Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/spi/spi-sh-msiof.c

  1 /*
  2  * SuperH MSIOF SPI Master Interface
  3  *
  4  * Copyright (c) 2009 Magnus Damm
  5  * Copyright (C) 2014 Glider bvba
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  *
 11  */
 12 
 13 #include <linux/bitmap.h>
 14 #include <linux/clk.h>
 15 #include <linux/completion.h>
 16 #include <linux/delay.h>
 17 #include <linux/dma-mapping.h>
 18 #include <linux/dmaengine.h>
 19 #include <linux/err.h>
 20 #include <linux/gpio.h>
 21 #include <linux/interrupt.h>
 22 #include <linux/io.h>
 23 #include <linux/kernel.h>
 24 #include <linux/module.h>
 25 #include <linux/of.h>
 26 #include <linux/of_device.h>
 27 #include <linux/platform_device.h>
 28 #include <linux/pm_runtime.h>
 29 #include <linux/sh_dma.h>
 30 
 31 #include <linux/spi/sh_msiof.h>
 32 #include <linux/spi/spi.h>
 33 
 34 #include <asm/unaligned.h>
 35 
 36 
 37 struct sh_msiof_chipdata {
 38         u16 tx_fifo_size;
 39         u16 rx_fifo_size;
 40         u16 master_flags;
 41 };
 42 
 43 struct sh_msiof_spi_priv {
 44         struct spi_master *master;
 45         void __iomem *mapbase;
 46         struct clk *clk;
 47         struct platform_device *pdev;
 48         const struct sh_msiof_chipdata *chipdata;
 49         struct sh_msiof_spi_info *info;
 50         struct completion done;
 51         int tx_fifo_size;
 52         int rx_fifo_size;
 53         void *tx_dma_page;
 54         void *rx_dma_page;
 55         dma_addr_t tx_dma_addr;
 56         dma_addr_t rx_dma_addr;
 57 };
 58 
 59 #define TMDR1   0x00    /* Transmit Mode Register 1 */
 60 #define TMDR2   0x04    /* Transmit Mode Register 2 */
 61 #define TMDR3   0x08    /* Transmit Mode Register 3 */
 62 #define RMDR1   0x10    /* Receive Mode Register 1 */
 63 #define RMDR2   0x14    /* Receive Mode Register 2 */
 64 #define RMDR3   0x18    /* Receive Mode Register 3 */
 65 #define TSCR    0x20    /* Transmit Clock Select Register */
 66 #define RSCR    0x22    /* Receive Clock Select Register (SH, A1, APE6) */
 67 #define CTR     0x28    /* Control Register */
 68 #define FCTR    0x30    /* FIFO Control Register */
 69 #define STR     0x40    /* Status Register */
 70 #define IER     0x44    /* Interrupt Enable Register */
 71 #define TDR1    0x48    /* Transmit Control Data Register 1 (SH, A1) */
 72 #define TDR2    0x4c    /* Transmit Control Data Register 2 (SH, A1) */
 73 #define TFDR    0x50    /* Transmit FIFO Data Register */
 74 #define RDR1    0x58    /* Receive Control Data Register 1 (SH, A1) */
 75 #define RDR2    0x5c    /* Receive Control Data Register 2 (SH, A1) */
 76 #define RFDR    0x60    /* Receive FIFO Data Register */
 77 
 78 /* TMDR1 and RMDR1 */
 79 #define MDR1_TRMD        0x80000000 /* Transfer Mode (1 = Master mode) */
 80 #define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
 81 #define MDR1_SYNCMD_SPI  0x20000000 /*   Level mode/SPI */
 82 #define MDR1_SYNCMD_LR   0x30000000 /*   L/R mode */
 83 #define MDR1_SYNCAC_SHIFT        25 /* Sync Polarity (1 = Active-low) */
 84 #define MDR1_BITLSB_SHIFT        24 /* MSB/LSB First (1 = LSB first) */
 85 #define MDR1_DTDL_SHIFT          20 /* Data Pin Bit Delay for MSIOF_SYNC */
 86 #define MDR1_SYNCDL_SHIFT        16 /* Frame Sync Signal Timing Delay */
 87 #define MDR1_FLD_MASK    0x0000000c /* Frame Sync Signal Interval (0-3) */
 88 #define MDR1_FLD_SHIFT            2
 89 #define MDR1_XXSTP       0x00000001 /* Transmission/Reception Stop on FIFO */
 90 /* TMDR1 */
 91 #define TMDR1_PCON       0x40000000 /* Transfer Signal Connection */
 92 
 93 /* TMDR2 and RMDR2 */
 94 #define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
 95 #define MDR2_WDLEN1(i)  (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 96 #define MDR2_GRPMASK1   0x00000001 /* Group Output Mask 1 (SH, A1) */
 97 
 98 #define MAX_WDLEN       256U
 99 
100 /* TSCR and RSCR */
101 #define SCR_BRPS_MASK       0x1f00 /* Prescaler Setting (1-32) */
102 #define SCR_BRPS(i)     (((i) - 1) << 8)
103 #define SCR_BRDV_MASK       0x0007 /* Baud Rate Generator's Division Ratio */
104 #define SCR_BRDV_DIV_2      0x0000
105 #define SCR_BRDV_DIV_4      0x0001
106 #define SCR_BRDV_DIV_8      0x0002
107 #define SCR_BRDV_DIV_16     0x0003
108 #define SCR_BRDV_DIV_32     0x0004
109 #define SCR_BRDV_DIV_1      0x0007
110 
111 /* CTR */
112 #define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
113 #define CTR_TSCKIZ_SCK  0x80000000 /*   Disable SCK when TX disabled */
114 #define CTR_TSCKIZ_POL_SHIFT    30 /*   Transmit Clock Polarity */
115 #define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
116 #define CTR_RSCKIZ_SCK  0x20000000 /*   Must match CTR_TSCKIZ_SCK */
117 #define CTR_RSCKIZ_POL_SHIFT    28 /*   Receive Clock Polarity */
118 #define CTR_TEDG_SHIFT          27 /* Transmit Timing (1 = falling edge) */
119 #define CTR_REDG_SHIFT          26 /* Receive Timing (1 = falling edge) */
120 #define CTR_TXDIZ_MASK  0x00c00000 /* Pin Output When TX is Disabled */
121 #define CTR_TXDIZ_LOW   0x00000000 /*   0 */
122 #define CTR_TXDIZ_HIGH  0x00400000 /*   1 */
123 #define CTR_TXDIZ_HIZ   0x00800000 /*   High-impedance */
124 #define CTR_TSCKE       0x00008000 /* Transmit Serial Clock Output Enable */
125 #define CTR_TFSE        0x00004000 /* Transmit Frame Sync Signal Output Enable */
126 #define CTR_TXE         0x00000200 /* Transmit Enable */
127 #define CTR_RXE         0x00000100 /* Receive Enable */
128 
129 /* FCTR */
130 #define FCTR_TFWM_MASK  0xe0000000 /* Transmit FIFO Watermark */
131 #define FCTR_TFWM_64    0x00000000 /*  Transfer Request when 64 empty stages */
132 #define FCTR_TFWM_32    0x20000000 /*  Transfer Request when 32 empty stages */
133 #define FCTR_TFWM_24    0x40000000 /*  Transfer Request when 24 empty stages */
134 #define FCTR_TFWM_16    0x60000000 /*  Transfer Request when 16 empty stages */
135 #define FCTR_TFWM_12    0x80000000 /*  Transfer Request when 12 empty stages */
136 #define FCTR_TFWM_8     0xa0000000 /*  Transfer Request when 8 empty stages */
137 #define FCTR_TFWM_4     0xc0000000 /*  Transfer Request when 4 empty stages */
138 #define FCTR_TFWM_1     0xe0000000 /*  Transfer Request when 1 empty stage */
139 #define FCTR_TFUA_MASK  0x07f00000 /* Transmit FIFO Usable Area */
140 #define FCTR_TFUA_SHIFT         20
141 #define FCTR_TFUA(i)    ((i) << FCTR_TFUA_SHIFT)
142 #define FCTR_RFWM_MASK  0x0000e000 /* Receive FIFO Watermark */
143 #define FCTR_RFWM_1     0x00000000 /*  Transfer Request when 1 valid stages */
144 #define FCTR_RFWM_4     0x00002000 /*  Transfer Request when 4 valid stages */
145 #define FCTR_RFWM_8     0x00004000 /*  Transfer Request when 8 valid stages */
146 #define FCTR_RFWM_16    0x00006000 /*  Transfer Request when 16 valid stages */
147 #define FCTR_RFWM_32    0x00008000 /*  Transfer Request when 32 valid stages */
148 #define FCTR_RFWM_64    0x0000a000 /*  Transfer Request when 64 valid stages */
149 #define FCTR_RFWM_128   0x0000c000 /*  Transfer Request when 128 valid stages */
150 #define FCTR_RFWM_256   0x0000e000 /*  Transfer Request when 256 valid stages */
151 #define FCTR_RFUA_MASK  0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
152 #define FCTR_RFUA_SHIFT          4
153 #define FCTR_RFUA(i)    ((i) << FCTR_RFUA_SHIFT)
154 
155 /* STR */
156 #define STR_TFEMP       0x20000000 /* Transmit FIFO Empty */
157 #define STR_TDREQ       0x10000000 /* Transmit Data Transfer Request */
158 #define STR_TEOF        0x00800000 /* Frame Transmission End */
159 #define STR_TFSERR      0x00200000 /* Transmit Frame Synchronization Error */
160 #define STR_TFOVF       0x00100000 /* Transmit FIFO Overflow */
161 #define STR_TFUDF       0x00080000 /* Transmit FIFO Underflow */
162 #define STR_RFFUL       0x00002000 /* Receive FIFO Full */
163 #define STR_RDREQ       0x00001000 /* Receive Data Transfer Request */
164 #define STR_REOF        0x00000080 /* Frame Reception End */
165 #define STR_RFSERR      0x00000020 /* Receive Frame Synchronization Error */
166 #define STR_RFUDF       0x00000010 /* Receive FIFO Underflow */
167 #define STR_RFOVF       0x00000008 /* Receive FIFO Overflow */
168 
169 /* IER */
170 #define IER_TDMAE       0x80000000 /* Transmit Data DMA Transfer Req. Enable */
171 #define IER_TFEMPE      0x20000000 /* Transmit FIFO Empty Enable */
172 #define IER_TDREQE      0x10000000 /* Transmit Data Transfer Request Enable */
173 #define IER_TEOFE       0x00800000 /* Frame Transmission End Enable */
174 #define IER_TFSERRE     0x00200000 /* Transmit Frame Sync Error Enable */
175 #define IER_TFOVFE      0x00100000 /* Transmit FIFO Overflow Enable */
176 #define IER_TFUDFE      0x00080000 /* Transmit FIFO Underflow Enable */
177 #define IER_RDMAE       0x00008000 /* Receive Data DMA Transfer Req. Enable */
178 #define IER_RFFULE      0x00002000 /* Receive FIFO Full Enable */
179 #define IER_RDREQE      0x00001000 /* Receive Data Transfer Request Enable */
180 #define IER_REOFE       0x00000080 /* Frame Reception End Enable */
181 #define IER_RFSERRE     0x00000020 /* Receive Frame Sync Error Enable */
182 #define IER_RFUDFE      0x00000010 /* Receive FIFO Underflow Enable */
183 #define IER_RFOVFE      0x00000008 /* Receive FIFO Overflow Enable */
184 
185 
186 static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
187 {
188         switch (reg_offs) {
189         case TSCR:
190         case RSCR:
191                 return ioread16(p->mapbase + reg_offs);
192         default:
193                 return ioread32(p->mapbase + reg_offs);
194         }
195 }
196 
197 static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
198                            u32 value)
199 {
200         switch (reg_offs) {
201         case TSCR:
202         case RSCR:
203                 iowrite16(value, p->mapbase + reg_offs);
204                 break;
205         default:
206                 iowrite32(value, p->mapbase + reg_offs);
207                 break;
208         }
209 }
210 
211 static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
212                                     u32 clr, u32 set)
213 {
214         u32 mask = clr | set;
215         u32 data;
216         int k;
217 
218         data = sh_msiof_read(p, CTR);
219         data &= ~clr;
220         data |= set;
221         sh_msiof_write(p, CTR, data);
222 
223         for (k = 100; k > 0; k--) {
224                 if ((sh_msiof_read(p, CTR) & mask) == set)
225                         break;
226 
227                 udelay(10);
228         }
229 
230         return k > 0 ? 0 : -ETIMEDOUT;
231 }
232 
233 static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
234 {
235         struct sh_msiof_spi_priv *p = data;
236 
237         /* just disable the interrupt and wake up */
238         sh_msiof_write(p, IER, 0);
239         complete(&p->done);
240 
241         return IRQ_HANDLED;
242 }
243 
244 static struct {
245         unsigned short div;
246         unsigned short brdv;
247 } const sh_msiof_spi_div_table[] = {
248         { 1,    SCR_BRDV_DIV_1 },
249         { 2,    SCR_BRDV_DIV_2 },
250         { 4,    SCR_BRDV_DIV_4 },
251         { 8,    SCR_BRDV_DIV_8 },
252         { 16,   SCR_BRDV_DIV_16 },
253         { 32,   SCR_BRDV_DIV_32 },
254 };
255 
256 static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
257                                       unsigned long parent_rate, u32 spi_hz)
258 {
259         unsigned long div = 1024;
260         u32 brps, scr;
261         size_t k;
262 
263         if (!WARN_ON(!spi_hz || !parent_rate))
264                 div = DIV_ROUND_UP(parent_rate, spi_hz);
265 
266         for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
267                 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
268                 if (brps <= 32) /* max of brdv is 32 */
269                         break;
270         }
271 
272         k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
273 
274         scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
275         sh_msiof_write(p, TSCR, scr);
276         if (!(p->chipdata->master_flags & SPI_MASTER_MUST_TX))
277                 sh_msiof_write(p, RSCR, scr);
278 }
279 
280 static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
281 {
282         /*
283          * DTDL/SYNCDL bit      : p->info->dtdl or p->info->syncdl
284          * b'000                : 0
285          * b'001                : 100
286          * b'010                : 200
287          * b'011 (SYNCDL only)  : 300
288          * b'101                : 50
289          * b'110                : 150
290          */
291         if (dtdl_or_syncdl % 100)
292                 return dtdl_or_syncdl / 100 + 5;
293         else
294                 return dtdl_or_syncdl / 100;
295 }
296 
297 static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
298 {
299         u32 val;
300 
301         if (!p->info)
302                 return 0;
303 
304         /* check if DTDL and SYNCDL is allowed value */
305         if (p->info->dtdl > 200 || p->info->syncdl > 300) {
306                 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
307                 return 0;
308         }
309 
310         /* check if the sum of DTDL and SYNCDL becomes an integer value  */
311         if ((p->info->dtdl + p->info->syncdl) % 100) {
312                 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
313                 return 0;
314         }
315 
316         val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
317         val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
318 
319         return val;
320 }
321 
322 static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
323                                       u32 cpol, u32 cpha,
324                                       u32 tx_hi_z, u32 lsb_first, u32 cs_high)
325 {
326         u32 tmp;
327         int edge;
328 
329         /*
330          * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
331          *    0    0         10     10    1    1
332          *    0    1         10     10    0    0
333          *    1    0         11     11    0    0
334          *    1    1         11     11    1    1
335          */
336         tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
337         tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
338         tmp |= lsb_first << MDR1_BITLSB_SHIFT;
339         tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
340         sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
341         if (p->chipdata->master_flags & SPI_MASTER_MUST_TX) {
342                 /* These bits are reserved if RX needs TX */
343                 tmp &= ~0x0000ffff;
344         }
345         sh_msiof_write(p, RMDR1, tmp);
346 
347         tmp = 0;
348         tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
349         tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
350 
351         edge = cpol ^ !cpha;
352 
353         tmp |= edge << CTR_TEDG_SHIFT;
354         tmp |= edge << CTR_REDG_SHIFT;
355         tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
356         sh_msiof_write(p, CTR, tmp);
357 }
358 
359 static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
360                                        const void *tx_buf, void *rx_buf,
361                                        u32 bits, u32 words)
362 {
363         u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
364 
365         if (tx_buf || (p->chipdata->master_flags & SPI_MASTER_MUST_TX))
366                 sh_msiof_write(p, TMDR2, dr2);
367         else
368                 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
369 
370         if (rx_buf)
371                 sh_msiof_write(p, RMDR2, dr2);
372 }
373 
374 static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
375 {
376         sh_msiof_write(p, STR, sh_msiof_read(p, STR));
377 }
378 
379 static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
380                                       const void *tx_buf, int words, int fs)
381 {
382         const u8 *buf_8 = tx_buf;
383         int k;
384 
385         for (k = 0; k < words; k++)
386                 sh_msiof_write(p, TFDR, buf_8[k] << fs);
387 }
388 
389 static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
390                                        const void *tx_buf, int words, int fs)
391 {
392         const u16 *buf_16 = tx_buf;
393         int k;
394 
395         for (k = 0; k < words; k++)
396                 sh_msiof_write(p, TFDR, buf_16[k] << fs);
397 }
398 
399 static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
400                                         const void *tx_buf, int words, int fs)
401 {
402         const u16 *buf_16 = tx_buf;
403         int k;
404 
405         for (k = 0; k < words; k++)
406                 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
407 }
408 
409 static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
410                                        const void *tx_buf, int words, int fs)
411 {
412         const u32 *buf_32 = tx_buf;
413         int k;
414 
415         for (k = 0; k < words; k++)
416                 sh_msiof_write(p, TFDR, buf_32[k] << fs);
417 }
418 
419 static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
420                                         const void *tx_buf, int words, int fs)
421 {
422         const u32 *buf_32 = tx_buf;
423         int k;
424 
425         for (k = 0; k < words; k++)
426                 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
427 }
428 
429 static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
430                                         const void *tx_buf, int words, int fs)
431 {
432         const u32 *buf_32 = tx_buf;
433         int k;
434 
435         for (k = 0; k < words; k++)
436                 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
437 }
438 
439 static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
440                                          const void *tx_buf, int words, int fs)
441 {
442         const u32 *buf_32 = tx_buf;
443         int k;
444 
445         for (k = 0; k < words; k++)
446                 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
447 }
448 
449 static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
450                                      void *rx_buf, int words, int fs)
451 {
452         u8 *buf_8 = rx_buf;
453         int k;
454 
455         for (k = 0; k < words; k++)
456                 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
457 }
458 
459 static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
460                                       void *rx_buf, int words, int fs)
461 {
462         u16 *buf_16 = rx_buf;
463         int k;
464 
465         for (k = 0; k < words; k++)
466                 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
467 }
468 
469 static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
470                                        void *rx_buf, int words, int fs)
471 {
472         u16 *buf_16 = rx_buf;
473         int k;
474 
475         for (k = 0; k < words; k++)
476                 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
477 }
478 
479 static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
480                                       void *rx_buf, int words, int fs)
481 {
482         u32 *buf_32 = rx_buf;
483         int k;
484 
485         for (k = 0; k < words; k++)
486                 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
487 }
488 
489 static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
490                                        void *rx_buf, int words, int fs)
491 {
492         u32 *buf_32 = rx_buf;
493         int k;
494 
495         for (k = 0; k < words; k++)
496                 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
497 }
498 
499 static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
500                                        void *rx_buf, int words, int fs)
501 {
502         u32 *buf_32 = rx_buf;
503         int k;
504 
505         for (k = 0; k < words; k++)
506                 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
507 }
508 
509 static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
510                                        void *rx_buf, int words, int fs)
511 {
512         u32 *buf_32 = rx_buf;
513         int k;
514 
515         for (k = 0; k < words; k++)
516                 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
517 }
518 
519 static int sh_msiof_spi_setup(struct spi_device *spi)
520 {
521         struct device_node      *np = spi->master->dev.of_node;
522         struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
523 
524         pm_runtime_get_sync(&p->pdev->dev);
525 
526         if (!np) {
527                 /*
528                  * Use spi->controller_data for CS (same strategy as spi_gpio),
529                  * if any. otherwise let HW control CS
530                  */
531                 spi->cs_gpio = (uintptr_t)spi->controller_data;
532         }
533 
534         /* Configure pins before deasserting CS */
535         sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
536                                   !!(spi->mode & SPI_CPHA),
537                                   !!(spi->mode & SPI_3WIRE),
538                                   !!(spi->mode & SPI_LSB_FIRST),
539                                   !!(spi->mode & SPI_CS_HIGH));
540 
541         if (spi->cs_gpio >= 0)
542                 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
543 
544 
545         pm_runtime_put(&p->pdev->dev);
546 
547         return 0;
548 }
549 
550 static int sh_msiof_prepare_message(struct spi_master *master,
551                                     struct spi_message *msg)
552 {
553         struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
554         const struct spi_device *spi = msg->spi;
555 
556         /* Configure pins before asserting CS */
557         sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
558                                   !!(spi->mode & SPI_CPHA),
559                                   !!(spi->mode & SPI_3WIRE),
560                                   !!(spi->mode & SPI_LSB_FIRST),
561                                   !!(spi->mode & SPI_CS_HIGH));
562         return 0;
563 }
564 
565 static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
566 {
567         int ret;
568 
569         /* setup clock and rx/tx signals */
570         ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
571         if (rx_buf && !ret)
572                 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
573         if (!ret)
574                 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
575 
576         /* start by setting frame bit */
577         if (!ret)
578                 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
579 
580         return ret;
581 }
582 
583 static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
584 {
585         int ret;
586 
587         /* shut down frame, rx/tx and clock signals */
588         ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
589         if (!ret)
590                 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
591         if (rx_buf && !ret)
592                 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
593         if (!ret)
594                 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
595 
596         return ret;
597 }
598 
599 static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
600                                   void (*tx_fifo)(struct sh_msiof_spi_priv *,
601                                                   const void *, int, int),
602                                   void (*rx_fifo)(struct sh_msiof_spi_priv *,
603                                                   void *, int, int),
604                                   const void *tx_buf, void *rx_buf,
605                                   int words, int bits)
606 {
607         int fifo_shift;
608         int ret;
609 
610         /* limit maximum word transfer to rx/tx fifo size */
611         if (tx_buf)
612                 words = min_t(int, words, p->tx_fifo_size);
613         if (rx_buf)
614                 words = min_t(int, words, p->rx_fifo_size);
615 
616         /* the fifo contents need shifting */
617         fifo_shift = 32 - bits;
618 
619         /* default FIFO watermarks for PIO */
620         sh_msiof_write(p, FCTR, 0);
621 
622         /* setup msiof transfer mode registers */
623         sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
624         sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
625 
626         /* write tx fifo */
627         if (tx_buf)
628                 tx_fifo(p, tx_buf, words, fifo_shift);
629 
630         reinit_completion(&p->done);
631 
632         ret = sh_msiof_spi_start(p, rx_buf);
633         if (ret) {
634                 dev_err(&p->pdev->dev, "failed to start hardware\n");
635                 goto stop_ier;
636         }
637 
638         /* wait for tx fifo to be emptied / rx fifo to be filled */
639         if (!wait_for_completion_timeout(&p->done, HZ)) {
640                 dev_err(&p->pdev->dev, "PIO timeout\n");
641                 ret = -ETIMEDOUT;
642                 goto stop_reset;
643         }
644 
645         /* read rx fifo */
646         if (rx_buf)
647                 rx_fifo(p, rx_buf, words, fifo_shift);
648 
649         /* clear status bits */
650         sh_msiof_reset_str(p);
651 
652         ret = sh_msiof_spi_stop(p, rx_buf);
653         if (ret) {
654                 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
655                 return ret;
656         }
657 
658         return words;
659 
660 stop_reset:
661         sh_msiof_reset_str(p);
662         sh_msiof_spi_stop(p, rx_buf);
663 stop_ier:
664         sh_msiof_write(p, IER, 0);
665         return ret;
666 }
667 
668 static void sh_msiof_dma_complete(void *arg)
669 {
670         struct sh_msiof_spi_priv *p = arg;
671 
672         sh_msiof_write(p, IER, 0);
673         complete(&p->done);
674 }
675 
676 static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
677                              void *rx, unsigned int len)
678 {
679         u32 ier_bits = 0;
680         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
681         dma_cookie_t cookie;
682         int ret;
683 
684         /* First prepare and submit the DMA request(s), as this may fail */
685         if (rx) {
686                 ier_bits |= IER_RDREQE | IER_RDMAE;
687                 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
688                                         p->rx_dma_addr, len, DMA_FROM_DEVICE,
689                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
690                 if (!desc_rx)
691                         return -EAGAIN;
692 
693                 desc_rx->callback = sh_msiof_dma_complete;
694                 desc_rx->callback_param = p;
695                 cookie = dmaengine_submit(desc_rx);
696                 if (dma_submit_error(cookie))
697                         return cookie;
698         }
699 
700         if (tx) {
701                 ier_bits |= IER_TDREQE | IER_TDMAE;
702                 dma_sync_single_for_device(p->master->dma_tx->device->dev,
703                                            p->tx_dma_addr, len, DMA_TO_DEVICE);
704                 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
705                                         p->tx_dma_addr, len, DMA_TO_DEVICE,
706                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
707                 if (!desc_tx) {
708                         ret = -EAGAIN;
709                         goto no_dma_tx;
710                 }
711 
712                 if (rx) {
713                         /* No callback */
714                         desc_tx->callback = NULL;
715                 } else {
716                         desc_tx->callback = sh_msiof_dma_complete;
717                         desc_tx->callback_param = p;
718                 }
719                 cookie = dmaengine_submit(desc_tx);
720                 if (dma_submit_error(cookie)) {
721                         ret = cookie;
722                         goto no_dma_tx;
723                 }
724         }
725 
726         /* 1 stage FIFO watermarks for DMA */
727         sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
728 
729         /* setup msiof transfer mode registers (32-bit words) */
730         sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
731 
732         sh_msiof_write(p, IER, ier_bits);
733 
734         reinit_completion(&p->done);
735 
736         /* Now start DMA */
737         if (rx)
738                 dma_async_issue_pending(p->master->dma_rx);
739         if (tx)
740                 dma_async_issue_pending(p->master->dma_tx);
741 
742         ret = sh_msiof_spi_start(p, rx);
743         if (ret) {
744                 dev_err(&p->pdev->dev, "failed to start hardware\n");
745                 goto stop_dma;
746         }
747 
748         /* wait for tx fifo to be emptied / rx fifo to be filled */
749         if (!wait_for_completion_timeout(&p->done, HZ)) {
750                 dev_err(&p->pdev->dev, "DMA timeout\n");
751                 ret = -ETIMEDOUT;
752                 goto stop_reset;
753         }
754 
755         /* clear status bits */
756         sh_msiof_reset_str(p);
757 
758         ret = sh_msiof_spi_stop(p, rx);
759         if (ret) {
760                 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
761                 return ret;
762         }
763 
764         if (rx)
765                 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
766                                         p->rx_dma_addr, len,
767                                         DMA_FROM_DEVICE);
768 
769         return 0;
770 
771 stop_reset:
772         sh_msiof_reset_str(p);
773         sh_msiof_spi_stop(p, rx);
774 stop_dma:
775         if (tx)
776                 dmaengine_terminate_all(p->master->dma_tx);
777 no_dma_tx:
778         if (rx)
779                 dmaengine_terminate_all(p->master->dma_rx);
780         sh_msiof_write(p, IER, 0);
781         return ret;
782 }
783 
784 static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
785 {
786         /* src or dst can be unaligned, but not both */
787         if ((unsigned long)src & 3) {
788                 while (words--) {
789                         *dst++ = swab32(get_unaligned(src));
790                         src++;
791                 }
792         } else if ((unsigned long)dst & 3) {
793                 while (words--) {
794                         put_unaligned(swab32(*src++), dst);
795                         dst++;
796                 }
797         } else {
798                 while (words--)
799                         *dst++ = swab32(*src++);
800         }
801 }
802 
803 static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
804 {
805         /* src or dst can be unaligned, but not both */
806         if ((unsigned long)src & 3) {
807                 while (words--) {
808                         *dst++ = swahw32(get_unaligned(src));
809                         src++;
810                 }
811         } else if ((unsigned long)dst & 3) {
812                 while (words--) {
813                         put_unaligned(swahw32(*src++), dst);
814                         dst++;
815                 }
816         } else {
817                 while (words--)
818                         *dst++ = swahw32(*src++);
819         }
820 }
821 
822 static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
823 {
824         memcpy(dst, src, words * 4);
825 }
826 
827 static int sh_msiof_transfer_one(struct spi_master *master,
828                                  struct spi_device *spi,
829                                  struct spi_transfer *t)
830 {
831         struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
832         void (*copy32)(u32 *, const u32 *, unsigned int);
833         void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
834         void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
835         const void *tx_buf = t->tx_buf;
836         void *rx_buf = t->rx_buf;
837         unsigned int len = t->len;
838         unsigned int bits = t->bits_per_word;
839         unsigned int bytes_per_word;
840         unsigned int words;
841         int n;
842         bool swab;
843         int ret;
844 
845         /* setup clocks (clock already enabled in chipselect()) */
846         sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
847 
848         while (master->dma_tx && len > 15) {
849                 /*
850                  *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
851                  *  words, with byte resp. word swapping.
852                  */
853                 unsigned int l = min(len, MAX_WDLEN * 4);
854 
855                 if (bits <= 8) {
856                         if (l & 3)
857                                 break;
858                         copy32 = copy_bswap32;
859                 } else if (bits <= 16) {
860                         if (l & 1)
861                                 break;
862                         copy32 = copy_wswap32;
863                 } else {
864                         copy32 = copy_plain32;
865                 }
866 
867                 if (tx_buf)
868                         copy32(p->tx_dma_page, tx_buf, l / 4);
869 
870                 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
871                 if (ret == -EAGAIN) {
872                         pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
873                                      dev_driver_string(&p->pdev->dev),
874                                      dev_name(&p->pdev->dev));
875                         break;
876                 }
877                 if (ret)
878                         return ret;
879 
880                 if (rx_buf) {
881                         copy32(rx_buf, p->rx_dma_page, l / 4);
882                         rx_buf += l;
883                 }
884                 if (tx_buf)
885                         tx_buf += l;
886 
887                 len -= l;
888                 if (!len)
889                         return 0;
890         }
891 
892         if (bits <= 8 && len > 15 && !(len & 3)) {
893                 bits = 32;
894                 swab = true;
895         } else {
896                 swab = false;
897         }
898 
899         /* setup bytes per word and fifo read/write functions */
900         if (bits <= 8) {
901                 bytes_per_word = 1;
902                 tx_fifo = sh_msiof_spi_write_fifo_8;
903                 rx_fifo = sh_msiof_spi_read_fifo_8;
904         } else if (bits <= 16) {
905                 bytes_per_word = 2;
906                 if ((unsigned long)tx_buf & 0x01)
907                         tx_fifo = sh_msiof_spi_write_fifo_16u;
908                 else
909                         tx_fifo = sh_msiof_spi_write_fifo_16;
910 
911                 if ((unsigned long)rx_buf & 0x01)
912                         rx_fifo = sh_msiof_spi_read_fifo_16u;
913                 else
914                         rx_fifo = sh_msiof_spi_read_fifo_16;
915         } else if (swab) {
916                 bytes_per_word = 4;
917                 if ((unsigned long)tx_buf & 0x03)
918                         tx_fifo = sh_msiof_spi_write_fifo_s32u;
919                 else
920                         tx_fifo = sh_msiof_spi_write_fifo_s32;
921 
922                 if ((unsigned long)rx_buf & 0x03)
923                         rx_fifo = sh_msiof_spi_read_fifo_s32u;
924                 else
925                         rx_fifo = sh_msiof_spi_read_fifo_s32;
926         } else {
927                 bytes_per_word = 4;
928                 if ((unsigned long)tx_buf & 0x03)
929                         tx_fifo = sh_msiof_spi_write_fifo_32u;
930                 else
931                         tx_fifo = sh_msiof_spi_write_fifo_32;
932 
933                 if ((unsigned long)rx_buf & 0x03)
934                         rx_fifo = sh_msiof_spi_read_fifo_32u;
935                 else
936                         rx_fifo = sh_msiof_spi_read_fifo_32;
937         }
938 
939         /* transfer in fifo sized chunks */
940         words = len / bytes_per_word;
941 
942         while (words > 0) {
943                 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
944                                            words, bits);
945                 if (n < 0)
946                         return n;
947 
948                 if (tx_buf)
949                         tx_buf += n * bytes_per_word;
950                 if (rx_buf)
951                         rx_buf += n * bytes_per_word;
952                 words -= n;
953         }
954 
955         return 0;
956 }
957 
958 static const struct sh_msiof_chipdata sh_data = {
959         .tx_fifo_size = 64,
960         .rx_fifo_size = 64,
961         .master_flags = 0,
962 };
963 
964 static const struct sh_msiof_chipdata r8a779x_data = {
965         .tx_fifo_size = 64,
966         .rx_fifo_size = 256,
967         .master_flags = SPI_MASTER_MUST_TX,
968 };
969 
970 static const struct of_device_id sh_msiof_match[] = {
971         { .compatible = "renesas,sh-msiof",        .data = &sh_data },
972         { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
973         { .compatible = "renesas,msiof-r8a7790",   .data = &r8a779x_data },
974         { .compatible = "renesas,msiof-r8a7791",   .data = &r8a779x_data },
975         { .compatible = "renesas,msiof-r8a7792",   .data = &r8a779x_data },
976         { .compatible = "renesas,msiof-r8a7793",   .data = &r8a779x_data },
977         { .compatible = "renesas,msiof-r8a7794",   .data = &r8a779x_data },
978         {},
979 };
980 MODULE_DEVICE_TABLE(of, sh_msiof_match);
981 
982 #ifdef CONFIG_OF
983 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
984 {
985         struct sh_msiof_spi_info *info;
986         struct device_node *np = dev->of_node;
987         u32 num_cs = 1;
988 
989         info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
990         if (!info)
991                 return NULL;
992 
993         /* Parse the MSIOF properties */
994         of_property_read_u32(np, "num-cs", &num_cs);
995         of_property_read_u32(np, "renesas,tx-fifo-size",
996                                         &info->tx_fifo_override);
997         of_property_read_u32(np, "renesas,rx-fifo-size",
998                                         &info->rx_fifo_override);
999         of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1000         of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1001 
1002         info->num_chipselect = num_cs;
1003 
1004         return info;
1005 }
1006 #else
1007 static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1008 {
1009         return NULL;
1010 }
1011 #endif
1012 
1013 static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1014         enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1015 {
1016         dma_cap_mask_t mask;
1017         struct dma_chan *chan;
1018         struct dma_slave_config cfg;
1019         int ret;
1020 
1021         dma_cap_zero(mask);
1022         dma_cap_set(DMA_SLAVE, mask);
1023 
1024         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1025                                 (void *)(unsigned long)id, dev,
1026                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1027         if (!chan) {
1028                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1029                 return NULL;
1030         }
1031 
1032         memset(&cfg, 0, sizeof(cfg));
1033         cfg.direction = dir;
1034         if (dir == DMA_MEM_TO_DEV) {
1035                 cfg.dst_addr = port_addr;
1036                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1037         } else {
1038                 cfg.src_addr = port_addr;
1039                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1040         }
1041 
1042         ret = dmaengine_slave_config(chan, &cfg);
1043         if (ret) {
1044                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1045                 dma_release_channel(chan);
1046                 return NULL;
1047         }
1048 
1049         return chan;
1050 }
1051 
1052 static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1053 {
1054         struct platform_device *pdev = p->pdev;
1055         struct device *dev = &pdev->dev;
1056         const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1057         unsigned int dma_tx_id, dma_rx_id;
1058         const struct resource *res;
1059         struct spi_master *master;
1060         struct device *tx_dev, *rx_dev;
1061 
1062         if (dev->of_node) {
1063                 /* In the OF case we will get the slave IDs from the DT */
1064                 dma_tx_id = 0;
1065                 dma_rx_id = 0;
1066         } else if (info && info->dma_tx_id && info->dma_rx_id) {
1067                 dma_tx_id = info->dma_tx_id;
1068                 dma_rx_id = info->dma_rx_id;
1069         } else {
1070                 /* The driver assumes no error */
1071                 return 0;
1072         }
1073 
1074         /* The DMA engine uses the second register set, if present */
1075         res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1076         if (!res)
1077                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1078 
1079         master = p->master;
1080         master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1081                                                    dma_tx_id,
1082                                                    res->start + TFDR);
1083         if (!master->dma_tx)
1084                 return -ENODEV;
1085 
1086         master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1087                                                    dma_rx_id,
1088                                                    res->start + RFDR);
1089         if (!master->dma_rx)
1090                 goto free_tx_chan;
1091 
1092         p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1093         if (!p->tx_dma_page)
1094                 goto free_rx_chan;
1095 
1096         p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1097         if (!p->rx_dma_page)
1098                 goto free_tx_page;
1099 
1100         tx_dev = master->dma_tx->device->dev;
1101         p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1102                                         DMA_TO_DEVICE);
1103         if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1104                 goto free_rx_page;
1105 
1106         rx_dev = master->dma_rx->device->dev;
1107         p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1108                                         DMA_FROM_DEVICE);
1109         if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1110                 goto unmap_tx_page;
1111 
1112         dev_info(dev, "DMA available");
1113         return 0;
1114 
1115 unmap_tx_page:
1116         dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1117 free_rx_page:
1118         free_page((unsigned long)p->rx_dma_page);
1119 free_tx_page:
1120         free_page((unsigned long)p->tx_dma_page);
1121 free_rx_chan:
1122         dma_release_channel(master->dma_rx);
1123 free_tx_chan:
1124         dma_release_channel(master->dma_tx);
1125         master->dma_tx = NULL;
1126         return -ENODEV;
1127 }
1128 
1129 static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1130 {
1131         struct spi_master *master = p->master;
1132         struct device *dev;
1133 
1134         if (!master->dma_tx)
1135                 return;
1136 
1137         dev = &p->pdev->dev;
1138         dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1139                          PAGE_SIZE, DMA_FROM_DEVICE);
1140         dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1141                          PAGE_SIZE, DMA_TO_DEVICE);
1142         free_page((unsigned long)p->rx_dma_page);
1143         free_page((unsigned long)p->tx_dma_page);
1144         dma_release_channel(master->dma_rx);
1145         dma_release_channel(master->dma_tx);
1146 }
1147 
1148 static int sh_msiof_spi_probe(struct platform_device *pdev)
1149 {
1150         struct resource *r;
1151         struct spi_master *master;
1152         const struct of_device_id *of_id;
1153         struct sh_msiof_spi_priv *p;
1154         int i;
1155         int ret;
1156 
1157         master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1158         if (master == NULL) {
1159                 dev_err(&pdev->dev, "failed to allocate spi master\n");
1160                 return -ENOMEM;
1161         }
1162 
1163         p = spi_master_get_devdata(master);
1164 
1165         platform_set_drvdata(pdev, p);
1166         p->master = master;
1167 
1168         of_id = of_match_device(sh_msiof_match, &pdev->dev);
1169         if (of_id) {
1170                 p->chipdata = of_id->data;
1171                 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1172         } else {
1173                 p->chipdata = (const void *)pdev->id_entry->driver_data;
1174                 p->info = dev_get_platdata(&pdev->dev);
1175         }
1176 
1177         if (!p->info) {
1178                 dev_err(&pdev->dev, "failed to obtain device info\n");
1179                 ret = -ENXIO;
1180                 goto err1;
1181         }
1182 
1183         init_completion(&p->done);
1184 
1185         p->clk = devm_clk_get(&pdev->dev, NULL);
1186         if (IS_ERR(p->clk)) {
1187                 dev_err(&pdev->dev, "cannot get clock\n");
1188                 ret = PTR_ERR(p->clk);
1189                 goto err1;
1190         }
1191 
1192         i = platform_get_irq(pdev, 0);
1193         if (i < 0) {
1194                 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1195                 ret = -ENOENT;
1196                 goto err1;
1197         }
1198 
1199         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1200         p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1201         if (IS_ERR(p->mapbase)) {
1202                 ret = PTR_ERR(p->mapbase);
1203                 goto err1;
1204         }
1205 
1206         ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1207                                dev_name(&pdev->dev), p);
1208         if (ret) {
1209                 dev_err(&pdev->dev, "unable to request irq\n");
1210                 goto err1;
1211         }
1212 
1213         p->pdev = pdev;
1214         pm_runtime_enable(&pdev->dev);
1215 
1216         /* Platform data may override FIFO sizes */
1217         p->tx_fifo_size = p->chipdata->tx_fifo_size;
1218         p->rx_fifo_size = p->chipdata->rx_fifo_size;
1219         if (p->info->tx_fifo_override)
1220                 p->tx_fifo_size = p->info->tx_fifo_override;
1221         if (p->info->rx_fifo_override)
1222                 p->rx_fifo_size = p->info->rx_fifo_override;
1223 
1224         /* init master code */
1225         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1226         master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1227         master->flags = p->chipdata->master_flags;
1228         master->bus_num = pdev->id;
1229         master->dev.of_node = pdev->dev.of_node;
1230         master->num_chipselect = p->info->num_chipselect;
1231         master->setup = sh_msiof_spi_setup;
1232         master->prepare_message = sh_msiof_prepare_message;
1233         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1234         master->auto_runtime_pm = true;
1235         master->transfer_one = sh_msiof_transfer_one;
1236 
1237         ret = sh_msiof_request_dma(p);
1238         if (ret < 0)
1239                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1240 
1241         ret = devm_spi_register_master(&pdev->dev, master);
1242         if (ret < 0) {
1243                 dev_err(&pdev->dev, "spi_register_master error.\n");
1244                 goto err2;
1245         }
1246 
1247         return 0;
1248 
1249  err2:
1250         sh_msiof_release_dma(p);
1251         pm_runtime_disable(&pdev->dev);
1252  err1:
1253         spi_master_put(master);
1254         return ret;
1255 }
1256 
1257 static int sh_msiof_spi_remove(struct platform_device *pdev)
1258 {
1259         struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1260 
1261         sh_msiof_release_dma(p);
1262         pm_runtime_disable(&pdev->dev);
1263         return 0;
1264 }
1265 
1266 static struct platform_device_id spi_driver_ids[] = {
1267         { "spi_sh_msiof",       (kernel_ulong_t)&sh_data },
1268         { "spi_r8a7790_msiof",  (kernel_ulong_t)&r8a779x_data },
1269         { "spi_r8a7791_msiof",  (kernel_ulong_t)&r8a779x_data },
1270         { "spi_r8a7792_msiof",  (kernel_ulong_t)&r8a779x_data },
1271         { "spi_r8a7793_msiof",  (kernel_ulong_t)&r8a779x_data },
1272         { "spi_r8a7794_msiof",  (kernel_ulong_t)&r8a779x_data },
1273         {},
1274 };
1275 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1276 
1277 static struct platform_driver sh_msiof_spi_drv = {
1278         .probe          = sh_msiof_spi_probe,
1279         .remove         = sh_msiof_spi_remove,
1280         .id_table       = spi_driver_ids,
1281         .driver         = {
1282                 .name           = "spi_sh_msiof",
1283                 .of_match_table = of_match_ptr(sh_msiof_match),
1284         },
1285 };
1286 module_platform_driver(sh_msiof_spi_drv);
1287 
1288 MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1289 MODULE_AUTHOR("Magnus Damm");
1290 MODULE_LICENSE("GPL v2");
1291 MODULE_ALIAS("platform:spi_sh_msiof");
1292 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us