Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/scsi/hpsa.c

  1 /*
  2  *    Disk Array driver for HP Smart Array SAS controllers
  3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
  4  *
  5  *    This program is free software; you can redistribute it and/or modify
  6  *    it under the terms of the GNU General Public License as published by
  7  *    the Free Software Foundation; version 2 of the License.
  8  *
  9  *    This program is distributed in the hope that it will be useful,
 10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 13  *
 14  *    You should have received a copy of the GNU General Public License
 15  *    along with this program; if not, write to the Free Software
 16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 17  *
 18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 19  *
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/interrupt.h>
 24 #include <linux/types.h>
 25 #include <linux/pci.h>
 26 #include <linux/pci-aspm.h>
 27 #include <linux/kernel.h>
 28 #include <linux/slab.h>
 29 #include <linux/delay.h>
 30 #include <linux/fs.h>
 31 #include <linux/timer.h>
 32 #include <linux/init.h>
 33 #include <linux/spinlock.h>
 34 #include <linux/compat.h>
 35 #include <linux/blktrace_api.h>
 36 #include <linux/uaccess.h>
 37 #include <linux/io.h>
 38 #include <linux/dma-mapping.h>
 39 #include <linux/completion.h>
 40 #include <linux/moduleparam.h>
 41 #include <scsi/scsi.h>
 42 #include <scsi/scsi_cmnd.h>
 43 #include <scsi/scsi_device.h>
 44 #include <scsi/scsi_host.h>
 45 #include <scsi/scsi_tcq.h>
 46 #include <linux/cciss_ioctl.h>
 47 #include <linux/string.h>
 48 #include <linux/bitmap.h>
 49 #include <linux/atomic.h>
 50 #include <linux/jiffies.h>
 51 #include <asm/div64.h>
 52 #include "hpsa_cmd.h"
 53 #include "hpsa.h"
 54 
 55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
 56 #define HPSA_DRIVER_VERSION "3.4.4-1"
 57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
 58 #define HPSA "hpsa"
 59 
 60 /* How long to wait (in milliseconds) for board to go into simple mode */
 61 #define MAX_CONFIG_WAIT 30000
 62 #define MAX_IOCTL_CONFIG_WAIT 1000
 63 
 64 /*define how many times we will try a command because of bus resets */
 65 #define MAX_CMD_RETRIES 3
 66 
 67 /* Embedded module documentation macros - see modules.h */
 68 MODULE_AUTHOR("Hewlett-Packard Company");
 69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
 70         HPSA_DRIVER_VERSION);
 71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
 72 MODULE_VERSION(HPSA_DRIVER_VERSION);
 73 MODULE_LICENSE("GPL");
 74 
 75 static int hpsa_allow_any;
 76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
 77 MODULE_PARM_DESC(hpsa_allow_any,
 78                 "Allow hpsa driver to access unknown HP Smart Array hardware");
 79 static int hpsa_simple_mode;
 80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
 81 MODULE_PARM_DESC(hpsa_simple_mode,
 82         "Use 'simple mode' rather than 'performant mode'");
 83 
 84 /* define the PCI info for the cards we can control */
 85 static const struct pci_device_id hpsa_pci_device_id[] = {
 86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
 87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
 88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
 89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
 90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
121         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
122         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
123         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
124         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
125         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
126         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
127                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
128         {0,}
129 };
130 
131 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
132 
133 /*  board_id = Subsystem Device ID & Vendor ID
134  *  product = Marketing Name for the board
135  *  access = Address of the struct of function pointers
136  */
137 static struct board_type products[] = {
138         {0x3241103C, "Smart Array P212", &SA5_access},
139         {0x3243103C, "Smart Array P410", &SA5_access},
140         {0x3245103C, "Smart Array P410i", &SA5_access},
141         {0x3247103C, "Smart Array P411", &SA5_access},
142         {0x3249103C, "Smart Array P812", &SA5_access},
143         {0x324A103C, "Smart Array P712m", &SA5_access},
144         {0x324B103C, "Smart Array P711m", &SA5_access},
145         {0x3350103C, "Smart Array P222", &SA5_access},
146         {0x3351103C, "Smart Array P420", &SA5_access},
147         {0x3352103C, "Smart Array P421", &SA5_access},
148         {0x3353103C, "Smart Array P822", &SA5_access},
149         {0x3354103C, "Smart Array P420i", &SA5_access},
150         {0x3355103C, "Smart Array P220i", &SA5_access},
151         {0x3356103C, "Smart Array P721m", &SA5_access},
152         {0x1921103C, "Smart Array P830i", &SA5_access},
153         {0x1922103C, "Smart Array P430", &SA5_access},
154         {0x1923103C, "Smart Array P431", &SA5_access},
155         {0x1924103C, "Smart Array P830", &SA5_access},
156         {0x1926103C, "Smart Array P731m", &SA5_access},
157         {0x1928103C, "Smart Array P230i", &SA5_access},
158         {0x1929103C, "Smart Array P530", &SA5_access},
159         {0x21BD103C, "Smart Array", &SA5_access},
160         {0x21BE103C, "Smart Array", &SA5_access},
161         {0x21BF103C, "Smart Array", &SA5_access},
162         {0x21C0103C, "Smart Array", &SA5_access},
163         {0x21C1103C, "Smart Array", &SA5_access},
164         {0x21C2103C, "Smart Array", &SA5_access},
165         {0x21C3103C, "Smart Array", &SA5_access},
166         {0x21C4103C, "Smart Array", &SA5_access},
167         {0x21C5103C, "Smart Array", &SA5_access},
168         {0x21C7103C, "Smart Array", &SA5_access},
169         {0x21C8103C, "Smart Array", &SA5_access},
170         {0x21C9103C, "Smart Array", &SA5_access},
171         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
172         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
173         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
174         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
175         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
176         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
177 };
178 
179 static int number_of_controllers;
180 
181 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
182 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
183 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
184 static void start_io(struct ctlr_info *h);
185 
186 #ifdef CONFIG_COMPAT
187 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
188 #endif
189 
190 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
191 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
192 static struct CommandList *cmd_alloc(struct ctlr_info *h);
193 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
194 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
195         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
196         int cmd_type);
197 #define VPD_PAGE (1 << 8)
198 
199 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
200 static void hpsa_scan_start(struct Scsi_Host *);
201 static int hpsa_scan_finished(struct Scsi_Host *sh,
202         unsigned long elapsed_time);
203 static int hpsa_change_queue_depth(struct scsi_device *sdev,
204         int qdepth, int reason);
205 
206 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
207 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
208 static int hpsa_slave_alloc(struct scsi_device *sdev);
209 static void hpsa_slave_destroy(struct scsi_device *sdev);
210 
211 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
212 static int check_for_unit_attention(struct ctlr_info *h,
213         struct CommandList *c);
214 static void check_ioctl_unit_attention(struct ctlr_info *h,
215         struct CommandList *c);
216 /* performant mode helper functions */
217 static void calc_bucket_map(int *bucket, int num_buckets,
218         int nsgs, int min_blocks, int *bucket_map);
219 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
220 static inline u32 next_command(struct ctlr_info *h, u8 q);
221 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
222                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
223                                u64 *cfg_offset);
224 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
225                                     unsigned long *memory_bar);
226 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
227 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
228                                      int wait_for_ready);
229 static inline void finish_cmd(struct CommandList *c);
230 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
231 #define BOARD_NOT_READY 0
232 #define BOARD_READY 1
233 static void hpsa_drain_accel_commands(struct ctlr_info *h);
234 static void hpsa_flush_cache(struct ctlr_info *h);
235 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
236         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
237         u8 *scsi3addr);
238 
239 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
240 {
241         unsigned long *priv = shost_priv(sdev->host);
242         return (struct ctlr_info *) *priv;
243 }
244 
245 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
246 {
247         unsigned long *priv = shost_priv(sh);
248         return (struct ctlr_info *) *priv;
249 }
250 
251 static int check_for_unit_attention(struct ctlr_info *h,
252         struct CommandList *c)
253 {
254         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
255                 return 0;
256 
257         switch (c->err_info->SenseInfo[12]) {
258         case STATE_CHANGED:
259                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
260                         "detected, command retried\n", h->ctlr);
261                 break;
262         case LUN_FAILED:
263                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
264                         "detected, action required\n", h->ctlr);
265                 break;
266         case REPORT_LUNS_CHANGED:
267                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
268                         "changed, action required\n", h->ctlr);
269         /*
270          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
271          * target (array) devices.
272          */
273                 break;
274         case POWER_OR_RESET:
275                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
276                         "or device reset detected\n", h->ctlr);
277                 break;
278         case UNIT_ATTENTION_CLEARED:
279                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
280                     "cleared by another initiator\n", h->ctlr);
281                 break;
282         default:
283                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
284                         "unit attention detected\n", h->ctlr);
285                 break;
286         }
287         return 1;
288 }
289 
290 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
291 {
292         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
293                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
294                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
295                 return 0;
296         dev_warn(&h->pdev->dev, HPSA "device busy");
297         return 1;
298 }
299 
300 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
301                                          struct device_attribute *attr,
302                                          const char *buf, size_t count)
303 {
304         int status, len;
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307         char tmpbuf[10];
308 
309         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
310                 return -EACCES;
311         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
312         strncpy(tmpbuf, buf, len);
313         tmpbuf[len] = '\0';
314         if (sscanf(tmpbuf, "%d", &status) != 1)
315                 return -EINVAL;
316         h = shost_to_hba(shost);
317         h->acciopath_status = !!status;
318         dev_warn(&h->pdev->dev,
319                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
320                 h->acciopath_status ? "enabled" : "disabled");
321         return count;
322 }
323 
324 static ssize_t host_store_raid_offload_debug(struct device *dev,
325                                          struct device_attribute *attr,
326                                          const char *buf, size_t count)
327 {
328         int debug_level, len;
329         struct ctlr_info *h;
330         struct Scsi_Host *shost = class_to_shost(dev);
331         char tmpbuf[10];
332 
333         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
334                 return -EACCES;
335         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
336         strncpy(tmpbuf, buf, len);
337         tmpbuf[len] = '\0';
338         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
339                 return -EINVAL;
340         if (debug_level < 0)
341                 debug_level = 0;
342         h = shost_to_hba(shost);
343         h->raid_offload_debug = debug_level;
344         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
345                 h->raid_offload_debug);
346         return count;
347 }
348 
349 static ssize_t host_store_rescan(struct device *dev,
350                                  struct device_attribute *attr,
351                                  const char *buf, size_t count)
352 {
353         struct ctlr_info *h;
354         struct Scsi_Host *shost = class_to_shost(dev);
355         h = shost_to_hba(shost);
356         hpsa_scan_start(h->scsi_host);
357         return count;
358 }
359 
360 static ssize_t host_show_firmware_revision(struct device *dev,
361              struct device_attribute *attr, char *buf)
362 {
363         struct ctlr_info *h;
364         struct Scsi_Host *shost = class_to_shost(dev);
365         unsigned char *fwrev;
366 
367         h = shost_to_hba(shost);
368         if (!h->hba_inquiry_data)
369                 return 0;
370         fwrev = &h->hba_inquiry_data[32];
371         return snprintf(buf, 20, "%c%c%c%c\n",
372                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
373 }
374 
375 static ssize_t host_show_commands_outstanding(struct device *dev,
376              struct device_attribute *attr, char *buf)
377 {
378         struct Scsi_Host *shost = class_to_shost(dev);
379         struct ctlr_info *h = shost_to_hba(shost);
380 
381         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
382 }
383 
384 static ssize_t host_show_transport_mode(struct device *dev,
385         struct device_attribute *attr, char *buf)
386 {
387         struct ctlr_info *h;
388         struct Scsi_Host *shost = class_to_shost(dev);
389 
390         h = shost_to_hba(shost);
391         return snprintf(buf, 20, "%s\n",
392                 h->transMethod & CFGTBL_Trans_Performant ?
393                         "performant" : "simple");
394 }
395 
396 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
397         struct device_attribute *attr, char *buf)
398 {
399         struct ctlr_info *h;
400         struct Scsi_Host *shost = class_to_shost(dev);
401 
402         h = shost_to_hba(shost);
403         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
404                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
405 }
406 
407 /* List of controllers which cannot be hard reset on kexec with reset_devices */
408 static u32 unresettable_controller[] = {
409         0x324a103C, /* Smart Array P712m */
410         0x324b103C, /* SmartArray P711m */
411         0x3223103C, /* Smart Array P800 */
412         0x3234103C, /* Smart Array P400 */
413         0x3235103C, /* Smart Array P400i */
414         0x3211103C, /* Smart Array E200i */
415         0x3212103C, /* Smart Array E200 */
416         0x3213103C, /* Smart Array E200i */
417         0x3214103C, /* Smart Array E200i */
418         0x3215103C, /* Smart Array E200i */
419         0x3237103C, /* Smart Array E500 */
420         0x323D103C, /* Smart Array P700m */
421         0x40800E11, /* Smart Array 5i */
422         0x409C0E11, /* Smart Array 6400 */
423         0x409D0E11, /* Smart Array 6400 EM */
424         0x40700E11, /* Smart Array 5300 */
425         0x40820E11, /* Smart Array 532 */
426         0x40830E11, /* Smart Array 5312 */
427         0x409A0E11, /* Smart Array 641 */
428         0x409B0E11, /* Smart Array 642 */
429         0x40910E11, /* Smart Array 6i */
430 };
431 
432 /* List of controllers which cannot even be soft reset */
433 static u32 soft_unresettable_controller[] = {
434         0x40800E11, /* Smart Array 5i */
435         0x40700E11, /* Smart Array 5300 */
436         0x40820E11, /* Smart Array 532 */
437         0x40830E11, /* Smart Array 5312 */
438         0x409A0E11, /* Smart Array 641 */
439         0x409B0E11, /* Smart Array 642 */
440         0x40910E11, /* Smart Array 6i */
441         /* Exclude 640x boards.  These are two pci devices in one slot
442          * which share a battery backed cache module.  One controls the
443          * cache, the other accesses the cache through the one that controls
444          * it.  If we reset the one controlling the cache, the other will
445          * likely not be happy.  Just forbid resetting this conjoined mess.
446          * The 640x isn't really supported by hpsa anyway.
447          */
448         0x409C0E11, /* Smart Array 6400 */
449         0x409D0E11, /* Smart Array 6400 EM */
450 };
451 
452 static int ctlr_is_hard_resettable(u32 board_id)
453 {
454         int i;
455 
456         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
457                 if (unresettable_controller[i] == board_id)
458                         return 0;
459         return 1;
460 }
461 
462 static int ctlr_is_soft_resettable(u32 board_id)
463 {
464         int i;
465 
466         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
467                 if (soft_unresettable_controller[i] == board_id)
468                         return 0;
469         return 1;
470 }
471 
472 static int ctlr_is_resettable(u32 board_id)
473 {
474         return ctlr_is_hard_resettable(board_id) ||
475                 ctlr_is_soft_resettable(board_id);
476 }
477 
478 static ssize_t host_show_resettable(struct device *dev,
479         struct device_attribute *attr, char *buf)
480 {
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483 
484         h = shost_to_hba(shost);
485         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
486 }
487 
488 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
489 {
490         return (scsi3addr[3] & 0xC0) == 0x40;
491 }
492 
493 static const char *raid_label[] = { "", "4", "1(1+0)", "5", "5+1", "ADG",
494         "1(ADM)", "UNKNOWN"
495 };
496 #define HPSA_RAID_0     0
497 #define HPSA_RAID_4     1
498 #define HPSA_RAID_1     2       /* also used for RAID 10 */
499 #define HPSA_RAID_5     3       /* also used for RAID 50 */
500 #define HPSA_RAID_51    4
501 #define HPSA_RAID_6     5       /* also used for RAID 60 */
502 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
503 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
504 
505 static ssize_t raid_level_show(struct device *dev,
506              struct device_attribute *attr, char *buf)
507 {
508         ssize_t l = 0;
509         unsigned char rlevel;
510         struct ctlr_info *h;
511         struct scsi_device *sdev;
512         struct hpsa_scsi_dev_t *hdev;
513         unsigned long flags;
514 
515         sdev = to_scsi_device(dev);
516         h = sdev_to_hba(sdev);
517         spin_lock_irqsave(&h->lock, flags);
518         hdev = sdev->hostdata;
519         if (!hdev) {
520                 spin_unlock_irqrestore(&h->lock, flags);
521                 return -ENODEV;
522         }
523 
524         /* Is this even a logical drive? */
525         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
526                 spin_unlock_irqrestore(&h->lock, flags);
527                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
528                 return l;
529         }
530 
531         rlevel = hdev->raid_level;
532         spin_unlock_irqrestore(&h->lock, flags);
533         if (rlevel > RAID_UNKNOWN)
534                 rlevel = RAID_UNKNOWN;
535         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
536         return l;
537 }
538 
539 static ssize_t lunid_show(struct device *dev,
540              struct device_attribute *attr, char *buf)
541 {
542         struct ctlr_info *h;
543         struct scsi_device *sdev;
544         struct hpsa_scsi_dev_t *hdev;
545         unsigned long flags;
546         unsigned char lunid[8];
547 
548         sdev = to_scsi_device(dev);
549         h = sdev_to_hba(sdev);
550         spin_lock_irqsave(&h->lock, flags);
551         hdev = sdev->hostdata;
552         if (!hdev) {
553                 spin_unlock_irqrestore(&h->lock, flags);
554                 return -ENODEV;
555         }
556         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
557         spin_unlock_irqrestore(&h->lock, flags);
558         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
559                 lunid[0], lunid[1], lunid[2], lunid[3],
560                 lunid[4], lunid[5], lunid[6], lunid[7]);
561 }
562 
563 static ssize_t unique_id_show(struct device *dev,
564              struct device_attribute *attr, char *buf)
565 {
566         struct ctlr_info *h;
567         struct scsi_device *sdev;
568         struct hpsa_scsi_dev_t *hdev;
569         unsigned long flags;
570         unsigned char sn[16];
571 
572         sdev = to_scsi_device(dev);
573         h = sdev_to_hba(sdev);
574         spin_lock_irqsave(&h->lock, flags);
575         hdev = sdev->hostdata;
576         if (!hdev) {
577                 spin_unlock_irqrestore(&h->lock, flags);
578                 return -ENODEV;
579         }
580         memcpy(sn, hdev->device_id, sizeof(sn));
581         spin_unlock_irqrestore(&h->lock, flags);
582         return snprintf(buf, 16 * 2 + 2,
583                         "%02X%02X%02X%02X%02X%02X%02X%02X"
584                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
585                         sn[0], sn[1], sn[2], sn[3],
586                         sn[4], sn[5], sn[6], sn[7],
587                         sn[8], sn[9], sn[10], sn[11],
588                         sn[12], sn[13], sn[14], sn[15]);
589 }
590 
591 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
592              struct device_attribute *attr, char *buf)
593 {
594         struct ctlr_info *h;
595         struct scsi_device *sdev;
596         struct hpsa_scsi_dev_t *hdev;
597         unsigned long flags;
598         int offload_enabled;
599 
600         sdev = to_scsi_device(dev);
601         h = sdev_to_hba(sdev);
602         spin_lock_irqsave(&h->lock, flags);
603         hdev = sdev->hostdata;
604         if (!hdev) {
605                 spin_unlock_irqrestore(&h->lock, flags);
606                 return -ENODEV;
607         }
608         offload_enabled = hdev->offload_enabled;
609         spin_unlock_irqrestore(&h->lock, flags);
610         return snprintf(buf, 20, "%d\n", offload_enabled);
611 }
612 
613 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
614 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
615 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
616 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
617 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
618                         host_show_hp_ssd_smart_path_enabled, NULL);
619 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
620                 host_show_hp_ssd_smart_path_status,
621                 host_store_hp_ssd_smart_path_status);
622 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
623                         host_store_raid_offload_debug);
624 static DEVICE_ATTR(firmware_revision, S_IRUGO,
625         host_show_firmware_revision, NULL);
626 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
627         host_show_commands_outstanding, NULL);
628 static DEVICE_ATTR(transport_mode, S_IRUGO,
629         host_show_transport_mode, NULL);
630 static DEVICE_ATTR(resettable, S_IRUGO,
631         host_show_resettable, NULL);
632 
633 static struct device_attribute *hpsa_sdev_attrs[] = {
634         &dev_attr_raid_level,
635         &dev_attr_lunid,
636         &dev_attr_unique_id,
637         &dev_attr_hp_ssd_smart_path_enabled,
638         NULL,
639 };
640 
641 static struct device_attribute *hpsa_shost_attrs[] = {
642         &dev_attr_rescan,
643         &dev_attr_firmware_revision,
644         &dev_attr_commands_outstanding,
645         &dev_attr_transport_mode,
646         &dev_attr_resettable,
647         &dev_attr_hp_ssd_smart_path_status,
648         &dev_attr_raid_offload_debug,
649         NULL,
650 };
651 
652 static struct scsi_host_template hpsa_driver_template = {
653         .module                 = THIS_MODULE,
654         .name                   = HPSA,
655         .proc_name              = HPSA,
656         .queuecommand           = hpsa_scsi_queue_command,
657         .scan_start             = hpsa_scan_start,
658         .scan_finished          = hpsa_scan_finished,
659         .change_queue_depth     = hpsa_change_queue_depth,
660         .this_id                = -1,
661         .use_clustering         = ENABLE_CLUSTERING,
662         .eh_abort_handler       = hpsa_eh_abort_handler,
663         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
664         .ioctl                  = hpsa_ioctl,
665         .slave_alloc            = hpsa_slave_alloc,
666         .slave_destroy          = hpsa_slave_destroy,
667 #ifdef CONFIG_COMPAT
668         .compat_ioctl           = hpsa_compat_ioctl,
669 #endif
670         .sdev_attrs = hpsa_sdev_attrs,
671         .shost_attrs = hpsa_shost_attrs,
672         .max_sectors = 8192,
673         .no_write_same = 1,
674 };
675 
676 
677 /* Enqueuing and dequeuing functions for cmdlists. */
678 static inline void addQ(struct list_head *list, struct CommandList *c)
679 {
680         list_add_tail(&c->list, list);
681 }
682 
683 static inline u32 next_command(struct ctlr_info *h, u8 q)
684 {
685         u32 a;
686         struct reply_pool *rq = &h->reply_queue[q];
687         unsigned long flags;
688 
689         if (h->transMethod & CFGTBL_Trans_io_accel1)
690                 return h->access.command_completed(h, q);
691 
692         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
693                 return h->access.command_completed(h, q);
694 
695         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
696                 a = rq->head[rq->current_entry];
697                 rq->current_entry++;
698                 spin_lock_irqsave(&h->lock, flags);
699                 h->commands_outstanding--;
700                 spin_unlock_irqrestore(&h->lock, flags);
701         } else {
702                 a = FIFO_EMPTY;
703         }
704         /* Check for wraparound */
705         if (rq->current_entry == h->max_commands) {
706                 rq->current_entry = 0;
707                 rq->wraparound ^= 1;
708         }
709         return a;
710 }
711 
712 /*
713  * There are some special bits in the bus address of the
714  * command that we have to set for the controller to know
715  * how to process the command:
716  *
717  * Normal performant mode:
718  * bit 0: 1 means performant mode, 0 means simple mode.
719  * bits 1-3 = block fetch table entry
720  * bits 4-6 = command type (== 0)
721  *
722  * ioaccel1 mode:
723  * bit 0 = "performant mode" bit.
724  * bits 1-3 = block fetch table entry
725  * bits 4-6 = command type (== 110)
726  * (command type is needed because ioaccel1 mode
727  * commands are submitted through the same register as normal
728  * mode commands, so this is how the controller knows whether
729  * the command is normal mode or ioaccel1 mode.)
730  *
731  * ioaccel2 mode:
732  * bit 0 = "performant mode" bit.
733  * bits 1-4 = block fetch table entry (note extra bit)
734  * bits 4-6 = not needed, because ioaccel2 mode has
735  * a separate special register for submitting commands.
736  */
737 
738 /* set_performant_mode: Modify the tag for cciss performant
739  * set bit 0 for pull model, bits 3-1 for block fetch
740  * register number
741  */
742 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
743 {
744         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
745                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
746                 if (likely(h->msix_vector > 0))
747                         c->Header.ReplyQueue =
748                                 raw_smp_processor_id() % h->nreply_queues;
749         }
750 }
751 
752 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
753                                                 struct CommandList *c)
754 {
755         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
756 
757         /* Tell the controller to post the reply to the queue for this
758          * processor.  This seems to give the best I/O throughput.
759          */
760         cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
761         /* Set the bits in the address sent down to include:
762          *  - performant mode bit (bit 0)
763          *  - pull count (bits 1-3)
764          *  - command type (bits 4-6)
765          */
766         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
767                                         IOACCEL1_BUSADDR_CMDTYPE;
768 }
769 
770 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
771                                                 struct CommandList *c)
772 {
773         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
774 
775         /* Tell the controller to post the reply to the queue for this
776          * processor.  This seems to give the best I/O throughput.
777          */
778         cp->reply_queue = smp_processor_id() % h->nreply_queues;
779         /* Set the bits in the address sent down to include:
780          *  - performant mode bit not used in ioaccel mode 2
781          *  - pull count (bits 0-3)
782          *  - command type isn't needed for ioaccel2
783          */
784         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
785 }
786 
787 static int is_firmware_flash_cmd(u8 *cdb)
788 {
789         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
790 }
791 
792 /*
793  * During firmware flash, the heartbeat register may not update as frequently
794  * as it should.  So we dial down lockup detection during firmware flash. and
795  * dial it back up when firmware flash completes.
796  */
797 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
798 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
799 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
800                 struct CommandList *c)
801 {
802         if (!is_firmware_flash_cmd(c->Request.CDB))
803                 return;
804         atomic_inc(&h->firmware_flash_in_progress);
805         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
806 }
807 
808 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
809                 struct CommandList *c)
810 {
811         if (is_firmware_flash_cmd(c->Request.CDB) &&
812                 atomic_dec_and_test(&h->firmware_flash_in_progress))
813                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
814 }
815 
816 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
817         struct CommandList *c)
818 {
819         unsigned long flags;
820 
821         switch (c->cmd_type) {
822         case CMD_IOACCEL1:
823                 set_ioaccel1_performant_mode(h, c);
824                 break;
825         case CMD_IOACCEL2:
826                 set_ioaccel2_performant_mode(h, c);
827                 break;
828         default:
829                 set_performant_mode(h, c);
830         }
831         dial_down_lockup_detection_during_fw_flash(h, c);
832         spin_lock_irqsave(&h->lock, flags);
833         addQ(&h->reqQ, c);
834         h->Qdepth++;
835         spin_unlock_irqrestore(&h->lock, flags);
836         start_io(h);
837 }
838 
839 static inline void removeQ(struct CommandList *c)
840 {
841         if (WARN_ON(list_empty(&c->list)))
842                 return;
843         list_del_init(&c->list);
844 }
845 
846 static inline int is_hba_lunid(unsigned char scsi3addr[])
847 {
848         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
849 }
850 
851 static inline int is_scsi_rev_5(struct ctlr_info *h)
852 {
853         if (!h->hba_inquiry_data)
854                 return 0;
855         if ((h->hba_inquiry_data[2] & 0x07) == 5)
856                 return 1;
857         return 0;
858 }
859 
860 static int hpsa_find_target_lun(struct ctlr_info *h,
861         unsigned char scsi3addr[], int bus, int *target, int *lun)
862 {
863         /* finds an unused bus, target, lun for a new physical device
864          * assumes h->devlock is held
865          */
866         int i, found = 0;
867         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
868 
869         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
870 
871         for (i = 0; i < h->ndevices; i++) {
872                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
873                         __set_bit(h->dev[i]->target, lun_taken);
874         }
875 
876         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
877         if (i < HPSA_MAX_DEVICES) {
878                 /* *bus = 1; */
879                 *target = i;
880                 *lun = 0;
881                 found = 1;
882         }
883         return !found;
884 }
885 
886 /* Add an entry into h->dev[] array. */
887 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
888                 struct hpsa_scsi_dev_t *device,
889                 struct hpsa_scsi_dev_t *added[], int *nadded)
890 {
891         /* assumes h->devlock is held */
892         int n = h->ndevices;
893         int i;
894         unsigned char addr1[8], addr2[8];
895         struct hpsa_scsi_dev_t *sd;
896 
897         if (n >= HPSA_MAX_DEVICES) {
898                 dev_err(&h->pdev->dev, "too many devices, some will be "
899                         "inaccessible.\n");
900                 return -1;
901         }
902 
903         /* physical devices do not have lun or target assigned until now. */
904         if (device->lun != -1)
905                 /* Logical device, lun is already assigned. */
906                 goto lun_assigned;
907 
908         /* If this device a non-zero lun of a multi-lun device
909          * byte 4 of the 8-byte LUN addr will contain the logical
910          * unit no, zero otherise.
911          */
912         if (device->scsi3addr[4] == 0) {
913                 /* This is not a non-zero lun of a multi-lun device */
914                 if (hpsa_find_target_lun(h, device->scsi3addr,
915                         device->bus, &device->target, &device->lun) != 0)
916                         return -1;
917                 goto lun_assigned;
918         }
919 
920         /* This is a non-zero lun of a multi-lun device.
921          * Search through our list and find the device which
922          * has the same 8 byte LUN address, excepting byte 4.
923          * Assign the same bus and target for this new LUN.
924          * Use the logical unit number from the firmware.
925          */
926         memcpy(addr1, device->scsi3addr, 8);
927         addr1[4] = 0;
928         for (i = 0; i < n; i++) {
929                 sd = h->dev[i];
930                 memcpy(addr2, sd->scsi3addr, 8);
931                 addr2[4] = 0;
932                 /* differ only in byte 4? */
933                 if (memcmp(addr1, addr2, 8) == 0) {
934                         device->bus = sd->bus;
935                         device->target = sd->target;
936                         device->lun = device->scsi3addr[4];
937                         break;
938                 }
939         }
940         if (device->lun == -1) {
941                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
942                         " suspect firmware bug or unsupported hardware "
943                         "configuration.\n");
944                         return -1;
945         }
946 
947 lun_assigned:
948 
949         h->dev[n] = device;
950         h->ndevices++;
951         added[*nadded] = device;
952         (*nadded)++;
953 
954         /* initially, (before registering with scsi layer) we don't
955          * know our hostno and we don't want to print anything first
956          * time anyway (the scsi layer's inquiries will show that info)
957          */
958         /* if (hostno != -1) */
959                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
960                         scsi_device_type(device->devtype), hostno,
961                         device->bus, device->target, device->lun);
962         return 0;
963 }
964 
965 /* Update an entry in h->dev[] array. */
966 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
967         int entry, struct hpsa_scsi_dev_t *new_entry)
968 {
969         /* assumes h->devlock is held */
970         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
971 
972         /* Raid level changed. */
973         h->dev[entry]->raid_level = new_entry->raid_level;
974 
975         /* Raid offload parameters changed. */
976         h->dev[entry]->offload_config = new_entry->offload_config;
977         h->dev[entry]->offload_enabled = new_entry->offload_enabled;
978         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
979         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
980         h->dev[entry]->raid_map = new_entry->raid_map;
981 
982         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
983                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
984                 new_entry->target, new_entry->lun);
985 }
986 
987 /* Replace an entry from h->dev[] array. */
988 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
989         int entry, struct hpsa_scsi_dev_t *new_entry,
990         struct hpsa_scsi_dev_t *added[], int *nadded,
991         struct hpsa_scsi_dev_t *removed[], int *nremoved)
992 {
993         /* assumes h->devlock is held */
994         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
995         removed[*nremoved] = h->dev[entry];
996         (*nremoved)++;
997 
998         /*
999          * New physical devices won't have target/lun assigned yet
1000          * so we need to preserve the values in the slot we are replacing.
1001          */
1002         if (new_entry->target == -1) {
1003                 new_entry->target = h->dev[entry]->target;
1004                 new_entry->lun = h->dev[entry]->lun;
1005         }
1006 
1007         h->dev[entry] = new_entry;
1008         added[*nadded] = new_entry;
1009         (*nadded)++;
1010         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1011                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1012                         new_entry->target, new_entry->lun);
1013 }
1014 
1015 /* Remove an entry from h->dev[] array. */
1016 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1017         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1018 {
1019         /* assumes h->devlock is held */
1020         int i;
1021         struct hpsa_scsi_dev_t *sd;
1022 
1023         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1024 
1025         sd = h->dev[entry];
1026         removed[*nremoved] = h->dev[entry];
1027         (*nremoved)++;
1028 
1029         for (i = entry; i < h->ndevices-1; i++)
1030                 h->dev[i] = h->dev[i+1];
1031         h->ndevices--;
1032         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1033                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1034                 sd->lun);
1035 }
1036 
1037 #define SCSI3ADDR_EQ(a, b) ( \
1038         (a)[7] == (b)[7] && \
1039         (a)[6] == (b)[6] && \
1040         (a)[5] == (b)[5] && \
1041         (a)[4] == (b)[4] && \
1042         (a)[3] == (b)[3] && \
1043         (a)[2] == (b)[2] && \
1044         (a)[1] == (b)[1] && \
1045         (a)[0] == (b)[0])
1046 
1047 static void fixup_botched_add(struct ctlr_info *h,
1048         struct hpsa_scsi_dev_t *added)
1049 {
1050         /* called when scsi_add_device fails in order to re-adjust
1051          * h->dev[] to match the mid layer's view.
1052          */
1053         unsigned long flags;
1054         int i, j;
1055 
1056         spin_lock_irqsave(&h->lock, flags);
1057         for (i = 0; i < h->ndevices; i++) {
1058                 if (h->dev[i] == added) {
1059                         for (j = i; j < h->ndevices-1; j++)
1060                                 h->dev[j] = h->dev[j+1];
1061                         h->ndevices--;
1062                         break;
1063                 }
1064         }
1065         spin_unlock_irqrestore(&h->lock, flags);
1066         kfree(added);
1067 }
1068 
1069 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1070         struct hpsa_scsi_dev_t *dev2)
1071 {
1072         /* we compare everything except lun and target as these
1073          * are not yet assigned.  Compare parts likely
1074          * to differ first
1075          */
1076         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1077                 sizeof(dev1->scsi3addr)) != 0)
1078                 return 0;
1079         if (memcmp(dev1->device_id, dev2->device_id,
1080                 sizeof(dev1->device_id)) != 0)
1081                 return 0;
1082         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1083                 return 0;
1084         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1085                 return 0;
1086         if (dev1->devtype != dev2->devtype)
1087                 return 0;
1088         if (dev1->bus != dev2->bus)
1089                 return 0;
1090         return 1;
1091 }
1092 
1093 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1094         struct hpsa_scsi_dev_t *dev2)
1095 {
1096         /* Device attributes that can change, but don't mean
1097          * that the device is a different device, nor that the OS
1098          * needs to be told anything about the change.
1099          */
1100         if (dev1->raid_level != dev2->raid_level)
1101                 return 1;
1102         if (dev1->offload_config != dev2->offload_config)
1103                 return 1;
1104         if (dev1->offload_enabled != dev2->offload_enabled)
1105                 return 1;
1106         return 0;
1107 }
1108 
1109 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1110  * and return needle location in *index.  If scsi3addr matches, but not
1111  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1112  * location in *index.
1113  * In the case of a minor device attribute change, such as RAID level, just
1114  * return DEVICE_UPDATED, along with the updated device's location in index.
1115  * If needle not found, return DEVICE_NOT_FOUND.
1116  */
1117 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1118         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1119         int *index)
1120 {
1121         int i;
1122 #define DEVICE_NOT_FOUND 0
1123 #define DEVICE_CHANGED 1
1124 #define DEVICE_SAME 2
1125 #define DEVICE_UPDATED 3
1126         for (i = 0; i < haystack_size; i++) {
1127                 if (haystack[i] == NULL) /* previously removed. */
1128                         continue;
1129                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1130                         *index = i;
1131                         if (device_is_the_same(needle, haystack[i])) {
1132                                 if (device_updated(needle, haystack[i]))
1133                                         return DEVICE_UPDATED;
1134                                 return DEVICE_SAME;
1135                         } else {
1136                                 /* Keep offline devices offline */
1137                                 if (needle->volume_offline)
1138                                         return DEVICE_NOT_FOUND;
1139                                 return DEVICE_CHANGED;
1140                         }
1141                 }
1142         }
1143         *index = -1;
1144         return DEVICE_NOT_FOUND;
1145 }
1146 
1147 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1148                                         unsigned char scsi3addr[])
1149 {
1150         struct offline_device_entry *device;
1151         unsigned long flags;
1152 
1153         /* Check to see if device is already on the list */
1154         spin_lock_irqsave(&h->offline_device_lock, flags);
1155         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1156                 if (memcmp(device->scsi3addr, scsi3addr,
1157                         sizeof(device->scsi3addr)) == 0) {
1158                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1159                         return;
1160                 }
1161         }
1162         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1163 
1164         /* Device is not on the list, add it. */
1165         device = kmalloc(sizeof(*device), GFP_KERNEL);
1166         if (!device) {
1167                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1168                 return;
1169         }
1170         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1171         spin_lock_irqsave(&h->offline_device_lock, flags);
1172         list_add_tail(&device->offline_list, &h->offline_device_list);
1173         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1174 }
1175 
1176 /* Print a message explaining various offline volume states */
1177 static void hpsa_show_volume_status(struct ctlr_info *h,
1178         struct hpsa_scsi_dev_t *sd)
1179 {
1180         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1181                 dev_info(&h->pdev->dev,
1182                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1183                         h->scsi_host->host_no,
1184                         sd->bus, sd->target, sd->lun);
1185         switch (sd->volume_offline) {
1186         case HPSA_LV_OK:
1187                 break;
1188         case HPSA_LV_UNDERGOING_ERASE:
1189                 dev_info(&h->pdev->dev,
1190                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1191                         h->scsi_host->host_no,
1192                         sd->bus, sd->target, sd->lun);
1193                 break;
1194         case HPSA_LV_UNDERGOING_RPI:
1195                 dev_info(&h->pdev->dev,
1196                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1197                         h->scsi_host->host_no,
1198                         sd->bus, sd->target, sd->lun);
1199                 break;
1200         case HPSA_LV_PENDING_RPI:
1201                 dev_info(&h->pdev->dev,
1202                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1203                                 h->scsi_host->host_no,
1204                                 sd->bus, sd->target, sd->lun);
1205                 break;
1206         case HPSA_LV_ENCRYPTED_NO_KEY:
1207                 dev_info(&h->pdev->dev,
1208                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1209                         h->scsi_host->host_no,
1210                         sd->bus, sd->target, sd->lun);
1211                 break;
1212         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1213                 dev_info(&h->pdev->dev,
1214                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1215                         h->scsi_host->host_no,
1216                         sd->bus, sd->target, sd->lun);
1217                 break;
1218         case HPSA_LV_UNDERGOING_ENCRYPTION:
1219                 dev_info(&h->pdev->dev,
1220                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1221                         h->scsi_host->host_no,
1222                         sd->bus, sd->target, sd->lun);
1223                 break;
1224         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1225                 dev_info(&h->pdev->dev,
1226                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1227                         h->scsi_host->host_no,
1228                         sd->bus, sd->target, sd->lun);
1229                 break;
1230         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1231                 dev_info(&h->pdev->dev,
1232                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1233                         h->scsi_host->host_no,
1234                         sd->bus, sd->target, sd->lun);
1235                 break;
1236         case HPSA_LV_PENDING_ENCRYPTION:
1237                 dev_info(&h->pdev->dev,
1238                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1239                         h->scsi_host->host_no,
1240                         sd->bus, sd->target, sd->lun);
1241                 break;
1242         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1243                 dev_info(&h->pdev->dev,
1244                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1245                         h->scsi_host->host_no,
1246                         sd->bus, sd->target, sd->lun);
1247                 break;
1248         }
1249 }
1250 
1251 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1252         struct hpsa_scsi_dev_t *sd[], int nsds)
1253 {
1254         /* sd contains scsi3 addresses and devtypes, and inquiry
1255          * data.  This function takes what's in sd to be the current
1256          * reality and updates h->dev[] to reflect that reality.
1257          */
1258         int i, entry, device_change, changes = 0;
1259         struct hpsa_scsi_dev_t *csd;
1260         unsigned long flags;
1261         struct hpsa_scsi_dev_t **added, **removed;
1262         int nadded, nremoved;
1263         struct Scsi_Host *sh = NULL;
1264 
1265         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1266         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1267 
1268         if (!added || !removed) {
1269                 dev_warn(&h->pdev->dev, "out of memory in "
1270                         "adjust_hpsa_scsi_table\n");
1271                 goto free_and_out;
1272         }
1273 
1274         spin_lock_irqsave(&h->devlock, flags);
1275 
1276         /* find any devices in h->dev[] that are not in
1277          * sd[] and remove them from h->dev[], and for any
1278          * devices which have changed, remove the old device
1279          * info and add the new device info.
1280          * If minor device attributes change, just update
1281          * the existing device structure.
1282          */
1283         i = 0;
1284         nremoved = 0;
1285         nadded = 0;
1286         while (i < h->ndevices) {
1287                 csd = h->dev[i];
1288                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1289                 if (device_change == DEVICE_NOT_FOUND) {
1290                         changes++;
1291                         hpsa_scsi_remove_entry(h, hostno, i,
1292                                 removed, &nremoved);
1293                         continue; /* remove ^^^, hence i not incremented */
1294                 } else if (device_change == DEVICE_CHANGED) {
1295                         changes++;
1296                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1297                                 added, &nadded, removed, &nremoved);
1298                         /* Set it to NULL to prevent it from being freed
1299                          * at the bottom of hpsa_update_scsi_devices()
1300                          */
1301                         sd[entry] = NULL;
1302                 } else if (device_change == DEVICE_UPDATED) {
1303                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1304                 }
1305                 i++;
1306         }
1307 
1308         /* Now, make sure every device listed in sd[] is also
1309          * listed in h->dev[], adding them if they aren't found
1310          */
1311 
1312         for (i = 0; i < nsds; i++) {
1313                 if (!sd[i]) /* if already added above. */
1314                         continue;
1315 
1316                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1317                  * as the SCSI mid-layer does not handle such devices well.
1318                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1319                  * at 160Hz, and prevents the system from coming up.
1320                  */
1321                 if (sd[i]->volume_offline) {
1322                         hpsa_show_volume_status(h, sd[i]);
1323                         dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1324                                 h->scsi_host->host_no,
1325                                 sd[i]->bus, sd[i]->target, sd[i]->lun);
1326                         continue;
1327                 }
1328 
1329                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1330                                         h->ndevices, &entry);
1331                 if (device_change == DEVICE_NOT_FOUND) {
1332                         changes++;
1333                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1334                                 added, &nadded) != 0)
1335                                 break;
1336                         sd[i] = NULL; /* prevent from being freed later. */
1337                 } else if (device_change == DEVICE_CHANGED) {
1338                         /* should never happen... */
1339                         changes++;
1340                         dev_warn(&h->pdev->dev,
1341                                 "device unexpectedly changed.\n");
1342                         /* but if it does happen, we just ignore that device */
1343                 }
1344         }
1345         spin_unlock_irqrestore(&h->devlock, flags);
1346 
1347         /* Monitor devices which are in one of several NOT READY states to be
1348          * brought online later. This must be done without holding h->devlock,
1349          * so don't touch h->dev[]
1350          */
1351         for (i = 0; i < nsds; i++) {
1352                 if (!sd[i]) /* if already added above. */
1353                         continue;
1354                 if (sd[i]->volume_offline)
1355                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1356         }
1357 
1358         /* Don't notify scsi mid layer of any changes the first time through
1359          * (or if there are no changes) scsi_scan_host will do it later the
1360          * first time through.
1361          */
1362         if (hostno == -1 || !changes)
1363                 goto free_and_out;
1364 
1365         sh = h->scsi_host;
1366         /* Notify scsi mid layer of any removed devices */
1367         for (i = 0; i < nremoved; i++) {
1368                 struct scsi_device *sdev =
1369                         scsi_device_lookup(sh, removed[i]->bus,
1370                                 removed[i]->target, removed[i]->lun);
1371                 if (sdev != NULL) {
1372                         scsi_remove_device(sdev);
1373                         scsi_device_put(sdev);
1374                 } else {
1375                         /* We don't expect to get here.
1376                          * future cmds to this device will get selection
1377                          * timeout as if the device was gone.
1378                          */
1379                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1380                                 " for removal.", hostno, removed[i]->bus,
1381                                 removed[i]->target, removed[i]->lun);
1382                 }
1383                 kfree(removed[i]);
1384                 removed[i] = NULL;
1385         }
1386 
1387         /* Notify scsi mid layer of any added devices */
1388         for (i = 0; i < nadded; i++) {
1389                 if (scsi_add_device(sh, added[i]->bus,
1390                         added[i]->target, added[i]->lun) == 0)
1391                         continue;
1392                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1393                         "device not added.\n", hostno, added[i]->bus,
1394                         added[i]->target, added[i]->lun);
1395                 /* now we have to remove it from h->dev,
1396                  * since it didn't get added to scsi mid layer
1397                  */
1398                 fixup_botched_add(h, added[i]);
1399         }
1400 
1401 free_and_out:
1402         kfree(added);
1403         kfree(removed);
1404 }
1405 
1406 /*
1407  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1408  * Assume's h->devlock is held.
1409  */
1410 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1411         int bus, int target, int lun)
1412 {
1413         int i;
1414         struct hpsa_scsi_dev_t *sd;
1415 
1416         for (i = 0; i < h->ndevices; i++) {
1417                 sd = h->dev[i];
1418                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1419                         return sd;
1420         }
1421         return NULL;
1422 }
1423 
1424 /* link sdev->hostdata to our per-device structure. */
1425 static int hpsa_slave_alloc(struct scsi_device *sdev)
1426 {
1427         struct hpsa_scsi_dev_t *sd;
1428         unsigned long flags;
1429         struct ctlr_info *h;
1430 
1431         h = sdev_to_hba(sdev);
1432         spin_lock_irqsave(&h->devlock, flags);
1433         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1434                 sdev_id(sdev), sdev->lun);
1435         if (sd != NULL)
1436                 sdev->hostdata = sd;
1437         spin_unlock_irqrestore(&h->devlock, flags);
1438         return 0;
1439 }
1440 
1441 static void hpsa_slave_destroy(struct scsi_device *sdev)
1442 {
1443         /* nothing to do. */
1444 }
1445 
1446 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1447 {
1448         int i;
1449 
1450         if (!h->cmd_sg_list)
1451                 return;
1452         for (i = 0; i < h->nr_cmds; i++) {
1453                 kfree(h->cmd_sg_list[i]);
1454                 h->cmd_sg_list[i] = NULL;
1455         }
1456         kfree(h->cmd_sg_list);
1457         h->cmd_sg_list = NULL;
1458 }
1459 
1460 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1461 {
1462         int i;
1463 
1464         if (h->chainsize <= 0)
1465                 return 0;
1466 
1467         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1468                                 GFP_KERNEL);
1469         if (!h->cmd_sg_list)
1470                 return -ENOMEM;
1471         for (i = 0; i < h->nr_cmds; i++) {
1472                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1473                                                 h->chainsize, GFP_KERNEL);
1474                 if (!h->cmd_sg_list[i])
1475                         goto clean;
1476         }
1477         return 0;
1478 
1479 clean:
1480         hpsa_free_sg_chain_blocks(h);
1481         return -ENOMEM;
1482 }
1483 
1484 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1485         struct CommandList *c)
1486 {
1487         struct SGDescriptor *chain_sg, *chain_block;
1488         u64 temp64;
1489 
1490         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1491         chain_block = h->cmd_sg_list[c->cmdindex];
1492         chain_sg->Ext = HPSA_SG_CHAIN;
1493         chain_sg->Len = sizeof(*chain_sg) *
1494                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1495         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1496                                 PCI_DMA_TODEVICE);
1497         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1498                 /* prevent subsequent unmapping */
1499                 chain_sg->Addr.lower = 0;
1500                 chain_sg->Addr.upper = 0;
1501                 return -1;
1502         }
1503         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1504         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1505         return 0;
1506 }
1507 
1508 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1509         struct CommandList *c)
1510 {
1511         struct SGDescriptor *chain_sg;
1512         union u64bit temp64;
1513 
1514         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1515                 return;
1516 
1517         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1518         temp64.val32.lower = chain_sg->Addr.lower;
1519         temp64.val32.upper = chain_sg->Addr.upper;
1520         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1521 }
1522 
1523 
1524 /* Decode the various types of errors on ioaccel2 path.
1525  * Return 1 for any error that should generate a RAID path retry.
1526  * Return 0 for errors that don't require a RAID path retry.
1527  */
1528 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1529                                         struct CommandList *c,
1530                                         struct scsi_cmnd *cmd,
1531                                         struct io_accel2_cmd *c2)
1532 {
1533         int data_len;
1534         int retry = 0;
1535 
1536         switch (c2->error_data.serv_response) {
1537         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1538                 switch (c2->error_data.status) {
1539                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1540                         break;
1541                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1542                         dev_warn(&h->pdev->dev,
1543                                 "%s: task complete with check condition.\n",
1544                                 "HP SSD Smart Path");
1545                         if (c2->error_data.data_present !=
1546                                         IOACCEL2_SENSE_DATA_PRESENT)
1547                                 break;
1548                         /* copy the sense data */
1549                         data_len = c2->error_data.sense_data_len;
1550                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1551                                 data_len = SCSI_SENSE_BUFFERSIZE;
1552                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1553                                 data_len =
1554                                         sizeof(c2->error_data.sense_data_buff);
1555                         memcpy(cmd->sense_buffer,
1556                                 c2->error_data.sense_data_buff, data_len);
1557                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1558                         retry = 1;
1559                         break;
1560                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1561                         dev_warn(&h->pdev->dev,
1562                                 "%s: task complete with BUSY status.\n",
1563                                 "HP SSD Smart Path");
1564                         retry = 1;
1565                         break;
1566                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1567                         dev_warn(&h->pdev->dev,
1568                                 "%s: task complete with reservation conflict.\n",
1569                                 "HP SSD Smart Path");
1570                         retry = 1;
1571                         break;
1572                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1573                         /* Make scsi midlayer do unlimited retries */
1574                         cmd->result = DID_IMM_RETRY << 16;
1575                         break;
1576                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1577                         dev_warn(&h->pdev->dev,
1578                                 "%s: task complete with aborted status.\n",
1579                                 "HP SSD Smart Path");
1580                         retry = 1;
1581                         break;
1582                 default:
1583                         dev_warn(&h->pdev->dev,
1584                                 "%s: task complete with unrecognized status: 0x%02x\n",
1585                                 "HP SSD Smart Path", c2->error_data.status);
1586                         retry = 1;
1587                         break;
1588                 }
1589                 break;
1590         case IOACCEL2_SERV_RESPONSE_FAILURE:
1591                 /* don't expect to get here. */
1592                 dev_warn(&h->pdev->dev,
1593                         "unexpected delivery or target failure, status = 0x%02x\n",
1594                         c2->error_data.status);
1595                 retry = 1;
1596                 break;
1597         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1598                 break;
1599         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1600                 break;
1601         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1602                 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1603                 retry = 1;
1604                 break;
1605         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1606                 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1607                 break;
1608         default:
1609                 dev_warn(&h->pdev->dev,
1610                         "%s: Unrecognized server response: 0x%02x\n",
1611                         "HP SSD Smart Path",
1612                         c2->error_data.serv_response);
1613                 retry = 1;
1614                 break;
1615         }
1616 
1617         return retry;   /* retry on raid path? */
1618 }
1619 
1620 static void process_ioaccel2_completion(struct ctlr_info *h,
1621                 struct CommandList *c, struct scsi_cmnd *cmd,
1622                 struct hpsa_scsi_dev_t *dev)
1623 {
1624         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1625         int raid_retry = 0;
1626 
1627         /* check for good status */
1628         if (likely(c2->error_data.serv_response == 0 &&
1629                         c2->error_data.status == 0)) {
1630                 cmd_free(h, c);
1631                 cmd->scsi_done(cmd);
1632                 return;
1633         }
1634 
1635         /* Any RAID offload error results in retry which will use
1636          * the normal I/O path so the controller can handle whatever's
1637          * wrong.
1638          */
1639         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1640                 c2->error_data.serv_response ==
1641                         IOACCEL2_SERV_RESPONSE_FAILURE) {
1642                 if (c2->error_data.status ==
1643                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
1644                         dev_warn(&h->pdev->dev,
1645                                 "%s: Path is unavailable, retrying on standard path.\n",
1646                                 "HP SSD Smart Path");
1647                 else
1648                         dev_warn(&h->pdev->dev,
1649                                 "%s: Error 0x%02x, retrying on standard path.\n",
1650                                 "HP SSD Smart Path", c2->error_data.status);
1651 
1652                 dev->offload_enabled = 0;
1653                 h->drv_req_rescan = 1;  /* schedule controller for a rescan */
1654                 cmd->result = DID_SOFT_ERROR << 16;
1655                 cmd_free(h, c);
1656                 cmd->scsi_done(cmd);
1657                 return;
1658         }
1659         raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1660         /* If error found, disable Smart Path, schedule a rescan,
1661          * and force a retry on the standard path.
1662          */
1663         if (raid_retry) {
1664                 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1665                         "HP SSD Smart Path");
1666                 dev->offload_enabled = 0; /* Disable Smart Path */
1667                 h->drv_req_rescan = 1;    /* schedule controller rescan */
1668                 cmd->result = DID_SOFT_ERROR << 16;
1669         }
1670         cmd_free(h, c);
1671         cmd->scsi_done(cmd);
1672 }
1673 
1674 static void complete_scsi_command(struct CommandList *cp)
1675 {
1676         struct scsi_cmnd *cmd;
1677         struct ctlr_info *h;
1678         struct ErrorInfo *ei;
1679         struct hpsa_scsi_dev_t *dev;
1680 
1681         unsigned char sense_key;
1682         unsigned char asc;      /* additional sense code */
1683         unsigned char ascq;     /* additional sense code qualifier */
1684         unsigned long sense_data_size;
1685 
1686         ei = cp->err_info;
1687         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1688         h = cp->h;
1689         dev = cmd->device->hostdata;
1690 
1691         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1692         if ((cp->cmd_type == CMD_SCSI) &&
1693                 (cp->Header.SGTotal > h->max_cmd_sg_entries))
1694                 hpsa_unmap_sg_chain_block(h, cp);
1695 
1696         cmd->result = (DID_OK << 16);           /* host byte */
1697         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1698 
1699         if (cp->cmd_type == CMD_IOACCEL2)
1700                 return process_ioaccel2_completion(h, cp, cmd, dev);
1701 
1702         cmd->result |= ei->ScsiStatus;
1703 
1704         /* copy the sense data whether we need to or not. */
1705         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1706                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1707         else
1708                 sense_data_size = sizeof(ei->SenseInfo);
1709         if (ei->SenseLen < sense_data_size)
1710                 sense_data_size = ei->SenseLen;
1711 
1712         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1713         scsi_set_resid(cmd, ei->ResidualCnt);
1714 
1715         if (ei->CommandStatus == 0) {
1716                 cmd_free(h, cp);
1717                 cmd->scsi_done(cmd);
1718                 return;
1719         }
1720 
1721         /* For I/O accelerator commands, copy over some fields to the normal
1722          * CISS header used below for error handling.
1723          */
1724         if (cp->cmd_type == CMD_IOACCEL1) {
1725                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1726                 cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1727                 cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1728                 cp->Header.Tag.lower = c->Tag.lower;
1729                 cp->Header.Tag.upper = c->Tag.upper;
1730                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1731                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1732 
1733                 /* Any RAID offload error results in retry which will use
1734                  * the normal I/O path so the controller can handle whatever's
1735                  * wrong.
1736                  */
1737                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1738                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1739                                 dev->offload_enabled = 0;
1740                         cmd->result = DID_SOFT_ERROR << 16;
1741                         cmd_free(h, cp);
1742                         cmd->scsi_done(cmd);
1743                         return;
1744                 }
1745         }
1746 
1747         /* an error has occurred */
1748         switch (ei->CommandStatus) {
1749 
1750         case CMD_TARGET_STATUS:
1751                 if (ei->ScsiStatus) {
1752                         /* Get sense key */
1753                         sense_key = 0xf & ei->SenseInfo[2];
1754                         /* Get additional sense code */
1755                         asc = ei->SenseInfo[12];
1756                         /* Get addition sense code qualifier */
1757                         ascq = ei->SenseInfo[13];
1758                 }
1759 
1760                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1761                         if (check_for_unit_attention(h, cp))
1762                                 break;
1763                         if (sense_key == ILLEGAL_REQUEST) {
1764                                 /*
1765                                  * SCSI REPORT_LUNS is commonly unsupported on
1766                                  * Smart Array.  Suppress noisy complaint.
1767                                  */
1768                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1769                                         break;
1770 
1771                                 /* If ASC/ASCQ indicate Logical Unit
1772                                  * Not Supported condition,
1773                                  */
1774                                 if ((asc == 0x25) && (ascq == 0x0)) {
1775                                         dev_warn(&h->pdev->dev, "cp %p "
1776                                                 "has check condition\n", cp);
1777                                         break;
1778                                 }
1779                         }
1780 
1781                         if (sense_key == NOT_READY) {
1782                                 /* If Sense is Not Ready, Logical Unit
1783                                  * Not ready, Manual Intervention
1784                                  * required
1785                                  */
1786                                 if ((asc == 0x04) && (ascq == 0x03)) {
1787                                         dev_warn(&h->pdev->dev, "cp %p "
1788                                                 "has check condition: unit "
1789                                                 "not ready, manual "
1790                                                 "intervention required\n", cp);
1791                                         break;
1792                                 }
1793                         }
1794                         if (sense_key == ABORTED_COMMAND) {
1795                                 /* Aborted command is retryable */
1796                                 dev_warn(&h->pdev->dev, "cp %p "
1797                                         "has check condition: aborted command: "
1798                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1799                                         cp, asc, ascq);
1800                                 cmd->result |= DID_SOFT_ERROR << 16;
1801                                 break;
1802                         }
1803                         /* Must be some other type of check condition */
1804                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1805                                         "unknown type: "
1806                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1807                                         "Returning result: 0x%x, "
1808                                         "cmd=[%02x %02x %02x %02x %02x "
1809                                         "%02x %02x %02x %02x %02x %02x "
1810                                         "%02x %02x %02x %02x %02x]\n",
1811                                         cp, sense_key, asc, ascq,
1812                                         cmd->result,
1813                                         cmd->cmnd[0], cmd->cmnd[1],
1814                                         cmd->cmnd[2], cmd->cmnd[3],
1815                                         cmd->cmnd[4], cmd->cmnd[5],
1816                                         cmd->cmnd[6], cmd->cmnd[7],
1817                                         cmd->cmnd[8], cmd->cmnd[9],
1818                                         cmd->cmnd[10], cmd->cmnd[11],
1819                                         cmd->cmnd[12], cmd->cmnd[13],
1820                                         cmd->cmnd[14], cmd->cmnd[15]);
1821                         break;
1822                 }
1823 
1824 
1825                 /* Problem was not a check condition
1826                  * Pass it up to the upper layers...
1827                  */
1828                 if (ei->ScsiStatus) {
1829                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1830                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1831                                 "Returning result: 0x%x\n",
1832                                 cp, ei->ScsiStatus,
1833                                 sense_key, asc, ascq,
1834                                 cmd->result);
1835                 } else {  /* scsi status is zero??? How??? */
1836                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1837                                 "Returning no connection.\n", cp),
1838 
1839                         /* Ordinarily, this case should never happen,
1840                          * but there is a bug in some released firmware
1841                          * revisions that allows it to happen if, for
1842                          * example, a 4100 backplane loses power and
1843                          * the tape drive is in it.  We assume that
1844                          * it's a fatal error of some kind because we
1845                          * can't show that it wasn't. We will make it
1846                          * look like selection timeout since that is
1847                          * the most common reason for this to occur,
1848                          * and it's severe enough.
1849                          */
1850 
1851                         cmd->result = DID_NO_CONNECT << 16;
1852                 }
1853                 break;
1854 
1855         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1856                 break;
1857         case CMD_DATA_OVERRUN:
1858                 dev_warn(&h->pdev->dev, "cp %p has"
1859                         " completed with data overrun "
1860                         "reported\n", cp);
1861                 break;
1862         case CMD_INVALID: {
1863                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1864                 print_cmd(cp); */
1865                 /* We get CMD_INVALID if you address a non-existent device
1866                  * instead of a selection timeout (no response).  You will
1867                  * see this if you yank out a drive, then try to access it.
1868                  * This is kind of a shame because it means that any other
1869                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1870                  * missing target. */
1871                 cmd->result = DID_NO_CONNECT << 16;
1872         }
1873                 break;
1874         case CMD_PROTOCOL_ERR:
1875                 cmd->result = DID_ERROR << 16;
1876                 dev_warn(&h->pdev->dev, "cp %p has "
1877                         "protocol error\n", cp);
1878                 break;
1879         case CMD_HARDWARE_ERR:
1880                 cmd->result = DID_ERROR << 16;
1881                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1882                 break;
1883         case CMD_CONNECTION_LOST:
1884                 cmd->result = DID_ERROR << 16;
1885                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1886                 break;
1887         case CMD_ABORTED:
1888                 cmd->result = DID_ABORT << 16;
1889                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1890                                 cp, ei->ScsiStatus);
1891                 break;
1892         case CMD_ABORT_FAILED:
1893                 cmd->result = DID_ERROR << 16;
1894                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1895                 break;
1896         case CMD_UNSOLICITED_ABORT:
1897                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1898                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1899                         "abort\n", cp);
1900                 break;
1901         case CMD_TIMEOUT:
1902                 cmd->result = DID_TIME_OUT << 16;
1903                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1904                 break;
1905         case CMD_UNABORTABLE:
1906                 cmd->result = DID_ERROR << 16;
1907                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1908                 break;
1909         case CMD_IOACCEL_DISABLED:
1910                 /* This only handles the direct pass-through case since RAID
1911                  * offload is handled above.  Just attempt a retry.
1912                  */
1913                 cmd->result = DID_SOFT_ERROR << 16;
1914                 dev_warn(&h->pdev->dev,
1915                                 "cp %p had HP SSD Smart Path error\n", cp);
1916                 break;
1917         default:
1918                 cmd->result = DID_ERROR << 16;
1919                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1920                                 cp, ei->CommandStatus);
1921         }
1922         cmd_free(h, cp);
1923         cmd->scsi_done(cmd);
1924 }
1925 
1926 static void hpsa_pci_unmap(struct pci_dev *pdev,
1927         struct CommandList *c, int sg_used, int data_direction)
1928 {
1929         int i;
1930         union u64bit addr64;
1931 
1932         for (i = 0; i < sg_used; i++) {
1933                 addr64.val32.lower = c->SG[i].Addr.lower;
1934                 addr64.val32.upper = c->SG[i].Addr.upper;
1935                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1936                         data_direction);
1937         }
1938 }
1939 
1940 static int hpsa_map_one(struct pci_dev *pdev,
1941                 struct CommandList *cp,
1942                 unsigned char *buf,
1943                 size_t buflen,
1944                 int data_direction)
1945 {
1946         u64 addr64;
1947 
1948         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1949                 cp->Header.SGList = 0;
1950                 cp->Header.SGTotal = 0;
1951                 return 0;
1952         }
1953 
1954         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1955         if (dma_mapping_error(&pdev->dev, addr64)) {
1956                 /* Prevent subsequent unmap of something never mapped */
1957                 cp->Header.SGList = 0;
1958                 cp->Header.SGTotal = 0;
1959                 return -1;
1960         }
1961         cp->SG[0].Addr.lower =
1962           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1963         cp->SG[0].Addr.upper =
1964           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1965         cp->SG[0].Len = buflen;
1966         cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1967         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1968         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1969         return 0;
1970 }
1971 
1972 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1973         struct CommandList *c)
1974 {
1975         DECLARE_COMPLETION_ONSTACK(wait);
1976 
1977         c->waiting = &wait;
1978         enqueue_cmd_and_start_io(h, c);
1979         wait_for_completion(&wait);
1980 }
1981 
1982 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1983         struct CommandList *c)
1984 {
1985         unsigned long flags;
1986 
1987         /* If controller lockup detected, fake a hardware error. */
1988         spin_lock_irqsave(&h->lock, flags);
1989         if (unlikely(h->lockup_detected)) {
1990                 spin_unlock_irqrestore(&h->lock, flags);
1991                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1992         } else {
1993                 spin_unlock_irqrestore(&h->lock, flags);
1994                 hpsa_scsi_do_simple_cmd_core(h, c);
1995         }
1996 }
1997 
1998 #define MAX_DRIVER_CMD_RETRIES 25
1999 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2000         struct CommandList *c, int data_direction)
2001 {
2002         int backoff_time = 10, retry_count = 0;
2003 
2004         do {
2005                 memset(c->err_info, 0, sizeof(*c->err_info));
2006                 hpsa_scsi_do_simple_cmd_core(h, c);
2007                 retry_count++;
2008                 if (retry_count > 3) {
2009                         msleep(backoff_time);
2010                         if (backoff_time < 1000)
2011                                 backoff_time *= 2;
2012                 }
2013         } while ((check_for_unit_attention(h, c) ||
2014                         check_for_busy(h, c)) &&
2015                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2016         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2017 }
2018 
2019 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2020                                 struct CommandList *c)
2021 {
2022         const u8 *cdb = c->Request.CDB;
2023         const u8 *lun = c->Header.LUN.LunAddrBytes;
2024 
2025         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2026         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2027                 txt, lun[0], lun[1], lun[2], lun[3],
2028                 lun[4], lun[5], lun[6], lun[7],
2029                 cdb[0], cdb[1], cdb[2], cdb[3],
2030                 cdb[4], cdb[5], cdb[6], cdb[7],
2031                 cdb[8], cdb[9], cdb[10], cdb[11],
2032                 cdb[12], cdb[13], cdb[14], cdb[15]);
2033 }
2034 
2035 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2036                         struct CommandList *cp)
2037 {
2038         const struct ErrorInfo *ei = cp->err_info;
2039         struct device *d = &cp->h->pdev->dev;
2040         const u8 *sd = ei->SenseInfo;
2041 
2042         switch (ei->CommandStatus) {
2043         case CMD_TARGET_STATUS:
2044                 hpsa_print_cmd(h, "SCSI status", cp);
2045                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2046                         dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2047                                 sd[2] & 0x0f, sd[12], sd[13]);
2048                 else
2049                         dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2050                 if (ei->ScsiStatus == 0)
2051                         dev_warn(d, "SCSI status is abnormally zero.  "
2052                         "(probably indicates selection timeout "
2053                         "reported incorrectly due to a known "
2054                         "firmware bug, circa July, 2001.)\n");
2055                 break;
2056         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2057                 break;
2058         case CMD_DATA_OVERRUN:
2059                 hpsa_print_cmd(h, "overrun condition", cp);
2060                 break;
2061         case CMD_INVALID: {
2062                 /* controller unfortunately reports SCSI passthru's
2063                  * to non-existent targets as invalid commands.
2064                  */
2065                 hpsa_print_cmd(h, "invalid command", cp);
2066                 dev_warn(d, "probably means device no longer present\n");
2067                 }
2068                 break;
2069         case CMD_PROTOCOL_ERR:
2070                 hpsa_print_cmd(h, "protocol error", cp);
2071                 break;
2072         case CMD_HARDWARE_ERR:
2073                 hpsa_print_cmd(h, "hardware error", cp);
2074                 break;
2075         case CMD_CONNECTION_LOST:
2076                 hpsa_print_cmd(h, "connection lost", cp);
2077                 break;
2078         case CMD_ABORTED:
2079                 hpsa_print_cmd(h, "aborted", cp);
2080                 break;
2081         case CMD_ABORT_FAILED:
2082                 hpsa_print_cmd(h, "abort failed", cp);
2083                 break;
2084         case CMD_UNSOLICITED_ABORT:
2085                 hpsa_print_cmd(h, "unsolicited abort", cp);
2086                 break;
2087         case CMD_TIMEOUT:
2088                 hpsa_print_cmd(h, "timed out", cp);
2089                 break;
2090         case CMD_UNABORTABLE:
2091                 hpsa_print_cmd(h, "unabortable", cp);
2092                 break;
2093         default:
2094                 hpsa_print_cmd(h, "unknown status", cp);
2095                 dev_warn(d, "Unknown command status %x\n",
2096                                 ei->CommandStatus);
2097         }
2098 }
2099 
2100 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2101                         u16 page, unsigned char *buf,
2102                         unsigned char bufsize)
2103 {
2104         int rc = IO_OK;
2105         struct CommandList *c;
2106         struct ErrorInfo *ei;
2107 
2108         c = cmd_special_alloc(h);
2109 
2110         if (c == NULL) {                        /* trouble... */
2111                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2112                 return -ENOMEM;
2113         }
2114 
2115         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2116                         page, scsi3addr, TYPE_CMD)) {
2117                 rc = -1;
2118                 goto out;
2119         }
2120         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2121         ei = c->err_info;
2122         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2123                 hpsa_scsi_interpret_error(h, c);
2124                 rc = -1;
2125         }
2126 out:
2127         cmd_special_free(h, c);
2128         return rc;
2129 }
2130 
2131 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2132                 unsigned char *scsi3addr, unsigned char page,
2133                 struct bmic_controller_parameters *buf, size_t bufsize)
2134 {
2135         int rc = IO_OK;
2136         struct CommandList *c;
2137         struct ErrorInfo *ei;
2138 
2139         c = cmd_special_alloc(h);
2140 
2141         if (c == NULL) {                        /* trouble... */
2142                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2143                 return -ENOMEM;
2144         }
2145 
2146         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2147                         page, scsi3addr, TYPE_CMD)) {
2148                 rc = -1;
2149                 goto out;
2150         }
2151         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2152         ei = c->err_info;
2153         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2154                 hpsa_scsi_interpret_error(h, c);
2155                 rc = -1;
2156         }
2157 out:
2158         cmd_special_free(h, c);
2159         return rc;
2160         }
2161 
2162 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2163         u8 reset_type)
2164 {
2165         int rc = IO_OK;
2166         struct CommandList *c;
2167         struct ErrorInfo *ei;
2168 
2169         c = cmd_special_alloc(h);
2170 
2171         if (c == NULL) {                        /* trouble... */
2172                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2173                 return -ENOMEM;
2174         }
2175 
2176         /* fill_cmd can't fail here, no data buffer to map. */
2177         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2178                         scsi3addr, TYPE_MSG);
2179         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2180         hpsa_scsi_do_simple_cmd_core(h, c);
2181         /* no unmap needed here because no data xfer. */
2182 
2183         ei = c->err_info;
2184         if (ei->CommandStatus != 0) {
2185                 hpsa_scsi_interpret_error(h, c);
2186                 rc = -1;
2187         }
2188         cmd_special_free(h, c);
2189         return rc;
2190 }
2191 
2192 static void hpsa_get_raid_level(struct ctlr_info *h,
2193         unsigned char *scsi3addr, unsigned char *raid_level)
2194 {
2195         int rc;
2196         unsigned char *buf;
2197 
2198         *raid_level = RAID_UNKNOWN;
2199         buf = kzalloc(64, GFP_KERNEL);
2200         if (!buf)
2201                 return;
2202         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2203         if (rc == 0)
2204                 *raid_level = buf[8];
2205         if (*raid_level > RAID_UNKNOWN)
2206                 *raid_level = RAID_UNKNOWN;
2207         kfree(buf);
2208         return;
2209 }
2210 
2211 #define HPSA_MAP_DEBUG
2212 #ifdef HPSA_MAP_DEBUG
2213 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2214                                 struct raid_map_data *map_buff)
2215 {
2216         struct raid_map_disk_data *dd = &map_buff->data[0];
2217         int map, row, col;
2218         u16 map_cnt, row_cnt, disks_per_row;
2219 
2220         if (rc != 0)
2221                 return;
2222 
2223         /* Show details only if debugging has been activated. */
2224         if (h->raid_offload_debug < 2)
2225                 return;
2226 
2227         dev_info(&h->pdev->dev, "structure_size = %u\n",
2228                                 le32_to_cpu(map_buff->structure_size));
2229         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2230                         le32_to_cpu(map_buff->volume_blk_size));
2231         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2232                         le64_to_cpu(map_buff->volume_blk_cnt));
2233         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2234                         map_buff->phys_blk_shift);
2235         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2236                         map_buff->parity_rotation_shift);
2237         dev_info(&h->pdev->dev, "strip_size = %u\n",
2238                         le16_to_cpu(map_buff->strip_size));
2239         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2240                         le64_to_cpu(map_buff->disk_starting_blk));
2241         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2242                         le64_to_cpu(map_buff->disk_blk_cnt));
2243         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2244                         le16_to_cpu(map_buff->data_disks_per_row));
2245         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2246                         le16_to_cpu(map_buff->metadata_disks_per_row));
2247         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2248                         le16_to_cpu(map_buff->row_cnt));
2249         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2250                         le16_to_cpu(map_buff->layout_map_count));
2251         dev_info(&h->pdev->dev, "flags = %u\n",
2252                         le16_to_cpu(map_buff->flags));
2253         if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2254                 dev_info(&h->pdev->dev, "encrypytion = ON\n");
2255         else
2256                 dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2257         dev_info(&h->pdev->dev, "dekindex = %u\n",
2258                         le16_to_cpu(map_buff->dekindex));
2259 
2260         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2261         for (map = 0; map < map_cnt; map++) {
2262                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2263                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2264                 for (row = 0; row < row_cnt; row++) {
2265                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2266                         disks_per_row =
2267                                 le16_to_cpu(map_buff->data_disks_per_row);
2268                         for (col = 0; col < disks_per_row; col++, dd++)
2269                                 dev_info(&h->pdev->dev,
2270                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2271                                         col, dd->ioaccel_handle,
2272                                         dd->xor_mult[0], dd->xor_mult[1]);
2273                         disks_per_row =
2274                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2275                         for (col = 0; col < disks_per_row; col++, dd++)
2276                                 dev_info(&h->pdev->dev,
2277                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2278                                         col, dd->ioaccel_handle,
2279                                         dd->xor_mult[0], dd->xor_mult[1]);
2280                 }
2281         }
2282 }
2283 #else
2284 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2285                         __attribute__((unused)) int rc,
2286                         __attribute__((unused)) struct raid_map_data *map_buff)
2287 {
2288 }
2289 #endif
2290 
2291 static int hpsa_get_raid_map(struct ctlr_info *h,
2292         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2293 {
2294         int rc = 0;
2295         struct CommandList *c;
2296         struct ErrorInfo *ei;
2297 
2298         c = cmd_special_alloc(h);
2299         if (c == NULL) {
2300                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2301                 return -ENOMEM;
2302         }
2303         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2304                         sizeof(this_device->raid_map), 0,
2305                         scsi3addr, TYPE_CMD)) {
2306                 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2307                 cmd_special_free(h, c);
2308                 return -ENOMEM;
2309         }
2310         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2311         ei = c->err_info;
2312         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2313                 hpsa_scsi_interpret_error(h, c);
2314                 cmd_special_free(h, c);
2315                 return -1;
2316         }
2317         cmd_special_free(h, c);
2318 
2319         /* @todo in the future, dynamically allocate RAID map memory */
2320         if (le32_to_cpu(this_device->raid_map.structure_size) >
2321                                 sizeof(this_device->raid_map)) {
2322                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2323                 rc = -1;
2324         }
2325         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2326         return rc;
2327 }
2328 
2329 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2330         unsigned char scsi3addr[], u8 page)
2331 {
2332         int rc;
2333         int i;
2334         int pages;
2335         unsigned char *buf, bufsize;
2336 
2337         buf = kzalloc(256, GFP_KERNEL);
2338         if (!buf)
2339                 return 0;
2340 
2341         /* Get the size of the page list first */
2342         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2343                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2344                                 buf, HPSA_VPD_HEADER_SZ);
2345         if (rc != 0)
2346                 goto exit_unsupported;
2347         pages = buf[3];
2348         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2349                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2350         else
2351                 bufsize = 255;
2352 
2353         /* Get the whole VPD page list */
2354         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2355                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2356                                 buf, bufsize);
2357         if (rc != 0)
2358                 goto exit_unsupported;
2359 
2360         pages = buf[3];
2361         for (i = 1; i <= pages; i++)
2362                 if (buf[3 + i] == page)
2363                         goto exit_supported;
2364 exit_unsupported:
2365         kfree(buf);
2366         return 0;
2367 exit_supported:
2368         kfree(buf);
2369         return 1;
2370 }
2371 
2372 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2373         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2374 {
2375         int rc;
2376         unsigned char *buf;
2377         u8 ioaccel_status;
2378 
2379         this_device->offload_config = 0;
2380         this_device->offload_enabled = 0;
2381 
2382         buf = kzalloc(64, GFP_KERNEL);
2383         if (!buf)
2384                 return;
2385         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2386                 goto out;
2387         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2388                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2389         if (rc != 0)
2390                 goto out;
2391 
2392 #define IOACCEL_STATUS_BYTE 4
2393 #define OFFLOAD_CONFIGURED_BIT 0x01
2394 #define OFFLOAD_ENABLED_BIT 0x02
2395         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2396         this_device->offload_config =
2397                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2398         if (this_device->offload_config) {
2399                 this_device->offload_enabled =
2400                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2401                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2402                         this_device->offload_enabled = 0;
2403         }
2404 out:
2405         kfree(buf);
2406         return;
2407 }
2408 
2409 /* Get the device id from inquiry page 0x83 */
2410 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2411         unsigned char *device_id, int buflen)
2412 {
2413         int rc;
2414         unsigned char *buf;
2415 
2416         if (buflen > 16)
2417                 buflen = 16;
2418         buf = kzalloc(64, GFP_KERNEL);
2419         if (!buf)
2420                 return -1;
2421         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2422         if (rc == 0)
2423                 memcpy(device_id, &buf[8], buflen);
2424         kfree(buf);
2425         return rc != 0;
2426 }
2427 
2428 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2429                 struct ReportLUNdata *buf, int bufsize,
2430                 int extended_response)
2431 {
2432         int rc = IO_OK;
2433         struct CommandList *c;
2434         unsigned char scsi3addr[8];
2435         struct ErrorInfo *ei;
2436 
2437         c = cmd_special_alloc(h);
2438         if (c == NULL) {                        /* trouble... */
2439                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2440                 return -1;
2441         }
2442         /* address the controller */
2443         memset(scsi3addr, 0, sizeof(scsi3addr));
2444         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2445                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2446                 rc = -1;
2447                 goto out;
2448         }
2449         if (extended_response)
2450                 c->Request.CDB[1] = extended_response;
2451         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2452         ei = c->err_info;
2453         if (ei->CommandStatus != 0 &&
2454             ei->CommandStatus != CMD_DATA_UNDERRUN) {
2455                 hpsa_scsi_interpret_error(h, c);
2456                 rc = -1;
2457         } else {
2458                 if (buf->extended_response_flag != extended_response) {
2459                         dev_err(&h->pdev->dev,
2460                                 "report luns requested format %u, got %u\n",
2461                                 extended_response,
2462                                 buf->extended_response_flag);
2463                         rc = -1;
2464                 }
2465         }
2466 out:
2467         cmd_special_free(h, c);
2468         return rc;
2469 }
2470 
2471 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2472                 struct ReportLUNdata *buf,
2473                 int bufsize, int extended_response)
2474 {
2475         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2476 }
2477 
2478 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2479                 struct ReportLUNdata *buf, int bufsize)
2480 {
2481         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2482 }
2483 
2484 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2485         int bus, int target, int lun)
2486 {
2487         device->bus = bus;
2488         device->target = target;
2489         device->lun = lun;
2490 }
2491 
2492 /* Use VPD inquiry to get details of volume status */
2493 static int hpsa_get_volume_status(struct ctlr_info *h,
2494                                         unsigned char scsi3addr[])
2495 {
2496         int rc;
2497         int status;
2498         int size;
2499         unsigned char *buf;
2500 
2501         buf = kzalloc(64, GFP_KERNEL);
2502         if (!buf)
2503                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2504 
2505         /* Does controller have VPD for logical volume status? */
2506         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS)) {
2507                 dev_warn(&h->pdev->dev, "Logical volume status VPD page is unsupported.\n");
2508                 goto exit_failed;
2509         }
2510 
2511         /* Get the size of the VPD return buffer */
2512         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2513                                         buf, HPSA_VPD_HEADER_SZ);
2514         if (rc != 0) {
2515                 dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2516                 goto exit_failed;
2517         }
2518         size = buf[3];
2519 
2520         /* Now get the whole VPD buffer */
2521         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2522                                         buf, size + HPSA_VPD_HEADER_SZ);
2523         if (rc != 0) {
2524                 dev_warn(&h->pdev->dev, "Logical volume status VPD inquiry failed.\n");
2525                 goto exit_failed;
2526         }
2527         status = buf[4]; /* status byte */
2528 
2529         kfree(buf);
2530         return status;
2531 exit_failed:
2532         kfree(buf);
2533         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2534 }
2535 
2536 /* Determine offline status of a volume.
2537  * Return either:
2538  *  0 (not offline)
2539  * -1 (offline for unknown reasons)
2540  *  # (integer code indicating one of several NOT READY states
2541  *     describing why a volume is to be kept offline)
2542  */
2543 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
2544                                         unsigned char scsi3addr[])
2545 {
2546         struct CommandList *c;
2547         unsigned char *sense, sense_key, asc, ascq;
2548         int ldstat = 0;
2549         u16 cmd_status;
2550         u8 scsi_status;
2551 #define ASC_LUN_NOT_READY 0x04
2552 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2553 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2554 
2555         c = cmd_alloc(h);
2556         if (!c)
2557                 return 0;
2558         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2559         hpsa_scsi_do_simple_cmd_core(h, c);
2560         sense = c->err_info->SenseInfo;
2561         sense_key = sense[2];
2562         asc = sense[12];
2563         ascq = sense[13];
2564         cmd_status = c->err_info->CommandStatus;
2565         scsi_status = c->err_info->ScsiStatus;
2566         cmd_free(h, c);
2567         /* Is the volume 'not ready'? */
2568         if (cmd_status != CMD_TARGET_STATUS ||
2569                 scsi_status != SAM_STAT_CHECK_CONDITION ||
2570                 sense_key != NOT_READY ||
2571                 asc != ASC_LUN_NOT_READY)  {
2572                 return 0;
2573         }
2574 
2575         /* Determine the reason for not ready state */
2576         ldstat = hpsa_get_volume_status(h, scsi3addr);
2577 
2578         /* Keep volume offline in certain cases: */
2579         switch (ldstat) {
2580         case HPSA_LV_UNDERGOING_ERASE:
2581         case HPSA_LV_UNDERGOING_RPI:
2582         case HPSA_LV_PENDING_RPI:
2583         case HPSA_LV_ENCRYPTED_NO_KEY:
2584         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2585         case HPSA_LV_UNDERGOING_ENCRYPTION:
2586         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2587         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2588                 return ldstat;
2589         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2590                 /* If VPD status page isn't available,
2591                  * use ASC/ASCQ to determine state
2592                  */
2593                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2594                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2595                         return ldstat;
2596                 break;
2597         default:
2598                 break;
2599         }
2600         return 0;
2601 }
2602 
2603 static int hpsa_update_device_info(struct ctlr_info *h,
2604         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2605         unsigned char *is_OBDR_device)
2606 {
2607 
2608 #define OBDR_SIG_OFFSET 43
2609 #define OBDR_TAPE_SIG "$DR-10"
2610 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2611 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2612 
2613         unsigned char *inq_buff;
2614         unsigned char *obdr_sig;
2615 
2616         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2617         if (!inq_buff)
2618                 goto bail_out;
2619 
2620         /* Do an inquiry to the device to see what it is. */
2621         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2622                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2623                 /* Inquiry failed (msg printed already) */
2624                 dev_err(&h->pdev->dev,
2625                         "hpsa_update_device_info: inquiry failed\n");
2626                 goto bail_out;
2627         }
2628 
2629         this_device->devtype = (inq_buff[0] & 0x1f);
2630         memcpy(this_device->scsi3addr, scsi3addr, 8);
2631         memcpy(this_device->vendor, &inq_buff[8],
2632                 sizeof(this_device->vendor));
2633         memcpy(this_device->model, &inq_buff[16],
2634                 sizeof(this_device->model));
2635         memset(this_device->device_id, 0,
2636                 sizeof(this_device->device_id));
2637         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2638                 sizeof(this_device->device_id));
2639 
2640         if (this_device->devtype == TYPE_DISK &&
2641                 is_logical_dev_addr_mode(scsi3addr)) {
2642                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2643                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2644                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2645                 this_device->volume_offline =
2646                         hpsa_volume_offline(h, scsi3addr);
2647         } else {
2648                 this_device->raid_level = RAID_UNKNOWN;
2649                 this_device->offload_config = 0;
2650                 this_device->offload_enabled = 0;
2651                 this_device->volume_offline = 0;
2652         }
2653 
2654         if (is_OBDR_device) {
2655                 /* See if this is a One-Button-Disaster-Recovery device
2656                  * by looking for "$DR-10" at offset 43 in inquiry data.
2657                  */
2658                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2659                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2660                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
2661                                                 OBDR_SIG_LEN) == 0);
2662         }
2663 
2664         kfree(inq_buff);
2665         return 0;
2666 
2667 bail_out:
2668         kfree(inq_buff);
2669         return 1;
2670 }
2671 
2672 static unsigned char *ext_target_model[] = {
2673         "MSA2012",
2674         "MSA2024",
2675         "MSA2312",
2676         "MSA2324",
2677         "P2000 G3 SAS",
2678         "MSA 2040 SAS",
2679         NULL,
2680 };
2681 
2682 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2683 {
2684         int i;
2685 
2686         for (i = 0; ext_target_model[i]; i++)
2687                 if (strncmp(device->model, ext_target_model[i],
2688                         strlen(ext_target_model[i])) == 0)
2689                         return 1;
2690         return 0;
2691 }
2692 
2693 /* Helper function to assign bus, target, lun mapping of devices.
2694  * Puts non-external target logical volumes on bus 0, external target logical
2695  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2696  * Logical drive target and lun are assigned at this time, but
2697  * physical device lun and target assignment are deferred (assigned
2698  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2699  */
2700 static void figure_bus_target_lun(struct ctlr_info *h,
2701         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2702 {
2703         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2704 
2705         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2706                 /* physical device, target and lun filled in later */
2707                 if (is_hba_lunid(lunaddrbytes))
2708                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2709                 else
2710                         /* defer target, lun assignment for physical devices */
2711                         hpsa_set_bus_target_lun(device, 2, -1, -1);
2712                 return;
2713         }
2714         /* It's a logical device */
2715         if (is_ext_target(h, device)) {
2716                 /* external target way, put logicals on bus 1
2717                  * and match target/lun numbers box
2718                  * reports, other smart array, bus 0, target 0, match lunid
2719                  */
2720                 hpsa_set_bus_target_lun(device,
2721                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2722                 return;
2723         }
2724         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2725 }
2726 
2727 /*
2728  * If there is no lun 0 on a target, linux won't find any devices.
2729  * For the external targets (arrays), we have to manually detect the enclosure
2730  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2731  * it for some reason.  *tmpdevice is the target we're adding,
2732  * this_device is a pointer into the current element of currentsd[]
2733  * that we're building up in update_scsi_devices(), below.
2734  * lunzerobits is a bitmap that tracks which targets already have a
2735  * lun 0 assigned.
2736  * Returns 1 if an enclosure was added, 0 if not.
2737  */
2738 static int add_ext_target_dev(struct ctlr_info *h,
2739         struct hpsa_scsi_dev_t *tmpdevice,
2740         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2741         unsigned long lunzerobits[], int *n_ext_target_devs)
2742 {
2743         unsigned char scsi3addr[8];
2744 
2745         if (test_bit(tmpdevice->target, lunzerobits))
2746                 return 0; /* There is already a lun 0 on this target. */
2747 
2748         if (!is_logical_dev_addr_mode(lunaddrbytes))
2749                 return 0; /* It's the logical targets that may lack lun 0. */
2750 
2751         if (!is_ext_target(h, tmpdevice))
2752                 return 0; /* Only external target devices have this problem. */
2753 
2754         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2755                 return 0;
2756 
2757         memset(scsi3addr, 0, 8);
2758         scsi3addr[3] = tmpdevice->target;
2759         if (is_hba_lunid(scsi3addr))
2760                 return 0; /* Don't add the RAID controller here. */
2761 
2762         if (is_scsi_rev_5(h))
2763                 return 0; /* p1210m doesn't need to do this. */
2764 
2765         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2766                 dev_warn(&h->pdev->dev, "Maximum number of external "
2767                         "target devices exceeded.  Check your hardware "
2768                         "configuration.");
2769                 return 0;
2770         }
2771 
2772         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2773                 return 0;
2774         (*n_ext_target_devs)++;
2775         hpsa_set_bus_target_lun(this_device,
2776                                 tmpdevice->bus, tmpdevice->target, 0);
2777         set_bit(tmpdevice->target, lunzerobits);
2778         return 1;
2779 }
2780 
2781 /*
2782  * Get address of physical disk used for an ioaccel2 mode command:
2783  *      1. Extract ioaccel2 handle from the command.
2784  *      2. Find a matching ioaccel2 handle from list of physical disks.
2785  *      3. Return:
2786  *              1 and set scsi3addr to address of matching physical
2787  *              0 if no matching physical disk was found.
2788  */
2789 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2790         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2791 {
2792         struct ReportExtendedLUNdata *physicals = NULL;
2793         int responsesize = 24;  /* size of physical extended response */
2794         int extended = 2;       /* flag forces reporting 'other dev info'. */
2795         int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2796         u32 nphysicals = 0;     /* number of reported physical devs */
2797         int found = 0;          /* found match (1) or not (0) */
2798         u32 find;               /* handle we need to match */
2799         int i;
2800         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2801         struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2802         struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2803         u32 it_nexus;           /* 4 byte device handle for the ioaccel2 cmd */
2804         u32 scsi_nexus;         /* 4 byte device handle for the ioaccel2 cmd */
2805 
2806         if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2807                 return 0; /* no match */
2808 
2809         /* point to the ioaccel2 device handle */
2810         c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2811         if (c2a == NULL)
2812                 return 0; /* no match */
2813 
2814         scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2815         if (scmd == NULL)
2816                 return 0; /* no match */
2817 
2818         d = scmd->device->hostdata;
2819         if (d == NULL)
2820                 return 0; /* no match */
2821 
2822         it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2823         scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2824         find = c2a->scsi_nexus;
2825 
2826         if (h->raid_offload_debug > 0)
2827                 dev_info(&h->pdev->dev,
2828                         "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2829                         __func__, scsi_nexus,
2830                         d->device_id[0], d->device_id[1], d->device_id[2],
2831                         d->device_id[3], d->device_id[4], d->device_id[5],
2832                         d->device_id[6], d->device_id[7], d->device_id[8],
2833                         d->device_id[9], d->device_id[10], d->device_id[11],
2834                         d->device_id[12], d->device_id[13], d->device_id[14],
2835                         d->device_id[15]);
2836 
2837         /* Get the list of physical devices */
2838         physicals = kzalloc(reportsize, GFP_KERNEL);
2839         if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2840                 reportsize, extended)) {
2841                 dev_err(&h->pdev->dev,
2842                         "Can't lookup %s device handle: report physical LUNs failed.\n",
2843                         "HP SSD Smart Path");
2844                 kfree(physicals);
2845                 return 0;
2846         }
2847         nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2848                                                         responsesize;
2849 
2850 
2851         /* find ioaccel2 handle in list of physicals: */
2852         for (i = 0; i < nphysicals; i++) {
2853                 /* handle is in bytes 28-31 of each lun */
2854                 if (memcmp(&((struct ReportExtendedLUNdata *)
2855                                 physicals)->LUN[i][20], &find, 4) != 0) {
2856                         continue; /* didn't match */
2857                 }
2858                 found = 1;
2859                 memcpy(scsi3addr, &((struct ReportExtendedLUNdata *)
2860                                         physicals)->LUN[i][0], 8);
2861                 if (h->raid_offload_debug > 0)
2862                         dev_info(&h->pdev->dev,
2863                                 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2864                                 __func__, find,
2865                                 ((struct ReportExtendedLUNdata *)
2866                                         physicals)->LUN[i][20],
2867                                 scsi3addr[0], scsi3addr[1], scsi3addr[2],
2868                                 scsi3addr[3], scsi3addr[4], scsi3addr[5],
2869                                 scsi3addr[6], scsi3addr[7]);
2870                 break; /* found it */
2871         }
2872 
2873         kfree(physicals);
2874         if (found)
2875                 return 1;
2876         else
2877                 return 0;
2878 
2879 }
2880 /*
2881  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
2882  * logdev.  The number of luns in physdev and logdev are returned in
2883  * *nphysicals and *nlogicals, respectively.
2884  * Returns 0 on success, -1 otherwise.
2885  */
2886 static int hpsa_gather_lun_info(struct ctlr_info *h,
2887         int reportlunsize,
2888         struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2889         struct ReportLUNdata *logdev, u32 *nlogicals)
2890 {
2891         int physical_entry_size = 8;
2892 
2893         *physical_mode = 0;
2894 
2895         /* For I/O accelerator mode we need to read physical device handles */
2896         if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2897                 h->transMethod & CFGTBL_Trans_io_accel2) {
2898                 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2899                 physical_entry_size = 24;
2900         }
2901         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2902                                                         *physical_mode)) {
2903                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2904                 return -1;
2905         }
2906         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2907                                                         physical_entry_size;
2908         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2909                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2910                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2911                         *nphysicals - HPSA_MAX_PHYS_LUN);
2912                 *nphysicals = HPSA_MAX_PHYS_LUN;
2913         }
2914         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2915                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2916                 return -1;
2917         }
2918         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2919         /* Reject Logicals in excess of our max capability. */
2920         if (*nlogicals > HPSA_MAX_LUN) {
2921                 dev_warn(&h->pdev->dev,
2922                         "maximum logical LUNs (%d) exceeded.  "
2923                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
2924                         *nlogicals - HPSA_MAX_LUN);
2925                         *nlogicals = HPSA_MAX_LUN;
2926         }
2927         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2928                 dev_warn(&h->pdev->dev,
2929                         "maximum logical + physical LUNs (%d) exceeded. "
2930                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2931                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2932                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2933         }
2934         return 0;
2935 }
2936 
2937 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2938         int nphysicals, int nlogicals,
2939         struct ReportExtendedLUNdata *physdev_list,
2940         struct ReportLUNdata *logdev_list)
2941 {
2942         /* Helper function, figure out where the LUN ID info is coming from
2943          * given index i, lists of physical and logical devices, where in
2944          * the list the raid controller is supposed to appear (first or last)
2945          */
2946 
2947         int logicals_start = nphysicals + (raid_ctlr_position == 0);
2948         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2949 
2950         if (i == raid_ctlr_position)
2951                 return RAID_CTLR_LUNID;
2952 
2953         if (i < logicals_start)
2954                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
2955 
2956         if (i < last_device)
2957                 return &logdev_list->LUN[i - nphysicals -
2958                         (raid_ctlr_position == 0)][0];
2959         BUG();
2960         return NULL;
2961 }
2962 
2963 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2964 {
2965         int rc;
2966         struct bmic_controller_parameters *ctlr_params;
2967         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2968                 GFP_KERNEL);
2969 
2970         if (!ctlr_params)
2971                 return 0;
2972         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2973                 sizeof(struct bmic_controller_parameters));
2974         if (rc != 0) {
2975                 kfree(ctlr_params);
2976                 return 0;
2977         }
2978         return ctlr_params->nvram_flags & (1 << 3) ? 1 : 0;
2979 }
2980 
2981 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2982 {
2983         /* the idea here is we could get notified
2984          * that some devices have changed, so we do a report
2985          * physical luns and report logical luns cmd, and adjust
2986          * our list of devices accordingly.
2987          *
2988          * The scsi3addr's of devices won't change so long as the
2989          * adapter is not reset.  That means we can rescan and
2990          * tell which devices we already know about, vs. new
2991          * devices, vs.  disappearing devices.
2992          */
2993         struct ReportExtendedLUNdata *physdev_list = NULL;
2994         struct ReportLUNdata *logdev_list = NULL;
2995         u32 nphysicals = 0;
2996         u32 nlogicals = 0;
2997         int physical_mode = 0;
2998         u32 ndev_allocated = 0;
2999         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3000         int ncurrent = 0;
3001         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3002         int i, n_ext_target_devs, ndevs_to_allocate;
3003         int raid_ctlr_position;
3004         u8 rescan_hba_mode;
3005         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3006 
3007         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3008         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3009         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3010         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3011 
3012         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3013                 dev_err(&h->pdev->dev, "out of memory\n");
3014                 goto out;
3015         }
3016         memset(lunzerobits, 0, sizeof(lunzerobits));
3017 
3018         rescan_hba_mode = hpsa_hba_mode_enabled(h);
3019 
3020         if (!h->hba_mode_enabled && rescan_hba_mode)
3021                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3022         else if (h->hba_mode_enabled && !rescan_hba_mode)
3023                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3024 
3025         h->hba_mode_enabled = rescan_hba_mode;
3026 
3027         if (hpsa_gather_lun_info(h, reportlunsize,
3028                         (struct ReportLUNdata *) physdev_list, &nphysicals,
3029                         &physical_mode, logdev_list, &nlogicals))
3030                 goto out;
3031 
3032         /* We might see up to the maximum number of logical and physical disks
3033          * plus external target devices, and a device for the local RAID
3034          * controller.
3035          */
3036         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3037 
3038         /* Allocate the per device structures */
3039         for (i = 0; i < ndevs_to_allocate; i++) {
3040                 if (i >= HPSA_MAX_DEVICES) {
3041                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3042                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3043                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3044                         break;
3045                 }
3046 
3047                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3048                 if (!currentsd[i]) {
3049                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3050                                 __FILE__, __LINE__);
3051                         goto out;
3052                 }
3053                 ndev_allocated++;
3054         }
3055 
3056         if (unlikely(is_scsi_rev_5(h)))
3057                 raid_ctlr_position = 0;
3058         else
3059                 raid_ctlr_position = nphysicals + nlogicals;
3060 
3061         /* adjust our table of devices */
3062         n_ext_target_devs = 0;
3063         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3064                 u8 *lunaddrbytes, is_OBDR = 0;
3065 
3066                 /* Figure out where the LUN ID info is coming from */
3067                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3068                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3069                 /* skip masked physical devices. */
3070                 if (lunaddrbytes[3] & 0xC0 &&
3071                         i < nphysicals + (raid_ctlr_position == 0))
3072                         continue;
3073 
3074                 /* Get device type, vendor, model, device id */
3075                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3076                                                         &is_OBDR))
3077                         continue; /* skip it if we can't talk to it. */
3078                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3079                 this_device = currentsd[ncurrent];
3080 
3081                 /*
3082                  * For external target devices, we have to insert a LUN 0 which
3083                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3084                  * is nonetheless an enclosure device there.  We have to
3085                  * present that otherwise linux won't find anything if
3086                  * there is no lun 0.
3087                  */
3088                 if (add_ext_target_dev(h, tmpdevice, this_device,
3089                                 lunaddrbytes, lunzerobits,
3090                                 &n_ext_target_devs)) {
3091                         ncurrent++;
3092                         this_device = currentsd[ncurrent];
3093                 }
3094 
3095                 *this_device = *tmpdevice;
3096 
3097                 switch (this_device->devtype) {
3098                 case TYPE_ROM:
3099                         /* We don't *really* support actual CD-ROM devices,
3100                          * just "One Button Disaster Recovery" tape drive
3101                          * which temporarily pretends to be a CD-ROM drive.
3102                          * So we check that the device is really an OBDR tape
3103                          * device by checking for "$DR-10" in bytes 43-48 of
3104                          * the inquiry data.
3105                          */
3106                         if (is_OBDR)
3107                                 ncurrent++;
3108                         break;
3109                 case TYPE_DISK:
3110                         if (h->hba_mode_enabled) {
3111                                 /* never use raid mapper in HBA mode */
3112                                 this_device->offload_enabled = 0;
3113                                 ncurrent++;
3114                                 break;
3115                         } else if (h->acciopath_status) {
3116                                 if (i >= nphysicals) {
3117                                         ncurrent++;
3118                                         break;
3119                                 }
3120                         } else {
3121                                 if (i < nphysicals)
3122                                         break;
3123                                 ncurrent++;
3124                                 break;
3125                         }
3126                         if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3127                                 memcpy(&this_device->ioaccel_handle,
3128                                         &lunaddrbytes[20],
3129                                         sizeof(this_device->ioaccel_handle));
3130                                 ncurrent++;
3131                         }
3132                         break;
3133                 case TYPE_TAPE:
3134                 case TYPE_MEDIUM_CHANGER:
3135                         ncurrent++;
3136                         break;
3137                 case TYPE_RAID:
3138                         /* Only present the Smartarray HBA as a RAID controller.
3139                          * If it's a RAID controller other than the HBA itself
3140                          * (an external RAID controller, MSA500 or similar)
3141                          * don't present it.
3142                          */
3143                         if (!is_hba_lunid(lunaddrbytes))
3144                                 break;
3145                         ncurrent++;
3146                         break;
3147                 default:
3148                         break;
3149                 }
3150                 if (ncurrent >= HPSA_MAX_DEVICES)
3151                         break;
3152         }
3153         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3154 out:
3155         kfree(tmpdevice);
3156         for (i = 0; i < ndev_allocated; i++)
3157                 kfree(currentsd[i]);
3158         kfree(currentsd);
3159         kfree(physdev_list);
3160         kfree(logdev_list);
3161 }
3162 
3163 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3164  * dma mapping  and fills in the scatter gather entries of the
3165  * hpsa command, cp.
3166  */
3167 static int hpsa_scatter_gather(struct ctlr_info *h,
3168                 struct CommandList *cp,
3169                 struct scsi_cmnd *cmd)
3170 {
3171         unsigned int len;
3172         struct scatterlist *sg;
3173         u64 addr64;
3174         int use_sg, i, sg_index, chained;
3175         struct SGDescriptor *curr_sg;
3176 
3177         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3178 
3179         use_sg = scsi_dma_map(cmd);
3180         if (use_sg < 0)
3181                 return use_sg;
3182 
3183         if (!use_sg)
3184                 goto sglist_finished;
3185 
3186         curr_sg = cp->SG;
3187         chained = 0;
3188         sg_index = 0;
3189         scsi_for_each_sg(cmd, sg, use_sg, i) {
3190                 if (i == h->max_cmd_sg_entries - 1 &&
3191                         use_sg > h->max_cmd_sg_entries) {
3192                         chained = 1;
3193                         curr_sg = h->cmd_sg_list[cp->cmdindex];
3194                         sg_index = 0;
3195                 }
3196                 addr64 = (u64) sg_dma_address(sg);
3197                 len  = sg_dma_len(sg);
3198                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3199                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3200                 curr_sg->Len = len;
3201                 curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3202                 curr_sg++;
3203         }
3204 
3205         if (use_sg + chained > h->maxSG)
3206                 h->maxSG = use_sg + chained;
3207 
3208         if (chained) {
3209                 cp->Header.SGList = h->max_cmd_sg_entries;
3210                 cp->Header.SGTotal = (u16) (use_sg + 1);
3211                 if (hpsa_map_sg_chain_block(h, cp)) {
3212                         scsi_dma_unmap(cmd);
3213                         return -1;
3214                 }
3215                 return 0;
3216         }
3217 
3218 sglist_finished:
3219 
3220         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3221         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3222         return 0;
3223 }
3224 
3225 #define IO_ACCEL_INELIGIBLE (1)
3226 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3227 {
3228         int is_write = 0;
3229         u32 block;
3230         u32 block_cnt;
3231 
3232         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3233         switch (cdb[0]) {
3234         case WRITE_6:
3235         case WRITE_12:
3236                 is_write = 1;
3237         case READ_6:
3238         case READ_12:
3239                 if (*cdb_len == 6) {
3240                         block = (((u32) cdb[2]) << 8) | cdb[3];
3241                         block_cnt = cdb[4];
3242                 } else {
3243                         BUG_ON(*cdb_len != 12);
3244                         block = (((u32) cdb[2]) << 24) |
3245                                 (((u32) cdb[3]) << 16) |
3246                                 (((u32) cdb[4]) << 8) |
3247                                 cdb[5];
3248                         block_cnt =
3249                                 (((u32) cdb[6]) << 24) |
3250                                 (((u32) cdb[7]) << 16) |
3251                                 (((u32) cdb[8]) << 8) |
3252                                 cdb[9];
3253                 }
3254                 if (block_cnt > 0xffff)
3255                         return IO_ACCEL_INELIGIBLE;
3256 
3257                 cdb[0] = is_write ? WRITE_10 : READ_10;
3258                 cdb[1] = 0;
3259                 cdb[2] = (u8) (block >> 24);
3260                 cdb[3] = (u8) (block >> 16);
3261                 cdb[4] = (u8) (block >> 8);
3262                 cdb[5] = (u8) (block);
3263                 cdb[6] = 0;
3264                 cdb[7] = (u8) (block_cnt >> 8);
3265                 cdb[8] = (u8) (block_cnt);
3266                 cdb[9] = 0;
3267                 *cdb_len = 10;
3268                 break;
3269         }
3270         return 0;
3271 }
3272 
3273 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3274         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3275         u8 *scsi3addr)
3276 {
3277         struct scsi_cmnd *cmd = c->scsi_cmd;
3278         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3279         unsigned int len;
3280         unsigned int total_len = 0;
3281         struct scatterlist *sg;
3282         u64 addr64;
3283         int use_sg, i;
3284         struct SGDescriptor *curr_sg;
3285         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3286 
3287         /* TODO: implement chaining support */
3288         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3289                 return IO_ACCEL_INELIGIBLE;
3290 
3291         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3292 
3293         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3294                 return IO_ACCEL_INELIGIBLE;
3295 
3296         c->cmd_type = CMD_IOACCEL1;
3297 
3298         /* Adjust the DMA address to point to the accelerated command buffer */
3299         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3300                                 (c->cmdindex * sizeof(*cp));
3301         BUG_ON(c->busaddr & 0x0000007F);
3302 
3303         use_sg = scsi_dma_map(cmd);
3304         if (use_sg < 0)
3305                 return use_sg;
3306 
3307         if (use_sg) {
3308                 curr_sg = cp->SG;
3309                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3310                         addr64 = (u64) sg_dma_address(sg);
3311                         len  = sg_dma_len(sg);
3312                         total_len += len;
3313                         curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3314                         curr_sg->Addr.upper =
3315                                 (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3316                         curr_sg->Len = len;
3317 
3318                         if (i == (scsi_sg_count(cmd) - 1))
3319                                 curr_sg->Ext = HPSA_SG_LAST;
3320                         else
3321                                 curr_sg->Ext = 0;  /* we are not chaining */
3322                         curr_sg++;
3323                 }
3324 
3325                 switch (cmd->sc_data_direction) {
3326                 case DMA_TO_DEVICE:
3327                         control |= IOACCEL1_CONTROL_DATA_OUT;
3328                         break;
3329                 case DMA_FROM_DEVICE:
3330                         control |= IOACCEL1_CONTROL_DATA_IN;
3331                         break;
3332                 case DMA_NONE:
3333                         control |= IOACCEL1_CONTROL_NODATAXFER;
3334                         break;
3335                 default:
3336                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3337                         cmd->sc_data_direction);
3338                         BUG();
3339                         break;
3340                 }
3341         } else {
3342                 control |= IOACCEL1_CONTROL_NODATAXFER;
3343         }
3344 
3345         c->Header.SGList = use_sg;
3346         /* Fill out the command structure to submit */
3347         cp->dev_handle = ioaccel_handle & 0xFFFF;
3348         cp->transfer_len = total_len;
3349         cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3350                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3351         cp->control = control;
3352         memcpy(cp->CDB, cdb, cdb_len);
3353         memcpy(cp->CISS_LUN, scsi3addr, 8);
3354         /* Tag was already set at init time. */
3355         enqueue_cmd_and_start_io(h, c);
3356         return 0;
3357 }
3358 
3359 /*
3360  * Queue a command directly to a device behind the controller using the
3361  * I/O accelerator path.
3362  */
3363 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3364         struct CommandList *c)
3365 {
3366         struct scsi_cmnd *cmd = c->scsi_cmd;
3367         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3368 
3369         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3370                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3371 }
3372 
3373 /*
3374  * Set encryption parameters for the ioaccel2 request
3375  */
3376 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3377         struct CommandList *c, struct io_accel2_cmd *cp)
3378 {
3379         struct scsi_cmnd *cmd = c->scsi_cmd;
3380         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3381         struct raid_map_data *map = &dev->raid_map;
3382         u64 first_block;
3383 
3384         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3385 
3386         /* Are we doing encryption on this device */
3387         if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3388                 return;
3389         /* Set the data encryption key index. */
3390         cp->dekindex = map->dekindex;
3391 
3392         /* Set the encryption enable flag, encoded into direction field. */
3393         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3394 
3395         /* Set encryption tweak values based on logical block address
3396          * If block size is 512, tweak value is LBA.
3397          * For other block sizes, tweak is (LBA * block size)/ 512)
3398          */
3399         switch (cmd->cmnd[0]) {
3400         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3401         case WRITE_6:
3402         case READ_6:
3403                 if (map->volume_blk_size == 512) {
3404                         cp->tweak_lower =
3405                                 (((u32) cmd->cmnd[2]) << 8) |
3406                                         cmd->cmnd[3];
3407                         cp->tweak_upper = 0;
3408                 } else {
3409                         first_block =
3410                                 (((u64) cmd->cmnd[2]) << 8) |
3411                                         cmd->cmnd[3];
3412                         first_block = (first_block * map->volume_blk_size)/512;
3413                         cp->tweak_lower = (u32)first_block;
3414                         cp->tweak_upper = (u32)(first_block >> 32);
3415                 }
3416                 break;
3417         case WRITE_10:
3418         case READ_10:
3419                 if (map->volume_blk_size == 512) {
3420                         cp->tweak_lower =
3421                                 (((u32) cmd->cmnd[2]) << 24) |
3422                                 (((u32) cmd->cmnd[3]) << 16) |
3423                                 (((u32) cmd->cmnd[4]) << 8) |
3424                                         cmd->cmnd[5];
3425                         cp->tweak_upper = 0;
3426                 } else {
3427                         first_block =
3428                                 (((u64) cmd->cmnd[2]) << 24) |
3429                                 (((u64) cmd->cmnd[3]) << 16) |
3430                                 (((u64) cmd->cmnd[4]) << 8) |
3431                                         cmd->cmnd[5];
3432                         first_block = (first_block * map->volume_blk_size)/512;
3433                         cp->tweak_lower = (u32)first_block;
3434                         cp->tweak_upper = (u32)(first_block >> 32);
3435                 }
3436                 break;
3437         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3438         case WRITE_12:
3439         case READ_12:
3440                 if (map->volume_blk_size == 512) {
3441                         cp->tweak_lower =
3442                                 (((u32) cmd->cmnd[2]) << 24) |
3443                                 (((u32) cmd->cmnd[3]) << 16) |
3444                                 (((u32) cmd->cmnd[4]) << 8) |
3445                                         cmd->cmnd[5];
3446                         cp->tweak_upper = 0;
3447                 } else {
3448                         first_block =
3449                                 (((u64) cmd->cmnd[2]) << 24) |
3450                                 (((u64) cmd->cmnd[3]) << 16) |
3451                                 (((u64) cmd->cmnd[4]) << 8) |
3452                                         cmd->cmnd[5];
3453                         first_block = (first_block * map->volume_blk_size)/512;
3454                         cp->tweak_lower = (u32)first_block;
3455                         cp->tweak_upper = (u32)(first_block >> 32);
3456                 }
3457                 break;
3458         case WRITE_16:
3459         case READ_16:
3460                 if (map->volume_blk_size == 512) {
3461                         cp->tweak_lower =
3462                                 (((u32) cmd->cmnd[6]) << 24) |
3463                                 (((u32) cmd->cmnd[7]) << 16) |
3464                                 (((u32) cmd->cmnd[8]) << 8) |
3465                                         cmd->cmnd[9];
3466                         cp->tweak_upper =
3467                                 (((u32) cmd->cmnd[2]) << 24) |
3468                                 (((u32) cmd->cmnd[3]) << 16) |
3469                                 (((u32) cmd->cmnd[4]) << 8) |
3470                                         cmd->cmnd[5];
3471                 } else {
3472                         first_block =
3473                                 (((u64) cmd->cmnd[2]) << 56) |
3474                                 (((u64) cmd->cmnd[3]) << 48) |
3475                                 (((u64) cmd->cmnd[4]) << 40) |
3476                                 (((u64) cmd->cmnd[5]) << 32) |
3477                                 (((u64) cmd->cmnd[6]) << 24) |
3478                                 (((u64) cmd->cmnd[7]) << 16) |
3479                                 (((u64) cmd->cmnd[8]) << 8) |
3480                                         cmd->cmnd[9];
3481                         first_block = (first_block * map->volume_blk_size)/512;
3482                         cp->tweak_lower = (u32)first_block;
3483                         cp->tweak_upper = (u32)(first_block >> 32);
3484                 }
3485                 break;
3486         default:
3487                 dev_err(&h->pdev->dev,
3488                         "ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3489                         __func__);
3490                 BUG();
3491                 break;
3492         }
3493 }
3494 
3495 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3496         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3497         u8 *scsi3addr)
3498 {
3499         struct scsi_cmnd *cmd = c->scsi_cmd;
3500         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3501         struct ioaccel2_sg_element *curr_sg;
3502         int use_sg, i;
3503         struct scatterlist *sg;
3504         u64 addr64;
3505         u32 len;
3506         u32 total_len = 0;
3507 
3508         if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3509                 return IO_ACCEL_INELIGIBLE;
3510 
3511         if (fixup_ioaccel_cdb(cdb, &cdb_len))
3512                 return IO_ACCEL_INELIGIBLE;
3513         c->cmd_type = CMD_IOACCEL2;
3514         /* Adjust the DMA address to point to the accelerated command buffer */
3515         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3516                                 (c->cmdindex * sizeof(*cp));
3517         BUG_ON(c->busaddr & 0x0000007F);
3518 
3519         memset(cp, 0, sizeof(*cp));
3520         cp->IU_type = IOACCEL2_IU_TYPE;
3521 
3522         use_sg = scsi_dma_map(cmd);
3523         if (use_sg < 0)
3524                 return use_sg;
3525 
3526         if (use_sg) {
3527                 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3528                 curr_sg = cp->sg;
3529                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3530                         addr64 = (u64) sg_dma_address(sg);
3531                         len  = sg_dma_len(sg);
3532                         total_len += len;
3533                         curr_sg->address = cpu_to_le64(addr64);
3534                         curr_sg->length = cpu_to_le32(len);
3535                         curr_sg->reserved[0] = 0;
3536                         curr_sg->reserved[1] = 0;
3537                         curr_sg->reserved[2] = 0;
3538                         curr_sg->chain_indicator = 0;
3539                         curr_sg++;
3540                 }
3541 
3542                 switch (cmd->sc_data_direction) {
3543                 case DMA_TO_DEVICE:
3544                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3545                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
3546                         break;
3547                 case DMA_FROM_DEVICE:
3548                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3549                         cp->direction |= IOACCEL2_DIR_DATA_IN;
3550                         break;
3551                 case DMA_NONE:
3552                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3553                         cp->direction |= IOACCEL2_DIR_NO_DATA;
3554                         break;
3555                 default:
3556                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3557                                 cmd->sc_data_direction);
3558                         BUG();
3559                         break;
3560                 }
3561         } else {
3562                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3563                 cp->direction |= IOACCEL2_DIR_NO_DATA;
3564         }
3565 
3566         /* Set encryption parameters, if necessary */
3567         set_encrypt_ioaccel2(h, c, cp);
3568 
3569         cp->scsi_nexus = ioaccel_handle;
3570         cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3571                                 DIRECT_LOOKUP_BIT;
3572         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3573 
3574         /* fill in sg elements */
3575         cp->sg_count = (u8) use_sg;
3576 
3577         cp->data_len = cpu_to_le32(total_len);
3578         cp->err_ptr = cpu_to_le64(c->busaddr +
3579                         offsetof(struct io_accel2_cmd, error_data));
3580         cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
3581 
3582         enqueue_cmd_and_start_io(h, c);
3583         return 0;
3584 }
3585 
3586 /*
3587  * Queue a command to the correct I/O accelerator path.
3588  */
3589 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3590         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3591         u8 *scsi3addr)
3592 {
3593         if (h->transMethod & CFGTBL_Trans_io_accel1)
3594                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3595                                                 cdb, cdb_len, scsi3addr);
3596         else
3597                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3598                                                 cdb, cdb_len, scsi3addr);
3599 }
3600 
3601 static void raid_map_helper(struct raid_map_data *map,
3602                 int offload_to_mirror, u32 *map_index, u32 *current_group)
3603 {
3604         if (offload_to_mirror == 0)  {
3605                 /* use physical disk in the first mirrored group. */
3606                 *map_index %= map->data_disks_per_row;
3607                 return;
3608         }
3609         do {
3610                 /* determine mirror group that *map_index indicates */
3611                 *current_group = *map_index / map->data_disks_per_row;
3612                 if (offload_to_mirror == *current_group)
3613                         continue;
3614                 if (*current_group < (map->layout_map_count - 1)) {
3615                         /* select map index from next group */
3616                         *map_index += map->data_disks_per_row;
3617                         (*current_group)++;
3618                 } else {
3619                         /* select map index from first group */
3620                         *map_index %= map->data_disks_per_row;
3621                         *current_group = 0;
3622                 }
3623         } while (offload_to_mirror != *current_group);
3624 }
3625 
3626 /*
3627  * Attempt to perform offload RAID mapping for a logical volume I/O.
3628  */
3629 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3630         struct CommandList *c)
3631 {
3632         struct scsi_cmnd *cmd = c->scsi_cmd;
3633         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3634         struct raid_map_data *map = &dev->raid_map;
3635         struct raid_map_disk_data *dd = &map->data[0];
3636         int is_write = 0;
3637         u32 map_index;
3638         u64 first_block, last_block;
3639         u32 block_cnt;
3640         u32 blocks_per_row;
3641         u64 first_row, last_row;
3642         u32 first_row_offset, last_row_offset;
3643         u32 first_column, last_column;
3644         u64 r0_first_row, r0_last_row;
3645         u32 r5or6_blocks_per_row;
3646         u64 r5or6_first_row, r5or6_last_row;
3647         u32 r5or6_first_row_offset, r5or6_last_row_offset;
3648         u32 r5or6_first_column, r5or6_last_column;
3649         u32 total_disks_per_row;
3650         u32 stripesize;
3651         u32 first_group, last_group, current_group;
3652         u32 map_row;
3653         u32 disk_handle;
3654         u64 disk_block;
3655         u32 disk_block_cnt;
3656         u8 cdb[16];
3657         u8 cdb_len;
3658 #if BITS_PER_LONG == 32
3659         u64 tmpdiv;
3660 #endif
3661         int offload_to_mirror;
3662 
3663         BUG_ON(!(dev->offload_config && dev->offload_enabled));
3664 
3665         /* check for valid opcode, get LBA and block count */
3666         switch (cmd->cmnd[0]) {
3667         case WRITE_6:
3668                 is_write = 1;
3669         case READ_6:
3670                 first_block =
3671                         (((u64) cmd->cmnd[2]) << 8) |
3672                         cmd->cmnd[3];
3673                 block_cnt = cmd->cmnd[4];
3674                 break;
3675         case WRITE_10:
3676                 is_write = 1;
3677         case READ_10:
3678                 first_block =
3679                         (((u64) cmd->cmnd[2]) << 24) |
3680                         (((u64) cmd->cmnd[3]) << 16) |
3681                         (((u64) cmd->cmnd[4]) << 8) |
3682                         cmd->cmnd[5];
3683                 block_cnt =
3684                         (((u32) cmd->cmnd[7]) << 8) |
3685                         cmd->cmnd[8];
3686                 break;
3687         case WRITE_12:
3688                 is_write = 1;
3689         case READ_12:
3690                 first_block =
3691                         (((u64) cmd->cmnd[2]) << 24) |
3692                         (((u64) cmd->cmnd[3]) << 16) |
3693                         (((u64) cmd->cmnd[4]) << 8) |
3694                         cmd->cmnd[5];
3695                 block_cnt =
3696                         (((u32) cmd->cmnd[6]) << 24) |
3697                         (((u32) cmd->cmnd[7]) << 16) |
3698                         (((u32) cmd->cmnd[8]) << 8) |
3699                 cmd->cmnd[9];
3700                 break;
3701         case WRITE_16:
3702                 is_write = 1;
3703         case READ_16:
3704                 first_block =
3705                         (((u64) cmd->cmnd[2]) << 56) |
3706                         (((u64) cmd->cmnd[3]) << 48) |
3707                         (((u64) cmd->cmnd[4]) << 40) |
3708                         (((u64) cmd->cmnd[5]) << 32) |
3709                         (((u64) cmd->cmnd[6]) << 24) |
3710                         (((u64) cmd->cmnd[7]) << 16) |
3711                         (((u64) cmd->cmnd[8]) << 8) |
3712                         cmd->cmnd[9];
3713                 block_cnt =
3714                         (((u32) cmd->cmnd[10]) << 24) |
3715                         (((u32) cmd->cmnd[11]) << 16) |
3716                         (((u32) cmd->cmnd[12]) << 8) |
3717                         cmd->cmnd[13];
3718                 break;
3719         default:
3720                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3721         }
3722         BUG_ON(block_cnt == 0);
3723         last_block = first_block + block_cnt - 1;
3724 
3725         /* check for write to non-RAID-0 */
3726         if (is_write && dev->raid_level != 0)
3727                 return IO_ACCEL_INELIGIBLE;
3728 
3729         /* check for invalid block or wraparound */
3730         if (last_block >= map->volume_blk_cnt || last_block < first_block)
3731                 return IO_ACCEL_INELIGIBLE;
3732 
3733         /* calculate stripe information for the request */
3734         blocks_per_row = map->data_disks_per_row * map->strip_size;
3735 #if BITS_PER_LONG == 32
3736         tmpdiv = first_block;
3737         (void) do_div(tmpdiv, blocks_per_row);
3738         first_row = tmpdiv;
3739         tmpdiv = last_block;
3740         (void) do_div(tmpdiv, blocks_per_row);
3741         last_row = tmpdiv;
3742         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3743         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3744         tmpdiv = first_row_offset;
3745         (void) do_div(tmpdiv,  map->strip_size);
3746         first_column = tmpdiv;
3747         tmpdiv = last_row_offset;
3748         (void) do_div(tmpdiv, map->strip_size);
3749         last_column = tmpdiv;
3750 #else
3751         first_row = first_block / blocks_per_row;
3752         last_row = last_block / blocks_per_row;
3753         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3754         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3755         first_column = first_row_offset / map->strip_size;
3756         last_column = last_row_offset / map->strip_size;
3757 #endif
3758 
3759         /* if this isn't a single row/column then give to the controller */
3760         if ((first_row != last_row) || (first_column != last_column))
3761                 return IO_ACCEL_INELIGIBLE;
3762 
3763         /* proceeding with driver mapping */
3764         total_disks_per_row = map->data_disks_per_row +
3765                                 map->metadata_disks_per_row;
3766         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3767                                 map->row_cnt;
3768         map_index = (map_row * total_disks_per_row) + first_column;
3769 
3770         switch (dev->raid_level) {
3771         case HPSA_RAID_0:
3772                 break; /* nothing special to do */
3773         case HPSA_RAID_1:
3774                 /* Handles load balance across RAID 1 members.
3775                  * (2-drive R1 and R10 with even # of drives.)
3776                  * Appropriate for SSDs, not optimal for HDDs
3777                  */
3778                 BUG_ON(map->layout_map_count != 2);
3779                 if (dev->offload_to_mirror)
3780                         map_index += map->data_disks_per_row;
3781                 dev->offload_to_mirror = !dev->offload_to_mirror;
3782                 break;
3783         case HPSA_RAID_ADM:
3784                 /* Handles N-way mirrors  (R1-ADM)
3785                  * and R10 with # of drives divisible by 3.)
3786                  */
3787                 BUG_ON(map->layout_map_count != 3);
3788 
3789                 offload_to_mirror = dev->offload_to_mirror;
3790                 raid_map_helper(map, offload_to_mirror,
3791                                 &map_index, &current_group);
3792                 /* set mirror group to use next time */
3793                 offload_to_mirror =
3794                         (offload_to_mirror >= map->layout_map_count - 1)
3795                         ? 0 : offload_to_mirror + 1;
3796                 /* FIXME: remove after debug/dev */
3797                 BUG_ON(offload_to_mirror >= map->layout_map_count);
3798                 dev_warn(&h->pdev->dev,
3799                         "DEBUG: Using physical disk map index %d from mirror group %d\n",
3800                         map_index, offload_to_mirror);
3801                 dev->offload_to_mirror = offload_to_mirror;
3802                 /* Avoid direct use of dev->offload_to_mirror within this
3803                  * function since multiple threads might simultaneously
3804                  * increment it beyond the range of dev->layout_map_count -1.
3805                  */
3806                 break;
3807         case HPSA_RAID_5:
3808         case HPSA_RAID_6:
3809                 if (map->layout_map_count <= 1)
3810                         break;
3811 
3812                 /* Verify first and last block are in same RAID group */
3813                 r5or6_blocks_per_row =
3814                         map->strip_size * map->data_disks_per_row;
3815                 BUG_ON(r5or6_blocks_per_row == 0);
3816                 stripesize = r5or6_blocks_per_row * map->layout_map_count;
3817 #if BITS_PER_LONG == 32
3818                 tmpdiv = first_block;
3819                 first_group = do_div(tmpdiv, stripesize);
3820                 tmpdiv = first_group;
3821                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3822                 first_group = tmpdiv;
3823                 tmpdiv = last_block;
3824                 last_group = do_div(tmpdiv, stripesize);
3825                 tmpdiv = last_group;
3826                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3827                 last_group = tmpdiv;
3828 #else
3829                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3830                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3831 #endif
3832                 if (first_group != last_group)
3833                         return IO_ACCEL_INELIGIBLE;
3834 
3835                 /* Verify request is in a single row of RAID 5/6 */
3836 #if BITS_PER_LONG == 32
3837                 tmpdiv = first_block;
3838                 (void) do_div(tmpdiv, stripesize);
3839                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3840                 tmpdiv = last_block;
3841                 (void) do_div(tmpdiv, stripesize);
3842                 r5or6_last_row = r0_last_row = tmpdiv;
3843 #else
3844                 first_row = r5or6_first_row = r0_first_row =
3845                                                 first_block / stripesize;
3846                 r5or6_last_row = r0_last_row = last_block / stripesize;
3847 #endif
3848                 if (r5or6_first_row != r5or6_last_row)
3849                         return IO_ACCEL_INELIGIBLE;
3850 
3851 
3852                 /* Verify request is in a single column */
3853 #if BITS_PER_LONG == 32
3854                 tmpdiv = first_block;
3855                 first_row_offset = do_div(tmpdiv, stripesize);
3856                 tmpdiv = first_row_offset;
3857                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3858                 r5or6_first_row_offset = first_row_offset;
3859                 tmpdiv = last_block;
3860                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3861                 tmpdiv = r5or6_last_row_offset;
3862                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3863                 tmpdiv = r5or6_first_row_offset;
3864                 (void) do_div(tmpdiv, map->strip_size);
3865                 first_column = r5or6_first_column = tmpdiv;
3866                 tmpdiv = r5or6_last_row_offset;
3867                 (void) do_div(tmpdiv, map->strip_size);
3868                 r5or6_last_column = tmpdiv;
3869 #else
3870                 first_row_offset = r5or6_first_row_offset =
3871                         (u32)((first_block % stripesize) %
3872                                                 r5or6_blocks_per_row);
3873 
3874                 r5or6_last_row_offset =
3875                         (u32)((last_block % stripesize) %
3876                                                 r5or6_blocks_per_row);
3877 
3878                 first_column = r5or6_first_column =
3879                         r5or6_first_row_offset / map->strip_size;
3880                 r5or6_last_column =
3881                         r5or6_last_row_offset / map->strip_size;
3882 #endif
3883                 if (r5or6_first_column != r5or6_last_column)
3884                         return IO_ACCEL_INELIGIBLE;
3885 
3886                 /* Request is eligible */
3887                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3888                         map->row_cnt;
3889 
3890                 map_index = (first_group *
3891                         (map->row_cnt * total_disks_per_row)) +
3892                         (map_row * total_disks_per_row) + first_column;
3893                 break;
3894         default:
3895                 return IO_ACCEL_INELIGIBLE;
3896         }
3897 
3898         disk_handle = dd[map_index].ioaccel_handle;
3899         disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3900                         (first_row_offset - (first_column * map->strip_size));
3901         disk_block_cnt = block_cnt;
3902 
3903         /* handle differing logical/physical block sizes */
3904         if (map->phys_blk_shift) {
3905                 disk_block <<= map->phys_blk_shift;
3906                 disk_block_cnt <<= map->phys_blk_shift;
3907         }
3908         BUG_ON(disk_block_cnt > 0xffff);
3909 
3910         /* build the new CDB for the physical disk I/O */
3911         if (disk_block > 0xffffffff) {
3912                 cdb[0] = is_write ? WRITE_16 : READ_16;
3913                 cdb[1] = 0;
3914                 cdb[2] = (u8) (disk_block >> 56);
3915                 cdb[3] = (u8) (disk_block >> 48);
3916                 cdb[4] = (u8) (disk_block >> 40);
3917                 cdb[5] = (u8) (disk_block >> 32);
3918                 cdb[6] = (u8) (disk_block >> 24);
3919                 cdb[7] = (u8) (disk_block >> 16);
3920                 cdb[8] = (u8) (disk_block >> 8);
3921                 cdb[9] = (u8) (disk_block);
3922                 cdb[10] = (u8) (disk_block_cnt >> 24);
3923                 cdb[11] = (u8) (disk_block_cnt >> 16);
3924                 cdb[12] = (u8) (disk_block_cnt >> 8);
3925                 cdb[13] = (u8) (disk_block_cnt);
3926                 cdb[14] = 0;
3927                 cdb[15] = 0;
3928                 cdb_len = 16;
3929         } else {
3930                 cdb[0] = is_write ? WRITE_10 : READ_10;
3931                 cdb[1] = 0;
3932                 cdb[2] = (u8) (disk_block >> 24);
3933                 cdb[3] = (u8) (disk_block >> 16);
3934                 cdb[4] = (u8) (disk_block >> 8);
3935                 cdb[5] = (u8) (disk_block);
3936                 cdb[6] = 0;
3937                 cdb[7] = (u8) (disk_block_cnt >> 8);
3938                 cdb[8] = (u8) (disk_block_cnt);
3939                 cdb[9] = 0;
3940                 cdb_len = 10;
3941         }
3942         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3943                                                 dev->scsi3addr);
3944 }
3945 
3946 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3947         void (*done)(struct scsi_cmnd *))
3948 {
3949         struct ctlr_info *h;
3950         struct hpsa_scsi_dev_t *dev;
3951         unsigned char scsi3addr[8];
3952         struct CommandList *c;
3953         unsigned long flags;
3954         int rc = 0;
3955 
3956         /* Get the ptr to our adapter structure out of cmd->host. */
3957         h = sdev_to_hba(cmd->device);
3958         dev = cmd->device->hostdata;
3959         if (!dev) {
3960                 cmd->result = DID_NO_CONNECT << 16;
3961                 done(cmd);
3962                 return 0;
3963         }
3964         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3965 
3966         spin_lock_irqsave(&h->lock, flags);
3967         if (unlikely(h->lockup_detected)) {
3968                 spin_unlock_irqrestore(&h->lock, flags);
3969                 cmd->result = DID_ERROR << 16;
3970                 done(cmd);
3971                 return 0;
3972         }
3973         spin_unlock_irqrestore(&h->lock, flags);
3974         c = cmd_alloc(h);
3975         if (c == NULL) {                        /* trouble... */
3976                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3977                 return SCSI_MLQUEUE_HOST_BUSY;
3978         }
3979 
3980         /* Fill in the command list header */
3981 
3982         cmd->scsi_done = done;    /* save this for use by completion code */
3983 
3984         /* save c in case we have to abort it  */
3985         cmd->host_scribble = (unsigned char *) c;
3986 
3987         c->cmd_type = CMD_SCSI;
3988         c->scsi_cmd = cmd;
3989 
3990         /* Call alternate submit routine for I/O accelerated commands.
3991          * Retries always go down the normal I/O path.
3992          */
3993         if (likely(cmd->retries == 0 &&
3994                 cmd->request->cmd_type == REQ_TYPE_FS &&
3995                 h->acciopath_status)) {
3996                 if (dev->offload_enabled) {
3997                         rc = hpsa_scsi_ioaccel_raid_map(h, c);
3998                         if (rc == 0)
3999                                 return 0; /* Sent on ioaccel path */
4000                         if (rc < 0) {   /* scsi_dma_map failed. */
4001                                 cmd_free(h, c);
4002                                 return SCSI_MLQUEUE_HOST_BUSY;
4003                         }
4004                 } else if (dev->ioaccel_handle) {
4005                         rc = hpsa_scsi_ioaccel_direct_map(h, c);
4006                         if (rc == 0)
4007                                 return 0; /* Sent on direct map path */
4008                         if (rc < 0) {   /* scsi_dma_map failed. */
4009                                 cmd_free(h, c);
4010                                 return SCSI_MLQUEUE_HOST_BUSY;
4011                         }
4012                 }
4013         }
4014 
4015         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4016         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4017         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4018         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4019 
4020         /* Fill in the request block... */
4021 
4022         c->Request.Timeout = 0;
4023         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4024         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4025         c->Request.CDBLen = cmd->cmd_len;
4026         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4027         c->Request.Type.Type = TYPE_CMD;
4028         c->Request.Type.Attribute = ATTR_SIMPLE;
4029         switch (cmd->sc_data_direction) {
4030         case DMA_TO_DEVICE:
4031                 c->Request.Type.Direction = XFER_WRITE;
4032                 break;
4033         case DMA_FROM_DEVICE:
4034                 c->Request.Type.Direction = XFER_READ;
4035                 break;
4036         case DMA_NONE:
4037                 c->Request.Type.Direction = XFER_NONE;
4038                 break;
4039         case DMA_BIDIRECTIONAL:
4040                 /* This can happen if a buggy application does a scsi passthru
4041                  * and sets both inlen and outlen to non-zero. ( see
4042                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4043                  */
4044 
4045                 c->Request.Type.Direction = XFER_RSVD;
4046                 /* This is technically wrong, and hpsa controllers should
4047                  * reject it with CMD_INVALID, which is the most correct
4048                  * response, but non-fibre backends appear to let it
4049                  * slide by, and give the same results as if this field
4050                  * were set correctly.  Either way is acceptable for
4051                  * our purposes here.
4052                  */
4053 
4054                 break;
4055 
4056         default:
4057                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4058                         cmd->sc_data_direction);
4059                 BUG();
4060                 break;
4061         }
4062 
4063         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4064                 cmd_free(h, c);
4065                 return SCSI_MLQUEUE_HOST_BUSY;
4066         }
4067         enqueue_cmd_and_start_io(h, c);
4068         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4069         return 0;
4070 }
4071 
4072 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4073 
4074 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4075 {
4076         unsigned long flags;
4077 
4078         /*
4079          * Don't let rescans be initiated on a controller known
4080          * to be locked up.  If the controller locks up *during*
4081          * a rescan, that thread is probably hosed, but at least
4082          * we can prevent new rescan threads from piling up on a
4083          * locked up controller.
4084          */
4085         spin_lock_irqsave(&h->lock, flags);
4086         if (unlikely(h->lockup_detected)) {
4087                 spin_unlock_irqrestore(&h->lock, flags);
4088                 spin_lock_irqsave(&h->scan_lock, flags);
4089                 h->scan_finished = 1;
4090                 wake_up_all(&h->scan_wait_queue);
4091                 spin_unlock_irqrestore(&h->scan_lock, flags);
4092                 return 1;
4093         }
4094         spin_unlock_irqrestore(&h->lock, flags);
4095         return 0;
4096 }
4097 
4098 static void hpsa_scan_start(struct Scsi_Host *sh)
4099 {
4100         struct ctlr_info *h = shost_to_hba(sh);
4101         unsigned long flags;
4102 
4103         if (do_not_scan_if_controller_locked_up(h))
4104                 return;
4105 
4106         /* wait until any scan already in progress is finished. */
4107         while (1) {
4108                 spin_lock_irqsave(&h->scan_lock, flags);
4109                 if (h->scan_finished)
4110                         break;
4111                 spin_unlock_irqrestore(&h->scan_lock, flags);
4112                 wait_event(h->scan_wait_queue, h->scan_finished);
4113                 /* Note: We don't need to worry about a race between this
4114                  * thread and driver unload because the midlayer will
4115                  * have incremented the reference count, so unload won't
4116                  * happen if we're in here.
4117                  */
4118         }
4119         h->scan_finished = 0; /* mark scan as in progress */
4120         spin_unlock_irqrestore(&h->scan_lock, flags);
4121 
4122         if (do_not_scan_if_controller_locked_up(h))
4123                 return;
4124 
4125         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4126 
4127         spin_lock_irqsave(&h->scan_lock, flags);
4128         h->scan_finished = 1; /* mark scan as finished. */
4129         wake_up_all(&h->scan_wait_queue);
4130         spin_unlock_irqrestore(&h->scan_lock, flags);
4131 }
4132 
4133 static int hpsa_scan_finished(struct Scsi_Host *sh,
4134         unsigned long elapsed_time)
4135 {
4136         struct ctlr_info *h = shost_to_hba(sh);
4137         unsigned long flags;
4138         int finished;
4139 
4140         spin_lock_irqsave(&h->scan_lock, flags);
4141         finished = h->scan_finished;
4142         spin_unlock_irqrestore(&h->scan_lock, flags);
4143         return finished;
4144 }
4145 
4146 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4147         int qdepth, int reason)
4148 {
4149         struct ctlr_info *h = sdev_to_hba(sdev);
4150 
4151         if (reason != SCSI_QDEPTH_DEFAULT)
4152                 return -ENOTSUPP;
4153 
4154         if (qdepth < 1)
4155                 qdepth = 1;
4156         else
4157                 if (qdepth > h->nr_cmds)
4158                         qdepth = h->nr_cmds;
4159         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4160         return sdev->queue_depth;
4161 }
4162 
4163 static void hpsa_unregister_scsi(struct ctlr_info *h)
4164 {
4165         /* we are being forcibly unloaded, and may not refuse. */
4166         scsi_remove_host(h->scsi_host);
4167         scsi_host_put(h->scsi_host);
4168         h->scsi_host = NULL;
4169 }
4170 
4171 static int hpsa_register_scsi(struct ctlr_info *h)
4172 {
4173         struct Scsi_Host *sh;
4174         int error;
4175 
4176         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4177         if (sh == NULL)
4178                 goto fail;
4179 
4180         sh->io_port = 0;
4181         sh->n_io_port = 0;
4182         sh->this_id = -1;
4183         sh->max_channel = 3;
4184         sh->max_cmd_len = MAX_COMMAND_SIZE;
4185         sh->max_lun = HPSA_MAX_LUN;
4186         sh->max_id = HPSA_MAX_LUN;
4187         sh->can_queue = h->nr_cmds;
4188         if (h->hba_mode_enabled)
4189                 sh->cmd_per_lun = 7;
4190         else
4191                 sh->cmd_per_lun = h->nr_cmds;
4192         sh->sg_tablesize = h->maxsgentries;
4193         h->scsi_host = sh;
4194         sh->hostdata[0] = (unsigned long) h;
4195         sh->irq = h->intr[h->intr_mode];
4196         sh->unique_id = sh->irq;
4197         error = scsi_add_host(sh, &h->pdev->dev);
4198         if (error)
4199                 goto fail_host_put;
4200         scsi_scan_host(sh);
4201         return 0;
4202 
4203  fail_host_put:
4204         dev_err(&h->pdev->dev, "%s: scsi_add_host"
4205                 " failed for controller %d\n", __func__, h->ctlr);
4206         scsi_host_put(sh);
4207         return error;
4208  fail:
4209         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4210                 " failed for controller %d\n", __func__, h->ctlr);
4211         return -ENOMEM;
4212 }
4213 
4214 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4215         unsigned char lunaddr[])
4216 {
4217         int rc;
4218         int count = 0;
4219         int waittime = 1; /* seconds */
4220         struct CommandList *c;
4221 
4222         c = cmd_special_alloc(h);
4223         if (!c) {
4224                 dev_warn(&h->pdev->dev, "out of memory in "
4225                         "wait_for_device_to_become_ready.\n");
4226                 return IO_ERROR;
4227         }
4228 
4229         /* Send test unit ready until device ready, or give up. */
4230         while (count < HPSA_TUR_RETRY_LIMIT) {
4231 
4232                 /* Wait for a bit.  do this first, because if we send
4233                  * the TUR right away, the reset will just abort it.
4234                  */
4235                 msleep(1000 * waittime);
4236                 count++;
4237                 rc = 0; /* Device ready. */
4238 
4239                 /* Increase wait time with each try, up to a point. */
4240                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4241                         waittime = waittime * 2;
4242 
4243                 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4244                 (void) fill_cmd(c, TEST_UNIT_READY, h,
4245                                 NULL, 0, 0, lunaddr, TYPE_CMD);
4246                 hpsa_scsi_do_simple_cmd_core(h, c);
4247                 /* no unmap needed here because no data xfer. */
4248 
4249                 if (c->err_info->CommandStatus == CMD_SUCCESS)
4250                         break;
4251 
4252                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4253                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4254                         (c->err_info->SenseInfo[2] == NO_SENSE ||
4255                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4256                         break;
4257 
4258                 dev_warn(&h->pdev->dev, "waiting %d secs "
4259                         "for device to become ready.\n", waittime);
4260                 rc = 1; /* device not ready. */
4261         }
4262 
4263         if (rc)
4264                 dev_warn(&h->pdev->dev, "giving up on device.\n");
4265         else
4266                 dev_warn(&h->pdev->dev, "device is ready.\n");
4267 
4268         cmd_special_free(h, c);
4269         return rc;
4270 }
4271 
4272 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4273  * complaining.  Doing a host- or bus-reset can't do anything good here.
4274  */
4275 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4276 {
4277         int rc;
4278         struct ctlr_info *h;
4279         struct hpsa_scsi_dev_t *dev;
4280 
4281         /* find the controller to which the command to be aborted was sent */
4282         h = sdev_to_hba(scsicmd->device);
4283         if (h == NULL) /* paranoia */
4284                 return FAILED;
4285         dev = scsicmd->device->hostdata;
4286         if (!dev) {
4287                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4288                         "device lookup failed.\n");
4289                 return FAILED;
4290         }
4291         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4292                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4293         /* send a reset to the SCSI LUN which the command was sent to */
4294         rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4295         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4296                 return SUCCESS;
4297 
4298         dev_warn(&h->pdev->dev, "resetting device failed.\n");
4299         return FAILED;
4300 }
4301 
4302 static void swizzle_abort_tag(u8 *tag)
4303 {
4304         u8 original_tag[8];
4305 
4306         memcpy(original_tag, tag, 8);
4307         tag[0] = original_tag[3];
4308         tag[1] = original_tag[2];
4309         tag[2] = original_tag[1];
4310         tag[3] = original_tag[0];
4311         tag[4] = original_tag[7];
4312         tag[5] = original_tag[6];
4313         tag[6] = original_tag[5];
4314         tag[7] = original_tag[4];
4315 }
4316 
4317 static void hpsa_get_tag(struct ctlr_info *h,
4318         struct CommandList *c, u32 *taglower, u32 *tagupper)
4319 {
4320         if (c->cmd_type == CMD_IOACCEL1) {
4321                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4322                         &h->ioaccel_cmd_pool[c->cmdindex];
4323                 *tagupper = cm1->Tag.upper;
4324                 *taglower = cm1->Tag.lower;
4325                 return;
4326         }
4327         if (c->cmd_type == CMD_IOACCEL2) {
4328                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4329                         &h->ioaccel2_cmd_pool[c->cmdindex];
4330                 /* upper tag not used in ioaccel2 mode */
4331                 memset(tagupper, 0, sizeof(*tagupper));
4332                 *taglower = cm2->Tag;
4333                 return;
4334         }
4335         *tagupper = c->Header.Tag.upper;
4336         *taglower = c->Header.Tag.lower;
4337 }
4338 
4339 
4340 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4341         struct CommandList *abort, int swizzle)
4342 {
4343         int rc = IO_OK;
4344         struct CommandList *c;
4345         struct ErrorInfo *ei;
4346         u32 tagupper, taglower;
4347 
4348         c = cmd_special_alloc(h);
4349         if (c == NULL) {        /* trouble... */
4350                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4351                 return -ENOMEM;
4352         }
4353 
4354         /* fill_cmd can't fail here, no buffer to map */
4355         (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4356                 0, 0, scsi3addr, TYPE_MSG);
4357         if (swizzle)
4358                 swizzle_abort_tag(&c->Request.CDB[4]);
4359         hpsa_scsi_do_simple_cmd_core(h, c);
4360         hpsa_get_tag(h, abort, &taglower, &tagupper);
4361         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4362                 __func__, tagupper, taglower);
4363         /* no unmap needed here because no data xfer. */
4364 
4365         ei = c->err_info;
4366         switch (ei->CommandStatus) {
4367         case CMD_SUCCESS:
4368                 break;
4369         case CMD_UNABORTABLE: /* Very common, don't make noise. */
4370                 rc = -1;
4371                 break;
4372         default:
4373                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4374                         __func__, tagupper, taglower);
4375                 hpsa_scsi_interpret_error(h, c);
4376                 rc = -1;
4377                 break;
4378         }
4379         cmd_special_free(h, c);
4380         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4381                 __func__, tagupper, taglower);
4382         return rc;
4383 }
4384 
4385 /*
4386  * hpsa_find_cmd_in_queue
4387  *
4388  * Used to determine whether a command (find) is still present
4389  * in queue_head.   Optionally excludes the last element of queue_head.
4390  *
4391  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
4392  * not yet been submitted, and so can be aborted by the driver without
4393  * sending an abort to the hardware.
4394  *
4395  * Returns pointer to command if found in queue, NULL otherwise.
4396  */
4397 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4398                         struct scsi_cmnd *find, struct list_head *queue_head)
4399 {
4400         unsigned long flags;
4401         struct CommandList *c = NULL;   /* ptr into cmpQ */
4402 
4403         if (!find)
4404                 return 0;
4405         spin_lock_irqsave(&h->lock, flags);
4406         list_for_each_entry(c, queue_head, list) {
4407                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4408                         continue;
4409                 if (c->scsi_cmd == find) {
4410                         spin_unlock_irqrestore(&h->lock, flags);
4411                         return c;
4412                 }
4413         }
4414         spin_unlock_irqrestore(&h->lock, flags);
4415         return NULL;
4416 }
4417 
4418 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4419                                         u8 *tag, struct list_head *queue_head)
4420 {
4421         unsigned long flags;
4422         struct CommandList *c;
4423 
4424         spin_lock_irqsave(&h->lock, flags);
4425         list_for_each_entry(c, queue_head, list) {
4426                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
4427                         continue;
4428                 spin_unlock_irqrestore(&h->lock, flags);
4429                 return c;
4430         }
4431         spin_unlock_irqrestore(&h->lock, flags);
4432         return NULL;
4433 }
4434 
4435 /* ioaccel2 path firmware cannot handle abort task requests.
4436  * Change abort requests to physical target reset, and send to the
4437  * address of the physical disk used for the ioaccel 2 command.
4438  * Return 0 on success (IO_OK)
4439  *       -1 on failure
4440  */
4441 
4442 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4443         unsigned char *scsi3addr, struct CommandList *abort)
4444 {
4445         int rc = IO_OK;
4446         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4447         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4448         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4449         unsigned char *psa = &phys_scsi3addr[0];
4450 
4451         /* Get a pointer to the hpsa logical device. */
4452         scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4453         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4454         if (dev == NULL) {
4455                 dev_warn(&h->pdev->dev,
4456                         "Cannot abort: no device pointer for command.\n");
4457                         return -1; /* not abortable */
4458         }
4459 
4460         if (h->raid_offload_debug > 0)
4461                 dev_info(&h->pdev->dev,
4462                         "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4463                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4464                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4465                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4466 
4467         if (!dev->offload_enabled) {
4468                 dev_warn(&h->pdev->dev,
4469                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4470                 return -1; /* not abortable */
4471         }
4472 
4473         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4474         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4475                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4476                 return -1; /* not abortable */
4477         }
4478 
4479         /* send the reset */
4480         if (h->raid_offload_debug > 0)
4481                 dev_info(&h->pdev->dev,
4482                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4483                         psa[0], psa[1], psa[2], psa[3],
4484                         psa[4], psa[5], psa[6], psa[7]);
4485         rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4486         if (rc != 0) {
4487                 dev_warn(&h->pdev->dev,
4488                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4489                         psa[0], psa[1], psa[2], psa[3],
4490                         psa[4], psa[5], psa[6], psa[7]);
4491                 return rc; /* failed to reset */
4492         }
4493 
4494         /* wait for device to recover */
4495         if (wait_for_device_to_become_ready(h, psa) != 0) {
4496                 dev_warn(&h->pdev->dev,
4497                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4498                         psa[0], psa[1], psa[2], psa[3],
4499                         psa[4], psa[5], psa[6], psa[7]);
4500                 return -1;  /* failed to recover */
4501         }
4502 
4503         /* device recovered */
4504         dev_info(&h->pdev->dev,
4505                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4506                 psa[0], psa[1], psa[2], psa[3],
4507                 psa[4], psa[5], psa[6], psa[7]);
4508 
4509         return rc; /* success */
4510 }
4511 
4512 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
4513  * tell which kind we're dealing with, so we send the abort both ways.  There
4514  * shouldn't be any collisions between swizzled and unswizzled tags due to the
4515  * way we construct our tags but we check anyway in case the assumptions which
4516  * make this true someday become false.
4517  */
4518 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4519         unsigned char *scsi3addr, struct CommandList *abort)
4520 {
4521         u8 swizzled_tag[8];
4522         struct CommandList *c;
4523         int rc = 0, rc2 = 0;
4524 
4525         /* ioccelerator mode 2 commands should be aborted via the
4526          * accelerated path, since RAID path is unaware of these commands,
4527          * but underlying firmware can't handle abort TMF.
4528          * Change abort to physical device reset.
4529          */
4530         if (abort->cmd_type == CMD_IOACCEL2)
4531                 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4532 
4533         /* we do not expect to find the swizzled tag in our queue, but
4534          * check anyway just to be sure the assumptions which make this
4535          * the case haven't become wrong.
4536          */
4537         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4538         swizzle_abort_tag(swizzled_tag);
4539         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4540         if (c != NULL) {
4541                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4542                 return hpsa_send_abort(h, scsi3addr, abort, 0);
4543         }
4544         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4545 
4546         /* if the command is still in our queue, we can't conclude that it was
4547          * aborted (it might have just completed normally) but in any case
4548          * we don't need to try to abort it another way.
4549          */
4550         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4551         if (c)
4552                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4553         return rc && rc2;
4554 }
4555 
4556 /* Send an abort for the specified command.
4557  *      If the device and controller support it,
4558  *              send a task abort request.
4559  */
4560 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4561 {
4562 
4563         int i, rc;
4564         struct ctlr_info *h;
4565         struct hpsa_scsi_dev_t *dev;
4566         struct CommandList *abort; /* pointer to command to be aborted */
4567         struct CommandList *found;
4568         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
4569         char msg[256];          /* For debug messaging. */
4570         int ml = 0;
4571         u32 tagupper, taglower;
4572 
4573         /* Find the controller of the command to be aborted */
4574         h = sdev_to_hba(sc->device);
4575         if (WARN(h == NULL,
4576                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4577                 return FAILED;
4578 
4579         /* Check that controller supports some kind of task abort */
4580         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4581                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4582                 return FAILED;
4583 
4584         memset(msg, 0, sizeof(msg));
4585         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4586                 h->scsi_host->host_no, sc->device->channel,
4587                 sc->device->id, sc->device->lun);
4588 
4589         /* Find the device of the command to be aborted */
4590         dev = sc->device->hostdata;
4591         if (!dev) {
4592                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4593                                 msg);
4594                 return FAILED;
4595         }
4596 
4597         /* Get SCSI command to be aborted */
4598         abort = (struct CommandList *) sc->host_scribble;
4599         if (abort == NULL) {
4600                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4601                                 msg);
4602                 return FAILED;
4603         }
4604         hpsa_get_tag(h, abort, &taglower, &tagupper);
4605         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4606         as  = (struct scsi_cmnd *) abort->scsi_cmd;
4607         if (as != NULL)
4608                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4609                         as->cmnd[0], as->serial_number);
4610         dev_dbg(&h->pdev->dev, "%s\n", msg);
4611         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4612                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4613 
4614         /* Search reqQ to See if command is queued but not submitted,
4615          * if so, complete the command with aborted status and remove
4616          * it from the reqQ.
4617          */
4618         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4619         if (found) {
4620                 found->err_info->CommandStatus = CMD_ABORTED;
4621                 finish_cmd(found);
4622                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4623                                 msg);
4624                 return SUCCESS;
4625         }
4626 
4627         /* not in reqQ, if also not in cmpQ, must have already completed */
4628         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4629         if (!found)  {
4630                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4631                                 msg);
4632                 return SUCCESS;
4633         }
4634 
4635         /*
4636          * Command is in flight, or possibly already completed
4637          * by the firmware (but not to the scsi mid layer) but we can't
4638          * distinguish which.  Send the abort down.
4639          */
4640         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4641         if (rc != 0) {
4642                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4643                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4644                         h->scsi_host->host_no,
4645                         dev->bus, dev->target, dev->lun);
4646                 return FAILED;
4647         }
4648         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4649 
4650         /* If the abort(s) above completed and actually aborted the
4651          * command, then the command to be aborted should already be
4652          * completed.  If not, wait around a bit more to see if they
4653          * manage to complete normally.
4654          */
4655 #define ABORT_COMPLETE_WAIT_SECS 30
4656         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4657                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4658                 if (!found)
4659                         return SUCCESS;
4660                 msleep(100);
4661         }
4662         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4663                 msg, ABORT_COMPLETE_WAIT_SECS);
4664         return FAILED;
4665 }
4666 
4667 
4668 /*
4669  * For operations that cannot sleep, a command block is allocated at init,
4670  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4671  * which ones are free or in use.  Lock must be held when calling this.
4672  * cmd_free() is the complement.
4673  */
4674 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4675 {
4676         struct CommandList *c;
4677         int i;
4678         union u64bit temp64;
4679         dma_addr_t cmd_dma_handle, err_dma_handle;
4680         unsigned long flags;
4681 
4682         spin_lock_irqsave(&h->lock, flags);
4683         do {
4684                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4685                 if (i == h->nr_cmds) {
4686                         spin_unlock_irqrestore(&h->lock, flags);
4687                         return NULL;
4688                 }
4689         } while (test_and_set_bit
4690                  (i & (BITS_PER_LONG - 1),
4691                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4692         spin_unlock_irqrestore(&h->lock, flags);
4693 
4694         c = h->cmd_pool + i;
4695         memset(c, 0, sizeof(*c));
4696         cmd_dma_handle = h->cmd_pool_dhandle
4697             + i * sizeof(*c);
4698         c->err_info = h->errinfo_pool + i;
4699         memset(c->err_info, 0, sizeof(*c->err_info));
4700         err_dma_handle = h->errinfo_pool_dhandle
4701             + i * sizeof(*c->err_info);
4702 
4703         c->cmdindex = i;
4704 
4705         INIT_LIST_HEAD(&c->list);
4706         c->busaddr = (u32) cmd_dma_handle;
4707         temp64.val = (u64) err_dma_handle;
4708         c->ErrDesc.Addr.lower = temp64.val32.lower;
4709         c->ErrDesc.Addr.upper = temp64.val32.upper;
4710         c->ErrDesc.Len = sizeof(*c->err_info);
4711 
4712         c->h = h;
4713         return c;
4714 }
4715 
4716 /* For operations that can wait for kmalloc to possibly sleep,
4717  * this routine can be called. Lock need not be held to call
4718  * cmd_special_alloc. cmd_special_free() is the complement.
4719  */
4720 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4721 {
4722         struct CommandList *c;
4723         union u64bit temp64;
4724         dma_addr_t cmd_dma_handle, err_dma_handle;
4725 
4726         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4727         if (c == NULL)
4728                 return NULL;
4729         memset(c, 0, sizeof(*c));
4730 
4731         c->cmd_type = CMD_SCSI;
4732         c->cmdindex = -1;
4733 
4734         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4735                     &err_dma_handle);
4736 
4737         if (c->err_info == NULL) {
4738                 pci_free_consistent(h->pdev,
4739                         sizeof(*c), c, cmd_dma_handle);
4740                 return NULL;
4741         }
4742         memset(c->err_info, 0, sizeof(*c->err_info));
4743 
4744         INIT_LIST_HEAD(&c->list);
4745         c->busaddr = (u32) cmd_dma_handle;
4746         temp64.val = (u64) err_dma_handle;
4747         c->ErrDesc.Addr.lower = temp64.val32.lower;
4748         c->ErrDesc.Addr.upper = temp64.val32.upper;
4749         c->ErrDesc.Len = sizeof(*c->err_info);
4750 
4751         c->h = h;
4752         return c;
4753 }
4754 
4755 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4756 {
4757         int i;
4758         unsigned long flags;
4759 
4760         i = c - h->cmd_pool;
4761         spin_lock_irqsave(&h->lock, flags);
4762         clear_bit(i & (BITS_PER_LONG - 1),
4763                   h->cmd_pool_bits + (i / BITS_PER_LONG));
4764         spin_unlock_irqrestore(&h->lock, flags);
4765 }
4766 
4767 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4768 {
4769         union u64bit temp64;
4770 
4771         temp64.val32.lower = c->ErrDesc.Addr.lower;
4772         temp64.val32.upper = c->ErrDesc.Addr.upper;
4773         pci_free_consistent(h->pdev, sizeof(*c->err_info),
4774                             c->err_info, (dma_addr_t) temp64.val);
4775         pci_free_consistent(h->pdev, sizeof(*c),
4776                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4777 }
4778 
4779 #ifdef CONFIG_COMPAT
4780 
4781 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
4782 {
4783         IOCTL32_Command_struct __user *arg32 =
4784             (IOCTL32_Command_struct __user *) arg;
4785         IOCTL_Command_struct arg64;
4786         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4787         int err;
4788         u32 cp;
4789 
4790         memset(&arg64, 0, sizeof(arg64));
4791         err = 0;
4792         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4793                            sizeof(arg64.LUN_info));
4794         err |= copy_from_user(&arg64.Request, &arg32->Request,
4795                            sizeof(arg64.Request));
4796         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4797                            sizeof(arg64.error_info));
4798         err |= get_user(arg64.buf_size, &arg32->buf_size);
4799         err |= get_user(cp, &arg32->buf);
4800         arg64.buf = compat_ptr(cp);
4801         err |= copy_to_user(p, &arg64, sizeof(arg64));
4802 
4803         if (err)
4804                 return -EFAULT;
4805 
4806         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4807         if (err)
4808                 return err;
4809         err |= copy_in_user(&arg32->error_info, &p->error_info,
4810                          sizeof(arg32->error_info));
4811         if (err)
4812                 return -EFAULT;
4813         return err;
4814 }
4815 
4816 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4817         int cmd, void *arg)
4818 {
4819         BIG_IOCTL32_Command_struct __user *arg32 =
4820             (BIG_IOCTL32_Command_struct __user *) arg;
4821         BIG_IOCTL_Command_struct arg64;
4822         BIG_IOCTL_Command_struct __user *p =
4823             compat_alloc_user_space(sizeof(arg64));
4824         int err;
4825         u32 cp;
4826 
4827         memset(&arg64, 0, sizeof(arg64));
4828         err = 0;
4829         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4830                            sizeof(arg64.LUN_info));
4831         err |= copy_from_user(&arg64.Request, &arg32->Request,
4832                            sizeof(arg64.Request));
4833         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4834                            sizeof(arg64.error_info));
4835         err |= get_user(arg64.buf_size, &arg32->buf_size);
4836         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4837         err |= get_user(cp, &arg32->buf);
4838         arg64.buf = compat_ptr(cp);
4839         err |= copy_to_user(p, &arg64, sizeof(arg64));
4840 
4841         if (err)
4842                 return -EFAULT;
4843 
4844         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4845         if (err)
4846                 return err;
4847         err |= copy_in_user(&arg32->error_info, &p->error_info,
4848                          sizeof(arg32->error_info));
4849         if (err)
4850                 return -EFAULT;
4851         return err;
4852 }
4853 
4854 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4855 {
4856         switch (cmd) {
4857         case CCISS_GETPCIINFO:
4858         case CCISS_GETINTINFO:
4859         case CCISS_SETINTINFO:
4860         case CCISS_GETNODENAME:
4861         case CCISS_SETNODENAME:
4862         case CCISS_GETHEARTBEAT:
4863         case CCISS_GETBUSTYPES:
4864         case CCISS_GETFIRMVER:
4865         case CCISS_GETDRIVVER:
4866         case CCISS_REVALIDVOLS:
4867         case CCISS_DEREGDISK:
4868         case CCISS_REGNEWDISK:
4869         case CCISS_REGNEWD:
4870         case CCISS_RESCANDISK:
4871         case CCISS_GETLUNINFO:
4872                 return hpsa_ioctl(dev, cmd, arg);
4873 
4874         case CCISS_PASSTHRU32:
4875                 return hpsa_ioctl32_passthru(dev, cmd, arg);
4876         case CCISS_BIG_PASSTHRU32:
4877                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4878 
4879         default:
4880                 return -ENOIOCTLCMD;
4881         }
4882 }
4883 #endif
4884 
4885 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4886 {
4887         struct hpsa_pci_info pciinfo;
4888 
4889         if (!argp)
4890                 return -EINVAL;
4891         pciinfo.domain = pci_domain_nr(h->pdev->bus);
4892         pciinfo.bus = h->pdev->bus->number;
4893         pciinfo.dev_fn = h->pdev->devfn;
4894         pciinfo.board_id = h->board_id;
4895         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4896                 return -EFAULT;
4897         return 0;
4898 }
4899 
4900 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4901 {
4902         DriverVer_type DriverVer;
4903         unsigned char vmaj, vmin, vsubmin;
4904         int rc;
4905 
4906         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4907                 &vmaj, &vmin, &vsubmin);
4908         if (rc != 3) {
4909                 dev_info(&h->pdev->dev, "driver version string '%s' "
4910                         "unrecognized.", HPSA_DRIVER_VERSION);
4911                 vmaj = 0;
4912                 vmin = 0;
4913                 vsubmin = 0;
4914         }
4915         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4916         if (!argp)
4917                 return -EINVAL;
4918         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4919                 return -EFAULT;
4920         return 0;
4921 }
4922 
4923 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4924 {
4925         IOCTL_Command_struct iocommand;
4926         struct CommandList *c;
4927         char *buff = NULL;
4928         union u64bit temp64;
4929         int rc = 0;
4930 
4931         if (!argp)
4932                 return -EINVAL;
4933         if (!capable(CAP_SYS_RAWIO))
4934                 return -EPERM;
4935         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4936                 return -EFAULT;
4937         if ((iocommand.buf_size < 1) &&
4938             (iocommand.Request.Type.Direction != XFER_NONE)) {
4939                 return -EINVAL;
4940         }
4941         if (iocommand.buf_size > 0) {
4942                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4943                 if (buff == NULL)
4944                         return -EFAULT;
4945                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
4946                         /* Copy the data into the buffer we created */
4947                         if (copy_from_user(buff, iocommand.buf,
4948                                 iocommand.buf_size)) {
4949                                 rc = -EFAULT;
4950                                 goto out_kfree;
4951                         }
4952                 } else {
4953                         memset(buff, 0, iocommand.buf_size);
4954                 }
4955         }
4956         c = cmd_special_alloc(h);
4957         if (c == NULL) {
4958                 rc = -ENOMEM;
4959                 goto out_kfree;
4960         }
4961         /* Fill in the command type */
4962         c->cmd_type = CMD_IOCTL_PEND;
4963         /* Fill in Command Header */
4964         c->Header.ReplyQueue = 0; /* unused in simple mode */
4965         if (iocommand.buf_size > 0) {   /* buffer to fill */
4966                 c->Header.SGList = 1;
4967                 c->Header.SGTotal = 1;
4968         } else  { /* no buffers to fill */
4969                 c->Header.SGList = 0;
4970                 c->Header.SGTotal = 0;
4971         }
4972         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4973         /* use the kernel address the cmd block for tag */
4974         c->Header.Tag.lower = c->busaddr;
4975 
4976         /* Fill in Request block */
4977         memcpy(&c->Request, &iocommand.Request,
4978                 sizeof(c->Request));
4979 
4980         /* Fill in the scatter gather information */
4981         if (iocommand.buf_size > 0) {
4982                 temp64.val = pci_map_single(h->pdev, buff,
4983                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4984                 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
4985                         c->SG[0].Addr.lower = 0;
4986                         c->SG[0].Addr.upper = 0;
4987                         c->SG[0].Len = 0;
4988                         rc = -ENOMEM;
4989                         goto out;
4990                 }
4991                 c->SG[0].Addr.lower = temp64.val32.lower;
4992                 c->SG[0].Addr.upper = temp64.val32.upper;
4993                 c->SG[0].Len = iocommand.buf_size;
4994                 c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
4995         }
4996         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
4997         if (iocommand.buf_size > 0)
4998                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
4999         check_ioctl_unit_attention(h, c);
5000 
5001         /* Copy the error information out */
5002         memcpy(&iocommand.error_info, c->err_info,
5003                 sizeof(iocommand.error_info));
5004         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5005                 rc = -EFAULT;
5006                 goto out;
5007         }
5008         if (iocommand.Request.Type.Direction == XFER_READ &&
5009                 iocommand.buf_size > 0) {
5010                 /* Copy the data out of the buffer we created */
5011                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5012                         rc = -EFAULT;
5013                         goto out;
5014                 }
5015         }
5016 out:
5017         cmd_special_free(h, c);
5018 out_kfree:
5019         kfree(buff);
5020         return rc;
5021 }
5022 
5023 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5024 {
5025         BIG_IOCTL_Command_struct *ioc;
5026         struct CommandList *c;
5027         unsigned char **buff = NULL;
5028         int *buff_size = NULL;
5029         union u64bit temp64;
5030         BYTE sg_used = 0;
5031         int status = 0;
5032         int i;
5033         u32 left;
5034         u32 sz;
5035         BYTE __user *data_ptr;
5036 
5037         if (!argp)
5038                 return -EINVAL;
5039         if (!capable(CAP_SYS_RAWIO))
5040                 return -EPERM;
5041         ioc = (BIG_IOCTL_Command_struct *)
5042             kmalloc(sizeof(*ioc), GFP_KERNEL);
5043         if (!ioc) {
5044                 status = -ENOMEM;
5045                 goto cleanup1;
5046         }
5047         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5048                 status = -EFAULT;
5049                 goto cleanup1;
5050         }
5051         if ((ioc->buf_size < 1) &&
5052             (ioc->Request.Type.Direction != XFER_NONE)) {
5053                 status = -EINVAL;
5054                 goto cleanup1;
5055         }
5056         /* Check kmalloc limits  using all SGs */
5057         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5058                 status = -EINVAL;
5059                 goto cleanup1;
5060         }
5061         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5062                 status = -EINVAL;
5063                 goto cleanup1;
5064         }
5065         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5066         if (!buff) {
5067                 status = -ENOMEM;
5068                 goto cleanup1;
5069         }
5070         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5071         if (!buff_size) {
5072                 status = -ENOMEM;
5073                 goto cleanup1;
5074         }
5075         left = ioc->buf_size;
5076         data_ptr = ioc->buf;
5077         while (left) {
5078                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5079                 buff_size[sg_used] = sz;
5080                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5081                 if (buff[sg_used] == NULL) {
5082                         status = -ENOMEM;
5083                         goto cleanup1;
5084                 }
5085                 if (ioc->Request.Type.Direction == XFER_WRITE) {
5086                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5087                                 status = -ENOMEM;
5088                                 goto cleanup1;
5089                         }
5090                 } else
5091                         memset(buff[sg_used], 0, sz);
5092                 left -= sz;
5093                 data_ptr += sz;
5094                 sg_used++;
5095         }
5096         c = cmd_special_alloc(h);
5097         if (c == NULL) {
5098                 status = -ENOMEM;
5099                 goto cleanup1;
5100         }
5101         c->cmd_type = CMD_IOCTL_PEND;
5102         c->Header.ReplyQueue = 0;
5103         c->Header.SGList = c->Header.SGTotal = sg_used;
5104         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5105         c->Header.Tag.lower = c->busaddr;
5106         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5107         if (ioc->buf_size > 0) {
5108                 int i;
5109                 for (i = 0; i < sg_used; i++) {
5110                         temp64.val = pci_map_single(h->pdev, buff[i],
5111                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
5112                         if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5113                                 c->SG[i].Addr.lower = 0;
5114                                 c->SG[i].Addr.upper = 0;
5115                                 c->SG[i].Len = 0;
5116                                 hpsa_pci_unmap(h->pdev, c, i,
5117                                         PCI_DMA_BIDIRECTIONAL);
5118                                 status = -ENOMEM;
5119                                 goto cleanup0;
5120                         }
5121                         c->SG[i].Addr.lower = temp64.val32.lower;
5122                         c->SG[i].Addr.upper = temp64.val32.upper;
5123                         c->SG[i].Len = buff_size[i];
5124                         c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5125                 }
5126         }
5127         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5128         if (sg_used)
5129                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5130         check_ioctl_unit_attention(h, c);
5131         /* Copy the error information out */
5132         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5133         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5134                 status = -EFAULT;
5135                 goto cleanup0;
5136         }
5137         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
5138                 /* Copy the data out of the buffer we created */
5139                 BYTE __user *ptr = ioc->buf;
5140                 for (i = 0; i < sg_used; i++) {
5141                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
5142                                 status = -EFAULT;
5143                                 goto cleanup0;
5144                         }
5145                         ptr += buff_size[i];
5146                 }
5147         }
5148         status = 0;
5149 cleanup0:
5150         cmd_special_free(h, c);
5151 cleanup1:
5152         if (buff) {
5153                 for (i = 0; i < sg_used; i++)
5154                         kfree(buff[i]);
5155                 kfree(buff);
5156         }
5157         kfree(buff_size);
5158         kfree(ioc);
5159         return status;
5160 }
5161 
5162 static void check_ioctl_unit_attention(struct ctlr_info *h,
5163         struct CommandList *c)
5164 {
5165         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5166                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5167                 (void) check_for_unit_attention(h, c);
5168 }
5169 
5170 static int increment_passthru_count(struct ctlr_info *h)
5171 {
5172         unsigned long flags;
5173 
5174         spin_lock_irqsave(&h->passthru_count_lock, flags);
5175         if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5176                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5177                 return -1;
5178         }
5179         h->passthru_count++;
5180         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5181         return 0;
5182 }
5183 
5184 static void decrement_passthru_count(struct ctlr_info *h)
5185 {
5186         unsigned long flags;
5187 
5188         spin_lock_irqsave(&h->passthru_count_lock, flags);
5189         if (h->passthru_count <= 0) {
5190                 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5191                 /* not expecting to get here. */
5192                 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5193                 return;
5194         }
5195         h->passthru_count--;
5196         spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5197 }
5198 
5199 /*
5200  * ioctl
5201  */
5202 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5203 {
5204         struct ctlr_info *h;
5205         void __user *argp = (void __user *)arg;
5206         int rc;
5207 
5208         h = sdev_to_hba(dev);
5209 
5210         switch (cmd) {
5211         case CCISS_DEREGDISK:
5212         case CCISS_REGNEWDISK:
5213         case CCISS_REGNEWD:
5214                 hpsa_scan_start(h->scsi_host);
5215                 return 0;
5216         case CCISS_GETPCIINFO:
5217                 return hpsa_getpciinfo_ioctl(h, argp);
5218         case CCISS_GETDRIVVER:
5219                 return hpsa_getdrivver_ioctl(h, argp);
5220         case CCISS_PASSTHRU:
5221                 if (increment_passthru_count(h))
5222                         return -EAGAIN;
5223                 rc = hpsa_passthru_ioctl(h, argp);
5224                 decrement_passthru_count(h);
5225                 return rc;
5226         case CCISS_BIG_PASSTHRU:
5227                 if (increment_passthru_count(h))
5228                         return -EAGAIN;
5229                 rc = hpsa_big_passthru_ioctl(h, argp);
5230                 decrement_passthru_count(h);
5231                 return rc;
5232         default:
5233                 return -ENOTTY;
5234         }
5235 }
5236 
5237 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5238                                 u8 reset_type)
5239 {
5240         struct CommandList *c;
5241 
5242         c = cmd_alloc(h);
5243         if (!c)
5244                 return -ENOMEM;
5245         /* fill_cmd can't fail here, no data buffer to map */
5246         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5247                 RAID_CTLR_LUNID, TYPE_MSG);
5248         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5249         c->waiting = NULL;
5250         enqueue_cmd_and_start_io(h, c);
5251         /* Don't wait for completion, the reset won't complete.  Don't free
5252          * the command either.  This is the last command we will send before
5253          * re-initializing everything, so it doesn't matter and won't leak.
5254          */
5255         return 0;
5256 }
5257 
5258 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5259         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5260         int cmd_type)
5261 {
5262         int pci_dir = XFER_NONE;
5263         struct CommandList *a; /* for commands to be aborted */
5264 
5265         c->cmd_type = CMD_IOCTL_PEND;
5266         c->Header.ReplyQueue = 0;
5267         if (buff != NULL && size > 0) {
5268                 c->Header.SGList = 1;
5269                 c->Header.SGTotal = 1;
5270         } else {
5271                 c->Header.SGList = 0;
5272                 c->Header.SGTotal = 0;
5273         }
5274         c->Header.Tag.lower = c->busaddr;
5275         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5276 
5277         c->Request.Type.Type = cmd_type;
5278         if (cmd_type == TYPE_CMD) {
5279                 switch (cmd) {
5280                 case HPSA_INQUIRY:
5281                         /* are we trying to read a vital product page */
5282                         if (page_code & VPD_PAGE) {
5283                                 c->Request.CDB[1] = 0x01;
5284                                 c->Request.CDB[2] = (page_code & 0xff);
5285                         }
5286                         c->Request.CDBLen = 6;
5287                         c->Request.Type.Attribute = ATTR_SIMPLE;
5288                         c->Request.Type.Direction = XFER_READ;
5289                         c->Request.Timeout = 0;
5290                         c->Request.CDB[0] = HPSA_INQUIRY;
5291                         c->Request.CDB[4] = size & 0xFF;
5292                         break;
5293                 case HPSA_REPORT_LOG:
5294                 case HPSA_REPORT_PHYS:
5295                         /* Talking to controller so It's a physical command
5296                            mode = 00 target = 0.  Nothing to write.
5297                          */
5298                         c->Request.CDBLen = 12;
5299                         c->Request.Type.Attribute = ATTR_SIMPLE;
5300                         c->Request.Type.Direction = XFER_READ;
5301                         c->Request.Timeout = 0;
5302                         c->Request.CDB[0] = cmd;
5303                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5304                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5305                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5306                         c->Request.CDB[9] = size & 0xFF;
5307                         break;
5308                 case HPSA_CACHE_FLUSH:
5309                         c->Request.CDBLen = 12;
5310                         c->Request.Type.Attribute = ATTR_SIMPLE;
5311                         c->Request.Type.Direction = XFER_WRITE;
5312                         c->Request.Timeout = 0;
5313                         c->Request.CDB[0] = BMIC_WRITE;
5314                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5315                         c->Request.CDB[7] = (size >> 8) & 0xFF;
5316                         c->Request.CDB[8] = size & 0xFF;
5317                         break;
5318                 case TEST_UNIT_READY:
5319                         c->Request.CDBLen = 6;
5320                         c->Request.Type.Attribute = ATTR_SIMPLE;
5321                         c->Request.Type.Direction = XFER_NONE;
5322                         c->Request.Timeout = 0;
5323                         break;
5324                 case HPSA_GET_RAID_MAP:
5325                         c->Request.CDBLen = 12;
5326                         c->Request.Type.Attribute = ATTR_SIMPLE;
5327                         c->Request.Type.Direction = XFER_READ;
5328                         c->Request.Timeout = 0;
5329                         c->Request.CDB[0] = HPSA_CISS_READ;
5330                         c->Request.CDB[1] = cmd;
5331                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5332                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5333                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5334                         c->Request.CDB[9] = size & 0xFF;
5335                         break;
5336                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5337                         c->Request.CDBLen = 10;
5338                         c->Request.Type.Attribute = ATTR_SIMPLE;
5339                         c->Request.Type.Direction = XFER_READ;
5340                         c->Request.Timeout = 0;
5341                         c->Request.CDB[0] = BMIC_READ;
5342                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5343                         c->Request.CDB[7] = (size >> 16) & 0xFF;
5344                         c->Request.CDB[8] = (size >> 8) & 0xFF;
5345                         break;
5346                 default:
5347                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5348                         BUG();
5349                         return -1;
5350                 }
5351         } else if (cmd_type == TYPE_MSG) {
5352                 switch (cmd) {
5353 
5354                 case  HPSA_DEVICE_RESET_MSG:
5355                         c->Request.CDBLen = 16;
5356                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
5357                         c->Request.Type.Attribute = ATTR_SIMPLE;
5358                         c->Request.Type.Direction = XFER_NONE;
5359                         c->Request.Timeout = 0; /* Don't time out */
5360                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5361                         c->Request.CDB[0] =  cmd;
5362                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5363                         /* If bytes 4-7 are zero, it means reset the */
5364                         /* LunID device */
5365                         c->Request.CDB[4] = 0x00;
5366                         c->Request.CDB[5] = 0x00;
5367                         c->Request.CDB[6] = 0x00;
5368                         c->Request.CDB[7] = 0x00;
5369                         break;
5370                 case  HPSA_ABORT_MSG:
5371                         a = buff;       /* point to command to be aborted */
5372                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5373                                 a->Header.Tag.upper, a->Header.Tag.lower,
5374                                 c->Header.Tag.upper, c->Header.Tag.lower);
5375                         c->Request.CDBLen = 16;
5376                         c->Request.Type.Type = TYPE_MSG;
5377                         c->Request.Type.Attribute = ATTR_SIMPLE;
5378                         c->Request.Type.Direction = XFER_WRITE;
5379                         c->Request.Timeout = 0; /* Don't time out */
5380                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5381                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5382                         c->Request.CDB[2] = 0x00; /* reserved */
5383                         c->Request.CDB[3] = 0x00; /* reserved */
5384                         /* Tag to abort goes in CDB[4]-CDB[11] */
5385                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5386                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5387                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5388                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5389                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5390                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5391                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5392                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5393                         c->Request.CDB[12] = 0x00; /* reserved */
5394                         c->Request.CDB[13] = 0x00; /* reserved */
5395                         c->Request.CDB[14] = 0x00; /* reserved */
5396                         c->Request.CDB[15] = 0x00; /* reserved */
5397                 break;
5398                 default:
5399                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
5400                                 cmd);
5401                         BUG();
5402                 }
5403         } else {
5404                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5405                 BUG();
5406         }
5407 
5408         switch (c->Request.Type.Direction) {
5409         case XFER_READ:
5410                 pci_dir = PCI_DMA_FROMDEVICE;
5411                 break;
5412         case XFER_WRITE:
5413                 pci_dir = PCI_DMA_TODEVICE;
5414                 break;
5415         case XFER_NONE:
5416                 pci_dir = PCI_DMA_NONE;
5417                 break;
5418         default:
5419                 pci_dir = PCI_DMA_BIDIRECTIONAL;
5420         }
5421         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5422                 return -1;
5423         return 0;
5424 }
5425 
5426 /*
5427  * Map (physical) PCI mem into (virtual) kernel space
5428  */
5429 static void __iomem *remap_pci_mem(ulong base, ulong size)
5430 {
5431         ulong page_base = ((ulong) base) & PAGE_MASK;
5432         ulong page_offs = ((ulong) base) - page_base;
5433         void __iomem *page_remapped = ioremap_nocache(page_base,
5434                 page_offs + size);
5435 
5436         return page_remapped ? (page_remapped + page_offs) : NULL;
5437 }
5438 
5439 /* Takes cmds off the submission queue and sends them to the hardware,
5440  * then puts them on the queue of cmds waiting for completion.
5441  */
5442 static void start_io(struct ctlr_info *h)
5443 {
5444         struct CommandList *c;
5445         unsigned long flags;
5446 
5447         spin_lock_irqsave(&h->lock, flags);
5448         while (!list_empty(&h->reqQ)) {
5449                 c = list_entry(h->reqQ.next, struct CommandList, list);
5450                 /* can't do anything if fifo is full */
5451                 if ((h->access.fifo_full(h))) {
5452                         h->fifo_recently_full = 1;
5453                         dev_warn(&h->pdev->dev, "fifo full\n");
5454                         break;
5455                 }
5456                 h->fifo_recently_full = 0;
5457 
5458                 /* Get the first entry from the Request Q */
5459                 removeQ(c);
5460                 h->Qdepth--;
5461 
5462                 /* Put job onto the completed Q */
5463                 addQ(&h->cmpQ, c);
5464 
5465                 /* Must increment commands_outstanding before unlocking
5466                  * and submitting to avoid race checking for fifo full
5467                  * condition.
5468                  */
5469                 h->commands_outstanding++;
5470                 if (h->commands_outstanding > h->max_outstanding)
5471                         h->max_outstanding = h->commands_outstanding;
5472 
5473                 /* Tell the controller execute command */
5474                 spin_unlock_irqrestore(&h->lock, flags);
5475                 h->access.submit_command(h, c);
5476                 spin_lock_irqsave(&h->lock, flags);
5477         }
5478         spin_unlock_irqrestore(&h->lock, flags);
5479 }
5480 
5481 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5482 {
5483         return h->access.command_completed(h, q);
5484 }
5485 
5486 static inline bool interrupt_pending(struct ctlr_info *h)
5487 {
5488         return h->access.intr_pending(h);
5489 }
5490 
5491 static inline long interrupt_not_for_us(struct ctlr_info *h)
5492 {
5493         return (h->access.intr_pending(h) == 0) ||
5494                 (h->interrupts_enabled == 0);
5495 }
5496 
5497 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5498         u32 raw_tag)
5499 {
5500         if (unlikely(tag_index >= h->nr_cmds)) {
5501                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5502                 return 1;
5503         }
5504         return 0;
5505 }
5506 
5507 static inline void finish_cmd(struct CommandList *c)
5508 {
5509         unsigned long flags;
5510         int io_may_be_stalled = 0;
5511         struct ctlr_info *h = c->h;
5512 
5513         spin_lock_irqsave(&h->lock, flags);
5514         removeQ(c);
5515 
5516         /*
5517          * Check for possibly stalled i/o.
5518          *
5519          * If a fifo_full condition is encountered, requests will back up
5520          * in h->reqQ.  This queue is only emptied out by start_io which is
5521          * only called when a new i/o request comes in.  If no i/o's are
5522          * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
5523          * start_io from here if we detect such a danger.
5524          *
5525          * Normally, we shouldn't hit this case, but pounding on the
5526          * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
5527          * commands_outstanding is low.  We want to avoid calling
5528          * start_io from in here as much as possible, and esp. don't
5529          * want to get in a cycle where we call start_io every time
5530          * through here.
5531          */
5532         if (unlikely(h->fifo_recently_full) &&
5533                 h->commands_outstanding < 5)
5534                 io_may_be_stalled = 1;
5535 
5536         spin_unlock_irqrestore(&h->lock, flags);
5537 
5538         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5539         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5540                         || c->cmd_type == CMD_IOACCEL2))
5541                 complete_scsi_command(c);
5542         else if (c->cmd_type == CMD_IOCTL_PEND)
5543                 complete(c->waiting);
5544         if (unlikely(io_may_be_stalled))
5545                 start_io(h);
5546 }
5547 
5548 static inline u32 hpsa_tag_contains_index(u32 tag)
5549 {
5550         return tag & DIRECT_LOOKUP_BIT;
5551 }
5552 
5553 static inline u32 hpsa_tag_to_index(u32 tag)
5554 {
5555         return tag >> DIRECT_LOOKUP_SHIFT;
5556 }
5557 
5558 
5559 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5560 {
5561 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5562 #define HPSA_SIMPLE_ERROR_BITS 0x03
5563         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5564                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5565         return tag & ~HPSA_PERF_ERROR_BITS;
5566 }
5567 
5568 /* process completion of an indexed ("direct lookup") command */
5569 static inline void process_indexed_cmd(struct ctlr_info *h,
5570         u32 raw_tag)
5571 {
5572         u32 tag_index;
5573         struct CommandList *c;
5574 
5575         tag_index = hpsa_tag_to_index(raw_tag);
5576         if (!bad_tag(h, tag_index, raw_tag)) {
5577                 c = h->cmd_pool + tag_index;
5578                 finish_cmd(c);
5579         }
5580 }
5581 
5582 /* process completion of a non-indexed command */
5583 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5584         u32 raw_tag)
5585 {
5586         u32 tag;
5587         struct CommandList *c = NULL;
5588         unsigned long flags;
5589 
5590         tag = hpsa_tag_discard_error_bits(h, raw_tag);
5591         spin_lock_irqsave(&h->lock, flags);
5592         list_for_each_entry(c, &h->cmpQ, list) {
5593                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5594                         spin_unlock_irqrestore(&h->lock, flags);
5595                         finish_cmd(c);
5596                         return;
5597                 }
5598         }
5599         spin_unlock_irqrestore(&h->lock, flags);
5600         bad_tag(h, h->nr_cmds + 1, raw_tag);
5601 }
5602 
5603 /* Some controllers, like p400, will give us one interrupt
5604  * after a soft reset, even if we turned interrupts off.
5605  * Only need to check for this in the hpsa_xxx_discard_completions
5606  * functions.
5607  */
5608 static int ignore_bogus_interrupt(struct ctlr_info *h)
5609 {
5610         if (likely(!reset_devices))
5611                 return 0;
5612 
5613         if (likely(h->interrupts_enabled))
5614                 return 0;
5615 
5616         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5617                 "(known firmware bug.)  Ignoring.\n");
5618 
5619         return 1;
5620 }
5621 
5622 /*
5623  * Convert &h->q[x] (passed to interrupt handlers) back to h.
5624  * Relies on (h-q[x] == x) being true for x such that
5625  * 0 <= x < MAX_REPLY_QUEUES.
5626  */
5627 static struct ctlr_info *queue_to_hba(u8 *queue)
5628 {
5629         return container_of((queue - *queue), struct ctlr_info, q[0]);
5630 }
5631 
5632 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5633 {
5634         struct ctlr_info *h = queue_to_hba(queue);
5635         u8 q = *(u8 *) queue;
5636         u32 raw_tag;
5637 
5638         if (ignore_bogus_interrupt(h))
5639                 return IRQ_NONE;
5640 
5641         if (interrupt_not_for_us(h))
5642                 return IRQ_NONE;
5643         h->last_intr_timestamp = get_jiffies_64();
5644         while (interrupt_pending(h)) {
5645                 raw_tag = get_next_completion(h, q);
5646                 while (raw_tag != FIFO_EMPTY)
5647                         raw_tag = next_command(h, q);
5648         }
5649         return IRQ_HANDLED;
5650 }
5651 
5652 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5653 {
5654         struct ctlr_info *h = queue_to_hba(queue);
5655         u32 raw_tag;
5656         u8 q = *(u8 *) queue;
5657 
5658         if (ignore_bogus_interrupt(h))
5659                 return IRQ_NONE;
5660 
5661         h->last_intr_timestamp = get_jiffies_64();
5662         raw_tag = get_next_completion(h, q);
5663         while (raw_tag != FIFO_EMPTY)
5664                 raw_tag = next_command(h, q);
5665         return IRQ_HANDLED;
5666 }
5667 
5668 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5669 {
5670         struct ctlr_info *h = queue_to_hba((u8 *) queue);
5671         u32 raw_tag;
5672         u8 q = *(u8 *) queue;
5673 
5674         if (interrupt_not_for_us(h))
5675                 return IRQ_NONE;
5676         h->last_intr_timestamp = get_jiffies_64();
5677         while (interrupt_pending(h)) {
5678                 raw_tag = get_next_completion(h, q);
5679                 while (raw_tag != FIFO_EMPTY) {
5680                         if (likely(hpsa_tag_contains_index(raw_tag)))
5681                                 process_indexed_cmd(h, raw_tag);
5682                         else
5683                                 process_nonindexed_cmd(h, raw_tag);
5684                         raw_tag = next_command(h, q);
5685                 }
5686         }
5687         return IRQ_HANDLED;
5688 }
5689 
5690 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5691 {
5692         struct ctlr_info *h = queue_to_hba(queue);
5693         u32 raw_tag;
5694         u8 q = *(u8 *) queue;
5695 
5696         h->last_intr_timestamp = get_jiffies_64();
5697         raw_tag = get_next_completion(h, q);
5698         while (raw_tag != FIFO_EMPTY) {
5699                 if (likely(hpsa_tag_contains_index(raw_tag)))
5700                         process_indexed_cmd(h, raw_tag);
5701                 else
5702                         process_nonindexed_cmd(h, raw_tag);
5703                 raw_tag = next_command(h, q);
5704         }
5705         return IRQ_HANDLED;
5706 }
5707 
5708 /* Send a message CDB to the firmware. Careful, this only works
5709  * in simple mode, not performant mode due to the tag lookup.
5710  * We only ever use this immediately after a controller reset.
5711  */
5712 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5713                         unsigned char type)
5714 {
5715         struct Command {
5716                 struct CommandListHeader CommandHeader;
5717                 struct RequestBlock Request;
5718                 struct ErrDescriptor ErrorDescriptor;
5719         };
5720         struct Command *cmd;
5721         static const size_t cmd_sz = sizeof(*cmd) +
5722                                         sizeof(cmd->ErrorDescriptor);
5723         dma_addr_t paddr64;
5724         uint32_t paddr32, tag;
5725         void __iomem *vaddr;
5726         int i, err;
5727 
5728         vaddr = pci_ioremap_bar(pdev, 0);
5729         if (vaddr == NULL)
5730                 return -ENOMEM;
5731 
5732         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5733          * CCISS commands, so they must be allocated from the lower 4GiB of
5734          * memory.
5735          */
5736         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5737         if (err) {
5738                 iounmap(vaddr);
5739                 return -ENOMEM;
5740         }
5741 
5742         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5743         if (cmd == NULL) {
5744                 iounmap(vaddr);
5745                 return -ENOMEM;
5746         }
5747 
5748         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
5749          * although there's no guarantee, we assume that the address is at
5750          * least 4-byte aligned (most likely, it's page-aligned).
5751          */
5752         paddr32 = paddr64;
5753 
5754         cmd->CommandHeader.ReplyQueue = 0;
5755         cmd->CommandHeader.SGList = 0;
5756         cmd->CommandHeader.SGTotal = 0;
5757         cmd->CommandHeader.Tag.lower = paddr32;
5758         cmd->CommandHeader.Tag.upper = 0;
5759         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5760 
5761         cmd->Request.CDBLen = 16;
5762         cmd->Request.Type.Type = TYPE_MSG;
5763         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5764         cmd->Request.Type.Direction = XFER_NONE;
5765         cmd->Request.Timeout = 0; /* Don't time out */
5766         cmd->Request.CDB[0] = opcode;
5767         cmd->Request.CDB[1] = type;
5768         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5769         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5770         cmd->ErrorDescriptor.Addr.upper = 0;
5771         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5772 
5773         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5774 
5775         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5776                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5777                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5778                         break;
5779                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5780         }
5781 
5782         iounmap(vaddr);
5783 
5784         /* we leak the DMA buffer here ... no choice since the controller could
5785          *  still complete the command.
5786          */
5787         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5788                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5789                         opcode, type);
5790                 return -ETIMEDOUT;
5791         }
5792 
5793         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5794 
5795         if (tag & HPSA_ERROR_BIT) {
5796                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5797                         opcode, type);
5798                 return -EIO;
5799         }
5800 
5801         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5802                 opcode, type);
5803         return 0;
5804 }
5805 
5806 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5807 
5808 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5809         void * __iomem vaddr, u32 use_doorbell)
5810 {
5811         u16 pmcsr;
5812         int pos;
5813 
5814         if (use_doorbell) {
5815                 /* For everything after the P600, the PCI power state method
5816                  * of resetting the controller doesn't work, so we have this
5817                  * other way using the doorbell register.
5818                  */
5819                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5820                 writel(use_doorbell, vaddr + SA5_DOORBELL);
5821 
5822                 /* PMC hardware guys tell us we need a 5 second delay after
5823                  * doorbell reset and before any attempt to talk to the board
5824                  * at all to ensure that this actually works and doesn't fall
5825                  * over in some weird corner cases.
5826                  */
5827                 msleep(5000);
5828         } else { /* Try to do it the PCI power state way */
5829 
5830                 /* Quoting from the Open CISS Specification: "The Power
5831                  * Management Control/Status Register (CSR) controls the power
5832                  * state of the device.  The normal operating state is D0,
5833                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
5834                  * the controller, place the interface device in D3 then to D0,
5835                  * this causes a secondary PCI reset which will reset the
5836                  * controller." */
5837 
5838                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5839                 if (pos == 0) {
5840                         dev_err(&pdev->dev,
5841                                 "hpsa_reset_controller: "
5842                                 "PCI PM not supported\n");
5843                         return -ENODEV;
5844                 }
5845                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5846                 /* enter the D3hot power management state */
5847                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5848                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5849                 pmcsr |= PCI_D3hot;
5850                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5851 
5852                 msleep(500);
5853 
5854                 /* enter the D0 power management state */
5855                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5856                 pmcsr |= PCI_D0;
5857                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5858 
5859                 /*
5860                  * The P600 requires a small delay when changing states.
5861                  * Otherwise we may think the board did not reset and we bail.
5862                  * This for kdump only and is particular to the P600.
5863                  */
5864                 msleep(500);
5865         }
5866         return 0;
5867 }
5868 
5869 static void init_driver_version(char *driver_version, int len)
5870 {
5871         memset(driver_version, 0, len);
5872         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5873 }
5874 
5875 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5876 {
5877         char *driver_version;
5878         int i, size = sizeof(cfgtable->driver_version);
5879 
5880         driver_version = kmalloc(size, GFP_KERNEL);
5881         if (!driver_version)
5882                 return -ENOMEM;
5883 
5884         init_driver_version(driver_version, size);
5885         for (i = 0; i < size; i++)
5886                 writeb(driver_version[i], &cfgtable->driver_version[i]);
5887         kfree(driver_version);
5888         return 0;
5889 }
5890 
5891 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5892                                           unsigned char *driver_ver)
5893 {
5894         int i;
5895 
5896         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5897                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5898 }
5899 
5900 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5901 {
5902 
5903         char *driver_ver, *old_driver_ver;
5904         int rc, size = sizeof(cfgtable->driver_version);
5905 
5906         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5907         if (!old_driver_ver)
5908                 return -ENOMEM;
5909         driver_ver = old_driver_ver + size;
5910 
5911         /* After a reset, the 32 bytes of "driver version" in the cfgtable
5912          * should have been changed, otherwise we know the reset failed.
5913          */
5914         init_driver_version(old_driver_ver, size);
5915         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5916         rc = !memcmp(driver_ver, old_driver_ver, size);
5917         kfree(old_driver_ver);
5918         return rc;
5919 }
5920 /* This does a hard reset of the controller using PCI power management
5921  * states or the using the doorbell register.
5922  */
5923 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5924 {
5925         u64 cfg_offset;
5926         u32 cfg_base_addr;
5927         u64 cfg_base_addr_index;
5928         void __iomem *vaddr;
5929         unsigned long paddr;
5930         u32 misc_fw_support;
5931         int rc;
5932         struct CfgTable __iomem *cfgtable;
5933         u32 use_doorbell;
5934         u32 board_id;
5935         u16 command_register;
5936 
5937         /* For controllers as old as the P600, this is very nearly
5938          * the same thing as
5939          *
5940          * pci_save_state(pci_dev);
5941          * pci_set_power_state(pci_dev, PCI_D3hot);
5942          * pci_set_power_state(pci_dev, PCI_D0);
5943          * pci_restore_state(pci_dev);
5944          *
5945          * For controllers newer than the P600, the pci power state
5946          * method of resetting doesn't work so we have another way
5947          * using the doorbell register.
5948          */
5949 
5950         rc = hpsa_lookup_board_id(pdev, &board_id);
5951         if (rc < 0 || !ctlr_is_resettable(board_id)) {
5952                 dev_warn(&pdev->dev, "Not resetting device.\n");
5953                 return -ENODEV;
5954         }
5955 
5956         /* if controller is soft- but not hard resettable... */
5957         if (!ctlr_is_hard_resettable(board_id))
5958                 return -ENOTSUPP; /* try soft reset later. */
5959 
5960         /* Save the PCI command register */
5961         pci_read_config_word(pdev, 4, &command_register);
5962         /* Turn the board off.  This is so that later pci_restore_state()
5963          * won't turn the board on before the rest of config space is ready.
5964          */
5965         pci_disable_device(pdev);
5966         pci_save_state(pdev);
5967 
5968         /* find the first memory BAR, so we can find the cfg table */
5969         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5970         if (rc)
5971                 return rc;
5972         vaddr = remap_pci_mem(paddr, 0x250);
5973         if (!vaddr)
5974                 return -ENOMEM;
5975 
5976         /* find cfgtable in order to check if reset via doorbell is supported */
5977         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5978                                         &cfg_base_addr_index, &cfg_offset);
5979         if (rc)
5980                 goto unmap_vaddr;
5981         cfgtable = remap_pci_mem(pci_resource_start(pdev,
5982                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
5983         if (!cfgtable) {
5984                 rc = -ENOMEM;
5985                 goto unmap_vaddr;
5986         }
5987         rc = write_driver_ver_to_cfgtable(cfgtable);
5988         if (rc)
5989                 goto unmap_vaddr;
5990 
5991         /* If reset via doorbell register is supported, use that.
5992          * There are two such methods.  Favor the newest method.
5993          */
5994         misc_fw_support = readl(&cfgtable->misc_fw_support);
5995         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
5996         if (use_doorbell) {
5997                 use_doorbell = DOORBELL_CTLR_RESET2;
5998         } else {
5999                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6000                 if (use_doorbell) {
6001                         dev_warn(&pdev->dev, "Soft reset not supported. "
6002                                 "Firmware update is required.\n");
6003                         rc = -ENOTSUPP; /* try soft reset */
6004                         goto unmap_cfgtable;
6005                 }
6006         }
6007 
6008         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6009         if (rc)
6010                 goto unmap_cfgtable;
6011 
6012         pci_restore_state(pdev);
6013         rc = pci_enable_device(pdev);
6014         if (rc) {
6015                 dev_warn(&pdev->dev, "failed to enable device.\n");
6016                 goto unmap_cfgtable;
6017         }
6018         pci_write_config_word(pdev, 4, command_register);
6019 
6020         /* Some devices (notably the HP Smart Array 5i Controller)
6021            need a little pause here */
6022         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6023 
6024         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6025         if (rc) {
6026                 dev_warn(&pdev->dev,
6027                         "failed waiting for board to become ready "
6028                         "after hard reset\n");
6029                 goto unmap_cfgtable;
6030         }
6031 
6032         rc = controller_reset_failed(vaddr);
6033         if (rc < 0)
6034                 goto unmap_cfgtable;
6035         if (rc) {
6036                 dev_warn(&pdev->dev, "Unable to successfully reset "
6037                         "controller. Will try soft reset.\n");
6038                 rc = -ENOTSUPP;
6039         } else {
6040                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6041         }
6042 
6043 unmap_cfgtable:
6044         iounmap(cfgtable);
6045 
6046 unmap_vaddr:
6047         iounmap(vaddr);
6048         return rc;
6049 }
6050 
6051 /*
6052  *  We cannot read the structure directly, for portability we must use
6053  *   the io functions.
6054  *   This is for debug only.
6055  */
6056 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6057 {
6058 #ifdef HPSA_DEBUG
6059         int i;
6060         char temp_name[17];
6061 
6062         dev_info(dev, "Controller Configuration information\n");
6063         dev_info(dev, "------------------------------------\n");
6064         for (i = 0; i < 4; i++)
6065                 temp_name[i] = readb(&(tb->Signature[i]));
6066         temp_name[4] = '\0';
6067         dev_info(dev, "   Signature = %s\n", temp_name);
6068         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6069         dev_info(dev, "   Transport methods supported = 0x%x\n",
6070                readl(&(tb->TransportSupport)));
6071         dev_info(dev, "   Transport methods active = 0x%x\n",
6072                readl(&(tb->TransportActive)));
6073         dev_info(dev, "   Requested transport Method = 0x%x\n",
6074                readl(&(tb->HostWrite.TransportRequest)));
6075         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6076                readl(&(tb->HostWrite.CoalIntDelay)));
6077         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6078                readl(&(tb->HostWrite.CoalIntCount)));
6079         dev_info(dev, "   Max outstanding commands = 0x%d\n",
6080                readl(&(tb->CmdsOutMax)));
6081         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6082         for (i = 0; i < 16; i++)
6083                 temp_name[i] = readb(&(tb->ServerName[i]));
6084         temp_name[16] = '\0';
6085         dev_info(dev, "   Server Name = %s\n", temp_name);
6086         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6087                 readl(&(tb->HeartBeat)));
6088 #endif                          /* HPSA_DEBUG */
6089 }
6090 
6091 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6092 {
6093         int i, offset, mem_type, bar_type;
6094 
6095         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6096                 return 0;
6097         offset = 0;
6098         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6099                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6100                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6101                         offset += 4;
6102                 else {
6103                         mem_type = pci_resource_flags(pdev, i) &
6104                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6105                         switch (mem_type) {
6106                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6107                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6108                                 offset += 4;    /* 32 bit */
6109                                 break;
6110                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6111                                 offset += 8;
6112                                 break;
6113                         default:        /* reserved in PCI 2.2 */
6114                                 dev_warn(&pdev->dev,
6115                                        "base address is invalid\n");
6116                                 return -1;
6117                                 break;
6118                         }
6119                 }
6120                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6121                         return i + 1;
6122         }
6123         return -1;
6124 }
6125 
6126 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6127  * controllers that are capable. If not, we use IO-APIC mode.
6128  */
6129 
6130 static void hpsa_interrupt_mode(struct ctlr_info *h)
6131 {
6132 #ifdef CONFIG_PCI_MSI
6133         int err, i;
6134         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6135 
6136         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6137                 hpsa_msix_entries[i].vector = 0;
6138                 hpsa_msix_entries[i].entry = i;
6139         }
6140 
6141         /* Some boards advertise MSI but don't really support it */
6142         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6143             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6144                 goto default_int_mode;
6145         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6146                 dev_info(&h->pdev->dev, "MSIX\n");
6147                 h->msix_vector = MAX_REPLY_QUEUES;
6148                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6149                                       h->msix_vector);
6150                 if (err > 0) {
6151                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6152                                "available\n", err);
6153                         h->msix_vector = err;
6154                         err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6155                                               h->msix_vector);
6156                 }
6157                 if (!err) {
6158                         for (i = 0; i < h->msix_vector; i++)
6159                                 h->intr[i] = hpsa_msix_entries[i].vector;
6160                         return;
6161                 } else {
6162                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6163                                err);
6164                         h->msix_vector = 0;
6165                         goto default_int_mode;
6166                 }
6167         }
6168         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6169                 dev_info(&h->pdev->dev, "MSI\n");
6170                 if (!pci_enable_msi(h->pdev))
6171                         h->msi_vector = 1;
6172                 else
6173                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6174         }
6175 default_int_mode:
6176 #endif                          /* CONFIG_PCI_MSI */
6177         /* if we get here we're going to use the default interrupt mode */
6178         h->intr[h->intr_mode] = h->pdev->irq;
6179 }
6180 
6181 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6182 {
6183         int i;
6184         u32 subsystem_vendor_id, subsystem_device_id;
6185 
6186         subsystem_vendor_id = pdev->subsystem_vendor;
6187         subsystem_device_id = pdev->subsystem_device;
6188         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6189                     subsystem_vendor_id;
6190 
6191         for (i = 0; i < ARRAY_SIZE(products); i++)
6192                 if (*board_id == products[i].board_id)
6193                         return i;
6194 
6195         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6196                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6197                 !hpsa_allow_any) {
6198                 dev_warn(&pdev->dev, "unrecognized board ID: "
6199                         "0x%08x, ignoring.\n", *board_id);
6200                         return -ENODEV;
6201         }
6202         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6203 }
6204 
6205 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6206                                     unsigned long *memory_bar)
6207 {
6208         int i;
6209 
6210         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6211                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6212                         /* addressing mode bits already removed */
6213                         *memory_bar = pci_resource_start(pdev, i);
6214                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6215                                 *memory_bar);
6216                         return 0;
6217                 }
6218         dev_warn(&pdev->dev, "no memory BAR found\n");
6219         return -ENODEV;
6220 }
6221 
6222 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6223                                      int wait_for_ready)
6224 {
6225         int i, iterations;
6226         u32 scratchpad;
6227         if (wait_for_ready)
6228                 iterations = HPSA_BOARD_READY_ITERATIONS;
6229         else
6230                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6231 
6232         for (i = 0; i < iterations; i++) {
6233                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6234                 if (wait_for_ready) {
6235                         if (scratchpad == HPSA_FIRMWARE_READY)
6236                                 return 0;
6237                 } else {
6238                         if (scratchpad != HPSA_FIRMWARE_READY)
6239                                 return 0;
6240                 }
6241                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6242         }
6243         dev_warn(&pdev->dev, "board not ready, timed out.\n");
6244         return -ENODEV;
6245 }
6246 
6247 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6248                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6249                                u64 *cfg_offset)
6250 {
6251         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6252         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6253         *cfg_base_addr &= (u32) 0x0000ffff;
6254         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6255         if (*cfg_base_addr_index == -1) {
6256                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6257                 return -ENODEV;
6258         }
6259         return 0;
6260 }
6261 
6262 static int hpsa_find_cfgtables(struct ctlr_info *h)
6263 {
6264         u64 cfg_offset;
6265         u32 cfg_base_addr;
6266         u64 cfg_base_addr_index;
6267         u32 trans_offset;
6268         int rc;
6269 
6270         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6271                 &cfg_base_addr_index, &cfg_offset);
6272         if (rc)
6273                 return rc;
6274         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6275                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6276         if (!h->cfgtable)
6277                 return -ENOMEM;
6278         rc = write_driver_ver_to_cfgtable(h->cfgtable);
6279         if (rc)
6280                 return rc;
6281         /* Find performant mode table. */
6282         trans_offset = readl(&h->cfgtable->TransMethodOffset);
6283         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6284                                 cfg_base_addr_index)+cfg_offset+trans_offset,
6285                                 sizeof(*h->transtable));
6286         if (!h->transtable)
6287                 return -ENOMEM;
6288         return 0;
6289 }
6290 
6291 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6292 {
6293         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6294 
6295         /* Limit commands in memory limited kdump scenario. */
6296         if (reset_devices && h->max_commands > 32)
6297                 h->max_commands = 32;
6298 
6299         if (h->max_commands < 16) {
6300                 dev_warn(&h->pdev->dev, "Controller reports "
6301                         "max supported commands of %d, an obvious lie. "
6302                         "Using 16.  Ensure that firmware is up to date.\n",
6303                         h->max_commands);
6304                 h->max_commands = 16;
6305         }
6306 }
6307 
6308 /* Interrogate the hardware for some limits:
6309  * max commands, max SG elements without chaining, and with chaining,
6310  * SG chain block size, etc.
6311  */
6312 static void hpsa_find_board_params(struct ctlr_info *h)
6313 {
6314         hpsa_get_max_perf_mode_cmds(h);
6315         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6316         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6317         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6318         /*
6319          * Limit in-command s/g elements to 32 save dma'able memory.
6320          * Howvever spec says if 0, use 31
6321          */
6322         h->max_cmd_sg_entries = 31;
6323         if (h->maxsgentries > 512) {
6324                 h->max_cmd_sg_entries = 32;
6325                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6326                 h->maxsgentries--; /* save one for chain pointer */
6327         } else {
6328                 h->maxsgentries = 31; /* default to traditional values */
6329                 h->chainsize = 0;
6330         }
6331 
6332         /* Find out what task management functions are supported and cache */
6333         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6334         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6335                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6336         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6337                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6338 }
6339 
6340 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6341 {
6342         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6343                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6344                 return false;
6345         }
6346         return true;
6347 }
6348 
6349 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6350 {
6351         u32 driver_support;
6352 
6353 #ifdef CONFIG_X86
6354         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6355         driver_support = readl(&(h->cfgtable->driver_support));
6356         driver_support |= ENABLE_SCSI_PREFETCH;
6357 #endif
6358         driver_support |= ENABLE_UNIT_ATTN;
6359         writel(driver_support, &(h->cfgtable->driver_support));
6360 }
6361 
6362 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
6363  * in a prefetch beyond physical memory.
6364  */
6365 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6366 {
6367         u32 dma_prefetch;
6368 
6369         if (h->board_id != 0x3225103C)
6370                 return;
6371         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6372         dma_prefetch |= 0x8000;
6373         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6374 }
6375 
6376 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6377 {
6378         int i;
6379         u32 doorbell_value;
6380         unsigned long flags;
6381         /* wait until the clear_event_notify bit 6 is cleared by controller. */
6382         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6383                 spin_lock_irqsave(&h->lock, flags);
6384                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6385                 spin_unlock_irqrestore(&h->lock, flags);
6386                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6387                         break;
6388                 /* delay and try again */
6389                 msleep(20);
6390         }
6391 }
6392 
6393 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6394 {
6395         int i;
6396         u32 doorbell_value;
6397         unsigned long flags;
6398 
6399         /* under certain very rare conditions, this can take awhile.
6400          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6401          * as we enter this code.)
6402          */
6403         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6404                 spin_lock_irqsave(&h->lock, flags);
6405                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6406                 spin_unlock_irqrestore(&h->lock, flags);
6407                 if (!(doorbell_value & CFGTBL_ChangeReq))
6408                         break;
6409                 /* delay and try again */
6410                 usleep_range(10000, 20000);
6411         }
6412 }
6413 
6414 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6415 {
6416         u32 trans_support;
6417 
6418         trans_support = readl(&(h->cfgtable->TransportSupport));
6419         if (!(trans_support & SIMPLE_MODE))
6420                 return -ENOTSUPP;
6421 
6422         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6423 
6424         /* Update the field, and then ring the doorbell */
6425         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6426         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6427         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6428         hpsa_wait_for_mode_change_ack(h);
6429         print_cfg_table(&h->pdev->dev, h->cfgtable);
6430         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6431                 goto error;
6432         h->transMethod = CFGTBL_Trans_Simple;
6433         return 0;
6434 error:
6435         dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6436         return -ENODEV;
6437 }
6438 
6439 static int hpsa_pci_init(struct ctlr_info *h)
6440 {
6441         int prod_index, err;
6442 
6443         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6444         if (prod_index < 0)
6445                 return -ENODEV;
6446         h->product_name = products[prod_index].product_name;
6447         h->access = *(products[prod_index].access);
6448 
6449         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6450                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6451 
6452         err = pci_enable_device(h->pdev);
6453         if (err) {
6454                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6455                 return err;
6456         }
6457 
6458         /* Enable bus mastering (pci_disable_device may disable this) */
6459         pci_set_master(h->pdev);
6460 
6461         err = pci_request_regions(h->pdev, HPSA);
6462         if (err) {
6463                 dev_err(&h->pdev->dev,
6464                         "cannot obtain PCI resources, aborting\n");
6465                 return err;
6466         }
6467         hpsa_interrupt_mode(h);
6468         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6469         if (err)
6470                 goto err_out_free_res;
6471         h->vaddr = remap_pci_mem(h->paddr, 0x250);
6472         if (!h->vaddr) {
6473                 err = -ENOMEM;
6474                 goto err_out_free_res;
6475         }
6476         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6477         if (err)
6478                 goto err_out_free_res;
6479         err = hpsa_find_cfgtables(h);
6480         if (err)
6481                 goto err_out_free_res;
6482         hpsa_find_board_params(h);
6483 
6484         if (!hpsa_CISS_signature_present(h)) {
6485                 err = -ENODEV;
6486                 goto err_out_free_res;
6487         }
6488         hpsa_set_driver_support_bits(h);
6489         hpsa_p600_dma_prefetch_quirk(h);
6490         err = hpsa_enter_simple_mode(h);
6491         if (err)
6492                 goto err_out_free_res;
6493         return 0;
6494 
6495 err_out_free_res:
6496         if (h->transtable)
6497                 iounmap(h->transtable);
6498         if (h->cfgtable)
6499                 iounmap(h->cfgtable);
6500         if (h->vaddr)
6501                 iounmap(h->vaddr);
6502         pci_disable_device(h->pdev);
6503         pci_release_regions(h->pdev);
6504         return err;
6505 }
6506 
6507 static void hpsa_hba_inquiry(struct ctlr_info *h)
6508 {
6509         int rc;
6510 
6511 #define HBA_INQUIRY_BYTE_COUNT 64
6512         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6513         if (!h->hba_inquiry_data)
6514                 return;
6515         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6516                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6517         if (rc != 0) {
6518                 kfree(h->hba_inquiry_data);
6519                 h->hba_inquiry_data = NULL;
6520         }
6521 }
6522 
6523 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6524 {
6525         int rc, i;
6526 
6527         if (!reset_devices)
6528                 return 0;
6529 
6530         /* Reset the controller with a PCI power-cycle or via doorbell */
6531         rc = hpsa_kdump_hard_reset_controller(pdev);
6532 
6533         /* -ENOTSUPP here means we cannot reset the controller
6534          * but it's already (and still) up and running in
6535          * "performant mode".  Or, it might be 640x, which can't reset
6536          * due to concerns about shared bbwc between 6402/6404 pair.
6537          */
6538         if (rc == -ENOTSUPP)
6539                 return rc; /* just try to do the kdump anyhow. */
6540         if (rc)
6541                 return -ENODEV;
6542 
6543         /* Now try to get the controller to respond to a no-op */
6544         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6545         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6546                 if (hpsa_noop(pdev) == 0)
6547                         break;
6548                 else
6549                         dev_warn(&pdev->dev, "no-op failed%s\n",
6550                                         (i < 11 ? "; re-trying" : ""));
6551         }
6552         return 0;
6553 }
6554 
6555 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6556 {
6557         h->cmd_pool_bits = kzalloc(
6558                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6559                 sizeof(unsigned long), GFP_KERNEL);
6560         h->cmd_pool = pci_alloc_consistent(h->pdev,
6561                     h->nr_cmds * sizeof(*h->cmd_pool),
6562                     &(h->cmd_pool_dhandle));
6563         h->errinfo_pool = pci_alloc_consistent(h->pdev,
6564                     h->nr_cmds * sizeof(*h->errinfo_pool),
6565                     &(h->errinfo_pool_dhandle));
6566         if ((h->cmd_pool_bits == NULL)
6567             || (h->cmd_pool == NULL)
6568             || (h->errinfo_pool == NULL)) {
6569                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6570                 return -ENOMEM;
6571         }
6572         return 0;
6573 }
6574 
6575 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6576 {
6577         kfree(h->cmd_pool_bits);
6578         if (h->cmd_pool)
6579                 pci_free_consistent(h->pdev,
6580                             h->nr_cmds * sizeof(struct CommandList),
6581                             h->cmd_pool, h->cmd_pool_dhandle);
6582         if (h->ioaccel2_cmd_pool)
6583                 pci_free_consistent(h->pdev,
6584                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6585                         h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6586         if (h->errinfo_pool)
6587                 pci_free_consistent(h->pdev,
6588                             h->nr_cmds * sizeof(struct ErrorInfo),
6589                             h->errinfo_pool,
6590                             h->errinfo_pool_dhandle);
6591         if (h->ioaccel_cmd_pool)
6592                 pci_free_consistent(h->pdev,
6593                         h->nr_cmds * sizeof(struct io_accel1_cmd),
6594                         h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6595 }
6596 
6597 static int hpsa_request_irq(struct ctlr_info *h,
6598         irqreturn_t (*msixhandler)(int, void *),
6599         irqreturn_t (*intxhandler)(int, void *))
6600 {
6601         int rc, i;
6602 
6603         /*
6604          * initialize h->q[x] = x so that interrupt handlers know which
6605          * queue to process.
6606          */
6607         for (i = 0; i < MAX_REPLY_QUEUES; i++)
6608                 h->q[i] = (u8) i;
6609 
6610         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6611                 /* If performant mode and MSI-X, use multiple reply queues */
6612                 for (i = 0; i < h->msix_vector; i++)
6613                         rc = request_irq(h->intr[i], msixhandler,
6614                                         0, h->devname,
6615                                         &h->q[i]);
6616         } else {
6617                 /* Use single reply pool */
6618                 if (h->msix_vector > 0 || h->msi_vector) {
6619                         rc = request_irq(h->intr[h->intr_mode],
6620                                 msixhandler, 0, h->devname,
6621                                 &h->q[h->intr_mode]);
6622                 } else {
6623                         rc = request_irq(h->intr[h->intr_mode],
6624                                 intxhandler, IRQF_SHARED, h->devname,
6625                                 &h->q[h->intr_mode]);
6626                 }
6627         }
6628         if (rc) {
6629                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6630                        h->intr[h->intr_mode], h->devname);
6631                 return -ENODEV;
6632         }
6633         return 0;
6634 }
6635 
6636 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6637 {
6638         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6639                 HPSA_RESET_TYPE_CONTROLLER)) {
6640                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6641                 return -EIO;
6642         }
6643 
6644         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6645         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6646                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6647                 return -1;
6648         }
6649 
6650         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6651         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6652                 dev_warn(&h->pdev->dev, "Board failed to become ready "
6653                         "after soft reset.\n");
6654                 return -1;
6655         }
6656 
6657         return 0;
6658 }
6659 
6660 static void free_irqs(struct ctlr_info *h)
6661 {
6662         int i;
6663 
6664         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6665                 /* Single reply queue, only one irq to free */
6666                 i = h->intr_mode;
6667                 free_irq(h->intr[i], &h->q[i]);
6668                 return;
6669         }
6670 
6671         for (i = 0; i < h->msix_vector; i++)
6672                 free_irq(h->intr[i], &h->q[i]);
6673 }
6674 
6675 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6676 {
6677         free_irqs(h);
6678 #ifdef CONFIG_PCI_MSI
6679         if (h->msix_vector) {
6680                 if (h->pdev->msix_enabled)
6681                         pci_disable_msix(h->pdev);
6682         } else if (h->msi_vector) {
6683                 if (h->pdev->msi_enabled)
6684                         pci_disable_msi(h->pdev);
6685         }
6686 #endif /* CONFIG_PCI_MSI */
6687 }
6688 
6689 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6690 {
6691         hpsa_free_irqs_and_disable_msix(h);
6692         hpsa_free_sg_chain_blocks(h);
6693         hpsa_free_cmd_pool(h);
6694         kfree(h->ioaccel1_blockFetchTable);
6695         kfree(h->blockFetchTable);
6696         pci_free_consistent(h->pdev, h->reply_pool_size,
6697                 h->reply_pool, h->reply_pool_dhandle);
6698         if (h->vaddr)
6699                 iounmap(h->vaddr);
6700         if (h->transtable)
6701                 iounmap(h->transtable);
6702         if (h->cfgtable)
6703                 iounmap(h->cfgtable);
6704         pci_release_regions(h->pdev);
6705         kfree(h);
6706 }
6707 
6708 /* Called when controller lockup detected. */
6709 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6710 {
6711         struct CommandList *c = NULL;
6712 
6713         assert_spin_locked(&h->lock);
6714         /* Mark all outstanding commands as failed and complete them. */
6715         while (!list_empty(list)) {
6716                 c = list_entry(list->next, struct CommandList, list);
6717                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6718                 finish_cmd(c);
6719         }
6720 }
6721 
6722 static void controller_lockup_detected(struct ctlr_info *h)
6723 {
6724         unsigned long flags;
6725 
6726         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6727         spin_lock_irqsave(&h->lock, flags);
6728         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6729         spin_unlock_irqrestore(&h->lock, flags);
6730         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6731                         h->lockup_detected);
6732         pci_disable_device(h->pdev);
6733         spin_lock_irqsave(&h->lock, flags);
6734         fail_all_cmds_on_list(h, &h->cmpQ);
6735         fail_all_cmds_on_list(h, &h->reqQ);
6736         spin_unlock_irqrestore(&h->lock, flags);
6737 }
6738 
6739 static void detect_controller_lockup(struct ctlr_info *h)
6740 {
6741         u64 now;
6742         u32 heartbeat;
6743         unsigned long flags;
6744 
6745         now = get_jiffies_64();
6746         /* If we've received an interrupt recently, we're ok. */
6747         if (time_after64(h->last_intr_timestamp +
6748                                 (h->heartbeat_sample_interval), now))
6749                 return;
6750 
6751         /*
6752          * If we've already checked the heartbeat recently, we're ok.
6753          * This could happen if someone sends us a signal. We
6754          * otherwise don't care about signals in this thread.
6755          */
6756         if (time_after64(h->last_heartbeat_timestamp +
6757                                 (h->heartbeat_sample_interval), now))
6758                 return;
6759 
6760         /* If heartbeat has not changed since we last looked, we're not ok. */
6761         spin_lock_irqsave(&h->lock, flags);
6762         heartbeat = readl(&h->cfgtable->HeartBeat);
6763         spin_unlock_irqrestore(&h->lock, flags);
6764         if (h->last_heartbeat == heartbeat) {
6765                 controller_lockup_detected(h);
6766                 return;
6767         }
6768 
6769         /* We're ok. */
6770         h->last_heartbeat = heartbeat;
6771         h->last_heartbeat_timestamp = now;
6772 }
6773 
6774 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6775 {
6776         int i;
6777         char *event_type;
6778 
6779         /* Clear the driver-requested rescan flag */
6780         h->drv_req_rescan = 0;
6781 
6782         /* Ask the controller to clear the events we're handling. */
6783         if ((h->transMethod & (CFGTBL_Trans_io_accel1
6784                         | CFGTBL_Trans_io_accel2)) &&
6785                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6786                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6787 
6788                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6789                         event_type = "state change";
6790                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6791                         event_type = "configuration change";
6792                 /* Stop sending new RAID offload reqs via the IO accelerator */
6793                 scsi_block_requests(h->scsi_host);
6794                 for (i = 0; i < h->ndevices; i++)
6795                         h->dev[i]->offload_enabled = 0;
6796                 hpsa_drain_accel_commands(h);
6797                 /* Set 'accelerator path config change' bit */
6798                 dev_warn(&h->pdev->dev,
6799                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6800                         h->events, event_type);
6801                 writel(h->events, &(h->cfgtable->clear_event_notify));
6802                 /* Set the "clear event notify field update" bit 6 */
6803                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6804                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6805                 hpsa_wait_for_clear_event_notify_ack(h);
6806                 scsi_unblock_requests(h->scsi_host);
6807         } else {
6808                 /* Acknowledge controller notification events. */
6809                 writel(h->events, &(h->cfgtable->clear_event_notify));
6810                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6811                 hpsa_wait_for_clear_event_notify_ack(h);
6812 #if 0
6813                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6814                 hpsa_wait_for_mode_change_ack(h);
6815 #endif
6816         }
6817         return;
6818 }
6819 
6820 /* Check a register on the controller to see if there are configuration
6821  * changes (added/changed/removed logical drives, etc.) which mean that
6822  * we should rescan the controller for devices.
6823  * Also check flag for driver-initiated rescan.
6824  */
6825 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6826 {
6827         if (h->drv_req_rescan)
6828                 return 1;
6829 
6830         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6831                 return 0;
6832 
6833         h->events = readl(&(h->cfgtable->event_notify));
6834         return h->events & RESCAN_REQUIRED_EVENT_BITS;
6835 }
6836 
6837 /*
6838  * Check if any of the offline devices have become ready
6839  */
6840 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6841 {
6842         unsigned long flags;
6843         struct offline_device_entry *d;
6844         struct list_head *this, *tmp;
6845 
6846         spin_lock_irqsave(&h->offline_device_lock, flags);
6847         list_for_each_safe(this, tmp, &h->offline_device_list) {
6848                 d = list_entry(this, struct offline_device_entry,
6849                                 offline_list);
6850                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6851                 if (!hpsa_volume_offline(h, d->scsi3addr))
6852                         return 1;
6853                 spin_lock_irqsave(&h->offline_device_lock, flags);
6854         }
6855         spin_unlock_irqrestore(&h->offline_device_lock, flags);
6856         return 0;
6857 }
6858 
6859 
6860 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6861 {
6862         unsigned long flags;
6863         struct ctlr_info *h = container_of(to_delayed_work(work),
6864                                         struct ctlr_info, monitor_ctlr_work);
6865         detect_controller_lockup(h);
6866         if (h->lockup_detected)
6867                 return;
6868 
6869         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6870                 scsi_host_get(h->scsi_host);
6871                 h->drv_req_rescan = 0;
6872                 hpsa_ack_ctlr_events(h);
6873                 hpsa_scan_start(h->scsi_host);
6874                 scsi_host_put(h->scsi_host);
6875         }
6876 
6877         spin_lock_irqsave(&h->lock, flags);
6878         if (h->remove_in_progress) {
6879                 spin_unlock_irqrestore(&h->lock, flags);
6880                 return;
6881         }
6882         schedule_delayed_work(&h->monitor_ctlr_work,
6883                                 h->heartbeat_sample_interval);
6884         spin_unlock_irqrestore(&h->lock, flags);
6885 }
6886 
6887 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6888 {
6889         int dac, rc;
6890         struct ctlr_info *h;
6891         int try_soft_reset = 0;
6892         unsigned long flags;
6893 
6894         if (number_of_controllers == 0)
6895                 printk(KERN_INFO DRIVER_NAME "\n");
6896 
6897         rc = hpsa_init_reset_devices(pdev);
6898         if (rc) {
6899                 if (rc != -ENOTSUPP)
6900                         return rc;
6901                 /* If the reset fails in a particular way (it has no way to do
6902                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
6903                  * a soft reset once we get the controller configured up to the
6904                  * point that it can accept a command.
6905                  */
6906                 try_soft_reset = 1;
6907                 rc = 0;
6908         }
6909 
6910 reinit_after_soft_reset:
6911 
6912         /* Command structures must be aligned on a 32-byte boundary because
6913          * the 5 lower bits of the address are used by the hardware. and by
6914          * the driver.  See comments in hpsa.h for more info.
6915          */
6916 #define COMMANDLIST_ALIGNMENT 128
6917         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6918         h = kzalloc(sizeof(*h), GFP_KERNEL);
6919         if (!h)
6920                 return -ENOMEM;
6921 
6922         h->pdev = pdev;
6923         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6924         INIT_LIST_HEAD(&h->cmpQ);
6925         INIT_LIST_HEAD(&h->reqQ);
6926         INIT_LIST_HEAD(&h->offline_device_list);
6927         spin_lock_init(&h->lock);
6928         spin_lock_init(&h->offline_device_lock);
6929         spin_lock_init(&h->scan_lock);
6930         spin_lock_init(&h->passthru_count_lock);
6931         rc = hpsa_pci_init(h);
6932         if (rc != 0)
6933                 goto clean1;
6934 
6935         sprintf(h->devname, HPSA "%d", number_of_controllers);
6936         h->ctlr = number_of_controllers;
6937         number_of_controllers++;
6938 
6939         /* configure PCI DMA stuff */
6940         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
6941         if (rc == 0) {
6942                 dac = 1;
6943         } else {
6944                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
6945                 if (rc == 0) {
6946                         dac = 0;
6947                 } else {
6948                         dev_err(&pdev->dev, "no suitable DMA available\n");
6949                         goto clean1;
6950                 }
6951         }
6952 
6953         /* make sure the board interrupts are off */
6954         h->access.set_intr_mask(h, HPSA_INTR_OFF);
6955 
6956         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
6957                 goto clean2;
6958         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
6959                h->devname, pdev->device,
6960                h->intr[h->intr_mode], dac ? "" : " not");
6961         if (hpsa_allocate_cmd_pool(h))
6962                 goto clean4;
6963         if (hpsa_allocate_sg_chain_blocks(h))
6964                 goto clean4;
6965         init_waitqueue_head(&h->scan_wait_queue);
6966         h->scan_finished = 1; /* no scan currently in progress */
6967 
6968         pci_set_drvdata(pdev, h);
6969         h->ndevices = 0;
6970         h->hba_mode_enabled = 0;
6971         h->scsi_host = NULL;
6972         spin_lock_init(&h->devlock);
6973         hpsa_put_ctlr_into_performant_mode(h);
6974 
6975         /* At this point, the controller is ready to take commands.
6976          * Now, if reset_devices and the hard reset didn't work, try
6977          * the soft reset and see if that works.
6978          */
6979         if (try_soft_reset) {
6980 
6981                 /* This is kind of gross.  We may or may not get a completion
6982                  * from the soft reset command, and if we do, then the value
6983                  * from the fifo may or may not be valid.  So, we wait 10 secs
6984                  * after the reset throwing away any completions we get during
6985                  * that time.  Unregister the interrupt handler and register
6986                  * fake ones to scoop up any residual completions.
6987                  */
6988                 spin_lock_irqsave(&h->lock, flags);
6989                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6990                 spin_unlock_irqrestore(&h->lock, flags);
6991                 free_irqs(h);
6992                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
6993                                         hpsa_intx_discard_completions);
6994                 if (rc) {
6995                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
6996                                 "soft reset.\n");
6997                         goto clean4;
6998                 }
6999 
7000                 rc = hpsa_kdump_soft_reset(h);
7001                 if (rc)
7002                         /* Neither hard nor soft reset worked, we're hosed. */
7003                         goto clean4;
7004 
7005                 dev_info(&h->pdev->dev, "Board READY.\n");
7006                 dev_info(&h->pdev->dev,
7007                         "Waiting for stale completions to drain.\n");
7008                 h->access.set_intr_mask(h, HPSA_INTR_ON);
7009                 msleep(10000);
7010                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7011 
7012                 rc = controller_reset_failed(h->cfgtable);
7013                 if (rc)
7014                         dev_info(&h->pdev->dev,
7015                                 "Soft reset appears to have failed.\n");
7016 
7017                 /* since the controller's reset, we have to go back and re-init
7018                  * everything.  Easiest to just forget what we've done and do it
7019                  * all over again.
7020                  */
7021                 hpsa_undo_allocations_after_kdump_soft_reset(h);
7022                 try_soft_reset = 0;
7023                 if (rc)
7024                         /* don't go to clean4, we already unallocated */
7025                         return -ENODEV;
7026 
7027                 goto reinit_after_soft_reset;
7028         }
7029 
7030                 /* Enable Accelerated IO path at driver layer */
7031                 h->acciopath_status = 1;
7032 
7033         h->drv_req_rescan = 0;
7034 
7035         /* Turn the interrupts on so we can service requests */
7036         h->access.set_intr_mask(h, HPSA_INTR_ON);
7037 
7038         hpsa_hba_inquiry(h);
7039         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
7040 
7041         /* Monitor the controller for firmware lockups */
7042         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7043         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7044         schedule_delayed_work(&h->monitor_ctlr_work,
7045                                 h->heartbeat_sample_interval);
7046         return 0;
7047 
7048 clean4:
7049         hpsa_free_sg_chain_blocks(h);
7050         hpsa_free_cmd_pool(h);
7051         free_irqs(h);
7052 clean2:
7053 clean1:
7054         kfree(h);
7055         return rc;
7056 }
7057 
7058 static void hpsa_flush_cache(struct ctlr_info *h)
7059 {
7060         char *flush_buf;
7061         struct CommandList *c;
7062         unsigned long flags;
7063 
7064         /* Don't bother trying to flush the cache if locked up */
7065         spin_lock_irqsave(&h->lock, flags);
7066         if (unlikely(h->lockup_detected)) {
7067                 spin_unlock_irqrestore(&h->lock, flags);
7068                 return;
7069         }
7070         spin_unlock_irqrestore(&h->lock, flags);
7071 
7072         flush_buf = kzalloc(4, GFP_KERNEL);
7073         if (!flush_buf)
7074                 return;
7075 
7076         c = cmd_special_alloc(h);
7077         if (!c) {
7078                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7079                 goto out_of_memory;
7080         }
7081         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7082                 RAID_CTLR_LUNID, TYPE_CMD)) {
7083                 goto out;
7084         }
7085         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7086         if (c->err_info->CommandStatus != 0)
7087 out:
7088                 dev_warn(&h->pdev->dev,
7089                         "error flushing cache on controller\n");
7090         cmd_special_free(h, c);
7091 out_of_memory:
7092         kfree(flush_buf);
7093 }
7094 
7095 static void hpsa_shutdown(struct pci_dev *pdev)
7096 {
7097         struct ctlr_info *h;
7098 
7099         h = pci_get_drvdata(pdev);
7100         /* Turn board interrupts off  and send the flush cache command
7101          * sendcmd will turn off interrupt, and send the flush...
7102          * To write all data in the battery backed cache to disks
7103          */
7104         hpsa_flush_cache(h);
7105         h->access.set_intr_mask(h, HPSA_INTR_OFF);
7106         hpsa_free_irqs_and_disable_msix(h);
7107 }
7108 
7109 static void hpsa_free_device_info(struct ctlr_info *h)
7110 {
7111         int i;
7112 
7113         for (i = 0; i < h->ndevices; i++)
7114                 kfree(h->dev[i]);
7115 }
7116 
7117 static void hpsa_remove_one(struct pci_dev *pdev)
7118 {
7119         struct ctlr_info *h;
7120         unsigned long flags;
7121 
7122         if (pci_get_drvdata(pdev) == NULL) {
7123                 dev_err(&pdev->dev, "unable to remove device\n");
7124                 return;
7125         }
7126         h = pci_get_drvdata(pdev);
7127 
7128         /* Get rid of any controller monitoring work items */
7129         spin_lock_irqsave(&h->lock, flags);
7130         h->remove_in_progress = 1;
7131         cancel_delayed_work(&h->monitor_ctlr_work);
7132         spin_unlock_irqrestore(&h->lock, flags);
7133 
7134         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
7135         hpsa_shutdown(pdev);
7136         iounmap(h->vaddr);
7137         iounmap(h->transtable);
7138         iounmap(h->cfgtable);
7139         hpsa_free_device_info(h);
7140         hpsa_free_sg_chain_blocks(h);
7141         pci_free_consistent(h->pdev,
7142                 h->nr_cmds * sizeof(struct CommandList),
7143                 h->cmd_pool, h->cmd_pool_dhandle);
7144         pci_free_consistent(h->pdev,
7145                 h->nr_cmds * sizeof(struct ErrorInfo),
7146                 h->errinfo_pool, h->errinfo_pool_dhandle);
7147         pci_free_consistent(h->pdev, h->reply_pool_size,
7148                 h->reply_pool, h->reply_pool_dhandle);
7149         kfree(h->cmd_pool_bits);
7150         kfree(h->blockFetchTable);
7151         kfree(h->ioaccel1_blockFetchTable);
7152         kfree(h->ioaccel2_blockFetchTable);
7153         kfree(h->hba_inquiry_data);
7154         pci_disable_device(pdev);
7155         pci_release_regions(pdev);
7156         kfree(h);
7157 }
7158 
7159 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7160         __attribute__((unused)) pm_message_t state)
7161 {
7162         return -ENOSYS;
7163 }
7164 
7165 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7166 {
7167         return -ENOSYS;
7168 }
7169 
7170 static struct pci_driver hpsa_pci_driver = {
7171         .name = HPSA,
7172         .probe = hpsa_init_one,
7173         .remove = hpsa_remove_one,
7174         .id_table = hpsa_pci_device_id, /* id_table */
7175         .shutdown = hpsa_shutdown,
7176         .suspend = hpsa_suspend,
7177         .resume = hpsa_resume,
7178 };
7179 
7180 /* Fill in bucket_map[], given nsgs (the max number of
7181  * scatter gather elements supported) and bucket[],
7182  * which is an array of 8 integers.  The bucket[] array
7183  * contains 8 different DMA transfer sizes (in 16
7184  * byte increments) which the controller uses to fetch
7185  * commands.  This function fills in bucket_map[], which
7186  * maps a given number of scatter gather elements to one of
7187  * the 8 DMA transfer sizes.  The point of it is to allow the
7188  * controller to only do as much DMA as needed to fetch the
7189  * command, with the DMA transfer size encoded in the lower
7190  * bits of the command address.
7191  */
7192 static void  calc_bucket_map(int bucket[], int num_buckets,
7193         int nsgs, int min_blocks, int *bucket_map)
7194 {
7195         int i, j, b, size;
7196 
7197         /* Note, bucket_map must have nsgs+1 entries. */
7198         for (i = 0; i <= nsgs; i++) {
7199                 /* Compute size of a command with i SG entries */
7200                 size = i + min_blocks;
7201                 b = num_buckets; /* Assume the biggest bucket */
7202                 /* Find the bucket that is just big enough */
7203                 for (j = 0; j < num_buckets; j++) {
7204                         if (bucket[j] >= size) {
7205                                 b = j;
7206                                 break;
7207                         }
7208                 }
7209                 /* for a command with i SG entries, use bucket b. */
7210                 bucket_map[i] = b;
7211         }
7212 }
7213 
7214 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7215 {
7216         int i;
7217         unsigned long register_value;
7218         unsigned long transMethod = CFGTBL_Trans_Performant |
7219                         (trans_support & CFGTBL_Trans_use_short_tags) |
7220                                 CFGTBL_Trans_enable_directed_msix |
7221                         (trans_support & (CFGTBL_Trans_io_accel1 |
7222                                 CFGTBL_Trans_io_accel2));
7223         struct access_method access = SA5_performant_access;
7224 
7225         /* This is a bit complicated.  There are 8 registers on
7226          * the controller which we write to to tell it 8 different
7227          * sizes of commands which there may be.  It's a way of
7228          * reducing the DMA done to fetch each command.  Encoded into
7229          * each command's tag are 3 bits which communicate to the controller
7230          * which of the eight sizes that command fits within.  The size of
7231          * each command depends on how many scatter gather entries there are.
7232          * Each SG entry requires 16 bytes.  The eight registers are programmed
7233          * with the number of 16-byte blocks a command of that size requires.
7234          * The smallest command possible requires 5 such 16 byte blocks.
7235          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7236          * blocks.  Note, this only extends to the SG entries contained
7237          * within the command block, and does not extend to chained blocks
7238          * of SG elements.   bft[] contains the eight values we write to
7239          * the registers.  They are not evenly distributed, but have more
7240          * sizes for small commands, and fewer sizes for larger commands.
7241          */
7242         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7243 #define MIN_IOACCEL2_BFT_ENTRY 5
7244 #define HPSA_IOACCEL2_HEADER_SZ 4
7245         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7246                         13, 14, 15, 16, 17, 18, 19,
7247                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7248         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7249         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7250         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7251                                  16 * MIN_IOACCEL2_BFT_ENTRY);
7252         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7253         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7254         /*  5 = 1 s/g entry or 4k
7255          *  6 = 2 s/g entry or 8k
7256          *  8 = 4 s/g entry or 16k
7257          * 10 = 6 s/g entry or 24k
7258          */
7259 
7260         /* Controller spec: zero out this buffer. */
7261         memset(h->reply_pool, 0, h->reply_pool_size);
7262 
7263         bft[7] = SG_ENTRIES_IN_CMD + 4;
7264         calc_bucket_map(bft, ARRAY_SIZE(bft),
7265                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7266         for (i = 0; i < 8; i++)
7267                 writel(bft[i], &h->transtable->BlockFetch[i]);
7268 
7269         /* size of controller ring buffer */
7270         writel(h->max_commands, &h->transtable->RepQSize);
7271         writel(h->nreply_queues, &h->transtable->RepQCount);
7272         writel(0, &h->transtable->RepQCtrAddrLow32);
7273         writel(0, &h->transtable->RepQCtrAddrHigh32);
7274 
7275         for (i = 0; i < h->nreply_queues; i++) {
7276                 writel(0, &h->transtable->RepQAddr[i].upper);
7277                 writel(h->reply_pool_dhandle +
7278                         (h->max_commands * sizeof(u64) * i),
7279                         &h->transtable->RepQAddr[i].lower);
7280         }
7281 
7282         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7283         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7284         /*
7285          * enable outbound interrupt coalescing in accelerator mode;
7286          */
7287         if (trans_support & CFGTBL_Trans_io_accel1) {
7288                 access = SA5_ioaccel_mode1_access;
7289                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7290                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7291         } else {