Version:  2.6.34 2.6.35 2.6.36 2.6.37 2.6.38 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14

Linux/drivers/scsi/hpsa.c

  1 /*
  2  *    Disk Array driver for HP Smart Array SAS controllers
  3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
  4  *
  5  *    This program is free software; you can redistribute it and/or modify
  6  *    it under the terms of the GNU General Public License as published by
  7  *    the Free Software Foundation; version 2 of the License.
  8  *
  9  *    This program is distributed in the hope that it will be useful,
 10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 13  *
 14  *    You should have received a copy of the GNU General Public License
 15  *    along with this program; if not, write to the Free Software
 16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 17  *
 18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 19  *
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/interrupt.h>
 24 #include <linux/types.h>
 25 #include <linux/pci.h>
 26 #include <linux/pci-aspm.h>
 27 #include <linux/kernel.h>
 28 #include <linux/slab.h>
 29 #include <linux/delay.h>
 30 #include <linux/fs.h>
 31 #include <linux/timer.h>
 32 #include <linux/init.h>
 33 #include <linux/spinlock.h>
 34 #include <linux/compat.h>
 35 #include <linux/blktrace_api.h>
 36 #include <linux/uaccess.h>
 37 #include <linux/io.h>
 38 #include <linux/dma-mapping.h>
 39 #include <linux/completion.h>
 40 #include <linux/moduleparam.h>
 41 #include <scsi/scsi.h>
 42 #include <scsi/scsi_cmnd.h>
 43 #include <scsi/scsi_device.h>
 44 #include <scsi/scsi_host.h>
 45 #include <scsi/scsi_tcq.h>
 46 #include <linux/cciss_ioctl.h>
 47 #include <linux/string.h>
 48 #include <linux/bitmap.h>
 49 #include <linux/atomic.h>
 50 #include <linux/kthread.h>
 51 #include <linux/jiffies.h>
 52 #include "hpsa_cmd.h"
 53 #include "hpsa.h"
 54 
 55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
 56 #define HPSA_DRIVER_VERSION "3.4.0-1"
 57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
 58 #define HPSA "hpsa"
 59 
 60 /* How long to wait (in milliseconds) for board to go into simple mode */
 61 #define MAX_CONFIG_WAIT 30000
 62 #define MAX_IOCTL_CONFIG_WAIT 1000
 63 
 64 /*define how many times we will try a command because of bus resets */
 65 #define MAX_CMD_RETRIES 3
 66 
 67 /* Embedded module documentation macros - see modules.h */
 68 MODULE_AUTHOR("Hewlett-Packard Company");
 69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
 70         HPSA_DRIVER_VERSION);
 71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
 72 MODULE_VERSION(HPSA_DRIVER_VERSION);
 73 MODULE_LICENSE("GPL");
 74 
 75 static int hpsa_allow_any;
 76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
 77 MODULE_PARM_DESC(hpsa_allow_any,
 78                 "Allow hpsa driver to access unknown HP Smart Array hardware");
 79 static int hpsa_simple_mode;
 80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
 81 MODULE_PARM_DESC(hpsa_simple_mode,
 82         "Use 'simple mode' rather than 'performant mode'");
 83 
 84 /* define the PCI info for the cards we can control */
 85 static const struct pci_device_id hpsa_pci_device_id[] = {
 86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
 87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
 88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
 89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
 90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
121         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
122                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
123         {0,}
124 };
125 
126 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
127 
128 /*  board_id = Subsystem Device ID & Vendor ID
129  *  product = Marketing Name for the board
130  *  access = Address of the struct of function pointers
131  */
132 static struct board_type products[] = {
133         {0x3241103C, "Smart Array P212", &SA5_access},
134         {0x3243103C, "Smart Array P410", &SA5_access},
135         {0x3245103C, "Smart Array P410i", &SA5_access},
136         {0x3247103C, "Smart Array P411", &SA5_access},
137         {0x3249103C, "Smart Array P812", &SA5_access},
138         {0x324A103C, "Smart Array P712m", &SA5_access},
139         {0x324B103C, "Smart Array P711m", &SA5_access},
140         {0x3350103C, "Smart Array P222", &SA5_access},
141         {0x3351103C, "Smart Array P420", &SA5_access},
142         {0x3352103C, "Smart Array P421", &SA5_access},
143         {0x3353103C, "Smart Array P822", &SA5_access},
144         {0x3354103C, "Smart Array P420i", &SA5_access},
145         {0x3355103C, "Smart Array P220i", &SA5_access},
146         {0x3356103C, "Smart Array P721m", &SA5_access},
147         {0x1921103C, "Smart Array P830i", &SA5_access},
148         {0x1922103C, "Smart Array P430", &SA5_access},
149         {0x1923103C, "Smart Array P431", &SA5_access},
150         {0x1924103C, "Smart Array P830", &SA5_access},
151         {0x1926103C, "Smart Array P731m", &SA5_access},
152         {0x1928103C, "Smart Array P230i", &SA5_access},
153         {0x1929103C, "Smart Array P530", &SA5_access},
154         {0x21BD103C, "Smart Array", &SA5_access},
155         {0x21BE103C, "Smart Array", &SA5_access},
156         {0x21BF103C, "Smart Array", &SA5_access},
157         {0x21C0103C, "Smart Array", &SA5_access},
158         {0x21C1103C, "Smart Array", &SA5_access},
159         {0x21C2103C, "Smart Array", &SA5_access},
160         {0x21C3103C, "Smart Array", &SA5_access},
161         {0x21C4103C, "Smart Array", &SA5_access},
162         {0x21C5103C, "Smart Array", &SA5_access},
163         {0x21C7103C, "Smart Array", &SA5_access},
164         {0x21C8103C, "Smart Array", &SA5_access},
165         {0x21C9103C, "Smart Array", &SA5_access},
166         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
167 };
168 
169 static int number_of_controllers;
170 
171 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
172 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
173 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
174 static void start_io(struct ctlr_info *h);
175 
176 #ifdef CONFIG_COMPAT
177 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
178 #endif
179 
180 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
181 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
182 static struct CommandList *cmd_alloc(struct ctlr_info *h);
183 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
184 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
185         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
186         int cmd_type);
187 
188 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
189 static void hpsa_scan_start(struct Scsi_Host *);
190 static int hpsa_scan_finished(struct Scsi_Host *sh,
191         unsigned long elapsed_time);
192 static int hpsa_change_queue_depth(struct scsi_device *sdev,
193         int qdepth, int reason);
194 
195 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
196 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
197 static int hpsa_slave_alloc(struct scsi_device *sdev);
198 static void hpsa_slave_destroy(struct scsi_device *sdev);
199 
200 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
201 static int check_for_unit_attention(struct ctlr_info *h,
202         struct CommandList *c);
203 static void check_ioctl_unit_attention(struct ctlr_info *h,
204         struct CommandList *c);
205 /* performant mode helper functions */
206 static void calc_bucket_map(int *bucket, int num_buckets,
207         int nsgs, int *bucket_map);
208 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
209 static inline u32 next_command(struct ctlr_info *h, u8 q);
210 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
211                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
212                                u64 *cfg_offset);
213 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
214                                     unsigned long *memory_bar);
215 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
216 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
217                                      int wait_for_ready);
218 static inline void finish_cmd(struct CommandList *c);
219 #define BOARD_NOT_READY 0
220 #define BOARD_READY 1
221 
222 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
223 {
224         unsigned long *priv = shost_priv(sdev->host);
225         return (struct ctlr_info *) *priv;
226 }
227 
228 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
229 {
230         unsigned long *priv = shost_priv(sh);
231         return (struct ctlr_info *) *priv;
232 }
233 
234 static int check_for_unit_attention(struct ctlr_info *h,
235         struct CommandList *c)
236 {
237         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
238                 return 0;
239 
240         switch (c->err_info->SenseInfo[12]) {
241         case STATE_CHANGED:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
243                         "detected, command retried\n", h->ctlr);
244                 break;
245         case LUN_FAILED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
247                         "detected, action required\n", h->ctlr);
248                 break;
249         case REPORT_LUNS_CHANGED:
250                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
251                         "changed, action required\n", h->ctlr);
252         /*
253          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
254          * target (array) devices.
255          */
256                 break;
257         case POWER_OR_RESET:
258                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
259                         "or device reset detected\n", h->ctlr);
260                 break;
261         case UNIT_ATTENTION_CLEARED:
262                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
263                     "cleared by another initiator\n", h->ctlr);
264                 break;
265         default:
266                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
267                         "unit attention detected\n", h->ctlr);
268                 break;
269         }
270         return 1;
271 }
272 
273 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
274 {
275         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
276                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
277                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
278                 return 0;
279         dev_warn(&h->pdev->dev, HPSA "device busy");
280         return 1;
281 }
282 
283 static ssize_t host_store_rescan(struct device *dev,
284                                  struct device_attribute *attr,
285                                  const char *buf, size_t count)
286 {
287         struct ctlr_info *h;
288         struct Scsi_Host *shost = class_to_shost(dev);
289         h = shost_to_hba(shost);
290         hpsa_scan_start(h->scsi_host);
291         return count;
292 }
293 
294 static ssize_t host_show_firmware_revision(struct device *dev,
295              struct device_attribute *attr, char *buf)
296 {
297         struct ctlr_info *h;
298         struct Scsi_Host *shost = class_to_shost(dev);
299         unsigned char *fwrev;
300 
301         h = shost_to_hba(shost);
302         if (!h->hba_inquiry_data)
303                 return 0;
304         fwrev = &h->hba_inquiry_data[32];
305         return snprintf(buf, 20, "%c%c%c%c\n",
306                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
307 }
308 
309 static ssize_t host_show_commands_outstanding(struct device *dev,
310              struct device_attribute *attr, char *buf)
311 {
312         struct Scsi_Host *shost = class_to_shost(dev);
313         struct ctlr_info *h = shost_to_hba(shost);
314 
315         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
316 }
317 
318 static ssize_t host_show_transport_mode(struct device *dev,
319         struct device_attribute *attr, char *buf)
320 {
321         struct ctlr_info *h;
322         struct Scsi_Host *shost = class_to_shost(dev);
323 
324         h = shost_to_hba(shost);
325         return snprintf(buf, 20, "%s\n",
326                 h->transMethod & CFGTBL_Trans_Performant ?
327                         "performant" : "simple");
328 }
329 
330 /* List of controllers which cannot be hard reset on kexec with reset_devices */
331 static u32 unresettable_controller[] = {
332         0x324a103C, /* Smart Array P712m */
333         0x324b103C, /* SmartArray P711m */
334         0x3223103C, /* Smart Array P800 */
335         0x3234103C, /* Smart Array P400 */
336         0x3235103C, /* Smart Array P400i */
337         0x3211103C, /* Smart Array E200i */
338         0x3212103C, /* Smart Array E200 */
339         0x3213103C, /* Smart Array E200i */
340         0x3214103C, /* Smart Array E200i */
341         0x3215103C, /* Smart Array E200i */
342         0x3237103C, /* Smart Array E500 */
343         0x323D103C, /* Smart Array P700m */
344         0x40800E11, /* Smart Array 5i */
345         0x409C0E11, /* Smart Array 6400 */
346         0x409D0E11, /* Smart Array 6400 EM */
347         0x40700E11, /* Smart Array 5300 */
348         0x40820E11, /* Smart Array 532 */
349         0x40830E11, /* Smart Array 5312 */
350         0x409A0E11, /* Smart Array 641 */
351         0x409B0E11, /* Smart Array 642 */
352         0x40910E11, /* Smart Array 6i */
353 };
354 
355 /* List of controllers which cannot even be soft reset */
356 static u32 soft_unresettable_controller[] = {
357         0x40800E11, /* Smart Array 5i */
358         0x40700E11, /* Smart Array 5300 */
359         0x40820E11, /* Smart Array 532 */
360         0x40830E11, /* Smart Array 5312 */
361         0x409A0E11, /* Smart Array 641 */
362         0x409B0E11, /* Smart Array 642 */
363         0x40910E11, /* Smart Array 6i */
364         /* Exclude 640x boards.  These are two pci devices in one slot
365          * which share a battery backed cache module.  One controls the
366          * cache, the other accesses the cache through the one that controls
367          * it.  If we reset the one controlling the cache, the other will
368          * likely not be happy.  Just forbid resetting this conjoined mess.
369          * The 640x isn't really supported by hpsa anyway.
370          */
371         0x409C0E11, /* Smart Array 6400 */
372         0x409D0E11, /* Smart Array 6400 EM */
373 };
374 
375 static int ctlr_is_hard_resettable(u32 board_id)
376 {
377         int i;
378 
379         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
380                 if (unresettable_controller[i] == board_id)
381                         return 0;
382         return 1;
383 }
384 
385 static int ctlr_is_soft_resettable(u32 board_id)
386 {
387         int i;
388 
389         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
390                 if (soft_unresettable_controller[i] == board_id)
391                         return 0;
392         return 1;
393 }
394 
395 static int ctlr_is_resettable(u32 board_id)
396 {
397         return ctlr_is_hard_resettable(board_id) ||
398                 ctlr_is_soft_resettable(board_id);
399 }
400 
401 static ssize_t host_show_resettable(struct device *dev,
402         struct device_attribute *attr, char *buf)
403 {
404         struct ctlr_info *h;
405         struct Scsi_Host *shost = class_to_shost(dev);
406 
407         h = shost_to_hba(shost);
408         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
409 }
410 
411 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
412 {
413         return (scsi3addr[3] & 0xC0) == 0x40;
414 }
415 
416 static const char *raid_label[] = { "", "4", "1(1+0)", "5", "5+1", "ADG",
417         "1(ADM)", "UNKNOWN"
418 };
419 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
420 
421 static ssize_t raid_level_show(struct device *dev,
422              struct device_attribute *attr, char *buf)
423 {
424         ssize_t l = 0;
425         unsigned char rlevel;
426         struct ctlr_info *h;
427         struct scsi_device *sdev;
428         struct hpsa_scsi_dev_t *hdev;
429         unsigned long flags;
430 
431         sdev = to_scsi_device(dev);
432         h = sdev_to_hba(sdev);
433         spin_lock_irqsave(&h->lock, flags);
434         hdev = sdev->hostdata;
435         if (!hdev) {
436                 spin_unlock_irqrestore(&h->lock, flags);
437                 return -ENODEV;
438         }
439 
440         /* Is this even a logical drive? */
441         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
442                 spin_unlock_irqrestore(&h->lock, flags);
443                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
444                 return l;
445         }
446 
447         rlevel = hdev->raid_level;
448         spin_unlock_irqrestore(&h->lock, flags);
449         if (rlevel > RAID_UNKNOWN)
450                 rlevel = RAID_UNKNOWN;
451         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
452         return l;
453 }
454 
455 static ssize_t lunid_show(struct device *dev,
456              struct device_attribute *attr, char *buf)
457 {
458         struct ctlr_info *h;
459         struct scsi_device *sdev;
460         struct hpsa_scsi_dev_t *hdev;
461         unsigned long flags;
462         unsigned char lunid[8];
463 
464         sdev = to_scsi_device(dev);
465         h = sdev_to_hba(sdev);
466         spin_lock_irqsave(&h->lock, flags);
467         hdev = sdev->hostdata;
468         if (!hdev) {
469                 spin_unlock_irqrestore(&h->lock, flags);
470                 return -ENODEV;
471         }
472         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
473         spin_unlock_irqrestore(&h->lock, flags);
474         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
475                 lunid[0], lunid[1], lunid[2], lunid[3],
476                 lunid[4], lunid[5], lunid[6], lunid[7]);
477 }
478 
479 static ssize_t unique_id_show(struct device *dev,
480              struct device_attribute *attr, char *buf)
481 {
482         struct ctlr_info *h;
483         struct scsi_device *sdev;
484         struct hpsa_scsi_dev_t *hdev;
485         unsigned long flags;
486         unsigned char sn[16];
487 
488         sdev = to_scsi_device(dev);
489         h = sdev_to_hba(sdev);
490         spin_lock_irqsave(&h->lock, flags);
491         hdev = sdev->hostdata;
492         if (!hdev) {
493                 spin_unlock_irqrestore(&h->lock, flags);
494                 return -ENODEV;
495         }
496         memcpy(sn, hdev->device_id, sizeof(sn));
497         spin_unlock_irqrestore(&h->lock, flags);
498         return snprintf(buf, 16 * 2 + 2,
499                         "%02X%02X%02X%02X%02X%02X%02X%02X"
500                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
501                         sn[0], sn[1], sn[2], sn[3],
502                         sn[4], sn[5], sn[6], sn[7],
503                         sn[8], sn[9], sn[10], sn[11],
504                         sn[12], sn[13], sn[14], sn[15]);
505 }
506 
507 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
508 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
509 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
510 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
511 static DEVICE_ATTR(firmware_revision, S_IRUGO,
512         host_show_firmware_revision, NULL);
513 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
514         host_show_commands_outstanding, NULL);
515 static DEVICE_ATTR(transport_mode, S_IRUGO,
516         host_show_transport_mode, NULL);
517 static DEVICE_ATTR(resettable, S_IRUGO,
518         host_show_resettable, NULL);
519 
520 static struct device_attribute *hpsa_sdev_attrs[] = {
521         &dev_attr_raid_level,
522         &dev_attr_lunid,
523         &dev_attr_unique_id,
524         NULL,
525 };
526 
527 static struct device_attribute *hpsa_shost_attrs[] = {
528         &dev_attr_rescan,
529         &dev_attr_firmware_revision,
530         &dev_attr_commands_outstanding,
531         &dev_attr_transport_mode,
532         &dev_attr_resettable,
533         NULL,
534 };
535 
536 static struct scsi_host_template hpsa_driver_template = {
537         .module                 = THIS_MODULE,
538         .name                   = HPSA,
539         .proc_name              = HPSA,
540         .queuecommand           = hpsa_scsi_queue_command,
541         .scan_start             = hpsa_scan_start,
542         .scan_finished          = hpsa_scan_finished,
543         .change_queue_depth     = hpsa_change_queue_depth,
544         .this_id                = -1,
545         .use_clustering         = ENABLE_CLUSTERING,
546         .eh_abort_handler       = hpsa_eh_abort_handler,
547         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
548         .ioctl                  = hpsa_ioctl,
549         .slave_alloc            = hpsa_slave_alloc,
550         .slave_destroy          = hpsa_slave_destroy,
551 #ifdef CONFIG_COMPAT
552         .compat_ioctl           = hpsa_compat_ioctl,
553 #endif
554         .sdev_attrs = hpsa_sdev_attrs,
555         .shost_attrs = hpsa_shost_attrs,
556         .max_sectors = 8192,
557         .no_write_same = 1,
558 };
559 
560 
561 /* Enqueuing and dequeuing functions for cmdlists. */
562 static inline void addQ(struct list_head *list, struct CommandList *c)
563 {
564         list_add_tail(&c->list, list);
565 }
566 
567 static inline u32 next_command(struct ctlr_info *h, u8 q)
568 {
569         u32 a;
570         struct reply_pool *rq = &h->reply_queue[q];
571         unsigned long flags;
572 
573         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
574                 return h->access.command_completed(h, q);
575 
576         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
577                 a = rq->head[rq->current_entry];
578                 rq->current_entry++;
579                 spin_lock_irqsave(&h->lock, flags);
580                 h->commands_outstanding--;
581                 spin_unlock_irqrestore(&h->lock, flags);
582         } else {
583                 a = FIFO_EMPTY;
584         }
585         /* Check for wraparound */
586         if (rq->current_entry == h->max_commands) {
587                 rq->current_entry = 0;
588                 rq->wraparound ^= 1;
589         }
590         return a;
591 }
592 
593 /* set_performant_mode: Modify the tag for cciss performant
594  * set bit 0 for pull model, bits 3-1 for block fetch
595  * register number
596  */
597 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
598 {
599         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
600                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
601                 if (likely(h->msix_vector))
602                         c->Header.ReplyQueue =
603                                 raw_smp_processor_id() % h->nreply_queues;
604         }
605 }
606 
607 static int is_firmware_flash_cmd(u8 *cdb)
608 {
609         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
610 }
611 
612 /*
613  * During firmware flash, the heartbeat register may not update as frequently
614  * as it should.  So we dial down lockup detection during firmware flash. and
615  * dial it back up when firmware flash completes.
616  */
617 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
618 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
619 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
620                 struct CommandList *c)
621 {
622         if (!is_firmware_flash_cmd(c->Request.CDB))
623                 return;
624         atomic_inc(&h->firmware_flash_in_progress);
625         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
626 }
627 
628 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
629                 struct CommandList *c)
630 {
631         if (is_firmware_flash_cmd(c->Request.CDB) &&
632                 atomic_dec_and_test(&h->firmware_flash_in_progress))
633                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
634 }
635 
636 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
637         struct CommandList *c)
638 {
639         unsigned long flags;
640 
641         set_performant_mode(h, c);
642         dial_down_lockup_detection_during_fw_flash(h, c);
643         spin_lock_irqsave(&h->lock, flags);
644         addQ(&h->reqQ, c);
645         h->Qdepth++;
646         spin_unlock_irqrestore(&h->lock, flags);
647         start_io(h);
648 }
649 
650 static inline void removeQ(struct CommandList *c)
651 {
652         if (WARN_ON(list_empty(&c->list)))
653                 return;
654         list_del_init(&c->list);
655 }
656 
657 static inline int is_hba_lunid(unsigned char scsi3addr[])
658 {
659         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
660 }
661 
662 static inline int is_scsi_rev_5(struct ctlr_info *h)
663 {
664         if (!h->hba_inquiry_data)
665                 return 0;
666         if ((h->hba_inquiry_data[2] & 0x07) == 5)
667                 return 1;
668         return 0;
669 }
670 
671 static int hpsa_find_target_lun(struct ctlr_info *h,
672         unsigned char scsi3addr[], int bus, int *target, int *lun)
673 {
674         /* finds an unused bus, target, lun for a new physical device
675          * assumes h->devlock is held
676          */
677         int i, found = 0;
678         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
679 
680         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
681 
682         for (i = 0; i < h->ndevices; i++) {
683                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
684                         __set_bit(h->dev[i]->target, lun_taken);
685         }
686 
687         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
688         if (i < HPSA_MAX_DEVICES) {
689                 /* *bus = 1; */
690                 *target = i;
691                 *lun = 0;
692                 found = 1;
693         }
694         return !found;
695 }
696 
697 /* Add an entry into h->dev[] array. */
698 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
699                 struct hpsa_scsi_dev_t *device,
700                 struct hpsa_scsi_dev_t *added[], int *nadded)
701 {
702         /* assumes h->devlock is held */
703         int n = h->ndevices;
704         int i;
705         unsigned char addr1[8], addr2[8];
706         struct hpsa_scsi_dev_t *sd;
707 
708         if (n >= HPSA_MAX_DEVICES) {
709                 dev_err(&h->pdev->dev, "too many devices, some will be "
710                         "inaccessible.\n");
711                 return -1;
712         }
713 
714         /* physical devices do not have lun or target assigned until now. */
715         if (device->lun != -1)
716                 /* Logical device, lun is already assigned. */
717                 goto lun_assigned;
718 
719         /* If this device a non-zero lun of a multi-lun device
720          * byte 4 of the 8-byte LUN addr will contain the logical
721          * unit no, zero otherise.
722          */
723         if (device->scsi3addr[4] == 0) {
724                 /* This is not a non-zero lun of a multi-lun device */
725                 if (hpsa_find_target_lun(h, device->scsi3addr,
726                         device->bus, &device->target, &device->lun) != 0)
727                         return -1;
728                 goto lun_assigned;
729         }
730 
731         /* This is a non-zero lun of a multi-lun device.
732          * Search through our list and find the device which
733          * has the same 8 byte LUN address, excepting byte 4.
734          * Assign the same bus and target for this new LUN.
735          * Use the logical unit number from the firmware.
736          */
737         memcpy(addr1, device->scsi3addr, 8);
738         addr1[4] = 0;
739         for (i = 0; i < n; i++) {
740                 sd = h->dev[i];
741                 memcpy(addr2, sd->scsi3addr, 8);
742                 addr2[4] = 0;
743                 /* differ only in byte 4? */
744                 if (memcmp(addr1, addr2, 8) == 0) {
745                         device->bus = sd->bus;
746                         device->target = sd->target;
747                         device->lun = device->scsi3addr[4];
748                         break;
749                 }
750         }
751         if (device->lun == -1) {
752                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
753                         " suspect firmware bug or unsupported hardware "
754                         "configuration.\n");
755                         return -1;
756         }
757 
758 lun_assigned:
759 
760         h->dev[n] = device;
761         h->ndevices++;
762         added[*nadded] = device;
763         (*nadded)++;
764 
765         /* initially, (before registering with scsi layer) we don't
766          * know our hostno and we don't want to print anything first
767          * time anyway (the scsi layer's inquiries will show that info)
768          */
769         /* if (hostno != -1) */
770                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
771                         scsi_device_type(device->devtype), hostno,
772                         device->bus, device->target, device->lun);
773         return 0;
774 }
775 
776 /* Update an entry in h->dev[] array. */
777 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
778         int entry, struct hpsa_scsi_dev_t *new_entry)
779 {
780         /* assumes h->devlock is held */
781         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
782 
783         /* Raid level changed. */
784         h->dev[entry]->raid_level = new_entry->raid_level;
785         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
786                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
787                 new_entry->target, new_entry->lun);
788 }
789 
790 /* Replace an entry from h->dev[] array. */
791 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
792         int entry, struct hpsa_scsi_dev_t *new_entry,
793         struct hpsa_scsi_dev_t *added[], int *nadded,
794         struct hpsa_scsi_dev_t *removed[], int *nremoved)
795 {
796         /* assumes h->devlock is held */
797         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
798         removed[*nremoved] = h->dev[entry];
799         (*nremoved)++;
800 
801         /*
802          * New physical devices won't have target/lun assigned yet
803          * so we need to preserve the values in the slot we are replacing.
804          */
805         if (new_entry->target == -1) {
806                 new_entry->target = h->dev[entry]->target;
807                 new_entry->lun = h->dev[entry]->lun;
808         }
809 
810         h->dev[entry] = new_entry;
811         added[*nadded] = new_entry;
812         (*nadded)++;
813         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
814                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
815                         new_entry->target, new_entry->lun);
816 }
817 
818 /* Remove an entry from h->dev[] array. */
819 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
820         struct hpsa_scsi_dev_t *removed[], int *nremoved)
821 {
822         /* assumes h->devlock is held */
823         int i;
824         struct hpsa_scsi_dev_t *sd;
825 
826         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
827 
828         sd = h->dev[entry];
829         removed[*nremoved] = h->dev[entry];
830         (*nremoved)++;
831 
832         for (i = entry; i < h->ndevices-1; i++)
833                 h->dev[i] = h->dev[i+1];
834         h->ndevices--;
835         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
836                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
837                 sd->lun);
838 }
839 
840 #define SCSI3ADDR_EQ(a, b) ( \
841         (a)[7] == (b)[7] && \
842         (a)[6] == (b)[6] && \
843         (a)[5] == (b)[5] && \
844         (a)[4] == (b)[4] && \
845         (a)[3] == (b)[3] && \
846         (a)[2] == (b)[2] && \
847         (a)[1] == (b)[1] && \
848         (a)[0] == (b)[0])
849 
850 static void fixup_botched_add(struct ctlr_info *h,
851         struct hpsa_scsi_dev_t *added)
852 {
853         /* called when scsi_add_device fails in order to re-adjust
854          * h->dev[] to match the mid layer's view.
855          */
856         unsigned long flags;
857         int i, j;
858 
859         spin_lock_irqsave(&h->lock, flags);
860         for (i = 0; i < h->ndevices; i++) {
861                 if (h->dev[i] == added) {
862                         for (j = i; j < h->ndevices-1; j++)
863                                 h->dev[j] = h->dev[j+1];
864                         h->ndevices--;
865                         break;
866                 }
867         }
868         spin_unlock_irqrestore(&h->lock, flags);
869         kfree(added);
870 }
871 
872 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
873         struct hpsa_scsi_dev_t *dev2)
874 {
875         /* we compare everything except lun and target as these
876          * are not yet assigned.  Compare parts likely
877          * to differ first
878          */
879         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
880                 sizeof(dev1->scsi3addr)) != 0)
881                 return 0;
882         if (memcmp(dev1->device_id, dev2->device_id,
883                 sizeof(dev1->device_id)) != 0)
884                 return 0;
885         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
886                 return 0;
887         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
888                 return 0;
889         if (dev1->devtype != dev2->devtype)
890                 return 0;
891         if (dev1->bus != dev2->bus)
892                 return 0;
893         return 1;
894 }
895 
896 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
897         struct hpsa_scsi_dev_t *dev2)
898 {
899         /* Device attributes that can change, but don't mean
900          * that the device is a different device, nor that the OS
901          * needs to be told anything about the change.
902          */
903         if (dev1->raid_level != dev2->raid_level)
904                 return 1;
905         return 0;
906 }
907 
908 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
909  * and return needle location in *index.  If scsi3addr matches, but not
910  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
911  * location in *index.
912  * In the case of a minor device attribute change, such as RAID level, just
913  * return DEVICE_UPDATED, along with the updated device's location in index.
914  * If needle not found, return DEVICE_NOT_FOUND.
915  */
916 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
917         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
918         int *index)
919 {
920         int i;
921 #define DEVICE_NOT_FOUND 0
922 #define DEVICE_CHANGED 1
923 #define DEVICE_SAME 2
924 #define DEVICE_UPDATED 3
925         for (i = 0; i < haystack_size; i++) {
926                 if (haystack[i] == NULL) /* previously removed. */
927                         continue;
928                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
929                         *index = i;
930                         if (device_is_the_same(needle, haystack[i])) {
931                                 if (device_updated(needle, haystack[i]))
932                                         return DEVICE_UPDATED;
933                                 return DEVICE_SAME;
934                         } else {
935                                 return DEVICE_CHANGED;
936                         }
937                 }
938         }
939         *index = -1;
940         return DEVICE_NOT_FOUND;
941 }
942 
943 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
944         struct hpsa_scsi_dev_t *sd[], int nsds)
945 {
946         /* sd contains scsi3 addresses and devtypes, and inquiry
947          * data.  This function takes what's in sd to be the current
948          * reality and updates h->dev[] to reflect that reality.
949          */
950         int i, entry, device_change, changes = 0;
951         struct hpsa_scsi_dev_t *csd;
952         unsigned long flags;
953         struct hpsa_scsi_dev_t **added, **removed;
954         int nadded, nremoved;
955         struct Scsi_Host *sh = NULL;
956 
957         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
958         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
959 
960         if (!added || !removed) {
961                 dev_warn(&h->pdev->dev, "out of memory in "
962                         "adjust_hpsa_scsi_table\n");
963                 goto free_and_out;
964         }
965 
966         spin_lock_irqsave(&h->devlock, flags);
967 
968         /* find any devices in h->dev[] that are not in
969          * sd[] and remove them from h->dev[], and for any
970          * devices which have changed, remove the old device
971          * info and add the new device info.
972          * If minor device attributes change, just update
973          * the existing device structure.
974          */
975         i = 0;
976         nremoved = 0;
977         nadded = 0;
978         while (i < h->ndevices) {
979                 csd = h->dev[i];
980                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
981                 if (device_change == DEVICE_NOT_FOUND) {
982                         changes++;
983                         hpsa_scsi_remove_entry(h, hostno, i,
984                                 removed, &nremoved);
985                         continue; /* remove ^^^, hence i not incremented */
986                 } else if (device_change == DEVICE_CHANGED) {
987                         changes++;
988                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
989                                 added, &nadded, removed, &nremoved);
990                         /* Set it to NULL to prevent it from being freed
991                          * at the bottom of hpsa_update_scsi_devices()
992                          */
993                         sd[entry] = NULL;
994                 } else if (device_change == DEVICE_UPDATED) {
995                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
996                 }
997                 i++;
998         }
999 
1000         /* Now, make sure every device listed in sd[] is also
1001          * listed in h->dev[], adding them if they aren't found
1002          */
1003 
1004         for (i = 0; i < nsds; i++) {
1005                 if (!sd[i]) /* if already added above. */
1006                         continue;
1007                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1008                                         h->ndevices, &entry);
1009                 if (device_change == DEVICE_NOT_FOUND) {
1010                         changes++;
1011                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1012                                 added, &nadded) != 0)
1013                                 break;
1014                         sd[i] = NULL; /* prevent from being freed later. */
1015                 } else if (device_change == DEVICE_CHANGED) {
1016                         /* should never happen... */
1017                         changes++;
1018                         dev_warn(&h->pdev->dev,
1019                                 "device unexpectedly changed.\n");
1020                         /* but if it does happen, we just ignore that device */
1021                 }
1022         }
1023         spin_unlock_irqrestore(&h->devlock, flags);
1024 
1025         /* Don't notify scsi mid layer of any changes the first time through
1026          * (or if there are no changes) scsi_scan_host will do it later the
1027          * first time through.
1028          */
1029         if (hostno == -1 || !changes)
1030                 goto free_and_out;
1031 
1032         sh = h->scsi_host;
1033         /* Notify scsi mid layer of any removed devices */
1034         for (i = 0; i < nremoved; i++) {
1035                 struct scsi_device *sdev =
1036                         scsi_device_lookup(sh, removed[i]->bus,
1037                                 removed[i]->target, removed[i]->lun);
1038                 if (sdev != NULL) {
1039                         scsi_remove_device(sdev);
1040                         scsi_device_put(sdev);
1041                 } else {
1042                         /* We don't expect to get here.
1043                          * future cmds to this device will get selection
1044                          * timeout as if the device was gone.
1045                          */
1046                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1047                                 " for removal.", hostno, removed[i]->bus,
1048                                 removed[i]->target, removed[i]->lun);
1049                 }
1050                 kfree(removed[i]);
1051                 removed[i] = NULL;
1052         }
1053 
1054         /* Notify scsi mid layer of any added devices */
1055         for (i = 0; i < nadded; i++) {
1056                 if (scsi_add_device(sh, added[i]->bus,
1057                         added[i]->target, added[i]->lun) == 0)
1058                         continue;
1059                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1060                         "device not added.\n", hostno, added[i]->bus,
1061                         added[i]->target, added[i]->lun);
1062                 /* now we have to remove it from h->dev,
1063                  * since it didn't get added to scsi mid layer
1064                  */
1065                 fixup_botched_add(h, added[i]);
1066         }
1067 
1068 free_and_out:
1069         kfree(added);
1070         kfree(removed);
1071 }
1072 
1073 /*
1074  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1075  * Assume's h->devlock is held.
1076  */
1077 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1078         int bus, int target, int lun)
1079 {
1080         int i;
1081         struct hpsa_scsi_dev_t *sd;
1082 
1083         for (i = 0; i < h->ndevices; i++) {
1084                 sd = h->dev[i];
1085                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1086                         return sd;
1087         }
1088         return NULL;
1089 }
1090 
1091 /* link sdev->hostdata to our per-device structure. */
1092 static int hpsa_slave_alloc(struct scsi_device *sdev)
1093 {
1094         struct hpsa_scsi_dev_t *sd;
1095         unsigned long flags;
1096         struct ctlr_info *h;
1097 
1098         h = sdev_to_hba(sdev);
1099         spin_lock_irqsave(&h->devlock, flags);
1100         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1101                 sdev_id(sdev), sdev->lun);
1102         if (sd != NULL)
1103                 sdev->hostdata = sd;
1104         spin_unlock_irqrestore(&h->devlock, flags);
1105         return 0;
1106 }
1107 
1108 static void hpsa_slave_destroy(struct scsi_device *sdev)
1109 {
1110         /* nothing to do. */
1111 }
1112 
1113 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1114 {
1115         int i;
1116 
1117         if (!h->cmd_sg_list)
1118                 return;
1119         for (i = 0; i < h->nr_cmds; i++) {
1120                 kfree(h->cmd_sg_list[i]);
1121                 h->cmd_sg_list[i] = NULL;
1122         }
1123         kfree(h->cmd_sg_list);
1124         h->cmd_sg_list = NULL;
1125 }
1126 
1127 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1128 {
1129         int i;
1130 
1131         if (h->chainsize <= 0)
1132                 return 0;
1133 
1134         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1135                                 GFP_KERNEL);
1136         if (!h->cmd_sg_list)
1137                 return -ENOMEM;
1138         for (i = 0; i < h->nr_cmds; i++) {
1139                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1140                                                 h->chainsize, GFP_KERNEL);
1141                 if (!h->cmd_sg_list[i])
1142                         goto clean;
1143         }
1144         return 0;
1145 
1146 clean:
1147         hpsa_free_sg_chain_blocks(h);
1148         return -ENOMEM;
1149 }
1150 
1151 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1152         struct CommandList *c)
1153 {
1154         struct SGDescriptor *chain_sg, *chain_block;
1155         u64 temp64;
1156 
1157         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1158         chain_block = h->cmd_sg_list[c->cmdindex];
1159         chain_sg->Ext = HPSA_SG_CHAIN;
1160         chain_sg->Len = sizeof(*chain_sg) *
1161                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1162         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1163                                 PCI_DMA_TODEVICE);
1164         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1165                 /* prevent subsequent unmapping */
1166                 chain_sg->Addr.lower = 0;
1167                 chain_sg->Addr.upper = 0;
1168                 return -1;
1169         }
1170         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1171         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1172         return 0;
1173 }
1174 
1175 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1176         struct CommandList *c)
1177 {
1178         struct SGDescriptor *chain_sg;
1179         union u64bit temp64;
1180 
1181         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1182                 return;
1183 
1184         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1185         temp64.val32.lower = chain_sg->Addr.lower;
1186         temp64.val32.upper = chain_sg->Addr.upper;
1187         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1188 }
1189 
1190 static void complete_scsi_command(struct CommandList *cp)
1191 {
1192         struct scsi_cmnd *cmd;
1193         struct ctlr_info *h;
1194         struct ErrorInfo *ei;
1195 
1196         unsigned char sense_key;
1197         unsigned char asc;      /* additional sense code */
1198         unsigned char ascq;     /* additional sense code qualifier */
1199         unsigned long sense_data_size;
1200 
1201         ei = cp->err_info;
1202         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1203         h = cp->h;
1204 
1205         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1206         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1207                 hpsa_unmap_sg_chain_block(h, cp);
1208 
1209         cmd->result = (DID_OK << 16);           /* host byte */
1210         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1211         cmd->result |= ei->ScsiStatus;
1212 
1213         /* copy the sense data whether we need to or not. */
1214         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1215                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1216         else
1217                 sense_data_size = sizeof(ei->SenseInfo);
1218         if (ei->SenseLen < sense_data_size)
1219                 sense_data_size = ei->SenseLen;
1220 
1221         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1222         scsi_set_resid(cmd, ei->ResidualCnt);
1223 
1224         if (ei->CommandStatus == 0) {
1225                 cmd_free(h, cp);
1226                 cmd->scsi_done(cmd);
1227                 return;
1228         }
1229 
1230         /* an error has occurred */
1231         switch (ei->CommandStatus) {
1232 
1233         case CMD_TARGET_STATUS:
1234                 if (ei->ScsiStatus) {
1235                         /* Get sense key */
1236                         sense_key = 0xf & ei->SenseInfo[2];
1237                         /* Get additional sense code */
1238                         asc = ei->SenseInfo[12];
1239                         /* Get addition sense code qualifier */
1240                         ascq = ei->SenseInfo[13];
1241                 }
1242 
1243                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1244                         if (check_for_unit_attention(h, cp))
1245                                 break;
1246                         if (sense_key == ILLEGAL_REQUEST) {
1247                                 /*
1248                                  * SCSI REPORT_LUNS is commonly unsupported on
1249                                  * Smart Array.  Suppress noisy complaint.
1250                                  */
1251                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1252                                         break;
1253 
1254                                 /* If ASC/ASCQ indicate Logical Unit
1255                                  * Not Supported condition,
1256                                  */
1257                                 if ((asc == 0x25) && (ascq == 0x0)) {
1258                                         dev_warn(&h->pdev->dev, "cp %p "
1259                                                 "has check condition\n", cp);
1260                                         break;
1261                                 }
1262                         }
1263 
1264                         if (sense_key == NOT_READY) {
1265                                 /* If Sense is Not Ready, Logical Unit
1266                                  * Not ready, Manual Intervention
1267                                  * required
1268                                  */
1269                                 if ((asc == 0x04) && (ascq == 0x03)) {
1270                                         dev_warn(&h->pdev->dev, "cp %p "
1271                                                 "has check condition: unit "
1272                                                 "not ready, manual "
1273                                                 "intervention required\n", cp);
1274                                         break;
1275                                 }
1276                         }
1277                         if (sense_key == ABORTED_COMMAND) {
1278                                 /* Aborted command is retryable */
1279                                 dev_warn(&h->pdev->dev, "cp %p "
1280                                         "has check condition: aborted command: "
1281                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1282                                         cp, asc, ascq);
1283                                 cmd->result |= DID_SOFT_ERROR << 16;
1284                                 break;
1285                         }
1286                         /* Must be some other type of check condition */
1287                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1288                                         "unknown type: "
1289                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1290                                         "Returning result: 0x%x, "
1291                                         "cmd=[%02x %02x %02x %02x %02x "
1292                                         "%02x %02x %02x %02x %02x %02x "
1293                                         "%02x %02x %02x %02x %02x]\n",
1294                                         cp, sense_key, asc, ascq,
1295                                         cmd->result,
1296                                         cmd->cmnd[0], cmd->cmnd[1],
1297                                         cmd->cmnd[2], cmd->cmnd[3],
1298                                         cmd->cmnd[4], cmd->cmnd[5],
1299                                         cmd->cmnd[6], cmd->cmnd[7],
1300                                         cmd->cmnd[8], cmd->cmnd[9],
1301                                         cmd->cmnd[10], cmd->cmnd[11],
1302                                         cmd->cmnd[12], cmd->cmnd[13],
1303                                         cmd->cmnd[14], cmd->cmnd[15]);
1304                         break;
1305                 }
1306 
1307 
1308                 /* Problem was not a check condition
1309                  * Pass it up to the upper layers...
1310                  */
1311                 if (ei->ScsiStatus) {
1312                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1313                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1314                                 "Returning result: 0x%x\n",
1315                                 cp, ei->ScsiStatus,
1316                                 sense_key, asc, ascq,
1317                                 cmd->result);
1318                 } else {  /* scsi status is zero??? How??? */
1319                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1320                                 "Returning no connection.\n", cp),
1321 
1322                         /* Ordinarily, this case should never happen,
1323                          * but there is a bug in some released firmware
1324                          * revisions that allows it to happen if, for
1325                          * example, a 4100 backplane loses power and
1326                          * the tape drive is in it.  We assume that
1327                          * it's a fatal error of some kind because we
1328                          * can't show that it wasn't. We will make it
1329                          * look like selection timeout since that is
1330                          * the most common reason for this to occur,
1331                          * and it's severe enough.
1332                          */
1333 
1334                         cmd->result = DID_NO_CONNECT << 16;
1335                 }
1336                 break;
1337 
1338         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1339                 break;
1340         case CMD_DATA_OVERRUN:
1341                 dev_warn(&h->pdev->dev, "cp %p has"
1342                         " completed with data overrun "
1343                         "reported\n", cp);
1344                 break;
1345         case CMD_INVALID: {
1346                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1347                 print_cmd(cp); */
1348                 /* We get CMD_INVALID if you address a non-existent device
1349                  * instead of a selection timeout (no response).  You will
1350                  * see this if you yank out a drive, then try to access it.
1351                  * This is kind of a shame because it means that any other
1352                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1353                  * missing target. */
1354                 cmd->result = DID_NO_CONNECT << 16;
1355         }
1356                 break;
1357         case CMD_PROTOCOL_ERR:
1358                 cmd->result = DID_ERROR << 16;
1359                 dev_warn(&h->pdev->dev, "cp %p has "
1360                         "protocol error\n", cp);
1361                 break;
1362         case CMD_HARDWARE_ERR:
1363                 cmd->result = DID_ERROR << 16;
1364                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1365                 break;
1366         case CMD_CONNECTION_LOST:
1367                 cmd->result = DID_ERROR << 16;
1368                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1369                 break;
1370         case CMD_ABORTED:
1371                 cmd->result = DID_ABORT << 16;
1372                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1373                                 cp, ei->ScsiStatus);
1374                 break;
1375         case CMD_ABORT_FAILED:
1376                 cmd->result = DID_ERROR << 16;
1377                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1378                 break;
1379         case CMD_UNSOLICITED_ABORT:
1380                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1381                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1382                         "abort\n", cp);
1383                 break;
1384         case CMD_TIMEOUT:
1385                 cmd->result = DID_TIME_OUT << 16;
1386                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1387                 break;
1388         case CMD_UNABORTABLE:
1389                 cmd->result = DID_ERROR << 16;
1390                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1391                 break;
1392         default:
1393                 cmd->result = DID_ERROR << 16;
1394                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1395                                 cp, ei->CommandStatus);
1396         }
1397         cmd_free(h, cp);
1398         cmd->scsi_done(cmd);
1399 }
1400 
1401 static void hpsa_pci_unmap(struct pci_dev *pdev,
1402         struct CommandList *c, int sg_used, int data_direction)
1403 {
1404         int i;
1405         union u64bit addr64;
1406 
1407         for (i = 0; i < sg_used; i++) {
1408                 addr64.val32.lower = c->SG[i].Addr.lower;
1409                 addr64.val32.upper = c->SG[i].Addr.upper;
1410                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1411                         data_direction);
1412         }
1413 }
1414 
1415 static int hpsa_map_one(struct pci_dev *pdev,
1416                 struct CommandList *cp,
1417                 unsigned char *buf,
1418                 size_t buflen,
1419                 int data_direction)
1420 {
1421         u64 addr64;
1422 
1423         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1424                 cp->Header.SGList = 0;
1425                 cp->Header.SGTotal = 0;
1426                 return 0;
1427         }
1428 
1429         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1430         if (dma_mapping_error(&pdev->dev, addr64)) {
1431                 /* Prevent subsequent unmap of something never mapped */
1432                 cp->Header.SGList = 0;
1433                 cp->Header.SGTotal = 0;
1434                 return -1;
1435         }
1436         cp->SG[0].Addr.lower =
1437           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1438         cp->SG[0].Addr.upper =
1439           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1440         cp->SG[0].Len = buflen;
1441         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1442         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1443         return 0;
1444 }
1445 
1446 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1447         struct CommandList *c)
1448 {
1449         DECLARE_COMPLETION_ONSTACK(wait);
1450 
1451         c->waiting = &wait;
1452         enqueue_cmd_and_start_io(h, c);
1453         wait_for_completion(&wait);
1454 }
1455 
1456 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1457         struct CommandList *c)
1458 {
1459         unsigned long flags;
1460 
1461         /* If controller lockup detected, fake a hardware error. */
1462         spin_lock_irqsave(&h->lock, flags);
1463         if (unlikely(h->lockup_detected)) {
1464                 spin_unlock_irqrestore(&h->lock, flags);
1465                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1466         } else {
1467                 spin_unlock_irqrestore(&h->lock, flags);
1468                 hpsa_scsi_do_simple_cmd_core(h, c);
1469         }
1470 }
1471 
1472 #define MAX_DRIVER_CMD_RETRIES 25
1473 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1474         struct CommandList *c, int data_direction)
1475 {
1476         int backoff_time = 10, retry_count = 0;
1477 
1478         do {
1479                 memset(c->err_info, 0, sizeof(*c->err_info));
1480                 hpsa_scsi_do_simple_cmd_core(h, c);
1481                 retry_count++;
1482                 if (retry_count > 3) {
1483                         msleep(backoff_time);
1484                         if (backoff_time < 1000)
1485                                 backoff_time *= 2;
1486                 }
1487         } while ((check_for_unit_attention(h, c) ||
1488                         check_for_busy(h, c)) &&
1489                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1490         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1491 }
1492 
1493 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1494 {
1495         struct ErrorInfo *ei;
1496         struct device *d = &cp->h->pdev->dev;
1497 
1498         ei = cp->err_info;
1499         switch (ei->CommandStatus) {
1500         case CMD_TARGET_STATUS:
1501                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1502                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1503                                 ei->ScsiStatus);
1504                 if (ei->ScsiStatus == 0)
1505                         dev_warn(d, "SCSI status is abnormally zero.  "
1506                         "(probably indicates selection timeout "
1507                         "reported incorrectly due to a known "
1508                         "firmware bug, circa July, 2001.)\n");
1509                 break;
1510         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1511                         dev_info(d, "UNDERRUN\n");
1512                 break;
1513         case CMD_DATA_OVERRUN:
1514                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1515                 break;
1516         case CMD_INVALID: {
1517                 /* controller unfortunately reports SCSI passthru's
1518                  * to non-existent targets as invalid commands.
1519                  */
1520                 dev_warn(d, "cp %p is reported invalid (probably means "
1521                         "target device no longer present)\n", cp);
1522                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1523                 print_cmd(cp);  */
1524                 }
1525                 break;
1526         case CMD_PROTOCOL_ERR:
1527                 dev_warn(d, "cp %p has protocol error \n", cp);
1528                 break;
1529         case CMD_HARDWARE_ERR:
1530                 /* cmd->result = DID_ERROR << 16; */
1531                 dev_warn(d, "cp %p had hardware error\n", cp);
1532                 break;
1533         case CMD_CONNECTION_LOST:
1534                 dev_warn(d, "cp %p had connection lost\n", cp);
1535                 break;
1536         case CMD_ABORTED:
1537                 dev_warn(d, "cp %p was aborted\n", cp);
1538                 break;
1539         case CMD_ABORT_FAILED:
1540                 dev_warn(d, "cp %p reports abort failed\n", cp);
1541                 break;
1542         case CMD_UNSOLICITED_ABORT:
1543                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1544                 break;
1545         case CMD_TIMEOUT:
1546                 dev_warn(d, "cp %p timed out\n", cp);
1547                 break;
1548         case CMD_UNABORTABLE:
1549                 dev_warn(d, "Command unabortable\n");
1550                 break;
1551         default:
1552                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1553                                 ei->CommandStatus);
1554         }
1555 }
1556 
1557 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1558                         unsigned char page, unsigned char *buf,
1559                         unsigned char bufsize)
1560 {
1561         int rc = IO_OK;
1562         struct CommandList *c;
1563         struct ErrorInfo *ei;
1564 
1565         c = cmd_special_alloc(h);
1566 
1567         if (c == NULL) {                        /* trouble... */
1568                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1569                 return -ENOMEM;
1570         }
1571 
1572         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1573                         page, scsi3addr, TYPE_CMD)) {
1574                 rc = -1;
1575                 goto out;
1576         }
1577         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1578         ei = c->err_info;
1579         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1580                 hpsa_scsi_interpret_error(c);
1581                 rc = -1;
1582         }
1583 out:
1584         cmd_special_free(h, c);
1585         return rc;
1586 }
1587 
1588 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1589 {
1590         int rc = IO_OK;
1591         struct CommandList *c;
1592         struct ErrorInfo *ei;
1593 
1594         c = cmd_special_alloc(h);
1595 
1596         if (c == NULL) {                        /* trouble... */
1597                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1598                 return -ENOMEM;
1599         }
1600 
1601         /* fill_cmd can't fail here, no data buffer to map. */
1602         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1603                         NULL, 0, 0, scsi3addr, TYPE_MSG);
1604         hpsa_scsi_do_simple_cmd_core(h, c);
1605         /* no unmap needed here because no data xfer. */
1606 
1607         ei = c->err_info;
1608         if (ei->CommandStatus != 0) {
1609                 hpsa_scsi_interpret_error(c);
1610                 rc = -1;
1611         }
1612         cmd_special_free(h, c);
1613         return rc;
1614 }
1615 
1616 static void hpsa_get_raid_level(struct ctlr_info *h,
1617         unsigned char *scsi3addr, unsigned char *raid_level)
1618 {
1619         int rc;
1620         unsigned char *buf;
1621 
1622         *raid_level = RAID_UNKNOWN;
1623         buf = kzalloc(64, GFP_KERNEL);
1624         if (!buf)
1625                 return;
1626         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1627         if (rc == 0)
1628                 *raid_level = buf[8];
1629         if (*raid_level > RAID_UNKNOWN)
1630                 *raid_level = RAID_UNKNOWN;
1631         kfree(buf);
1632         return;
1633 }
1634 
1635 /* Get the device id from inquiry page 0x83 */
1636 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1637         unsigned char *device_id, int buflen)
1638 {
1639         int rc;
1640         unsigned char *buf;
1641 
1642         if (buflen > 16)
1643                 buflen = 16;
1644         buf = kzalloc(64, GFP_KERNEL);
1645         if (!buf)
1646                 return -1;
1647         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1648         if (rc == 0)
1649                 memcpy(device_id, &buf[8], buflen);
1650         kfree(buf);
1651         return rc != 0;
1652 }
1653 
1654 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1655                 struct ReportLUNdata *buf, int bufsize,
1656                 int extended_response)
1657 {
1658         int rc = IO_OK;
1659         struct CommandList *c;
1660         unsigned char scsi3addr[8];
1661         struct ErrorInfo *ei;
1662 
1663         c = cmd_special_alloc(h);
1664         if (c == NULL) {                        /* trouble... */
1665                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1666                 return -1;
1667         }
1668         /* address the controller */
1669         memset(scsi3addr, 0, sizeof(scsi3addr));
1670         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1671                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1672                 rc = -1;
1673                 goto out;
1674         }
1675         if (extended_response)
1676                 c->Request.CDB[1] = extended_response;
1677         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1678         ei = c->err_info;
1679         if (ei->CommandStatus != 0 &&
1680             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1681                 hpsa_scsi_interpret_error(c);
1682                 rc = -1;
1683         }
1684 out:
1685         cmd_special_free(h, c);
1686         return rc;
1687 }
1688 
1689 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1690                 struct ReportLUNdata *buf,
1691                 int bufsize, int extended_response)
1692 {
1693         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1694 }
1695 
1696 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1697                 struct ReportLUNdata *buf, int bufsize)
1698 {
1699         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1700 }
1701 
1702 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1703         int bus, int target, int lun)
1704 {
1705         device->bus = bus;
1706         device->target = target;
1707         device->lun = lun;
1708 }
1709 
1710 static int hpsa_update_device_info(struct ctlr_info *h,
1711         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1712         unsigned char *is_OBDR_device)
1713 {
1714 
1715 #define OBDR_SIG_OFFSET 43
1716 #define OBDR_TAPE_SIG "$DR-10"
1717 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1718 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1719 
1720         unsigned char *inq_buff;
1721         unsigned char *obdr_sig;
1722 
1723         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1724         if (!inq_buff)
1725                 goto bail_out;
1726 
1727         /* Do an inquiry to the device to see what it is. */
1728         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1729                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1730                 /* Inquiry failed (msg printed already) */
1731                 dev_err(&h->pdev->dev,
1732                         "hpsa_update_device_info: inquiry failed\n");
1733                 goto bail_out;
1734         }
1735 
1736         this_device->devtype = (inq_buff[0] & 0x1f);
1737         memcpy(this_device->scsi3addr, scsi3addr, 8);
1738         memcpy(this_device->vendor, &inq_buff[8],
1739                 sizeof(this_device->vendor));
1740         memcpy(this_device->model, &inq_buff[16],
1741                 sizeof(this_device->model));
1742         memset(this_device->device_id, 0,
1743                 sizeof(this_device->device_id));
1744         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1745                 sizeof(this_device->device_id));
1746 
1747         if (this_device->devtype == TYPE_DISK &&
1748                 is_logical_dev_addr_mode(scsi3addr))
1749                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1750         else
1751                 this_device->raid_level = RAID_UNKNOWN;
1752 
1753         if (is_OBDR_device) {
1754                 /* See if this is a One-Button-Disaster-Recovery device
1755                  * by looking for "$DR-10" at offset 43 in inquiry data.
1756                  */
1757                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1758                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1759                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1760                                                 OBDR_SIG_LEN) == 0);
1761         }
1762 
1763         kfree(inq_buff);
1764         return 0;
1765 
1766 bail_out:
1767         kfree(inq_buff);
1768         return 1;
1769 }
1770 
1771 static unsigned char *ext_target_model[] = {
1772         "MSA2012",
1773         "MSA2024",
1774         "MSA2312",
1775         "MSA2324",
1776         "P2000 G3 SAS",
1777         "MSA 2040 SAS",
1778         NULL,
1779 };
1780 
1781 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1782 {
1783         int i;
1784 
1785         for (i = 0; ext_target_model[i]; i++)
1786                 if (strncmp(device->model, ext_target_model[i],
1787                         strlen(ext_target_model[i])) == 0)
1788                         return 1;
1789         return 0;
1790 }
1791 
1792 /* Helper function to assign bus, target, lun mapping of devices.
1793  * Puts non-external target logical volumes on bus 0, external target logical
1794  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1795  * Logical drive target and lun are assigned at this time, but
1796  * physical device lun and target assignment are deferred (assigned
1797  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1798  */
1799 static void figure_bus_target_lun(struct ctlr_info *h,
1800         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1801 {
1802         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1803 
1804         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1805                 /* physical device, target and lun filled in later */
1806                 if (is_hba_lunid(lunaddrbytes))
1807                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1808                 else
1809                         /* defer target, lun assignment for physical devices */
1810                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1811                 return;
1812         }
1813         /* It's a logical device */
1814         if (is_ext_target(h, device)) {
1815                 /* external target way, put logicals on bus 1
1816                  * and match target/lun numbers box
1817                  * reports, other smart array, bus 0, target 0, match lunid
1818                  */
1819                 hpsa_set_bus_target_lun(device,
1820                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1821                 return;
1822         }
1823         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1824 }
1825 
1826 /*
1827  * If there is no lun 0 on a target, linux won't find any devices.
1828  * For the external targets (arrays), we have to manually detect the enclosure
1829  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1830  * it for some reason.  *tmpdevice is the target we're adding,
1831  * this_device is a pointer into the current element of currentsd[]
1832  * that we're building up in update_scsi_devices(), below.
1833  * lunzerobits is a bitmap that tracks which targets already have a
1834  * lun 0 assigned.
1835  * Returns 1 if an enclosure was added, 0 if not.
1836  */
1837 static int add_ext_target_dev(struct ctlr_info *h,
1838         struct hpsa_scsi_dev_t *tmpdevice,
1839         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1840         unsigned long lunzerobits[], int *n_ext_target_devs)
1841 {
1842         unsigned char scsi3addr[8];
1843 
1844         if (test_bit(tmpdevice->target, lunzerobits))
1845                 return 0; /* There is already a lun 0 on this target. */
1846 
1847         if (!is_logical_dev_addr_mode(lunaddrbytes))
1848                 return 0; /* It's the logical targets that may lack lun 0. */
1849 
1850         if (!is_ext_target(h, tmpdevice))
1851                 return 0; /* Only external target devices have this problem. */
1852 
1853         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1854                 return 0;
1855 
1856         memset(scsi3addr, 0, 8);
1857         scsi3addr[3] = tmpdevice->target;
1858         if (is_hba_lunid(scsi3addr))
1859                 return 0; /* Don't add the RAID controller here. */
1860 
1861         if (is_scsi_rev_5(h))
1862                 return 0; /* p1210m doesn't need to do this. */
1863 
1864         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1865                 dev_warn(&h->pdev->dev, "Maximum number of external "
1866                         "target devices exceeded.  Check your hardware "
1867                         "configuration.");
1868                 return 0;
1869         }
1870 
1871         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1872                 return 0;
1873         (*n_ext_target_devs)++;
1874         hpsa_set_bus_target_lun(this_device,
1875                                 tmpdevice->bus, tmpdevice->target, 0);
1876         set_bit(tmpdevice->target, lunzerobits);
1877         return 1;
1878 }
1879 
1880 /*
1881  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1882  * logdev.  The number of luns in physdev and logdev are returned in
1883  * *nphysicals and *nlogicals, respectively.
1884  * Returns 0 on success, -1 otherwise.
1885  */
1886 static int hpsa_gather_lun_info(struct ctlr_info *h,
1887         int reportlunsize,
1888         struct ReportLUNdata *physdev, u32 *nphysicals,
1889         struct ReportLUNdata *logdev, u32 *nlogicals)
1890 {
1891         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1892                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1893                 return -1;
1894         }
1895         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1896         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1897                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1898                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1899                         *nphysicals - HPSA_MAX_PHYS_LUN);
1900                 *nphysicals = HPSA_MAX_PHYS_LUN;
1901         }
1902         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1903                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1904                 return -1;
1905         }
1906         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1907         /* Reject Logicals in excess of our max capability. */
1908         if (*nlogicals > HPSA_MAX_LUN) {
1909                 dev_warn(&h->pdev->dev,
1910                         "maximum logical LUNs (%d) exceeded.  "
1911                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1912                         *nlogicals - HPSA_MAX_LUN);
1913                         *nlogicals = HPSA_MAX_LUN;
1914         }
1915         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1916                 dev_warn(&h->pdev->dev,
1917                         "maximum logical + physical LUNs (%d) exceeded. "
1918                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1919                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1920                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1921         }
1922         return 0;
1923 }
1924 
1925 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1926         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1927         struct ReportLUNdata *logdev_list)
1928 {
1929         /* Helper function, figure out where the LUN ID info is coming from
1930          * given index i, lists of physical and logical devices, where in
1931          * the list the raid controller is supposed to appear (first or last)
1932          */
1933 
1934         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1935         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1936 
1937         if (i == raid_ctlr_position)
1938                 return RAID_CTLR_LUNID;
1939 
1940         if (i < logicals_start)
1941                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1942 
1943         if (i < last_device)
1944                 return &logdev_list->LUN[i - nphysicals -
1945                         (raid_ctlr_position == 0)][0];
1946         BUG();
1947         return NULL;
1948 }
1949 
1950 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1951 {
1952         /* the idea here is we could get notified
1953          * that some devices have changed, so we do a report
1954          * physical luns and report logical luns cmd, and adjust
1955          * our list of devices accordingly.
1956          *
1957          * The scsi3addr's of devices won't change so long as the
1958          * adapter is not reset.  That means we can rescan and
1959          * tell which devices we already know about, vs. new
1960          * devices, vs.  disappearing devices.
1961          */
1962         struct ReportLUNdata *physdev_list = NULL;
1963         struct ReportLUNdata *logdev_list = NULL;
1964         u32 nphysicals = 0;
1965         u32 nlogicals = 0;
1966         u32 ndev_allocated = 0;
1967         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1968         int ncurrent = 0;
1969         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1970         int i, n_ext_target_devs, ndevs_to_allocate;
1971         int raid_ctlr_position;
1972         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1973 
1974         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1975         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1976         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1977         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1978 
1979         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1980                 dev_err(&h->pdev->dev, "out of memory\n");
1981                 goto out;
1982         }
1983         memset(lunzerobits, 0, sizeof(lunzerobits));
1984 
1985         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1986                         logdev_list, &nlogicals))
1987                 goto out;
1988 
1989         /* We might see up to the maximum number of logical and physical disks
1990          * plus external target devices, and a device for the local RAID
1991          * controller.
1992          */
1993         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1994 
1995         /* Allocate the per device structures */
1996         for (i = 0; i < ndevs_to_allocate; i++) {
1997                 if (i >= HPSA_MAX_DEVICES) {
1998                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1999                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
2000                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
2001                         break;
2002                 }
2003 
2004                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2005                 if (!currentsd[i]) {
2006                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2007                                 __FILE__, __LINE__);
2008                         goto out;
2009                 }
2010                 ndev_allocated++;
2011         }
2012 
2013         if (unlikely(is_scsi_rev_5(h)))
2014                 raid_ctlr_position = 0;
2015         else
2016                 raid_ctlr_position = nphysicals + nlogicals;
2017 
2018         /* adjust our table of devices */
2019         n_ext_target_devs = 0;
2020         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2021                 u8 *lunaddrbytes, is_OBDR = 0;
2022 
2023                 /* Figure out where the LUN ID info is coming from */
2024                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2025                         i, nphysicals, nlogicals, physdev_list, logdev_list);
2026                 /* skip masked physical devices. */
2027                 if (lunaddrbytes[3] & 0xC0 &&
2028                         i < nphysicals + (raid_ctlr_position == 0))
2029                         continue;
2030 
2031                 /* Get device type, vendor, model, device id */
2032                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2033                                                         &is_OBDR))
2034                         continue; /* skip it if we can't talk to it. */
2035                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2036                 this_device = currentsd[ncurrent];
2037 
2038                 /*
2039                  * For external target devices, we have to insert a LUN 0 which
2040                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2041                  * is nonetheless an enclosure device there.  We have to
2042                  * present that otherwise linux won't find anything if
2043                  * there is no lun 0.
2044                  */
2045                 if (add_ext_target_dev(h, tmpdevice, this_device,
2046                                 lunaddrbytes, lunzerobits,
2047                                 &n_ext_target_devs)) {
2048                         ncurrent++;
2049                         this_device = currentsd[ncurrent];
2050                 }
2051 
2052                 *this_device = *tmpdevice;
2053 
2054                 switch (this_device->devtype) {
2055                 case TYPE_ROM:
2056                         /* We don't *really* support actual CD-ROM devices,
2057                          * just "One Button Disaster Recovery" tape drive
2058                          * which temporarily pretends to be a CD-ROM drive.
2059                          * So we check that the device is really an OBDR tape
2060                          * device by checking for "$DR-10" in bytes 43-48 of
2061                          * the inquiry data.
2062                          */
2063                         if (is_OBDR)
2064                                 ncurrent++;
2065                         break;
2066                 case TYPE_DISK:
2067                         if (i < nphysicals)
2068                                 break;
2069                         ncurrent++;
2070                         break;
2071                 case TYPE_TAPE:
2072                 case TYPE_MEDIUM_CHANGER:
2073                         ncurrent++;
2074                         break;
2075                 case TYPE_RAID:
2076                         /* Only present the Smartarray HBA as a RAID controller.
2077                          * If it's a RAID controller other than the HBA itself
2078                          * (an external RAID controller, MSA500 or similar)
2079                          * don't present it.
2080                          */
2081                         if (!is_hba_lunid(lunaddrbytes))
2082                                 break;
2083                         ncurrent++;
2084                         break;
2085                 default:
2086                         break;
2087                 }
2088                 if (ncurrent >= HPSA_MAX_DEVICES)
2089                         break;
2090         }
2091         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2092 out:
2093         kfree(tmpdevice);
2094         for (i = 0; i < ndev_allocated; i++)
2095                 kfree(currentsd[i]);
2096         kfree(currentsd);
2097         kfree(physdev_list);
2098         kfree(logdev_list);
2099 }
2100 
2101 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2102  * dma mapping  and fills in the scatter gather entries of the
2103  * hpsa command, cp.
2104  */
2105 static int hpsa_scatter_gather(struct ctlr_info *h,
2106                 struct CommandList *cp,
2107                 struct scsi_cmnd *cmd)
2108 {
2109         unsigned int len;
2110         struct scatterlist *sg;
2111         u64 addr64;
2112         int use_sg, i, sg_index, chained;
2113         struct SGDescriptor *curr_sg;
2114 
2115         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2116 
2117         use_sg = scsi_dma_map(cmd);
2118         if (use_sg < 0)
2119                 return use_sg;
2120 
2121         if (!use_sg)
2122                 goto sglist_finished;
2123 
2124         curr_sg = cp->SG;
2125         chained = 0;
2126         sg_index = 0;
2127         scsi_for_each_sg(cmd, sg, use_sg, i) {
2128                 if (i == h->max_cmd_sg_entries - 1 &&
2129                         use_sg > h->max_cmd_sg_entries) {
2130                         chained = 1;
2131                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2132                         sg_index = 0;
2133                 }
2134                 addr64 = (u64) sg_dma_address(sg);
2135                 len  = sg_dma_len(sg);
2136                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2137                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2138                 curr_sg->Len = len;
2139                 curr_sg->Ext = 0;  /* we are not chaining */
2140                 curr_sg++;
2141         }
2142 
2143         if (use_sg + chained > h->maxSG)
2144                 h->maxSG = use_sg + chained;
2145 
2146         if (chained) {
2147                 cp->Header.SGList = h->max_cmd_sg_entries;
2148                 cp->Header.SGTotal = (u16) (use_sg + 1);
2149                 if (hpsa_map_sg_chain_block(h, cp)) {
2150                         scsi_dma_unmap(cmd);
2151                         return -1;
2152                 }
2153                 return 0;
2154         }
2155 
2156 sglist_finished:
2157 
2158         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2159         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2160         return 0;
2161 }
2162 
2163 
2164 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2165         void (*done)(struct scsi_cmnd *))
2166 {
2167         struct ctlr_info *h;
2168         struct hpsa_scsi_dev_t *dev;
2169         unsigned char scsi3addr[8];
2170         struct CommandList *c;
2171         unsigned long flags;
2172 
2173         /* Get the ptr to our adapter structure out of cmd->host. */
2174         h = sdev_to_hba(cmd->device);
2175         dev = cmd->device->hostdata;
2176         if (!dev) {
2177                 cmd->result = DID_NO_CONNECT << 16;
2178                 done(cmd);
2179                 return 0;
2180         }
2181         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2182 
2183         spin_lock_irqsave(&h->lock, flags);
2184         if (unlikely(h->lockup_detected)) {
2185                 spin_unlock_irqrestore(&h->lock, flags);
2186                 cmd->result = DID_ERROR << 16;
2187                 done(cmd);
2188                 return 0;
2189         }
2190         spin_unlock_irqrestore(&h->lock, flags);
2191         c = cmd_alloc(h);
2192         if (c == NULL) {                        /* trouble... */
2193                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2194                 return SCSI_MLQUEUE_HOST_BUSY;
2195         }
2196 
2197         /* Fill in the command list header */
2198 
2199         cmd->scsi_done = done;    /* save this for use by completion code */
2200 
2201         /* save c in case we have to abort it  */
2202         cmd->host_scribble = (unsigned char *) c;
2203 
2204         c->cmd_type = CMD_SCSI;
2205         c->scsi_cmd = cmd;
2206         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2207         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2208         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2209         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2210 
2211         /* Fill in the request block... */
2212 
2213         c->Request.Timeout = 0;
2214         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2215         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2216         c->Request.CDBLen = cmd->cmd_len;
2217         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2218         c->Request.Type.Type = TYPE_CMD;
2219         c->Request.Type.Attribute = ATTR_SIMPLE;
2220         switch (cmd->sc_data_direction) {
2221         case DMA_TO_DEVICE:
2222                 c->Request.Type.Direction = XFER_WRITE;
2223                 break;
2224         case DMA_FROM_DEVICE:
2225                 c->Request.Type.Direction = XFER_READ;
2226                 break;
2227         case DMA_NONE:
2228                 c->Request.Type.Direction = XFER_NONE;
2229                 break;
2230         case DMA_BIDIRECTIONAL:
2231                 /* This can happen if a buggy application does a scsi passthru
2232                  * and sets both inlen and outlen to non-zero. ( see
2233                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2234                  */
2235 
2236                 c->Request.Type.Direction = XFER_RSVD;
2237                 /* This is technically wrong, and hpsa controllers should
2238                  * reject it with CMD_INVALID, which is the most correct
2239                  * response, but non-fibre backends appear to let it
2240                  * slide by, and give the same results as if this field
2241                  * were set correctly.  Either way is acceptable for
2242                  * our purposes here.
2243                  */
2244 
2245                 break;
2246 
2247         default:
2248                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2249                         cmd->sc_data_direction);
2250                 BUG();
2251                 break;
2252         }
2253 
2254         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2255                 cmd_free(h, c);
2256                 return SCSI_MLQUEUE_HOST_BUSY;
2257         }
2258         enqueue_cmd_and_start_io(h, c);
2259         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2260         return 0;
2261 }
2262 
2263 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2264 
2265 static void hpsa_scan_start(struct Scsi_Host *sh)
2266 {
2267         struct ctlr_info *h = shost_to_hba(sh);
2268         unsigned long flags;
2269 
2270         /* wait until any scan already in progress is finished. */
2271         while (1) {
2272                 spin_lock_irqsave(&h->scan_lock, flags);
2273                 if (h->scan_finished)
2274                         break;
2275                 spin_unlock_irqrestore(&h->scan_lock, flags);
2276                 wait_event(h->scan_wait_queue, h->scan_finished);
2277                 /* Note: We don't need to worry about a race between this
2278                  * thread and driver unload because the midlayer will
2279                  * have incremented the reference count, so unload won't
2280                  * happen if we're in here.
2281                  */
2282         }
2283         h->scan_finished = 0; /* mark scan as in progress */
2284         spin_unlock_irqrestore(&h->scan_lock, flags);
2285 
2286         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2287 
2288         spin_lock_irqsave(&h->scan_lock, flags);
2289         h->scan_finished = 1; /* mark scan as finished. */
2290         wake_up_all(&h->scan_wait_queue);
2291         spin_unlock_irqrestore(&h->scan_lock, flags);
2292 }
2293 
2294 static int hpsa_scan_finished(struct Scsi_Host *sh,
2295         unsigned long elapsed_time)
2296 {
2297         struct ctlr_info *h = shost_to_hba(sh);
2298         unsigned long flags;
2299         int finished;
2300 
2301         spin_lock_irqsave(&h->scan_lock, flags);
2302         finished = h->scan_finished;
2303         spin_unlock_irqrestore(&h->scan_lock, flags);
2304         return finished;
2305 }
2306 
2307 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2308         int qdepth, int reason)
2309 {
2310         struct ctlr_info *h = sdev_to_hba(sdev);
2311 
2312         if (reason != SCSI_QDEPTH_DEFAULT)
2313                 return -ENOTSUPP;
2314 
2315         if (qdepth < 1)
2316                 qdepth = 1;
2317         else
2318                 if (qdepth > h->nr_cmds)
2319                         qdepth = h->nr_cmds;
2320         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2321         return sdev->queue_depth;
2322 }
2323 
2324 static void hpsa_unregister_scsi(struct ctlr_info *h)
2325 {
2326         /* we are being forcibly unloaded, and may not refuse. */
2327         scsi_remove_host(h->scsi_host);
2328         scsi_host_put(h->scsi_host);
2329         h->scsi_host = NULL;
2330 }
2331 
2332 static int hpsa_register_scsi(struct ctlr_info *h)
2333 {
2334         struct Scsi_Host *sh;
2335         int error;
2336 
2337         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2338         if (sh == NULL)
2339                 goto fail;
2340 
2341         sh->io_port = 0;
2342         sh->n_io_port = 0;
2343         sh->this_id = -1;
2344         sh->max_channel = 3;
2345         sh->max_cmd_len = MAX_COMMAND_SIZE;
2346         sh->max_lun = HPSA_MAX_LUN;
2347         sh->max_id = HPSA_MAX_LUN;
2348         sh->can_queue = h->nr_cmds;
2349         sh->cmd_per_lun = h->nr_cmds;
2350         sh->sg_tablesize = h->maxsgentries;
2351         h->scsi_host = sh;
2352         sh->hostdata[0] = (unsigned long) h;
2353         sh->irq = h->intr[h->intr_mode];
2354         sh->unique_id = sh->irq;
2355         error = scsi_add_host(sh, &h->pdev->dev);
2356         if (error)
2357                 goto fail_host_put;
2358         scsi_scan_host(sh);
2359         return 0;
2360 
2361  fail_host_put:
2362         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2363                 " failed for controller %d\n", __func__, h->ctlr);
2364         scsi_host_put(sh);
2365         return error;
2366  fail:
2367         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2368                 " failed for controller %d\n", __func__, h->ctlr);
2369         return -ENOMEM;
2370 }
2371 
2372 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2373         unsigned char lunaddr[])
2374 {
2375         int rc = 0;
2376         int count = 0;
2377         int waittime = 1; /* seconds */
2378         struct CommandList *c;
2379 
2380         c = cmd_special_alloc(h);
2381         if (!c) {
2382                 dev_warn(&h->pdev->dev, "out of memory in "
2383                         "wait_for_device_to_become_ready.\n");
2384                 return IO_ERROR;
2385         }
2386 
2387         /* Send test unit ready until device ready, or give up. */
2388         while (count < HPSA_TUR_RETRY_LIMIT) {
2389 
2390                 /* Wait for a bit.  do this first, because if we send
2391                  * the TUR right away, the reset will just abort it.
2392                  */
2393                 msleep(1000 * waittime);
2394                 count++;
2395 
2396                 /* Increase wait time with each try, up to a point. */
2397                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2398                         waittime = waittime * 2;
2399 
2400                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2401                 (void) fill_cmd(c, TEST_UNIT_READY, h,
2402                                 NULL, 0, 0, lunaddr, TYPE_CMD);
2403                 hpsa_scsi_do_simple_cmd_core(h, c);
2404                 /* no unmap needed here because no data xfer. */
2405 
2406                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2407                         break;
2408 
2409                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2410                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2411                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2412                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2413                         break;
2414 
2415                 dev_warn(&h->pdev->dev, "waiting %d secs "
2416                         "for device to become ready.\n", waittime);
2417                 rc = 1; /* device not ready. */
2418         }
2419 
2420         if (rc)
2421                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2422         else
2423                 dev_warn(&h->pdev->dev, "device is ready.\n");
2424 
2425         cmd_special_free(h, c);
2426         return rc;
2427 }
2428 
2429 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2430  * complaining.  Doing a host- or bus-reset can't do anything good here.
2431  */
2432 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2433 {
2434         int rc;
2435         struct ctlr_info *h;
2436         struct hpsa_scsi_dev_t *dev;
2437 
2438         /* find the controller to which the command to be aborted was sent */
2439         h = sdev_to_hba(scsicmd->device);
2440         if (h == NULL) /* paranoia */
2441                 return FAILED;
2442         dev = scsicmd->device->hostdata;
2443         if (!dev) {
2444                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2445                         "device lookup failed.\n");
2446                 return FAILED;
2447         }
2448         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2449                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2450         /* send a reset to the SCSI LUN which the command was sent to */
2451         rc = hpsa_send_reset(h, dev->scsi3addr);
2452         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2453                 return SUCCESS;
2454 
2455         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2456         return FAILED;
2457 }
2458 
2459 static void swizzle_abort_tag(u8 *tag)
2460 {
2461         u8 original_tag[8];
2462 
2463         memcpy(original_tag, tag, 8);
2464         tag[0] = original_tag[3];
2465         tag[1] = original_tag[2];
2466         tag[2] = original_tag[1];
2467         tag[3] = original_tag[0];
2468         tag[4] = original_tag[7];
2469         tag[5] = original_tag[6];
2470         tag[6] = original_tag[5];
2471         tag[7] = original_tag[4];
2472 }
2473 
2474 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2475         struct CommandList *abort, int swizzle)
2476 {
2477         int rc = IO_OK;
2478         struct CommandList *c;
2479         struct ErrorInfo *ei;
2480 
2481         c = cmd_special_alloc(h);
2482         if (c == NULL) {        /* trouble... */
2483                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2484                 return -ENOMEM;
2485         }
2486 
2487         /* fill_cmd can't fail here, no buffer to map */
2488         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2489                 0, 0, scsi3addr, TYPE_MSG);
2490         if (swizzle)
2491                 swizzle_abort_tag(&c->Request.CDB[4]);
2492         hpsa_scsi_do_simple_cmd_core(h, c);
2493         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2494                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2495         /* no unmap needed here because no data xfer. */
2496 
2497         ei = c->err_info;
2498         switch (ei->CommandStatus) {
2499         case CMD_SUCCESS:
2500                 break;
2501         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2502                 rc = -1;
2503                 break;
2504         default:
2505                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2506                         __func__, abort->Header.Tag.upper,
2507                         abort->Header.Tag.lower);
2508                 hpsa_scsi_interpret_error(c);
2509                 rc = -1;
2510                 break;
2511         }
2512         cmd_special_free(h, c);
2513         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2514                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2515         return rc;
2516 }
2517 
2518 /*
2519  * hpsa_find_cmd_in_queue
2520  *
2521  * Used to determine whether a command (find) is still present
2522  * in queue_head.   Optionally excludes the last element of queue_head.
2523  *
2524  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2525  * not yet been submitted, and so can be aborted by the driver without
2526  * sending an abort to the hardware.
2527  *
2528  * Returns pointer to command if found in queue, NULL otherwise.
2529  */
2530 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2531                         struct scsi_cmnd *find, struct list_head *queue_head)
2532 {
2533         unsigned long flags;
2534         struct CommandList *c = NULL;   /* ptr into cmpQ */
2535 
2536         if (!find)
2537                 return 0;
2538         spin_lock_irqsave(&h->lock, flags);
2539         list_for_each_entry(c, queue_head, list) {
2540                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2541                         continue;
2542                 if (c->scsi_cmd == find) {
2543                         spin_unlock_irqrestore(&h->lock, flags);
2544                         return c;
2545                 }
2546         }
2547         spin_unlock_irqrestore(&h->lock, flags);
2548         return NULL;
2549 }
2550 
2551 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2552                                         u8 *tag, struct list_head *queue_head)
2553 {
2554         unsigned long flags;
2555         struct CommandList *c;
2556 
2557         spin_lock_irqsave(&h->lock, flags);
2558         list_for_each_entry(c, queue_head, list) {
2559                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2560                         continue;
2561                 spin_unlock_irqrestore(&h->lock, flags);
2562                 return c;
2563         }
2564         spin_unlock_irqrestore(&h->lock, flags);
2565         return NULL;
2566 }
2567 
2568 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2569  * tell which kind we're dealing with, so we send the abort both ways.  There
2570  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2571  * way we construct our tags but we check anyway in case the assumptions which
2572  * make this true someday become false.
2573  */
2574 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2575         unsigned char *scsi3addr, struct CommandList *abort)
2576 {
2577         u8 swizzled_tag[8];
2578         struct CommandList *c;
2579         int rc = 0, rc2 = 0;
2580 
2581         /* we do not expect to find the swizzled tag in our queue, but
2582          * check anyway just to be sure the assumptions which make this
2583          * the case haven't become wrong.
2584          */
2585         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2586         swizzle_abort_tag(swizzled_tag);
2587         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2588         if (c != NULL) {
2589                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2590                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2591         }
2592         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2593 
2594         /* if the command is still in our queue, we can't conclude that it was
2595          * aborted (it might have just completed normally) but in any case
2596          * we don't need to try to abort it another way.
2597          */
2598         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2599         if (c)
2600                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2601         return rc && rc2;
2602 }
2603 
2604 /* Send an abort for the specified command.
2605  *      If the device and controller support it,
2606  *              send a task abort request.
2607  */
2608 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2609 {
2610 
2611         int i, rc;
2612         struct ctlr_info *h;
2613         struct hpsa_scsi_dev_t *dev;
2614         struct CommandList *abort; /* pointer to command to be aborted */
2615         struct CommandList *found;
2616         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2617         char msg[256];          /* For debug messaging. */
2618         int ml = 0;
2619 
2620         /* Find the controller of the command to be aborted */
2621         h = sdev_to_hba(sc->device);
2622         if (WARN(h == NULL,
2623                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2624                 return FAILED;
2625 
2626         /* Check that controller supports some kind of task abort */
2627         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2628                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2629                 return FAILED;
2630 
2631         memset(msg, 0, sizeof(msg));
2632         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2633                 h->scsi_host->host_no, sc->device->channel,
2634                 sc->device->id, sc->device->lun);
2635 
2636         /* Find the device of the command to be aborted */
2637         dev = sc->device->hostdata;
2638         if (!dev) {
2639                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2640                                 msg);
2641                 return FAILED;
2642         }
2643 
2644         /* Get SCSI command to be aborted */
2645         abort = (struct CommandList *) sc->host_scribble;
2646         if (abort == NULL) {
2647                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2648                                 msg);
2649                 return FAILED;
2650         }
2651 
2652         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2653                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2654         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2655         if (as != NULL)
2656                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2657                         as->cmnd[0], as->serial_number);
2658         dev_dbg(&h->pdev->dev, "%s\n", msg);
2659         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2660                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2661 
2662         /* Search reqQ to See if command is queued but not submitted,
2663          * if so, complete the command with aborted status and remove
2664          * it from the reqQ.
2665          */
2666         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2667         if (found) {
2668                 found->err_info->CommandStatus = CMD_ABORTED;
2669                 finish_cmd(found);
2670                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2671                                 msg);
2672                 return SUCCESS;
2673         }
2674 
2675         /* not in reqQ, if also not in cmpQ, must have already completed */
2676         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2677         if (!found)  {
2678                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2679                                 msg);
2680                 return SUCCESS;
2681         }
2682 
2683         /*
2684          * Command is in flight, or possibly already completed
2685          * by the firmware (but not to the scsi mid layer) but we can't
2686          * distinguish which.  Send the abort down.
2687          */
2688         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2689         if (rc != 0) {
2690                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2691                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2692                         h->scsi_host->host_no,
2693                         dev->bus, dev->target, dev->lun);
2694                 return FAILED;
2695         }
2696         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2697 
2698         /* If the abort(s) above completed and actually aborted the
2699          * command, then the command to be aborted should already be
2700          * completed.  If not, wait around a bit more to see if they
2701          * manage to complete normally.
2702          */
2703 #define ABORT_COMPLETE_WAIT_SECS 30
2704         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2705                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2706                 if (!found)
2707                         return SUCCESS;
2708                 msleep(100);
2709         }
2710         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2711                 msg, ABORT_COMPLETE_WAIT_SECS);
2712         return FAILED;
2713 }
2714 
2715 
2716 /*
2717  * For operations that cannot sleep, a command block is allocated at init,
2718  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2719  * which ones are free or in use.  Lock must be held when calling this.
2720  * cmd_free() is the complement.
2721  */
2722 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2723 {
2724         struct CommandList *c;
2725         int i;
2726         union u64bit temp64;
2727         dma_addr_t cmd_dma_handle, err_dma_handle;
2728         unsigned long flags;
2729 
2730         spin_lock_irqsave(&h->lock, flags);
2731         do {
2732                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2733                 if (i == h->nr_cmds) {
2734                         spin_unlock_irqrestore(&h->lock, flags);
2735                         return NULL;
2736                 }
2737         } while (test_and_set_bit
2738                  (i & (BITS_PER_LONG - 1),
2739                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2740         spin_unlock_irqrestore(&h->lock, flags);
2741 
2742         c = h->cmd_pool + i;
2743         memset(c, 0, sizeof(*c));
2744         cmd_dma_handle = h->cmd_pool_dhandle
2745             + i * sizeof(*c);
2746         c->err_info = h->errinfo_pool + i;
2747         memset(c->err_info, 0, sizeof(*c->err_info));
2748         err_dma_handle = h->errinfo_pool_dhandle
2749             + i * sizeof(*c->err_info);
2750 
2751         c->cmdindex = i;
2752 
2753         INIT_LIST_HEAD(&c->list);
2754         c->busaddr = (u32) cmd_dma_handle;
2755         temp64.val = (u64) err_dma_handle;
2756         c->ErrDesc.Addr.lower = temp64.val32.lower;
2757         c->ErrDesc.Addr.upper = temp64.val32.upper;
2758         c->ErrDesc.Len = sizeof(*c->err_info);
2759 
2760         c->h = h;
2761         return c;
2762 }
2763 
2764 /* For operations that can wait for kmalloc to possibly sleep,
2765  * this routine can be called. Lock need not be held to call
2766  * cmd_special_alloc. cmd_special_free() is the complement.
2767  */
2768 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2769 {
2770         struct CommandList *c;
2771         union u64bit temp64;
2772         dma_addr_t cmd_dma_handle, err_dma_handle;
2773 
2774         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2775         if (c == NULL)
2776                 return NULL;
2777         memset(c, 0, sizeof(*c));
2778 
2779         c->cmdindex = -1;
2780 
2781         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2782                     &err_dma_handle);
2783 
2784         if (c->err_info == NULL) {
2785                 pci_free_consistent(h->pdev,
2786                         sizeof(*c), c, cmd_dma_handle);
2787                 return NULL;
2788         }
2789         memset(c->err_info, 0, sizeof(*c->err_info));
2790 
2791         INIT_LIST_HEAD(&c->list);
2792         c->busaddr = (u32) cmd_dma_handle;
2793         temp64.val = (u64) err_dma_handle;
2794         c->ErrDesc.Addr.lower = temp64.val32.lower;
2795         c->ErrDesc.Addr.upper = temp64.val32.upper;
2796         c->ErrDesc.Len = sizeof(*c->err_info);
2797 
2798         c->h = h;
2799         return c;
2800 }
2801 
2802 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2803 {
2804         int i;
2805         unsigned long flags;
2806 
2807         i = c - h->cmd_pool;
2808         spin_lock_irqsave(&h->lock, flags);
2809         clear_bit(i & (BITS_PER_LONG - 1),
2810                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2811         spin_unlock_irqrestore(&h->lock, flags);
2812 }
2813 
2814 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2815 {
2816         union u64bit temp64;
2817 
2818         temp64.val32.lower = c->ErrDesc.Addr.lower;
2819         temp64.val32.upper = c->ErrDesc.Addr.upper;
2820         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2821                             c->err_info, (dma_addr_t) temp64.val);
2822         pci_free_consistent(h->pdev, sizeof(*c),
2823                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2824 }
2825 
2826 #ifdef CONFIG_COMPAT
2827 
2828 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2829 {
2830         IOCTL32_Command_struct __user *arg32 =
2831             (IOCTL32_Command_struct __user *) arg;
2832         IOCTL_Command_struct arg64;
2833         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2834         int err;
2835         u32 cp;
2836 
2837         memset(&arg64, 0, sizeof(arg64));
2838         err = 0;
2839         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2840                            sizeof(arg64.LUN_info));
2841         err |= copy_from_user(&arg64.Request, &arg32->Request,
2842                            sizeof(arg64.Request));
2843         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2844                            sizeof(arg64.error_info));
2845         err |= get_user(arg64.buf_size, &arg32->buf_size);
2846         err |= get_user(cp, &arg32->buf);
2847         arg64.buf = compat_ptr(cp);
2848         err |= copy_to_user(p, &arg64, sizeof(arg64));
2849 
2850         if (err)
2851                 return -EFAULT;
2852 
2853         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2854         if (err)
2855                 return err;
2856         err |= copy_in_user(&arg32->error_info, &p->error_info,
2857                          sizeof(arg32->error_info));
2858         if (err)
2859                 return -EFAULT;
2860         return err;
2861 }
2862 
2863 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2864         int cmd, void *arg)
2865 {
2866         BIG_IOCTL32_Command_struct __user *arg32 =
2867             (BIG_IOCTL32_Command_struct __user *) arg;
2868         BIG_IOCTL_Command_struct arg64;
2869         BIG_IOCTL_Command_struct __user *p =
2870             compat_alloc_user_space(sizeof(arg64));
2871         int err;
2872         u32 cp;
2873 
2874         memset(&arg64, 0, sizeof(arg64));
2875         err = 0;
2876         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2877                            sizeof(arg64.LUN_info));
2878         err |= copy_from_user(&arg64.Request, &arg32->Request,
2879                            sizeof(arg64.Request));
2880         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2881                            sizeof(arg64.error_info));
2882         err |= get_user(arg64.buf_size, &arg32->buf_size);
2883         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2884         err |= get_user(cp, &arg32->buf);
2885         arg64.buf = compat_ptr(cp);
2886         err |= copy_to_user(p, &arg64, sizeof(arg64));
2887 
2888         if (err)
2889                 return -EFAULT;
2890 
2891         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2892         if (err)
2893                 return err;
2894         err |= copy_in_user(&arg32->error_info, &p->error_info,
2895                          sizeof(arg32->error_info));
2896         if (err)
2897                 return -EFAULT;
2898         return err;
2899 }
2900 
2901 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2902 {
2903         switch (cmd) {
2904         case CCISS_GETPCIINFO:
2905         case CCISS_GETINTINFO:
2906         case CCISS_SETINTINFO:
2907         case CCISS_GETNODENAME:
2908         case CCISS_SETNODENAME:
2909         case CCISS_GETHEARTBEAT:
2910         case CCISS_GETBUSTYPES:
2911         case CCISS_GETFIRMVER:
2912         case CCISS_GETDRIVVER:
2913         case CCISS_REVALIDVOLS:
2914         case CCISS_DEREGDISK:
2915         case CCISS_REGNEWDISK:
2916         case CCISS_REGNEWD:
2917         case CCISS_RESCANDISK:
2918         case CCISS_GETLUNINFO:
2919                 return hpsa_ioctl(dev, cmd, arg);
2920 
2921         case CCISS_PASSTHRU32:
2922                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2923         case CCISS_BIG_PASSTHRU32:
2924                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2925 
2926         default:
2927                 return -ENOIOCTLCMD;
2928         }
2929 }
2930 #endif
2931 
2932 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2933 {
2934         struct hpsa_pci_info pciinfo;
2935 
2936         if (!argp)
2937                 return -EINVAL;
2938         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2939         pciinfo.bus = h->pdev->bus->number;
2940         pciinfo.dev_fn = h->pdev->devfn;
2941         pciinfo.board_id = h->board_id;
2942         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2943                 return -EFAULT;
2944         return 0;
2945 }
2946 
2947 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2948 {
2949         DriverVer_type DriverVer;
2950         unsigned char vmaj, vmin, vsubmin;
2951         int rc;
2952 
2953         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2954                 &vmaj, &vmin, &vsubmin);
2955         if (rc != 3) {
2956                 dev_info(&h->pdev->dev, "driver version string '%s' "
2957                         "unrecognized.", HPSA_DRIVER_VERSION);
2958                 vmaj = 0;
2959                 vmin = 0;
2960                 vsubmin = 0;
2961         }
2962         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2963         if (!argp)
2964                 return -EINVAL;
2965         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2966                 return -EFAULT;
2967         return 0;
2968 }
2969 
2970 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2971 {
2972         IOCTL_Command_struct iocommand;
2973         struct CommandList *c;
2974         char *buff = NULL;
2975         union u64bit temp64;
2976         int rc = 0;
2977 
2978         if (!argp)
2979                 return -EINVAL;
2980         if (!capable(CAP_SYS_RAWIO))
2981                 return -EPERM;
2982         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2983                 return -EFAULT;
2984         if ((iocommand.buf_size < 1) &&
2985             (iocommand.Request.Type.Direction != XFER_NONE)) {
2986                 return -EINVAL;
2987         }
2988         if (iocommand.buf_size > 0) {
2989                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2990                 if (buff == NULL)
2991                         return -EFAULT;
2992                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2993                         /* Copy the data into the buffer we created */
2994                         if (copy_from_user(buff, iocommand.buf,
2995                                 iocommand.buf_size)) {
2996                                 rc = -EFAULT;
2997                                 goto out_kfree;
2998                         }
2999                 } else {
3000                         memset(buff, 0, iocommand.buf_size);
3001                 }
3002         }
3003         c = cmd_special_alloc(h);
3004         if (c == NULL) {
3005                 rc = -ENOMEM;
3006                 goto out_kfree;
3007         }
3008         /* Fill in the command type */
3009         c->cmd_type = CMD_IOCTL_PEND;
3010         /* Fill in Command Header */
3011         c->Header.ReplyQueue = 0; /* unused in simple mode */
3012         if (iocommand.buf_size > 0) {   /* buffer to fill */
3013                 c->Header.SGList = 1;
3014                 c->Header.SGTotal = 1;
3015         } else  { /* no buffers to fill */
3016                 c->Header.SGList = 0;
3017                 c->Header.SGTotal = 0;
3018         }
3019         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3020         /* use the kernel address the cmd block for tag */
3021         c->Header.Tag.lower = c->busaddr;
3022 
3023         /* Fill in Request block */
3024         memcpy(&c->Request, &iocommand.Request,
3025                 sizeof(c->Request));
3026 
3027         /* Fill in the scatter gather information */
3028         if (iocommand.buf_size > 0) {
3029                 temp64.val = pci_map_single(h->pdev, buff,
3030                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3031                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3032                         c->SG[0].Addr.lower = 0;
3033                         c->SG[0].Addr.upper = 0;
3034                         c->SG[0].Len = 0;
3035                         rc = -ENOMEM;
3036                         goto out;
3037                 }
3038                 c->SG[0].Addr.lower = temp64.val32.lower;
3039                 c->SG[0].Addr.upper = temp64.val32.upper;
3040                 c->SG[0].Len = iocommand.buf_size;
3041                 c->SG[0].Ext = 0; /* we are not chaining*/
3042         }
3043         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3044         if (iocommand.buf_size > 0)
3045                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3046         check_ioctl_unit_attention(h, c);
3047 
3048         /* Copy the error information out */
3049         memcpy(&iocommand.error_info, c->err_info,
3050                 sizeof(iocommand.error_info));
3051         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3052                 rc = -EFAULT;
3053                 goto out;
3054         }
3055         if (iocommand.Request.Type.Direction == XFER_READ &&
3056                 iocommand.buf_size > 0) {
3057                 /* Copy the data out of the buffer we created */
3058                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3059                         rc = -EFAULT;
3060                         goto out;
3061                 }
3062         }
3063 out:
3064         cmd_special_free(h, c);
3065 out_kfree:
3066         kfree(buff);
3067         return rc;
3068 }
3069 
3070 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3071 {
3072         BIG_IOCTL_Command_struct *ioc;
3073         struct CommandList *c;
3074         unsigned char **buff = NULL;
3075         int *buff_size = NULL;
3076         union u64bit temp64;
3077         BYTE sg_used = 0;
3078         int status = 0;
3079         int i;
3080         u32 left;
3081         u32 sz;
3082         BYTE __user *data_ptr;
3083 
3084         if (!argp)
3085                 return -EINVAL;
3086         if (!capable(CAP_SYS_RAWIO))
3087                 return -EPERM;
3088         ioc = (BIG_IOCTL_Command_struct *)
3089             kmalloc(sizeof(*ioc), GFP_KERNEL);
3090         if (!ioc) {
3091                 status = -ENOMEM;
3092                 goto cleanup1;
3093         }
3094         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3095                 status = -EFAULT;
3096                 goto cleanup1;
3097         }
3098         if ((ioc->buf_size < 1) &&
3099             (ioc->Request.Type.Direction != XFER_NONE)) {
3100                 status = -EINVAL;
3101                 goto cleanup1;
3102         }
3103         /* Check kmalloc limits  using all SGs */
3104         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3105                 status = -EINVAL;
3106                 goto cleanup1;
3107         }
3108         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3109                 status = -EINVAL;
3110                 goto cleanup1;
3111         }
3112         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3113         if (!buff) {
3114                 status = -ENOMEM;
3115                 goto cleanup1;
3116         }
3117         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3118         if (!buff_size) {
3119                 status = -ENOMEM;
3120                 goto cleanup1;
3121         }
3122         left = ioc->buf_size;
3123         data_ptr = ioc->buf;
3124         while (left) {
3125                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3126                 buff_size[sg_used] = sz;
3127                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3128                 if (buff[sg_used] == NULL) {
3129                         status = -ENOMEM;
3130                         goto cleanup1;
3131                 }
3132                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3133                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3134                                 status = -ENOMEM;
3135                                 goto cleanup1;
3136                         }
3137                 } else
3138                         memset(buff[sg_used], 0, sz);
3139                 left -= sz;
3140                 data_ptr += sz;
3141                 sg_used++;
3142         }
3143         c = cmd_special_alloc(h);
3144         if (c == NULL) {
3145                 status = -ENOMEM;
3146                 goto cleanup1;
3147         }
3148         c->cmd_type = CMD_IOCTL_PEND;
3149         c->Header.ReplyQueue = 0;
3150         c->Header.SGList = c->Header.SGTotal = sg_used;
3151         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3152         c->Header.Tag.lower = c->busaddr;
3153         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3154         if (ioc->buf_size > 0) {
3155                 int i;
3156                 for (i = 0; i < sg_used; i++) {
3157                         temp64.val = pci_map_single(h->pdev, buff[i],
3158                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3159                         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3160                                 c->SG[i].Addr.lower = 0;
3161                                 c->SG[i].Addr.upper = 0;
3162                                 c->SG[i].Len = 0;
3163                                 hpsa_pci_unmap(h->pdev, c, i,
3164                                         PCI_DMA_BIDIRECTIONAL);
3165                                 status = -ENOMEM;
3166                                 goto cleanup0;
3167                         }
3168                         c->SG[i].Addr.lower = temp64.val32.lower;
3169                         c->SG[i].Addr.upper = temp64.val32.upper;
3170                         c->SG[i].Len = buff_size[i];
3171                         /* we are not chaining */
3172                         c->SG[i].Ext = 0;
3173                 }
3174         }
3175         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3176         if (sg_used)
3177                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3178         check_ioctl_unit_attention(h, c);
3179         /* Copy the error information out */
3180         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3181         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3182                 status = -EFAULT;
3183                 goto cleanup0;
3184         }
3185         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3186                 /* Copy the data out of the buffer we created */
3187                 BYTE __user *ptr = ioc->buf;
3188                 for (i = 0; i < sg_used; i++) {
3189                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3190                                 status = -EFAULT;
3191                                 goto cleanup0;
3192                         }
3193                         ptr += buff_size[i];
3194                 }
3195         }
3196         status = 0;
3197 cleanup0:
3198         cmd_special_free(h, c);
3199 cleanup1:
3200         if (buff) {
3201                 for (i = 0; i < sg_used; i++)
3202                         kfree(buff[i]);
3203                 kfree(buff);
3204         }
3205         kfree(buff_size);
3206         kfree(ioc);
3207         return status;
3208 }
3209 
3210 static void check_ioctl_unit_attention(struct ctlr_info *h,
3211         struct CommandList *c)
3212 {
3213         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3214                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3215                 (void) check_for_unit_attention(h, c);
3216 }
3217 
3218 static int increment_passthru_count(struct ctlr_info *h)
3219 {
3220         unsigned long flags;
3221 
3222         spin_lock_irqsave(&h->passthru_count_lock, flags);
3223         if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
3224                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3225                 return -1;
3226         }
3227         h->passthru_count++;
3228         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3229         return 0;
3230 }
3231 
3232 static void decrement_passthru_count(struct ctlr_info *h)
3233 {
3234         unsigned long flags;
3235 
3236         spin_lock_irqsave(&h->passthru_count_lock, flags);
3237         if (h->passthru_count <= 0) {
3238                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3239                 /* not expecting to get here. */
3240                 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
3241                 return;
3242         }
3243         h->passthru_count--;
3244         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
3245 }
3246 
3247 /*
3248  * ioctl
3249  */
3250 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3251 {
3252         struct ctlr_info *h;
3253         void __user *argp = (void __user *)arg;
3254         int rc;
3255 
3256         h = sdev_to_hba(dev);
3257 
3258         switch (cmd) {
3259         case CCISS_DEREGDISK:
3260         case CCISS_REGNEWDISK:
3261         case CCISS_REGNEWD:
3262                 hpsa_scan_start(h->scsi_host);
3263                 return 0;
3264         case CCISS_GETPCIINFO:
3265                 return hpsa_getpciinfo_ioctl(h, argp);
3266         case CCISS_GETDRIVVER:
3267                 return hpsa_getdrivver_ioctl(h, argp);
3268         case CCISS_PASSTHRU:
3269                 if (increment_passthru_count(h))
3270                         return -EAGAIN;
3271                 rc = hpsa_passthru_ioctl(h, argp);
3272                 decrement_passthru_count(h);
3273                 return rc;
3274         case CCISS_BIG_PASSTHRU:
3275                 if (increment_passthru_count(h))
3276                         return -EAGAIN;
3277                 rc = hpsa_big_passthru_ioctl(h, argp);
3278                 decrement_passthru_count(h);
3279                 return rc;
3280         default:
3281                 return -ENOTTY;
3282         }
3283 }
3284 
3285 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3286                                 u8 reset_type)
3287 {
3288         struct CommandList *c;
3289 
3290         c = cmd_alloc(h);
3291         if (!c)
3292                 return -ENOMEM;
3293         /* fill_cmd can't fail here, no data buffer to map */
3294         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3295                 RAID_CTLR_LUNID, TYPE_MSG);
3296         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3297         c->waiting = NULL;
3298         enqueue_cmd_and_start_io(h, c);
3299         /* Don't wait for completion, the reset won't complete.  Don't free
3300          * the command either.  This is the last command we will send before
3301          * re-initializing everything, so it doesn't matter and won't leak.
3302          */
3303         return 0;
3304 }
3305 
3306 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3307         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3308         int cmd_type)
3309 {
3310         int pci_dir = XFER_NONE;
3311         struct CommandList *a; /* for commands to be aborted */
3312 
3313         c->cmd_type = CMD_IOCTL_PEND;
3314         c->Header.ReplyQueue = 0;
3315         if (buff != NULL && size > 0) {
3316                 c->Header.SGList = 1;
3317                 c->Header.SGTotal = 1;
3318         } else {
3319                 c->Header.SGList = 0;
3320                 c->Header.SGTotal = 0;
3321         }
3322         c->Header.Tag.lower = c->busaddr;
3323         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3324 
3325         c->Request.Type.Type = cmd_type;
3326         if (cmd_type == TYPE_CMD) {
3327                 switch (cmd) {
3328                 case HPSA_INQUIRY:
3329                         /* are we trying to read a vital product page */
3330                         if (page_code != 0) {
3331                                 c->Request.CDB[1] = 0x01;
3332                                 c->Request.CDB[2] = page_code;
3333                         }
3334                         c->Request.CDBLen = 6;
3335                         c->Request.Type.Attribute = ATTR_SIMPLE;
3336                         c->Request.Type.Direction = XFER_READ;
3337                         c->Request.Timeout = 0;
3338                         c->Request.CDB[0] = HPSA_INQUIRY;
3339                         c->Request.CDB[4] = size & 0xFF;
3340                         break;
3341                 case HPSA_REPORT_LOG:
3342                 case HPSA_REPORT_PHYS:
3343                         /* Talking to controller so It's a physical command
3344                            mode = 00 target = 0.  Nothing to write.
3345                          */
3346                         c->Request.CDBLen = 12;
3347                         c->Request.Type.Attribute = ATTR_SIMPLE;
3348                         c->Request.Type.Direction = XFER_READ;
3349                         c->Request.Timeout = 0;
3350                         c->Request.CDB[0] = cmd;
3351                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3352                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3353                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3354                         c->Request.CDB[9] = size & 0xFF;
3355                         break;
3356                 case HPSA_CACHE_FLUSH:
3357                         c->Request.CDBLen = 12;
3358                         c->Request.Type.Attribute = ATTR_SIMPLE;
3359                         c->Request.Type.Direction = XFER_WRITE;
3360                         c->Request.Timeout = 0;
3361                         c->Request.CDB[0] = BMIC_WRITE;
3362                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3363                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3364                         c->Request.CDB[8] = size & 0xFF;
3365                         break;
3366                 case TEST_UNIT_READY:
3367                         c->Request.CDBLen = 6;
3368                         c->Request.Type.Attribute = ATTR_SIMPLE;
3369                         c->Request.Type.Direction = XFER_NONE;
3370                         c->Request.Timeout = 0;
3371                         break;
3372                 default:
3373                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3374                         BUG();
3375                         return -1;
3376                 }
3377         } else if (cmd_type == TYPE_MSG) {
3378                 switch (cmd) {
3379 
3380                 case  HPSA_DEVICE_RESET_MSG:
3381                         c->Request.CDBLen = 16;
3382                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3383                         c->Request.Type.Attribute = ATTR_SIMPLE;
3384                         c->Request.Type.Direction = XFER_NONE;
3385                         c->Request.Timeout = 0; /* Don't time out */
3386                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3387                         c->Request.CDB[0] =  cmd;
3388                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3389                         /* If bytes 4-7 are zero, it means reset the */
3390                         /* LunID device */
3391                         c->Request.CDB[4] = 0x00;
3392                         c->Request.CDB[5] = 0x00;
3393                         c->Request.CDB[6] = 0x00;
3394                         c->Request.CDB[7] = 0x00;
3395                         break;
3396                 case  HPSA_ABORT_MSG:
3397                         a = buff;       /* point to command to be aborted */
3398                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3399                                 a->Header.Tag.upper, a->Header.Tag.lower,
3400                                 c->Header.Tag.upper, c->Header.Tag.lower);
3401                         c->Request.CDBLen = 16;
3402                         c->Request.Type.Type = TYPE_MSG;
3403                         c->Request.Type.Attribute = ATTR_SIMPLE;
3404                         c->Request.Type.Direction = XFER_WRITE;
3405                         c->Request.Timeout = 0; /* Don't time out */
3406                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3407                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3408                         c->Request.CDB[2] = 0x00; /* reserved */
3409                         c->Request.CDB[3] = 0x00; /* reserved */
3410                         /* Tag to abort goes in CDB[4]-CDB[11] */
3411                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3412                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3413                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3414                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3415                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3416                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3417                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3418                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3419                         c->Request.CDB[12] = 0x00; /* reserved */
3420                         c->Request.CDB[13] = 0x00; /* reserved */
3421                         c->Request.CDB[14] = 0x00; /* reserved */
3422                         c->Request.CDB[15] = 0x00; /* reserved */
3423                 break;
3424                 default:
3425                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3426                                 cmd);
3427                         BUG();
3428                 }
3429         } else {
3430                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3431                 BUG();
3432         }
3433 
3434         switch (c->Request.Type.Direction) {
3435         case XFER_READ:
3436                 pci_dir = PCI_DMA_FROMDEVICE;
3437                 break;
3438         case XFER_WRITE:
3439                 pci_dir = PCI_DMA_TODEVICE;
3440                 break;
3441         case XFER_NONE:
3442                 pci_dir = PCI_DMA_NONE;
3443                 break;
3444         default:
3445                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3446         }
3447         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3448                 return -1;
3449         return 0;
3450 }
3451 
3452 /*
3453  * Map (physical) PCI mem into (virtual) kernel space
3454  */
3455 static void __iomem *remap_pci_mem(ulong base, ulong size)
3456 {
3457         ulong page_base = ((ulong) base) & PAGE_MASK;
3458         ulong page_offs = ((ulong) base) - page_base;
3459         void __iomem *page_remapped = ioremap_nocache(page_base,
3460                 page_offs + size);
3461 
3462         return page_remapped ? (page_remapped + page_offs) : NULL;
3463 }
3464 
3465 /* Takes cmds off the submission queue and sends them to the hardware,
3466  * then puts them on the queue of cmds waiting for completion.
3467  */
3468 static void start_io(struct ctlr_info *h)
3469 {
3470         struct CommandList *c;
3471         unsigned long flags;
3472 
3473         spin_lock_irqsave(&h->lock, flags);
3474         while (!list_empty(&h->reqQ)) {
3475                 c = list_entry(h->reqQ.next, struct CommandList, list);
3476                 /* can't do anything if fifo is full */
3477                 if ((h->access.fifo_full(h))) {
3478                         h->fifo_recently_full = 1;
3479                         dev_warn(&h->pdev->dev, "fifo full\n");
3480                         break;
3481                 }
3482                 h->fifo_recently_full = 0;
3483 
3484                 /* Get the first entry from the Request Q */
3485                 removeQ(c);
3486                 h->Qdepth--;
3487 
3488                 /* Put job onto the completed Q */
3489                 addQ(&h->cmpQ, c);
3490 
3491                 /* Must increment commands_outstanding before unlocking
3492                  * and submitting to avoid race checking for fifo full
3493                  * condition.
3494                  */
3495                 h->commands_outstanding++;
3496                 if (h->commands_outstanding > h->max_outstanding)
3497                         h->max_outstanding = h->commands_outstanding;
3498 
3499                 /* Tell the controller execute command */
3500                 spin_unlock_irqrestore(&h->lock, flags);
3501                 h->access.submit_command(h, c);
3502                 spin_lock_irqsave(&h->lock, flags);
3503         }
3504         spin_unlock_irqrestore(&h->lock, flags);
3505 }
3506 
3507 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3508 {
3509         return h->access.command_completed(h, q);
3510 }
3511 
3512 static inline bool interrupt_pending(struct ctlr_info *h)
3513 {
3514         return h->access.intr_pending(h);
3515 }
3516 
3517 static inline long interrupt_not_for_us(struct ctlr_info *h)
3518 {
3519         return (h->access.intr_pending(h) == 0) ||
3520                 (h->interrupts_enabled == 0);
3521 }
3522 
3523 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3524         u32 raw_tag)
3525 {
3526         if (unlikely(tag_index >= h->nr_cmds)) {
3527                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3528                 return 1;
3529         }
3530         return 0;
3531 }
3532 
3533 static inline void finish_cmd(struct CommandList *c)
3534 {
3535         unsigned long flags;
3536         int io_may_be_stalled = 0;
3537         struct ctlr_info *h = c->h;
3538 
3539         spin_lock_irqsave(&h->lock, flags);
3540         removeQ(c);
3541 
3542         /*
3543          * Check for possibly stalled i/o.
3544          *
3545          * If a fifo_full condition is encountered, requests will back up
3546          * in h->reqQ.  This queue is only emptied out by start_io which is
3547          * only called when a new i/o request comes in.  If no i/o's are
3548          * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
3549          * start_io from here if we detect such a danger.
3550          *
3551          * Normally, we shouldn't hit this case, but pounding on the
3552          * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
3553          * commands_outstanding is low.  We want to avoid calling
3554          * start_io from in here as much as possible, and esp. don't
3555          * want to get in a cycle where we call start_io every time
3556          * through here.
3557          */
3558         if (unlikely(h->fifo_recently_full) &&
3559                 h->commands_outstanding < 5)
3560                 io_may_be_stalled = 1;
3561 
3562         spin_unlock_irqrestore(&h->lock, flags);
3563 
3564         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3565         if (likely(c->cmd_type == CMD_SCSI))
3566                 complete_scsi_command(c);
3567         else if (c->cmd_type == CMD_IOCTL_PEND)
3568                 complete(c->waiting);
3569         if (unlikely(io_may_be_stalled))
3570                 start_io(h);
3571 }
3572 
3573 static inline u32 hpsa_tag_contains_index(u32 tag)
3574 {
3575         return tag & DIRECT_LOOKUP_BIT;
3576 }
3577 
3578 static inline u32 hpsa_tag_to_index(u32 tag)
3579 {
3580         return tag >> DIRECT_LOOKUP_SHIFT;
3581 }
3582 
3583 
3584 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3585 {
3586 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3587 #define HPSA_SIMPLE_ERROR_BITS 0x03
3588         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3589                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3590         return tag & ~HPSA_PERF_ERROR_BITS;
3591 }
3592 
3593 /* process completion of an indexed ("direct lookup") command */
3594 static inline void process_indexed_cmd(struct ctlr_info *h,
3595         u32 raw_tag)
3596 {
3597         u32 tag_index;
3598         struct CommandList *c;
3599 
3600         tag_index = hpsa_tag_to_index(raw_tag);
3601         if (!bad_tag(h, tag_index, raw_tag)) {
3602                 c = h->cmd_pool + tag_index;
3603                 finish_cmd(c);
3604         }
3605 }
3606 
3607 /* process completion of a non-indexed command */
3608 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3609         u32 raw_tag)
3610 {
3611         u32 tag;
3612         struct CommandList *c = NULL;
3613         unsigned long flags;
3614 
3615         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3616         spin_lock_irqsave(&h->lock, flags);
3617         list_for_each_entry(c, &h->cmpQ, list) {
3618                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3619                         spin_unlock_irqrestore(&h->lock, flags);
3620                         finish_cmd(c);
3621                         return;
3622                 }
3623         }
3624         spin_unlock_irqrestore(&h->lock, flags);
3625         bad_tag(h, h->nr_cmds + 1, raw_tag);
3626 }
3627 
3628 /* Some controllers, like p400, will give us one interrupt
3629  * after a soft reset, even if we turned interrupts off.
3630  * Only need to check for this in the hpsa_xxx_discard_completions
3631  * functions.
3632  */
3633 static int ignore_bogus_interrupt(struct ctlr_info *h)
3634 {
3635         if (likely(!reset_devices))
3636                 return 0;
3637 
3638         if (likely(h->interrupts_enabled))
3639                 return 0;
3640 
3641         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3642                 "(known firmware bug.)  Ignoring.\n");
3643 
3644         return 1;
3645 }
3646 
3647 /*
3648  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3649  * Relies on (h-q[x] == x) being true for x such that
3650  * 0 <= x < MAX_REPLY_QUEUES.
3651  */
3652 static struct ctlr_info *queue_to_hba(u8 *queue)
3653 {
3654         return container_of((queue - *queue), struct ctlr_info, q[0]);
3655 }
3656 
3657 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3658 {
3659         struct ctlr_info *h = queue_to_hba(queue);
3660         u8 q = *(u8 *) queue;
3661         u32 raw_tag;
3662 
3663         if (ignore_bogus_interrupt(h))
3664                 return IRQ_NONE;
3665 
3666         if (interrupt_not_for_us(h))
3667                 return IRQ_NONE;
3668         h->last_intr_timestamp = get_jiffies_64();
3669         while (interrupt_pending(h)) {
3670                 raw_tag = get_next_completion(h, q);
3671                 while (raw_tag != FIFO_EMPTY)
3672                         raw_tag = next_command(h, q);
3673         }
3674         return IRQ_HANDLED;
3675 }
3676 
3677 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3678 {
3679         struct ctlr_info *h = queue_to_hba(queue);
3680         u32 raw_tag;
3681         u8 q = *(u8 *) queue;
3682 
3683         if (ignore_bogus_interrupt(h))
3684                 return IRQ_NONE;
3685 
3686         h->last_intr_timestamp = get_jiffies_64();
3687         raw_tag = get_next_completion(h, q);
3688         while (raw_tag != FIFO_EMPTY)
3689                 raw_tag = next_command(h, q);
3690         return IRQ_HANDLED;
3691 }
3692 
3693 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3694 {
3695         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3696         u32 raw_tag;
3697         u8 q = *(u8 *) queue;
3698 
3699         if (interrupt_not_for_us(h))
3700                 return IRQ_NONE;
3701         h->last_intr_timestamp = get_jiffies_64();
3702         while (interrupt_pending(h)) {
3703                 raw_tag = get_next_completion(h, q);
3704                 while (raw_tag != FIFO_EMPTY) {
3705                         if (likely(hpsa_tag_contains_index(raw_tag)))
3706                                 process_indexed_cmd(h, raw_tag);
3707                         else
3708                                 process_nonindexed_cmd(h, raw_tag);
3709                         raw_tag = next_command(h, q);
3710                 }
3711         }
3712         return IRQ_HANDLED;
3713 }
3714 
3715 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3716 {
3717         struct ctlr_info *h = queue_to_hba(queue);
3718         u32 raw_tag;
3719         u8 q = *(u8 *) queue;
3720 
3721         h->last_intr_timestamp = get_jiffies_64();
3722         raw_tag = get_next_completion(h, q);
3723         while (raw_tag != FIFO_EMPTY) {
3724                 if (likely(hpsa_tag_contains_index(raw_tag)))
3725                         process_indexed_cmd(h, raw_tag);
3726                 else
3727                         process_nonindexed_cmd(h, raw_tag);
3728                 raw_tag = next_command(h, q);
3729         }
3730         return IRQ_HANDLED;
3731 }
3732 
3733 /* Send a message CDB to the firmware. Careful, this only works
3734  * in simple mode, not performant mode due to the tag lookup.
3735  * We only ever use this immediately after a controller reset.
3736  */
3737 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3738                         unsigned char type)
3739 {
3740         struct Command {
3741                 struct CommandListHeader CommandHeader;
3742                 struct RequestBlock Request;
3743                 struct ErrDescriptor ErrorDescriptor;
3744         };
3745         struct Command *cmd;
3746         static const size_t cmd_sz = sizeof(*cmd) +
3747                                         sizeof(cmd->ErrorDescriptor);
3748         dma_addr_t paddr64;
3749         uint32_t paddr32, tag;
3750         void __iomem *vaddr;
3751         int i, err;
3752 
3753         vaddr = pci_ioremap_bar(pdev, 0);
3754         if (vaddr == NULL)
3755                 return -ENOMEM;
3756 
3757         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3758          * CCISS commands, so they must be allocated from the lower 4GiB of
3759          * memory.
3760          */
3761         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3762         if (err) {
3763                 iounmap(vaddr);
3764                 return -ENOMEM;
3765         }
3766 
3767         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3768         if (cmd == NULL) {
3769                 iounmap(vaddr);
3770                 return -ENOMEM;
3771         }
3772 
3773         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3774          * although there's no guarantee, we assume that the address is at
3775          * least 4-byte aligned (most likely, it's page-aligned).
3776          */
3777         paddr32 = paddr64;
3778 
3779         cmd->CommandHeader.ReplyQueue = 0;
3780         cmd->CommandHeader.SGList = 0;
3781         cmd->CommandHeader.SGTotal = 0;
3782         cmd->CommandHeader.Tag.lower = paddr32;
3783         cmd->CommandHeader.Tag.upper = 0;
3784         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3785 
3786         cmd->Request.CDBLen = 16;
3787         cmd->Request.Type.Type = TYPE_MSG;
3788         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3789         cmd->Request.Type.Direction = XFER_NONE;
3790         cmd->Request.Timeout = 0; /* Don't time out */
3791         cmd->Request.CDB[0] = opcode;
3792         cmd->Request.CDB[1] = type;
3793         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3794         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3795         cmd->ErrorDescriptor.Addr.upper = 0;
3796         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3797 
3798         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3799 
3800         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3801                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3802                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3803                         break;
3804                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3805         }
3806 
3807         iounmap(vaddr);
3808 
3809         /* we leak the DMA buffer here ... no choice since the controller could
3810          *  still complete the command.
3811          */
3812         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3813                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3814                         opcode, type);
3815                 return -ETIMEDOUT;
3816         }
3817 
3818         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3819 
3820         if (tag & HPSA_ERROR_BIT) {
3821                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3822                         opcode, type);
3823                 return -EIO;
3824         }
3825 
3826         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3827                 opcode, type);
3828         return 0;
3829 }
3830 
3831 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3832 
3833 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3834         void * __iomem vaddr, u32 use_doorbell)
3835 {
3836         u16 pmcsr;
3837         int pos;
3838 
3839         if (use_doorbell) {
3840                 /* For everything after the P600, the PCI power state method
3841                  * of resetting the controller doesn't work, so we have this
3842                  * other way using the doorbell register.
3843                  */
3844                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3845                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3846 
3847                 /* PMC hardware guys tell us we need a 5 second delay after
3848                  * doorbell reset and before any attempt to talk to the board
3849                  * at all to ensure that this actually works and doesn't fall
3850                  * over in some weird corner cases.
3851                  */
3852                 msleep(5000);
3853         } else { /* Try to do it the PCI power state way */
3854 
3855                 /* Quoting from the Open CISS Specification: "The Power
3856                  * Management Control/Status Register (CSR) controls the power
3857                  * state of the device.  The normal operating state is D0,
3858                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3859                  * the controller, place the interface device in D3 then to D0,
3860                  * this causes a secondary PCI reset which will reset the
3861                  * controller." */
3862 
3863                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3864                 if (pos == 0) {
3865                         dev_err(&pdev->dev,
3866                                 "hpsa_reset_controller: "
3867                                 "PCI PM not supported\n");
3868                         return -ENODEV;
3869                 }
3870                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3871                 /* enter the D3hot power management state */
3872                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3873                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3874                 pmcsr |= PCI_D3hot;
3875                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3876 
3877                 msleep(500);
3878 
3879                 /* enter the D0 power management state */
3880                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3881                 pmcsr |= PCI_D0;
3882                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3883 
3884                 /*
3885                  * The P600 requires a small delay when changing states.
3886                  * Otherwise we may think the board did not reset and we bail.
3887                  * This for kdump only and is particular to the P600.
3888                  */
3889                 msleep(500);
3890         }
3891         return 0;
3892 }
3893 
3894 static void init_driver_version(char *driver_version, int len)
3895 {
3896         memset(driver_version, 0, len);
3897         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3898 }
3899 
3900 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3901 {
3902         char *driver_version;
3903         int i, size = sizeof(cfgtable->driver_version);
3904 
3905         driver_version = kmalloc(size, GFP_KERNEL);
3906         if (!driver_version)
3907                 return -ENOMEM;
3908 
3909         init_driver_version(driver_version, size);
3910         for (i = 0; i < size; i++)
3911                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3912         kfree(driver_version);
3913         return 0;
3914 }
3915 
3916 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3917                                           unsigned char *driver_ver)
3918 {
3919         int i;
3920 
3921         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3922                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3923 }
3924 
3925 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3926 {
3927 
3928         char *driver_ver, *old_driver_ver;
3929         int rc, size = sizeof(cfgtable->driver_version);
3930 
3931         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3932         if (!old_driver_ver)
3933                 return -ENOMEM;
3934         driver_ver = old_driver_ver + size;
3935 
3936         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3937          * should have been changed, otherwise we know the reset failed.
3938          */
3939         init_driver_version(old_driver_ver, size);
3940         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3941         rc = !memcmp(driver_ver, old_driver_ver, size);
3942         kfree(old_driver_ver);
3943         return rc;
3944 }
3945 /* This does a hard reset of the controller using PCI power management
3946  * states or the using the doorbell register.
3947  */
3948 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3949 {
3950         u64 cfg_offset;
3951         u32 cfg_base_addr;
3952         u64 cfg_base_addr_index;
3953         void __iomem *vaddr;
3954         unsigned long paddr;
3955         u32 misc_fw_support;
3956         int rc;
3957         struct CfgTable __iomem *cfgtable;
3958         u32 use_doorbell;
3959         u32 board_id;
3960         u16 command_register;
3961 
3962         /* For controllers as old as the P600, this is very nearly
3963          * the same thing as
3964          *
3965          * pci_save_state(pci_dev);
3966          * pci_set_power_state(pci_dev, PCI_D3hot);
3967          * pci_set_power_state(pci_dev, PCI_D0);
3968          * pci_restore_state(pci_dev);
3969          *
3970          * For controllers newer than the P600, the pci power state
3971          * method of resetting doesn't work so we have another way
3972          * using the doorbell register.
3973          */
3974 
3975         rc = hpsa_lookup_board_id(pdev, &board_id);
3976         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3977                 dev_warn(&pdev->dev, "Not resetting device.\n");
3978                 return -ENODEV;
3979         }
3980 
3981         /* if controller is soft- but not hard resettable... */
3982         if (!ctlr_is_hard_resettable(board_id))
3983                 return -ENOTSUPP; /* try soft reset later. */
3984 
3985         /* Save the PCI command register */
3986         pci_read_config_word(pdev, 4, &command_register);
3987         /* Turn the board off.  This is so that later pci_restore_state()
3988          * won't turn the board on before the rest of config space is ready.
3989          */
3990         pci_disable_device(pdev);
3991         pci_save_state(pdev);
3992 
3993         /* find the first memory BAR, so we can find the cfg table */
3994         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3995         if (rc)
3996                 return rc;
3997         vaddr = remap_pci_mem(paddr, 0x250);
3998         if (!vaddr)
3999                 return -ENOMEM;
4000 
4001         /* find cfgtable in order to check if reset via doorbell is supported */
4002         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4003                                         &cfg_base_addr_index, &cfg_offset);
4004         if (rc)
4005                 goto unmap_vaddr;
4006         cfgtable = remap_pci_mem(pci_resource_start(pdev,
4007                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4008         if (!cfgtable) {
4009                 rc = -ENOMEM;
4010                 goto unmap_vaddr;
4011         }
4012         rc = write_driver_ver_to_cfgtable(cfgtable);
4013         if (rc)
4014                 goto unmap_vaddr;
4015 
4016         /* If reset via doorbell register is supported, use that.
4017          * There are two such methods.  Favor the newest method.
4018          */
4019         misc_fw_support = readl(&cfgtable->misc_fw_support);
4020         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4021         if (use_doorbell) {
4022                 use_doorbell = DOORBELL_CTLR_RESET2;
4023         } else {
4024                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4025                 if (use_doorbell) {
4026                         dev_warn(&pdev->dev, "Soft reset not supported. "
4027                                 "Firmware update is required.\n");
4028                         rc = -ENOTSUPP; /* try soft reset */
4029                         goto unmap_cfgtable;
4030                 }
4031         }
4032 
4033         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
4034         if (rc)
4035                 goto unmap_cfgtable;
4036 
4037         pci_restore_state(pdev);
4038         rc = pci_enable_device(pdev);
4039         if (rc) {
4040                 dev_warn(&pdev->dev, "failed to enable device.\n");
4041                 goto unmap_cfgtable;
4042         }
4043         pci_write_config_word(pdev, 4, command_register);
4044 
4045         /* Some devices (notably the HP Smart Array 5i Controller)
4046            need a little pause here */
4047         msleep(HPSA_POST_RESET_PAUSE_MSECS);
4048 
4049         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
4050         if (rc) {
4051                 dev_warn(&pdev->dev,
4052                         "failed waiting for board to become ready "
4053                         "after hard reset\n");
4054                 goto unmap_cfgtable;
4055         }
4056 
4057         rc = controller_reset_failed(vaddr);
4058         if (rc < 0)
4059                 goto unmap_cfgtable;
4060         if (rc) {
4061                 dev_warn(&pdev->dev, "Unable to successfully reset "
4062                         "controller. Will try soft reset.\n");
4063                 rc = -ENOTSUPP;
4064         } else {
4065                 dev_info(&pdev->dev, "board ready after hard reset.\n");
4066         }
4067 
4068 unmap_cfgtable:
4069         iounmap(cfgtable);
4070 
4071 unmap_vaddr:
4072         iounmap(vaddr);
4073         return rc;
4074 }
4075 
4076 /*
4077  *  We cannot read the structure directly, for portability we must use
4078  *   the io functions.
4079  *   This is for debug only.
4080  */
4081 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4082 {
4083 #ifdef HPSA_DEBUG
4084         int i;
4085         char temp_name[17];
4086 
4087         dev_info(dev, "Controller Configuration information\n");
4088         dev_info(dev, "------------------------------------\n");
4089         for (i = 0; i < 4; i++)
4090                 temp_name[i] = readb(&(tb->Signature[i]));
4091         temp_name[4] = '\0';
4092         dev_info(dev, "   Signature = %s\n", temp_name);
4093         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
4094         dev_info(dev, "   Transport methods supported = 0x%x\n",
4095                readl(&(tb->TransportSupport)));
4096         dev_info(dev, "   Transport methods active = 0x%x\n",
4097                readl(&(tb->TransportActive)));
4098         dev_info(dev, "   Requested transport Method = 0x%x\n",
4099                readl(&(tb->HostWrite.TransportRequest)));
4100         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
4101                readl(&(tb->HostWrite.CoalIntDelay)));
4102         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
4103                readl(&(tb->HostWrite.CoalIntCount)));
4104         dev_info(dev, "   Max outstanding commands = 0x%d\n",
4105                readl(&(tb->CmdsOutMax)));
4106         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4107         for (i = 0; i < 16; i++)
4108                 temp_name[i] = readb(&(tb->ServerName[i]));
4109         temp_name[16] = '\0';
4110         dev_info(dev, "   Server Name = %s\n", temp_name);
4111         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
4112                 readl(&(tb->HeartBeat)));
4113 #endif                          /* HPSA_DEBUG */
4114 }
4115 
4116 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4117 {
4118         int i, offset, mem_type, bar_type;
4119 
4120         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4121                 return 0;
4122         offset = 0;
4123         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4124                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4125                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4126                         offset += 4;
4127                 else {
4128                         mem_type = pci_resource_flags(pdev, i) &
4129                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4130                         switch (mem_type) {
4131                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4132                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4133                                 offset += 4;    /* 32 bit */
4134                                 break;
4135                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4136                                 offset += 8;
4137                                 break;
4138                         default:        /* reserved in PCI 2.2 */
4139                                 dev_warn(&pdev->dev,
4140                                        "base address is invalid\n");
4141                                 return -1;
4142                                 break;
4143                         }
4144                 }
4145                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4146                         return i + 1;
4147         }
4148         return -1;
4149 }
4150 
4151 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4152  * controllers that are capable. If not, we use IO-APIC mode.
4153  */
4154 
4155 static void hpsa_interrupt_mode(struct ctlr_info *h)
4156 {
4157 #ifdef CONFIG_PCI_MSI
4158         int err, i;
4159         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4160 
4161         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4162                 hpsa_msix_entries[i].vector = 0;
4163                 hpsa_msix_entries[i].entry = i;
4164         }
4165 
4166         /* Some boards advertise MSI but don't really support it */
4167         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4168             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4169                 goto default_int_mode;
4170         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4171                 dev_info(&h->pdev->dev, "MSIX\n");
4172                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4173                                                 MAX_REPLY_QUEUES);
4174                 if (!err) {
4175                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4176                                 h->intr[i] = hpsa_msix_entries[i].vector;
4177                         h->msix_vector = 1;
4178                         return;
4179                 }
4180                 if (err > 0) {
4181                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4182                                "available\n", err);
4183                         goto default_int_mode;
4184                 } else {
4185                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4186                                err);
4187                         goto default_int_mode;
4188                 }
4189         }
4190         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4191                 dev_info(&h->pdev->dev, "MSI\n");
4192                 if (!pci_enable_msi(h->pdev))
4193                         h->msi_vector = 1;
4194                 else
4195                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4196         }
4197 default_int_mode:
4198 #endif                          /* CONFIG_PCI_MSI */
4199         /* if we get here we're going to use the default interrupt mode */
4200         h->intr[h->intr_mode] = h->pdev->irq;
4201 }
4202 
4203 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4204 {
4205         int i;
4206         u32 subsystem_vendor_id, subsystem_device_id;
4207 
4208         subsystem_vendor_id = pdev->subsystem_vendor;
4209         subsystem_device_id = pdev->subsystem_device;
4210         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4211                     subsystem_vendor_id;
4212 
4213         for (i = 0; i < ARRAY_SIZE(products); i++)
4214                 if (*board_id == products[i].board_id)
4215                         return i;
4216 
4217         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4218                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4219                 !hpsa_allow_any) {
4220                 dev_warn(&pdev->dev, "unrecognized board ID: "
4221                         "0x%08x, ignoring.\n", *board_id);
4222                         return -ENODEV;
4223         }
4224         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4225 }
4226 
4227 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4228                                     unsigned long *memory_bar)
4229 {
4230         int i;
4231 
4232         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4233                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4234                         /* addressing mode bits already removed */
4235                         *memory_bar = pci_resource_start(pdev, i);
4236                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4237                                 *memory_bar);
4238                         return 0;
4239                 }
4240         dev_warn(&pdev->dev, "no memory BAR found\n");
4241         return -ENODEV;
4242 }
4243 
4244 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4245                                      int wait_for_ready)
4246 {
4247         int i, iterations;
4248         u32 scratchpad;
4249         if (wait_for_ready)
4250                 iterations = HPSA_BOARD_READY_ITERATIONS;
4251         else
4252                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4253 
4254         for (i = 0; i < iterations; i++) {
4255                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4256                 if (wait_for_ready) {
4257                         if (scratchpad == HPSA_FIRMWARE_READY)
4258                                 return 0;
4259                 } else {
4260                         if (scratchpad != HPSA_FIRMWARE_READY)
4261                                 return 0;
4262                 }
4263                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4264         }
4265         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4266         return -ENODEV;
4267 }
4268 
4269 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4270                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4271                                u64 *cfg_offset)
4272 {
4273         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4274         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4275         *cfg_base_addr &= (u32) 0x0000ffff;
4276         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4277         if (*cfg_base_addr_index == -1) {
4278                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4279                 return -ENODEV;
4280         }
4281         return 0;
4282 }
4283 
4284 static int hpsa_find_cfgtables(struct ctlr_info *h)
4285 {
4286         u64 cfg_offset;
4287         u32 cfg_base_addr;
4288         u64 cfg_base_addr_index;
4289         u32 trans_offset;
4290         int rc;
4291 
4292         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4293                 &cfg_base_addr_index, &cfg_offset);
4294         if (rc)
4295                 return rc;
4296         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4297                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4298         if (!h->cfgtable)
4299                 return -ENOMEM;
4300         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4301         if (rc)
4302                 return rc;
4303         /* Find performant mode table. */
4304         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4305         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4306                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4307                                 sizeof(*h->transtable));
4308         if (!h->transtable)
4309                 return -ENOMEM;
4310         return 0;
4311 }
4312 
4313 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4314 {
4315         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4316 
4317         /* Limit commands in memory limited kdump scenario. */
4318         if (reset_devices && h->max_commands > 32)
4319                 h->max_commands = 32;
4320 
4321         if (h->max_commands < 16) {
4322                 dev_warn(&h->pdev->dev, "Controller reports "
4323                         "max supported commands of %d, an obvious lie. "
4324                         "Using 16.  Ensure that firmware is up to date.\n",
4325                         h->max_commands);
4326                 h->max_commands = 16;
4327         }
4328 }
4329 
4330 /* Interrogate the hardware for some limits:
4331  * max commands, max SG elements without chaining, and with chaining,
4332  * SG chain block size, etc.
4333  */
4334 static void hpsa_find_board_params(struct ctlr_info *h)
4335 {
4336         hpsa_get_max_perf_mode_cmds(h);
4337         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4338         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4339         /*
4340          * Limit in-command s/g elements to 32 save dma'able memory.
4341          * Howvever spec says if 0, use 31
4342          */
4343         h->max_cmd_sg_entries = 31;
4344         if (h->maxsgentries > 512) {
4345                 h->max_cmd_sg_entries = 32;
4346                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4347                 h->maxsgentries--; /* save one for chain pointer */
4348         } else {
4349                 h->maxsgentries = 31; /* default to traditional values */
4350                 h->chainsize = 0;
4351         }
4352 
4353         /* Find out what task management functions are supported and cache */
4354         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4355 }
4356 
4357 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4358 {
4359         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4360                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4361                 return false;
4362         }
4363         return true;
4364 }
4365 
4366 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
4367 {
4368         u32 driver_support;
4369 
4370 #ifdef CONFIG_X86
4371         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4372         driver_support = readl(&(h->cfgtable->driver_support));
4373         driver_support |= ENABLE_SCSI_PREFETCH;
4374 #endif
4375         driver_support |= ENABLE_UNIT_ATTN;
4376         writel(driver_support, &(h->cfgtable->driver_support));
4377 }
4378 
4379 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4380  * in a prefetch beyond physical memory.
4381  */
4382 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4383 {
4384         u32 dma_prefetch;
4385 
4386         if (h->board_id != 0x3225103C)
4387                 return;
4388         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4389         dma_prefetch |= 0x8000;
4390         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4391 }
4392 
4393 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4394 {
4395         int i;
4396         u32 doorbell_value;
4397         unsigned long flags;
4398 
4399         /* under certain very rare conditions, this can take awhile.
4400          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4401          * as we enter this code.)
4402          */
4403         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4404                 spin_lock_irqsave(&h->lock, flags);
4405                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4406                 spin_unlock_irqrestore(&h->lock, flags);
4407                 if (!(doorbell_value & CFGTBL_ChangeReq))
4408                         break;
4409                 /* delay and try again */
4410                 usleep_range(10000, 20000);
4411         }
4412 }
4413 
4414 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4415 {
4416         u32 trans_support;
4417 
4418         trans_support = readl(&(h->cfgtable->TransportSupport));
4419         if (!(trans_support & SIMPLE_MODE))
4420                 return -ENOTSUPP;
4421 
4422         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4423         /* Update the field, and then ring the doorbell */
4424         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4425         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4426         hpsa_wait_for_mode_change_ack(h);
4427         print_cfg_table(&h->pdev->dev, h->cfgtable);
4428         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4429                 dev_warn(&h->pdev->dev,
4430                         "unable to get board into simple mode\n");
4431                 return -ENODEV;
4432         }
4433         h->transMethod = CFGTBL_Trans_Simple;
4434         return 0;
4435 }
4436 
4437 static int hpsa_pci_init(struct ctlr_info *h)
4438 {
4439         int prod_index, err;
4440 
4441         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4442         if (prod_index < 0)
4443                 return -ENODEV;
4444         h->product_name = products[prod_index].product_name;
4445         h->access = *(products[prod_index].access);
4446 
4447         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4448                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4449 
4450         err = pci_enable_device(h->pdev);
4451         if (err) {
4452                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4453                 return err;
4454         }
4455 
4456         /* Enable bus mastering (pci_disable_device may disable this) */
4457         pci_set_master(h->pdev);
4458 
4459         err = pci_request_regions(h->pdev, HPSA);
4460         if (err) {
4461                 dev_err(&h->pdev->dev,
4462                         "cannot obtain PCI resources, aborting\n");
4463                 return err;
4464         }
4465         hpsa_interrupt_mode(h);
4466         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4467         if (err)
4468                 goto err_out_free_res;
4469         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4470         if (!h->vaddr) {
4471                 err = -ENOMEM;
4472                 goto err_out_free_res;
4473         }
4474         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4475         if (err)
4476                 goto err_out_free_res;
4477         err = hpsa_find_cfgtables(h);
4478         if (err)
4479                 goto err_out_free_res;
4480         hpsa_find_board_params(h);
4481 
4482         if (!hpsa_CISS_signature_present(h)) {
4483                 err = -ENODEV;
4484                 goto err_out_free_res;
4485         }
4486         hpsa_set_driver_support_bits(h);
4487         hpsa_p600_dma_prefetch_quirk(h);
4488         err = hpsa_enter_simple_mode(h);
4489         if (err)
4490                 goto err_out_free_res;
4491         return 0;
4492 
4493 err_out_free_res:
4494         if (h->transtable)
4495                 iounmap(h->transtable);
4496         if (h->cfgtable)
4497                 iounmap(h->cfgtable);
4498         if (h->vaddr)
4499                 iounmap(h->vaddr);
4500         pci_disable_device(h->pdev);
4501         pci_release_regions(h->pdev);
4502         return err;
4503 }
4504 
4505 static void hpsa_hba_inquiry(struct ctlr_info *h)
4506 {
4507         int rc;
4508 
4509 #define HBA_INQUIRY_BYTE_COUNT 64
4510         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4511         if (!h->hba_inquiry_data)
4512                 return;
4513         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4514                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4515         if (rc != 0) {
4516                 kfree(h->hba_inquiry_data);
4517                 h->hba_inquiry_data = NULL;
4518         }
4519 }
4520 
4521 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4522 {
4523         int rc, i;
4524 
4525         if (!reset_devices)
4526                 return 0;
4527 
4528         /* Reset the controller with a PCI power-cycle or via doorbell */
4529         rc = hpsa_kdump_hard_reset_controller(pdev);
4530 
4531         /* -ENOTSUPP here means we cannot reset the controller
4532          * but it's already (and still) up and running in
4533          * "performant mode".  Or, it might be 640x, which can't reset
4534          * due to concerns about shared bbwc between 6402/6404 pair.
4535          */
4536         if (rc == -ENOTSUPP)
4537                 return rc; /* just try to do the kdump anyhow. */
4538         if (rc)
4539                 return -ENODEV;
4540 
4541         /* Now try to get the controller to respond to a no-op */
4542         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4543         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4544                 if (hpsa_noop(pdev) == 0)
4545                         break;
4546                 else
4547                         dev_warn(&pdev->dev, "no-op failed%s\n",
4548                                         (i < 11 ? "; re-trying" : ""));
4549         }
4550         return 0;
4551 }
4552 
4553 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4554 {
4555         h->cmd_pool_bits = kzalloc(
4556                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4557                 sizeof(unsigned long), GFP_KERNEL);
4558         h->cmd_pool = pci_alloc_consistent(h->pdev,
4559                     h->nr_cmds * sizeof(*h->cmd_pool),
4560                     &(h->cmd_pool_dhandle));
4561         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4562                     h->nr_cmds * sizeof(*h->errinfo_pool),
4563                     &(h->errinfo_pool_dhandle));
4564         if ((h->cmd_pool_bits == NULL)
4565             || (h->cmd_pool == NULL)
4566             || (h->errinfo_pool == NULL)) {
4567                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4568                 return -ENOMEM;
4569         }
4570         return 0;
4571 }
4572 
4573 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4574 {
4575         kfree(h->cmd_pool_bits);
4576         if (h->cmd_pool)
4577                 pci_free_consistent(h->pdev,
4578                             h->nr_cmds * sizeof(struct CommandList),
4579                             h->cmd_pool, h->cmd_pool_dhandle);
4580         if (h->errinfo_pool)
4581                 pci_free_consistent(h->pdev,
4582                             h->nr_cmds * sizeof(struct ErrorInfo),
4583                             h->errinfo_pool,
4584                             h->errinfo_pool_dhandle);
4585 }
4586 
4587 static int hpsa_request_irq(struct ctlr_info *h,
4588         irqreturn_t (*msixhandler)(int, void *),
4589         irqreturn_t (*intxhandler)(int, void *))
4590 {
4591         int rc, i;
4592 
4593         /*
4594          * initialize h->q[x] = x so that interrupt handlers know which
4595          * queue to process.
4596          */
4597         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4598                 h->q[i] = (u8) i;
4599 
4600         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4601                 /* If performant mode and MSI-X, use multiple reply queues */
4602                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4603                         rc = request_irq(h->intr[i], msixhandler,
4604                                         0, h->devname,
4605                                         &h->q[i]);
4606         } else {
4607                 /* Use single reply pool */
4608                 if (h->msix_vector || h->msi_vector) {
4609                         rc = request_irq(h->intr[h->intr_mode],
4610                                 msixhandler, 0, h->devname,
4611                                 &h->q[h->intr_mode]);
4612                 } else {
4613                         rc = request_irq(h->intr[h->intr_mode],
4614                                 intxhandler, IRQF_SHARED, h->devname,
4615                                 &h->q[h->intr_mode]);
4616                 }
4617         }
4618         if (rc) {
4619                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4620                        h->intr[h->intr_mode], h->devname);
4621                 return -ENODEV;
4622         }
4623         return 0;
4624 }
4625 
4626 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4627 {
4628         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4629                 HPSA_RESET_TYPE_CONTROLLER)) {
4630                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4631                 return -EIO;
4632         }
4633 
4634         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4635         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4636                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4637                 return -1;
4638         }
4639 
4640         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4641         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4642                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4643                         "after soft reset.\n");
4644                 return -1;
4645         }
4646 
4647         return 0;
4648 }
4649 
4650 static void free_irqs(struct ctlr_info *h)
4651 {
4652         int i;
4653 
4654         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4655                 /* Single reply queue, only one irq to free */
4656                 i = h->intr_mode;
4657                 free_irq(h->intr[i], &h->q[i]);
4658                 return;
4659         }
4660 
4661         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4662                 free_irq(h->intr[i], &h->q[i]);
4663 }
4664 
4665 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4666 {
4667         free_irqs(h);
4668 #ifdef CONFIG_PCI_MSI
4669         if (h->msix_vector) {
4670                 if (h->pdev->msix_enabled)
4671                         pci_disable_msix(h->pdev);
4672         } else if (h->msi_vector) {
4673                 if (h->pdev->msi_enabled)
4674                         pci_disable_msi(h->pdev);
4675         }
4676 #endif /* CONFIG_PCI_MSI */
4677 }
4678 
4679 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4680 {
4681         hpsa_free_irqs_and_disable_msix(h);
4682         hpsa_free_sg_chain_blocks(h);
4683         hpsa_free_cmd_pool(h);
4684         kfree(h->blockFetchTable);
4685         pci_free_consistent(h->pdev, h->reply_pool_size,
4686                 h->reply_pool, h->reply_pool_dhandle);
4687         if (h->vaddr)
4688                 iounmap(h->vaddr);
4689         if (h->transtable)
4690                 iounmap(h->transtable);
4691         if (h->cfgtable)
4692                 iounmap(h->cfgtable);
4693         pci_release_regions(h->pdev);
4694         kfree(h);
4695 }
4696 
4697 /* Called when controller lockup detected. */
4698 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4699 {
4700         struct CommandList *c = NULL;
4701 
4702         assert_spin_locked(&h->lock);
4703         /* Mark all outstanding commands as failed and complete them. */
4704         while (!list_empty(list)) {
4705                 c = list_entry(list->next, struct CommandList, list);
4706                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4707                 finish_cmd(c);
4708         }
4709 }
4710 
4711 static void controller_lockup_detected(struct ctlr_info *h)
4712 {
4713         unsigned long flags;
4714 
4715         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4716         spin_lock_irqsave(&h->lock, flags);
4717         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4718         spin_unlock_irqrestore(&h->lock, flags);
4719         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4720                         h->lockup_detected);
4721         pci_disable_device(h->pdev);
4722         spin_lock_irqsave(&h->lock, flags);
4723         fail_all_cmds_on_list(h, &h->cmpQ);
4724         fail_all_cmds_on_list(h, &h->reqQ);
4725         spin_unlock_irqrestore(&h->lock, flags);
4726 }
4727 
4728 static void detect_controller_lockup(struct ctlr_info *h)
4729 {
4730         u64 now;
4731         u32 heartbeat;
4732         unsigned long flags;
4733 
4734         now = get_jiffies_64();
4735         /* If we've received an interrupt recently, we're ok. */
4736         if (time_after64(h->last_intr_timestamp +
4737                                 (h->heartbeat_sample_interval), now))
4738                 return;
4739 
4740         /*
4741          * If we've already checked the heartbeat recently, we're ok.
4742          * This could happen if someone sends us a signal. We
4743          * otherwise don't care about signals in this thread.
4744          */
4745         if (time_after64(h->last_heartbeat_timestamp +
4746                                 (h->heartbeat_sample_interval), now))
4747                 return;
4748 
4749         /* If heartbeat has not changed since we last looked, we're not ok. */
4750         spin_lock_irqsave(&h->lock, flags);
4751         heartbeat = readl(&h->cfgtable->HeartBeat);
4752         spin_unlock_irqrestore(&h->lock, flags);
4753         if (h->last_heartbeat == heartbeat) {
4754                 controller_lockup_detected(h);
4755                 return;
4756         }
4757 
4758         /* We're ok. */
4759         h->last_heartbeat = heartbeat;
4760         h->last_heartbeat_timestamp = now;
4761 }
4762 
4763 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
4764 {
4765         unsigned long flags;
4766         struct ctlr_info *h = container_of(to_delayed_work(work),
4767                                         struct ctlr_info, monitor_ctlr_work);
4768         detect_controller_lockup(h);
4769         if (h->lockup_detected)
4770                 return;
4771         spin_lock_irqsave(&h->lock, flags);
4772         if (h->remove_in_progress) {
4773                 spin_unlock_irqrestore(&h->lock, flags);
4774                 return;
4775         }
4776         schedule_delayed_work(&h->monitor_ctlr_work,
4777                                 h->heartbeat_sample_interval);
4778         spin_unlock_irqrestore(&h->lock, flags);
4779 }
4780 
4781 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4782 {
4783         int dac, rc;
4784         struct ctlr_info *h;
4785         int try_soft_reset = 0;
4786         unsigned long flags;
4787 
4788         if (number_of_controllers == 0)
4789                 printk(KERN_INFO DRIVER_NAME "\n");
4790 
4791         rc = hpsa_init_reset_devices(pdev);
4792         if (rc) {
4793                 if (rc != -ENOTSUPP)
4794                         return rc;
4795                 /* If the reset fails in a particular way (it has no way to do
4796                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4797                  * a soft reset once we get the controller configured up to the
4798                  * point that it can accept a command.
4799                  */
4800                 try_soft_reset = 1;
4801                 rc = 0;
4802         }
4803 
4804 reinit_after_soft_reset:
4805 
4806         /* Command structures must be aligned on a 32-byte boundary because
4807          * the 5 lower bits of the address are used by the hardware. and by
4808          * the driver.  See comments in hpsa.h for more info.
4809          */
4810 #define COMMANDLIST_ALIGNMENT 32
4811         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4812         h = kzalloc(sizeof(*h), GFP_KERNEL);
4813         if (!h)
4814                 return -ENOMEM;
4815 
4816         h->pdev = pdev;
4817         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4818         INIT_LIST_HEAD(&h->cmpQ);
4819         INIT_LIST_HEAD(&h->reqQ);
4820         spin_lock_init(&h->lock);
4821         spin_lock_init(&h->scan_lock);
4822         spin_lock_init(&h->passthru_count_lock);
4823         rc = hpsa_pci_init(h);
4824         if (rc != 0)
4825                 goto clean1;
4826 
4827         sprintf(h->devname, HPSA "%d", number_of_controllers);
4828         h->ctlr = number_of_controllers;
4829         number_of_controllers++;
4830 
4831         /* configure PCI DMA stuff */
4832         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4833         if (rc == 0) {
4834                 dac = 1;
4835         } else {
4836                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4837                 if (rc == 0) {
4838                         dac = 0;
4839                 } else {
4840                         dev_err(&pdev->dev, "no suitable DMA available\n");
4841                         goto clean1;
4842                 }
4843         }
4844 
4845         /* make sure the board interrupts are off */
4846         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4847 
4848         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4849                 goto clean2;
4850         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4851                h->devname, pdev->device,
4852                h->intr[h->intr_mode], dac ? "" : " not");
4853         if (hpsa_allocate_cmd_pool(h))
4854                 goto clean4;
4855         if (hpsa_allocate_sg_chain_blocks(h))
4856                 goto clean4;
4857         init_waitqueue_head(&h->scan_wait_queue);
4858         h->scan_finished = 1; /* no scan currently in progress */
4859 
4860         pci_set_drvdata(pdev, h);
4861         h->ndevices = 0;
4862         h->scsi_host = NULL;
4863         spin_lock_init(&h->devlock);
4864         hpsa_put_ctlr_into_performant_mode(h);
4865 
4866         /* At this point, the controller is ready to take commands.
4867          * Now, if reset_devices and the hard reset didn't work, try
4868          * the soft reset and see if that works.
4869          */
4870         if (try_soft_reset) {
4871 
4872                 /* This is kind of gross.  We may or may not get a completion
4873                  * from the soft reset command, and if we do, then the value
4874                  * from the fifo may or may not be valid.  So, we wait 10 secs
4875                  * after the reset throwing away any completions we get during
4876                  * that time.  Unregister the interrupt handler and register
4877                  * fake ones to scoop up any residual completions.
4878                  */
4879                 spin_lock_irqsave(&h->lock, flags);
4880                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4881                 spin_unlock_irqrestore(&h->lock, flags);
4882                 free_irqs(h);
4883                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4884                                         hpsa_intx_discard_completions);
4885                 if (rc) {
4886                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4887                                 "soft reset.\n");
4888                         goto clean4;
4889                 }
4890 
4891                 rc = hpsa_kdump_soft_reset(h);
4892                 if (rc)
4893                         /* Neither hard nor soft reset worked, we're hosed. */
4894                         goto clean4;
4895 
4896                 dev_info(&h->pdev->dev, "Board READY.\n");
4897                 dev_info(&h->pdev->dev,
4898                         "Waiting for stale completions to drain.\n");
4899                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4900                 msleep(10000);
4901                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4902 
4903                 rc = controller_reset_failed(h->cfgtable);
4904                 if (rc)
4905                         dev_info(&h->pdev->dev,
4906                                 "Soft reset appears to have failed.\n");
4907 
4908                 /* since the controller's reset, we have to go back and re-init
4909                  * everything.  Easiest to just forget what we've done and do it
4910                  * all over again.
4911                  */
4912                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4913                 try_soft_reset = 0;
4914                 if (rc)
4915                         /* don't go to clean4, we already unallocated */
4916                         return -ENODEV;
4917 
4918                 goto reinit_after_soft_reset;
4919         }
4920 
4921         /* Turn the interrupts on so we can service requests */
4922         h->access.set_intr_mask(h, HPSA_INTR_ON);
4923 
4924         hpsa_hba_inquiry(h);
4925         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4926 
4927         /* Monitor the controller for firmware lockups */
4928         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4929         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
4930         schedule_delayed_work(&h->monitor_ctlr_work,
4931                                 h->heartbeat_sample_interval);
4932         return 0;
4933 
4934 clean4:
4935         hpsa_free_sg_chain_blocks(h);
4936         hpsa_free_cmd_pool(h);
4937         free_irqs(h);
4938 clean2:
4939 clean1:
4940         kfree(h);
4941         return rc;
4942 }
4943 
4944 static void hpsa_flush_cache(struct ctlr_info *h)
4945 {
4946         char *flush_buf;
4947         struct CommandList *c;
4948         unsigned long flags;
4949 
4950         /* Don't bother trying to flush the cache if locked up */
4951         spin_lock_irqsave(&h->lock, flags);
4952         if (unlikely(h->lockup_detected)) {
4953                 spin_unlock_irqrestore(&h->lock, flags);
4954                 return;
4955         }
4956         spin_unlock_irqrestore(&h->lock, flags);
4957 
4958         flush_buf = kzalloc(4, GFP_KERNEL);
4959         if (!flush_buf)
4960                 return;
4961 
4962         c = cmd_special_alloc(h);
4963         if (!c) {
4964                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4965                 goto out_of_memory;
4966         }
4967         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4968                 RAID_CTLR_LUNID, TYPE_CMD)) {
4969                 goto out;
4970         }
4971         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4972         if (c->err_info->CommandStatus != 0)
4973 out:
4974                 dev_warn(&h->pdev->dev,
4975                         "error flushing cache on controller\n");
4976         cmd_special_free(h, c);
4977 out_of_memory:
4978         kfree(flush_buf);
4979 }
4980 
4981 static void hpsa_shutdown(struct pci_dev *pdev)
4982 {
4983         struct ctlr_info *h;
4984 
4985         h = pci_get_drvdata(pdev);
4986         /* Turn board interrupts off  and send the flush cache command
4987          * sendcmd will turn off interrupt, and send the flush...
4988          * To write all data in the battery backed cache to disks
4989          */
4990         hpsa_flush_cache(h);
4991         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4992         hpsa_free_irqs_and_disable_msix(h);
4993 }
4994 
4995 static void hpsa_free_device_info(struct ctlr_info *h)
4996 {
4997         int i;
4998 
4999         for (i = 0; i < h->ndevices; i++)
5000                 kfree(h->dev[i]);
5001 }
5002 
5003 static void hpsa_remove_one(struct pci_dev *pdev)
5004 {
5005         struct ctlr_info *h;
5006         unsigned long flags;
5007 
5008         if (pci_get_drvdata(pdev) == NULL) {
5009                 dev_err(&pdev->dev, "unable to remove device\n");
5010                 return;
5011         }
5012         h = pci_get_drvdata(pdev);
5013 
5014         /* Get rid of any controller monitoring work items */
5015         spin_lock_irqsave(&h->lock, flags);
5016         h->remove_in_progress = 1;
5017         cancel_delayed_work(&h->monitor_ctlr_work);
5018         spin_unlock_irqrestore(&h->lock, flags);
5019 
5020         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
5021         hpsa_shutdown(pdev);
5022         iounmap(h->vaddr);
5023         iounmap(h->transtable);
5024         iounmap(h->cfgtable);
5025         hpsa_free_device_info(h);
5026         hpsa_free_sg_chain_blocks(h);
5027         pci_free_consistent(h->pdev,
5028                 h->nr_cmds * sizeof(struct CommandList),
5029                 h->cmd_pool, h->cmd_pool_dhandle);
5030         pci_free_consistent(h->pdev,
5031                 h->nr_cmds * sizeof(struct ErrorInfo),
5032                 h->errinfo_pool, h->errinfo_pool_dhandle);
5033         pci_free_consistent(h->pdev, h->reply_pool_size,
5034                 h->reply_pool, h->reply_pool_dhandle);
5035         kfree(h->cmd_pool_bits);
5036         kfree(h->blockFetchTable);
5037         kfree(h->hba_inquiry_data);
5038         pci_disable_device(pdev);
5039         pci_release_regions(pdev);
5040         kfree(h);
5041 }
5042 
5043 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5044         __attribute__((unused)) pm_message_t state)
5045 {
5046         return -ENOSYS;
5047 }
5048 
5049 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5050 {
5051         return -ENOSYS;
5052 }
5053 
5054 static struct pci_driver hpsa_pci_driver = {
5055         .name = HPSA,
5056         .probe = hpsa_init_one,
5057         .remove = hpsa_remove_one,
5058         .id_table = hpsa_pci_device_id, /* id_table */
5059         .shutdown = hpsa_shutdown,
5060         .suspend = hpsa_suspend,
5061         .resume = hpsa_resume,
5062 };
5063 
5064 /* Fill in bucket_map[], given nsgs (the max number of
5065  * scatter gather elements supported) and bucket[],
5066  * which is an array of 8 integers.  The bucket[] array
5067  * contains 8 different DMA transfer sizes (in 16
5068  * byte increments) which the controller uses to fetch
5069  * commands.  This function fills in bucket_map[], which
5070  * maps a given number of scatter gather elements to one of
5071  * the 8 DMA transfer sizes.  The point of it is to allow the
5072  * controller to only do as much DMA as needed to fetch the
5073  * command, with the DMA transfer size encoded in the lower
5074  * bits of the command address.
5075  */
5076 static void  calc_bucket_map(int bucket[], int num_buckets,
5077         int nsgs, int *bucket_map)
5078 {
5079         int i, j, b, size;
5080 
5081         /* even a command with 0 SGs requires 4 blocks */
5082 #define MINIMUM_TRANSFER_BLOCKS 4
5083 #define NUM_BUCKETS 8
5084         /* Note, bucket_map must have nsgs+1 entries. */
5085         for (i = 0; i <= nsgs; i++) {
5086                 /* Compute size of a command with i SG entries */
5087                 size = i + MINIMUM_TRANSFER_BLOCKS;
5088                 b = num_buckets; /* Assume the biggest bucket */
5089                 /* Find the bucket that is just big enough */
5090                 for (j = 0; j < 8; j++) {
5091                         if (bucket[j] >= size) {
5092                                 b = j;
5093                                 break;
5094                         }
5095                 }
5096                 /* for a command with i SG entries, use bucket b. */
5097                 bucket_map[i] = b;
5098         }
5099 }
5100 
5101 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5102 {
5103         int i;
5104         unsigned long register_value;
5105 
5106         /* This is a bit complicated.  There are 8 registers on
5107          * the controller which we write to to tell it 8 different
5108          * sizes of commands which there may be.  It's a way of
5109          * reducing the DMA done to fetch each command.  Encoded into
5110          * each command's tag are 3 bits which communicate to the controller
5111          * which of the eight sizes that command fits within.  The size of
5112          * each command depends on how many scatter gather entries there are.
5113          * Each SG entry requires 16 bytes.  The eight registers are programmed
5114          * with the number of 16-byte blocks a command of that size requires.
5115          * The smallest command possible requires 5 such 16 byte blocks.
5116          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5117          * blocks.  Note, this only extends to the SG entries contained
5118          * within the command block, and does not extend to chained blocks
5119          * of SG elements.   bft[] contains the eight values we write to
5120          * the registers.  They are not evenly distributed, but have more
5121          * sizes for small commands, and fewer sizes for larger commands.
5122          */
5123         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5124         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5125         /*  5 = 1 s/g entry or 4k
5126          *  6 = 2 s/g entry or 8k
5127          *  8 = 4 s/g entry or 16k
5128          * 10 = 6 s/g entry or 24k
5129          */
5130 
5131         /* Controller spec: zero out this buffer. */
5132         memset(h->reply_pool, 0, h->reply_pool_size);
5133 
5134         bft[7] = SG_ENTRIES_IN_CMD + 4;
5135         calc_bucket_map(bft, ARRAY_SIZE(bft),
5136                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5137         for (i = 0; i < 8; i++)
5138                 writel(bft[i], &h->transtable->BlockFetch[i]);
5139 
5140         /* size of controller ring buffer */
5141         writel(h->max_commands, &h->transtable->RepQSize);
5142         writel(h->nreply_queues, &h->transtable->RepQCount);
5143         writel(0, &h->transtable->RepQCtrAddrLow32);
5144         writel(0, &h->transtable->RepQCtrAddrHigh32);
5145 
5146         for (i = 0; i < h->nreply_queues; i++) {
5147                 writel(0, &h->transtable->RepQAddr[i].upper);
5148                 writel(h->reply_pool_dhandle +
5149                         (h->max_commands * sizeof(u64) * i),
5150                         &h->transtable->RepQAddr[i].lower);
5151         }
5152 
5153         writel(CFGTBL_Trans_Performant | use_short_tags |
5154                 CFGTBL_Trans_enable_directed_msix,
5155                 &(h->cfgtable->HostWrite.TransportRequest));
5156         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5157         hpsa_wait_for_mode_change_ack(h);
5158         register_value = readl(&(h->cfgtable->TransportActive));
5159         if (!(register_value & CFGTBL_Trans_Performant)) {
5160                 dev_warn(&h->pdev->dev, "unable to get board into"
5161                                         " performant mode\n");
5162                 return;
5163         }
5164         /* Change the access methods to the performant access methods */
5165         h->access = SA5_performant_access;
5166         h->transMethod = CFGTBL_Trans_Performant;
5167 }
5168 
5169 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5170 {
5171         u32 trans_support;
5172         int i;
5173 
5174         if (hpsa_simple_mode)
5175                 return;
5176 
5177         trans_support = readl(&(h->cfgtable->TransportSupport));
5178         if (!(trans_support & PERFORMANT_MODE))
5179                 return;
5180 
5181         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5182         hpsa_get_max_perf_mode_cmds(h);
5183         /* Performant mode ring buffer and supporting data structures */
5184         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5185         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5186                                 &(h->reply_pool_dhandle));
5187 
5188         for (i = 0; i < h->nreply_queues; i++) {
5189                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5190                 h->reply_queue[i].size = h->max_commands;
5191                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5192                 h->reply_queue[i].current_entry = 0;
5193         }
5194 
5195         /* Need a block fetch table for performant mode */
5196         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5197                                 sizeof(u32)), GFP_KERNEL);
5198 
5199         if ((h->reply_pool == NULL)
5200                 || (h->blockFetchTable == NULL))
5201                 goto clean_up;
5202 
5203         hpsa_enter_performant_mode(h,
5204                 trans_support & CFGTBL_Trans_use_short_tags);
5205 
5206         return;
5207 
5208 clean_up:
5209         if (h->reply_pool)
5210                 pci_free_consistent(h->pdev, h->reply_pool_size,
5211                         h->reply_pool, h->reply_pool_dhandle);
5212         kfree(h->blockFetchTable);
5213 }
5214 
5215 /*
5216  *  This is it.  Register the PCI driver information for the cards we control
5217  *  the OS will call our registered routines when it finds one of our cards.
5218  */
5219 static int __init hpsa_init(void)
5220 {
5221         return pci_register_driver(&hpsa_pci_driver);
5222 }
5223 
5224 static void __exit hpsa_cleanup(void)
5225 {
5226         pci_unregister_driver(&hpsa_pci_driver);
5227 }
5228 
5229 module_init(hpsa_init);
5230 module_exit(hpsa_cleanup);
5231 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us