-------------------------------------------------------------------------*/
5351 
5352 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5353 {
5354         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5355         u32                     status, masked_status, pcd_status = 0, cmd;
5356         int                     bh;
5357 
5358         spin_lock(&fotg210->lock);
5359 
5360         status = fotg210_readl(fotg210, &fotg210->regs->status);
5361 
5362         /* e.g. cardbus physical eject */
5363         if (status == ~(u32) 0) {
5364                 fotg210_dbg(fotg210, "device removed\n");
5365                 goto dead;
5366         }
5367 
5368         /*
5369          * We don't use STS_FLR, but some controllers don't like it to
5370          * remain on, so mask it out along with the other status bits.
5371          */
5372         masked_status = status & (INTR_MASK | STS_FLR);
5373 
5374         /* Shared IRQ? */
5375         if (!masked_status ||
5376             unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5377                 spin_unlock(&fotg210->lock);
5378                 return IRQ_NONE;
5379         }
5380 
5381         /* clear (just) interrupts */
5382         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5383         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5384         bh = 0;
5385 
5386         /* unrequested/ignored: Frame List Rollover */
5387         dbg_status(fotg210, "irq", status);
5388 
5389         /* INT, ERR, and IAA interrupt rates can be throttled */
5390 
5391         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5392         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5393                 if (likely((status & STS_ERR) == 0))
5394                         COUNT(fotg210->stats.normal);
5395                 else
5396                         COUNT(fotg210->stats.error);
5397                 bh = 1;
5398         }
5399 
5400         /* complete the unlinking of some qh [4.15.2.3] */
5401         if (status & STS_IAA) {
5402 
5403                 /* Turn off the IAA watchdog */
5404                 fotg210->enabled_hrtimer_events &=
5405                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5406 
5407                 /*
5408                  * Mild optimization: Allow another IAAD to reset the
5409                  * hrtimer, if one occurs before the next expiration.
5410                  * In theory we could always cancel the hrtimer, but
5411                  * tests show that about half the time it will be reset
5412                  * for some other event anyway.
5413                  */
5414                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5415                         ++fotg210->next_hrtimer_event;
5416 
5417                 /* guard against (alleged) silicon errata */
5418                 if (cmd & CMD_IAAD)
5419                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5420                 if (fotg210->async_iaa) {
5421                         COUNT(fotg210->stats.iaa);
5422                         end_unlink_async(fotg210);
5423                 } else
5424                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5425         }
5426 
5427         /* remote wakeup [4.3.1] */
5428         if (status & STS_PCD) {
5429                 int pstatus;
5430                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5431 
5432                 /* kick root hub later */
5433                 pcd_status = status;
5434 
5435                 /* resume root hub? */
5436                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5437                         usb_hcd_resume_root_hub(hcd);
5438 
5439                 pstatus = fotg210_readl(fotg210, status_reg);
5440 
5441                 if (test_bit(0, &fotg210->suspended_ports) &&
5442                                 ((pstatus & PORT_RESUME) ||
5443                                         !(pstatus & PORT_SUSPEND)) &&
5444                                 (pstatus & PORT_PE) &&
5445                                 fotg210->reset_done[0] == 0) {
5446 
5447                         /* start 20 msec resume signaling from this port,
5448                          * and make khubd collect PORT_STAT_C_SUSPEND to
5449                          * stop that signaling.  Use 5 ms extra for safety,
5450                          * like usb_port_resume() does.
5451                          */
5452                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5453                         set_bit(0, &fotg210->resuming_ports);
5454                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5455                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5456                 }
5457         }
5458 
5459         /* PCI errors [4.15.2.4] */
5460         if (unlikely((status & STS_FATAL) != 0)) {
5461                 fotg210_err(fotg210, "fatal error\n");
5462                 dbg_cmd(fotg210, "fatal", cmd);
5463                 dbg_status(fotg210, "fatal", status);
5464 dead:
5465                 usb_hc_died(hcd);
5466 
5467                 /* Don't let the controller do anything more */
5468                 fotg210->shutdown = true;
5469                 fotg210->rh_state = FOTG210_RH_STOPPING;
5470                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5471                 fotg210_writel(fotg210, fotg210->command,
5472                                &fotg210->regs->command);
5473                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5474                 fotg210_handle_controller_death(fotg210);
5475 
5476                 /* Handle completions when the controller stops */
5477                 bh = 0;
5478         }
5479 
5480         if (bh)
5481                 fotg210_work(fotg210);
5482         spin_unlock(&fotg210->lock);
5483         if (pcd_status)
5484                 usb_hcd_poll_rh_status(hcd);
5485         return IRQ_HANDLED;
5486 }
5487 
5488 /*-------------------------------------------------------------------------*/
5489 
5490 /*
5491  * non-error returns are a promise to giveback() the urb later
5492  * we drop ownership so next owner (or urb unlink) can get it
5493  *
5494  * urb + dev is in hcd.self.controller.urb_list
5495  * we're queueing TDs onto software and hardware lists
5496  *
5497  * hcd-specific init for hcpriv hasn't been done yet
5498  *
5499  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5500  * to a (possibly active) QH, and the same QH scanning code.
5501  */
5502 static int fotg210_urb_enqueue(
5503         struct usb_hcd  *hcd,
5504         struct urb      *urb,
5505         gfp_t           mem_flags
5506 ) {
5507         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5508         struct list_head        qtd_list;
5509 
5510         INIT_LIST_HEAD(&qtd_list);
5511 
5512         switch (usb_pipetype(urb->pipe)) {
5513         case PIPE_CONTROL:
5514                 /* qh_completions() code doesn't handle all the fault cases
5515                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5516                  */
5517                 if (urb->transfer_buffer_length > (16 * 1024))
5518                         return -EMSGSIZE;
5519                 /* FALLTHROUGH */
5520         /* case PIPE_BULK: */
5521         default:
5522                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5523                         return -ENOMEM;
5524                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5525 
5526         case PIPE_INTERRUPT:
5527                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5528                         return -ENOMEM;
5529                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5530 
5531         case PIPE_ISOCHRONOUS:
5532                 return itd_submit(fotg210, urb, mem_flags);
5533         }
5534 }
5535 
5536 /* remove from hardware lists
5537  * completions normally happen asynchronously
5538  */
5539 
5540 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5541 {
5542         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5543         struct fotg210_qh               *qh;
5544         unsigned long           flags;
5545         int                     rc;
5546 
5547         spin_lock_irqsave(&fotg210->lock, flags);
5548         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5549         if (rc)
5550                 goto done;
5551 
5552         switch (usb_pipetype(urb->pipe)) {
5553         /* case PIPE_CONTROL: */
5554         /* case PIPE_BULK:*/
5555         default:
5556                 qh = (struct fotg210_qh *) urb->hcpriv;
5557                 if (!qh)
5558                         break;
5559                 switch (qh->qh_state) {
5560                 case QH_STATE_LINKED:
5561                 case QH_STATE_COMPLETING:
5562                         start_unlink_async(fotg210, qh);
5563                         break;
5564                 case QH_STATE_UNLINK:
5565                 case QH_STATE_UNLINK_WAIT:
5566                         /* already started */
5567                         break;
5568                 case QH_STATE_IDLE:
5569                         /* QH might be waiting for a Clear-TT-Buffer */
5570                         qh_completions(fotg210, qh);
5571                         break;
5572                 }
5573                 break;
5574 
5575         case PIPE_INTERRUPT:
5576                 qh = (struct fotg210_qh *) urb->hcpriv;
5577                 if (!qh)
5578                         break;
5579                 switch (qh->qh_state) {
5580                 case QH_STATE_LINKED:
5581                 case QH_STATE_COMPLETING:
5582                         start_unlink_intr(fotg210, qh);
5583                         break;
5584                 case QH_STATE_IDLE:
5585                         qh_completions(fotg210, qh);
5586                         break;
5587                 default:
5588                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5589                                         qh, qh->qh_state);
5590                         goto done;
5591                 }
5592                 break;
5593 
5594         case PIPE_ISOCHRONOUS:
5595                 /* itd... */
5596 
5597                 /* wait till next completion, do it then. */
5598                 /* completion irqs can wait up to 1024 msec, */
5599                 break;
5600         }
5601 done:
5602         spin_unlock_irqrestore(&fotg210->lock, flags);
5603         return rc;
5604 }
5605 
5606 /*-------------------------------------------------------------------------*/
5607 
5608 /* bulk qh holds the data toggle */
5609 
5610 static void
5611 fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5612 {
5613         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5614         unsigned long           flags;
5615         struct fotg210_qh               *qh, *tmp;
5616 
5617         /* ASSERT:  any requests/urbs are being unlinked */
5618         /* ASSERT:  nobody can be submitting urbs for this any more */
5619 
5620 rescan:
5621         spin_lock_irqsave(&fotg210->lock, flags);
5622         qh = ep->hcpriv;
5623         if (!qh)
5624                 goto done;
5625 
5626         /* endpoints can be iso streams.  for now, we don't
5627          * accelerate iso completions ... so spin a while.
5628          */
5629         if (qh->hw == NULL) {
5630                 struct fotg210_iso_stream       *stream = ep->hcpriv;
5631 
5632                 if (!list_empty(&stream->td_list))
5633                         goto idle_timeout;
5634 
5635                 /* BUG_ON(!list_empty(&stream->free_list)); */
5636                 kfree(stream);
5637                 goto done;
5638         }
5639 
5640         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5641                 qh->qh_state = QH_STATE_IDLE;
5642         switch (qh->qh_state) {
5643         case QH_STATE_LINKED:
5644         case QH_STATE_COMPLETING:
5645                 for (tmp = fotg210->async->qh_next.qh;
5646                                 tmp && tmp != qh;
5647                                 tmp = tmp->qh_next.qh)
5648                         continue;
5649                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5650                  * may already be unlinked.
5651                  */
5652                 if (tmp)
5653                         start_unlink_async(fotg210, qh);
5654                 /* FALL THROUGH */
5655         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5656         case QH_STATE_UNLINK_WAIT:
5657 idle_timeout:
5658                 spin_unlock_irqrestore(&fotg210->lock, flags);
5659                 schedule_timeout_uninterruptible(1);
5660                 goto rescan;
5661         case QH_STATE_IDLE:             /* fully unlinked */
5662                 if (qh->clearing_tt)
5663                         goto idle_timeout;
5664                 if (list_empty(&qh->qtd_list)) {
5665                         qh_destroy(fotg210, qh);
5666                         break;
5667                 }
5668                 /* else FALL THROUGH */
5669         default:
5670                 /* caller was supposed to have unlinked any requests;
5671                  * that's not our job.  just leak this memory.
5672                  */
5673                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5674                         qh, ep->desc.bEndpointAddress, qh->qh_state,
5675                         list_empty(&qh->qtd_list) ? "" : "(has tds)");
5676                 break;
5677         }
5678  done:
5679         ep->hcpriv = NULL;
5680         spin_unlock_irqrestore(&fotg210->lock, flags);
5681 }
5682 
5683 static void
5684 fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5685 {
5686         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5687         struct fotg210_qh               *qh;
5688         int                     eptype = usb_endpoint_type(&ep->desc);
5689         int                     epnum = usb_endpoint_num(&ep->desc);
5690         int                     is_out = usb_endpoint_dir_out(&ep->desc);
5691         unsigned long           flags;
5692 
5693         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5694                 return;
5695 
5696         spin_lock_irqsave(&fotg210->lock, flags);
5697         qh = ep->hcpriv;
5698 
5699         /* For Bulk and Interrupt endpoints we maintain the toggle state
5700          * in the hardware; the toggle bits in udev aren't used at all.
5701          * When an endpoint is reset by usb_clear_halt() we must reset
5702          * the toggle bit in the QH.
5703          */
5704         if (qh) {
5705                 usb_settoggle(qh->dev, epnum, is_out, 0);
5706                 if (!list_empty(&qh->qtd_list)) {
5707                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5708                 } else if (qh->qh_state == QH_STATE_LINKED ||
5709                                 qh->qh_state == QH_STATE_COMPLETING) {
5710 
5711                         /* The toggle value in the QH can't be updated
5712                          * while the QH is active.  Unlink it now;
5713                          * re-linking will call qh_refresh().
5714                          */
5715                         if (eptype == USB_ENDPOINT_XFER_BULK)
5716                                 start_unlink_async(fotg210, qh);
5717                         else
5718                                 start_unlink_intr(fotg210, qh);
5719                 }
5720         }
5721         spin_unlock_irqrestore(&fotg210->lock, flags);
5722 }
5723 
5724 static int fotg210_get_frame(struct usb_hcd *hcd)
5725 {
5726         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5727         return (fotg210_read_frame_index(fotg210) >> 3) %
5728                 fotg210->periodic_size;
5729 }
5730 
5731 /*-------------------------------------------------------------------------*/
5732 
5733 /*
5734  * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5735  * because its registers (and irq) are shared between host/gadget/otg
5736  * functions  and in order to facilitate role switching we cannot
5737  * give the fotg210 driver exclusive access to those.
5738  */
5739 MODULE_DESCRIPTION(DRIVER_DESC);
5740 MODULE_AUTHOR(DRIVER_AUTHOR);
5741 MODULE_LICENSE("GPL");
5742 
5743 static const struct hc_driver fotg210_fotg210_hc_driver = {
5744         .description            = hcd_name,
5745         .product_desc           = "Faraday USB2.0 Host Controller",
5746         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5747 
5748         /*
5749          * generic hardware linkage
5750          */
5751         .irq                    = fotg210_irq,
5752         .flags                  = HCD_MEMORY | HCD_USB2,
5753 
5754         /*
5755          * basic lifecycle operations
5756          */
5757         .reset                  = hcd_fotg210_init,
5758         .start                  = fotg210_run,
5759         .stop                   = fotg210_stop,
5760         .shutdown               = fotg210_shutdown,
5761 
5762         /*
5763          * managing i/o requests and associated device resources
5764          */
5765         .urb_enqueue            = fotg210_urb_enqueue,
5766         .urb_dequeue            = fotg210_urb_dequeue,
5767         .endpoint_disable       = fotg210_endpoint_disable,
5768         .endpoint_reset         = fotg210_endpoint_reset,
5769 
5770         /*
5771          * scheduling support
5772          */
5773         .get_frame_number       = fotg210_get_frame,
5774 
5775         /*
5776          * root hub support
5777          */
5778         .hub_status_data        = fotg210_hub_status_data,
5779         .hub_control            = fotg210_hub_control,
5780         .bus_suspend            = fotg210_bus_suspend,
5781         .bus_resume             = fotg210_bus_resume,
5782 
5783         .relinquish_port        = fotg210_relinquish_port,
5784         .port_handed_over       = fotg210_port_handed_over,
5785 
5786         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5787 };
5788 
5789 static void fotg210_init(struct fotg210_hcd *fotg210)
5790 {
5791         u32 value;
5792 
5793         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5794                   &fotg210->regs->gmir);
5795 
5796         value = ioread32(&fotg210->regs->otgcsr);
5797         value &= ~OTGCSR_A_BUS_DROP;
5798         value |= OTGCSR_A_BUS_REQ;
5799         iowrite32(value, &fotg210->regs->otgcsr);
5800 }
5801 
5802 /**
5803  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5804  *
5805  * Allocates basic resources for this USB host controller, and
5806  * then invokes the start() method for the HCD associated with it
5807  * through the hotplug entry's driver_data.
5808  */
5809 static int fotg210_hcd_probe(struct platform_device *pdev)
5810 {
5811         struct device                   *dev = &pdev->dev;
5812         struct usb_hcd                  *hcd;
5813         struct resource                 *res;
5814         int                             irq;
5815         int                             retval = -ENODEV;
5816         struct fotg210_hcd              *fotg210;
5817 
5818         if (usb_disabled())
5819                 return -ENODEV;
5820 
5821         pdev->dev.power.power_state = PMSG_ON;
5822 
5823         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5824         if (!res) {
5825                 dev_err(dev,
5826                         "Found HC with no IRQ. Check %s setup!\n",
5827                         dev_name(dev));
5828                 return -ENODEV;
5829         }
5830 
5831         irq = res->start;
5832 
5833         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5834                         dev_name(dev));
5835         if (!hcd) {
5836                 dev_err(dev, "failed to create hcd with err %d\n", retval);
5837                 retval = -ENOMEM;
5838                 goto fail_create_hcd;
5839         }
5840 
5841         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5842         if (!res) {
5843                 dev_err(dev,
5844                         "Found HC with no register addr. Check %s setup!\n",
5845                         dev_name(dev));
5846                 retval = -ENODEV;
5847                 goto fail_request_resource;
5848         }
5849 
5850         hcd->rsrc_start = res->start;
5851         hcd->rsrc_len = resource_size(res);
5852         hcd->has_tt = 1;
5853 
5854         if (!request_mem_region(hcd->rsrc_start, hcd->rsrc_len,
5855                                 fotg210_fotg210_hc_driver.description)) {
5856                 dev_dbg(dev, "controller already in use\n");
5857                 retval = -EBUSY;
5858                 goto fail_request_resource;
5859         }
5860 
5861         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
5862         if (!res) {
5863                 dev_err(dev,
5864                         "Found HC with no register addr. Check %s setup!\n",
5865                         dev_name(dev));
5866                 retval = -ENODEV;
5867                 goto fail_request_resource;
5868         }
5869 
5870         hcd->regs = ioremap_nocache(res->start, resource_size(res));
5871         if (hcd->regs == NULL) {
5872                 dev_dbg(dev, "error mapping memory\n");
5873                 retval = -EFAULT;
5874                 goto fail_ioremap;
5875         }
5876 
5877         fotg210 = hcd_to_fotg210(hcd);
5878 
5879         fotg210->caps = hcd->regs;
5880 
5881         retval = fotg210_setup(hcd);
5882         if (retval)
5883                 goto fail_add_hcd;
5884 
5885         fotg210_init(fotg210);
5886 
5887         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5888         if (retval) {
5889                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5890                 goto fail_add_hcd;
5891         }
5892         device_wakeup_enable(hcd->self.controller);
5893 
5894         return retval;
5895 
5896 fail_add_hcd:
5897         iounmap(hcd->regs);
5898 fail_ioremap:
5899         release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
5900 fail_request_resource:
5901         usb_put_hcd(hcd);
5902 fail_create_hcd:
5903         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5904         return retval;
5905 }
5906 
5907 /**
5908  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5909  * @dev: USB Host Controller being removed
5910  *
5911  */
5912 static int fotg210_hcd_remove(struct platform_device *pdev)
5913 {
5914         struct device *dev      = &pdev->dev;
5915         struct usb_hcd *hcd     = dev_get_drvdata(dev);
5916 
5917         if (!hcd)
5918                 return 0;
5919 
5920         usb_remove_hcd(hcd);
5921         iounmap(hcd->regs);
5922         release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
5923         usb_put_hcd(hcd);
5924 
5925         return 0;
5926 }
5927 
5928 static struct platform_driver fotg210_hcd_driver = {
5929         .driver = {
5930                 .name   = "fotg210-hcd",
5931         },
5932         .probe  = fotg210_hcd_probe,
5933         .remove = fotg210_hcd_remove,
5934 };
5935 
5936 static int __init fotg210_hcd_init(void)
5937 {
5938         int retval = 0;
5939 
5940         if (usb_disabled())
5941                 return -ENODEV;
5942 
5943         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5944         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5945         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5946                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5947                 pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5948 
5949         pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5950                  hcd_name,
5951                  sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
5952                  sizeof(struct fotg210_itd));
5953 
5954         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5955         if (!fotg210_debug_root) {
5956                 retval = -ENOENT;
5957                 goto err_debug;
5958         }
5959 
5960         retval = platform_driver_register(&fotg210_hcd_driver);
5961         if (retval < 0)
5962                 goto clean;
5963         return retval;
5964 
5965         platform_driver_unregister(&fotg210_hcd_driver);
5966 clean:
5967         debugfs_remove(fotg210_debug_root);
5968         fotg210_debug_root = NULL;
5969 err_debug:
5970         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5971         return retval;
5972 }
5973 module_init(fotg210_hcd_init);
5974 
5975 static void __exit fotg210_hcd_cleanup(void)
5976 {
5977         platform_driver_unregister(&fotg210_hcd_driver);
5978         debugfs_remove(fotg210_debug_root);
5979         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5980 }
5981 module_exit(fotg210_hcd_cleanup);
5982 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us