Version:  2.0.40 2.2.26 2.4.37 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17

Linux/drivers/tty/serial/sh-sci.c

  1 /*
  2  * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
  3  *
  4  *  Copyright (C) 2002 - 2011  Paul Mundt
  5  *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
  6  *
  7  * based off of the old drivers/char/sh-sci.c by:
  8  *
  9  *   Copyright (C) 1999, 2000  Niibe Yutaka
 10  *   Copyright (C) 2000  Sugioka Toshinobu
 11  *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
 12  *   Modified to support SecureEdge. David McCullough (2002)
 13  *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
 14  *   Removed SH7300 support (Jul 2007).
 15  *
 16  * This file is subject to the terms and conditions of the GNU General Public
 17  * License.  See the file "COPYING" in the main directory of this archive
 18  * for more details.
 19  */
 20 #if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
 21 #define SUPPORT_SYSRQ
 22 #endif
 23 
 24 #undef DEBUG
 25 
 26 #include <linux/clk.h>
 27 #include <linux/console.h>
 28 #include <linux/ctype.h>
 29 #include <linux/cpufreq.h>
 30 #include <linux/delay.h>
 31 #include <linux/dmaengine.h>
 32 #include <linux/dma-mapping.h>
 33 #include <linux/err.h>
 34 #include <linux/errno.h>
 35 #include <linux/init.h>
 36 #include <linux/interrupt.h>
 37 #include <linux/ioport.h>
 38 #include <linux/major.h>
 39 #include <linux/module.h>
 40 #include <linux/mm.h>
 41 #include <linux/notifier.h>
 42 #include <linux/of.h>
 43 #include <linux/platform_device.h>
 44 #include <linux/pm_runtime.h>
 45 #include <linux/scatterlist.h>
 46 #include <linux/serial.h>
 47 #include <linux/serial_sci.h>
 48 #include <linux/sh_dma.h>
 49 #include <linux/slab.h>
 50 #include <linux/string.h>
 51 #include <linux/sysrq.h>
 52 #include <linux/timer.h>
 53 #include <linux/tty.h>
 54 #include <linux/tty_flip.h>
 55 
 56 #ifdef CONFIG_SUPERH
 57 #include <asm/sh_bios.h>
 58 #endif
 59 
 60 #include "sh-sci.h"
 61 
 62 /* Offsets into the sci_port->irqs array */
 63 enum {
 64         SCIx_ERI_IRQ,
 65         SCIx_RXI_IRQ,
 66         SCIx_TXI_IRQ,
 67         SCIx_BRI_IRQ,
 68         SCIx_NR_IRQS,
 69 
 70         SCIx_MUX_IRQ = SCIx_NR_IRQS,    /* special case */
 71 };
 72 
 73 #define SCIx_IRQ_IS_MUXED(port)                 \
 74         ((port)->irqs[SCIx_ERI_IRQ] ==  \
 75          (port)->irqs[SCIx_RXI_IRQ]) || \
 76         ((port)->irqs[SCIx_ERI_IRQ] &&  \
 77          ((port)->irqs[SCIx_RXI_IRQ] < 0))
 78 
 79 struct sci_port {
 80         struct uart_port        port;
 81 
 82         /* Platform configuration */
 83         struct plat_sci_port    *cfg;
 84         int                     overrun_bit;
 85         unsigned int            error_mask;
 86         unsigned int            sampling_rate;
 87 
 88 
 89         /* Break timer */
 90         struct timer_list       break_timer;
 91         int                     break_flag;
 92 
 93         /* Interface clock */
 94         struct clk              *iclk;
 95         /* Function clock */
 96         struct clk              *fclk;
 97 
 98         int                     irqs[SCIx_NR_IRQS];
 99         char                    *irqstr[SCIx_NR_IRQS];
100 
101         struct dma_chan                 *chan_tx;
102         struct dma_chan                 *chan_rx;
103 
104 #ifdef CONFIG_SERIAL_SH_SCI_DMA
105         struct dma_async_tx_descriptor  *desc_tx;
106         struct dma_async_tx_descriptor  *desc_rx[2];
107         dma_cookie_t                    cookie_tx;
108         dma_cookie_t                    cookie_rx[2];
109         dma_cookie_t                    active_rx;
110         struct scatterlist              sg_tx;
111         unsigned int                    sg_len_tx;
112         struct scatterlist              sg_rx[2];
113         size_t                          buf_len_rx;
114         struct sh_dmae_slave            param_tx;
115         struct sh_dmae_slave            param_rx;
116         struct work_struct              work_tx;
117         struct work_struct              work_rx;
118         struct timer_list               rx_timer;
119         unsigned int                    rx_timeout;
120 #endif
121 
122         struct notifier_block           freq_transition;
123 };
124 
125 /* Function prototypes */
126 static void sci_start_tx(struct uart_port *port);
127 static void sci_stop_tx(struct uart_port *port);
128 static void sci_start_rx(struct uart_port *port);
129 
130 #define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
131 
132 static struct sci_port sci_ports[SCI_NPORTS];
133 static struct uart_driver sci_uart_driver;
134 
135 static inline struct sci_port *
136 to_sci_port(struct uart_port *uart)
137 {
138         return container_of(uart, struct sci_port, port);
139 }
140 
141 struct plat_sci_reg {
142         u8 offset, size;
143 };
144 
145 /* Helper for invalidating specific entries of an inherited map. */
146 #define sci_reg_invalid { .offset = 0, .size = 0 }
147 
148 static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
149         [SCIx_PROBE_REGTYPE] = {
150                 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
151         },
152 
153         /*
154          * Common SCI definitions, dependent on the port's regshift
155          * value.
156          */
157         [SCIx_SCI_REGTYPE] = {
158                 [SCSMR]         = { 0x00,  8 },
159                 [SCBRR]         = { 0x01,  8 },
160                 [SCSCR]         = { 0x02,  8 },
161                 [SCxTDR]        = { 0x03,  8 },
162                 [SCxSR]         = { 0x04,  8 },
163                 [SCxRDR]        = { 0x05,  8 },
164                 [SCFCR]         = sci_reg_invalid,
165                 [SCFDR]         = sci_reg_invalid,
166                 [SCTFDR]        = sci_reg_invalid,
167                 [SCRFDR]        = sci_reg_invalid,
168                 [SCSPTR]        = sci_reg_invalid,
169                 [SCLSR]         = sci_reg_invalid,
170                 [HSSRR]         = sci_reg_invalid,
171         },
172 
173         /*
174          * Common definitions for legacy IrDA ports, dependent on
175          * regshift value.
176          */
177         [SCIx_IRDA_REGTYPE] = {
178                 [SCSMR]         = { 0x00,  8 },
179                 [SCBRR]         = { 0x01,  8 },
180                 [SCSCR]         = { 0x02,  8 },
181                 [SCxTDR]        = { 0x03,  8 },
182                 [SCxSR]         = { 0x04,  8 },
183                 [SCxRDR]        = { 0x05,  8 },
184                 [SCFCR]         = { 0x06,  8 },
185                 [SCFDR]         = { 0x07, 16 },
186                 [SCTFDR]        = sci_reg_invalid,
187                 [SCRFDR]        = sci_reg_invalid,
188                 [SCSPTR]        = sci_reg_invalid,
189                 [SCLSR]         = sci_reg_invalid,
190                 [HSSRR]         = sci_reg_invalid,
191         },
192 
193         /*
194          * Common SCIFA definitions.
195          */
196         [SCIx_SCIFA_REGTYPE] = {
197                 [SCSMR]         = { 0x00, 16 },
198                 [SCBRR]         = { 0x04,  8 },
199                 [SCSCR]         = { 0x08, 16 },
200                 [SCxTDR]        = { 0x20,  8 },
201                 [SCxSR]         = { 0x14, 16 },
202                 [SCxRDR]        = { 0x24,  8 },
203                 [SCFCR]         = { 0x18, 16 },
204                 [SCFDR]         = { 0x1c, 16 },
205                 [SCTFDR]        = sci_reg_invalid,
206                 [SCRFDR]        = sci_reg_invalid,
207                 [SCSPTR]        = sci_reg_invalid,
208                 [SCLSR]         = sci_reg_invalid,
209                 [HSSRR]         = sci_reg_invalid,
210         },
211 
212         /*
213          * Common SCIFB definitions.
214          */
215         [SCIx_SCIFB_REGTYPE] = {
216                 [SCSMR]         = { 0x00, 16 },
217                 [SCBRR]         = { 0x04,  8 },
218                 [SCSCR]         = { 0x08, 16 },
219                 [SCxTDR]        = { 0x40,  8 },
220                 [SCxSR]         = { 0x14, 16 },
221                 [SCxRDR]        = { 0x60,  8 },
222                 [SCFCR]         = { 0x18, 16 },
223                 [SCFDR]         = sci_reg_invalid,
224                 [SCTFDR]        = { 0x38, 16 },
225                 [SCRFDR]        = { 0x3c, 16 },
226                 [SCSPTR]        = sci_reg_invalid,
227                 [SCLSR]         = sci_reg_invalid,
228                 [HSSRR]         = sci_reg_invalid,
229         },
230 
231         /*
232          * Common SH-2(A) SCIF definitions for ports with FIFO data
233          * count registers.
234          */
235         [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
236                 [SCSMR]         = { 0x00, 16 },
237                 [SCBRR]         = { 0x04,  8 },
238                 [SCSCR]         = { 0x08, 16 },
239                 [SCxTDR]        = { 0x0c,  8 },
240                 [SCxSR]         = { 0x10, 16 },
241                 [SCxRDR]        = { 0x14,  8 },
242                 [SCFCR]         = { 0x18, 16 },
243                 [SCFDR]         = { 0x1c, 16 },
244                 [SCTFDR]        = sci_reg_invalid,
245                 [SCRFDR]        = sci_reg_invalid,
246                 [SCSPTR]        = { 0x20, 16 },
247                 [SCLSR]         = { 0x24, 16 },
248                 [HSSRR]         = sci_reg_invalid,
249         },
250 
251         /*
252          * Common SH-3 SCIF definitions.
253          */
254         [SCIx_SH3_SCIF_REGTYPE] = {
255                 [SCSMR]         = { 0x00,  8 },
256                 [SCBRR]         = { 0x02,  8 },
257                 [SCSCR]         = { 0x04,  8 },
258                 [SCxTDR]        = { 0x06,  8 },
259                 [SCxSR]         = { 0x08, 16 },
260                 [SCxRDR]        = { 0x0a,  8 },
261                 [SCFCR]         = { 0x0c,  8 },
262                 [SCFDR]         = { 0x0e, 16 },
263                 [SCTFDR]        = sci_reg_invalid,
264                 [SCRFDR]        = sci_reg_invalid,
265                 [SCSPTR]        = sci_reg_invalid,
266                 [SCLSR]         = sci_reg_invalid,
267                 [HSSRR]         = sci_reg_invalid,
268         },
269 
270         /*
271          * Common SH-4(A) SCIF(B) definitions.
272          */
273         [SCIx_SH4_SCIF_REGTYPE] = {
274                 [SCSMR]         = { 0x00, 16 },
275                 [SCBRR]         = { 0x04,  8 },
276                 [SCSCR]         = { 0x08, 16 },
277                 [SCxTDR]        = { 0x0c,  8 },
278                 [SCxSR]         = { 0x10, 16 },
279                 [SCxRDR]        = { 0x14,  8 },
280                 [SCFCR]         = { 0x18, 16 },
281                 [SCFDR]         = { 0x1c, 16 },
282                 [SCTFDR]        = sci_reg_invalid,
283                 [SCRFDR]        = sci_reg_invalid,
284                 [SCSPTR]        = { 0x20, 16 },
285                 [SCLSR]         = { 0x24, 16 },
286                 [HSSRR]         = sci_reg_invalid,
287         },
288 
289         /*
290          * Common HSCIF definitions.
291          */
292         [SCIx_HSCIF_REGTYPE] = {
293                 [SCSMR]         = { 0x00, 16 },
294                 [SCBRR]         = { 0x04,  8 },
295                 [SCSCR]         = { 0x08, 16 },
296                 [SCxTDR]        = { 0x0c,  8 },
297                 [SCxSR]         = { 0x10, 16 },
298                 [SCxRDR]        = { 0x14,  8 },
299                 [SCFCR]         = { 0x18, 16 },
300                 [SCFDR]         = { 0x1c, 16 },
301                 [SCTFDR]        = sci_reg_invalid,
302                 [SCRFDR]        = sci_reg_invalid,
303                 [SCSPTR]        = { 0x20, 16 },
304                 [SCLSR]         = { 0x24, 16 },
305                 [HSSRR]         = { 0x40, 16 },
306         },
307 
308         /*
309          * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
310          * register.
311          */
312         [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
313                 [SCSMR]         = { 0x00, 16 },
314                 [SCBRR]         = { 0x04,  8 },
315                 [SCSCR]         = { 0x08, 16 },
316                 [SCxTDR]        = { 0x0c,  8 },
317                 [SCxSR]         = { 0x10, 16 },
318                 [SCxRDR]        = { 0x14,  8 },
319                 [SCFCR]         = { 0x18, 16 },
320                 [SCFDR]         = { 0x1c, 16 },
321                 [SCTFDR]        = sci_reg_invalid,
322                 [SCRFDR]        = sci_reg_invalid,
323                 [SCSPTR]        = sci_reg_invalid,
324                 [SCLSR]         = { 0x24, 16 },
325                 [HSSRR]         = sci_reg_invalid,
326         },
327 
328         /*
329          * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
330          * count registers.
331          */
332         [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
333                 [SCSMR]         = { 0x00, 16 },
334                 [SCBRR]         = { 0x04,  8 },
335                 [SCSCR]         = { 0x08, 16 },
336                 [SCxTDR]        = { 0x0c,  8 },
337                 [SCxSR]         = { 0x10, 16 },
338                 [SCxRDR]        = { 0x14,  8 },
339                 [SCFCR]         = { 0x18, 16 },
340                 [SCFDR]         = { 0x1c, 16 },
341                 [SCTFDR]        = { 0x1c, 16 }, /* aliased to SCFDR */
342                 [SCRFDR]        = { 0x20, 16 },
343                 [SCSPTR]        = { 0x24, 16 },
344                 [SCLSR]         = { 0x28, 16 },
345                 [HSSRR]         = sci_reg_invalid,
346         },
347 
348         /*
349          * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
350          * registers.
351          */
352         [SCIx_SH7705_SCIF_REGTYPE] = {
353                 [SCSMR]         = { 0x00, 16 },
354                 [SCBRR]         = { 0x04,  8 },
355                 [SCSCR]         = { 0x08, 16 },
356                 [SCxTDR]        = { 0x20,  8 },
357                 [SCxSR]         = { 0x14, 16 },
358                 [SCxRDR]        = { 0x24,  8 },
359                 [SCFCR]         = { 0x18, 16 },
360                 [SCFDR]         = { 0x1c, 16 },
361                 [SCTFDR]        = sci_reg_invalid,
362                 [SCRFDR]        = sci_reg_invalid,
363                 [SCSPTR]        = sci_reg_invalid,
364                 [SCLSR]         = sci_reg_invalid,
365                 [HSSRR]         = sci_reg_invalid,
366         },
367 };
368 
369 #define sci_getreg(up, offset)          (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
370 
371 /*
372  * The "offset" here is rather misleading, in that it refers to an enum
373  * value relative to the port mapping rather than the fixed offset
374  * itself, which needs to be manually retrieved from the platform's
375  * register map for the given port.
376  */
377 static unsigned int sci_serial_in(struct uart_port *p, int offset)
378 {
379         struct plat_sci_reg *reg = sci_getreg(p, offset);
380 
381         if (reg->size == 8)
382                 return ioread8(p->membase + (reg->offset << p->regshift));
383         else if (reg->size == 16)
384                 return ioread16(p->membase + (reg->offset << p->regshift));
385         else
386                 WARN(1, "Invalid register access\n");
387 
388         return 0;
389 }
390 
391 static void sci_serial_out(struct uart_port *p, int offset, int value)
392 {
393         struct plat_sci_reg *reg = sci_getreg(p, offset);
394 
395         if (reg->size == 8)
396                 iowrite8(value, p->membase + (reg->offset << p->regshift));
397         else if (reg->size == 16)
398                 iowrite16(value, p->membase + (reg->offset << p->regshift));
399         else
400                 WARN(1, "Invalid register access\n");
401 }
402 
403 static int sci_probe_regmap(struct plat_sci_port *cfg)
404 {
405         switch (cfg->type) {
406         case PORT_SCI:
407                 cfg->regtype = SCIx_SCI_REGTYPE;
408                 break;
409         case PORT_IRDA:
410                 cfg->regtype = SCIx_IRDA_REGTYPE;
411                 break;
412         case PORT_SCIFA:
413                 cfg->regtype = SCIx_SCIFA_REGTYPE;
414                 break;
415         case PORT_SCIFB:
416                 cfg->regtype = SCIx_SCIFB_REGTYPE;
417                 break;
418         case PORT_SCIF:
419                 /*
420                  * The SH-4 is a bit of a misnomer here, although that's
421                  * where this particular port layout originated. This
422                  * configuration (or some slight variation thereof)
423                  * remains the dominant model for all SCIFs.
424                  */
425                 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
426                 break;
427         case PORT_HSCIF:
428                 cfg->regtype = SCIx_HSCIF_REGTYPE;
429                 break;
430         default:
431                 pr_err("Can't probe register map for given port\n");
432                 return -EINVAL;
433         }
434 
435         return 0;
436 }
437 
438 static void sci_port_enable(struct sci_port *sci_port)
439 {
440         if (!sci_port->port.dev)
441                 return;
442 
443         pm_runtime_get_sync(sci_port->port.dev);
444 
445         clk_prepare_enable(sci_port->iclk);
446         sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
447         clk_prepare_enable(sci_port->fclk);
448 }
449 
450 static void sci_port_disable(struct sci_port *sci_port)
451 {
452         if (!sci_port->port.dev)
453                 return;
454 
455         /* Cancel the break timer to ensure that the timer handler will not try
456          * to access the hardware with clocks and power disabled. Reset the
457          * break flag to make the break debouncing state machine ready for the
458          * next break.
459          */
460         del_timer_sync(&sci_port->break_timer);
461         sci_port->break_flag = 0;
462 
463         clk_disable_unprepare(sci_port->fclk);
464         clk_disable_unprepare(sci_port->iclk);
465 
466         pm_runtime_put_sync(sci_port->port.dev);
467 }
468 
469 #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
470 
471 #ifdef CONFIG_CONSOLE_POLL
472 static int sci_poll_get_char(struct uart_port *port)
473 {
474         unsigned short status;
475         int c;
476 
477         do {
478                 status = serial_port_in(port, SCxSR);
479                 if (status & SCxSR_ERRORS(port)) {
480                         serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
481                         continue;
482                 }
483                 break;
484         } while (1);
485 
486         if (!(status & SCxSR_RDxF(port)))
487                 return NO_POLL_CHAR;
488 
489         c = serial_port_in(port, SCxRDR);
490 
491         /* Dummy read */
492         serial_port_in(port, SCxSR);
493         serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
494 
495         return c;
496 }
497 #endif
498 
499 static void sci_poll_put_char(struct uart_port *port, unsigned char c)
500 {
501         unsigned short status;
502 
503         do {
504                 status = serial_port_in(port, SCxSR);
505         } while (!(status & SCxSR_TDxE(port)));
506 
507         serial_port_out(port, SCxTDR, c);
508         serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
509 }
510 #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
511 
512 static void sci_init_pins(struct uart_port *port, unsigned int cflag)
513 {
514         struct sci_port *s = to_sci_port(port);
515         struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
516 
517         /*
518          * Use port-specific handler if provided.
519          */
520         if (s->cfg->ops && s->cfg->ops->init_pins) {
521                 s->cfg->ops->init_pins(port, cflag);
522                 return;
523         }
524 
525         /*
526          * For the generic path SCSPTR is necessary. Bail out if that's
527          * unavailable, too.
528          */
529         if (!reg->size)
530                 return;
531 
532         if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
533             ((!(cflag & CRTSCTS)))) {
534                 unsigned short status;
535 
536                 status = serial_port_in(port, SCSPTR);
537                 status &= ~SCSPTR_CTSIO;
538                 status |= SCSPTR_RTSIO;
539                 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
540         }
541 }
542 
543 static int sci_txfill(struct uart_port *port)
544 {
545         struct plat_sci_reg *reg;
546 
547         reg = sci_getreg(port, SCTFDR);
548         if (reg->size)
549                 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
550 
551         reg = sci_getreg(port, SCFDR);
552         if (reg->size)
553                 return serial_port_in(port, SCFDR) >> 8;
554 
555         return !(serial_port_in(port, SCxSR) & SCI_TDRE);
556 }
557 
558 static int sci_txroom(struct uart_port *port)
559 {
560         return port->fifosize - sci_txfill(port);
561 }
562 
563 static int sci_rxfill(struct uart_port *port)
564 {
565         struct plat_sci_reg *reg;
566 
567         reg = sci_getreg(port, SCRFDR);
568         if (reg->size)
569                 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
570 
571         reg = sci_getreg(port, SCFDR);
572         if (reg->size)
573                 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
574 
575         return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
576 }
577 
578 /*
579  * SCI helper for checking the state of the muxed port/RXD pins.
580  */
581 static inline int sci_rxd_in(struct uart_port *port)
582 {
583         struct sci_port *s = to_sci_port(port);
584 
585         if (s->cfg->port_reg <= 0)
586                 return 1;
587 
588         /* Cast for ARM damage */
589         return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
590 }
591 
592 /* ********************************************************************** *
593  *                   the interrupt related routines                       *
594  * ********************************************************************** */
595 
596 static void sci_transmit_chars(struct uart_port *port)
597 {
598         struct circ_buf *xmit = &port->state->xmit;
599         unsigned int stopped = uart_tx_stopped(port);
600         unsigned short status;
601         unsigned short ctrl;
602         int count;
603 
604         status = serial_port_in(port, SCxSR);
605         if (!(status & SCxSR_TDxE(port))) {
606                 ctrl = serial_port_in(port, SCSCR);
607                 if (uart_circ_empty(xmit))
608                         ctrl &= ~SCSCR_TIE;
609                 else
610                         ctrl |= SCSCR_TIE;
611                 serial_port_out(port, SCSCR, ctrl);
612                 return;
613         }
614 
615         count = sci_txroom(port);
616 
617         do {
618                 unsigned char c;
619 
620                 if (port->x_char) {
621                         c = port->x_char;
622                         port->x_char = 0;
623                 } else if (!uart_circ_empty(xmit) && !stopped) {
624                         c = xmit->buf[xmit->tail];
625                         xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
626                 } else {
627                         break;
628                 }
629 
630                 serial_port_out(port, SCxTDR, c);
631 
632                 port->icount.tx++;
633         } while (--count > 0);
634 
635         serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
636 
637         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
638                 uart_write_wakeup(port);
639         if (uart_circ_empty(xmit)) {
640                 sci_stop_tx(port);
641         } else {
642                 ctrl = serial_port_in(port, SCSCR);
643 
644                 if (port->type != PORT_SCI) {
645                         serial_port_in(port, SCxSR); /* Dummy read */
646                         serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
647                 }
648 
649                 ctrl |= SCSCR_TIE;
650                 serial_port_out(port, SCSCR, ctrl);
651         }
652 }
653 
654 /* On SH3, SCIF may read end-of-break as a space->mark char */
655 #define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
656 
657 static void sci_receive_chars(struct uart_port *port)
658 {
659         struct sci_port *sci_port = to_sci_port(port);
660         struct tty_port *tport = &port->state->port;
661         int i, count, copied = 0;
662         unsigned short status;
663         unsigned char flag;
664 
665         status = serial_port_in(port, SCxSR);
666         if (!(status & SCxSR_RDxF(port)))
667                 return;
668 
669         while (1) {
670                 /* Don't copy more bytes than there is room for in the buffer */
671                 count = tty_buffer_request_room(tport, sci_rxfill(port));
672 
673                 /* If for any reason we can't copy more data, we're done! */
674                 if (count == 0)
675                         break;
676 
677                 if (port->type == PORT_SCI) {
678                         char c = serial_port_in(port, SCxRDR);
679                         if (uart_handle_sysrq_char(port, c) ||
680                             sci_port->break_flag)
681                                 count = 0;
682                         else
683                                 tty_insert_flip_char(tport, c, TTY_NORMAL);
684                 } else {
685                         for (i = 0; i < count; i++) {
686                                 char c = serial_port_in(port, SCxRDR);
687 
688                                 status = serial_port_in(port, SCxSR);
689 #if defined(CONFIG_CPU_SH3)
690                                 /* Skip "chars" during break */
691                                 if (sci_port->break_flag) {
692                                         if ((c == 0) &&
693                                             (status & SCxSR_FER(port))) {
694                                                 count--; i--;
695                                                 continue;
696                                         }
697 
698                                         /* Nonzero => end-of-break */
699                                         dev_dbg(port->dev, "debounce<%02x>\n", c);
700                                         sci_port->break_flag = 0;
701 
702                                         if (STEPFN(c)) {
703                                                 count--; i--;
704                                                 continue;
705                                         }
706                                 }
707 #endif /* CONFIG_CPU_SH3 */
708                                 if (uart_handle_sysrq_char(port, c)) {
709                                         count--; i--;
710                                         continue;
711                                 }
712 
713                                 /* Store data and status */
714                                 if (status & SCxSR_FER(port)) {
715                                         flag = TTY_FRAME;
716                                         port->icount.frame++;
717                                         dev_notice(port->dev, "frame error\n");
718                                 } else if (status & SCxSR_PER(port)) {
719                                         flag = TTY_PARITY;
720                                         port->icount.parity++;
721                                         dev_notice(port->dev, "parity error\n");
722                                 } else
723                                         flag = TTY_NORMAL;
724 
725                                 tty_insert_flip_char(tport, c, flag);
726                         }
727                 }
728 
729                 serial_port_in(port, SCxSR); /* dummy read */
730                 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
731 
732                 copied += count;
733                 port->icount.rx += count;
734         }
735 
736         if (copied) {
737                 /* Tell the rest of the system the news. New characters! */
738                 tty_flip_buffer_push(tport);
739         } else {
740                 serial_port_in(port, SCxSR); /* dummy read */
741                 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
742         }
743 }
744 
745 #define SCI_BREAK_JIFFIES (HZ/20)
746 
747 /*
748  * The sci generates interrupts during the break,
749  * 1 per millisecond or so during the break period, for 9600 baud.
750  * So dont bother disabling interrupts.
751  * But dont want more than 1 break event.
752  * Use a kernel timer to periodically poll the rx line until
753  * the break is finished.
754  */
755 static inline void sci_schedule_break_timer(struct sci_port *port)
756 {
757         mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
758 }
759 
760 /* Ensure that two consecutive samples find the break over. */
761 static void sci_break_timer(unsigned long data)
762 {
763         struct sci_port *port = (struct sci_port *)data;
764 
765         if (sci_rxd_in(&port->port) == 0) {
766                 port->break_flag = 1;
767                 sci_schedule_break_timer(port);
768         } else if (port->break_flag == 1) {
769                 /* break is over. */
770                 port->break_flag = 2;
771                 sci_schedule_break_timer(port);
772         } else
773                 port->break_flag = 0;
774 }
775 
776 static int sci_handle_errors(struct uart_port *port)
777 {
778         int copied = 0;
779         unsigned short status = serial_port_in(port, SCxSR);
780         struct tty_port *tport = &port->state->port;
781         struct sci_port *s = to_sci_port(port);
782 
783         /* Handle overruns */
784         if (status & (1 << s->overrun_bit)) {
785                 port->icount.overrun++;
786 
787                 /* overrun error */
788                 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
789                         copied++;
790 
791                 dev_notice(port->dev, "overrun error\n");
792         }
793 
794         if (status & SCxSR_FER(port)) {
795                 if (sci_rxd_in(port) == 0) {
796                         /* Notify of BREAK */
797                         struct sci_port *sci_port = to_sci_port(port);
798 
799                         if (!sci_port->break_flag) {
800                                 port->icount.brk++;
801 
802                                 sci_port->break_flag = 1;
803                                 sci_schedule_break_timer(sci_port);
804 
805                                 /* Do sysrq handling. */
806                                 if (uart_handle_break(port))
807                                         return 0;
808 
809                                 dev_dbg(port->dev, "BREAK detected\n");
810 
811                                 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
812                                         copied++;
813                         }
814 
815                 } else {
816                         /* frame error */
817                         port->icount.frame++;
818 
819                         if (tty_insert_flip_char(tport, 0, TTY_FRAME))
820                                 copied++;
821 
822                         dev_notice(port->dev, "frame error\n");
823                 }
824         }
825 
826         if (status & SCxSR_PER(port)) {
827                 /* parity error */
828                 port->icount.parity++;
829 
830                 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
831                         copied++;
832 
833                 dev_notice(port->dev, "parity error\n");
834         }
835 
836         if (copied)
837                 tty_flip_buffer_push(tport);
838 
839         return copied;
840 }
841 
842 static int sci_handle_fifo_overrun(struct uart_port *port)
843 {
844         struct tty_port *tport = &port->state->port;
845         struct sci_port *s = to_sci_port(port);
846         struct plat_sci_reg *reg;
847         int copied = 0;
848 
849         reg = sci_getreg(port, SCLSR);
850         if (!reg->size)
851                 return 0;
852 
853         if ((serial_port_in(port, SCLSR) & (1 << s->overrun_bit))) {
854                 serial_port_out(port, SCLSR, 0);
855 
856                 port->icount.overrun++;
857 
858                 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
859                 tty_flip_buffer_push(tport);
860 
861                 dev_notice(port->dev, "overrun error\n");
862                 copied++;
863         }
864 
865         return copied;
866 }
867 
868 static int sci_handle_breaks(struct uart_port *port)
869 {
870         int copied = 0;
871         unsigned short status = serial_port_in(port, SCxSR);
872         struct tty_port *tport = &port->state->port;
873         struct sci_port *s = to_sci_port(port);
874 
875         if (uart_handle_break(port))
876                 return 0;
877 
878         if (!s->break_flag && status & SCxSR_BRK(port)) {
879 #if defined(CONFIG_CPU_SH3)
880                 /* Debounce break */
881                 s->break_flag = 1;
882 #endif
883 
884                 port->icount.brk++;
885 
886                 /* Notify of BREAK */
887                 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
888                         copied++;
889 
890                 dev_dbg(port->dev, "BREAK detected\n");
891         }
892 
893         if (copied)
894                 tty_flip_buffer_push(tport);
895 
896         copied += sci_handle_fifo_overrun(port);
897 
898         return copied;
899 }
900 
901 static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
902 {
903 #ifdef CONFIG_SERIAL_SH_SCI_DMA
904         struct uart_port *port = ptr;
905         struct sci_port *s = to_sci_port(port);
906 
907         if (s->chan_rx) {
908                 u16 scr = serial_port_in(port, SCSCR);
909                 u16 ssr = serial_port_in(port, SCxSR);
910 
911                 /* Disable future Rx interrupts */
912                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
913                         disable_irq_nosync(irq);
914                         scr |= SCSCR_RDRQE;
915                 } else {
916                         scr &= ~SCSCR_RIE;
917                 }
918                 serial_port_out(port, SCSCR, scr);
919                 /* Clear current interrupt */
920                 serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
921                 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
922                         jiffies, s->rx_timeout);
923                 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
924 
925                 return IRQ_HANDLED;
926         }
927 #endif
928 
929         /* I think sci_receive_chars has to be called irrespective
930          * of whether the I_IXOFF is set, otherwise, how is the interrupt
931          * to be disabled?
932          */
933         sci_receive_chars(ptr);
934 
935         return IRQ_HANDLED;
936 }
937 
938 static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
939 {
940         struct uart_port *port = ptr;
941         unsigned long flags;
942 
943         spin_lock_irqsave(&port->lock, flags);
944         sci_transmit_chars(port);
945         spin_unlock_irqrestore(&port->lock, flags);
946 
947         return IRQ_HANDLED;
948 }
949 
950 static irqreturn_t sci_er_interrupt(int irq, void *ptr)
951 {
952         struct uart_port *port = ptr;
953 
954         /* Handle errors */
955         if (port->type == PORT_SCI) {
956                 if (sci_handle_errors(port)) {
957                         /* discard character in rx buffer */
958                         serial_port_in(port, SCxSR);
959                         serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
960                 }
961         } else {
962                 sci_handle_fifo_overrun(port);
963                 sci_rx_interrupt(irq, ptr);
964         }
965 
966         serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
967 
968         /* Kick the transmission */
969         sci_tx_interrupt(irq, ptr);
970 
971         return IRQ_HANDLED;
972 }
973 
974 static irqreturn_t sci_br_interrupt(int irq, void *ptr)
975 {
976         struct uart_port *port = ptr;
977 
978         /* Handle BREAKs */
979         sci_handle_breaks(port);
980         serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
981 
982         return IRQ_HANDLED;
983 }
984 
985 static inline unsigned long port_rx_irq_mask(struct uart_port *port)
986 {
987         /*
988          * Not all ports (such as SCIFA) will support REIE. Rather than
989          * special-casing the port type, we check the port initialization
990          * IRQ enable mask to see whether the IRQ is desired at all. If
991          * it's unset, it's logically inferred that there's no point in
992          * testing for it.
993          */
994         return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
995 }
996 
997 static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
998 {
999         unsigned short ssr_status, scr_status, err_enabled;
1000         struct uart_port *port = ptr;
1001         struct sci_port *s = to_sci_port(port);
1002         irqreturn_t ret = IRQ_NONE;
1003 
1004         ssr_status = serial_port_in(port, SCxSR);
1005         scr_status = serial_port_in(port, SCSCR);
1006         err_enabled = scr_status & port_rx_irq_mask(port);
1007 
1008         /* Tx Interrupt */
1009         if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1010             !s->chan_tx)
1011                 ret = sci_tx_interrupt(irq, ptr);
1012 
1013         /*
1014          * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1015          * DR flags
1016          */
1017         if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1018             (scr_status & SCSCR_RIE))
1019                 ret = sci_rx_interrupt(irq, ptr);
1020 
1021         /* Error Interrupt */
1022         if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1023                 ret = sci_er_interrupt(irq, ptr);
1024 
1025         /* Break Interrupt */
1026         if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1027                 ret = sci_br_interrupt(irq, ptr);
1028 
1029         return ret;
1030 }
1031 
1032 /*
1033  * Here we define a transition notifier so that we can update all of our
1034  * ports' baud rate when the peripheral clock changes.
1035  */
1036 static int sci_notifier(struct notifier_block *self,
1037                         unsigned long phase, void *p)
1038 {
1039         struct sci_port *sci_port;
1040         unsigned long flags;
1041 
1042         sci_port = container_of(self, struct sci_port, freq_transition);
1043 
1044         if (phase == CPUFREQ_POSTCHANGE) {
1045                 struct uart_port *port = &sci_port->port;
1046 
1047                 spin_lock_irqsave(&port->lock, flags);
1048                 port->uartclk = clk_get_rate(sci_port->iclk);
1049                 spin_unlock_irqrestore(&port->lock, flags);
1050         }
1051 
1052         return NOTIFY_OK;
1053 }
1054 
1055 static struct sci_irq_desc {
1056         const char      *desc;
1057         irq_handler_t   handler;
1058 } sci_irq_desc[] = {
1059         /*
1060          * Split out handlers, the default case.
1061          */
1062         [SCIx_ERI_IRQ] = {
1063                 .desc = "rx err",
1064                 .handler = sci_er_interrupt,
1065         },
1066 
1067         [SCIx_RXI_IRQ] = {
1068                 .desc = "rx full",
1069                 .handler = sci_rx_interrupt,
1070         },
1071 
1072         [SCIx_TXI_IRQ] = {
1073                 .desc = "tx empty",
1074                 .handler = sci_tx_interrupt,
1075         },
1076 
1077         [SCIx_BRI_IRQ] = {
1078                 .desc = "break",
1079                 .handler = sci_br_interrupt,
1080         },
1081 
1082         /*
1083          * Special muxed handler.
1084          */
1085         [SCIx_MUX_IRQ] = {
1086                 .desc = "mux",
1087                 .handler = sci_mpxed_interrupt,
1088         },
1089 };
1090 
1091 static int sci_request_irq(struct sci_port *port)
1092 {
1093         struct uart_port *up = &port->port;
1094         int i, j, ret = 0;
1095 
1096         for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1097                 struct sci_irq_desc *desc;
1098                 int irq;
1099 
1100                 if (SCIx_IRQ_IS_MUXED(port)) {
1101                         i = SCIx_MUX_IRQ;
1102                         irq = up->irq;
1103                 } else {
1104                         irq = port->irqs[i];
1105 
1106                         /*
1107                          * Certain port types won't support all of the
1108                          * available interrupt sources.
1109                          */
1110                         if (unlikely(irq < 0))
1111                                 continue;
1112                 }
1113 
1114                 desc = sci_irq_desc + i;
1115                 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1116                                             dev_name(up->dev), desc->desc);
1117                 if (!port->irqstr[j]) {
1118                         dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1119                                 desc->desc);
1120                         goto out_nomem;
1121                 }
1122 
1123                 ret = request_irq(irq, desc->handler, up->irqflags,
1124                                   port->irqstr[j], port);
1125                 if (unlikely(ret)) {
1126                         dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1127                         goto out_noirq;
1128                 }
1129         }
1130 
1131         return 0;
1132 
1133 out_noirq:
1134         while (--i >= 0)
1135                 free_irq(port->irqs[i], port);
1136 
1137 out_nomem:
1138         while (--j >= 0)
1139                 kfree(port->irqstr[j]);
1140 
1141         return ret;
1142 }
1143 
1144 static void sci_free_irq(struct sci_port *port)
1145 {
1146         int i;
1147 
1148         /*
1149          * Intentionally in reverse order so we iterate over the muxed
1150          * IRQ first.
1151          */
1152         for (i = 0; i < SCIx_NR_IRQS; i++) {
1153                 int irq = port->irqs[i];
1154 
1155                 /*
1156                  * Certain port types won't support all of the available
1157                  * interrupt sources.
1158                  */
1159                 if (unlikely(irq < 0))
1160                         continue;
1161 
1162                 free_irq(port->irqs[i], port);
1163                 kfree(port->irqstr[i]);
1164 
1165                 if (SCIx_IRQ_IS_MUXED(port)) {
1166                         /* If there's only one IRQ, we're done. */
1167                         return;
1168                 }
1169         }
1170 }
1171 
1172 static unsigned int sci_tx_empty(struct uart_port *port)
1173 {
1174         unsigned short status = serial_port_in(port, SCxSR);
1175         unsigned short in_tx_fifo = sci_txfill(port);
1176 
1177         return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1178 }
1179 
1180 /*
1181  * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1182  * CTS/RTS is supported in hardware by at least one port and controlled
1183  * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1184  * handled via the ->init_pins() op, which is a bit of a one-way street,
1185  * lacking any ability to defer pin control -- this will later be
1186  * converted over to the GPIO framework).
1187  *
1188  * Other modes (such as loopback) are supported generically on certain
1189  * port types, but not others. For these it's sufficient to test for the
1190  * existence of the support register and simply ignore the port type.
1191  */
1192 static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1193 {
1194         if (mctrl & TIOCM_LOOP) {
1195                 struct plat_sci_reg *reg;
1196 
1197                 /*
1198                  * Standard loopback mode for SCFCR ports.
1199                  */
1200                 reg = sci_getreg(port, SCFCR);
1201                 if (reg->size)
1202                         serial_port_out(port, SCFCR,
1203                                         serial_port_in(port, SCFCR) |
1204                                         SCFCR_LOOP);
1205         }
1206 }
1207 
1208 static unsigned int sci_get_mctrl(struct uart_port *port)
1209 {
1210         /*
1211          * CTS/RTS is handled in hardware when supported, while nothing
1212          * else is wired up. Keep it simple and simply assert DSR/CAR.
1213          */
1214         return TIOCM_DSR | TIOCM_CAR;
1215 }
1216 
1217 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1218 static void sci_dma_tx_complete(void *arg)
1219 {
1220         struct sci_port *s = arg;
1221         struct uart_port *port = &s->port;
1222         struct circ_buf *xmit = &port->state->xmit;
1223         unsigned long flags;
1224 
1225         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1226 
1227         spin_lock_irqsave(&port->lock, flags);
1228 
1229         xmit->tail += sg_dma_len(&s->sg_tx);
1230         xmit->tail &= UART_XMIT_SIZE - 1;
1231 
1232         port->icount.tx += sg_dma_len(&s->sg_tx);
1233 
1234         async_tx_ack(s->desc_tx);
1235         s->desc_tx = NULL;
1236 
1237         if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1238                 uart_write_wakeup(port);
1239 
1240         if (!uart_circ_empty(xmit)) {
1241                 s->cookie_tx = 0;
1242                 schedule_work(&s->work_tx);
1243         } else {
1244                 s->cookie_tx = -EINVAL;
1245                 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1246                         u16 ctrl = serial_port_in(port, SCSCR);
1247                         serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1248                 }
1249         }
1250 
1251         spin_unlock_irqrestore(&port->lock, flags);
1252 }
1253 
1254 /* Locking: called with port lock held */
1255 static int sci_dma_rx_push(struct sci_port *s, size_t count)
1256 {
1257         struct uart_port *port = &s->port;
1258         struct tty_port *tport = &port->state->port;
1259         int i, active, room;
1260 
1261         room = tty_buffer_request_room(tport, count);
1262 
1263         if (s->active_rx == s->cookie_rx[0]) {
1264                 active = 0;
1265         } else if (s->active_rx == s->cookie_rx[1]) {
1266                 active = 1;
1267         } else {
1268                 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1269                 return 0;
1270         }
1271 
1272         if (room < count)
1273                 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1274                          count - room);
1275         if (!room)
1276                 return room;
1277 
1278         for (i = 0; i < room; i++)
1279                 tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1280                                      TTY_NORMAL);
1281 
1282         port->icount.rx += room;
1283 
1284         return room;
1285 }
1286 
1287 static void sci_dma_rx_complete(void *arg)
1288 {
1289         struct sci_port *s = arg;
1290         struct uart_port *port = &s->port;
1291         unsigned long flags;
1292         int count;
1293 
1294         dev_dbg(port->dev, "%s(%d) active #%d\n",
1295                 __func__, port->line, s->active_rx);
1296 
1297         spin_lock_irqsave(&port->lock, flags);
1298 
1299         count = sci_dma_rx_push(s, s->buf_len_rx);
1300 
1301         mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1302 
1303         spin_unlock_irqrestore(&port->lock, flags);
1304 
1305         if (count)
1306                 tty_flip_buffer_push(&port->state->port);
1307 
1308         schedule_work(&s->work_rx);
1309 }
1310 
1311 static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1312 {
1313         struct dma_chan *chan = s->chan_rx;
1314         struct uart_port *port = &s->port;
1315 
1316         s->chan_rx = NULL;
1317         s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1318         dma_release_channel(chan);
1319         if (sg_dma_address(&s->sg_rx[0]))
1320                 dma_free_coherent(port->dev, s->buf_len_rx * 2,
1321                                   sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1322         if (enable_pio)
1323                 sci_start_rx(port);
1324 }
1325 
1326 static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1327 {
1328         struct dma_chan *chan = s->chan_tx;
1329         struct uart_port *port = &s->port;
1330 
1331         s->chan_tx = NULL;
1332         s->cookie_tx = -EINVAL;
1333         dma_release_channel(chan);
1334         if (enable_pio)
1335                 sci_start_tx(port);
1336 }
1337 
1338 static void sci_submit_rx(struct sci_port *s)
1339 {
1340         struct dma_chan *chan = s->chan_rx;
1341         int i;
1342 
1343         for (i = 0; i < 2; i++) {
1344                 struct scatterlist *sg = &s->sg_rx[i];
1345                 struct dma_async_tx_descriptor *desc;
1346 
1347                 desc = dmaengine_prep_slave_sg(chan,
1348                         sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1349 
1350                 if (desc) {
1351                         s->desc_rx[i] = desc;
1352                         desc->callback = sci_dma_rx_complete;
1353                         desc->callback_param = s;
1354                         s->cookie_rx[i] = desc->tx_submit(desc);
1355                 }
1356 
1357                 if (!desc || s->cookie_rx[i] < 0) {
1358                         if (i) {
1359                                 async_tx_ack(s->desc_rx[0]);
1360                                 s->cookie_rx[0] = -EINVAL;
1361                         }
1362                         if (desc) {
1363                                 async_tx_ack(desc);
1364                                 s->cookie_rx[i] = -EINVAL;
1365                         }
1366                         dev_warn(s->port.dev,
1367                                  "failed to re-start DMA, using PIO\n");
1368                         sci_rx_dma_release(s, true);
1369                         return;
1370                 }
1371                 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
1372                         __func__, s->cookie_rx[i], i);
1373         }
1374 
1375         s->active_rx = s->cookie_rx[0];
1376 
1377         dma_async_issue_pending(chan);
1378 }
1379 
1380 static void work_fn_rx(struct work_struct *work)
1381 {
1382         struct sci_port *s = container_of(work, struct sci_port, work_rx);
1383         struct uart_port *port = &s->port;
1384         struct dma_async_tx_descriptor *desc;
1385         int new;
1386 
1387         if (s->active_rx == s->cookie_rx[0]) {
1388                 new = 0;
1389         } else if (s->active_rx == s->cookie_rx[1]) {
1390                 new = 1;
1391         } else {
1392                 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1393                 return;
1394         }
1395         desc = s->desc_rx[new];
1396 
1397         if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1398             DMA_COMPLETE) {
1399                 /* Handle incomplete DMA receive */
1400                 struct dma_chan *chan = s->chan_rx;
1401                 struct shdma_desc *sh_desc = container_of(desc,
1402                                         struct shdma_desc, async_tx);
1403                 unsigned long flags;
1404                 int count;
1405 
1406                 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
1407                 dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1408                         sh_desc->partial, sh_desc->cookie);
1409 
1410                 spin_lock_irqsave(&port->lock, flags);
1411                 count = sci_dma_rx_push(s, sh_desc->partial);
1412                 spin_unlock_irqrestore(&port->lock, flags);
1413 
1414                 if (count)
1415                         tty_flip_buffer_push(&port->state->port);
1416 
1417                 sci_submit_rx(s);
1418 
1419                 return;
1420         }
1421 
1422         s->cookie_rx[new] = desc->tx_submit(desc);
1423         if (s->cookie_rx[new] < 0) {
1424                 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1425                 sci_rx_dma_release(s, true);
1426                 return;
1427         }
1428 
1429         s->active_rx = s->cookie_rx[!new];
1430 
1431         dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
1432                 __func__, s->cookie_rx[new], new, s->active_rx);
1433 }
1434 
1435 static void work_fn_tx(struct work_struct *work)
1436 {
1437         struct sci_port *s = container_of(work, struct sci_port, work_tx);
1438         struct dma_async_tx_descriptor *desc;
1439         struct dma_chan *chan = s->chan_tx;
1440         struct uart_port *port = &s->port;
1441         struct circ_buf *xmit = &port->state->xmit;
1442         struct scatterlist *sg = &s->sg_tx;
1443 
1444         /*
1445          * DMA is idle now.
1446          * Port xmit buffer is already mapped, and it is one page... Just adjust
1447          * offsets and lengths. Since it is a circular buffer, we have to
1448          * transmit till the end, and then the rest. Take the port lock to get a
1449          * consistent xmit buffer state.
1450          */
1451         spin_lock_irq(&port->lock);
1452         sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1453         sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1454                 sg->offset;
1455         sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1456                 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1457         spin_unlock_irq(&port->lock);
1458 
1459         BUG_ON(!sg_dma_len(sg));
1460 
1461         desc = dmaengine_prep_slave_sg(chan,
1462                         sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1463                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1464         if (!desc) {
1465                 /* switch to PIO */
1466                 sci_tx_dma_release(s, true);
1467                 return;
1468         }
1469 
1470         dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1471 
1472         spin_lock_irq(&port->lock);
1473         s->desc_tx = desc;
1474         desc->callback = sci_dma_tx_complete;
1475         desc->callback_param = s;
1476         spin_unlock_irq(&port->lock);
1477         s->cookie_tx = desc->tx_submit(desc);
1478         if (s->cookie_tx < 0) {
1479                 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1480                 /* switch to PIO */
1481                 sci_tx_dma_release(s, true);
1482                 return;
1483         }
1484 
1485         dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1486                 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1487 
1488         dma_async_issue_pending(chan);
1489 }
1490 #endif
1491 
1492 static void sci_start_tx(struct uart_port *port)
1493 {
1494         struct sci_port *s = to_sci_port(port);
1495         unsigned short ctrl;
1496 
1497 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1498         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1499                 u16 new, scr = serial_port_in(port, SCSCR);
1500                 if (s->chan_tx)
1501                         new = scr | SCSCR_TDRQE;
1502                 else
1503                         new = scr & ~SCSCR_TDRQE;
1504                 if (new != scr)
1505                         serial_port_out(port, SCSCR, new);
1506         }
1507 
1508         if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1509             s->cookie_tx < 0) {
1510                 s->cookie_tx = 0;
1511                 schedule_work(&s->work_tx);
1512         }
1513 #endif
1514 
1515         if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1516                 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1517                 ctrl = serial_port_in(port, SCSCR);
1518                 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1519         }
1520 }
1521 
1522 static void sci_stop_tx(struct uart_port *port)
1523 {
1524         unsigned short ctrl;
1525 
1526         /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1527         ctrl = serial_port_in(port, SCSCR);
1528 
1529         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1530                 ctrl &= ~SCSCR_TDRQE;
1531 
1532         ctrl &= ~SCSCR_TIE;
1533 
1534         serial_port_out(port, SCSCR, ctrl);
1535 }
1536 
1537 static void sci_start_rx(struct uart_port *port)
1538 {
1539         unsigned short ctrl;
1540 
1541         ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1542 
1543         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1544                 ctrl &= ~SCSCR_RDRQE;
1545 
1546         serial_port_out(port, SCSCR, ctrl);
1547 }
1548 
1549 static void sci_stop_rx(struct uart_port *port)
1550 {
1551         unsigned short ctrl;
1552 
1553         ctrl = serial_port_in(port, SCSCR);
1554 
1555         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1556                 ctrl &= ~SCSCR_RDRQE;
1557 
1558         ctrl &= ~port_rx_irq_mask(port);
1559 
1560         serial_port_out(port, SCSCR, ctrl);
1561 }
1562 
1563 static void sci_break_ctl(struct uart_port *port, int break_state)
1564 {
1565         struct sci_port *s = to_sci_port(port);
1566         struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1567         unsigned short scscr, scsptr;
1568 
1569         /* check wheter the port has SCSPTR */
1570         if (!reg->size) {
1571                 /*
1572                  * Not supported by hardware. Most parts couple break and rx
1573                  * interrupts together, with break detection always enabled.
1574                  */
1575                 return;
1576         }
1577 
1578         scsptr = serial_port_in(port, SCSPTR);
1579         scscr = serial_port_in(port, SCSCR);
1580 
1581         if (break_state == -1) {
1582                 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1583                 scscr &= ~SCSCR_TE;
1584         } else {
1585                 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1586                 scscr |= SCSCR_TE;
1587         }
1588 
1589         serial_port_out(port, SCSPTR, scsptr);
1590         serial_port_out(port, SCSCR, scscr);
1591 }
1592 
1593 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1594 static bool filter(struct dma_chan *chan, void *slave)
1595 {
1596         struct sh_dmae_slave *param = slave;
1597 
1598         dev_dbg(chan->device->dev, "%s: slave ID %d\n",
1599                 __func__, param->shdma_slave.slave_id);
1600 
1601         chan->private = &param->shdma_slave;
1602         return true;
1603 }
1604 
1605 static void rx_timer_fn(unsigned long arg)
1606 {
1607         struct sci_port *s = (struct sci_port *)arg;
1608         struct uart_port *port = &s->port;
1609         u16 scr = serial_port_in(port, SCSCR);
1610 
1611         if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1612                 scr &= ~SCSCR_RDRQE;
1613                 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1614         }
1615         serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1616         dev_dbg(port->dev, "DMA Rx timed out\n");
1617         schedule_work(&s->work_rx);
1618 }
1619 
1620 static void sci_request_dma(struct uart_port *port)
1621 {
1622         struct sci_port *s = to_sci_port(port);
1623         struct sh_dmae_slave *param;
1624         struct dma_chan *chan;
1625         dma_cap_mask_t mask;
1626         int nent;
1627 
1628         dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1629 
1630         if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1631                 return;
1632 
1633         dma_cap_zero(mask);
1634         dma_cap_set(DMA_SLAVE, mask);
1635 
1636         param = &s->param_tx;
1637 
1638         /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1639         param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1640 
1641         s->cookie_tx = -EINVAL;
1642         chan = dma_request_channel(mask, filter, param);
1643         dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1644         if (chan) {
1645                 s->chan_tx = chan;
1646                 sg_init_table(&s->sg_tx, 1);
1647                 /* UART circular tx buffer is an aligned page. */
1648                 BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1649                 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1650                             UART_XMIT_SIZE,
1651                             (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1652                 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1653                 if (!nent)
1654                         sci_tx_dma_release(s, false);
1655                 else
1656                         dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
1657                                 __func__,
1658                                 sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1659                                 &sg_dma_address(&s->sg_tx));
1660 
1661                 s->sg_len_tx = nent;
1662 
1663                 INIT_WORK(&s->work_tx, work_fn_tx);
1664         }
1665 
1666         param = &s->param_rx;
1667 
1668         /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1669         param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1670 
1671         chan = dma_request_channel(mask, filter, param);
1672         dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1673         if (chan) {
1674                 dma_addr_t dma[2];
1675                 void *buf[2];
1676                 int i;
1677 
1678                 s->chan_rx = chan;
1679 
1680                 s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1681                 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1682                                             &dma[0], GFP_KERNEL);
1683 
1684                 if (!buf[0]) {
1685                         dev_warn(port->dev,
1686                                  "failed to allocate dma buffer, using PIO\n");
1687                         sci_rx_dma_release(s, true);
1688                         return;
1689                 }
1690 
1691                 buf[1] = buf[0] + s->buf_len_rx;
1692                 dma[1] = dma[0] + s->buf_len_rx;
1693 
1694                 for (i = 0; i < 2; i++) {
1695                         struct scatterlist *sg = &s->sg_rx[i];
1696 
1697                         sg_init_table(sg, 1);
1698                         sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1699                                     (uintptr_t)buf[i] & ~PAGE_MASK);
1700                         sg_dma_address(sg) = dma[i];
1701                 }
1702 
1703                 INIT_WORK(&s->work_rx, work_fn_rx);
1704                 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1705 
1706                 sci_submit_rx(s);
1707         }
1708 }
1709 
1710 static void sci_free_dma(struct uart_port *port)
1711 {
1712         struct sci_port *s = to_sci_port(port);
1713 
1714         if (s->chan_tx)
1715                 sci_tx_dma_release(s, false);
1716         if (s->chan_rx)
1717                 sci_rx_dma_release(s, false);
1718 }
1719 #else
1720 static inline void sci_request_dma(struct uart_port *port)
1721 {
1722 }
1723 
1724 static inline void sci_free_dma(struct uart_port *port)
1725 {
1726 }
1727 #endif
1728 
1729 static int sci_startup(struct uart_port *port)
1730 {
1731         struct sci_port *s = to_sci_port(port);
1732         unsigned long flags;
1733         int ret;
1734 
1735         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1736 
1737         ret = sci_request_irq(s);
1738         if (unlikely(ret < 0))
1739                 return ret;
1740 
1741         sci_request_dma(port);
1742 
1743         spin_lock_irqsave(&port->lock, flags);
1744         sci_start_tx(port);
1745         sci_start_rx(port);
1746         spin_unlock_irqrestore(&port->lock, flags);
1747 
1748         return 0;
1749 }
1750 
1751 static void sci_shutdown(struct uart_port *port)
1752 {
1753         struct sci_port *s = to_sci_port(port);
1754         unsigned long flags;
1755 
1756         dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1757 
1758         spin_lock_irqsave(&port->lock, flags);
1759         sci_stop_rx(port);
1760         sci_stop_tx(port);
1761         spin_unlock_irqrestore(&port->lock, flags);
1762 
1763         sci_free_dma(port);
1764         sci_free_irq(s);
1765 }
1766 
1767 static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1768                                    unsigned long freq)
1769 {
1770         if (s->sampling_rate)
1771                 return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1772 
1773         /* Warn, but use a safe default */
1774         WARN_ON(1);
1775 
1776         return ((freq + 16 * bps) / (32 * bps) - 1);
1777 }
1778 
1779 /* calculate frame length from SMR */
1780 static int sci_baud_calc_frame_len(unsigned int smr_val)
1781 {
1782         int len = 10;
1783 
1784         if (smr_val & SCSMR_CHR)
1785                 len--;
1786         if (smr_val & SCSMR_PE)
1787                 len++;
1788         if (smr_val & SCSMR_STOP)
1789                 len++;
1790 
1791         return len;
1792 }
1793 
1794 
1795 /* calculate sample rate, BRR, and clock select for HSCIF */
1796 static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1797                                 int *brr, unsigned int *srr,
1798                                 unsigned int *cks, int frame_len)
1799 {
1800         int sr, c, br, err, recv_margin;
1801         int min_err = 1000; /* 100% */
1802         int recv_max_margin = 0;
1803 
1804         /* Find the combination of sample rate and clock select with the
1805            smallest deviation from the desired baud rate. */
1806         for (sr = 8; sr <= 32; sr++) {
1807                 for (c = 0; c <= 3; c++) {
1808                         /* integerized formulas from HSCIF documentation */
1809                         br = DIV_ROUND_CLOSEST(freq, (sr *
1810                                               (1 << (2 * c + 1)) * bps)) - 1;
1811                         br = clamp(br, 0, 255);
1812                         err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1813                                                (1 << (2 * c + 1)) / 1000)) -
1814                                                1000;
1815                         if (err < 0)
1816                                 continue;
1817 
1818                         /* Calc recv margin
1819                          * M: Receive margin (%)
1820                          * N: Ratio of bit rate to clock (N = sampling rate)
1821                          * D: Clock duty (D = 0 to 1.0)
1822                          * L: Frame length (L = 9 to 12)
1823                          * F: Absolute value of clock frequency deviation
1824                          *
1825                          *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1826                          *      (|D - 0.5| / N * (1 + F))|
1827                          *  NOTE: Usually, treat D for 0.5, F is 0 by this
1828                          *        calculation.
1829                          */
1830                         recv_margin = abs((500 -
1831                                         DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1832                         if (min_err > err) {
1833                                 min_err = err;
1834                                 recv_max_margin = recv_margin;
1835                         } else if ((min_err == err) &&
1836                                    (recv_margin > recv_max_margin))
1837                                 recv_max_margin = recv_margin;
1838                         else
1839                                 continue;
1840 
1841                         *brr = br;
1842                         *srr = sr - 1;
1843                         *cks = c;
1844                 }
1845         }
1846 
1847         if (min_err == 1000) {
1848                 WARN_ON(1);
1849                 /* use defaults */
1850                 *brr = 255;
1851                 *srr = 15;
1852                 *cks = 0;
1853         }
1854 }
1855 
1856 static void sci_reset(struct uart_port *port)
1857 {
1858         struct plat_sci_reg *reg;
1859         unsigned int status;
1860 
1861         do {
1862                 status = serial_port_in(port, SCxSR);
1863         } while (!(status & SCxSR_TEND(port)));
1864 
1865         serial_port_out(port, SCSCR, 0x00);     /* TE=0, RE=0, CKE1=0 */
1866 
1867         reg = sci_getreg(port, SCFCR);
1868         if (reg->size)
1869                 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1870 }
1871 
1872 static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1873                             struct ktermios *old)
1874 {
1875         struct sci_port *s = to_sci_port(port);
1876         struct plat_sci_reg *reg;
1877         unsigned int baud, smr_val = 0, max_baud, cks = 0;
1878         int t = -1;
1879         unsigned int srr = 15;
1880 
1881         if ((termios->c_cflag & CSIZE) == CS7)
1882                 smr_val |= SCSMR_CHR;
1883         if (termios->c_cflag & PARENB)
1884                 smr_val |= SCSMR_PE;
1885         if (termios->c_cflag & PARODD)
1886                 smr_val |= SCSMR_PE | SCSMR_ODD;
1887         if (termios->c_cflag & CSTOPB)
1888                 smr_val |= SCSMR_STOP;
1889 
1890         /*
1891          * earlyprintk comes here early on with port->uartclk set to zero.
1892          * the clock framework is not up and running at this point so here
1893          * we assume that 115200 is the maximum baud rate. please note that
1894          * the baud rate is not programmed during earlyprintk - it is assumed
1895          * that the previous boot loader has enabled required clocks and
1896          * setup the baud rate generator hardware for us already.
1897          */
1898         max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1899 
1900         baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1901         if (likely(baud && port->uartclk)) {
1902                 if (s->cfg->type == PORT_HSCIF) {
1903                         int frame_len = sci_baud_calc_frame_len(smr_val);
1904                         sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1905                                             &cks, frame_len);
1906                 } else {
1907                         t = sci_scbrr_calc(s, baud, port->uartclk);
1908                         for (cks = 0; t >= 256 && cks <= 3; cks++)
1909                                 t >>= 2;
1910                 }
1911         }
1912 
1913         sci_port_enable(s);
1914 
1915         sci_reset(port);
1916 
1917         smr_val |= serial_port_in(port, SCSMR) & 3;
1918 
1919         uart_update_timeout(port, termios->c_cflag, baud);
1920 
1921         dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1922                 __func__, smr_val, cks, t, s->cfg->scscr);
1923 
1924         if (t >= 0) {
1925                 serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1926                 serial_port_out(port, SCBRR, t);
1927                 reg = sci_getreg(port, HSSRR);
1928                 if (reg->size)
1929                         serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1930                 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1931         } else
1932                 serial_port_out(port, SCSMR, smr_val);
1933 
1934         sci_init_pins(port, termios->c_cflag);
1935 
1936         reg = sci_getreg(port, SCFCR);
1937         if (reg->size) {
1938                 unsigned short ctrl = serial_port_in(port, SCFCR);
1939 
1940                 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1941                         if (termios->c_cflag & CRTSCTS)
1942                                 ctrl |= SCFCR_MCE;
1943                         else
1944                                 ctrl &= ~SCFCR_MCE;
1945                 }
1946 
1947                 /*
1948                  * As we've done a sci_reset() above, ensure we don't
1949                  * interfere with the FIFOs while toggling MCE. As the
1950                  * reset values could still be set, simply mask them out.
1951                  */
1952                 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1953 
1954                 serial_port_out(port, SCFCR, ctrl);
1955         }
1956 
1957         serial_port_out(port, SCSCR, s->cfg->scscr);
1958 
1959 #ifdef CONFIG_SERIAL_SH_SCI_DMA
1960         /*
1961          * Calculate delay for 1.5 DMA buffers: see
1962          * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1963          * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1964          * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1965          * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1966          * sizes), but it has been found out experimentally, that this is not
1967          * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1968          * as a minimum seem to work perfectly.
1969          */
1970         if (s->chan_rx) {
1971                 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1972                         port->fifosize / 2;
1973                 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
1974                         s->rx_timeout * 1000 / HZ, port->timeout);
1975                 if (s->rx_timeout < msecs_to_jiffies(20))
1976                         s->rx_timeout = msecs_to_jiffies(20);
1977         }
1978 #endif
1979 
1980         if ((termios->c_cflag & CREAD) != 0)
1981                 sci_start_rx(port);
1982 
1983         sci_port_disable(s);
1984 }
1985 
1986 static void sci_pm(struct uart_port *port, unsigned int state,
1987                    unsigned int oldstate)
1988 {
1989         struct sci_port *sci_port = to_sci_port(port);
1990 
1991         switch (state) {
1992         case UART_PM_STATE_OFF:
1993                 sci_port_disable(sci_port);
1994                 break;
1995         default:
1996                 sci_port_enable(sci_port);
1997                 break;
1998         }
1999 }
2000 
2001 static const char *sci_type(struct uart_port *port)
2002 {
2003         switch (port->type) {
2004         case PORT_IRDA:
2005                 return "irda";
2006         case PORT_SCI:
2007                 return "sci";
2008         case PORT_SCIF:
2009                 return "scif";
2010         case PORT_SCIFA:
2011                 return "scifa";
2012         case PORT_SCIFB:
2013                 return "scifb";
2014         case PORT_HSCIF:
2015                 return "hscif";
2016         }
2017 
2018         return NULL;
2019 }
2020 
2021 static inline unsigned long sci_port_size(struct uart_port *port)
2022 {
2023         /*
2024          * Pick an arbitrary size that encapsulates all of the base
2025          * registers by default. This can be optimized later, or derived
2026          * from platform resource data at such a time that ports begin to
2027          * behave more erratically.
2028          */
2029         if (port->type == PORT_HSCIF)
2030                 return 96;
2031         else
2032                 return 64;
2033 }
2034 
2035 static int sci_remap_port(struct uart_port *port)
2036 {
2037         unsigned long size = sci_port_size(port);
2038 
2039         /*
2040          * Nothing to do if there's already an established membase.
2041          */
2042         if (port->membase)
2043                 return 0;
2044 
2045         if (port->flags & UPF_IOREMAP) {
2046                 port->membase = ioremap_nocache(port->mapbase, size);
2047                 if (unlikely(!port->membase)) {
2048                         dev_err(port->dev, "can't remap port#%d\n", port->line);
2049                         return -ENXIO;
2050                 }
2051         } else {
2052                 /*
2053                  * For the simple (and majority of) cases where we don't
2054                  * need to do any remapping, just cast the cookie
2055                  * directly.
2056                  */
2057                 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2058         }
2059 
2060         return 0;
2061 }
2062 
2063 static void sci_release_port(struct uart_port *port)
2064 {
2065         if (port->flags & UPF_IOREMAP) {
2066                 iounmap(port->membase);
2067                 port->membase = NULL;
2068         }
2069 
2070         release_mem_region(port->mapbase, sci_port_size(port));
2071 }
2072 
2073 static int sci_request_port(struct uart_port *port)
2074 {
2075         unsigned long size = sci_port_size(port);
2076         struct resource *res;
2077         int ret;
2078 
2079         res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2080         if (unlikely(res == NULL))
2081                 return -EBUSY;
2082 
2083         ret = sci_remap_port(port);
2084         if (unlikely(ret != 0)) {
2085                 release_resource(res);
2086                 return ret;
2087         }
2088 
2089         return 0;
2090 }
2091 
2092 static void sci_config_port(struct uart_port *port, int flags)
2093 {
2094         if (flags & UART_CONFIG_TYPE) {
2095                 struct sci_port *sport = to_sci_port(port);
2096 
2097                 port->type = sport->cfg->type;
2098                 sci_request_port(port);
2099         }
2100 }
2101 
2102 static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2103 {
2104         if (ser->baud_base < 2400)
2105                 /* No paper tape reader for Mitch.. */
2106                 return -EINVAL;
2107 
2108         return 0;
2109 }
2110 
2111 static struct uart_ops sci_uart_ops = {
2112         .tx_empty       = sci_tx_empty,
2113         .set_mctrl      = sci_set_mctrl,
2114         .get_mctrl      = sci_get_mctrl,
2115         .start_tx       = sci_start_tx,
2116         .stop_tx        = sci_stop_tx,
2117         .stop_rx        = sci_stop_rx,
2118         .break_ctl      = sci_break_ctl,
2119         .startup        = sci_startup,
2120         .shutdown       = sci_shutdown,
2121         .set_termios    = sci_set_termios,
2122         .pm             = sci_pm,
2123         .type           = sci_type,
2124         .release_port   = sci_release_port,
2125         .request_port   = sci_request_port,
2126         .config_port    = sci_config_port,
2127         .verify_port    = sci_verify_port,
2128 #ifdef CONFIG_CONSOLE_POLL
2129         .poll_get_char  = sci_poll_get_char,
2130         .poll_put_char  = sci_poll_put_char,
2131 #endif
2132 };
2133 
2134 static int sci_init_single(struct platform_device *dev,
2135                            struct sci_port *sci_port, unsigned int index,
2136                            struct plat_sci_port *p, bool early)
2137 {
2138         struct uart_port *port = &sci_port->port;
2139         const struct resource *res;
2140         unsigned int sampling_rate;
2141         unsigned int i;
2142         int ret;
2143 
2144         sci_port->cfg   = p;
2145 
2146         port->ops       = &sci_uart_ops;
2147         port->iotype    = UPIO_MEM;
2148         port->line      = index;
2149 
2150         res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2151         if (res == NULL)
2152                 return -ENOMEM;
2153 
2154         port->mapbase = res->start;
2155 
2156         for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2157                 sci_port->irqs[i] = platform_get_irq(dev, i);
2158 
2159         /* The SCI generates several interrupts. They can be muxed together or
2160          * connected to different interrupt lines. In the muxed case only one
2161          * interrupt resource is specified. In the non-muxed case three or four
2162          * interrupt resources are specified, as the BRI interrupt is optional.
2163          */
2164         if (sci_port->irqs[0] < 0)
2165                 return -ENXIO;
2166 
2167         if (sci_port->irqs[1] < 0) {
2168                 sci_port->irqs[1] = sci_port->irqs[0];
2169                 sci_port->irqs[2] = sci_port->irqs[0];
2170                 sci_port->irqs[3] = sci_port->irqs[0];
2171         }
2172 
2173         if (p->regtype == SCIx_PROBE_REGTYPE) {
2174                 ret = sci_probe_regmap(p);
2175                 if (unlikely(ret))
2176                         return ret;
2177         }
2178 
2179         switch (p->type) {
2180         case PORT_SCIFB:
2181                 port->fifosize = 256;
2182                 sci_port->overrun_bit = 9;
2183                 sampling_rate = 16;
2184                 break;
2185         case PORT_HSCIF:
2186                 port->fifosize = 128;
2187                 sampling_rate = 0;
2188                 sci_port->overrun_bit = 0;
2189                 break;
2190         case PORT_SCIFA:
2191                 port->fifosize = 64;
2192                 sci_port->overrun_bit = 9;
2193                 sampling_rate = 16;
2194                 break;
2195         case PORT_SCIF:
2196                 port->fifosize = 16;
2197                 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2198                         sci_port->overrun_bit = 9;
2199                         sampling_rate = 16;
2200                 } else {
2201                         sci_port->overrun_bit = 0;
2202                         sampling_rate = 32;
2203                 }
2204                 break;
2205         default:
2206                 port->fifosize = 1;
2207                 sci_port->overrun_bit = 5;
2208                 sampling_rate = 32;
2209                 break;
2210         }
2211 
2212         /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2213          * match the SoC datasheet, this should be investigated. Let platform
2214          * data override the sampling rate for now.
2215          */
2216         sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2217                                 : sampling_rate;
2218 
2219         if (!early) {
2220                 sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2221                 if (IS_ERR(sci_port->iclk)) {
2222                         sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2223                         if (IS_ERR(sci_port->iclk)) {
2224                                 dev_err(&dev->dev, "can't get iclk\n");
2225                                 return PTR_ERR(sci_port->iclk);
2226                         }
2227                 }
2228 
2229                 /*
2230                  * The function clock is optional, ignore it if we can't
2231                  * find it.
2232                  */
2233                 sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2234                 if (IS_ERR(sci_port->fclk))
2235                         sci_port->fclk = NULL;
2236 
2237                 port->dev = &dev->dev;
2238 
2239                 pm_runtime_enable(&dev->dev);
2240         }
2241 
2242         sci_port->break_timer.data = (unsigned long)sci_port;
2243         sci_port->break_timer.function = sci_break_timer;
2244         init_timer(&sci_port->break_timer);
2245 
2246         /*
2247          * Establish some sensible defaults for the error detection.
2248          */
2249         sci_port->error_mask = (p->type == PORT_SCI) ?
2250                         SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2251 
2252         /*
2253          * Establish sensible defaults for the overrun detection, unless
2254          * the part has explicitly disabled support for it.
2255          */
2256 
2257         /*
2258          * Make the error mask inclusive of overrun detection, if
2259          * supported.
2260          */
2261         sci_port->error_mask |= 1 << sci_port->overrun_bit;
2262 
2263         port->type              = p->type;
2264         port->flags             = UPF_FIXED_PORT | p->flags;
2265         port->regshift          = p->regshift;
2266 
2267         /*
2268          * The UART port needs an IRQ value, so we peg this to the RX IRQ
2269          * for the multi-IRQ ports, which is where we are primarily
2270          * concerned with the shutdown path synchronization.
2271          *
2272          * For the muxed case there's nothing more to do.
2273          */
2274         port->irq               = sci_port->irqs[SCIx_RXI_IRQ];
2275         port->irqflags          = 0;
2276 
2277         port->serial_in         = sci_serial_in;
2278         port->serial_out        = sci_serial_out;
2279 
2280         if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2281                 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2282                         p->dma_slave_tx, p->dma_slave_rx);
2283 
2284         return 0;
2285 }
2286 
2287 static void sci_cleanup_single(struct sci_port *port)
2288 {
2289         clk_put(port->iclk);
2290         clk_put(port->fclk);
2291 
2292         pm_runtime_disable(port->port.dev);
2293 }
2294 
2295 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2296 static void serial_console_putchar(struct uart_port *port, int ch)
2297 {
2298         sci_poll_put_char(port, ch);
2299 }
2300 
2301 /*
2302  *      Print a string to the serial port trying not to disturb
2303  *      any possible real use of the port...
2304  */
2305 static void serial_console_write(struct console *co, const char *s,
2306                                  unsigned count)
2307 {
2308         struct sci_port *sci_port = &sci_ports[co->index];
2309         struct uart_port *port = &sci_port->port;
2310         unsigned short bits, ctrl;
2311         unsigned long flags;
2312         int locked = 1;
2313 
2314         local_irq_save(flags);
2315         if (port->sysrq)
2316                 locked = 0;
2317         else if (oops_in_progress)
2318                 locked = spin_trylock(&port->lock);
2319         else
2320                 spin_lock(&port->lock);
2321 
2322         /* first save the SCSCR then disable the interrupts */
2323         ctrl = serial_port_in(port, SCSCR);
2324         serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2325 
2326         uart_console_write(port, s, count, serial_console_putchar);
2327 
2328         /* wait until fifo is empty and last bit has been transmitted */
2329         bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2330         while ((serial_port_in(port, SCxSR) & bits) != bits)
2331                 cpu_relax();
2332 
2333         /* restore the SCSCR */
2334         serial_port_out(port, SCSCR, ctrl);
2335 
2336         if (locked)
2337                 spin_unlock(&port->lock);
2338         local_irq_restore(flags);
2339 }
2340 
2341 static int serial_console_setup(struct console *co, char *options)
2342 {
2343         struct sci_port *sci_port;
2344         struct uart_port *port;
2345         int baud = 115200;
2346         int bits = 8;
2347         int parity = 'n';
2348         int flow = 'n';
2349         int ret;
2350 
2351         /*
2352          * Refuse to handle any bogus ports.
2353          */
2354         if (co->index < 0 || co->index >= SCI_NPORTS)
2355                 return -ENODEV;
2356 
2357         sci_port = &sci_ports[co->index];
2358         port = &sci_port->port;
2359 
2360         /*
2361          * Refuse to handle uninitialized ports.
2362          */
2363         if (!port->ops)
2364                 return -ENODEV;
2365 
2366         ret = sci_remap_port(port);
2367         if (unlikely(ret != 0))
2368                 return ret;
2369 
2370         if (options)
2371                 uart_parse_options(options, &baud, &parity, &bits, &flow);
2372 
2373         return uart_set_options(port, co, baud, parity, bits, flow);
2374 }
2375 
2376 static struct console serial_console = {
2377         .name           = "ttySC",
2378         .device         = uart_console_device,
2379         .write          = serial_console_write,
2380         .setup          = serial_console_setup,
2381         .flags          = CON_PRINTBUFFER,
2382         .index          = -1,
2383         .data           = &sci_uart_driver,
2384 };
2385 
2386 static struct console early_serial_console = {
2387         .name           = "early_ttySC",
2388         .write          = serial_console_write,
2389         .flags          = CON_PRINTBUFFER,
2390         .index          = -1,
2391 };
2392 
2393 static char early_serial_buf[32];
2394 
2395 static int sci_probe_earlyprintk(struct platform_device *pdev)
2396 {
2397         struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2398 
2399         if (early_serial_console.data)
2400                 return -EEXIST;
2401 
2402         early_serial_console.index = pdev->id;
2403 
2404         sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2405 
2406         serial_console_setup(&early_serial_console, early_serial_buf);
2407 
2408         if (!strstr(early_serial_buf, "keep"))
2409                 early_serial_console.flags |= CON_BOOT;
2410 
2411         register_console(&early_serial_console);
2412         return 0;
2413 }
2414 
2415 #define SCI_CONSOLE     (&serial_console)
2416 
2417 #else
2418 static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2419 {
2420         return -EINVAL;
2421 }
2422 
2423 #define SCI_CONSOLE     NULL
2424 
2425 #endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2426 
2427 static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2428 
2429 static struct uart_driver sci_uart_driver = {
2430         .owner          = THIS_MODULE,
2431         .driver_name    = "sci",
2432         .dev_name       = "ttySC",
2433         .major          = SCI_MAJOR,
2434         .minor          = SCI_MINOR_START,
2435         .nr             = SCI_NPORTS,
2436         .cons           = SCI_CONSOLE,
2437 };
2438 
2439 static int sci_remove(struct platform_device *dev)
2440 {
2441         struct sci_port *port = platform_get_drvdata(dev);
2442 
2443         cpufreq_unregister_notifier(&port->freq_transition,
2444                                     CPUFREQ_TRANSITION_NOTIFIER);
2445 
2446         uart_remove_one_port(&sci_uart_driver, &port->port);
2447 
2448         sci_cleanup_single(port);
2449 
2450         return 0;
2451 }
2452 
2453 struct sci_port_info {
2454         unsigned int type;
2455         unsigned int regtype;
2456 };
2457 
2458 static const struct of_device_id of_sci_match[] = {
2459         {
2460                 .compatible = "renesas,scif",
2461                 .data = &(const struct sci_port_info) {
2462                         .type = PORT_SCIF,
2463                         .regtype = SCIx_SH4_SCIF_REGTYPE,
2464                 },
2465         }, {
2466                 .compatible = "renesas,scifa",
2467                 .data = &(const struct sci_port_info) {
2468                         .type = PORT_SCIFA,
2469                         .regtype = SCIx_SCIFA_REGTYPE,
2470                 },
2471         }, {
2472                 .compatible = "renesas,scifb",
2473                 .data = &(const struct sci_port_info) {
2474                         .type = PORT_SCIFB,
2475                         .regtype = SCIx_SCIFB_REGTYPE,
2476                 },
2477         }, {
2478                 .compatible = "renesas,hscif",
2479                 .data = &(const struct sci_port_info) {
2480                         .type = PORT_HSCIF,
2481                         .regtype = SCIx_HSCIF_REGTYPE,
2482                 },
2483         }, {
2484                 /* Terminator */
2485         },
2486 };
2487 MODULE_DEVICE_TABLE(of, of_sci_match);
2488 
2489 static struct plat_sci_port *
2490 sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2491 {
2492         struct device_node *np = pdev->dev.of_node;
2493         const struct of_device_id *match;
2494         const struct sci_port_info *info;
2495         struct plat_sci_port *p;
2496         int id;
2497 
2498         if (!IS_ENABLED(CONFIG_OF) || !np)
2499                 return NULL;
2500 
2501         match = of_match_node(of_sci_match, pdev->dev.of_node);
2502         if (!match)
2503                 return NULL;
2504 
2505         info = match->data;
2506 
2507         p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2508         if (!p) {
2509                 dev_err(&pdev->dev, "failed to allocate DT config data\n");
2510                 return NULL;
2511         }
2512 
2513         /* Get the line number for the aliases node. */
2514         id = of_alias_get_id(np, "serial");
2515         if (id < 0) {
2516                 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2517                 return NULL;
2518         }
2519 
2520         *dev_id = id;
2521 
2522         p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2523         p->type = info->type;
2524         p->regtype = info->regtype;
2525         p->scscr = SCSCR_RE | SCSCR_TE;
2526 
2527         return p;
2528 }
2529 
2530 static int sci_probe_single(struct platform_device *dev,
2531                                       unsigned int index,
2532                                       struct plat_sci_port *p,
2533                                       struct sci_port *sciport)
2534 {
2535         int ret;
2536 
2537         /* Sanity check */
2538         if (unlikely(index >= SCI_NPORTS)) {
2539                 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2540                            index+1, SCI_NPORTS);
2541                 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2542                 return -EINVAL;
2543         }
2544 
2545         ret = sci_init_single(dev, sciport, index, p, false);
2546         if (ret)
2547                 return ret;
2548 
2549         ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2550         if (ret) {
2551                 sci_cleanup_single(sciport);
2552                 return ret;
2553         }
2554 
2555         return 0;
2556 }
2557 
2558 static int sci_probe(struct platform_device *dev)
2559 {
2560         struct plat_sci_port *p;
2561         struct sci_port *sp;
2562         unsigned int dev_id;
2563         int ret;
2564 
2565         /*
2566          * If we've come here via earlyprintk initialization, head off to
2567          * the special early probe. We don't have sufficient device state
2568          * to make it beyond this yet.
2569          */
2570         if (is_early_platform_device(dev))
2571                 return sci_probe_earlyprintk(dev);
2572 
2573         if (dev->dev.of_node) {
2574                 p = sci_parse_dt(dev, &dev_id);
2575                 if (p == NULL)
2576                         return -EINVAL;
2577         } else {
2578                 p = dev->dev.platform_data;
2579                 if (p == NULL) {
2580                         dev_err(&dev->dev, "no platform data supplied\n");
2581                         return -EINVAL;
2582                 }
2583 
2584                 dev_id = dev->id;
2585         }
2586 
2587         sp = &sci_ports[dev_id];
2588         platform_set_drvdata(dev, sp);
2589 
2590         ret = sci_probe_single(dev, dev_id, p, sp);
2591         if (ret)
2592                 return ret;
2593 
2594         sp->freq_transition.notifier_call = sci_notifier;
2595 
2596         ret = cpufreq_register_notifier(&sp->freq_transition,
2597                                         CPUFREQ_TRANSITION_NOTIFIER);
2598         if (unlikely(ret < 0)) {
2599                 uart_remove_one_port(&sci_uart_driver, &sp->port);
2600                 sci_cleanup_single(sp);
2601                 return ret;
2602         }
2603 
2604 #ifdef CONFIG_SH_STANDARD_BIOS
2605         sh_bios_gdb_detach();
2606 #endif
2607 
2608         return 0;
2609 }
2610 
2611 static int sci_suspend(struct device *dev)
2612 {
2613         struct sci_port *sport = dev_get_drvdata(dev);
2614 
2615         if (sport)
2616                 uart_suspend_port(&sci_uart_driver, &sport->port);
2617 
2618         return 0;
2619 }
2620 
2621 static int sci_resume(struct device *dev)
2622 {
2623         struct sci_port *sport = dev_get_drvdata(dev);
2624 
2625         if (sport)
2626                 uart_resume_port(&sci_uart_driver, &sport->port);
2627 
2628         return 0;
2629 }
2630 
2631 static const struct dev_pm_ops sci_dev_pm_ops = {
2632         .suspend        = sci_suspend,
2633         .resume         = sci_resume,
2634 };
2635 
2636 static struct platform_driver sci_driver = {
2637         .probe          = sci_probe,
2638         .remove         = sci_remove,
2639         .driver         = {
2640                 .name   = "sh-sci",
2641                 .owner  = THIS_MODULE,
2642                 .pm     = &sci_dev_pm_ops,
2643                 .of_match_table = of_match_ptr(of_sci_match),
2644         },
2645 };
2646 
2647 static int __init sci_init(void)
2648 {
2649         int ret;
2650 
2651         pr_info("%s\n", banner);
2652 
2653         ret = uart_register_driver(&sci_uart_driver);
2654         if (likely(ret == 0)) {
2655                 ret = platform_driver_register(&sci_driver);
2656                 if (unlikely(ret))
2657                         uart_unregister_driver(&sci_uart_driver);
2658         }
2659 
2660         return ret;
2661 }
2662 
2663 static void __exit sci_exit(void)
2664 {
2665         platform_driver_unregister(&sci_driver);
2666         uart_unregister_driver(&sci_uart_driver);
2667 }
2668 
2669 #ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2670 early_platform_init_buffer("earlyprintk", &sci_driver,
2671                            early_serial_buf, ARRAY_SIZE(early_serial_buf));
2672 #endif
2673 module_init(sci_init);
2674 module_exit(sci_exit);
2675 
2676 MODULE_LICENSE("GPL");
2677 MODULE_ALIAS("platform:sh-sci");
2678 MODULE_AUTHOR("Paul Mundt");
2679 MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2680 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us