Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/staging/mt29f_spinand/mt29f_spinand.c

  1 /*
  2  * Copyright (c) 2003-2013 Broadcom Corporation
  3  *
  4  * Copyright (c) 2009-2010 Micron Technology, Inc.
  5  *
  6  * This program is free software; you can redistribute it and/or
  7  * modify it under the terms of the GNU General Public License
  8  * as published by the Free Software Foundation; either version 2
  9  * of the License, or (at your option) any later version.
 10  *
 11  * This program is distributed in the hope that it will be useful,
 12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14  * GNU General Public License for more details.
 15  */
 16 
 17 #include <linux/module.h>
 18 #include <linux/delay.h>
 19 #include <linux/mtd/mtd.h>
 20 #include <linux/mtd/partitions.h>
 21 #include <linux/mtd/nand.h>
 22 #include <linux/spi/spi.h>
 23 
 24 #include "mt29f_spinand.h"
 25 
 26 #define BUFSIZE (10 * 64 * 2048)
 27 #define CACHE_BUF 2112
 28 /*
 29  * OOB area specification layout:  Total 32 available free bytes.
 30  */
 31 
 32 static inline struct spinand_state *mtd_to_state(struct mtd_info *mtd)
 33 {
 34         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
 35         struct spinand_info *info = (struct spinand_info *)chip->priv;
 36         struct spinand_state *state = (struct spinand_state *)info->priv;
 37 
 38         return state;
 39 }
 40 
 41 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
 42 static int enable_hw_ecc;
 43 static int enable_read_hw_ecc;
 44 
 45 static struct nand_ecclayout spinand_oob_64 = {
 46         .eccbytes = 24,
 47         .eccpos = {
 48                 1, 2, 3, 4, 5, 6,
 49                 17, 18, 19, 20, 21, 22,
 50                 33, 34, 35, 36, 37, 38,
 51                 49, 50, 51, 52, 53, 54, },
 52         .oobavail = 32,
 53         .oobfree = {
 54                 {.offset = 8,
 55                         .length = 8},
 56                 {.offset = 24,
 57                         .length = 8},
 58                 {.offset = 40,
 59                         .length = 8},
 60                 {.offset = 56,
 61                         .length = 8},
 62         }
 63 };
 64 #endif
 65 
 66 /*
 67  * spinand_cmd - to process a command to send to the SPI Nand
 68  * Description:
 69  *    Set up the command buffer to send to the SPI controller.
 70  *    The command buffer has to initialized to 0.
 71  */
 72 
 73 static int spinand_cmd(struct spi_device *spi, struct spinand_cmd *cmd)
 74 {
 75         struct spi_message message;
 76         struct spi_transfer x[4];
 77         u8 dummy = 0xff;
 78 
 79         spi_message_init(&message);
 80         memset(x, 0, sizeof(x));
 81 
 82         x[0].len = 1;
 83         x[0].tx_buf = &cmd->cmd;
 84         spi_message_add_tail(&x[0], &message);
 85 
 86         if (cmd->n_addr) {
 87                 x[1].len = cmd->n_addr;
 88                 x[1].tx_buf = cmd->addr;
 89                 spi_message_add_tail(&x[1], &message);
 90         }
 91 
 92         if (cmd->n_dummy) {
 93                 x[2].len = cmd->n_dummy;
 94                 x[2].tx_buf = &dummy;
 95                 spi_message_add_tail(&x[2], &message);
 96         }
 97 
 98         if (cmd->n_tx) {
 99                 x[3].len = cmd->n_tx;
100                 x[3].tx_buf = cmd->tx_buf;
101                 spi_message_add_tail(&x[3], &message);
102         }
103 
104         if (cmd->n_rx) {
105                 x[3].len = cmd->n_rx;
106                 x[3].rx_buf = cmd->rx_buf;
107                 spi_message_add_tail(&x[3], &message);
108         }
109 
110         return spi_sync(spi, &message);
111 }
112 
113 /*
114  * spinand_read_id- Read SPI Nand ID
115  * Description:
116  *    Read ID: read two ID bytes from the SPI Nand device
117  */
118 static int spinand_read_id(struct spi_device *spi_nand, u8 *id)
119 {
120         int retval;
121         u8 nand_id[3];
122         struct spinand_cmd cmd = {0};
123 
124         cmd.cmd = CMD_READ_ID;
125         cmd.n_rx = 3;
126         cmd.rx_buf = &nand_id[0];
127 
128         retval = spinand_cmd(spi_nand, &cmd);
129         if (retval < 0) {
130                 dev_err(&spi_nand->dev, "error %d reading id\n", retval);
131                 return retval;
132         }
133         id[0] = nand_id[1];
134         id[1] = nand_id[2];
135         return retval;
136 }
137 
138 /*
139  * spinand_read_status- send command 0xf to the SPI Nand status register
140  * Description:
141  *    After read, write, or erase, the Nand device is expected to set the
142  *    busy status.
143  *    This function is to allow reading the status of the command: read,
144  *    write, and erase.
145  *    Once the status turns to be ready, the other status bits also are
146  *    valid status bits.
147  */
148 static int spinand_read_status(struct spi_device *spi_nand, uint8_t *status)
149 {
150         struct spinand_cmd cmd = {0};
151         int ret;
152 
153         cmd.cmd = CMD_READ_REG;
154         cmd.n_addr = 1;
155         cmd.addr[0] = REG_STATUS;
156         cmd.n_rx = 1;
157         cmd.rx_buf = status;
158 
159         ret = spinand_cmd(spi_nand, &cmd);
160         if (ret < 0)
161                 dev_err(&spi_nand->dev, "err: %d read status register\n", ret);
162 
163         return ret;
164 }
165 
166 #define MAX_WAIT_JIFFIES  (40 * HZ)
167 static int wait_till_ready(struct spi_device *spi_nand)
168 {
169         unsigned long deadline;
170         int retval;
171         u8 stat = 0;
172 
173         deadline = jiffies + MAX_WAIT_JIFFIES;
174         do {
175                 retval = spinand_read_status(spi_nand, &stat);
176                 if (retval < 0)
177                         return -1;
178                 else if (!(stat & 0x1))
179                         break;
180 
181                 cond_resched();
182         } while (!time_after_eq(jiffies, deadline));
183 
184         if ((stat & 0x1) == 0)
185                 return 0;
186 
187         return -1;
188 }
189 /**
190  * spinand_get_otp- send command 0xf to read the SPI Nand OTP register
191  * Description:
192  *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
193  *   Enable chip internal ECC, set the bit to 1
194  *   Disable chip internal ECC, clear the bit to 0
195  */
196 static int spinand_get_otp(struct spi_device *spi_nand, u8 *otp)
197 {
198         struct spinand_cmd cmd = {0};
199         int retval;
200 
201         cmd.cmd = CMD_READ_REG;
202         cmd.n_addr = 1;
203         cmd.addr[0] = REG_OTP;
204         cmd.n_rx = 1;
205         cmd.rx_buf = otp;
206 
207         retval = spinand_cmd(spi_nand, &cmd);
208         if (retval < 0)
209                 dev_err(&spi_nand->dev, "error %d get otp\n", retval);
210         return retval;
211 }
212 
213 /**
214  * spinand_set_otp- send command 0x1f to write the SPI Nand OTP register
215  * Description:
216  *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
217  *   Enable chip internal ECC, set the bit to 1
218  *   Disable chip internal ECC, clear the bit to 0
219  */
220 static int spinand_set_otp(struct spi_device *spi_nand, u8 *otp)
221 {
222         int retval;
223         struct spinand_cmd cmd = {0};
224 
225         cmd.cmd = CMD_WRITE_REG,
226         cmd.n_addr = 1,
227         cmd.addr[0] = REG_OTP,
228         cmd.n_tx = 1,
229         cmd.tx_buf = otp,
230 
231         retval = spinand_cmd(spi_nand, &cmd);
232         if (retval < 0)
233                 dev_err(&spi_nand->dev, "error %d set otp\n", retval);
234 
235         return retval;
236 }
237 
238 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
239 /**
240  * spinand_enable_ecc- send command 0x1f to write the SPI Nand OTP register
241  * Description:
242  *   There is one bit( bit 0x10 ) to set or to clear the internal ECC.
243  *   Enable chip internal ECC, set the bit to 1
244  *   Disable chip internal ECC, clear the bit to 0
245  */
246 static int spinand_enable_ecc(struct spi_device *spi_nand)
247 {
248         int retval;
249         u8 otp = 0;
250 
251         retval = spinand_get_otp(spi_nand, &otp);
252         if (retval < 0)
253                 return retval;
254 
255         if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK)
256                 return 0;
257         otp |= OTP_ECC_MASK;
258         retval = spinand_set_otp(spi_nand, &otp);
259         if (retval < 0)
260                 return retval;
261         return spinand_get_otp(spi_nand, &otp);
262 }
263 #endif
264 
265 static int spinand_disable_ecc(struct spi_device *spi_nand)
266 {
267         int retval;
268         u8 otp = 0;
269 
270         retval = spinand_get_otp(spi_nand, &otp);
271         if (retval < 0)
272                 return retval;
273 
274         if ((otp & OTP_ECC_MASK) == OTP_ECC_MASK) {
275                 otp &= ~OTP_ECC_MASK;
276                 retval = spinand_set_otp(spi_nand, &otp);
277                 if (retval < 0)
278                         return retval;
279                 return spinand_get_otp(spi_nand, &otp);
280         }
281         return 0;
282 }
283 
284 /**
285  * spinand_write_enable- send command 0x06 to enable write or erase the
286  * Nand cells
287  * Description:
288  *   Before write and erase the Nand cells, the write enable has to be set.
289  *   After the write or erase, the write enable bit is automatically
290  *   cleared (status register bit 2)
291  *   Set the bit 2 of the status register has the same effect
292  */
293 static int spinand_write_enable(struct spi_device *spi_nand)
294 {
295         struct spinand_cmd cmd = {0};
296 
297         cmd.cmd = CMD_WR_ENABLE;
298         return spinand_cmd(spi_nand, &cmd);
299 }
300 
301 static int spinand_read_page_to_cache(struct spi_device *spi_nand, u16 page_id)
302 {
303         struct spinand_cmd cmd = {0};
304         u16 row;
305 
306         row = page_id;
307         cmd.cmd = CMD_READ;
308         cmd.n_addr = 3;
309         cmd.addr[1] = (u8)((row & 0xff00) >> 8);
310         cmd.addr[2] = (u8)(row & 0x00ff);
311 
312         return spinand_cmd(spi_nand, &cmd);
313 }
314 
315 /*
316  * spinand_read_from_cache- send command 0x03 to read out the data from the
317  * cache register(2112 bytes max)
318  * Description:
319  *   The read can specify 1 to 2112 bytes of data read at the corresponding
320  *   locations.
321  *   No tRd delay.
322  */
323 static int spinand_read_from_cache(struct spi_device *spi_nand, u16 page_id,
324                 u16 byte_id, u16 len, u8 *rbuf)
325 {
326         struct spinand_cmd cmd = {0};
327         u16 column;
328 
329         column = byte_id;
330         cmd.cmd = CMD_READ_RDM;
331         cmd.n_addr = 3;
332         cmd.addr[0] = (u8)((column & 0xff00) >> 8);
333         cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
334         cmd.addr[1] = (u8)(column & 0x00ff);
335         cmd.addr[2] = (u8)(0xff);
336         cmd.n_dummy = 0;
337         cmd.n_rx = len;
338         cmd.rx_buf = rbuf;
339 
340         return spinand_cmd(spi_nand, &cmd);
341 }
342 
343 /*
344  * spinand_read_page-to read a page with:
345  * @page_id: the physical page number
346  * @offset:  the location from 0 to 2111
347  * @len:     number of bytes to read
348  * @rbuf:    read buffer to hold @len bytes
349  *
350  * Description:
351  *   The read includes two commands to the Nand: 0x13 and 0x03 commands
352  *   Poll to read status to wait for tRD time.
353  */
354 static int spinand_read_page(struct spi_device *spi_nand, u16 page_id,
355                 u16 offset, u16 len, u8 *rbuf)
356 {
357         int ret;
358         u8 status = 0;
359 
360 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
361         if (enable_read_hw_ecc) {
362                 if (spinand_enable_ecc(spi_nand) < 0)
363                         dev_err(&spi_nand->dev, "enable HW ECC failed!");
364         }
365 #endif
366         ret = spinand_read_page_to_cache(spi_nand, page_id);
367         if (ret < 0)
368                 return ret;
369 
370         if (wait_till_ready(spi_nand))
371                 dev_err(&spi_nand->dev, "WAIT timedout!!!\n");
372 
373         while (1) {
374                 ret = spinand_read_status(spi_nand, &status);
375                 if (ret < 0) {
376                         dev_err(&spi_nand->dev,
377                                         "err %d read status register\n", ret);
378                         return ret;
379                 }
380 
381                 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
382                         if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
383                                 dev_err(&spi_nand->dev, "ecc error, page=%d\n",
384                                                 page_id);
385                                 return 0;
386                         }
387                         break;
388                 }
389         }
390 
391         ret = spinand_read_from_cache(spi_nand, page_id, offset, len, rbuf);
392         if (ret < 0) {
393                 dev_err(&spi_nand->dev, "read from cache failed!!\n");
394                 return ret;
395         }
396 
397 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
398         if (enable_read_hw_ecc) {
399                 ret = spinand_disable_ecc(spi_nand);
400                 if (ret < 0) {
401                         dev_err(&spi_nand->dev, "disable ecc failed!!\n");
402                         return ret;
403                 }
404                 enable_read_hw_ecc = 0;
405         }
406 #endif
407         return ret;
408 }
409 
410 /*
411  * spinand_program_data_to_cache--to write a page to cache with:
412  * @byte_id: the location to write to the cache
413  * @len:     number of bytes to write
414  * @rbuf:    read buffer to hold @len bytes
415  *
416  * Description:
417  *   The write command used here is 0x84--indicating that the cache is
418  *   not cleared first.
419  *   Since it is writing the data to cache, there is no tPROG time.
420  */
421 static int spinand_program_data_to_cache(struct spi_device *spi_nand,
422                 u16 page_id, u16 byte_id, u16 len, u8 *wbuf)
423 {
424         struct spinand_cmd cmd = {0};
425         u16 column;
426 
427         column = byte_id;
428         cmd.cmd = CMD_PROG_PAGE_CLRCACHE;
429         cmd.n_addr = 2;
430         cmd.addr[0] = (u8)((column & 0xff00) >> 8);
431         cmd.addr[0] |= (u8)(((page_id >> 6) & 0x1) << 4);
432         cmd.addr[1] = (u8)(column & 0x00ff);
433         cmd.n_tx = len;
434         cmd.tx_buf = wbuf;
435 
436         return spinand_cmd(spi_nand, &cmd);
437 }
438 
439 /**
440  * spinand_program_execute--to write a page from cache to the Nand array with
441  * @page_id: the physical page location to write the page.
442  *
443  * Description:
444  *   The write command used here is 0x10--indicating the cache is writing to
445  *   the Nand array.
446  *   Need to wait for tPROG time to finish the transaction.
447  */
448 static int spinand_program_execute(struct spi_device *spi_nand, u16 page_id)
449 {
450         struct spinand_cmd cmd = {0};
451         u16 row;
452 
453         row = page_id;
454         cmd.cmd = CMD_PROG_PAGE_EXC;
455         cmd.n_addr = 3;
456         cmd.addr[1] = (u8)((row & 0xff00) >> 8);
457         cmd.addr[2] = (u8)(row & 0x00ff);
458 
459         return spinand_cmd(spi_nand, &cmd);
460 }
461 
462 /**
463  * spinand_program_page--to write a page with:
464  * @page_id: the physical page location to write the page.
465  * @offset:  the location from the cache starting from 0 to 2111
466  * @len:     the number of bytes to write
467  * @wbuf:    the buffer to hold the number of bytes
468  *
469  * Description:
470  *   The commands used here are 0x06, 0x84, and 0x10--indicating that
471  *   the write enable is first sent, the write cache command, and the
472  *   write execute command.
473  *   Poll to wait for the tPROG time to finish the transaction.
474  */
475 static int spinand_program_page(struct spi_device *spi_nand,
476                 u16 page_id, u16 offset, u16 len, u8 *buf)
477 {
478         int retval;
479         u8 status = 0;
480         uint8_t *wbuf;
481 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
482         unsigned int i, j;
483 
484         enable_read_hw_ecc = 0;
485         wbuf = devm_kzalloc(&spi_nand->dev, CACHE_BUF, GFP_KERNEL);
486         spinand_read_page(spi_nand, page_id, 0, CACHE_BUF, wbuf);
487 
488         for (i = offset, j = 0; i < len; i++, j++)
489                 wbuf[i] &= buf[j];
490 
491         if (enable_hw_ecc) {
492                 retval = spinand_enable_ecc(spi_nand);
493                 if (retval < 0) {
494                         dev_err(&spi_nand->dev, "enable ecc failed!!\n");
495                         return retval;
496                 }
497         }
498 #else
499         wbuf = buf;
500 #endif
501         retval = spinand_write_enable(spi_nand);
502         if (retval < 0) {
503                 dev_err(&spi_nand->dev, "write enable failed!!\n");
504                 return retval;
505         }
506         if (wait_till_ready(spi_nand))
507                 dev_err(&spi_nand->dev, "wait timedout!!!\n");
508 
509         retval = spinand_program_data_to_cache(spi_nand, page_id,
510                         offset, len, wbuf);
511         if (retval < 0)
512                 return retval;
513         retval = spinand_program_execute(spi_nand, page_id);
514         if (retval < 0)
515                 return retval;
516         while (1) {
517                 retval = spinand_read_status(spi_nand, &status);
518                 if (retval < 0) {
519                         dev_err(&spi_nand->dev,
520                                         "error %d reading status register\n",
521                                         retval);
522                         return retval;
523                 }
524 
525                 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
526                         if ((status & STATUS_P_FAIL_MASK) == STATUS_P_FAIL) {
527                                 dev_err(&spi_nand->dev,
528                                         "program error, page %d\n", page_id);
529                                 return -1;
530                         }
531                         break;
532                 }
533         }
534 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
535         if (enable_hw_ecc) {
536                 retval = spinand_disable_ecc(spi_nand);
537                 if (retval < 0) {
538                         dev_err(&spi_nand->dev, "disable ecc failed!!\n");
539                         return retval;
540                 }
541                 enable_hw_ecc = 0;
542         }
543 #endif
544 
545         return 0;
546 }
547 
548 /**
549  * spinand_erase_block_erase--to erase a page with:
550  * @block_id: the physical block location to erase.
551  *
552  * Description:
553  *   The command used here is 0xd8--indicating an erase command to erase
554  *   one block--64 pages
555  *   Need to wait for tERS.
556  */
557 static int spinand_erase_block_erase(struct spi_device *spi_nand, u16 block_id)
558 {
559         struct spinand_cmd cmd = {0};
560         u16 row;
561 
562         row = block_id;
563         cmd.cmd = CMD_ERASE_BLK;
564         cmd.n_addr = 3;
565         cmd.addr[1] = (u8)((row & 0xff00) >> 8);
566         cmd.addr[2] = (u8)(row & 0x00ff);
567 
568         return spinand_cmd(spi_nand, &cmd);
569 }
570 
571 /**
572  * spinand_erase_block--to erase a page with:
573  * @block_id: the physical block location to erase.
574  *
575  * Description:
576  *   The commands used here are 0x06 and 0xd8--indicating an erase
577  *   command to erase one block--64 pages
578  *   It will first to enable the write enable bit (0x06 command),
579  *   and then send the 0xd8 erase command
580  *   Poll to wait for the tERS time to complete the tranaction.
581  */
582 static int spinand_erase_block(struct spi_device *spi_nand, u16 block_id)
583 {
584         int retval;
585         u8 status = 0;
586 
587         retval = spinand_write_enable(spi_nand);
588         if (wait_till_ready(spi_nand))
589                 dev_err(&spi_nand->dev, "wait timedout!!!\n");
590 
591         retval = spinand_erase_block_erase(spi_nand, block_id);
592         while (1) {
593                 retval = spinand_read_status(spi_nand, &status);
594                 if (retval < 0) {
595                         dev_err(&spi_nand->dev,
596                                         "error %d reading status register\n",
597                                         (int) retval);
598                         return retval;
599                 }
600 
601                 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
602                         if ((status & STATUS_E_FAIL_MASK) == STATUS_E_FAIL) {
603                                 dev_err(&spi_nand->dev,
604                                         "erase error, block %d\n", block_id);
605                                 return -1;
606                         }
607                         break;
608                 }
609         }
610         return 0;
611 }
612 
613 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
614 static int spinand_write_page_hwecc(struct mtd_info *mtd,
615                 struct nand_chip *chip, const uint8_t *buf, int oob_required)
616 {
617         const uint8_t *p = buf;
618         int eccsize = chip->ecc.size;
619         int eccsteps = chip->ecc.steps;
620 
621         enable_hw_ecc = 1;
622         chip->write_buf(mtd, p, eccsize * eccsteps);
623         return 0;
624 }
625 
626 static int spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
627                 uint8_t *buf, int oob_required, int page)
628 {
629         int retval;
630         u8 status;
631         uint8_t *p = buf;
632         int eccsize = chip->ecc.size;
633         int eccsteps = chip->ecc.steps;
634         struct spinand_info *info = (struct spinand_info *)chip->priv;
635 
636         enable_read_hw_ecc = 1;
637 
638         chip->read_buf(mtd, p, eccsize * eccsteps);
639         if (oob_required)
640                 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
641 
642         while (1) {
643                 retval = spinand_read_status(info->spi, &status);
644                 if (retval < 0) {
645                         dev_err(&mtd->dev,
646                                         "error %d reading status register\n",
647                                         retval);
648                         return retval;
649                 }
650 
651                 if ((status & STATUS_OIP_MASK) == STATUS_READY) {
652                         if ((status & STATUS_ECC_MASK) == STATUS_ECC_ERROR) {
653                                 pr_info("spinand: ECC error\n");
654                                 mtd->ecc_stats.failed++;
655                         } else if ((status & STATUS_ECC_MASK) ==
656                                         STATUS_ECC_1BIT_CORRECTED)
657                                 mtd->ecc_stats.corrected++;
658                         break;
659                 }
660         }
661         return 0;
662 
663 }
664 #endif
665 
666 static void spinand_select_chip(struct mtd_info *mtd, int dev)
667 {
668 }
669 
670 static uint8_t spinand_read_byte(struct mtd_info *mtd)
671 {
672         struct spinand_state *state = mtd_to_state(mtd);
673         u8 data;
674 
675         data = state->buf[state->buf_ptr];
676         state->buf_ptr++;
677         return data;
678 }
679 
680 
681 static int spinand_wait(struct mtd_info *mtd, struct nand_chip *chip)
682 {
683         struct spinand_info *info = (struct spinand_info *)chip->priv;
684 
685         unsigned long timeo = jiffies;
686         int retval, state = chip->state;
687         u8 status;
688 
689         if (state == FL_ERASING)
690                 timeo += (HZ * 400) / 1000;
691         else
692                 timeo += (HZ * 20) / 1000;
693 
694         while (time_before(jiffies, timeo)) {
695                 retval = spinand_read_status(info->spi, &status);
696                 if (retval < 0) {
697                         dev_err(&mtd->dev,
698                                         "error %d reading status register\n",
699                                         retval);
700                         return retval;
701                 }
702 
703                 if ((status & STATUS_OIP_MASK) == STATUS_READY)
704                         return 0;
705 
706                 cond_resched();
707         }
708         return 0;
709 }
710 
711 static void spinand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
712 {
713 
714         struct spinand_state *state = mtd_to_state(mtd);
715 
716         memcpy(state->buf + state->buf_ptr, buf, len);
717         state->buf_ptr += len;
718 }
719 
720 static void spinand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
721 {
722         struct spinand_state *state = mtd_to_state(mtd);
723 
724         memcpy(buf, state->buf + state->buf_ptr, len);
725         state->buf_ptr += len;
726 }
727 
728 /*
729  * spinand_reset- send RESET command "0xff" to the Nand device.
730  */
731 static void spinand_reset(struct spi_device *spi_nand)
732 {
733         struct spinand_cmd cmd = {0};
734 
735         cmd.cmd = CMD_RESET;
736 
737         if (spinand_cmd(spi_nand, &cmd) < 0)
738                 pr_info("spinand reset failed!\n");
739 
740         /* elapse 1ms before issuing any other command */
741         udelay(1000);
742 
743         if (wait_till_ready(spi_nand))
744                 dev_err(&spi_nand->dev, "wait timedout!\n");
745 }
746 
747 static void spinand_cmdfunc(struct mtd_info *mtd, unsigned int command,
748                 int column, int page)
749 {
750         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
751         struct spinand_info *info = (struct spinand_info *)chip->priv;
752         struct spinand_state *state = (struct spinand_state *)info->priv;
753 
754         switch (command) {
755         /*
756          * READ0 - read in first  0x800 bytes
757          */
758         case NAND_CMD_READ1:
759         case NAND_CMD_READ0:
760                 state->buf_ptr = 0;
761                 spinand_read_page(info->spi, page, 0x0, 0x840, state->buf);
762                 break;
763         /* READOOB reads only the OOB because no ECC is performed. */
764         case NAND_CMD_READOOB:
765                 state->buf_ptr = 0;
766                 spinand_read_page(info->spi, page, 0x800, 0x40, state->buf);
767                 break;
768         case NAND_CMD_RNDOUT:
769                 state->buf_ptr = column;
770                 break;
771         case NAND_CMD_READID:
772                 state->buf_ptr = 0;
773                 spinand_read_id(info->spi, state->buf);
774                 break;
775         case NAND_CMD_PARAM:
776                 state->buf_ptr = 0;
777                 break;
778         /* ERASE1 stores the block and page address */
779         case NAND_CMD_ERASE1:
780                 spinand_erase_block(info->spi, page);
781                 break;
782         /* ERASE2 uses the block and page address from ERASE1 */
783         case NAND_CMD_ERASE2:
784                 break;
785         /* SEQIN sets up the addr buffer and all registers except the length */
786         case NAND_CMD_SEQIN:
787                 state->col = column;
788                 state->row = page;
789                 state->buf_ptr = 0;
790                 break;
791         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
792         case NAND_CMD_PAGEPROG:
793                 spinand_program_page(info->spi, state->row, state->col,
794                                 state->buf_ptr, state->buf);
795                 break;
796         case NAND_CMD_STATUS:
797                 spinand_get_otp(info->spi, state->buf);
798                 if (!(state->buf[0] & 0x80))
799                         state->buf[0] = 0x80;
800                 state->buf_ptr = 0;
801                 break;
802         /* RESET command */
803         case NAND_CMD_RESET:
804                 if (wait_till_ready(info->spi))
805                         dev_err(&info->spi->dev, "WAIT timedout!!!\n");
806                 /* a minimum of 250us must elapse before issuing RESET cmd*/
807                 udelay(250);
808                 spinand_reset(info->spi);
809                 break;
810         default:
811                 dev_err(&mtd->dev, "Unknown CMD: 0x%x\n", command);
812         }
813 }
814 
815 /**
816  * spinand_lock_block- send write register 0x1f command to the Nand device
817  *
818  * Description:
819  *    After power up, all the Nand blocks are locked.  This function allows
820  *    one to unlock the blocks, and so it can be written or erased.
821  */
822 static int spinand_lock_block(struct spi_device *spi_nand, u8 lock)
823 {
824         struct spinand_cmd cmd = {0};
825         int ret;
826         u8 otp = 0;
827 
828         ret = spinand_get_otp(spi_nand, &otp);
829 
830         cmd.cmd = CMD_WRITE_REG;
831         cmd.n_addr = 1;
832         cmd.addr[0] = REG_BLOCK_LOCK;
833         cmd.n_tx = 1;
834         cmd.tx_buf = &lock;
835 
836         ret = spinand_cmd(spi_nand, &cmd);
837         if (ret < 0)
838                 dev_err(&spi_nand->dev, "error %d lock block\n", ret);
839 
840         return ret;
841 }
842 /*
843  * spinand_probe - [spinand Interface]
844  * @spi_nand: registered device driver.
845  *
846  * Description:
847  *   To set up the device driver parameters to make the device available.
848  */
849 static int spinand_probe(struct spi_device *spi_nand)
850 {
851         struct mtd_info *mtd;
852         struct nand_chip *chip;
853         struct spinand_info *info;
854         struct spinand_state *state;
855         struct mtd_part_parser_data ppdata;
856 
857         info  = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_info),
858                         GFP_KERNEL);
859         if (!info)
860                 return -ENOMEM;
861 
862         info->spi = spi_nand;
863 
864         spinand_lock_block(spi_nand, BL_ALL_UNLOCKED);
865 
866         state = devm_kzalloc(&spi_nand->dev, sizeof(struct spinand_state),
867                         GFP_KERNEL);
868         if (!state)
869                 return -ENOMEM;
870 
871         info->priv      = state;
872         state->buf_ptr  = 0;
873         state->buf      = devm_kzalloc(&spi_nand->dev, BUFSIZE, GFP_KERNEL);
874         if (!state->buf)
875                 return -ENOMEM;
876 
877         chip = devm_kzalloc(&spi_nand->dev, sizeof(struct nand_chip),
878                         GFP_KERNEL);
879         if (!chip)
880                 return -ENOMEM;
881 
882 #ifdef CONFIG_MTD_SPINAND_ONDIEECC
883         chip->ecc.mode  = NAND_ECC_HW;
884         chip->ecc.size  = 0x200;
885         chip->ecc.bytes = 0x6;
886         chip->ecc.steps = 0x4;
887 
888         chip->ecc.strength = 1;
889         chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
890         chip->ecc.layout = &spinand_oob_64;
891         chip->ecc.read_page = spinand_read_page_hwecc;
892         chip->ecc.write_page = spinand_write_page_hwecc;
893 #else
894         chip->ecc.mode  = NAND_ECC_SOFT;
895         if (spinand_disable_ecc(spi_nand) < 0)
896                 pr_info("%s: disable ecc failed!\n", __func__);
897 #endif
898 
899         chip->priv      = info;
900         chip->read_buf  = spinand_read_buf;
901         chip->write_buf = spinand_write_buf;
902         chip->read_byte = spinand_read_byte;
903         chip->cmdfunc   = spinand_cmdfunc;
904         chip->waitfunc  = spinand_wait;
905         chip->options   |= NAND_CACHEPRG;
906         chip->select_chip = spinand_select_chip;
907 
908         mtd = devm_kzalloc(&spi_nand->dev, sizeof(struct mtd_info), GFP_KERNEL);
909         if (!mtd)
910                 return -ENOMEM;
911 
912         dev_set_drvdata(&spi_nand->dev, mtd);
913 
914         mtd->priv = chip;
915         mtd->name = dev_name(&spi_nand->dev);
916         mtd->owner = THIS_MODULE;
917         mtd->oobsize = 64;
918 
919         if (nand_scan(mtd, 1))
920                 return -ENXIO;
921 
922         ppdata.of_node = spi_nand->dev.of_node;
923         return mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
924 }
925 
926 /*
927  * spinand_remove: Remove the device driver
928  * @spi: the spi device.
929  *
930  * Description:
931  *   To remove the device driver parameters and free up allocated memories.
932  */
933 static int spinand_remove(struct spi_device *spi)
934 {
935         mtd_device_unregister(dev_get_drvdata(&spi->dev));
936 
937         return 0;
938 }
939 
940 static const struct of_device_id spinand_dt[] = {
941         { .compatible = "spinand,mt29f", },
942         {}
943 };
944 
945 /*
946  * Device name structure description
947  */
948 static struct spi_driver spinand_driver = {
949         .driver = {
950                 .name           = "mt29f",
951                 .bus            = &spi_bus_type,
952                 .owner          = THIS_MODULE,
953                 .of_match_table = spinand_dt,
954         },
955         .probe          = spinand_probe,
956         .remove         = spinand_remove,
957 };
958 
959 module_spi_driver(spinand_driver);
960 
961 MODULE_DESCRIPTION("SPI NAND driver for Micron");
962 MODULE_AUTHOR("Henry Pan <hspan@micron.com>, Kamlakant Patel <kamlakant.patel@broadcom.com>");
963 MODULE_LICENSE("GPL v2");
964 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us