Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/drivers/uio/uio_pruss.c

  1 /*
  2  * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
  3  *
  4  * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
  5  * and DDR RAM to user space for applications interacting with PRUSS firmware
  6  *
  7  * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
  8  *
  9  * This program is free software; you can redistribute it and/or
 10  * modify it under the terms of the GNU General Public License as
 11  * published by the Free Software Foundation version 2.
 12  *
 13  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 14  * kind, whether express or implied; without even the implied warranty
 15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16  * GNU General Public License for more details.
 17  */
 18 #include <linux/device.h>
 19 #include <linux/module.h>
 20 #include <linux/moduleparam.h>
 21 #include <linux/platform_device.h>
 22 #include <linux/uio_driver.h>
 23 #include <linux/platform_data/uio_pruss.h>
 24 #include <linux/io.h>
 25 #include <linux/clk.h>
 26 #include <linux/dma-mapping.h>
 27 #include <linux/sizes.h>
 28 #include <linux/slab.h>
 29 #include <linux/genalloc.h>
 30 
 31 #define DRV_NAME "pruss_uio"
 32 #define DRV_VERSION "1.0"
 33 
 34 static int sram_pool_sz = SZ_16K;
 35 module_param(sram_pool_sz, int, 0);
 36 MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
 37 
 38 static int extram_pool_sz = SZ_256K;
 39 module_param(extram_pool_sz, int, 0);
 40 MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
 41 
 42 /*
 43  * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
 44  * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
 45  * firmware and user space application, async notification from PRU firmware
 46  * to user space application
 47  * 3    PRU_EVTOUT0
 48  * 4    PRU_EVTOUT1
 49  * 5    PRU_EVTOUT2
 50  * 6    PRU_EVTOUT3
 51  * 7    PRU_EVTOUT4
 52  * 8    PRU_EVTOUT5
 53  * 9    PRU_EVTOUT6
 54  * 10   PRU_EVTOUT7
 55 */
 56 #define MAX_PRUSS_EVT   8
 57 
 58 #define PINTC_HIDISR    0x0038
 59 #define PINTC_HIPIR     0x0900
 60 #define HIPIR_NOPEND    0x80000000
 61 #define PINTC_HIER      0x1500
 62 
 63 struct uio_pruss_dev {
 64         struct uio_info *info;
 65         struct clk *pruss_clk;
 66         dma_addr_t sram_paddr;
 67         dma_addr_t ddr_paddr;
 68         void __iomem *prussio_vaddr;
 69         unsigned long sram_vaddr;
 70         void *ddr_vaddr;
 71         unsigned int hostirq_start;
 72         unsigned int pintc_base;
 73         struct gen_pool *sram_pool;
 74 };
 75 
 76 static irqreturn_t pruss_handler(int irq, struct uio_info *info)
 77 {
 78         struct uio_pruss_dev *gdev = info->priv;
 79         int intr_bit = (irq - gdev->hostirq_start + 2);
 80         int val, intr_mask = (1 << intr_bit);
 81         void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
 82         void __iomem *intren_reg = base + PINTC_HIER;
 83         void __iomem *intrdis_reg = base + PINTC_HIDISR;
 84         void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
 85 
 86         val = ioread32(intren_reg);
 87         /* Is interrupt enabled and active ? */
 88         if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
 89                 return IRQ_NONE;
 90         /* Disable interrupt */
 91         iowrite32(intr_bit, intrdis_reg);
 92         return IRQ_HANDLED;
 93 }
 94 
 95 static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev)
 96 {
 97         int cnt;
 98         struct uio_info *p = gdev->info;
 99 
100         for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
101                 uio_unregister_device(p);
102                 kfree(p->name);
103         }
104         iounmap(gdev->prussio_vaddr);
105         if (gdev->ddr_vaddr) {
106                 dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
107                         gdev->ddr_paddr);
108         }
109         if (gdev->sram_vaddr)
110                 gen_pool_free(gdev->sram_pool,
111                               gdev->sram_vaddr,
112                               sram_pool_sz);
113         kfree(gdev->info);
114         clk_disable(gdev->pruss_clk);
115         clk_put(gdev->pruss_clk);
116         kfree(gdev);
117 }
118 
119 static int pruss_probe(struct platform_device *pdev)
120 {
121         struct uio_info *p;
122         struct uio_pruss_dev *gdev;
123         struct resource *regs_prussio;
124         struct device *dev = &pdev->dev;
125         int ret = -ENODEV, cnt = 0, len;
126         struct uio_pruss_pdata *pdata = dev_get_platdata(dev);
127 
128         gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
129         if (!gdev)
130                 return -ENOMEM;
131 
132         gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL);
133         if (!gdev->info) {
134                 kfree(gdev);
135                 return -ENOMEM;
136         }
137 
138         /* Power on PRU in case its not done as part of boot-loader */
139         gdev->pruss_clk = clk_get(dev, "pruss");
140         if (IS_ERR(gdev->pruss_clk)) {
141                 dev_err(dev, "Failed to get clock\n");
142                 ret = PTR_ERR(gdev->pruss_clk);
143                 kfree(gdev->info);
144                 kfree(gdev);
145                 return ret;
146         } else {
147                 ret = clk_enable(gdev->pruss_clk);
148                 if (ret) {
149                         dev_err(dev, "Failed to enable clock\n");
150                         clk_put(gdev->pruss_clk);
151                         kfree(gdev->info);
152                         kfree(gdev);
153                         return ret;
154                 }
155         }
156 
157         regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
158         if (!regs_prussio) {
159                 dev_err(dev, "No PRUSS I/O resource specified\n");
160                 goto out_free;
161         }
162 
163         if (!regs_prussio->start) {
164                 dev_err(dev, "Invalid memory resource\n");
165                 goto out_free;
166         }
167 
168         if (pdata->sram_pool) {
169                 gdev->sram_pool = pdata->sram_pool;
170                 gdev->sram_vaddr =
171                         (unsigned long)gen_pool_dma_alloc(gdev->sram_pool,
172                                         sram_pool_sz, &gdev->sram_paddr);
173                 if (!gdev->sram_vaddr) {
174                         dev_err(dev, "Could not allocate SRAM pool\n");
175                         goto out_free;
176                 }
177         }
178 
179         gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz,
180                                 &(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
181         if (!gdev->ddr_vaddr) {
182                 dev_err(dev, "Could not allocate external memory\n");
183                 goto out_free;
184         }
185 
186         len = resource_size(regs_prussio);
187         gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
188         if (!gdev->prussio_vaddr) {
189                 dev_err(dev, "Can't remap PRUSS I/O  address range\n");
190                 goto out_free;
191         }
192 
193         gdev->pintc_base = pdata->pintc_base;
194         gdev->hostirq_start = platform_get_irq(pdev, 0);
195 
196         for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
197                 p->mem[0].addr = regs_prussio->start;
198                 p->mem[0].size = resource_size(regs_prussio);
199                 p->mem[0].memtype = UIO_MEM_PHYS;
200 
201                 p->mem[1].addr = gdev->sram_paddr;
202                 p->mem[1].size = sram_pool_sz;
203                 p->mem[1].memtype = UIO_MEM_PHYS;
204 
205                 p->mem[2].addr = gdev->ddr_paddr;
206                 p->mem[2].size = extram_pool_sz;
207                 p->mem[2].memtype = UIO_MEM_PHYS;
208 
209                 p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
210                 p->version = DRV_VERSION;
211 
212                 /* Register PRUSS IRQ lines */
213                 p->irq = gdev->hostirq_start + cnt;
214                 p->handler = pruss_handler;
215                 p->priv = gdev;
216 
217                 ret = uio_register_device(dev, p);
218                 if (ret < 0)
219                         goto out_free;
220         }
221 
222         platform_set_drvdata(pdev, gdev);
223         return 0;
224 
225 out_free:
226         pruss_cleanup(dev, gdev);
227         return ret;
228 }
229 
230 static int pruss_remove(struct platform_device *dev)
231 {
232         struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
233 
234         pruss_cleanup(&dev->dev, gdev);
235         return 0;
236 }
237 
238 static struct platform_driver pruss_driver = {
239         .probe = pruss_probe,
240         .remove = pruss_remove,
241         .driver = {
242                    .name = DRV_NAME,
243                    },
244 };
245 
246 module_platform_driver(pruss_driver);
247 
248 MODULE_LICENSE("GPL v2");
249 MODULE_VERSION(DRV_VERSION);
250 MODULE_AUTHOR("Amit Chatterjee <amit.chatterjee@ti.com>");
251 MODULE_AUTHOR("Pratheesh Gangadhar <pratheesh@ti.com>");
252 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us