Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/staging/media/lirc/lirc_serial.c

  1 /*
  2  * lirc_serial.c
  3  *
  4  * lirc_serial - Device driver that records pulse- and pause-lengths
  5  *             (space-lengths) between DDCD event on a serial port.
  6  *
  7  * Copyright (C) 1996,97 Ralph Metzler <rjkm@thp.uni-koeln.de>
  8  * Copyright (C) 1998 Trent Piepho <xyzzy@u.washington.edu>
  9  * Copyright (C) 1998 Ben Pfaff <blp@gnu.org>
 10  * Copyright (C) 1999 Christoph Bartelmus <lirc@bartelmus.de>
 11  * Copyright (C) 2007 Andrei Tanas <andrei@tanas.ca> (suspend/resume support)
 12  *  This program is free software; you can redistribute it and/or modify
 13  *  it under the terms of the GNU General Public License as published by
 14  *  the Free Software Foundation; either version 2 of the License, or
 15  *  (at your option) any later version.
 16  *
 17  *  This program is distributed in the hope that it will be useful,
 18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 20  *  GNU General Public License for more details.
 21  *
 22  *  You should have received a copy of the GNU General Public License
 23  *  along with this program; if not, write to the Free Software
 24  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 25  *
 26  */
 27 
 28 /*
 29  * Steve's changes to improve transmission fidelity:
 30  *   - for systems with the rdtsc instruction and the clock counter, a
 31  *     send_pule that times the pulses directly using the counter.
 32  *     This means that the LIRC_SERIAL_TRANSMITTER_LATENCY fudge is
 33  *     not needed. Measurement shows very stable waveform, even where
 34  *     PCI activity slows the access to the UART, which trips up other
 35  *     versions.
 36  *   - For other system, non-integer-microsecond pulse/space lengths,
 37  *     done using fixed point binary. So, much more accurate carrier
 38  *     frequency.
 39  *   - fine tuned transmitter latency, taking advantage of fractional
 40  *     microseconds in previous change
 41  *   - Fixed bug in the way transmitter latency was accounted for by
 42  *     tuning the pulse lengths down - the send_pulse routine ignored
 43  *     this overhead as it timed the overall pulse length - so the
 44  *     pulse frequency was right but overall pulse length was too
 45  *     long. Fixed by accounting for latency on each pulse/space
 46  *     iteration.
 47  *
 48  * Steve Davies <steve@daviesfam.org>  July 2001
 49  */
 50 
 51 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 52 
 53 #include <linux/module.h>
 54 #include <linux/errno.h>
 55 #include <linux/signal.h>
 56 #include <linux/sched.h>
 57 #include <linux/fs.h>
 58 #include <linux/interrupt.h>
 59 #include <linux/ioport.h>
 60 #include <linux/kernel.h>
 61 #include <linux/serial_reg.h>
 62 #include <linux/time.h>
 63 #include <linux/string.h>
 64 #include <linux/types.h>
 65 #include <linux/wait.h>
 66 #include <linux/mm.h>
 67 #include <linux/delay.h>
 68 #include <linux/poll.h>
 69 #include <linux/platform_device.h>
 70 #include <linux/gpio.h>
 71 #include <linux/io.h>
 72 #include <linux/irq.h>
 73 #include <linux/fcntl.h>
 74 #include <linux/spinlock.h>
 75 
 76 #ifdef CONFIG_LIRC_SERIAL_NSLU2
 77 #include <asm/hardware.h>
 78 #endif
 79 /* From Intel IXP42X Developer's Manual (#252480-005): */
 80 /* ftp://download.intel.com/design/network/manuals/25248005.pdf */
 81 #define UART_IE_IXP42X_UUE   0x40 /* IXP42X UART Unit enable */
 82 #define UART_IE_IXP42X_RTOIE 0x10 /* IXP42X Receiver Data Timeout int.enable */
 83 
 84 #include <media/lirc.h>
 85 #include <media/lirc_dev.h>
 86 
 87 #define LIRC_DRIVER_NAME "lirc_serial"
 88 
 89 struct lirc_serial {
 90         int signal_pin;
 91         int signal_pin_change;
 92         u8 on;
 93         u8 off;
 94         long (*send_pulse)(unsigned long length);
 95         void (*send_space)(long length);
 96         int features;
 97         spinlock_t lock;
 98 };
 99 
100 #define LIRC_HOMEBREW           0
101 #define LIRC_IRDEO              1
102 #define LIRC_IRDEO_REMOTE       2
103 #define LIRC_ANIMAX             3
104 #define LIRC_IGOR               4
105 #define LIRC_NSLU2              5
106 
107 /*** module parameters ***/
108 static int type;
109 static int io;
110 static int irq;
111 static bool iommap;
112 static int ioshift;
113 static bool softcarrier = 1;
114 static bool share_irq;
115 static bool debug;
116 static int sense = -1;  /* -1 = auto, 0 = active high, 1 = active low */
117 static bool txsense;    /* 0 = active high, 1 = active low */
118 
119 #define dprintk(fmt, args...)                                   \
120         do {                                                    \
121                 if (debug)                                      \
122                         printk(KERN_DEBUG LIRC_DRIVER_NAME ": " \
123                                fmt, ## args);                   \
124         } while (0)
125 
126 /* forward declarations */
127 static long send_pulse_irdeo(unsigned long length);
128 static long send_pulse_homebrew(unsigned long length);
129 static void send_space_irdeo(long length);
130 static void send_space_homebrew(long length);
131 
132 static struct lirc_serial hardware[] = {
133         [LIRC_HOMEBREW] = {
134                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_HOMEBREW].lock),
135                 .signal_pin        = UART_MSR_DCD,
136                 .signal_pin_change = UART_MSR_DDCD,
137                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
138                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
139                 .send_pulse = send_pulse_homebrew,
140                 .send_space = send_space_homebrew,
141 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
142                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
143                                 LIRC_CAN_SET_SEND_CARRIER |
144                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
145 #else
146                 .features    = LIRC_CAN_REC_MODE2
147 #endif
148         },
149 
150         [LIRC_IRDEO] = {
151                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO].lock),
152                 .signal_pin        = UART_MSR_DSR,
153                 .signal_pin_change = UART_MSR_DDSR,
154                 .on  = UART_MCR_OUT2,
155                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
156                 .send_pulse  = send_pulse_irdeo,
157                 .send_space  = send_space_irdeo,
158                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
159                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
160         },
161 
162         [LIRC_IRDEO_REMOTE] = {
163                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IRDEO_REMOTE].lock),
164                 .signal_pin        = UART_MSR_DSR,
165                 .signal_pin_change = UART_MSR_DDSR,
166                 .on  = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
167                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
168                 .send_pulse  = send_pulse_irdeo,
169                 .send_space  = send_space_irdeo,
170                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
171                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
172         },
173 
174         [LIRC_ANIMAX] = {
175                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_ANIMAX].lock),
176                 .signal_pin        = UART_MSR_DCD,
177                 .signal_pin_change = UART_MSR_DDCD,
178                 .on  = 0,
179                 .off = (UART_MCR_RTS | UART_MCR_DTR | UART_MCR_OUT2),
180                 .send_pulse = NULL,
181                 .send_space = NULL,
182                 .features   = LIRC_CAN_REC_MODE2
183         },
184 
185         [LIRC_IGOR] = {
186                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_IGOR].lock),
187                 .signal_pin        = UART_MSR_DSR,
188                 .signal_pin_change = UART_MSR_DDSR,
189                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
190                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
191                 .send_pulse = send_pulse_homebrew,
192                 .send_space = send_space_homebrew,
193 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
194                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
195                                 LIRC_CAN_SET_SEND_CARRIER |
196                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
197 #else
198                 .features    = LIRC_CAN_REC_MODE2
199 #endif
200         },
201 
202 #ifdef CONFIG_LIRC_SERIAL_NSLU2
203         /*
204          * Modified Linksys Network Storage Link USB 2.0 (NSLU2):
205          * We receive on CTS of the 2nd serial port (R142,LHS), we
206          * transmit with a IR diode between GPIO[1] (green status LED),
207          * and ground (Matthias Goebl <matthias.goebl@goebl.net>).
208          * See also http://www.nslu2-linux.org for this device
209          */
210         [LIRC_NSLU2] = {
211                 .lock = __SPIN_LOCK_UNLOCKED(hardware[LIRC_NSLU2].lock),
212                 .signal_pin        = UART_MSR_CTS,
213                 .signal_pin_change = UART_MSR_DCTS,
214                 .on  = (UART_MCR_RTS | UART_MCR_OUT2 | UART_MCR_DTR),
215                 .off = (UART_MCR_RTS | UART_MCR_OUT2),
216                 .send_pulse = send_pulse_homebrew,
217                 .send_space = send_space_homebrew,
218 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
219                 .features    = (LIRC_CAN_SET_SEND_DUTY_CYCLE |
220                                 LIRC_CAN_SET_SEND_CARRIER |
221                                 LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2)
222 #else
223                 .features    = LIRC_CAN_REC_MODE2
224 #endif
225         },
226 #endif
227 
228 };
229 
230 #define RS_ISR_PASS_LIMIT 256
231 
232 /*
233  * A long pulse code from a remote might take up to 300 bytes.  The
234  * daemon should read the bytes as soon as they are generated, so take
235  * the number of keys you think you can push before the daemon runs
236  * and multiply by 300.  The driver will warn you if you overrun this
237  * buffer.  If you have a slow computer or non-busmastering IDE disks,
238  * maybe you will need to increase this.
239  */
240 
241 /* This MUST be a power of two!  It has to be larger than 1 as well. */
242 
243 #define RBUF_LEN 256
244 
245 static struct timeval lasttv = {0, 0};
246 
247 static struct lirc_buffer rbuf;
248 
249 static unsigned int freq = 38000;
250 static unsigned int duty_cycle = 50;
251 
252 /* Initialized in init_timing_params() */
253 static unsigned long period;
254 static unsigned long pulse_width;
255 static unsigned long space_width;
256 
257 #if defined(__i386__)
258 /*
259  * From:
260  * Linux I/O port programming mini-HOWTO
261  * Author: Riku Saikkonen <Riku.Saikkonen@hut.fi>
262  * v, 28 December 1997
263  *
264  * [...]
265  * Actually, a port I/O instruction on most ports in the 0-0x3ff range
266  * takes almost exactly 1 microsecond, so if you're, for example, using
267  * the parallel port directly, just do additional inb()s from that port
268  * to delay.
269  * [...]
270  */
271 /* transmitter latency 1.5625us 0x1.90 - this figure arrived at from
272  * comment above plus trimming to match actual measured frequency.
273  * This will be sensitive to cpu speed, though hopefully most of the 1.5us
274  * is spent in the uart access.  Still - for reference test machine was a
275  * 1.13GHz Athlon system - Steve
276  */
277 
278 /*
279  * changed from 400 to 450 as this works better on slower machines;
280  * faster machines will use the rdtsc code anyway
281  */
282 #define LIRC_SERIAL_TRANSMITTER_LATENCY 450
283 
284 #else
285 
286 /* does anybody have information on other platforms ? */
287 /* 256 = 1<<8 */
288 #define LIRC_SERIAL_TRANSMITTER_LATENCY 256
289 
290 #endif  /* __i386__ */
291 /*
292  * FIXME: should we be using hrtimers instead of this
293  * LIRC_SERIAL_TRANSMITTER_LATENCY nonsense?
294  */
295 
296 /* fetch serial input packet (1 byte) from register offset */
297 static u8 sinp(int offset)
298 {
299         if (iommap != 0)
300                 /* the register is memory-mapped */
301                 offset <<= ioshift;
302 
303         return inb(io + offset);
304 }
305 
306 /* write serial output packet (1 byte) of value to register offset */
307 static void soutp(int offset, u8 value)
308 {
309         if (iommap != 0)
310                 /* the register is memory-mapped */
311                 offset <<= ioshift;
312 
313         outb(value, io + offset);
314 }
315 
316 static void on(void)
317 {
318 #ifdef CONFIG_LIRC_SERIAL_NSLU2
319         /*
320          * On NSLU2, we put the transmit diode between the output of the green
321          * status LED and ground
322          */
323         if (type == LIRC_NSLU2) {
324                 gpio_set_value(NSLU2_LED_GRN, 0);
325                 return;
326         }
327 #endif
328         if (txsense)
329                 soutp(UART_MCR, hardware[type].off);
330         else
331                 soutp(UART_MCR, hardware[type].on);
332 }
333 
334 static void off(void)
335 {
336 #ifdef CONFIG_LIRC_SERIAL_NSLU2
337         if (type == LIRC_NSLU2) {
338                 gpio_set_value(NSLU2_LED_GRN, 1);
339                 return;
340         }
341 #endif
342         if (txsense)
343                 soutp(UART_MCR, hardware[type].on);
344         else
345                 soutp(UART_MCR, hardware[type].off);
346 }
347 
348 #ifndef MAX_UDELAY_MS
349 #define MAX_UDELAY_US 5000
350 #else
351 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
352 #endif
353 
354 static void safe_udelay(unsigned long usecs)
355 {
356         while (usecs > MAX_UDELAY_US) {
357                 udelay(MAX_UDELAY_US);
358                 usecs -= MAX_UDELAY_US;
359         }
360         udelay(usecs);
361 }
362 
363 #ifdef USE_RDTSC
364 /*
365  * This is an overflow/precision juggle, complicated in that we can't
366  * do long long divide in the kernel
367  */
368 
369 /*
370  * When we use the rdtsc instruction to measure clocks, we keep the
371  * pulse and space widths as clock cycles.  As this is CPU speed
372  * dependent, the widths must be calculated in init_port and ioctl
373  * time
374  */
375 
376 /* So send_pulse can quickly convert microseconds to clocks */
377 static unsigned long conv_us_to_clocks;
378 
379 static int init_timing_params(unsigned int new_duty_cycle,
380                 unsigned int new_freq)
381 {
382         __u64 loops_per_sec, work;
383 
384         duty_cycle = new_duty_cycle;
385         freq = new_freq;
386 
387         loops_per_sec = __this_cpu_read(cpu.info.loops_per_jiffy);
388         loops_per_sec *= HZ;
389 
390         /* How many clocks in a microsecond?, avoiding long long divide */
391         work = loops_per_sec;
392         work *= 4295;  /* 4295 = 2^32 / 1e6 */
393         conv_us_to_clocks = (work >> 32);
394 
395         /*
396          * Carrier period in clocks, approach good up to 32GHz clock,
397          * gets carrier frequency within 8Hz
398          */
399         period = loops_per_sec >> 3;
400         period /= (freq >> 3);
401 
402         /* Derive pulse and space from the period */
403         pulse_width = period * duty_cycle / 100;
404         space_width = period - pulse_width;
405         dprintk("in init_timing_params, freq=%d, duty_cycle=%d, "
406                 "clk/jiffy=%ld, pulse=%ld, space=%ld, "
407                 "conv_us_to_clocks=%ld\n",
408                 freq, duty_cycle, __this_cpu_read(cpu_info.loops_per_jiffy),
409                 pulse_width, space_width, conv_us_to_clocks);
410         return 0;
411 }
412 #else /* ! USE_RDTSC */
413 static int init_timing_params(unsigned int new_duty_cycle,
414                 unsigned int new_freq)
415 {
416 /*
417  * period, pulse/space width are kept with 8 binary places -
418  * IE multiplied by 256.
419  */
420         if (256 * 1000000L / new_freq * new_duty_cycle / 100 <=
421             LIRC_SERIAL_TRANSMITTER_LATENCY)
422                 return -EINVAL;
423         if (256 * 1000000L / new_freq * (100 - new_duty_cycle) / 100 <=
424             LIRC_SERIAL_TRANSMITTER_LATENCY)
425                 return -EINVAL;
426         duty_cycle = new_duty_cycle;
427         freq = new_freq;
428         period = 256 * 1000000L / freq;
429         pulse_width = period * duty_cycle / 100;
430         space_width = period - pulse_width;
431         dprintk("in init_timing_params, freq=%d pulse=%ld, space=%ld\n",
432                 freq, pulse_width, space_width);
433         return 0;
434 }
435 #endif /* USE_RDTSC */
436 
437 
438 /* return value: space length delta */
439 
440 static long send_pulse_irdeo(unsigned long length)
441 {
442         long rawbits, ret;
443         int i;
444         unsigned char output;
445         unsigned char chunk, shifted;
446 
447         /* how many bits have to be sent ? */
448         rawbits = length * 1152 / 10000;
449         if (duty_cycle > 50)
450                 chunk = 3;
451         else
452                 chunk = 1;
453         for (i = 0, output = 0x7f; rawbits > 0; rawbits -= 3) {
454                 shifted = chunk << (i * 3);
455                 shifted >>= 1;
456                 output &= (~shifted);
457                 i++;
458                 if (i == 3) {
459                         soutp(UART_TX, output);
460                         while (!(sinp(UART_LSR) & UART_LSR_THRE))
461                                 ;
462                         output = 0x7f;
463                         i = 0;
464                 }
465         }
466         if (i != 0) {
467                 soutp(UART_TX, output);
468                 while (!(sinp(UART_LSR) & UART_LSR_TEMT))
469                         ;
470         }
471 
472         if (i == 0)
473                 ret = (-rawbits) * 10000 / 1152;
474         else
475                 ret = (3 - i) * 3 * 10000 / 1152 + (-rawbits) * 10000 / 1152;
476 
477         return ret;
478 }
479 
480 #ifdef USE_RDTSC
481 /* Version that uses Pentium rdtsc instruction to measure clocks */
482 
483 /*
484  * This version does sub-microsecond timing using rdtsc instruction,
485  * and does away with the fudged LIRC_SERIAL_TRANSMITTER_LATENCY
486  * Implicitly i586 architecture...  - Steve
487  */
488 
489 static long send_pulse_homebrew_softcarrier(unsigned long length)
490 {
491         int flag;
492         unsigned long target, start, now;
493 
494         /* Get going quick as we can */
495         rdtscl(start);
496         on();
497         /* Convert length from microseconds to clocks */
498         length *= conv_us_to_clocks;
499         /* And loop till time is up - flipping at right intervals */
500         now = start;
501         target = pulse_width;
502         flag = 1;
503         /*
504          * FIXME: This looks like a hard busy wait, without even an occasional,
505          * polite, cpu_relax() call.  There's got to be a better way?
506          *
507          * The i2c code has the result of a lot of bit-banging work, I wonder if
508          * there's something there which could be helpful here.
509          */
510         while ((now - start) < length) {
511                 /* Delay till flip time */
512                 do {
513                         rdtscl(now);
514                 } while ((now - start) < target);
515 
516                 /* flip */
517                 if (flag) {
518                         rdtscl(now);
519                         off();
520                         target += space_width;
521                 } else {
522                         rdtscl(now); on();
523                         target += pulse_width;
524                 }
525                 flag = !flag;
526         }
527         rdtscl(now);
528         return ((now - start) - length) / conv_us_to_clocks;
529 }
530 #else /* ! USE_RDTSC */
531 /* Version using udelay() */
532 
533 /*
534  * here we use fixed point arithmetic, with 8
535  * fractional bits.  that gets us within 0.1% or so of the right average
536  * frequency, albeit with some jitter in pulse length - Steve
537  */
538 
539 /* To match 8 fractional bits used for pulse/space length */
540 
541 static long send_pulse_homebrew_softcarrier(unsigned long length)
542 {
543         int flag;
544         unsigned long actual, target, d;
545         length <<= 8;
546 
547         actual = 0; target = 0; flag = 0;
548         while (actual < length) {
549                 if (flag) {
550                         off();
551                         target += space_width;
552                 } else {
553                         on();
554                         target += pulse_width;
555                 }
556                 d = (target - actual -
557                      LIRC_SERIAL_TRANSMITTER_LATENCY + 128) >> 8;
558                 /*
559                  * Note - we've checked in ioctl that the pulse/space
560                  * widths are big enough so that d is > 0
561                  */
562                 udelay(d);
563                 actual += (d << 8) + LIRC_SERIAL_TRANSMITTER_LATENCY;
564                 flag = !flag;
565         }
566         return (actual-length) >> 8;
567 }
568 #endif /* USE_RDTSC */
569 
570 static long send_pulse_homebrew(unsigned long length)
571 {
572         if (length <= 0)
573                 return 0;
574 
575         if (softcarrier)
576                 return send_pulse_homebrew_softcarrier(length);
577         else {
578                 on();
579                 safe_udelay(length);
580                 return 0;
581         }
582 }
583 
584 static void send_space_irdeo(long length)
585 {
586         if (length <= 0)
587                 return;
588 
589         safe_udelay(length);
590 }
591 
592 static void send_space_homebrew(long length)
593 {
594         off();
595         if (length <= 0)
596                 return;
597         safe_udelay(length);
598 }
599 
600 static void rbwrite(int l)
601 {
602         if (lirc_buffer_full(&rbuf)) {
603                 /* no new signals will be accepted */
604                 dprintk("Buffer overrun\n");
605                 return;
606         }
607         lirc_buffer_write(&rbuf, (void *)&l);
608 }
609 
610 static void frbwrite(int l)
611 {
612         /* simple noise filter */
613         static int pulse, space;
614         static unsigned int ptr;
615 
616         if (ptr > 0 && (l & PULSE_BIT)) {
617                 pulse += l & PULSE_MASK;
618                 if (pulse > 250) {
619                         rbwrite(space);
620                         rbwrite(pulse | PULSE_BIT);
621                         ptr = 0;
622                         pulse = 0;
623                 }
624                 return;
625         }
626         if (!(l & PULSE_BIT)) {
627                 if (ptr == 0) {
628                         if (l > 20000) {
629                                 space = l;
630                                 ptr++;
631                                 return;
632                         }
633                 } else {
634                         if (l > 20000) {
635                                 space += pulse;
636                                 if (space > PULSE_MASK)
637                                         space = PULSE_MASK;
638                                 space += l;
639                                 if (space > PULSE_MASK)
640                                         space = PULSE_MASK;
641                                 pulse = 0;
642                                 return;
643                         }
644                         rbwrite(space);
645                         rbwrite(pulse | PULSE_BIT);
646                         ptr = 0;
647                         pulse = 0;
648                 }
649         }
650         rbwrite(l);
651 }
652 
653 static irqreturn_t lirc_irq_handler(int i, void *blah)
654 {
655         struct timeval tv;
656         int counter, dcd;
657         u8 status;
658         long deltv;
659         int data;
660         static int last_dcd = -1;
661 
662         if ((sinp(UART_IIR) & UART_IIR_NO_INT)) {
663                 /* not our interrupt */
664                 return IRQ_NONE;
665         }
666 
667         counter = 0;
668         do {
669                 counter++;
670                 status = sinp(UART_MSR);
671                 if (counter > RS_ISR_PASS_LIMIT) {
672                         pr_warn("AIEEEE: We're caught!\n");
673                         break;
674                 }
675                 if ((status & hardware[type].signal_pin_change)
676                     && sense != -1) {
677                         /* get current time */
678                         do_gettimeofday(&tv);
679 
680                         /* New mode, written by Trent Piepho
681                            <xyzzy@u.washington.edu>. */
682 
683                         /*
684                          * The old format was not very portable.
685                          * We now use an int to pass pulses
686                          * and spaces to user space.
687                          *
688                          * If PULSE_BIT is set a pulse has been
689                          * received, otherwise a space has been
690                          * received.  The driver needs to know if your
691                          * receiver is active high or active low, or
692                          * the space/pulse sense could be
693                          * inverted. The bits denoted by PULSE_MASK are
694                          * the length in microseconds. Lengths greater
695                          * than or equal to 16 seconds are clamped to
696                          * PULSE_MASK.  All other bits are unused.
697                          * This is a much simpler interface for user
698                          * programs, as well as eliminating "out of
699                          * phase" errors with space/pulse
700                          * autodetection.
701                          */
702 
703                         /* calc time since last interrupt in microseconds */
704                         dcd = (status & hardware[type].signal_pin) ? 1 : 0;
705 
706                         if (dcd == last_dcd) {
707                                 pr_warn("ignoring spike: %d %d %lx %lx %lx %lx\n",
708                                         dcd, sense,
709                                         tv.tv_sec, lasttv.tv_sec,
710                                         (unsigned long)tv.tv_usec,
711                                         (unsigned long)lasttv.tv_usec);
712                                 continue;
713                         }
714 
715                         deltv = tv.tv_sec-lasttv.tv_sec;
716                         if (tv.tv_sec < lasttv.tv_sec ||
717                             (tv.tv_sec == lasttv.tv_sec &&
718                              tv.tv_usec < lasttv.tv_usec)) {
719                                 pr_warn("AIEEEE: your clock just jumped backwards\n");
720                                 pr_warn("%d %d %lx %lx %lx %lx\n",
721                                         dcd, sense,
722                                         tv.tv_sec, lasttv.tv_sec,
723                                         (unsigned long)tv.tv_usec,
724                                         (unsigned long)lasttv.tv_usec);
725                                 data = PULSE_MASK;
726                         } else if (deltv > 15) {
727                                 data = PULSE_MASK; /* really long time */
728                                 if (!(dcd^sense)) {
729                                         /* sanity check */
730                                         pr_warn("AIEEEE: %d %d %lx %lx %lx %lx\n",
731                                                 dcd, sense,
732                                                 tv.tv_sec, lasttv.tv_sec,
733                                                 (unsigned long)tv.tv_usec,
734                                                 (unsigned long)lasttv.tv_usec);
735                                         /*
736                                          * detecting pulse while this
737                                          * MUST be a space!
738                                          */
739                                         sense = sense ? 0 : 1;
740                                 }
741                         } else
742                                 data = (int) (deltv*1000000 +
743                                                tv.tv_usec -
744                                                lasttv.tv_usec);
745                         frbwrite(dcd^sense ? data : (data|PULSE_BIT));
746                         lasttv = tv;
747                         last_dcd = dcd;
748                         wake_up_interruptible(&rbuf.wait_poll);
749                 }
750         } while (!(sinp(UART_IIR) & UART_IIR_NO_INT)); /* still pending ? */
751         return IRQ_HANDLED;
752 }
753 
754 
755 static int hardware_init_port(void)
756 {
757         u8 scratch, scratch2, scratch3;
758 
759         /*
760          * This is a simple port existence test, borrowed from the autoconfig
761          * function in drivers/serial/8250.c
762          */
763         scratch = sinp(UART_IER);
764         soutp(UART_IER, 0);
765 #ifdef __i386__
766         outb(0xff, 0x080);
767 #endif
768         scratch2 = sinp(UART_IER) & 0x0f;
769         soutp(UART_IER, 0x0f);
770 #ifdef __i386__
771         outb(0x00, 0x080);
772 #endif
773         scratch3 = sinp(UART_IER) & 0x0f;
774         soutp(UART_IER, scratch);
775         if (scratch2 != 0 || scratch3 != 0x0f) {
776                 /* we fail, there's nothing here */
777                 pr_err("port existence test failed, cannot continue\n");
778                 return -ENODEV;
779         }
780 
781 
782 
783         /* Set DLAB 0. */
784         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
785 
786         /* First of all, disable all interrupts */
787         soutp(UART_IER, sinp(UART_IER) &
788               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
789 
790         /* Clear registers. */
791         sinp(UART_LSR);
792         sinp(UART_RX);
793         sinp(UART_IIR);
794         sinp(UART_MSR);
795 
796 #ifdef CONFIG_LIRC_SERIAL_NSLU2
797         if (type == LIRC_NSLU2) {
798                 /* Setup NSLU2 UART */
799 
800                 /* Enable UART */
801                 soutp(UART_IER, sinp(UART_IER) | UART_IE_IXP42X_UUE);
802                 /* Disable Receiver data Time out interrupt */
803                 soutp(UART_IER, sinp(UART_IER) & ~UART_IE_IXP42X_RTOIE);
804                 /* set out2 = interrupt unmask; off() doesn't set MCR
805                    on NSLU2 */
806                 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
807         }
808 #endif
809 
810         /* Set line for power source */
811         off();
812 
813         /* Clear registers again to be sure. */
814         sinp(UART_LSR);
815         sinp(UART_RX);
816         sinp(UART_IIR);
817         sinp(UART_MSR);
818 
819         switch (type) {
820         case LIRC_IRDEO:
821         case LIRC_IRDEO_REMOTE:
822                 /* setup port to 7N1 @ 115200 Baud */
823                 /* 7N1+start = 9 bits at 115200 ~ 3 bits at 38kHz */
824 
825                 /* Set DLAB 1. */
826                 soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
827                 /* Set divisor to 1 => 115200 Baud */
828                 soutp(UART_DLM, 0);
829                 soutp(UART_DLL, 1);
830                 /* Set DLAB 0 +  7N1 */
831                 soutp(UART_LCR, UART_LCR_WLEN7);
832                 /* THR interrupt already disabled at this point */
833                 break;
834         default:
835                 break;
836         }
837 
838         return 0;
839 }
840 
841 static int lirc_serial_probe(struct platform_device *dev)
842 {
843         int i, nlow, nhigh, result;
844 
845 #ifdef CONFIG_LIRC_SERIAL_NSLU2
846         /* This GPIO is used for a LED on the NSLU2 */
847         result = devm_gpio_request(dev, NSLU2_LED_GRN, "lirc-serial");
848         if (result)
849                 return result;
850         result = gpio_direction_output(NSLU2_LED_GRN, 0);
851         if (result)
852                 return result;
853 #endif
854 
855         result = request_irq(irq, lirc_irq_handler,
856                              (share_irq ? IRQF_SHARED : 0),
857                              LIRC_DRIVER_NAME, (void *)&hardware);
858         if (result < 0) {
859                 if (result == -EBUSY)
860                         dev_err(&dev->dev, "IRQ %d busy\n", irq);
861                 else if (result == -EINVAL)
862                         dev_err(&dev->dev, "Bad irq number or handler\n");
863                 return result;
864         }
865 
866         /* Reserve io region. */
867         /*
868          * Future MMAP-Developers: Attention!
869          * For memory mapped I/O you *might* need to use ioremap() first,
870          * for the NSLU2 it's done in boot code.
871          */
872         if (((iommap != 0)
873              && (request_mem_region(iommap, 8 << ioshift,
874                                     LIRC_DRIVER_NAME) == NULL))
875            || ((iommap == 0)
876                && (request_region(io, 8, LIRC_DRIVER_NAME) == NULL))) {
877                 dev_err(&dev->dev, "port %04x already in use\n", io);
878                 dev_warn(&dev->dev, "use 'setserial /dev/ttySX uart none'\n");
879                 dev_warn(&dev->dev,
880                          "or compile the serial port driver as module and\n");
881                 dev_warn(&dev->dev, "make sure this module is loaded first\n");
882                 result = -EBUSY;
883                 goto exit_free_irq;
884         }
885 
886         result = hardware_init_port();
887         if (result < 0)
888                 goto exit_release_region;
889 
890         /* Initialize pulse/space widths */
891         init_timing_params(duty_cycle, freq);
892 
893         /* If pin is high, then this must be an active low receiver. */
894         if (sense == -1) {
895                 /* wait 1/2 sec for the power supply */
896                 msleep(500);
897 
898                 /*
899                  * probe 9 times every 0.04s, collect "votes" for
900                  * active high/low
901                  */
902                 nlow = 0;
903                 nhigh = 0;
904                 for (i = 0; i < 9; i++) {
905                         if (sinp(UART_MSR) & hardware[type].signal_pin)
906                                 nlow++;
907                         else
908                                 nhigh++;
909                         msleep(40);
910                 }
911                 sense = (nlow >= nhigh ? 1 : 0);
912                 dev_info(&dev->dev, "auto-detected active %s receiver\n",
913                          sense ? "low" : "high");
914         } else
915                 dev_info(&dev->dev, "Manually using active %s receiver\n",
916                          sense ? "low" : "high");
917 
918         dprintk("Interrupt %d, port %04x obtained\n", irq, io);
919         return 0;
920 
921 exit_release_region:
922         if (iommap != 0)
923                 release_mem_region(iommap, 8 << ioshift);
924         else
925                 release_region(io, 8);
926 exit_free_irq:
927         free_irq(irq, (void *)&hardware);
928 
929         return result;
930 }
931 
932 static int lirc_serial_remove(struct platform_device *dev)
933 {
934         free_irq(irq, (void *)&hardware);
935 
936         if (iommap != 0)
937                 release_mem_region(iommap, 8 << ioshift);
938         else
939                 release_region(io, 8);
940 
941         return 0;
942 }
943 
944 static int set_use_inc(void *data)
945 {
946         unsigned long flags;
947 
948         /* initialize timestamp */
949         do_gettimeofday(&lasttv);
950 
951         spin_lock_irqsave(&hardware[type].lock, flags);
952 
953         /* Set DLAB 0. */
954         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
955 
956         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
957 
958         spin_unlock_irqrestore(&hardware[type].lock, flags);
959 
960         return 0;
961 }
962 
963 static void set_use_dec(void *data)
964 {       unsigned long flags;
965 
966         spin_lock_irqsave(&hardware[type].lock, flags);
967 
968         /* Set DLAB 0. */
969         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
970 
971         /* First of all, disable all interrupts */
972         soutp(UART_IER, sinp(UART_IER) &
973               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
974         spin_unlock_irqrestore(&hardware[type].lock, flags);
975 }
976 
977 static ssize_t lirc_write(struct file *file, const char __user *buf,
978                          size_t n, loff_t *ppos)
979 {
980         int i, count;
981         unsigned long flags;
982         long delta = 0;
983         int *wbuf;
984 
985         if (!(hardware[type].features & LIRC_CAN_SEND_PULSE))
986                 return -EPERM;
987 
988         count = n / sizeof(int);
989         if (n % sizeof(int) || count % 2 == 0)
990                 return -EINVAL;
991         wbuf = memdup_user(buf, n);
992         if (IS_ERR(wbuf))
993                 return PTR_ERR(wbuf);
994         spin_lock_irqsave(&hardware[type].lock, flags);
995         if (type == LIRC_IRDEO) {
996                 /* DTR, RTS down */
997                 on();
998         }
999         for (i = 0; i < count; i++) {
1000                 if (i%2)
1001                         hardware[type].send_space(wbuf[i] - delta);
1002                 else
1003                         delta = hardware[type].send_pulse(wbuf[i]);
1004         }
1005         off();
1006         spin_unlock_irqrestore(&hardware[type].lock, flags);
1007         kfree(wbuf);
1008         return n;
1009 }
1010 
1011 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1012 {
1013         int result;
1014         __u32 value;
1015 
1016         switch (cmd) {
1017         case LIRC_GET_SEND_MODE:
1018                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1019                         return -ENOIOCTLCMD;
1020 
1021                 result = put_user(LIRC_SEND2MODE
1022                                   (hardware[type].features&LIRC_CAN_SEND_MASK),
1023                                   (__u32 *) arg);
1024                 if (result)
1025                         return result;
1026                 break;
1027 
1028         case LIRC_SET_SEND_MODE:
1029                 if (!(hardware[type].features&LIRC_CAN_SEND_MASK))
1030                         return -ENOIOCTLCMD;
1031 
1032                 result = get_user(value, (__u32 *) arg);
1033                 if (result)
1034                         return result;
1035                 /* only LIRC_MODE_PULSE supported */
1036                 if (value != LIRC_MODE_PULSE)
1037                         return -EINVAL;
1038                 break;
1039 
1040         case LIRC_GET_LENGTH:
1041                 return -ENOIOCTLCMD;
1042                 break;
1043 
1044         case LIRC_SET_SEND_DUTY_CYCLE:
1045                 dprintk("SET_SEND_DUTY_CYCLE\n");
1046                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_DUTY_CYCLE))
1047                         return -ENOIOCTLCMD;
1048 
1049                 result = get_user(value, (__u32 *) arg);
1050                 if (result)
1051                         return result;
1052                 if (value <= 0 || value > 100)
1053                         return -EINVAL;
1054                 return init_timing_params(value, freq);
1055                 break;
1056 
1057         case LIRC_SET_SEND_CARRIER:
1058                 dprintk("SET_SEND_CARRIER\n");
1059                 if (!(hardware[type].features&LIRC_CAN_SET_SEND_CARRIER))
1060                         return -ENOIOCTLCMD;
1061 
1062                 result = get_user(value, (__u32 *) arg);
1063                 if (result)
1064                         return result;
1065                 if (value > 500000 || value < 20000)
1066                         return -EINVAL;
1067                 return init_timing_params(duty_cycle, value);
1068                 break;
1069 
1070         default:
1071                 return lirc_dev_fop_ioctl(filep, cmd, arg);
1072         }
1073         return 0;
1074 }
1075 
1076 static const struct file_operations lirc_fops = {
1077         .owner          = THIS_MODULE,
1078         .write          = lirc_write,
1079         .unlocked_ioctl = lirc_ioctl,
1080 #ifdef CONFIG_COMPAT
1081         .compat_ioctl   = lirc_ioctl,
1082 #endif
1083         .read           = lirc_dev_fop_read,
1084         .poll           = lirc_dev_fop_poll,
1085         .open           = lirc_dev_fop_open,
1086         .release        = lirc_dev_fop_close,
1087         .llseek         = no_llseek,
1088 };
1089 
1090 static struct lirc_driver driver = {
1091         .name           = LIRC_DRIVER_NAME,
1092         .minor          = -1,
1093         .code_length    = 1,
1094         .sample_rate    = 0,
1095         .data           = NULL,
1096         .add_to_buf     = NULL,
1097         .rbuf           = &rbuf,
1098         .set_use_inc    = set_use_inc,
1099         .set_use_dec    = set_use_dec,
1100         .fops           = &lirc_fops,
1101         .dev            = NULL,
1102         .owner          = THIS_MODULE,
1103 };
1104 
1105 static struct platform_device *lirc_serial_dev;
1106 
1107 static int lirc_serial_suspend(struct platform_device *dev,
1108                                pm_message_t state)
1109 {
1110         /* Set DLAB 0. */
1111         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1112 
1113         /* Disable all interrupts */
1114         soutp(UART_IER, sinp(UART_IER) &
1115               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
1116 
1117         /* Clear registers. */
1118         sinp(UART_LSR);
1119         sinp(UART_RX);
1120         sinp(UART_IIR);
1121         sinp(UART_MSR);
1122 
1123         return 0;
1124 }
1125 
1126 /* twisty maze... need a forward-declaration here... */
1127 static void lirc_serial_exit(void);
1128 
1129 static int lirc_serial_resume(struct platform_device *dev)
1130 {
1131         unsigned long flags;
1132         int result;
1133 
1134         result = hardware_init_port();
1135         if (result < 0)
1136                 return result;
1137 
1138         spin_lock_irqsave(&hardware[type].lock, flags);
1139         /* Enable Interrupt */
1140         do_gettimeofday(&lasttv);
1141         soutp(UART_IER, sinp(UART_IER)|UART_IER_MSI);
1142         off();
1143 
1144         lirc_buffer_clear(&rbuf);
1145 
1146         spin_unlock_irqrestore(&hardware[type].lock, flags);
1147 
1148         return 0;
1149 }
1150 
1151 static struct platform_driver lirc_serial_driver = {
1152         .probe          = lirc_serial_probe,
1153         .remove         = lirc_serial_remove,
1154         .suspend        = lirc_serial_suspend,
1155         .resume         = lirc_serial_resume,
1156         .driver         = {
1157                 .name   = "lirc_serial",
1158                 .owner  = THIS_MODULE,
1159         },
1160 };
1161 
1162 static int __init lirc_serial_init(void)
1163 {
1164         int result;
1165 
1166         /* Init read buffer. */
1167         result = lirc_buffer_init(&rbuf, sizeof(int), RBUF_LEN);
1168         if (result < 0)
1169                 return result;
1170 
1171         result = platform_driver_register(&lirc_serial_driver);
1172         if (result) {
1173                 printk("lirc register returned %d\n", result);
1174                 goto exit_buffer_free;
1175         }
1176 
1177         lirc_serial_dev = platform_device_alloc("lirc_serial", 0);
1178         if (!lirc_serial_dev) {
1179                 result = -ENOMEM;
1180                 goto exit_driver_unregister;
1181         }
1182 
1183         result = platform_device_add(lirc_serial_dev);
1184         if (result)
1185                 goto exit_device_put;
1186 
1187         return 0;
1188 
1189 exit_device_put:
1190         platform_device_put(lirc_serial_dev);
1191 exit_driver_unregister:
1192         platform_driver_unregister(&lirc_serial_driver);
1193 exit_buffer_free:
1194         lirc_buffer_free(&rbuf);
1195         return result;
1196 }
1197 
1198 static void lirc_serial_exit(void)
1199 {
1200         platform_device_unregister(lirc_serial_dev);
1201         platform_driver_unregister(&lirc_serial_driver);
1202         lirc_buffer_free(&rbuf);
1203 }
1204 
1205 static int __init lirc_serial_init_module(void)
1206 {
1207         int result;
1208 
1209         switch (type) {
1210         case LIRC_HOMEBREW:
1211         case LIRC_IRDEO:
1212         case LIRC_IRDEO_REMOTE:
1213         case LIRC_ANIMAX:
1214         case LIRC_IGOR:
1215                 /* if nothing specified, use ttyS0/com1 and irq 4 */
1216                 io = io ? io : 0x3f8;
1217                 irq = irq ? irq : 4;
1218                 break;
1219 #ifdef CONFIG_LIRC_SERIAL_NSLU2
1220         case LIRC_NSLU2:
1221                 io = io ? io : IRQ_IXP4XX_UART2;
1222                 irq = irq ? irq : (IXP4XX_UART2_BASE_VIRT + REG_OFFSET);
1223                 iommap = iommap ? iommap : IXP4XX_UART2_BASE_PHYS;
1224                 ioshift = ioshift ? ioshift : 2;
1225                 break;
1226 #endif
1227         default:
1228                 return -EINVAL;
1229         }
1230         if (!softcarrier) {
1231                 switch (type) {
1232                 case LIRC_HOMEBREW:
1233                 case LIRC_IGOR:
1234 #ifdef CONFIG_LIRC_SERIAL_NSLU2
1235                 case LIRC_NSLU2:
1236 #endif
1237                         hardware[type].features &=
1238                                 ~(LIRC_CAN_SET_SEND_DUTY_CYCLE|
1239                                   LIRC_CAN_SET_SEND_CARRIER);
1240                         break;
1241                 }
1242         }
1243 
1244         /* make sure sense is either -1, 0, or 1 */
1245         if (sense != -1)
1246                 sense = !!sense;
1247 
1248         result = lirc_serial_init();
1249         if (result)
1250                 return result;
1251 
1252         driver.features = hardware[type].features;
1253         driver.dev = &lirc_serial_dev->dev;
1254         driver.minor = lirc_register_driver(&driver);
1255         if (driver.minor < 0) {
1256                 pr_err("register_chrdev failed!\n");
1257                 lirc_serial_exit();
1258                 return driver.minor;
1259         }
1260         return 0;
1261 }
1262 
1263 static void __exit lirc_serial_exit_module(void)
1264 {
1265         lirc_unregister_driver(driver.minor);
1266         lirc_serial_exit();
1267         dprintk("cleaned up module\n");
1268 }
1269 
1270 
1271 module_init(lirc_serial_init_module);
1272 module_exit(lirc_serial_exit_module);
1273 
1274 MODULE_DESCRIPTION("Infra-red receiver driver for serial ports.");
1275 MODULE_AUTHOR("Ralph Metzler, Trent Piepho, Ben Pfaff, "
1276               "Christoph Bartelmus, Andrei Tanas");
1277 MODULE_LICENSE("GPL");
1278 
1279 module_param(type, int, S_IRUGO);
1280 MODULE_PARM_DESC(type, "Hardware type (0 = home-brew, 1 = IRdeo,"
1281                  " 2 = IRdeo Remote, 3 = AnimaX, 4 = IgorPlug,"
1282                  " 5 = NSLU2 RX:CTS2/TX:GreenLED)");
1283 
1284 module_param(io, int, S_IRUGO);
1285 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1286 
1287 /* some architectures (e.g. intel xscale) have memory mapped registers */
1288 module_param(iommap, bool, S_IRUGO);
1289 MODULE_PARM_DESC(iommap, "physical base for memory mapped I/O"
1290                 " (0 = no memory mapped io)");
1291 
1292 /*
1293  * some architectures (e.g. intel xscale) align the 8bit serial registers
1294  * on 32bit word boundaries.
1295  * See linux-kernel/drivers/tty/serial/8250/8250.c serial_in()/out()
1296  */
1297 module_param(ioshift, int, S_IRUGO);
1298 MODULE_PARM_DESC(ioshift, "shift I/O register offset (0 = no shift)");
1299 
1300 module_param(irq, int, S_IRUGO);
1301 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1302 
1303 module_param(share_irq, bool, S_IRUGO);
1304 MODULE_PARM_DESC(share_irq, "Share interrupts (0 = off, 1 = on)");
1305 
1306 module_param(sense, int, S_IRUGO);
1307 MODULE_PARM_DESC(sense, "Override autodetection of IR receiver circuit"
1308                  " (0 = active high, 1 = active low )");
1309 
1310 #ifdef CONFIG_LIRC_SERIAL_TRANSMITTER
1311 module_param(txsense, bool, S_IRUGO);
1312 MODULE_PARM_DESC(txsense, "Sense of transmitter circuit"
1313                  " (0 = active high, 1 = active low )");
1314 #endif
1315 
1316 module_param(softcarrier, bool, S_IRUGO);
1317 MODULE_PARM_DESC(softcarrier, "Software carrier (0 = off, 1 = on, default on)");
1318 
1319 module_param(debug, bool, S_IRUGO | S_IWUSR);
1320 MODULE_PARM_DESC(debug, "Enable debugging messages");
1321 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us