Version:  2.0.40 2.2.26 2.4.37 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2

Linux/drivers/scsi/hpsa.c

  1 /*
  2  *    Disk Array driver for HP Smart Array SAS controllers
  3  *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
  4  *
  5  *    This program is free software; you can redistribute it and/or modify
  6  *    it under the terms of the GNU General Public License as published by
  7  *    the Free Software Foundation; version 2 of the License.
  8  *
  9  *    This program is distributed in the hope that it will be useful,
 10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 13  *
 14  *    You should have received a copy of the GNU General Public License
 15  *    along with this program; if not, write to the Free Software
 16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 17  *
 18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 19  *
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/interrupt.h>
 24 #include <linux/types.h>
 25 #include <linux/pci.h>
 26 #include <linux/pci-aspm.h>
 27 #include <linux/kernel.h>
 28 #include <linux/slab.h>
 29 #include <linux/delay.h>
 30 #include <linux/fs.h>
 31 #include <linux/timer.h>
 32 #include <linux/init.h>
 33 #include <linux/spinlock.h>
 34 #include <linux/compat.h>
 35 #include <linux/blktrace_api.h>
 36 #include <linux/uaccess.h>
 37 #include <linux/io.h>
 38 #include <linux/dma-mapping.h>
 39 #include <linux/completion.h>
 40 #include <linux/moduleparam.h>
 41 #include <scsi/scsi.h>
 42 #include <scsi/scsi_cmnd.h>
 43 #include <scsi/scsi_device.h>
 44 #include <scsi/scsi_host.h>
 45 #include <scsi/scsi_tcq.h>
 46 #include <scsi/scsi_eh.h>
 47 #include <scsi/scsi_dbg.h>
 48 #include <linux/cciss_ioctl.h>
 49 #include <linux/string.h>
 50 #include <linux/bitmap.h>
 51 #include <linux/atomic.h>
 52 #include <linux/jiffies.h>
 53 #include <linux/percpu-defs.h>
 54 #include <linux/percpu.h>
 55 #include <asm/unaligned.h>
 56 #include <asm/div64.h>
 57 #include "hpsa_cmd.h"
 58 #include "hpsa.h"
 59 
 60 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
 61 #define HPSA_DRIVER_VERSION "3.4.10-0"
 62 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
 63 #define HPSA "hpsa"
 64 
 65 /* How long to wait for CISS doorbell communication */
 66 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
 67 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
 68 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
 69 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
 70 #define MAX_IOCTL_CONFIG_WAIT 1000
 71 
 72 /*define how many times we will try a command because of bus resets */
 73 #define MAX_CMD_RETRIES 3
 74 
 75 /* Embedded module documentation macros - see modules.h */
 76 MODULE_AUTHOR("Hewlett-Packard Company");
 77 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
 78         HPSA_DRIVER_VERSION);
 79 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
 80 MODULE_VERSION(HPSA_DRIVER_VERSION);
 81 MODULE_LICENSE("GPL");
 82 
 83 static int hpsa_allow_any;
 84 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
 85 MODULE_PARM_DESC(hpsa_allow_any,
 86                 "Allow hpsa driver to access unknown HP Smart Array hardware");
 87 static int hpsa_simple_mode;
 88 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
 89 MODULE_PARM_DESC(hpsa_simple_mode,
 90         "Use 'simple mode' rather than 'performant mode'");
 91 
 92 /* define the PCI info for the cards we can control */
 93 static const struct pci_device_id hpsa_pci_device_id[] = {
 94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
 95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
 96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
 97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
 98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
134         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
135         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
136         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
137         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
138         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
139         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
140         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
141                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
142         {0,}
143 };
144 
145 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
146 
147 /*  board_id = Subsystem Device ID & Vendor ID
148  *  product = Marketing Name for the board
149  *  access = Address of the struct of function pointers
150  */
151 static struct board_type products[] = {
152         {0x3241103C, "Smart Array P212", &SA5_access},
153         {0x3243103C, "Smart Array P410", &SA5_access},
154         {0x3245103C, "Smart Array P410i", &SA5_access},
155         {0x3247103C, "Smart Array P411", &SA5_access},
156         {0x3249103C, "Smart Array P812", &SA5_access},
157         {0x324A103C, "Smart Array P712m", &SA5_access},
158         {0x324B103C, "Smart Array P711m", &SA5_access},
159         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
160         {0x3350103C, "Smart Array P222", &SA5_access},
161         {0x3351103C, "Smart Array P420", &SA5_access},
162         {0x3352103C, "Smart Array P421", &SA5_access},
163         {0x3353103C, "Smart Array P822", &SA5_access},
164         {0x3354103C, "Smart Array P420i", &SA5_access},
165         {0x3355103C, "Smart Array P220i", &SA5_access},
166         {0x3356103C, "Smart Array P721m", &SA5_access},
167         {0x1921103C, "Smart Array P830i", &SA5_access},
168         {0x1922103C, "Smart Array P430", &SA5_access},
169         {0x1923103C, "Smart Array P431", &SA5_access},
170         {0x1924103C, "Smart Array P830", &SA5_access},
171         {0x1926103C, "Smart Array P731m", &SA5_access},
172         {0x1928103C, "Smart Array P230i", &SA5_access},
173         {0x1929103C, "Smart Array P530", &SA5_access},
174         {0x21BD103C, "Smart Array P244br", &SA5_access},
175         {0x21BE103C, "Smart Array P741m", &SA5_access},
176         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
177         {0x21C0103C, "Smart Array P440ar", &SA5_access},
178         {0x21C1103C, "Smart Array P840ar", &SA5_access},
179         {0x21C2103C, "Smart Array P440", &SA5_access},
180         {0x21C3103C, "Smart Array P441", &SA5_access},
181         {0x21C4103C, "Smart Array", &SA5_access},
182         {0x21C5103C, "Smart Array P841", &SA5_access},
183         {0x21C6103C, "Smart HBA H244br", &SA5_access},
184         {0x21C7103C, "Smart HBA H240", &SA5_access},
185         {0x21C8103C, "Smart HBA H241", &SA5_access},
186         {0x21C9103C, "Smart Array", &SA5_access},
187         {0x21CA103C, "Smart Array P246br", &SA5_access},
188         {0x21CB103C, "Smart Array P840", &SA5_access},
189         {0x21CC103C, "Smart Array", &SA5_access},
190         {0x21CD103C, "Smart Array", &SA5_access},
191         {0x21CE103C, "Smart HBA", &SA5_access},
192         {0x05809005, "SmartHBA-SA", &SA5_access},
193         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
194         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
195         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
196         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
197         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
198         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
199 };
200 
201 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
202 static const struct scsi_cmnd hpsa_cmd_busy;
203 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
204 static const struct scsi_cmnd hpsa_cmd_idle;
205 static int number_of_controllers;
206 
207 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
208 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
209 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
210 
211 #ifdef CONFIG_COMPAT
212 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
213         void __user *arg);
214 #endif
215 
216 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
217 static struct CommandList *cmd_alloc(struct ctlr_info *h);
218 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
219 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
220                                             struct scsi_cmnd *scmd);
221 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
222         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
223         int cmd_type);
224 static void hpsa_free_cmd_pool(struct ctlr_info *h);
225 #define VPD_PAGE (1 << 8)
226 
227 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
228 static void hpsa_scan_start(struct Scsi_Host *);
229 static int hpsa_scan_finished(struct Scsi_Host *sh,
230         unsigned long elapsed_time);
231 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
232 
233 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
234 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
235 static int hpsa_slave_alloc(struct scsi_device *sdev);
236 static int hpsa_slave_configure(struct scsi_device *sdev);
237 static void hpsa_slave_destroy(struct scsi_device *sdev);
238 
239 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
240 static int check_for_unit_attention(struct ctlr_info *h,
241         struct CommandList *c);
242 static void check_ioctl_unit_attention(struct ctlr_info *h,
243         struct CommandList *c);
244 /* performant mode helper functions */
245 static void calc_bucket_map(int *bucket, int num_buckets,
246         int nsgs, int min_blocks, u32 *bucket_map);
247 static void hpsa_free_performant_mode(struct ctlr_info *h);
248 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
249 static inline u32 next_command(struct ctlr_info *h, u8 q);
250 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
251                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
252                                u64 *cfg_offset);
253 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
254                                     unsigned long *memory_bar);
255 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
256 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
257                                      int wait_for_ready);
258 static inline void finish_cmd(struct CommandList *c);
259 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
260 #define BOARD_NOT_READY 0
261 #define BOARD_READY 1
262 static void hpsa_drain_accel_commands(struct ctlr_info *h);
263 static void hpsa_flush_cache(struct ctlr_info *h);
264 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
265         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
266         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
267 static void hpsa_command_resubmit_worker(struct work_struct *work);
268 static u32 lockup_detected(struct ctlr_info *h);
269 static int detect_controller_lockup(struct ctlr_info *h);
270 
271 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
272 {
273         unsigned long *priv = shost_priv(sdev->host);
274         return (struct ctlr_info *) *priv;
275 }
276 
277 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
278 {
279         unsigned long *priv = shost_priv(sh);
280         return (struct ctlr_info *) *priv;
281 }
282 
283 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
284 {
285         return c->scsi_cmd == SCSI_CMD_IDLE;
286 }
287 
288 static inline bool hpsa_is_pending_event(struct CommandList *c)
289 {
290         return c->abort_pending || c->reset_pending;
291 }
292 
293 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
294 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
295                         u8 *sense_key, u8 *asc, u8 *ascq)
296 {
297         struct scsi_sense_hdr sshdr;
298         bool rc;
299 
300         *sense_key = -1;
301         *asc = -1;
302         *ascq = -1;
303 
304         if (sense_data_len < 1)
305                 return;
306 
307         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
308         if (rc) {
309                 *sense_key = sshdr.sense_key;
310                 *asc = sshdr.asc;
311                 *ascq = sshdr.ascq;
312         }
313 }
314 
315 static int check_for_unit_attention(struct ctlr_info *h,
316         struct CommandList *c)
317 {
318         u8 sense_key, asc, ascq;
319         int sense_len;
320 
321         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
322                 sense_len = sizeof(c->err_info->SenseInfo);
323         else
324                 sense_len = c->err_info->SenseLen;
325 
326         decode_sense_data(c->err_info->SenseInfo, sense_len,
327                                 &sense_key, &asc, &ascq);
328         if (sense_key != UNIT_ATTENTION || asc == -1)
329                 return 0;
330 
331         switch (asc) {
332         case STATE_CHANGED:
333                 dev_warn(&h->pdev->dev,
334                         "%s: a state change detected, command retried\n",
335                         h->devname);
336                 break;
337         case LUN_FAILED:
338                 dev_warn(&h->pdev->dev,
339                         "%s: LUN failure detected\n", h->devname);
340                 break;
341         case REPORT_LUNS_CHANGED:
342                 dev_warn(&h->pdev->dev,
343                         "%s: report LUN data changed\n", h->devname);
344         /*
345          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
346          * target (array) devices.
347          */
348                 break;
349         case POWER_OR_RESET:
350                 dev_warn(&h->pdev->dev,
351                         "%s: a power on or device reset detected\n",
352                         h->devname);
353                 break;
354         case UNIT_ATTENTION_CLEARED:
355                 dev_warn(&h->pdev->dev,
356                         "%s: unit attention cleared by another initiator\n",
357                         h->devname);
358                 break;
359         default:
360                 dev_warn(&h->pdev->dev,
361                         "%s: unknown unit attention detected\n",
362                         h->devname);
363                 break;
364         }
365         return 1;
366 }
367 
368 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
369 {
370         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
371                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
372                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
373                 return 0;
374         dev_warn(&h->pdev->dev, HPSA "device busy");
375         return 1;
376 }
377 
378 static u32 lockup_detected(struct ctlr_info *h);
379 static ssize_t host_show_lockup_detected(struct device *dev,
380                 struct device_attribute *attr, char *buf)
381 {
382         int ld;
383         struct ctlr_info *h;
384         struct Scsi_Host *shost = class_to_shost(dev);
385 
386         h = shost_to_hba(shost);
387         ld = lockup_detected(h);
388 
389         return sprintf(buf, "ld=%d\n", ld);
390 }
391 
392 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
393                                          struct device_attribute *attr,
394                                          const char *buf, size_t count)
395 {
396         int status, len;
397         struct ctlr_info *h;
398         struct Scsi_Host *shost = class_to_shost(dev);
399         char tmpbuf[10];
400 
401         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
402                 return -EACCES;
403         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
404         strncpy(tmpbuf, buf, len);
405         tmpbuf[len] = '\0';
406         if (sscanf(tmpbuf, "%d", &status) != 1)
407                 return -EINVAL;
408         h = shost_to_hba(shost);
409         h->acciopath_status = !!status;
410         dev_warn(&h->pdev->dev,
411                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
412                 h->acciopath_status ? "enabled" : "disabled");
413         return count;
414 }
415 
416 static ssize_t host_store_raid_offload_debug(struct device *dev,
417                                          struct device_attribute *attr,
418                                          const char *buf, size_t count)
419 {
420         int debug_level, len;
421         struct ctlr_info *h;
422         struct Scsi_Host *shost = class_to_shost(dev);
423         char tmpbuf[10];
424 
425         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
426                 return -EACCES;
427         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
428         strncpy(tmpbuf, buf, len);
429         tmpbuf[len] = '\0';
430         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
431                 return -EINVAL;
432         if (debug_level < 0)
433                 debug_level = 0;
434         h = shost_to_hba(shost);
435         h->raid_offload_debug = debug_level;
436         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
437                 h->raid_offload_debug);
438         return count;
439 }
440 
441 static ssize_t host_store_rescan(struct device *dev,
442                                  struct device_attribute *attr,
443                                  const char *buf, size_t count)
444 {
445         struct ctlr_info *h;
446         struct Scsi_Host *shost = class_to_shost(dev);
447         h = shost_to_hba(shost);
448         hpsa_scan_start(h->scsi_host);
449         return count;
450 }
451 
452 static ssize_t host_show_firmware_revision(struct device *dev,
453              struct device_attribute *attr, char *buf)
454 {
455         struct ctlr_info *h;
456         struct Scsi_Host *shost = class_to_shost(dev);
457         unsigned char *fwrev;
458 
459         h = shost_to_hba(shost);
460         if (!h->hba_inquiry_data)
461                 return 0;
462         fwrev = &h->hba_inquiry_data[32];
463         return snprintf(buf, 20, "%c%c%c%c\n",
464                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
465 }
466 
467 static ssize_t host_show_commands_outstanding(struct device *dev,
468              struct device_attribute *attr, char *buf)
469 {
470         struct Scsi_Host *shost = class_to_shost(dev);
471         struct ctlr_info *h = shost_to_hba(shost);
472 
473         return snprintf(buf, 20, "%d\n",
474                         atomic_read(&h->commands_outstanding));
475 }
476 
477 static ssize_t host_show_transport_mode(struct device *dev,
478         struct device_attribute *attr, char *buf)
479 {
480         struct ctlr_info *h;
481         struct Scsi_Host *shost = class_to_shost(dev);
482 
483         h = shost_to_hba(shost);
484         return snprintf(buf, 20, "%s\n",
485                 h->transMethod & CFGTBL_Trans_Performant ?
486                         "performant" : "simple");
487 }
488 
489 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
490         struct device_attribute *attr, char *buf)
491 {
492         struct ctlr_info *h;
493         struct Scsi_Host *shost = class_to_shost(dev);
494 
495         h = shost_to_hba(shost);
496         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
497                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
498 }
499 
500 /* List of controllers which cannot be hard reset on kexec with reset_devices */
501 static u32 unresettable_controller[] = {
502         0x324a103C, /* Smart Array P712m */
503         0x324b103C, /* Smart Array P711m */
504         0x3223103C, /* Smart Array P800 */
505         0x3234103C, /* Smart Array P400 */
506         0x3235103C, /* Smart Array P400i */
507         0x3211103C, /* Smart Array E200i */
508         0x3212103C, /* Smart Array E200 */
509         0x3213103C, /* Smart Array E200i */
510         0x3214103C, /* Smart Array E200i */
511         0x3215103C, /* Smart Array E200i */
512         0x3237103C, /* Smart Array E500 */
513         0x323D103C, /* Smart Array P700m */
514         0x40800E11, /* Smart Array 5i */
515         0x409C0E11, /* Smart Array 6400 */
516         0x409D0E11, /* Smart Array 6400 EM */
517         0x40700E11, /* Smart Array 5300 */
518         0x40820E11, /* Smart Array 532 */
519         0x40830E11, /* Smart Array 5312 */
520         0x409A0E11, /* Smart Array 641 */
521         0x409B0E11, /* Smart Array 642 */
522         0x40910E11, /* Smart Array 6i */
523 };
524 
525 /* List of controllers which cannot even be soft reset */
526 static u32 soft_unresettable_controller[] = {
527         0x40800E11, /* Smart Array 5i */
528         0x40700E11, /* Smart Array 5300 */
529         0x40820E11, /* Smart Array 532 */
530         0x40830E11, /* Smart Array 5312 */
531         0x409A0E11, /* Smart Array 641 */
532         0x409B0E11, /* Smart Array 642 */
533         0x40910E11, /* Smart Array 6i */
534         /* Exclude 640x boards.  These are two pci devices in one slot
535          * which share a battery backed cache module.  One controls the
536          * cache, the other accesses the cache through the one that controls
537          * it.  If we reset the one controlling the cache, the other will
538          * likely not be happy.  Just forbid resetting this conjoined mess.
539          * The 640x isn't really supported by hpsa anyway.
540          */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543 };
544 
545 static u32 needs_abort_tags_swizzled[] = {
546         0x323D103C, /* Smart Array P700m */
547         0x324a103C, /* Smart Array P712m */
548         0x324b103C, /* SmartArray P711m */
549 };
550 
551 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
552 {
553         int i;
554 
555         for (i = 0; i < nelems; i++)
556                 if (a[i] == board_id)
557                         return 1;
558         return 0;
559 }
560 
561 static int ctlr_is_hard_resettable(u32 board_id)
562 {
563         return !board_id_in_array(unresettable_controller,
564                         ARRAY_SIZE(unresettable_controller), board_id);
565 }
566 
567 static int ctlr_is_soft_resettable(u32 board_id)
568 {
569         return !board_id_in_array(soft_unresettable_controller,
570                         ARRAY_SIZE(soft_unresettable_controller), board_id);
571 }
572 
573 static int ctlr_is_resettable(u32 board_id)
574 {
575         return ctlr_is_hard_resettable(board_id) ||
576                 ctlr_is_soft_resettable(board_id);
577 }
578 
579 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
580 {
581         return board_id_in_array(needs_abort_tags_swizzled,
582                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
583 }
584 
585 static ssize_t host_show_resettable(struct device *dev,
586         struct device_attribute *attr, char *buf)
587 {
588         struct ctlr_info *h;
589         struct Scsi_Host *shost = class_to_shost(dev);
590 
591         h = shost_to_hba(shost);
592         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
593 }
594 
595 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
596 {
597         return (scsi3addr[3] & 0xC0) == 0x40;
598 }
599 
600 static const char * const raid_label[] = { "", "4", "1(+0)", "5", "5+1", "6",
601         "1(+0)ADM", "UNKNOWN"
602 };
603 #define HPSA_RAID_0     0
604 #define HPSA_RAID_4     1
605 #define HPSA_RAID_1     2       /* also used for RAID 10 */
606 #define HPSA_RAID_5     3       /* also used for RAID 50 */
607 #define HPSA_RAID_51    4
608 #define HPSA_RAID_6     5       /* also used for RAID 60 */
609 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
610 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
611 
612 static ssize_t raid_level_show(struct device *dev,
613              struct device_attribute *attr, char *buf)
614 {
615         ssize_t l = 0;
616         unsigned char rlevel;
617         struct ctlr_info *h;
618         struct scsi_device *sdev;
619         struct hpsa_scsi_dev_t *hdev;
620         unsigned long flags;
621 
622         sdev = to_scsi_device(dev);
623         h = sdev_to_hba(sdev);
624         spin_lock_irqsave(&h->lock, flags);
625         hdev = sdev->hostdata;
626         if (!hdev) {
627                 spin_unlock_irqrestore(&h->lock, flags);
628                 return -ENODEV;
629         }
630 
631         /* Is this even a logical drive? */
632         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
633                 spin_unlock_irqrestore(&h->lock, flags);
634                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
635                 return l;
636         }
637 
638         rlevel = hdev->raid_level;
639         spin_unlock_irqrestore(&h->lock, flags);
640         if (rlevel > RAID_UNKNOWN)
641                 rlevel = RAID_UNKNOWN;
642         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
643         return l;
644 }
645 
646 static ssize_t lunid_show(struct device *dev,
647              struct device_attribute *attr, char *buf)
648 {
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653         unsigned char lunid[8];
654 
655         sdev = to_scsi_device(dev);
656         h = sdev_to_hba(sdev);
657         spin_lock_irqsave(&h->lock, flags);
658         hdev = sdev->hostdata;
659         if (!hdev) {
660                 spin_unlock_irqrestore(&h->lock, flags);
661                 return -ENODEV;
662         }
663         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
664         spin_unlock_irqrestore(&h->lock, flags);
665         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
666                 lunid[0], lunid[1], lunid[2], lunid[3],
667                 lunid[4], lunid[5], lunid[6], lunid[7]);
668 }
669 
670 static ssize_t unique_id_show(struct device *dev,
671              struct device_attribute *attr, char *buf)
672 {
673         struct ctlr_info *h;
674         struct scsi_device *sdev;
675         struct hpsa_scsi_dev_t *hdev;
676         unsigned long flags;
677         unsigned char sn[16];
678 
679         sdev = to_scsi_device(dev);
680         h = sdev_to_hba(sdev);
681         spin_lock_irqsave(&h->lock, flags);
682         hdev = sdev->hostdata;
683         if (!hdev) {
684                 spin_unlock_irqrestore(&h->lock, flags);
685                 return -ENODEV;
686         }
687         memcpy(sn, hdev->device_id, sizeof(sn));
688         spin_unlock_irqrestore(&h->lock, flags);
689         return snprintf(buf, 16 * 2 + 2,
690                         "%02X%02X%02X%02X%02X%02X%02X%02X"
691                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
692                         sn[0], sn[1], sn[2], sn[3],
693                         sn[4], sn[5], sn[6], sn[7],
694                         sn[8], sn[9], sn[10], sn[11],
695                         sn[12], sn[13], sn[14], sn[15]);
696 }
697 
698 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
699              struct device_attribute *attr, char *buf)
700 {
701         struct ctlr_info *h;
702         struct scsi_device *sdev;
703         struct hpsa_scsi_dev_t *hdev;
704         unsigned long flags;
705         int offload_enabled;
706 
707         sdev = to_scsi_device(dev);
708         h = sdev_to_hba(sdev);
709         spin_lock_irqsave(&h->lock, flags);
710         hdev = sdev->hostdata;
711         if (!hdev) {
712                 spin_unlock_irqrestore(&h->lock, flags);
713                 return -ENODEV;
714         }
715         offload_enabled = hdev->offload_enabled;
716         spin_unlock_irqrestore(&h->lock, flags);
717         return snprintf(buf, 20, "%d\n", offload_enabled);
718 }
719 
720 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
721 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
722 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
723 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
724 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
725                         host_show_hp_ssd_smart_path_enabled, NULL);
726 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
727                 host_show_hp_ssd_smart_path_status,
728                 host_store_hp_ssd_smart_path_status);
729 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
730                         host_store_raid_offload_debug);
731 static DEVICE_ATTR(firmware_revision, S_IRUGO,
732         host_show_firmware_revision, NULL);
733 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
734         host_show_commands_outstanding, NULL);
735 static DEVICE_ATTR(transport_mode, S_IRUGO,
736         host_show_transport_mode, NULL);
737 static DEVICE_ATTR(resettable, S_IRUGO,
738         host_show_resettable, NULL);
739 static DEVICE_ATTR(lockup_detected, S_IRUGO,
740         host_show_lockup_detected, NULL);
741 
742 static struct device_attribute *hpsa_sdev_attrs[] = {
743         &dev_attr_raid_level,
744         &dev_attr_lunid,
745         &dev_attr_unique_id,
746         &dev_attr_hp_ssd_smart_path_enabled,
747         &dev_attr_lockup_detected,
748         NULL,
749 };
750 
751 static struct device_attribute *hpsa_shost_attrs[] = {
752         &dev_attr_rescan,
753         &dev_attr_firmware_revision,
754         &dev_attr_commands_outstanding,
755         &dev_attr_transport_mode,
756         &dev_attr_resettable,
757         &dev_attr_hp_ssd_smart_path_status,
758         &dev_attr_raid_offload_debug,
759         NULL,
760 };
761 
762 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
763                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
764 
765 static struct scsi_host_template hpsa_driver_template = {
766         .module                 = THIS_MODULE,
767         .name                   = HPSA,
768         .proc_name              = HPSA,
769         .queuecommand           = hpsa_scsi_queue_command,
770         .scan_start             = hpsa_scan_start,
771         .scan_finished          = hpsa_scan_finished,
772         .change_queue_depth     = hpsa_change_queue_depth,
773         .this_id                = -1,
774         .use_clustering         = ENABLE_CLUSTERING,
775         .eh_abort_handler       = hpsa_eh_abort_handler,
776         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
777         .ioctl                  = hpsa_ioctl,
778         .slave_alloc            = hpsa_slave_alloc,
779         .slave_configure        = hpsa_slave_configure,
780         .slave_destroy          = hpsa_slave_destroy,
781 #ifdef CONFIG_COMPAT
782         .compat_ioctl           = hpsa_compat_ioctl,
783 #endif
784         .sdev_attrs = hpsa_sdev_attrs,
785         .shost_attrs = hpsa_shost_attrs,
786         .max_sectors = 8192,
787         .no_write_same = 1,
788 };
789 
790 static inline u32 next_command(struct ctlr_info *h, u8 q)
791 {
792         u32 a;
793         struct reply_queue_buffer *rq = &h->reply_queue[q];
794 
795         if (h->transMethod & CFGTBL_Trans_io_accel1)
796                 return h->access.command_completed(h, q);
797 
798         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
799                 return h->access.command_completed(h, q);
800 
801         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
802                 a = rq->head[rq->current_entry];
803                 rq->current_entry++;
804                 atomic_dec(&h->commands_outstanding);
805         } else {
806                 a = FIFO_EMPTY;
807         }
808         /* Check for wraparound */
809         if (rq->current_entry == h->max_commands) {
810                 rq->current_entry = 0;
811                 rq->wraparound ^= 1;
812         }
813         return a;
814 }
815 
816 /*
817  * There are some special bits in the bus address of the
818  * command that we have to set for the controller to know
819  * how to process the command:
820  *
821  * Normal performant mode:
822  * bit 0: 1 means performant mode, 0 means simple mode.
823  * bits 1-3 = block fetch table entry
824  * bits 4-6 = command type (== 0)
825  *
826  * ioaccel1 mode:
827  * bit 0 = "performant mode" bit.
828  * bits 1-3 = block fetch table entry
829  * bits 4-6 = command type (== 110)
830  * (command type is needed because ioaccel1 mode
831  * commands are submitted through the same register as normal
832  * mode commands, so this is how the controller knows whether
833  * the command is normal mode or ioaccel1 mode.)
834  *
835  * ioaccel2 mode:
836  * bit 0 = "performant mode" bit.
837  * bits 1-4 = block fetch table entry (note extra bit)
838  * bits 4-6 = not needed, because ioaccel2 mode has
839  * a separate special register for submitting commands.
840  */
841 
842 /*
843  * set_performant_mode: Modify the tag for cciss performant
844  * set bit 0 for pull model, bits 3-1 for block fetch
845  * register number
846  */
847 #define DEFAULT_REPLY_QUEUE (-1)
848 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
849                                         int reply_queue)
850 {
851         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
852                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
853                 if (unlikely(!h->msix_vector))
854                         return;
855                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
856                         c->Header.ReplyQueue =
857                                 raw_smp_processor_id() % h->nreply_queues;
858                 else
859                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
860         }
861 }
862 
863 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
864                                                 struct CommandList *c,
865                                                 int reply_queue)
866 {
867         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
868 
869         /*
870          * Tell the controller to post the reply to the queue for this
871          * processor.  This seems to give the best I/O throughput.
872          */
873         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
874                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
875         else
876                 cp->ReplyQueue = reply_queue % h->nreply_queues;
877         /*
878          * Set the bits in the address sent down to include:
879          *  - performant mode bit (bit 0)
880          *  - pull count (bits 1-3)
881          *  - command type (bits 4-6)
882          */
883         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
884                                         IOACCEL1_BUSADDR_CMDTYPE;
885 }
886 
887 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
888                                                 struct CommandList *c,
889                                                 int reply_queue)
890 {
891         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
892                 &h->ioaccel2_cmd_pool[c->cmdindex];
893 
894         /* Tell the controller to post the reply to the queue for this
895          * processor.  This seems to give the best I/O throughput.
896          */
897         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
898                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
899         else
900                 cp->reply_queue = reply_queue % h->nreply_queues;
901         /* Set the bits in the address sent down to include:
902          *  - performant mode bit not used in ioaccel mode 2
903          *  - pull count (bits 0-3)
904          *  - command type isn't needed for ioaccel2
905          */
906         c->busaddr |= h->ioaccel2_blockFetchTable[0];
907 }
908 
909 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
910                                                 struct CommandList *c,
911                                                 int reply_queue)
912 {
913         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
914 
915         /*
916          * Tell the controller to post the reply to the queue for this
917          * processor.  This seems to give the best I/O throughput.
918          */
919         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
920                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
921         else
922                 cp->reply_queue = reply_queue % h->nreply_queues;
923         /*
924          * Set the bits in the address sent down to include:
925          *  - performant mode bit not used in ioaccel mode 2
926          *  - pull count (bits 0-3)
927          *  - command type isn't needed for ioaccel2
928          */
929         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
930 }
931 
932 static int is_firmware_flash_cmd(u8 *cdb)
933 {
934         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
935 }
936 
937 /*
938  * During firmware flash, the heartbeat register may not update as frequently
939  * as it should.  So we dial down lockup detection during firmware flash. and
940  * dial it back up when firmware flash completes.
941  */
942 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
943 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
944 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
945                 struct CommandList *c)
946 {
947         if (!is_firmware_flash_cmd(c->Request.CDB))
948                 return;
949         atomic_inc(&h->firmware_flash_in_progress);
950         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
951 }
952 
953 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
954                 struct CommandList *c)
955 {
956         if (is_firmware_flash_cmd(c->Request.CDB) &&
957                 atomic_dec_and_test(&h->firmware_flash_in_progress))
958                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
959 }
960 
961 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
962         struct CommandList *c, int reply_queue)
963 {
964         dial_down_lockup_detection_during_fw_flash(h, c);
965         atomic_inc(&h->commands_outstanding);
966         switch (c->cmd_type) {
967         case CMD_IOACCEL1:
968                 set_ioaccel1_performant_mode(h, c, reply_queue);
969                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
970                 break;
971         case CMD_IOACCEL2:
972                 set_ioaccel2_performant_mode(h, c, reply_queue);
973                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
974                 break;
975         case IOACCEL2_TMF:
976                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
977                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
978                 break;
979         default:
980                 set_performant_mode(h, c, reply_queue);
981                 h->access.submit_command(h, c);
982         }
983 }
984 
985 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
986 {
987         if (unlikely(hpsa_is_pending_event(c)))
988                 return finish_cmd(c);
989 
990         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
991 }
992 
993 static inline int is_hba_lunid(unsigned char scsi3addr[])
994 {
995         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
996 }
997 
998 static inline int is_scsi_rev_5(struct ctlr_info *h)
999 {
1000         if (!h->hba_inquiry_data)
1001                 return 0;
1002         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1003                 return 1;
1004         return 0;
1005 }
1006 
1007 static int hpsa_find_target_lun(struct ctlr_info *h,
1008         unsigned char scsi3addr[], int bus, int *target, int *lun)
1009 {
1010         /* finds an unused bus, target, lun for a new physical device
1011          * assumes h->devlock is held
1012          */
1013         int i, found = 0;
1014         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1015 
1016         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1017 
1018         for (i = 0; i < h->ndevices; i++) {
1019                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1020                         __set_bit(h->dev[i]->target, lun_taken);
1021         }
1022 
1023         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1024         if (i < HPSA_MAX_DEVICES) {
1025                 /* *bus = 1; */
1026                 *target = i;
1027                 *lun = 0;
1028                 found = 1;
1029         }
1030         return !found;
1031 }
1032 
1033 static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1034         struct hpsa_scsi_dev_t *dev, char *description)
1035 {
1036         dev_printk(level, &h->pdev->dev,
1037                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
1038                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1039                         description,
1040                         scsi_device_type(dev->devtype),
1041                         dev->vendor,
1042                         dev->model,
1043                         dev->raid_level > RAID_UNKNOWN ?
1044                                 "RAID-?" : raid_label[dev->raid_level],
1045                         dev->offload_config ? '+' : '-',
1046                         dev->offload_enabled ? '+' : '-',
1047                         dev->expose_state);
1048 }
1049 
1050 /* Add an entry into h->dev[] array. */
1051 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
1052                 struct hpsa_scsi_dev_t *device,
1053                 struct hpsa_scsi_dev_t *added[], int *nadded)
1054 {
1055         /* assumes h->devlock is held */
1056         int n = h->ndevices;
1057         int i;
1058         unsigned char addr1[8], addr2[8];
1059         struct hpsa_scsi_dev_t *sd;
1060 
1061         if (n >= HPSA_MAX_DEVICES) {
1062                 dev_err(&h->pdev->dev, "too many devices, some will be "
1063                         "inaccessible.\n");
1064                 return -1;
1065         }
1066 
1067         /* physical devices do not have lun or target assigned until now. */
1068         if (device->lun != -1)
1069                 /* Logical device, lun is already assigned. */
1070                 goto lun_assigned;
1071 
1072         /* If this device a non-zero lun of a multi-lun device
1073          * byte 4 of the 8-byte LUN addr will contain the logical
1074          * unit no, zero otherwise.
1075          */
1076         if (device->scsi3addr[4] == 0) {
1077                 /* This is not a non-zero lun of a multi-lun device */
1078                 if (hpsa_find_target_lun(h, device->scsi3addr,
1079                         device->bus, &device->target, &device->lun) != 0)
1080                         return -1;
1081                 goto lun_assigned;
1082         }
1083 
1084         /* This is a non-zero lun of a multi-lun device.
1085          * Search through our list and find the device which
1086          * has the same 8 byte LUN address, excepting byte 4.
1087          * Assign the same bus and target for this new LUN.
1088          * Use the logical unit number from the firmware.
1089          */
1090         memcpy(addr1, device->scsi3addr, 8);
1091         addr1[4] = 0;
1092         for (i = 0; i < n; i++) {
1093                 sd = h->dev[i];
1094                 memcpy(addr2, sd->scsi3addr, 8);
1095                 addr2[4] = 0;
1096                 /* differ only in byte 4? */
1097                 if (memcmp(addr1, addr2, 8) == 0) {
1098                         device->bus = sd->bus;
1099                         device->target = sd->target;
1100                         device->lun = device->scsi3addr[4];
1101                         break;
1102                 }
1103         }
1104         if (device->lun == -1) {
1105                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1106                         " suspect firmware bug or unsupported hardware "
1107                         "configuration.\n");
1108                         return -1;
1109         }
1110 
1111 lun_assigned:
1112 
1113         h->dev[n] = device;
1114         h->ndevices++;
1115         added[*nadded] = device;
1116         (*nadded)++;
1117         hpsa_show_dev_msg(KERN_INFO, h, device,
1118                 device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1119         device->offload_to_be_enabled = device->offload_enabled;
1120         device->offload_enabled = 0;
1121         return 0;
1122 }
1123 
1124 /* Update an entry in h->dev[] array. */
1125 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
1126         int entry, struct hpsa_scsi_dev_t *new_entry)
1127 {
1128         int offload_enabled;
1129         /* assumes h->devlock is held */
1130         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1131 
1132         /* Raid level changed. */
1133         h->dev[entry]->raid_level = new_entry->raid_level;
1134 
1135         /* Raid offload parameters changed.  Careful about the ordering. */
1136         if (new_entry->offload_config && new_entry->offload_enabled) {
1137                 /*
1138                  * if drive is newly offload_enabled, we want to copy the
1139                  * raid map data first.  If previously offload_enabled and
1140                  * offload_config were set, raid map data had better be
1141                  * the same as it was before.  if raid map data is changed
1142                  * then it had better be the case that
1143                  * h->dev[entry]->offload_enabled is currently 0.
1144                  */
1145                 h->dev[entry]->raid_map = new_entry->raid_map;
1146                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1147         }
1148         if (new_entry->hba_ioaccel_enabled) {
1149                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1150                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1151         }
1152         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1153         h->dev[entry]->offload_config = new_entry->offload_config;
1154         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1155         h->dev[entry]->queue_depth = new_entry->queue_depth;
1156 
1157         /*
1158          * We can turn off ioaccel offload now, but need to delay turning
1159          * it on until we can update h->dev[entry]->phys_disk[], but we
1160          * can't do that until all the devices are updated.
1161          */
1162         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1163         if (!new_entry->offload_enabled)
1164                 h->dev[entry]->offload_enabled = 0;
1165 
1166         offload_enabled = h->dev[entry]->offload_enabled;
1167         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1168         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1169         h->dev[entry]->offload_enabled = offload_enabled;
1170 }
1171 
1172 /* Replace an entry from h->dev[] array. */
1173 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1174         int entry, struct hpsa_scsi_dev_t *new_entry,
1175         struct hpsa_scsi_dev_t *added[], int *nadded,
1176         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1177 {
1178         /* assumes h->devlock is held */
1179         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1180         removed[*nremoved] = h->dev[entry];
1181         (*nremoved)++;
1182 
1183         /*
1184          * New physical devices won't have target/lun assigned yet
1185          * so we need to preserve the values in the slot we are replacing.
1186          */
1187         if (new_entry->target == -1) {
1188                 new_entry->target = h->dev[entry]->target;
1189                 new_entry->lun = h->dev[entry]->lun;
1190         }
1191 
1192         h->dev[entry] = new_entry;
1193         added[*nadded] = new_entry;
1194         (*nadded)++;
1195         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1196         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1197         new_entry->offload_enabled = 0;
1198 }
1199 
1200 /* Remove an entry from h->dev[] array. */
1201 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1202         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1203 {
1204         /* assumes h->devlock is held */
1205         int i;
1206         struct hpsa_scsi_dev_t *sd;
1207 
1208         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1209 
1210         sd = h->dev[entry];
1211         removed[*nremoved] = h->dev[entry];
1212         (*nremoved)++;
1213 
1214         for (i = entry; i < h->ndevices-1; i++)
1215                 h->dev[i] = h->dev[i+1];
1216         h->ndevices--;
1217         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1218 }
1219 
1220 #define SCSI3ADDR_EQ(a, b) ( \
1221         (a)[7] == (b)[7] && \
1222         (a)[6] == (b)[6] && \
1223         (a)[5] == (b)[5] && \
1224         (a)[4] == (b)[4] && \
1225         (a)[3] == (b)[3] && \
1226         (a)[2] == (b)[2] && \
1227         (a)[1] == (b)[1] && \
1228         (a)[0] == (b)[0])
1229 
1230 static void fixup_botched_add(struct ctlr_info *h,
1231         struct hpsa_scsi_dev_t *added)
1232 {
1233         /* called when scsi_add_device fails in order to re-adjust
1234          * h->dev[] to match the mid layer's view.
1235          */
1236         unsigned long flags;
1237         int i, j;
1238 
1239         spin_lock_irqsave(&h->lock, flags);
1240         for (i = 0; i < h->ndevices; i++) {
1241                 if (h->dev[i] == added) {
1242                         for (j = i; j < h->ndevices-1; j++)
1243                                 h->dev[j] = h->dev[j+1];
1244                         h->ndevices--;
1245                         break;
1246                 }
1247         }
1248         spin_unlock_irqrestore(&h->lock, flags);
1249         kfree(added);
1250 }
1251 
1252 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1253         struct hpsa_scsi_dev_t *dev2)
1254 {
1255         /* we compare everything except lun and target as these
1256          * are not yet assigned.  Compare parts likely
1257          * to differ first
1258          */
1259         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1260                 sizeof(dev1->scsi3addr)) != 0)
1261                 return 0;
1262         if (memcmp(dev1->device_id, dev2->device_id,
1263                 sizeof(dev1->device_id)) != 0)
1264                 return 0;
1265         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1266                 return 0;
1267         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1268                 return 0;
1269         if (dev1->devtype != dev2->devtype)
1270                 return 0;
1271         if (dev1->bus != dev2->bus)
1272                 return 0;
1273         return 1;
1274 }
1275 
1276 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1277         struct hpsa_scsi_dev_t *dev2)
1278 {
1279         /* Device attributes that can change, but don't mean
1280          * that the device is a different device, nor that the OS
1281          * needs to be told anything about the change.
1282          */
1283         if (dev1->raid_level != dev2->raid_level)
1284                 return 1;
1285         if (dev1->offload_config != dev2->offload_config)
1286                 return 1;
1287         if (dev1->offload_enabled != dev2->offload_enabled)
1288                 return 1;
1289         if (dev1->queue_depth != dev2->queue_depth)
1290                 return 1;
1291         return 0;
1292 }
1293 
1294 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1295  * and return needle location in *index.  If scsi3addr matches, but not
1296  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1297  * location in *index.
1298  * In the case of a minor device attribute change, such as RAID level, just
1299  * return DEVICE_UPDATED, along with the updated device's location in index.
1300  * If needle not found, return DEVICE_NOT_FOUND.
1301  */
1302 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1303         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1304         int *index)
1305 {
1306         int i;
1307 #define DEVICE_NOT_FOUND 0
1308 #define DEVICE_CHANGED 1
1309 #define DEVICE_SAME 2
1310 #define DEVICE_UPDATED 3
1311         for (i = 0; i < haystack_size; i++) {
1312                 if (haystack[i] == NULL) /* previously removed. */
1313                         continue;
1314                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1315                         *index = i;
1316                         if (device_is_the_same(needle, haystack[i])) {
1317                                 if (device_updated(needle, haystack[i]))
1318                                         return DEVICE_UPDATED;
1319                                 return DEVICE_SAME;
1320                         } else {
1321                                 /* Keep offline devices offline */
1322                                 if (needle->volume_offline)
1323                                         return DEVICE_NOT_FOUND;
1324                                 return DEVICE_CHANGED;
1325                         }
1326                 }
1327         }
1328         *index = -1;
1329         return DEVICE_NOT_FOUND;
1330 }
1331 
1332 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1333                                         unsigned char scsi3addr[])
1334 {
1335         struct offline_device_entry *device;
1336         unsigned long flags;
1337 
1338         /* Check to see if device is already on the list */
1339         spin_lock_irqsave(&h->offline_device_lock, flags);
1340         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1341                 if (memcmp(device->scsi3addr, scsi3addr,
1342                         sizeof(device->scsi3addr)) == 0) {
1343                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1344                         return;
1345                 }
1346         }
1347         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1348 
1349         /* Device is not on the list, add it. */
1350         device = kmalloc(sizeof(*device), GFP_KERNEL);
1351         if (!device) {
1352                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1353                 return;
1354         }
1355         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1356         spin_lock_irqsave(&h->offline_device_lock, flags);
1357         list_add_tail(&device->offline_list, &h->offline_device_list);
1358         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1359 }
1360 
1361 /* Print a message explaining various offline volume states */
1362 static void hpsa_show_volume_status(struct ctlr_info *h,
1363         struct hpsa_scsi_dev_t *sd)
1364 {
1365         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1366                 dev_info(&h->pdev->dev,
1367                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1368                         h->scsi_host->host_no,
1369                         sd->bus, sd->target, sd->lun);
1370         switch (sd->volume_offline) {
1371         case HPSA_LV_OK:
1372                 break;
1373         case HPSA_LV_UNDERGOING_ERASE:
1374                 dev_info(&h->pdev->dev,
1375                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1376                         h->scsi_host->host_no,
1377                         sd->bus, sd->target, sd->lun);
1378                 break;
1379         case HPSA_LV_UNDERGOING_RPI:
1380                 dev_info(&h->pdev->dev,
1381                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1382                         h->scsi_host->host_no,
1383                         sd->bus, sd->target, sd->lun);
1384                 break;
1385         case HPSA_LV_PENDING_RPI:
1386                 dev_info(&h->pdev->dev,
1387                                 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1388                                 h->scsi_host->host_no,
1389                                 sd->bus, sd->target, sd->lun);
1390                 break;
1391         case HPSA_LV_ENCRYPTED_NO_KEY:
1392                 dev_info(&h->pdev->dev,
1393                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1394                         h->scsi_host->host_no,
1395                         sd->bus, sd->target, sd->lun);
1396                 break;
1397         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1398                 dev_info(&h->pdev->dev,
1399                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1400                         h->scsi_host->host_no,
1401                         sd->bus, sd->target, sd->lun);
1402                 break;
1403         case HPSA_LV_UNDERGOING_ENCRYPTION:
1404                 dev_info(&h->pdev->dev,
1405                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1406                         h->scsi_host->host_no,
1407                         sd->bus, sd->target, sd->lun);
1408                 break;
1409         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1410                 dev_info(&h->pdev->dev,
1411                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1412                         h->scsi_host->host_no,
1413                         sd->bus, sd->target, sd->lun);
1414                 break;
1415         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1416                 dev_info(&h->pdev->dev,
1417                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1418                         h->scsi_host->host_no,
1419                         sd->bus, sd->target, sd->lun);
1420                 break;
1421         case HPSA_LV_PENDING_ENCRYPTION:
1422                 dev_info(&h->pdev->dev,
1423                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1424                         h->scsi_host->host_no,
1425                         sd->bus, sd->target, sd->lun);
1426                 break;
1427         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1428                 dev_info(&h->pdev->dev,
1429                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1430                         h->scsi_host->host_no,
1431                         sd->bus, sd->target, sd->lun);
1432                 break;
1433         }
1434 }
1435 
1436 /*
1437  * Figure the list of physical drive pointers for a logical drive with
1438  * raid offload configured.
1439  */
1440 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1441                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1442                                 struct hpsa_scsi_dev_t *logical_drive)
1443 {
1444         struct raid_map_data *map = &logical_drive->raid_map;
1445         struct raid_map_disk_data *dd = &map->data[0];
1446         int i, j;
1447         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1448                                 le16_to_cpu(map->metadata_disks_per_row);
1449         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1450                                 le16_to_cpu(map->layout_map_count) *
1451                                 total_disks_per_row;
1452         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1453                                 total_disks_per_row;
1454         int qdepth;
1455 
1456         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1457                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1458 
1459         logical_drive->nphysical_disks = nraid_map_entries;
1460 
1461         qdepth = 0;
1462         for (i = 0; i < nraid_map_entries; i++) {
1463                 logical_drive->phys_disk[i] = NULL;
1464                 if (!logical_drive->offload_config)
1465                         continue;
1466                 for (j = 0; j < ndevices; j++) {
1467                         if (dev[j]->devtype != TYPE_DISK)
1468                                 continue;
1469                         if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
1470                                 continue;
1471                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1472                                 continue;
1473 
1474                         logical_drive->phys_disk[i] = dev[j];
1475                         if (i < nphys_disk)
1476                                 qdepth = min(h->nr_cmds, qdepth +
1477                                     logical_drive->phys_disk[i]->queue_depth);
1478                         break;
1479                 }
1480 
1481                 /*
1482                  * This can happen if a physical drive is removed and
1483                  * the logical drive is degraded.  In that case, the RAID
1484                  * map data will refer to a physical disk which isn't actually
1485                  * present.  And in that case offload_enabled should already
1486                  * be 0, but we'll turn it off here just in case
1487                  */
1488                 if (!logical_drive->phys_disk[i]) {
1489                         logical_drive->offload_enabled = 0;
1490                         logical_drive->offload_to_be_enabled = 0;
1491                         logical_drive->queue_depth = 8;
1492                 }
1493         }
1494         if (nraid_map_entries)
1495                 /*
1496                  * This is correct for reads, too high for full stripe writes,
1497                  * way too high for partial stripe writes
1498                  */
1499                 logical_drive->queue_depth = qdepth;
1500         else
1501                 logical_drive->queue_depth = h->nr_cmds;
1502 }
1503 
1504 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1505                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1506 {
1507         int i;
1508 
1509         for (i = 0; i < ndevices; i++) {
1510                 if (dev[i]->devtype != TYPE_DISK)
1511                         continue;
1512                 if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
1513                         continue;
1514 
1515                 /*
1516                  * If offload is currently enabled, the RAID map and
1517                  * phys_disk[] assignment *better* not be changing
1518                  * and since it isn't changing, we do not need to
1519                  * update it.
1520                  */
1521                 if (dev[i]->offload_enabled)
1522                         continue;
1523 
1524                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1525         }
1526 }
1527 
1528 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1529         struct hpsa_scsi_dev_t *sd[], int nsds)
1530 {
1531         /* sd contains scsi3 addresses and devtypes, and inquiry
1532          * data.  This function takes what's in sd to be the current
1533          * reality and updates h->dev[] to reflect that reality.
1534          */
1535         int i, entry, device_change, changes = 0;
1536         struct hpsa_scsi_dev_t *csd;
1537         unsigned long flags;
1538         struct hpsa_scsi_dev_t **added, **removed;
1539         int nadded, nremoved;
1540         struct Scsi_Host *sh = NULL;
1541 
1542         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1543         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1544 
1545         if (!added || !removed) {
1546                 dev_warn(&h->pdev->dev, "out of memory in "
1547                         "adjust_hpsa_scsi_table\n");
1548                 goto free_and_out;
1549         }
1550 
1551         spin_lock_irqsave(&h->devlock, flags);
1552 
1553         /* find any devices in h->dev[] that are not in
1554          * sd[] and remove them from h->dev[], and for any
1555          * devices which have changed, remove the old device
1556          * info and add the new device info.
1557          * If minor device attributes change, just update
1558          * the existing device structure.
1559          */
1560         i = 0;
1561         nremoved = 0;
1562         nadded = 0;
1563         while (i < h->ndevices) {
1564                 csd = h->dev[i];
1565                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1566                 if (device_change == DEVICE_NOT_FOUND) {
1567                         changes++;
1568                         hpsa_scsi_remove_entry(h, hostno, i,
1569                                 removed, &nremoved);
1570                         continue; /* remove ^^^, hence i not incremented */
1571                 } else if (device_change == DEVICE_CHANGED) {
1572                         changes++;
1573                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1574                                 added, &nadded, removed, &nremoved);
1575                         /* Set it to NULL to prevent it from being freed
1576                          * at the bottom of hpsa_update_scsi_devices()
1577                          */
1578                         sd[entry] = NULL;
1579                 } else if (device_change == DEVICE_UPDATED) {
1580                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1581                 }
1582                 i++;
1583         }
1584 
1585         /* Now, make sure every device listed in sd[] is also
1586          * listed in h->dev[], adding them if they aren't found
1587          */
1588 
1589         for (i = 0; i < nsds; i++) {
1590                 if (!sd[i]) /* if already added above. */
1591                         continue;
1592 
1593                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1594                  * as the SCSI mid-layer does not handle such devices well.
1595                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1596                  * at 160Hz, and prevents the system from coming up.
1597                  */
1598                 if (sd[i]->volume_offline) {
1599                         hpsa_show_volume_status(h, sd[i]);
1600                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1601                         continue;
1602                 }
1603 
1604                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1605                                         h->ndevices, &entry);
1606                 if (device_change == DEVICE_NOT_FOUND) {
1607                         changes++;
1608                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
1609                                 added, &nadded) != 0)
1610                                 break;
1611                         sd[i] = NULL; /* prevent from being freed later. */
1612                 } else if (device_change == DEVICE_CHANGED) {
1613                         /* should never happen... */
1614                         changes++;
1615                         dev_warn(&h->pdev->dev,
1616                                 "device unexpectedly changed.\n");
1617                         /* but if it does happen, we just ignore that device */
1618                 }
1619         }
1620         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1621 
1622         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1623          * any logical drives that need it enabled.
1624          */
1625         for (i = 0; i < h->ndevices; i++)
1626                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1627 
1628         spin_unlock_irqrestore(&h->devlock, flags);
1629 
1630         /* Monitor devices which are in one of several NOT READY states to be
1631          * brought online later. This must be done without holding h->devlock,
1632          * so don't touch h->dev[]
1633          */
1634         for (i = 0; i < nsds; i++) {
1635                 if (!sd[i]) /* if already added above. */
1636                         continue;
1637                 if (sd[i]->volume_offline)
1638                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1639         }
1640 
1641         /* Don't notify scsi mid layer of any changes the first time through
1642          * (or if there are no changes) scsi_scan_host will do it later the
1643          * first time through.
1644          */
1645         if (hostno == -1 || !changes)
1646                 goto free_and_out;
1647 
1648         sh = h->scsi_host;
1649         /* Notify scsi mid layer of any removed devices */
1650         for (i = 0; i < nremoved; i++) {
1651                 if (removed[i]->expose_state & HPSA_SCSI_ADD) {
1652                         struct scsi_device *sdev =
1653                                 scsi_device_lookup(sh, removed[i]->bus,
1654                                         removed[i]->target, removed[i]->lun);
1655                         if (sdev != NULL) {
1656                                 scsi_remove_device(sdev);
1657                                 scsi_device_put(sdev);
1658                         } else {
1659                                 /*
1660                                  * We don't expect to get here.
1661                                  * future cmds to this device will get selection
1662                                  * timeout as if the device was gone.
1663                                  */
1664                                 hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
1665                                         "didn't find device for removal.");
1666                         }
1667                 }
1668                 kfree(removed[i]);
1669                 removed[i] = NULL;
1670         }
1671 
1672         /* Notify scsi mid layer of any added devices */
1673         for (i = 0; i < nadded; i++) {
1674                 if (!(added[i]->expose_state & HPSA_SCSI_ADD))
1675                         continue;
1676                 if (scsi_add_device(sh, added[i]->bus,
1677                         added[i]->target, added[i]->lun) == 0)
1678                         continue;
1679                 hpsa_show_dev_msg(KERN_WARNING, h, added[i],
1680                                         "addition failed, device not added.");
1681                 /* now we have to remove it from h->dev,
1682                  * since it didn't get added to scsi mid layer
1683                  */
1684                 fixup_botched_add(h, added[i]);
1685                 added[i] = NULL;
1686         }
1687 
1688 free_and_out:
1689         kfree(added);
1690         kfree(removed);
1691 }
1692 
1693 /*
1694  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1695  * Assume's h->devlock is held.
1696  */
1697 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1698         int bus, int target, int lun)
1699 {
1700         int i;
1701         struct hpsa_scsi_dev_t *sd;
1702 
1703         for (i = 0; i < h->ndevices; i++) {
1704                 sd = h->dev[i];
1705                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1706                         return sd;
1707         }
1708         return NULL;
1709 }
1710 
1711 static int hpsa_slave_alloc(struct scsi_device *sdev)
1712 {
1713         struct hpsa_scsi_dev_t *sd;
1714         unsigned long flags;
1715         struct ctlr_info *h;
1716 
1717         h = sdev_to_hba(sdev);
1718         spin_lock_irqsave(&h->devlock, flags);
1719         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1720                 sdev_id(sdev), sdev->lun);
1721         if (likely(sd)) {
1722                 atomic_set(&sd->ioaccel_cmds_out, 0);
1723                 sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
1724         } else
1725                 sdev->hostdata = NULL;
1726         spin_unlock_irqrestore(&h->devlock, flags);
1727         return 0;
1728 }
1729 
1730 /* configure scsi device based on internal per-device structure */
1731 static int hpsa_slave_configure(struct scsi_device *sdev)
1732 {
1733         struct hpsa_scsi_dev_t *sd;
1734         int queue_depth;
1735 
1736         sd = sdev->hostdata;
1737         sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);
1738 
1739         if (sd)
1740                 queue_depth = sd->queue_depth != 0 ?
1741                         sd->queue_depth : sdev->host->can_queue;
1742         else
1743                 queue_depth = sdev->host->can_queue;
1744 
1745         scsi_change_queue_depth(sdev, queue_depth);
1746 
1747         return 0;
1748 }
1749 
1750 static void hpsa_slave_destroy(struct scsi_device *sdev)
1751 {
1752         /* nothing to do. */
1753 }
1754 
1755 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1756 {
1757         int i;
1758 
1759         if (!h->ioaccel2_cmd_sg_list)
1760                 return;
1761         for (i = 0; i < h->nr_cmds; i++) {
1762                 kfree(h->ioaccel2_cmd_sg_list[i]);
1763                 h->ioaccel2_cmd_sg_list[i] = NULL;
1764         }
1765         kfree(h->ioaccel2_cmd_sg_list);
1766         h->ioaccel2_cmd_sg_list = NULL;
1767 }
1768 
1769 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1770 {
1771         int i;
1772 
1773         if (h->chainsize <= 0)
1774                 return 0;
1775 
1776         h->ioaccel2_cmd_sg_list =
1777                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
1778                                         GFP_KERNEL);
1779         if (!h->ioaccel2_cmd_sg_list)
1780                 return -ENOMEM;
1781         for (i = 0; i < h->nr_cmds; i++) {
1782                 h->ioaccel2_cmd_sg_list[i] =
1783                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
1784                                         h->maxsgentries, GFP_KERNEL);
1785                 if (!h->ioaccel2_cmd_sg_list[i])
1786                         goto clean;
1787         }
1788         return 0;
1789 
1790 clean:
1791         hpsa_free_ioaccel2_sg_chain_blocks(h);
1792         return -ENOMEM;
1793 }
1794 
1795 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1796 {
1797         int i;
1798 
1799         if (!h->cmd_sg_list)
1800                 return;
1801         for (i = 0; i < h->nr_cmds; i++) {
1802                 kfree(h->cmd_sg_list[i]);
1803                 h->cmd_sg_list[i] = NULL;
1804         }
1805         kfree(h->cmd_sg_list);
1806         h->cmd_sg_list = NULL;
1807 }
1808 
1809 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
1810 {
1811         int i;
1812 
1813         if (h->chainsize <= 0)
1814                 return 0;
1815 
1816         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1817                                 GFP_KERNEL);
1818         if (!h->cmd_sg_list) {
1819                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1820                 return -ENOMEM;
1821         }
1822         for (i = 0; i < h->nr_cmds; i++) {
1823                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1824                                                 h->chainsize, GFP_KERNEL);
1825                 if (!h->cmd_sg_list[i]) {
1826                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1827                         goto clean;
1828                 }
1829         }
1830         return 0;
1831 
1832 clean:
1833         hpsa_free_sg_chain_blocks(h);
1834         return -ENOMEM;
1835 }
1836 
1837 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
1838         struct io_accel2_cmd *cp, struct CommandList *c)
1839 {
1840         struct ioaccel2_sg_element *chain_block;
1841         u64 temp64;
1842         u32 chain_size;
1843 
1844         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
1845         chain_size = le32_to_cpu(cp->data_len);
1846         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
1847                                 PCI_DMA_TODEVICE);
1848         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1849                 /* prevent subsequent unmapping */
1850                 cp->sg->address = 0;
1851                 return -1;
1852         }
1853         cp->sg->address = cpu_to_le64(temp64);
1854         return 0;
1855 }
1856 
1857 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
1858         struct io_accel2_cmd *cp)
1859 {
1860         struct ioaccel2_sg_element *chain_sg;
1861         u64 temp64;
1862         u32 chain_size;
1863 
1864         chain_sg = cp->sg;
1865         temp64 = le64_to_cpu(chain_sg->address);
1866         chain_size = le32_to_cpu(cp->data_len);
1867         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
1868 }
1869 
1870 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1871         struct CommandList *c)
1872 {
1873         struct SGDescriptor *chain_sg, *chain_block;
1874         u64 temp64;
1875         u32 chain_len;
1876 
1877         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1878         chain_block = h->cmd_sg_list[c->cmdindex];
1879         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
1880         chain_len = sizeof(*chain_sg) *
1881                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1882         chain_sg->Len = cpu_to_le32(chain_len);
1883         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1884                                 PCI_DMA_TODEVICE);
1885         if (dma_mapping_error(&h->pdev->dev, temp64)) {
1886                 /* prevent subsequent unmapping */
1887                 chain_sg->Addr = cpu_to_le64(0);
1888                 return -1;
1889         }
1890         chain_sg->Addr = cpu_to_le64(temp64);
1891         return 0;
1892 }
1893 
1894 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1895         struct CommandList *c)
1896 {
1897         struct SGDescriptor *chain_sg;
1898 
1899         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1900                 return;
1901 
1902         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1903         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
1904                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1905 }
1906 
1907 
1908 /* Decode the various types of errors on ioaccel2 path.
1909  * Return 1 for any error that should generate a RAID path retry.
1910  * Return 0 for errors that don't require a RAID path retry.
1911  */
1912 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1913                                         struct CommandList *c,
1914                                         struct scsi_cmnd *cmd,
1915                                         struct io_accel2_cmd *c2)
1916 {
1917         int data_len;
1918         int retry = 0;
1919         u32 ioaccel2_resid = 0;
1920 
1921         switch (c2->error_data.serv_response) {
1922         case IOACCEL2_SERV_RESPONSE_COMPLETE:
1923                 switch (c2->error_data.status) {
1924                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1925                         break;
1926                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1927                         cmd->result |= SAM_STAT_CHECK_CONDITION;
1928                         if (c2->error_data.data_present !=
1929                                         IOACCEL2_SENSE_DATA_PRESENT) {
1930                                 memset(cmd->sense_buffer, 0,
1931                                         SCSI_SENSE_BUFFERSIZE);
1932                                 break;
1933                         }
1934                         /* copy the sense data */
1935                         data_len = c2->error_data.sense_data_len;
1936                         if (data_len > SCSI_SENSE_BUFFERSIZE)
1937                                 data_len = SCSI_SENSE_BUFFERSIZE;
1938                         if (data_len > sizeof(c2->error_data.sense_data_buff))
1939                                 data_len =
1940                                         sizeof(c2->error_data.sense_data_buff);
1941                         memcpy(cmd->sense_buffer,
1942                                 c2->error_data.sense_data_buff, data_len);
1943                         retry = 1;
1944                         break;
1945                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1946                         retry = 1;
1947                         break;
1948                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1949                         retry = 1;
1950                         break;
1951                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1952                         retry = 1;
1953                         break;
1954                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1955                         retry = 1;
1956                         break;
1957                 default:
1958                         retry = 1;
1959                         break;
1960                 }
1961                 break;
1962         case IOACCEL2_SERV_RESPONSE_FAILURE:
1963                 switch (c2->error_data.status) {
1964                 case IOACCEL2_STATUS_SR_IO_ERROR:
1965                 case IOACCEL2_STATUS_SR_IO_ABORTED:
1966                 case IOACCEL2_STATUS_SR_OVERRUN:
1967                         retry = 1;
1968                         break;
1969                 case IOACCEL2_STATUS_SR_UNDERRUN:
1970                         cmd->result = (DID_OK << 16);           /* host byte */
1971                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1972                         ioaccel2_resid = get_unaligned_le32(
1973                                                 &c2->error_data.resid_cnt[0]);
1974                         scsi_set_resid(cmd, ioaccel2_resid);
1975                         break;
1976                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
1977                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
1978                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
1979                         /* We will get an event from ctlr to trigger rescan */
1980                         retry = 1;
1981                         break;
1982                 default:
1983                         retry = 1;
1984                 }
1985                 break;
1986         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1987                 break;
1988         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1989                 break;
1990         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1991                 retry = 1;
1992                 break;
1993         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1994                 break;
1995         default:
1996                 retry = 1;
1997                 break;
1998         }
1999 
2000         return retry;   /* retry on raid path? */
2001 }
2002 
2003 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2004                 struct CommandList *c)
2005 {
2006         bool do_wake = false;
2007 
2008         /*
2009          * Prevent the following race in the abort handler:
2010          *
2011          * 1. LLD is requested to abort a SCSI command
2012          * 2. The SCSI command completes
2013          * 3. The struct CommandList associated with step 2 is made available
2014          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2015          * 5. Abort handler follows scsi_cmnd->host_scribble and
2016          *    finds struct CommandList and tries to aborts it
2017          * Now we have aborted the wrong command.
2018          *
2019          * Reset c->scsi_cmd here so that the abort or reset handler will know
2020          * this command has completed.  Then, check to see if the handler is
2021          * waiting for this command, and, if so, wake it.
2022          */
2023         c->scsi_cmd = SCSI_CMD_IDLE;
2024         mb();   /* Declare command idle before checking for pending events. */
2025         if (c->abort_pending) {
2026                 do_wake = true;
2027                 c->abort_pending = false;
2028         }
2029         if (c->reset_pending) {
2030                 unsigned long flags;
2031                 struct hpsa_scsi_dev_t *dev;
2032 
2033                 /*
2034                  * There appears to be a reset pending; lock the lock and
2035                  * reconfirm.  If so, then decrement the count of outstanding
2036                  * commands and wake the reset command if this is the last one.
2037                  */
2038                 spin_lock_irqsave(&h->lock, flags);
2039                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2040                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2041                         do_wake = true;
2042                 c->reset_pending = NULL;
2043                 spin_unlock_irqrestore(&h->lock, flags);
2044         }
2045 
2046         if (do_wake)
2047                 wake_up_all(&h->event_sync_wait_queue);
2048 }
2049 
2050 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2051                                       struct CommandList *c)
2052 {
2053         hpsa_cmd_resolve_events(h, c);
2054         cmd_tagged_free(h, c);
2055 }
2056 
2057 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2058                 struct CommandList *c, struct scsi_cmnd *cmd)
2059 {
2060         hpsa_cmd_resolve_and_free(h, c);
2061         cmd->scsi_done(cmd);
2062 }
2063 
2064 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2065 {
2066         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2067         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2068 }
2069 
2070 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2071 {
2072         cmd->result = DID_ABORT << 16;
2073 }
2074 
2075 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2076                                     struct scsi_cmnd *cmd)
2077 {
2078         hpsa_set_scsi_cmd_aborted(cmd);
2079         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2080                          c->Request.CDB, c->err_info->ScsiStatus);
2081         hpsa_cmd_resolve_and_free(h, c);
2082 }
2083 
2084 static void process_ioaccel2_completion(struct ctlr_info *h,
2085                 struct CommandList *c, struct scsi_cmnd *cmd,
2086                 struct hpsa_scsi_dev_t *dev)
2087 {
2088         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2089 
2090         /* check for good status */
2091         if (likely(c2->error_data.serv_response == 0 &&
2092                         c2->error_data.status == 0))
2093                 return hpsa_cmd_free_and_done(h, c, cmd);
2094 
2095         /*
2096          * Any RAID offload error results in retry which will use
2097          * the normal I/O path so the controller can handle whatever's
2098          * wrong.
2099          */
2100         if (is_logical_dev_addr_mode(dev->scsi3addr) &&
2101                 c2->error_data.serv_response ==
2102                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2103                 if (c2->error_data.status ==
2104                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2105                         dev->offload_enabled = 0;
2106 
2107                 return hpsa_retry_cmd(h, c);
2108         }
2109 
2110         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2111                 return hpsa_retry_cmd(h, c);
2112 
2113         return hpsa_cmd_free_and_done(h, c, cmd);
2114 }
2115 
2116 /* Returns 0 on success, < 0 otherwise. */
2117 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2118                                         struct CommandList *cp)
2119 {
2120         u8 tmf_status = cp->err_info->ScsiStatus;
2121 
2122         switch (tmf_status) {
2123         case CISS_TMF_COMPLETE:
2124                 /*
2125                  * CISS_TMF_COMPLETE never happens, instead,
2126                  * ei->CommandStatus == 0 for this case.
2127                  */
2128         case CISS_TMF_SUCCESS:
2129                 return 0;
2130         case CISS_TMF_INVALID_FRAME:
2131         case CISS_TMF_NOT_SUPPORTED:
2132         case CISS_TMF_FAILED:
2133         case CISS_TMF_WRONG_LUN:
2134         case CISS_TMF_OVERLAPPED_TAG:
2135                 break;
2136         default:
2137                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2138                                 tmf_status);
2139                 break;
2140         }
2141         return -tmf_status;
2142 }
2143 
2144 static void complete_scsi_command(struct CommandList *cp)
2145 {
2146         struct scsi_cmnd *cmd;
2147         struct ctlr_info *h;
2148         struct ErrorInfo *ei;
2149         struct hpsa_scsi_dev_t *dev;
2150         struct io_accel2_cmd *c2;
2151 
2152         u8 sense_key;
2153         u8 asc;      /* additional sense code */
2154         u8 ascq;     /* additional sense code qualifier */
2155         unsigned long sense_data_size;
2156 
2157         ei = cp->err_info;
2158         cmd = cp->scsi_cmd;
2159         h = cp->h;
2160         dev = cmd->device->hostdata;
2161         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2162 
2163         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2164         if ((cp->cmd_type == CMD_SCSI) &&
2165                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2166                 hpsa_unmap_sg_chain_block(h, cp);
2167 
2168         if ((cp->cmd_type == CMD_IOACCEL2) &&
2169                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2170                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2171 
2172         cmd->result = (DID_OK << 16);           /* host byte */
2173         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2174 
2175         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2176                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2177 
2178         /*
2179          * We check for lockup status here as it may be set for
2180          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2181          * fail_all_oustanding_cmds()
2182          */
2183         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2184                 /* DID_NO_CONNECT will prevent a retry */
2185                 cmd->result = DID_NO_CONNECT << 16;
2186                 return hpsa_cmd_free_and_done(h, cp, cmd);
2187         }
2188 
2189         if ((unlikely(hpsa_is_pending_event(cp)))) {
2190                 if (cp->reset_pending)
2191                         return hpsa_cmd_resolve_and_free(h, cp);
2192                 if (cp->abort_pending)
2193                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2194         }
2195 
2196         if (cp->cmd_type == CMD_IOACCEL2)
2197                 return process_ioaccel2_completion(h, cp, cmd, dev);
2198 
2199         scsi_set_resid(cmd, ei->ResidualCnt);
2200         if (ei->CommandStatus == 0)
2201                 return hpsa_cmd_free_and_done(h, cp, cmd);
2202 
2203         /* For I/O accelerator commands, copy over some fields to the normal
2204          * CISS header used below for error handling.
2205          */
2206         if (cp->cmd_type == CMD_IOACCEL1) {
2207                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2208                 cp->Header.SGList = scsi_sg_count(cmd);
2209                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2210                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2211                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2212                 cp->Header.tag = c->tag;
2213                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2214                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2215 
2216                 /* Any RAID offload error results in retry which will use
2217                  * the normal I/O path so the controller can handle whatever's
2218                  * wrong.
2219                  */
2220                 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
2221                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2222                                 dev->offload_enabled = 0;
2223                         return hpsa_retry_cmd(h, cp);
2224                 }
2225         }
2226 
2227         /* an error has occurred */
2228         switch (ei->CommandStatus) {
2229 
2230         case CMD_TARGET_STATUS:
2231                 cmd->result |= ei->ScsiStatus;
2232                 /* copy the sense data */
2233                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2234                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2235                 else
2236                         sense_data_size = sizeof(ei->SenseInfo);
2237                 if (ei->SenseLen < sense_data_size)
2238                         sense_data_size = ei->SenseLen;
2239                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2240                 if (ei->ScsiStatus)
2241                         decode_sense_data(ei->SenseInfo, sense_data_size,
2242                                 &sense_key, &asc, &ascq);
2243                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2244                         if (sense_key == ABORTED_COMMAND) {
2245                                 cmd->result |= DID_SOFT_ERROR << 16;
2246                                 break;
2247                         }
2248                         break;
2249                 }
2250                 /* Problem was not a check condition
2251                  * Pass it up to the upper layers...
2252                  */
2253                 if (ei->ScsiStatus) {
2254                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2255                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2256                                 "Returning result: 0x%x\n",
2257                                 cp, ei->ScsiStatus,
2258                                 sense_key, asc, ascq,
2259                                 cmd->result);
2260                 } else {  /* scsi status is zero??? How??? */
2261                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2262                                 "Returning no connection.\n", cp),
2263 
2264                         /* Ordinarily, this case should never happen,
2265                          * but there is a bug in some released firmware
2266                          * revisions that allows it to happen if, for
2267                          * example, a 4100 backplane loses power and
2268                          * the tape drive is in it.  We assume that
2269                          * it's a fatal error of some kind because we
2270                          * can't show that it wasn't. We will make it
2271                          * look like selection timeout since that is
2272                          * the most common reason for this to occur,
2273                          * and it's severe enough.
2274                          */
2275 
2276                         cmd->result = DID_NO_CONNECT << 16;
2277                 }
2278                 break;
2279 
2280         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2281                 break;
2282         case CMD_DATA_OVERRUN:
2283                 dev_warn(&h->pdev->dev,
2284                         "CDB %16phN data overrun\n", cp->Request.CDB);
2285                 break;
2286         case CMD_INVALID: {
2287                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2288                 print_cmd(cp); */
2289                 /* We get CMD_INVALID if you address a non-existent device
2290                  * instead of a selection timeout (no response).  You will
2291                  * see this if you yank out a drive, then try to access it.
2292                  * This is kind of a shame because it means that any other
2293                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2294                  * missing target. */
2295                 cmd->result = DID_NO_CONNECT << 16;
2296         }
2297                 break;
2298         case CMD_PROTOCOL_ERR:
2299                 cmd->result = DID_ERROR << 16;
2300                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2301                                 cp->Request.CDB);
2302                 break;
2303         case CMD_HARDWARE_ERR:
2304                 cmd->result = DID_ERROR << 16;
2305                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2306                         cp->Request.CDB);
2307                 break;
2308         case CMD_CONNECTION_LOST:
2309                 cmd->result = DID_ERROR << 16;
2310                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2311                         cp->Request.CDB);
2312                 break;
2313         case CMD_ABORTED:
2314                 /* Return now to avoid calling scsi_done(). */
2315                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2316         case CMD_ABORT_FAILED:
2317                 cmd->result = DID_ERROR << 16;
2318                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2319                         cp->Request.CDB);
2320                 break;
2321         case CMD_UNSOLICITED_ABORT:
2322                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2323                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2324                         cp->Request.CDB);
2325                 break;
2326         case CMD_TIMEOUT:
2327                 cmd->result = DID_TIME_OUT << 16;
2328                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2329                         cp->Request.CDB);
2330                 break;
2331         case CMD_UNABORTABLE:
2332                 cmd->result = DID_ERROR << 16;
2333                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2334                 break;
2335         case CMD_TMF_STATUS:
2336                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2337                         cmd->result = DID_ERROR << 16;
2338                 break;
2339         case CMD_IOACCEL_DISABLED:
2340                 /* This only handles the direct pass-through case since RAID
2341                  * offload is handled above.  Just attempt a retry.
2342                  */
2343                 cmd->result = DID_SOFT_ERROR << 16;
2344                 dev_warn(&h->pdev->dev,
2345                                 "cp %p had HP SSD Smart Path error\n", cp);
2346                 break;
2347         default:
2348                 cmd->result = DID_ERROR << 16;
2349                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2350                                 cp, ei->CommandStatus);
2351         }
2352 
2353         return hpsa_cmd_free_and_done(h, cp, cmd);
2354 }
2355 
2356 static void hpsa_pci_unmap(struct pci_dev *pdev,
2357         struct CommandList *c, int sg_used, int data_direction)
2358 {
2359         int i;
2360 
2361         for (i = 0; i < sg_used; i++)
2362                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2363                                 le32_to_cpu(c->SG[i].Len),
2364                                 data_direction);
2365 }
2366 
2367 static int hpsa_map_one(struct pci_dev *pdev,
2368                 struct CommandList *cp,
2369                 unsigned char *buf,
2370                 size_t buflen,
2371                 int data_direction)
2372 {
2373         u64 addr64;
2374 
2375         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2376                 cp->Header.SGList = 0;
2377                 cp->Header.SGTotal = cpu_to_le16(0);
2378                 return 0;
2379         }
2380 
2381         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2382         if (dma_mapping_error(&pdev->dev, addr64)) {
2383                 /* Prevent subsequent unmap of something never mapped */
2384                 cp->Header.SGList = 0;
2385                 cp->Header.SGTotal = cpu_to_le16(0);
2386                 return -1;
2387         }
2388         cp->SG[0].Addr = cpu_to_le64(addr64);
2389         cp->SG[0].Len = cpu_to_le32(buflen);
2390         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2391         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2392         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2393         return 0;
2394 }
2395 
2396 #define NO_TIMEOUT ((unsigned long) -1)
2397 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2398 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2399         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2400 {
2401         DECLARE_COMPLETION_ONSTACK(wait);
2402 
2403         c->waiting = &wait;
2404         __enqueue_cmd_and_start_io(h, c, reply_queue);
2405         if (timeout_msecs == NO_TIMEOUT) {
2406                 /* TODO: get rid of this no-timeout thing */
2407                 wait_for_completion_io(&wait);
2408                 return IO_OK;
2409         }
2410         if (!wait_for_completion_io_timeout(&wait,
2411                                         msecs_to_jiffies(timeout_msecs))) {
2412                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2413                 return -ETIMEDOUT;
2414         }
2415         return IO_OK;
2416 }
2417 
2418 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2419                                    int reply_queue, unsigned long timeout_msecs)
2420 {
2421         if (unlikely(lockup_detected(h))) {
2422                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2423                 return IO_OK;
2424         }
2425         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2426 }
2427 
2428 static u32 lockup_detected(struct ctlr_info *h)
2429 {
2430         int cpu;
2431         u32 rc, *lockup_detected;
2432 
2433         cpu = get_cpu();
2434         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2435         rc = *lockup_detected;
2436         put_cpu();
2437         return rc;
2438 }
2439 
2440 #define MAX_DRIVER_CMD_RETRIES 25
2441 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2442         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2443 {
2444         int backoff_time = 10, retry_count = 0;
2445         int rc;
2446 
2447         do {
2448                 memset(c->err_info, 0, sizeof(*c->err_info));
2449                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2450                                                   timeout_msecs);
2451                 if (rc)
2452                         break;
2453                 retry_count++;
2454                 if (retry_count > 3) {
2455                         msleep(backoff_time);
2456                         if (backoff_time < 1000)
2457                                 backoff_time *= 2;
2458                 }
2459         } while ((check_for_unit_attention(h, c) ||
2460                         check_for_busy(h, c)) &&
2461                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2462         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2463         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2464                 rc = -EIO;
2465         return rc;
2466 }
2467 
2468 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2469                                 struct CommandList *c)
2470 {
2471         const u8 *cdb = c->Request.CDB;
2472         const u8 *lun = c->Header.LUN.LunAddrBytes;
2473 
2474         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2475         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2476                 txt, lun[0], lun[1], lun[2], lun[3],
2477                 lun[4], lun[5], lun[6], lun[7],
2478                 cdb[0], cdb[1], cdb[2], cdb[3],
2479                 cdb[4], cdb[5], cdb[6], cdb[7],
2480                 cdb[8], cdb[9], cdb[10], cdb[11],
2481                 cdb[12], cdb[13], cdb[14], cdb[15]);
2482 }
2483 
2484 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2485                         struct CommandList *cp)
2486 {
2487         const struct ErrorInfo *ei = cp->err_info;
2488         struct device *d = &cp->h->pdev->dev;
2489         u8 sense_key, asc, ascq;
2490         int sense_len;
2491 
2492         switch (ei->CommandStatus) {
2493         case CMD_TARGET_STATUS:
2494                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2495                         sense_len = sizeof(ei->SenseInfo);
2496                 else
2497                         sense_len = ei->SenseLen;
2498                 decode_sense_data(ei->SenseInfo, sense_len,
2499                                         &sense_key, &asc, &ascq);
2500                 hpsa_print_cmd(h, "SCSI status", cp);
2501                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2502                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2503                                 sense_key, asc, ascq);
2504                 else
2505                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2506                 if (ei->ScsiStatus == 0)
2507                         dev_warn(d, "SCSI status is abnormally zero.  "
2508                         "(probably indicates selection timeout "
2509                         "reported incorrectly due to a known "
2510                         "firmware bug, circa July, 2001.)\n");
2511                 break;
2512         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2513                 break;
2514         case CMD_DATA_OVERRUN:
2515                 hpsa_print_cmd(h, "overrun condition", cp);
2516                 break;
2517         case CMD_INVALID: {
2518                 /* controller unfortunately reports SCSI passthru's
2519                  * to non-existent targets as invalid commands.
2520                  */
2521                 hpsa_print_cmd(h, "invalid command", cp);
2522                 dev_warn(d, "probably means device no longer present\n");
2523                 }
2524                 break;
2525         case CMD_PROTOCOL_ERR:
2526                 hpsa_print_cmd(h, "protocol error", cp);
2527                 break;
2528         case CMD_HARDWARE_ERR:
2529                 hpsa_print_cmd(h, "hardware error", cp);
2530                 break;
2531         case CMD_CONNECTION_LOST:
2532                 hpsa_print_cmd(h, "connection lost", cp);
2533                 break;
2534         case CMD_ABORTED:
2535                 hpsa_print_cmd(h, "aborted", cp);
2536                 break;
2537         case CMD_ABORT_FAILED:
2538                 hpsa_print_cmd(h, "abort failed", cp);
2539                 break;
2540         case CMD_UNSOLICITED_ABORT:
2541                 hpsa_print_cmd(h, "unsolicited abort", cp);
2542                 break;
2543         case CMD_TIMEOUT:
2544                 hpsa_print_cmd(h, "timed out", cp);
2545                 break;
2546         case CMD_UNABORTABLE:
2547                 hpsa_print_cmd(h, "unabortable", cp);
2548                 break;
2549         case CMD_CTLR_LOCKUP:
2550                 hpsa_print_cmd(h, "controller lockup detected", cp);
2551                 break;
2552         default:
2553                 hpsa_print_cmd(h, "unknown status", cp);
2554                 dev_warn(d, "Unknown command status %x\n",
2555                                 ei->CommandStatus);
2556         }
2557 }
2558 
2559 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2560                         u16 page, unsigned char *buf,
2561                         unsigned char bufsize)
2562 {
2563         int rc = IO_OK;
2564         struct CommandList *c;
2565         struct ErrorInfo *ei;
2566 
2567         c = cmd_alloc(h);
2568 
2569         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2570                         page, scsi3addr, TYPE_CMD)) {
2571                 rc = -1;
2572                 goto out;
2573         }
2574         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2575                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2576         if (rc)
2577                 goto out;
2578         ei = c->err_info;
2579         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2580                 hpsa_scsi_interpret_error(h, c);
2581                 rc = -1;
2582         }
2583 out:
2584         cmd_free(h, c);
2585         return rc;
2586 }
2587 
2588 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2589                 unsigned char *scsi3addr, unsigned char page,
2590                 struct bmic_controller_parameters *buf, size_t bufsize)
2591 {
2592         int rc = IO_OK;
2593         struct CommandList *c;
2594         struct ErrorInfo *ei;
2595 
2596         c = cmd_alloc(h);
2597         if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2598                         page, scsi3addr, TYPE_CMD)) {
2599                 rc = -1;
2600                 goto out;
2601         }
2602         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2603                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2604         if (rc)
2605                 goto out;
2606         ei = c->err_info;
2607         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2608                 hpsa_scsi_interpret_error(h, c);
2609                 rc = -1;
2610         }
2611 out:
2612         cmd_free(h, c);
2613         return rc;
2614 }
2615 
2616 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2617         u8 reset_type, int reply_queue)
2618 {
2619         int rc = IO_OK;
2620         struct CommandList *c;
2621         struct ErrorInfo *ei;
2622 
2623         c = cmd_alloc(h);
2624 
2625 
2626         /* fill_cmd can't fail here, no data buffer to map. */
2627         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2628                         scsi3addr, TYPE_MSG);
2629         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2630         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2631         if (rc) {
2632                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2633                 goto out;
2634         }
2635         /* no unmap needed here because no data xfer. */
2636 
2637         ei = c->err_info;
2638         if (ei->CommandStatus != 0) {
2639                 hpsa_scsi_interpret_error(h, c);
2640                 rc = -1;
2641         }
2642 out:
2643         cmd_free(h, c);
2644         return rc;
2645 }
2646 
2647 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2648                                struct hpsa_scsi_dev_t *dev,
2649                                unsigned char *scsi3addr)
2650 {
2651         int i;
2652         bool match = false;
2653         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2654         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2655 
2656         if (hpsa_is_cmd_idle(c))
2657                 return false;
2658 
2659         switch (c->cmd_type) {
2660         case CMD_SCSI:
2661         case CMD_IOCTL_PEND:
2662                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2663                                 sizeof(c->Header.LUN.LunAddrBytes));
2664                 break;
2665 
2666         case CMD_IOACCEL1:
2667         case CMD_IOACCEL2:
2668                 if (c->phys_disk == dev) {
2669                         /* HBA mode match */
2670                         match = true;
2671                 } else {
2672                         /* Possible RAID mode -- check each phys dev. */
2673                         /* FIXME:  Do we need to take out a lock here?  If
2674                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2675                          * instead. */
2676                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2677                                 /* FIXME: an alternate test might be
2678                                  *
2679                                  * match = dev->phys_disk[i]->ioaccel_handle
2680                                  *              == c2->scsi_nexus;      */
2681                                 match = dev->phys_disk[i] == c->phys_disk;
2682                         }
2683                 }
2684                 break;
2685 
2686         case IOACCEL2_TMF:
2687                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2688                         match = dev->phys_disk[i]->ioaccel_handle ==
2689                                         le32_to_cpu(ac->it_nexus);
2690                 }
2691                 break;
2692 
2693         case 0:         /* The command is in the middle of being initialized. */
2694                 match = false;
2695                 break;
2696 
2697         default:
2698                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2699                         c->cmd_type);
2700                 BUG();
2701         }
2702 
2703         return match;
2704 }
2705 
2706 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2707         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2708 {
2709         int i;
2710         int rc = 0;
2711 
2712         /* We can really only handle one reset at a time */
2713         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2714                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2715                 return -EINTR;
2716         }
2717 
2718         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2719 
2720         for (i = 0; i < h->nr_cmds; i++) {
2721                 struct CommandList *c = h->cmd_pool + i;
2722                 int refcount = atomic_inc_return(&c->refcount);
2723 
2724                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2725                         unsigned long flags;
2726 
2727                         /*
2728                          * Mark the target command as having a reset pending,
2729                          * then lock a lock so that the command cannot complete
2730                          * while we're considering it.  If the command is not
2731                          * idle then count it; otherwise revoke the event.
2732                          */
2733                         c->reset_pending = dev;
2734                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2735                         if (!hpsa_is_cmd_idle(c))
2736                                 atomic_inc(&dev->reset_cmds_out);
2737                         else
2738                                 c->reset_pending = NULL;
2739                         spin_unlock_irqrestore(&h->lock, flags);
2740                 }
2741 
2742                 cmd_free(h, c);
2743         }
2744 
2745         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2746         if (!rc)
2747                 wait_event(h->event_sync_wait_queue,
2748                         atomic_read(&dev->reset_cmds_out) == 0 ||
2749                         lockup_detected(h));
2750 
2751         if (unlikely(lockup_detected(h))) {
2752                         dev_warn(&h->pdev->dev,
2753                                  "Controller lockup detected during reset wait\n");
2754                         mutex_unlock(&h->reset_mutex);
2755                         rc = -ENODEV;
2756                 }
2757 
2758         if (unlikely(rc))
2759                 atomic_set(&dev->reset_cmds_out, 0);
2760 
2761         mutex_unlock(&h->reset_mutex);
2762         return rc;
2763 }
2764 
2765 static void hpsa_get_raid_level(struct ctlr_info *h,
2766         unsigned char *scsi3addr, unsigned char *raid_level)
2767 {
2768         int rc;
2769         unsigned char *buf;
2770 
2771         *raid_level = RAID_UNKNOWN;
2772         buf = kzalloc(64, GFP_KERNEL);
2773         if (!buf)
2774                 return;
2775         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2776         if (rc == 0)
2777                 *raid_level = buf[8];
2778         if (*raid_level > RAID_UNKNOWN)
2779                 *raid_level = RAID_UNKNOWN;
2780         kfree(buf);
2781         return;
2782 }
2783 
2784 #define HPSA_MAP_DEBUG
2785 #ifdef HPSA_MAP_DEBUG
2786 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2787                                 struct raid_map_data *map_buff)
2788 {
2789         struct raid_map_disk_data *dd = &map_buff->data[0];
2790         int map, row, col;
2791         u16 map_cnt, row_cnt, disks_per_row;
2792 
2793         if (rc != 0)
2794                 return;
2795 
2796         /* Show details only if debugging has been activated. */
2797         if (h->raid_offload_debug < 2)
2798                 return;
2799 
2800         dev_info(&h->pdev->dev, "structure_size = %u\n",
2801                                 le32_to_cpu(map_buff->structure_size));
2802         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2803                         le32_to_cpu(map_buff->volume_blk_size));
2804         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2805                         le64_to_cpu(map_buff->volume_blk_cnt));
2806         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2807                         map_buff->phys_blk_shift);
2808         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2809                         map_buff->parity_rotation_shift);
2810         dev_info(&h->pdev->dev, "strip_size = %u\n",
2811                         le16_to_cpu(map_buff->strip_size));
2812         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2813                         le64_to_cpu(map_buff->disk_starting_blk));
2814         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2815                         le64_to_cpu(map_buff->disk_blk_cnt));
2816         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2817                         le16_to_cpu(map_buff->data_disks_per_row));
2818         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2819                         le16_to_cpu(map_buff->metadata_disks_per_row));
2820         dev_info(&h->pdev->dev, "row_cnt = %u\n",
2821                         le16_to_cpu(map_buff->row_cnt));
2822         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2823                         le16_to_cpu(map_buff->layout_map_count));
2824         dev_info(&h->pdev->dev, "flags = 0x%x\n",
2825                         le16_to_cpu(map_buff->flags));
2826         dev_info(&h->pdev->dev, "encrypytion = %s\n",
2827                         le16_to_cpu(map_buff->flags) &
2828                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2829         dev_info(&h->pdev->dev, "dekindex = %u\n",
2830                         le16_to_cpu(map_buff->dekindex));
2831         map_cnt = le16_to_cpu(map_buff->layout_map_count);
2832         for (map = 0; map < map_cnt; map++) {
2833                 dev_info(&h->pdev->dev, "Map%u:\n", map);
2834                 row_cnt = le16_to_cpu(map_buff->row_cnt);
2835                 for (row = 0; row < row_cnt; row++) {
2836                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
2837                         disks_per_row =
2838                                 le16_to_cpu(map_buff->data_disks_per_row);
2839                         for (col = 0; col < disks_per_row; col++, dd++)
2840                                 dev_info(&h->pdev->dev,
2841                                         "    D%02u: h=0x%04x xor=%u,%u\n",
2842                                         col, dd->ioaccel_handle,
2843                                         dd->xor_mult[0], dd->xor_mult[1]);
2844                         disks_per_row =
2845                                 le16_to_cpu(map_buff->metadata_disks_per_row);
2846                         for (col = 0; col < disks_per_row; col++, dd++)
2847                                 dev_info(&h->pdev->dev,
2848                                         "    M%02u: h=0x%04x xor=%u,%u\n",
2849                                         col, dd->ioaccel_handle,
2850                                         dd->xor_mult[0], dd->xor_mult[1]);
2851                 }
2852         }
2853 }
2854 #else
2855 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2856                         __attribute__((unused)) int rc,
2857                         __attribute__((unused)) struct raid_map_data *map_buff)
2858 {
2859 }
2860 #endif
2861 
2862 static int hpsa_get_raid_map(struct ctlr_info *h,
2863         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2864 {
2865         int rc = 0;
2866         struct CommandList *c;
2867         struct ErrorInfo *ei;
2868 
2869         c = cmd_alloc(h);
2870 
2871         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2872                         sizeof(this_device->raid_map), 0,
2873                         scsi3addr, TYPE_CMD)) {
2874                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
2875                 cmd_free(h, c);
2876                 return -1;
2877         }
2878         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2879                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2880         if (rc)
2881                 goto out;
2882         ei = c->err_info;
2883         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2884                 hpsa_scsi_interpret_error(h, c);
2885                 rc = -1;
2886                 goto out;
2887         }
2888         cmd_free(h, c);
2889 
2890         /* @todo in the future, dynamically allocate RAID map memory */
2891         if (le32_to_cpu(this_device->raid_map.structure_size) >
2892                                 sizeof(this_device->raid_map)) {
2893                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2894                 rc = -1;
2895         }
2896         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2897         return rc;
2898 out:
2899         cmd_free(h, c);
2900         return rc;
2901 }
2902 
2903 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
2904                 unsigned char scsi3addr[], u16 bmic_device_index,
2905                 struct bmic_identify_physical_device *buf, size_t bufsize)
2906 {
2907         int rc = IO_OK;
2908         struct CommandList *c;
2909         struct ErrorInfo *ei;
2910 
2911         c = cmd_alloc(h);
2912         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
2913                 0, RAID_CTLR_LUNID, TYPE_CMD);
2914         if (rc)
2915                 goto out;
2916 
2917         c->Request.CDB[2] = bmic_device_index & 0xff;
2918         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
2919 
2920         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
2921                                                 NO_TIMEOUT);
2922         ei = c->err_info;
2923         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2924                 hpsa_scsi_interpret_error(h, c);
2925                 rc = -1;
2926         }
2927 out:
2928         cmd_free(h, c);
2929         return rc;
2930 }
2931 
2932 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2933         unsigned char scsi3addr[], u8 page)
2934 {
2935         int rc;
2936         int i;
2937         int pages;
2938         unsigned char *buf, bufsize;
2939 
2940         buf = kzalloc(256, GFP_KERNEL);
2941         if (!buf)
2942                 return 0;
2943 
2944         /* Get the size of the page list first */
2945         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2946                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2947                                 buf, HPSA_VPD_HEADER_SZ);
2948         if (rc != 0)
2949                 goto exit_unsupported;
2950         pages = buf[3];
2951         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2952                 bufsize = pages + HPSA_VPD_HEADER_SZ;
2953         else
2954                 bufsize = 255;
2955 
2956         /* Get the whole VPD page list */
2957         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2958                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2959                                 buf, bufsize);
2960         if (rc != 0)
2961                 goto exit_unsupported;
2962 
2963         pages = buf[3];
2964         for (i = 1; i <= pages; i++)
2965                 if (buf[3 + i] == page)
2966                         goto exit_supported;
2967 exit_unsupported:
2968         kfree(buf);
2969         return 0;
2970 exit_supported:
2971         kfree(buf);
2972         return 1;
2973 }
2974 
2975 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2976         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2977 {
2978         int rc;
2979         unsigned char *buf;
2980         u8 ioaccel_status;
2981 
2982         this_device->offload_config = 0;
2983         this_device->offload_enabled = 0;
2984         this_device->offload_to_be_enabled = 0;
2985 
2986         buf = kzalloc(64, GFP_KERNEL);
2987         if (!buf)
2988                 return;
2989         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2990                 goto out;
2991         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2992                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2993         if (rc != 0)
2994                 goto out;
2995 
2996 #define IOACCEL_STATUS_BYTE 4
2997 #define OFFLOAD_CONFIGURED_BIT 0x01
2998 #define OFFLOAD_ENABLED_BIT 0x02
2999         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3000         this_device->offload_config =
3001                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3002         if (this_device->offload_config) {
3003                 this_device->offload_enabled =
3004                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3005                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3006                         this_device->offload_enabled = 0;
3007         }
3008         this_device->offload_to_be_enabled = this_device->offload_enabled;
3009 out:
3010         kfree(buf);
3011         return;
3012 }
3013 
3014 /* Get the device id from inquiry page 0x83 */
3015 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3016         unsigned char *device_id, int buflen)
3017 {
3018         int rc;
3019         unsigned char *buf;
3020 
3021         if (buflen > 16)
3022                 buflen = 16;
3023         buf = kzalloc(64, GFP_KERNEL);
3024         if (!buf)
3025                 return -ENOMEM;
3026         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3027         if (rc == 0)
3028                 memcpy(device_id, &buf[8], buflen);
3029         kfree(buf);
3030         return rc != 0;
3031 }
3032 
3033 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3034                 void *buf, int bufsize,
3035                 int extended_response)
3036 {
3037         int rc = IO_OK;
3038         struct CommandList *c;
3039         unsigned char scsi3addr[8];
3040         struct ErrorInfo *ei;
3041 
3042         c = cmd_alloc(h);
3043 
3044         /* address the controller */
3045         memset(scsi3addr, 0, sizeof(scsi3addr));
3046         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3047                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3048                 rc = -1;
3049                 goto out;
3050         }
3051         if (extended_response)
3052                 c->Request.CDB[1] = extended_response;
3053         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3054                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3055         if (rc)
3056                 goto out;
3057         ei = c->err_info;
3058         if (ei->CommandStatus != 0 &&
3059             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3060                 hpsa_scsi_interpret_error(h, c);
3061                 rc = -1;
3062         } else {
3063                 struct ReportLUNdata *rld = buf;
3064 
3065                 if (rld->extended_response_flag != extended_response) {
3066                         dev_err(&h->pdev->dev,
3067                                 "report luns requested format %u, got %u\n",
3068                                 extended_response,
3069                                 rld->extended_response_flag);
3070                         rc = -1;
3071                 }
3072         }
3073 out:
3074         cmd_free(h, c);
3075         return rc;
3076 }
3077 
3078 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3079                 struct ReportExtendedLUNdata *buf, int bufsize)
3080 {
3081         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3082                                                 HPSA_REPORT_PHYS_EXTENDED);
3083 }
3084 
3085 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3086                 struct ReportLUNdata *buf, int bufsize)
3087 {
3088         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3089 }
3090 
3091 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3092         int bus, int target, int lun)
3093 {
3094         device->bus = bus;
3095         device->target = target;
3096         device->lun = lun;
3097 }
3098 
3099 /* Use VPD inquiry to get details of volume status */
3100 static int hpsa_get_volume_status(struct ctlr_info *h,
3101                                         unsigned char scsi3addr[])
3102 {
3103         int rc;
3104         int status;
3105         int size;
3106         unsigned char *buf;
3107 
3108         buf = kzalloc(64, GFP_KERNEL);
3109         if (!buf)
3110                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3111 
3112         /* Does controller have VPD for logical volume status? */
3113         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3114                 goto exit_failed;
3115 
3116         /* Get the size of the VPD return buffer */
3117         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3118                                         buf, HPSA_VPD_HEADER_SZ);
3119         if (rc != 0)
3120                 goto exit_failed;
3121         size = buf[3];
3122 
3123         /* Now get the whole VPD buffer */
3124         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3125                                         buf, size + HPSA_VPD_HEADER_SZ);
3126         if (rc != 0)
3127                 goto exit_failed;
3128         status = buf[4]; /* status byte */
3129 
3130         kfree(buf);
3131         return status;
3132 exit_failed:
3133         kfree(buf);
3134         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3135 }
3136 
3137 /* Determine offline status of a volume.
3138  * Return either:
3139  *  0 (not offline)
3140  *  0xff (offline for unknown reasons)
3141  *  # (integer code indicating one of several NOT READY states
3142  *     describing why a volume is to be kept offline)
3143  */
3144 static int hpsa_volume_offline(struct ctlr_info *h,
3145                                         unsigned char scsi3addr[])
3146 {
3147         struct CommandList *c;
3148         unsigned char *sense;
3149         u8 sense_key, asc, ascq;
3150         int sense_len;
3151         int rc, ldstat = 0;
3152         u16 cmd_status;
3153         u8 scsi_status;
3154 #define ASC_LUN_NOT_READY 0x04
3155 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3156 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3157 
3158         c = cmd_alloc(h);
3159 
3160         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3161         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3162         if (rc) {
3163                 cmd_free(h, c);
3164                 return 0;
3165         }
3166         sense = c->err_info->SenseInfo;
3167         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3168                 sense_len = sizeof(c->err_info->SenseInfo);
3169         else
3170                 sense_len = c->err_info->SenseLen;
3171         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3172         cmd_status = c->err_info->CommandStatus;
3173         scsi_status = c->err_info->ScsiStatus;
3174         cmd_free(h, c);
3175         /* Is the volume 'not ready'? */
3176         if (cmd_status != CMD_TARGET_STATUS ||
3177                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3178                 sense_key != NOT_READY ||
3179                 asc != ASC_LUN_NOT_READY)  {
3180                 return 0;
3181         }
3182 
3183         /* Determine the reason for not ready state */
3184         ldstat = hpsa_get_volume_status(h, scsi3addr);
3185 
3186         /* Keep volume offline in certain cases: */
3187         switch (ldstat) {
3188         case HPSA_LV_UNDERGOING_ERASE:
3189         case HPSA_LV_UNDERGOING_RPI:
3190         case HPSA_LV_PENDING_RPI:
3191         case HPSA_LV_ENCRYPTED_NO_KEY:
3192         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3193         case HPSA_LV_UNDERGOING_ENCRYPTION:
3194         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3195         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3196                 return ldstat;
3197         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3198                 /* If VPD status page isn't available,
3199                  * use ASC/ASCQ to determine state
3200                  */
3201                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3202                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3203                         return ldstat;
3204                 break;
3205         default:
3206                 break;
3207         }
3208         return 0;
3209 }
3210 
3211 /*
3212  * Find out if a logical device supports aborts by simply trying one.
3213  * Smart Array may claim not to support aborts on logical drives, but
3214  * if a MSA2000 * is connected, the drives on that will be presented
3215  * by the Smart Array as logical drives, and aborts may be sent to
3216  * those devices successfully.  So the simplest way to find out is
3217  * to simply try an abort and see how the device responds.
3218  */
3219 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3220                                         unsigned char *scsi3addr)
3221 {
3222         struct CommandList *c;
3223         struct ErrorInfo *ei;
3224         int rc = 0;
3225 
3226         u64 tag = (u64) -1; /* bogus tag */
3227 
3228         /* Assume that physical devices support aborts */
3229         if (!is_logical_dev_addr_mode(scsi3addr))
3230                 return 1;
3231 
3232         c = cmd_alloc(h);
3233 
3234         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3235         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3236         /* no unmap needed here because no data xfer. */
3237         ei = c->err_info;
3238         switch (ei->CommandStatus) {
3239         case CMD_INVALID:
3240                 rc = 0;
3241                 break;
3242         case CMD_UNABORTABLE:
3243         case CMD_ABORT_FAILED:
3244                 rc = 1;
3245                 break;
3246         case CMD_TMF_STATUS:
3247                 rc = hpsa_evaluate_tmf_status(h, c);
3248                 break;
3249         default:
3250                 rc = 0;
3251                 break;
3252         }
3253         cmd_free(h, c);
3254         return rc;
3255 }
3256 
3257 static int hpsa_update_device_info(struct ctlr_info *h,
3258         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3259         unsigned char *is_OBDR_device)
3260 {
3261 
3262 #define OBDR_SIG_OFFSET 43
3263 #define OBDR_TAPE_SIG "$DR-10"
3264 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3265 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3266 
3267         unsigned char *inq_buff;
3268         unsigned char *obdr_sig;
3269 
3270         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3271         if (!inq_buff)
3272                 goto bail_out;
3273 
3274         /* Do an inquiry to the device to see what it is. */
3275         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3276                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3277                 /* Inquiry failed (msg printed already) */
3278                 dev_err(&h->pdev->dev,
3279                         "hpsa_update_device_info: inquiry failed\n");
3280                 goto bail_out;
3281         }
3282 
3283         this_device->devtype = (inq_buff[0] & 0x1f);
3284         memcpy(this_device->scsi3addr, scsi3addr, 8);
3285         memcpy(this_device->vendor, &inq_buff[8],
3286                 sizeof(this_device->vendor));
3287         memcpy(this_device->model, &inq_buff[16],
3288                 sizeof(this_device->model));
3289         memset(this_device->device_id, 0,
3290                 sizeof(this_device->device_id));
3291         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
3292                 sizeof(this_device->device_id));
3293 
3294         if (this_device->devtype == TYPE_DISK &&
3295                 is_logical_dev_addr_mode(scsi3addr)) {
3296                 int volume_offline;
3297 
3298                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3299                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3300                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3301                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3302                 if (volume_offline < 0 || volume_offline > 0xff)
3303                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3304                 this_device->volume_offline = volume_offline & 0xff;
3305         } else {
3306                 this_device->raid_level = RAID_UNKNOWN;
3307                 this_device->offload_config = 0;
3308                 this_device->offload_enabled = 0;
3309                 this_device->offload_to_be_enabled = 0;
3310                 this_device->hba_ioaccel_enabled = 0;
3311                 this_device->volume_offline = 0;
3312                 this_device->queue_depth = h->nr_cmds;
3313         }
3314 
3315         if (is_OBDR_device) {
3316                 /* See if this is a One-Button-Disaster-Recovery device
3317                  * by looking for "$DR-10" at offset 43 in inquiry data.
3318                  */
3319                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3320                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3321                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3322                                                 OBDR_SIG_LEN) == 0);
3323         }
3324         kfree(inq_buff);
3325         return 0;
3326 
3327 bail_out:
3328         kfree(inq_buff);
3329         return 1;
3330 }
3331 
3332 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3333                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3334 {
3335         unsigned long flags;
3336         int rc, entry;
3337         /*
3338          * See if this device supports aborts.  If we already know
3339          * the device, we already know if it supports aborts, otherwise
3340          * we have to find out if it supports aborts by trying one.
3341          */
3342         spin_lock_irqsave(&h->devlock, flags);
3343         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3344         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3345                 entry >= 0 && entry < h->ndevices) {
3346                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3347                 spin_unlock_irqrestore(&h->devlock, flags);
3348         } else {
3349                 spin_unlock_irqrestore(&h->devlock, flags);
3350                 dev->supports_aborts =
3351                                 hpsa_device_supports_aborts(h, scsi3addr);
3352                 if (dev->supports_aborts < 0)
3353                         dev->supports_aborts = 0;
3354         }
3355 }
3356 
3357 static unsigned char *ext_target_model[] = {
3358         "MSA2012",
3359         "MSA2024",
3360         "MSA2312",
3361         "MSA2324",
3362         "P2000 G3 SAS",
3363         "MSA 2040 SAS",
3364         NULL,
3365 };
3366 
3367 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
3368 {
3369         int i;
3370 
3371         for (i = 0; ext_target_model[i]; i++)
3372                 if (strncmp(device->model, ext_target_model[i],
3373                         strlen(ext_target_model[i])) == 0)
3374                         return 1;
3375         return 0;
3376 }
3377 
3378 /* Helper function to assign bus, target, lun mapping of devices.
3379  * Puts non-external target logical volumes on bus 0, external target logical
3380  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
3381  * Logical drive target and lun are assigned at this time, but
3382  * physical device lun and target assignment are deferred (assigned
3383  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3384  */
3385 static void figure_bus_target_lun(struct ctlr_info *h,
3386         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3387 {
3388         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
3389 
3390         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3391                 /* physical device, target and lun filled in later */
3392                 if (is_hba_lunid(lunaddrbytes))
3393                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3394                 else
3395                         /* defer target, lun assignment for physical devices */
3396                         hpsa_set_bus_target_lun(device, 2, -1, -1);
3397                 return;
3398         }
3399         /* It's a logical device */
3400         if (is_ext_target(h, device)) {
3401                 /* external target way, put logicals on bus 1
3402                  * and match target/lun numbers box
3403                  * reports, other smart array, bus 0, target 0, match lunid
3404                  */
3405                 hpsa_set_bus_target_lun(device,
3406                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
3407                 return;
3408         }
3409         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3410 }
3411 
3412 /*
3413  * If there is no lun 0 on a target, linux won't find any devices.
3414  * For the external targets (arrays), we have to manually detect the enclosure
3415  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
3416  * it for some reason.  *tmpdevice is the target we're adding,
3417  * this_device is a pointer into the current element of currentsd[]
3418  * that we're building up in update_scsi_devices(), below.
3419  * lunzerobits is a bitmap that tracks which targets already have a
3420  * lun 0 assigned.
3421  * Returns 1 if an enclosure was added, 0 if not.
3422  */
3423 static int add_ext_target_dev(struct ctlr_info *h,
3424         struct hpsa_scsi_dev_t *tmpdevice,
3425         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3426         unsigned long lunzerobits[], int *n_ext_target_devs)
3427 {
3428         unsigned char scsi3addr[8];
3429 
3430         if (test_bit(tmpdevice->target, lunzerobits))
3431                 return 0; /* There is already a lun 0 on this target. */
3432 
3433         if (!is_logical_dev_addr_mode(lunaddrbytes))
3434                 return 0; /* It's the logical targets that may lack lun 0. */
3435 
3436         if (!is_ext_target(h, tmpdevice))
3437                 return 0; /* Only external target devices have this problem. */
3438 
3439         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3440                 return 0;
3441 
3442         memset(scsi3addr, 0, 8);
3443         scsi3addr[3] = tmpdevice->target;
3444         if (is_hba_lunid(scsi3addr))
3445                 return 0; /* Don't add the RAID controller here. */
3446 
3447         if (is_scsi_rev_5(h))
3448                 return 0; /* p1210m doesn't need to do this. */
3449 
3450         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3451                 dev_warn(&h->pdev->dev, "Maximum number of external "
3452                         "target devices exceeded.  Check your hardware "
3453                         "configuration.");
3454                 return 0;
3455         }
3456 
3457         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3458                 return 0;
3459         (*n_ext_target_devs)++;
3460         hpsa_set_bus_target_lun(this_device,
3461                                 tmpdevice->bus, tmpdevice->target, 0);
3462         hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3463         set_bit(tmpdevice->target, lunzerobits);
3464         return 1;
3465 }
3466 
3467 /*
3468  * Get address of physical disk used for an ioaccel2 mode command:
3469  *      1. Extract ioaccel2 handle from the command.
3470  *      2. Find a matching ioaccel2 handle from list of physical disks.
3471  *      3. Return:
3472  *              1 and set scsi3addr to address of matching physical
3473  *              0 if no matching physical disk was found.
3474  */
3475 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3476         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3477 {
3478         struct io_accel2_cmd *c2 =
3479                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3480         unsigned long flags;
3481         int i;
3482 
3483         spin_lock_irqsave(&h->devlock, flags);
3484         for (i = 0; i < h->ndevices; i++)
3485                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3486                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3487                                 sizeof(h->dev[i]->scsi3addr));
3488                         spin_unlock_irqrestore(&h->devlock, flags);
3489                         return 1;
3490                 }
3491         spin_unlock_irqrestore(&h->devlock, flags);
3492         return 0;
3493 }
3494 
3495 /*
3496  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3497  * logdev.  The number of luns in physdev and logdev are returned in
3498  * *nphysicals and *nlogicals, respectively.
3499  * Returns 0 on success, -1 otherwise.
3500  */
3501 static int hpsa_gather_lun_info(struct ctlr_info *h,
3502         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3503         struct ReportLUNdata *logdev, u32 *nlogicals)
3504 {
3505         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3506                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3507                 return -1;
3508         }
3509         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3510         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3511                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3512                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3513                 *nphysicals = HPSA_MAX_PHYS_LUN;
3514         }
3515         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3516                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3517                 return -1;
3518         }
3519         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3520         /* Reject Logicals in excess of our max capability. */
3521         if (*nlogicals > HPSA_MAX_LUN) {
3522                 dev_warn(&h->pdev->dev,
3523                         "maximum logical LUNs (%d) exceeded.  "
3524                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3525                         *nlogicals - HPSA_MAX_LUN);
3526                         *nlogicals = HPSA_MAX_LUN;
3527         }
3528         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3529                 dev_warn(&h->pdev->dev,
3530                         "maximum logical + physical LUNs (%d) exceeded. "
3531                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3532                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3533                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3534         }
3535         return 0;
3536 }
3537 
3538 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3539         int i, int nphysicals, int nlogicals,
3540         struct ReportExtendedLUNdata *physdev_list,
3541         struct ReportLUNdata *logdev_list)
3542 {
3543         /* Helper function, figure out where the LUN ID info is coming from
3544          * given index i, lists of physical and logical devices, where in
3545          * the list the raid controller is supposed to appear (first or last)
3546          */
3547 
3548         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3549         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3550 
3551         if (i == raid_ctlr_position)
3552                 return RAID_CTLR_LUNID;
3553 
3554         if (i < logicals_start)
3555                 return &physdev_list->LUN[i -
3556                                 (raid_ctlr_position == 0)].lunid[0];
3557 
3558         if (i < last_device)
3559                 return &logdev_list->LUN[i - nphysicals -
3560                         (raid_ctlr_position == 0)][0];
3561         BUG();
3562         return NULL;
3563 }
3564 
3565 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
3566 {
3567         int rc;
3568         int hba_mode_enabled;
3569         struct bmic_controller_parameters *ctlr_params;
3570         ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
3571                 GFP_KERNEL);
3572 
3573         if (!ctlr_params)
3574                 return -ENOMEM;
3575         rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
3576                 sizeof(struct bmic_controller_parameters));
3577         if (rc) {
3578                 kfree(ctlr_params);
3579                 return rc;
3580         }
3581 
3582         hba_mode_enabled =
3583                 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
3584         kfree(ctlr_params);
3585         return hba_mode_enabled;
3586 }
3587 
3588 /* get physical drive ioaccel handle and queue depth */
3589 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3590                 struct hpsa_scsi_dev_t *dev,
3591                 u8 *lunaddrbytes,
3592                 struct bmic_identify_physical_device *id_phys)
3593 {
3594         int rc;
3595         struct ext_report_lun_entry *rle =
3596                 (struct ext_report_lun_entry *) lunaddrbytes;
3597 
3598         dev->ioaccel_handle = rle->ioaccel_handle;
3599         if (PHYS_IOACCEL(lunaddrbytes) && dev->ioaccel_handle)
3600                 dev->hba_ioaccel_enabled = 1;
3601         memset(id_phys, 0, sizeof(*id_phys));
3602         rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
3603                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
3604                         sizeof(*id_phys));
3605         if (!rc)
3606                 /* Reserve space for FW operations */
3607 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3608 #define DRIVE_QUEUE_DEPTH 7
3609                 dev->queue_depth =
3610                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3611                                 DRIVE_CMDS_RESERVED_FOR_FW;
3612         else
3613                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3614         atomic_set(&dev->ioaccel_cmds_out, 0);
3615         atomic_set(&dev->reset_cmds_out, 0);
3616 }
3617 
3618 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
3619 {
3620         /* the idea here is we could get notified
3621          * that some devices have changed, so we do a report
3622          * physical luns and report logical luns cmd, and adjust
3623          * our list of devices accordingly.
3624          *
3625          * The scsi3addr's of devices won't change so long as the
3626          * adapter is not reset.  That means we can rescan and
3627          * tell which devices we already know about, vs. new
3628          * devices, vs.  disappearing devices.
3629          */
3630         struct ReportExtendedLUNdata *physdev_list = NULL;
3631         struct ReportLUNdata *logdev_list = NULL;
3632         struct bmic_identify_physical_device *id_phys = NULL;
3633         u32 nphysicals = 0;
3634         u32 nlogicals = 0;
3635         u32 ndev_allocated = 0;
3636         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3637         int ncurrent = 0;
3638         int i, n_ext_target_devs, ndevs_to_allocate;
3639         int raid_ctlr_position;
3640         int rescan_hba_mode;
3641         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3642 
3643         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3644         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
3645         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3646         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3647         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3648 
3649         if (!currentsd || !physdev_list || !logdev_list ||
3650                 !tmpdevice || !id_phys) {
3651                 dev_err(&h->pdev->dev, "out of memory\n");
3652                 goto out;
3653         }
3654         memset(lunzerobits, 0, sizeof(lunzerobits));
3655 
3656         rescan_hba_mode = hpsa_hba_mode_enabled(h);
3657         if (rescan_hba_mode < 0)
3658                 goto out;
3659 
3660         if (!h->hba_mode_enabled && rescan_hba_mode)
3661                 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3662         else if (h->hba_mode_enabled && !rescan_hba_mode)
3663                 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3664 
3665         h->hba_mode_enabled = rescan_hba_mode;
3666 
3667         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
3668                         logdev_list, &nlogicals))
3669                 goto out;
3670 
3671         /* We might see up to the maximum number of logical and physical disks
3672          * plus external target devices, and a device for the local RAID
3673          * controller.
3674          */
3675         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3676 
3677         /* Allocate the per device structures */
3678         for (i = 0; i < ndevs_to_allocate; i++) {
3679                 if (i >= HPSA_MAX_DEVICES) {
3680                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3681                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
3682                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
3683                         break;
3684                 }
3685 
3686                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3687                 if (!currentsd[i]) {
3688                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3689                                 __FILE__, __LINE__);
3690                         goto out;
3691                 }
3692                 ndev_allocated++;
3693         }
3694 
3695         if (is_scsi_rev_5(h))
3696                 raid_ctlr_position = 0;
3697         else
3698                 raid_ctlr_position = nphysicals + nlogicals;
3699 
3700         /* adjust our table of devices */
3701         n_ext_target_devs = 0;
3702         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3703                 u8 *lunaddrbytes, is_OBDR = 0;
3704 
3705                 /* Figure out where the LUN ID info is coming from */
3706                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3707                         i, nphysicals, nlogicals, physdev_list, logdev_list);
3708 
3709                 /* skip masked non-disk devices */
3710                 if (MASKED_DEVICE(lunaddrbytes))
3711                         if (i < nphysicals + (raid_ctlr_position == 0) &&
3712                                 NON_DISK_PHYS_DEV(lunaddrbytes))
3713                                 continue;
3714 
3715                 /* Get device type, vendor, model, device id */
3716                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3717                                                         &is_OBDR))
3718                         continue; /* skip it if we can't talk to it. */
3719                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3720                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3721                 this_device = currentsd[ncurrent];
3722 
3723                 /*
3724                  * For external target devices, we have to insert a LUN 0 which
3725                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3726                  * is nonetheless an enclosure device there.  We have to
3727                  * present that otherwise linux won't find anything if
3728                  * there is no lun 0.
3729                  */
3730                 if (add_ext_target_dev(h, tmpdevice, this_device,
3731                                 lunaddrbytes, lunzerobits,
3732                                 &n_ext_target_devs)) {
3733                         ncurrent++;
3734                         this_device = currentsd[ncurrent];
3735                 }
3736 
3737                 *this_device = *tmpdevice;
3738 
3739                 /* do not expose masked devices */
3740                 if (MASKED_DEVICE(lunaddrbytes) &&
3741                         i < nphysicals + (raid_ctlr_position == 0)) {
3742                         if (h->hba_mode_enabled)
3743                                 dev_warn(&h->pdev->dev,
3744                                         "Masked physical device detected\n");
3745                         this_device->expose_state = HPSA_DO_NOT_EXPOSE;
3746                 } else {
3747                         this_device->expose_state =
3748                                         HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
3749                 }
3750 
3751                 switch (this_device->devtype) {
3752                 case TYPE_ROM:
3753                         /* We don't *really* support actual CD-ROM devices,
3754                          * just "One Button Disaster Recovery" tape drive
3755                          * which temporarily pretends to be a CD-ROM drive.
3756                          * So we check that the device is really an OBDR tape
3757                          * device by checking for "$DR-10" in bytes 43-48 of
3758                          * the inquiry data.
3759                          */
3760                         if (is_OBDR)
3761                                 ncurrent++;
3762                         break;
3763                 case TYPE_DISK:
3764                         if (i >= nphysicals) {
3765                                 ncurrent++;
3766                                 break;
3767                         }
3768 
3769                         if (h->hba_mode_enabled)
3770                                 /* never use raid mapper in HBA mode */
3771                                 this_device->offload_enabled = 0;
3772                         else if (!(h->transMethod & CFGTBL_Trans_io_accel1 ||
3773                                 h->transMethod & CFGTBL_Trans_io_accel2))
3774                                 break;
3775 
3776                         hpsa_get_ioaccel_drive_info(h, this_device,
3777                                                 lunaddrbytes, id_phys);
3778                         atomic_set(&this_device->ioaccel_cmds_out, 0);
3779                         ncurrent++;
3780                         break;
3781                 case TYPE_TAPE:
3782                 case TYPE_MEDIUM_CHANGER:
3783                         ncurrent++;
3784                         break;
3785                 case TYPE_ENCLOSURE:
3786                         if (h->hba_mode_enabled)
3787                                 ncurrent++;
3788                         break;
3789                 case TYPE_RAID:
3790                         /* Only present the Smartarray HBA as a RAID controller.
3791                          * If it's a RAID controller other than the HBA itself
3792                          * (an external RAID controller, MSA500 or similar)
3793                          * don't present it.
3794                          */
3795                         if (!is_hba_lunid(lunaddrbytes))
3796                                 break;
3797                         ncurrent++;
3798                         break;
3799                 default:
3800                         break;
3801                 }
3802                 if (ncurrent >= HPSA_MAX_DEVICES)
3803                         break;
3804         }
3805         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3806 out:
3807         kfree(tmpdevice);
3808         for (i = 0; i < ndev_allocated; i++)
3809                 kfree(currentsd[i]);
3810         kfree(currentsd);
3811         kfree(physdev_list);
3812         kfree(logdev_list);
3813         kfree(id_phys);
3814 }
3815 
3816 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
3817                                    struct scatterlist *sg)
3818 {
3819         u64 addr64 = (u64) sg_dma_address(sg);
3820         unsigned int len = sg_dma_len(sg);
3821 
3822         desc->Addr = cpu_to_le64(addr64);
3823         desc->Len = cpu_to_le32(len);
3824         desc->Ext = 0;
3825 }
3826 
3827 /*
3828  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3829  * dma mapping  and fills in the scatter gather entries of the
3830  * hpsa command, cp.
3831  */
3832 static int hpsa_scatter_gather(struct ctlr_info *h,
3833                 struct CommandList *cp,
3834                 struct scsi_cmnd *cmd)
3835 {
3836         struct scatterlist *sg;
3837         int use_sg, i, sg_limit, chained, last_sg;
3838         struct SGDescriptor *curr_sg;
3839 
3840         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3841 
3842         use_sg = scsi_dma_map(cmd);
3843         if (use_sg < 0)
3844                 return use_sg;
3845 
3846         if (!use_sg)
3847                 goto sglist_finished;
3848 
3849         /*
3850          * If the number of entries is greater than the max for a single list,
3851          * then we have a chained list; we will set up all but one entry in the
3852          * first list (the last entry is saved for link information);
3853          * otherwise, we don't have a chained list and we'll set up at each of
3854          * the entries in the one list.
3855          */
3856         curr_sg = cp->SG;
3857         chained = use_sg > h->max_cmd_sg_entries;
3858         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
3859         last_sg = scsi_sg_count(cmd) - 1;
3860         scsi_for_each_sg(cmd, sg, sg_limit, i) {
3861                 hpsa_set_sg_descriptor(curr_sg, sg);
3862                 curr_sg++;
3863         }
3864 
3865         if (chained) {
3866                 /*
3867                  * Continue with the chained list.  Set curr_sg to the chained
3868                  * list.  Modify the limit to the total count less the entries
3869                  * we've already set up.  Resume the scan at the list entry
3870                  * where the previous loop left off.
3871                  */
3872                 curr_sg = h->cmd_sg_list[cp->cmdindex];
3873                 sg_limit = use_sg - sg_limit;
3874                 for_each_sg(sg, sg, sg_limit, i) {
3875                         hpsa_set_sg_descriptor(curr_sg, sg);
3876                         curr_sg++;
3877                 }
3878         }
3879 
3880         /* Back the pointer up to the last entry and mark it as "last". */
3881         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
3882 
3883         if (use_sg + chained > h->maxSG)
3884                 h->maxSG = use_sg + chained;
3885 
3886         if (chained) {
3887                 cp->Header.SGList = h->max_cmd_sg_entries;
3888                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3889                 if (hpsa_map_sg_chain_block(h, cp)) {
3890                         scsi_dma_unmap(cmd);
3891                         return -1;
3892                 }
3893                 return 0;
3894         }
3895 
3896 sglist_finished:
3897 
3898         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3899         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3900         return 0;
3901 }
3902 
3903 #define IO_ACCEL_INELIGIBLE (1)
3904 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3905 {
3906         int is_write = 0;
3907         u32 block;
3908         u32 block_cnt;
3909 
3910         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3911         switch (cdb[0]) {
3912         case WRITE_6:
3913         case WRITE_12:
3914                 is_write = 1;
3915         case READ_6:
3916         case READ_12:
3917                 if (*cdb_len == 6) {
3918                         block = (((u32) cdb[2]) << 8) | cdb[3];
3919                         block_cnt = cdb[4];
3920                 } else {
3921                         BUG_ON(*cdb_len != 12);
3922                         block = (((u32) cdb[2]) << 24) |
3923                                 (((u32) cdb[3]) << 16) |
3924                                 (((u32) cdb[4]) << 8) |
3925                                 cdb[5];
3926                         block_cnt =
3927                                 (((u32) cdb[6]) << 24) |
3928                                 (((u32) cdb[7]) << 16) |
3929                                 (((u32) cdb[8]) << 8) |
3930                                 cdb[9];
3931                 }
3932                 if (block_cnt > 0xffff)
3933                         return IO_ACCEL_INELIGIBLE;
3934 
3935                 cdb[0] = is_write ? WRITE_10 : READ_10;
3936                 cdb[1] = 0;
3937                 cdb[2] = (u8) (block >> 24);
3938                 cdb[3] = (u8) (block >> 16);
3939                 cdb[4] = (u8) (block >> 8);
3940                 cdb[5] = (u8) (block);
3941                 cdb[6] = 0;
3942                 cdb[7] = (u8) (block_cnt >> 8);
3943                 cdb[8] = (u8) (block_cnt);
3944                 cdb[9] = 0;
3945                 *cdb_len = 10;
3946                 break;
3947         }
3948         return 0;
3949 }
3950 
3951 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3952         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3953         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3954 {
3955         struct scsi_cmnd *cmd = c->scsi_cmd;
3956         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3957         unsigned int len;
3958         unsigned int total_len = 0;
3959         struct scatterlist *sg;
3960         u64 addr64;
3961         int use_sg, i;
3962         struct SGDescriptor *curr_sg;
3963         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3964 
3965         /* TODO: implement chaining support */
3966         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
3967                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3968                 return IO_ACCEL_INELIGIBLE;
3969         }
3970 
3971         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3972 
3973         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
3974                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3975                 return IO_ACCEL_INELIGIBLE;
3976         }
3977 
3978         c->cmd_type = CMD_IOACCEL1;
3979 
3980         /* Adjust the DMA address to point to the accelerated command buffer */
3981         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3982                                 (c->cmdindex * sizeof(*cp));
3983         BUG_ON(c->busaddr & 0x0000007F);
3984 
3985         use_sg = scsi_dma_map(cmd);
3986         if (use_sg < 0) {
3987                 atomic_dec(&phys_disk->ioaccel_cmds_out);
3988                 return use_sg;
3989         }
3990 
3991         if (use_sg) {
3992                 curr_sg = cp->SG;
3993                 scsi_for_each_sg(cmd, sg, use_sg, i) {
3994                         addr64 = (u64) sg_dma_address(sg);
3995                         len  = sg_dma_len(sg);
3996                         total_len += len;
3997                         curr_sg->Addr = cpu_to_le64(addr64);
3998                         curr_sg->Len = cpu_to_le32(len);
3999                         curr_sg->Ext = cpu_to_le32(0);
4000                         curr_sg++;
4001                 }
4002                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4003 
4004                 switch (cmd->sc_data_direction) {
4005                 case DMA_TO_DEVICE:
4006                         control |= IOACCEL1_CONTROL_DATA_OUT;
4007                         break;
4008                 case DMA_FROM_DEVICE:
4009                         control |= IOACCEL1_CONTROL_DATA_IN;
4010                         break;
4011                 case DMA_NONE:
4012                         control |= IOACCEL1_CONTROL_NODATAXFER;
4013                         break;
4014                 default:
4015                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4016                         cmd->sc_data_direction);
4017                         BUG();
4018                         break;
4019                 }
4020         } else {
4021                 control |= IOACCEL1_CONTROL_NODATAXFER;
4022         }
4023 
4024         c->Header.SGList = use_sg;
4025         /* Fill out the command structure to submit */
4026         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4027         cp->transfer_len = cpu_to_le32(total_len);
4028         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4029                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4030         cp->control = cpu_to_le32(control);
4031         memcpy(cp->CDB, cdb, cdb_len);
4032         memcpy(cp->CISS_LUN, scsi3addr, 8);
4033         /* Tag was already set at init time. */
4034         enqueue_cmd_and_start_io(h, c);
4035         return 0;
4036 }
4037 
4038 /*
4039  * Queue a command directly to a device behind the controller using the
4040  * I/O accelerator path.
4041  */
4042 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4043         struct CommandList *c)
4044 {
4045         struct scsi_cmnd *cmd = c->scsi_cmd;
4046         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4047 
4048         c->phys_disk = dev;
4049 
4050         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4051                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4052 }
4053 
4054 /*
4055  * Set encryption parameters for the ioaccel2 request
4056  */
4057 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4058         struct CommandList *c, struct io_accel2_cmd *cp)
4059 {
4060         struct scsi_cmnd *cmd = c->scsi_cmd;
4061         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4062         struct raid_map_data *map = &dev->raid_map;
4063         u64 first_block;
4064 
4065         /* Are we doing encryption on this device */
4066         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4067                 return;
4068         /* Set the data encryption key index. */
4069         cp->dekindex = map->dekindex;
4070 
4071         /* Set the encryption enable flag, encoded into direction field. */
4072         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4073 
4074         /* Set encryption tweak values based on logical block address
4075          * If block size is 512, tweak value is LBA.
4076          * For other block sizes, tweak is (LBA * block size)/ 512)
4077          */
4078         switch (cmd->cmnd[0]) {
4079         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4080         case WRITE_6:
4081         case READ_6:
4082                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4083                 break;
4084         case WRITE_10:
4085         case READ_10:
4086         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4087         case WRITE_12:
4088         case READ_12:
4089                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4090                 break;
4091         case WRITE_16:
4092         case READ_16:
4093                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4094                 break;
4095         default:
4096                 dev_err(&h->pdev->dev,
4097                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4098                         __func__, cmd->cmnd[0]);
4099                 BUG();
4100                 break;
4101         }
4102 
4103         if (le32_to_cpu(map->volume_blk_size) != 512)
4104                 first_block = first_block *
4105                                 le32_to_cpu(map->volume_blk_size)/512;
4106 
4107         cp->tweak_lower = cpu_to_le32(first_block);
4108         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4109 }
4110 
4111 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4112         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4113         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4114 {
4115         struct scsi_cmnd *cmd = c->scsi_cmd;
4116         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4117         struct ioaccel2_sg_element *curr_sg;
4118         int use_sg, i;
4119         struct scatterlist *sg;
4120         u64 addr64;
4121         u32 len;
4122         u32 total_len = 0;
4123 
4124         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4125 
4126         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4127                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4128                 return IO_ACCEL_INELIGIBLE;
4129         }
4130 
4131         c->cmd_type = CMD_IOACCEL2;
4132         /* Adjust the DMA address to point to the accelerated command buffer */
4133         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4134                                 (c->cmdindex * sizeof(*cp));
4135         BUG_ON(c->busaddr & 0x0000007F);
4136 
4137         memset(cp, 0, sizeof(*cp));
4138         cp->IU_type = IOACCEL2_IU_TYPE;
4139 
4140         use_sg = scsi_dma_map(cmd);
4141         if (use_sg < 0) {
4142                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4143                 return use_sg;
4144         }
4145 
4146         if (use_sg) {
4147                 curr_sg = cp->sg;
4148                 if (use_sg > h->ioaccel_maxsg) {
4149                         addr64 = le64_to_cpu(
4150                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4151                         curr_sg->address = cpu_to_le64(addr64);
4152                         curr_sg->length = 0;
4153                         curr_sg->reserved[0] = 0;
4154                         curr_sg->reserved[1] = 0;
4155                         curr_sg->reserved[2] = 0;
4156                         curr_sg->chain_indicator = 0x80;
4157 
4158                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4159                 }
4160                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4161                         addr64 = (u64) sg_dma_address(sg);
4162                         len  = sg_dma_len(sg);
4163                         total_len += len;
4164                         curr_sg->address = cpu_to_le64(addr64);
4165                         curr_sg->length = cpu_to_le32(len);
4166                         curr_sg->reserved[0] = 0;
4167                         curr_sg->reserved[1] = 0;
4168                         curr_sg->reserved[2] = 0;
4169                         curr_sg->chain_indicator = 0;
4170                         curr_sg++;
4171                 }
4172 
4173                 switch (cmd->sc_data_direction) {
4174                 case DMA_TO_DEVICE:
4175                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4176                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4177                         break;
4178                 case DMA_FROM_DEVICE:
4179                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4180                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4181                         break;
4182                 case DMA_NONE:
4183                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4184                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4185                         break;
4186                 default:
4187                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4188                                 cmd->sc_data_direction);
4189                         BUG();
4190                         break;
4191                 }
4192         } else {
4193                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4194                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4195         }
4196 
4197         /* Set encryption parameters, if necessary */
4198         set_encrypt_ioaccel2(h, c, cp);
4199 
4200         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4201         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4202         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4203 
4204         cp->data_len = cpu_to_le32(total_len);
4205         cp->err_ptr = cpu_to_le64(c->busaddr +
4206                         offsetof(struct io_accel2_cmd, error_data));
4207         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4208 
4209         /* fill in sg elements */
4210         if (use_sg > h->ioaccel_maxsg) {
4211                 cp->sg_count = 1;
4212                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4213                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4214                         scsi_dma_unmap(cmd);
4215                         return -1;
4216                 }
4217         } else
4218                 cp->sg_count = (u8) use_sg;
4219 
4220         enqueue_cmd_and_start_io(h, c);
4221         return 0;
4222 }
4223 
4224 /*
4225  * Queue a command to the correct I/O accelerator path.
4226  */
4227 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4228         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4229         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4230 {
4231         /* Try to honor the device's queue depth */
4232         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4233                                         phys_disk->queue_depth) {
4234                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4235                 return IO_ACCEL_INELIGIBLE;
4236         }
4237         if (h->transMethod & CFGTBL_Trans_io_accel1)
4238                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4239                                                 cdb, cdb_len, scsi3addr,
4240                                                 phys_disk);
4241         else
4242                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4243                                                 cdb, cdb_len, scsi3addr,
4244                                                 phys_disk);
4245 }
4246 
4247 static void raid_map_helper(struct raid_map_data *map,
4248                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4249 {
4250         if (offload_to_mirror == 0)  {
4251                 /* use physical disk in the first mirrored group. */
4252                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4253                 return;
4254         }
4255         do {
4256                 /* determine mirror group that *map_index indicates */
4257                 *current_group = *map_index /
4258                         le16_to_cpu(map->data_disks_per_row);
4259                 if (offload_to_mirror == *current_group)
4260                         continue;
4261                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4262                         /* select map index from next group */
4263                         *map_index += le16_to_cpu(map->data_disks_per_row);
4264                         (*current_group)++;
4265                 } else {
4266                         /* select map index from first group */
4267                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4268                         *current_group = 0;
4269                 }
4270         } while (offload_to_mirror != *current_group);
4271 }
4272 
4273 /*
4274  * Attempt to perform offload RAID mapping for a logical volume I/O.
4275  */
4276 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4277         struct CommandList *c)
4278 {
4279         struct scsi_cmnd *cmd = c->scsi_cmd;
4280         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4281         struct raid_map_data *map = &dev->raid_map;
4282         struct raid_map_disk_data *dd = &map->data[0];
4283         int is_write = 0;
4284         u32 map_index;
4285         u64 first_block, last_block;
4286         u32 block_cnt;
4287         u32 blocks_per_row;
4288         u64 first_row, last_row;
4289         u32 first_row_offset, last_row_offset;
4290         u32 first_column, last_column;
4291         u64 r0_first_row, r0_last_row;
4292         u32 r5or6_blocks_per_row;
4293         u64 r5or6_first_row, r5or6_last_row;
4294         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4295         u32 r5or6_first_column, r5or6_last_column;
4296         u32 total_disks_per_row;
4297         u32 stripesize;
4298         u32 first_group, last_group, current_group;
4299         u32 map_row;
4300         u32 disk_handle;
4301         u64 disk_block;
4302         u32 disk_block_cnt;
4303         u8 cdb[16];
4304         u8 cdb_len;
4305         u16 strip_size;
4306 #if BITS_PER_LONG == 32
4307         u64 tmpdiv;
4308 #endif
4309         int offload_to_mirror;
4310 
4311         /* check for valid opcode, get LBA and block count */
4312         switch (cmd->cmnd[0]) {
4313         case WRITE_6:
4314                 is_write = 1;
4315         case READ_6:
4316                 first_block =
4317                         (((u64) cmd->cmnd[2]) << 8) |
4318                         cmd->cmnd[3];
4319                 block_cnt = cmd->cmnd[4];
4320                 if (block_cnt == 0)
4321                         block_cnt = 256;
4322                 break;
4323         case WRITE_10:
4324                 is_write = 1;
4325         case READ_10:
4326                 first_block =
4327                         (((u64) cmd->cmnd[2]) << 24) |
4328                         (((u64) cmd->cmnd[3]) << 16) |
4329                         (((u64) cmd->cmnd[4]) << 8) |
4330                         cmd->cmnd[5];
4331                 block_cnt =
4332                         (((u32) cmd->cmnd[7]) << 8) |
4333                         cmd->cmnd[8];
4334                 break;
4335         case WRITE_12:
4336                 is_write = 1;
4337         case READ_12:
4338                 first_block =
4339                         (((u64) cmd->cmnd[2]) << 24) |
4340                         (((u64) cmd->cmnd[3]) << 16) |
4341                         (((u64) cmd->cmnd[4]) << 8) |
4342                         cmd->cmnd[5];
4343                 block_cnt =
4344                         (((u32) cmd->cmnd[6]) << 24) |
4345                         (((u32) cmd->cmnd[7]) << 16) |
4346                         (((u32) cmd->cmnd[8]) << 8) |
4347                 cmd->cmnd[9];
4348                 break;
4349         case WRITE_16:
4350                 is_write = 1;
4351         case READ_16:
4352                 first_block =
4353                         (((u64) cmd->cmnd[2]) << 56) |
4354                         (((u64) cmd->cmnd[3]) << 48) |
4355                         (((u64) cmd->cmnd[4]) << 40) |
4356                         (((u64) cmd->cmnd[5]) << 32) |
4357                         (((u64) cmd->cmnd[6]) << 24) |
4358                         (((u64) cmd->cmnd[7]) << 16) |
4359                         (((u64) cmd->cmnd[8]) << 8) |
4360                         cmd->cmnd[9];
4361                 block_cnt =
4362                         (((u32) cmd->cmnd[10]) << 24) |
4363                         (((u32) cmd->cmnd[11]) << 16) |
4364                         (((u32) cmd->cmnd[12]) << 8) |
4365                         cmd->cmnd[13];
4366                 break;
4367         default:
4368                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4369         }
4370         last_block = first_block + block_cnt - 1;
4371 
4372         /* check for write to non-RAID-0 */
4373         if (is_write && dev->raid_level != 0)
4374                 return IO_ACCEL_INELIGIBLE;
4375 
4376         /* check for invalid block or wraparound */
4377         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4378                 last_block < first_block)
4379                 return IO_ACCEL_INELIGIBLE;
4380 
4381         /* calculate stripe information for the request */
4382         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4383                                 le16_to_cpu(map->strip_size);
4384         strip_size = le16_to_cpu(map->strip_size);
4385 #if BITS_PER_LONG == 32
4386         tmpdiv = first_block;
4387         (void) do_div(tmpdiv, blocks_per_row);
4388         first_row = tmpdiv;
4389         tmpdiv = last_block;
4390         (void) do_div(tmpdiv, blocks_per_row);
4391         last_row = tmpdiv;
4392         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4393         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4394         tmpdiv = first_row_offset;
4395         (void) do_div(tmpdiv, strip_size);
4396         first_column = tmpdiv;
4397         tmpdiv = last_row_offset;
4398         (void) do_div(tmpdiv, strip_size);
4399         last_column = tmpdiv;
4400 #else
4401         first_row = first_block / blocks_per_row;
4402         last_row = last_block / blocks_per_row;
4403         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4404         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4405         first_column = first_row_offset / strip_size;
4406         last_column = last_row_offset / strip_size;
4407 #endif
4408 
4409         /* if this isn't a single row/column then give to the controller */
4410         if ((first_row != last_row) || (first_column != last_column))
4411                 return IO_ACCEL_INELIGIBLE;
4412 
4413         /* proceeding with driver mapping */
4414         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4415                                 le16_to_cpu(map->metadata_disks_per_row);
4416         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4417                                 le16_to_cpu(map->row_cnt);
4418         map_index = (map_row * total_disks_per_row) + first_column;
4419 
4420         switch (dev->raid_level) {
4421         case HPSA_RAID_0:
4422                 break; /* nothing special to do */
4423         case HPSA_RAID_1:
4424                 /* Handles load balance across RAID 1 members.
4425                  * (2-drive R1 and R10 with even # of drives.)
4426                  * Appropriate for SSDs, not optimal for HDDs
4427                  */
4428                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4429                 if (dev->offload_to_mirror)
4430                         map_index += le16_to_cpu(map->data_disks_per_row);
4431                 dev->offload_to_mirror = !dev->offload_to_mirror;
4432                 break;
4433         case HPSA_RAID_ADM:
4434                 /* Handles N-way mirrors  (R1-ADM)
4435                  * and R10 with # of drives divisible by 3.)
4436                  */
4437                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4438 
4439                 offload_to_mirror = dev->offload_to_mirror;
4440                 raid_map_helper(map, offload_to_mirror,
4441                                 &map_index, &current_group);
4442                 /* set mirror group to use next time */
4443                 offload_to_mirror =
4444                         (offload_to_mirror >=
4445                         le16_to_cpu(map->layout_map_count) - 1)
4446                         ? 0 : offload_to_mirror + 1;
4447                 dev->offload_to_mirror = offload_to_mirror;
4448                 /* Avoid direct use of dev->offload_to_mirror within this
4449                  * function since multiple threads might simultaneously
4450                  * increment it beyond the range of dev->layout_map_count -1.
4451                  */
4452                 break;
4453         case HPSA_RAID_5:
4454         case HPSA_RAID_6:
4455                 if (le16_to_cpu(map->layout_map_count) <= 1)
4456                         break;
4457 
4458                 /* Verify first and last block are in same RAID group */
4459                 r5or6_blocks_per_row =
4460                         le16_to_cpu(map->strip_size) *
4461                         le16_to_cpu(map->data_disks_per_row);
4462                 BUG_ON(r5or6_blocks_per_row == 0);
4463                 stripesize = r5or6_blocks_per_row *
4464                         le16_to_cpu(map->layout_map_count);
4465 #if BITS_PER_LONG == 32
4466                 tmpdiv = first_block;
4467                 first_group = do_div(tmpdiv, stripesize);
4468                 tmpdiv = first_group;
4469                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4470                 first_group = tmpdiv;
4471                 tmpdiv = last_block;
4472                 last_group = do_div(tmpdiv, stripesize);
4473                 tmpdiv = last_group;
4474                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4475                 last_group = tmpdiv;
4476 #else
4477                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4478                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4479 #endif
4480                 if (first_group != last_group)
4481                         return IO_ACCEL_INELIGIBLE;
4482 
4483                 /* Verify request is in a single row of RAID 5/6 */
4484 #if BITS_PER_LONG == 32
4485                 tmpdiv = first_block;
4486                 (void) do_div(tmpdiv, stripesize);
4487                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4488                 tmpdiv = last_block;
4489                 (void) do_div(tmpdiv, stripesize);
4490                 r5or6_last_row = r0_last_row = tmpdiv;
4491 #else
4492                 first_row = r5or6_first_row = r0_first_row =
4493                                                 first_block / stripesize;
4494                 r5or6_last_row = r0_last_row = last_block / stripesize;
4495 #endif
4496                 if (r5or6_first_row != r5or6_last_row)
4497                         return IO_ACCEL_INELIGIBLE;
4498 
4499 
4500                 /* Verify request is in a single column */
4501 #if BITS_PER_LONG == 32
4502                 tmpdiv = first_block;
4503                 first_row_offset = do_div(tmpdiv, stripesize);
4504                 tmpdiv = first_row_offset;
4505                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4506                 r5or6_first_row_offset = first_row_offset;
4507                 tmpdiv = last_block;
4508                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4509                 tmpdiv = r5or6_last_row_offset;
4510                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4511                 tmpdiv = r5or6_first_row_offset;
4512                 (void) do_div(tmpdiv, map->strip_size);
4513                 first_column = r5or6_first_column = tmpdiv;
4514                 tmpdiv = r5or6_last_row_offset;
4515                 (void) do_div(tmpdiv, map->strip_size);
4516                 r5or6_last_column = tmpdiv;
4517 #else
4518                 first_row_offset = r5or6_first_row_offset =
4519                         (u32)((first_block % stripesize) %
4520                                                 r5or6_blocks_per_row);
4521 
4522                 r5or6_last_row_offset =
4523                         (u32)((last_block % stripesize) %
4524                                                 r5or6_blocks_per_row);
4525 
4526                 first_column = r5or6_first_column =
4527                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4528                 r5or6_last_column =
4529                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4530 #endif
4531                 if (r5or6_first_column != r5or6_last_column)
4532                         return IO_ACCEL_INELIGIBLE;
4533 
4534                 /* Request is eligible */
4535                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4536                         le16_to_cpu(map->row_cnt);
4537 
4538                 map_index = (first_group *
4539                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4540                         (map_row * total_disks_per_row) + first_column;
4541                 break;
4542         default:
4543                 return IO_ACCEL_INELIGIBLE;
4544         }
4545 
4546         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4547                 return IO_ACCEL_INELIGIBLE;
4548 
4549         c->phys_disk = dev->phys_disk[map_index];
4550 
4551         disk_handle = dd[map_index].ioaccel_handle;
4552         disk_block = le64_to_cpu(map->disk_starting_blk) +
4553                         first_row * le16_to_cpu(map->strip_size) +
4554                         (first_row_offset - first_column *
4555                         le16_to_cpu(map->strip_size));
4556         disk_block_cnt = block_cnt;
4557 
4558         /* handle differing logical/physical block sizes */
4559         if (map->phys_blk_shift) {
4560                 disk_block <<= map->phys_blk_shift;
4561                 disk_block_cnt <<= map->phys_blk_shift;
4562         }
4563         BUG_ON(disk_block_cnt > 0xffff);
4564 
4565         /* build the new CDB for the physical disk I/O */
4566         if (disk_block > 0xffffffff) {
4567                 cdb[0] = is_write ? WRITE_16 : READ_16;
4568                 cdb[1] = 0;
4569                 cdb[2] = (u8) (disk_block >> 56);
4570                 cdb[3] = (u8) (disk_block >> 48);
4571                 cdb[4] = (u8) (disk_block >> 40);
4572                 cdb[5] = (u8) (disk_block >> 32);
4573                 cdb[6] = (u8) (disk_block >> 24);
4574                 cdb[7] = (u8) (disk_block >> 16);
4575                 cdb[8] = (u8) (disk_block >> 8);
4576                 cdb[9] = (u8) (disk_block);
4577                 cdb[10] = (u8) (disk_block_cnt >> 24);
4578                 cdb[11] = (u8) (disk_block_cnt >> 16);
4579                 cdb[12] = (u8) (disk_block_cnt >> 8);
4580                 cdb[13] = (u8) (disk_block_cnt);
4581                 cdb[14] = 0;
4582                 cdb[15] = 0;
4583                 cdb_len = 16;
4584         } else {
4585                 cdb[0] = is_write ? WRITE_10 : READ_10;
4586                 cdb[1] = 0;
4587                 cdb[2] = (u8) (disk_block >> 24);
4588                 cdb[3] = (u8) (disk_block >> 16);
4589                 cdb[4] = (u8) (disk_block >> 8);
4590                 cdb[5] = (u8) (disk_block);
4591                 cdb[6] = 0;
4592                 cdb[7] = (u8) (disk_block_cnt >> 8);
4593                 cdb[8] = (u8) (disk_block_cnt);
4594                 cdb[9] = 0;
4595                 cdb_len = 10;
4596         }
4597         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4598                                                 dev->scsi3addr,
4599                                                 dev->phys_disk[map_index]);
4600 }
4601 
4602 /*
4603  * Submit commands down the "normal" RAID stack path
4604  * All callers to hpsa_ciss_submit must check lockup_detected
4605  * beforehand, before (opt.) and after calling cmd_alloc
4606  */
4607 static int hpsa_ciss_submit(struct ctlr_info *h,
4608         struct CommandList *c, struct scsi_cmnd *cmd,
4609         unsigned char scsi3addr[])
4610 {
4611         cmd->host_scribble = (unsigned char *) c;
4612         c->cmd_type = CMD_SCSI;
4613         c->scsi_cmd = cmd;
4614         c->Header.ReplyQueue = 0;  /* unused in simple mode */
4615         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4616         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4617 
4618         /* Fill in the request block... */
4619 
4620         c->Request.Timeout = 0;
4621         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4622         c->Request.CDBLen = cmd->cmd_len;
4623         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4624         switch (cmd->sc_data_direction) {
4625         case DMA_TO_DEVICE:
4626                 c->Request.type_attr_dir =
4627                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4628                 break;
4629         case DMA_FROM_DEVICE:
4630                 c->Request.type_attr_dir =
4631                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4632                 break;
4633         case DMA_NONE:
4634                 c->Request.type_attr_dir =
4635                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4636                 break;
4637         case DMA_BIDIRECTIONAL:
4638                 /* This can happen if a buggy application does a scsi passthru
4639                  * and sets both inlen and outlen to non-zero. ( see
4640                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4641                  */
4642 
4643                 c->Request.type_attr_dir =
4644                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4645                 /* This is technically wrong, and hpsa controllers should
4646                  * reject it with CMD_INVALID, which is the most correct
4647                  * response, but non-fibre backends appear to let it
4648                  * slide by, and give the same results as if this field
4649                  * were set correctly.  Either way is acceptable for
4650                  * our purposes here.
4651                  */
4652 
4653                 break;
4654 
4655         default:
4656                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4657                         cmd->sc_data_direction);
4658                 BUG();
4659                 break;
4660         }
4661 
4662         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4663                 hpsa_cmd_resolve_and_free(h, c);
4664                 return SCSI_MLQUEUE_HOST_BUSY;
4665         }
4666         enqueue_cmd_and_start_io(h, c);
4667         /* the cmd'll come back via intr handler in complete_scsi_command()  */
4668         return 0;
4669 }
4670 
4671 static void hpsa_cmd_init(struct ctlr_info *h, int index,
4672                                 struct CommandList *c)
4673 {
4674         dma_addr_t cmd_dma_handle, err_dma_handle;
4675 
4676         /* Zero out all of commandlist except the last field, refcount */
4677         memset(c, 0, offsetof(struct CommandList, refcount));
4678         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
4679         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4680         c->err_info = h->errinfo_pool + index;
4681         memset(c->err_info, 0, sizeof(*c->err_info));
4682         err_dma_handle = h->errinfo_pool_dhandle
4683             + index * sizeof(*c->err_info);
4684         c->cmdindex = index;
4685         c->busaddr = (u32) cmd_dma_handle;
4686         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
4687         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4688         c->h = h;
4689         c->scsi_cmd = SCSI_CMD_IDLE;
4690 }
4691 
4692 static void hpsa_preinitialize_commands(struct ctlr_info *h)
4693 {
4694         int i;
4695 
4696         for (i = 0; i < h->nr_cmds; i++) {
4697                 struct CommandList *c = h->cmd_pool + i;
4698 
4699                 hpsa_cmd_init(h, i, c);
4700                 atomic_set(&c->refcount, 0);
4701         }
4702 }
4703 
4704 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
4705                                 struct CommandList *c)
4706 {
4707         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
4708 
4709         BUG_ON(c->cmdindex != index);
4710 
4711         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4712         memset(c->err_info, 0, sizeof(*c->err_info));
4713         c->busaddr = (u32) cmd_dma_handle;
4714 }
4715 
4716 static int hpsa_ioaccel_submit(struct ctlr_info *h,
4717                 struct CommandList *c, struct scsi_cmnd *cmd,
4718                 unsigned char *scsi3addr)
4719 {
4720         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4721         int rc = IO_ACCEL_INELIGIBLE;
4722 
4723         cmd->host_scribble = (unsigned char *) c;
4724 
4725         if (dev->offload_enabled) {
4726                 hpsa_cmd_init(h, c->cmdindex, c);
4727                 c->cmd_type = CMD_SCSI;
4728                 c->scsi_cmd = cmd;
4729                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4730                 if (rc < 0)     /* scsi_dma_map failed. */
4731                         rc = SCSI_MLQUEUE_HOST_BUSY;
4732         } else if (dev->hba_ioaccel_enabled) {
4733                 hpsa_cmd_init(h, c->cmdindex, c);
4734                 c->cmd_type = CMD_SCSI;
4735                 c->scsi_cmd = cmd;
4736                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4737                 if (rc < 0)     /* scsi_dma_map failed. */
4738                         rc = SCSI_MLQUEUE_HOST_BUSY;
4739         }
4740         return rc;
4741 }
4742 
4743 static void hpsa_command_resubmit_worker(struct work_struct *work)
4744 {
4745         struct scsi_cmnd *cmd;
4746         struct hpsa_scsi_dev_t *dev;
4747         struct CommandList *c = container_of(work, struct CommandList, work);
4748 
4749         cmd = c->scsi_cmd;
4750         dev = cmd->device->hostdata;
4751         if (!dev) {
4752                 cmd->result = DID_NO_CONNECT << 16;
4753                 return hpsa_cmd_free_and_done(c->h, c, cmd);
4754         }
4755         if (c->reset_pending)
4756                 return hpsa_cmd_resolve_and_free(c->h, c);
4757         if (c->abort_pending)
4758                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
4759         if (c->cmd_type == CMD_IOACCEL2) {
4760                 struct ctlr_info *h = c->h;
4761                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
4762                 int rc;
4763 
4764                 if (c2->error_data.serv_response ==
4765                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
4766                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
4767                         if (rc == 0)
4768                                 return;
4769                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4770                                 /*
4771                                  * If we get here, it means dma mapping failed.
4772                                  * Try again via scsi mid layer, which will
4773                                  * then get SCSI_MLQUEUE_HOST_BUSY.
4774                                  */
4775                                 cmd->result = DID_IMM_RETRY << 16;
4776                                 return hpsa_cmd_free_and_done(h, c, cmd);
4777                         }
4778                         /* else, fall thru and resubmit down CISS path */
4779                 }
4780         }
4781         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
4782         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
4783                 /*
4784                  * If we get here, it means dma mapping failed. Try
4785                  * again via scsi mid layer, which will then get
4786                  * SCSI_MLQUEUE_HOST_BUSY.
4787                  *
4788                  * hpsa_ciss_submit will have already freed c
4789                  * if it encountered a dma mapping failure.
4790                  */
4791                 cmd->result = DID_IMM_RETRY << 16;
4792                 cmd->scsi_done(cmd);
4793         }
4794 }
4795 
4796 /* Running in struct Scsi_Host->host_lock less mode */
4797 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
4798 {
4799         struct ctlr_info *h;
4800         struct hpsa_scsi_dev_t *dev;
4801         unsigned char scsi3addr[8];
4802         struct CommandList *c;
4803         int rc = 0;
4804 
4805         /* Get the ptr to our adapter structure out of cmd->host. */
4806         h = sdev_to_hba(cmd->device);
4807 
4808         BUG_ON(cmd->request->tag < 0);
4809 
4810         dev = cmd->device->hostdata;
4811         if (!dev) {
4812                 cmd->result = DID_NO_CONNECT << 16;
4813                 cmd->scsi_done(cmd);
4814                 return 0;
4815         }
4816 
4817         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
4818 
4819         if (unlikely(lockup_detected(h))) {
4820                 cmd->result = DID_NO_CONNECT << 16;
4821                 cmd->scsi_done(cmd);
4822                 return 0;
4823         }
4824         c = cmd_tagged_alloc(h, cmd);
4825 
4826         /*
4827          * Call alternate submit routine for I/O accelerated commands.
4828          * Retries always go down the normal I/O path.
4829          */
4830         if (likely(cmd->retries == 0 &&
4831                 cmd->request->cmd_type == REQ_TYPE_FS &&
4832                 h->acciopath_status)) {
4833                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
4834                 if (rc == 0)
4835                         return 0;
4836                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
4837                         hpsa_cmd_resolve_and_free(h, c);
4838                         return SCSI_MLQUEUE_HOST_BUSY;
4839                 }
4840         }
4841         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
4842 }
4843 
4844 static void hpsa_scan_complete(struct ctlr_info *h)
4845 {
4846         unsigned long flags;
4847 
4848         spin_lock_irqsave(&h->scan_lock, flags);
4849         h->scan_finished = 1;
4850         wake_up_all(&h->scan_wait_queue);
4851         spin_unlock_irqrestore(&h->scan_lock, flags);
4852 }
4853 
4854 static void hpsa_scan_start(struct Scsi_Host *sh)
4855 {
4856         struct ctlr_info *h = shost_to_hba(sh);
4857         unsigned long flags;
4858 
4859         /*
4860          * Don't let rescans be initiated on a controller known to be locked
4861          * up.  If the controller locks up *during* a rescan, that thread is
4862          * probably hosed, but at least we can prevent new rescan threads from
4863          * piling up on a locked up controller.
4864          */
4865         if (unlikely(lockup_detected(h)))
4866                 return hpsa_scan_complete(h);
4867 
4868         /* wait until any scan already in progress is finished. */
4869         while (1) {
4870                 spin_lock_irqsave(&h->scan_lock, flags);
4871                 if (h->scan_finished)
4872                         break;
4873                 spin_unlock_irqrestore(&h->scan_lock, flags);
4874                 wait_event(h->scan_wait_queue, h->scan_finished);
4875                 /* Note: We don't need to worry about a race between this
4876                  * thread and driver unload because the midlayer will
4877                  * have incremented the reference count, so unload won't
4878                  * happen if we're in here.
4879                  */
4880         }
4881         h->scan_finished = 0; /* mark scan as in progress */
4882         spin_unlock_irqrestore(&h->scan_lock, flags);
4883 
4884         if (unlikely(lockup_detected(h)))
4885                 return hpsa_scan_complete(h);
4886 
4887         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4888 
4889         hpsa_scan_complete(h);
4890 }
4891 
4892 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
4893 {
4894         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
4895 
4896         if (!logical_drive)
4897                 return -ENODEV;
4898 
4899         if (qdepth < 1)
4900                 qdepth = 1;
4901         else if (qdepth > logical_drive->queue_depth)
4902                 qdepth = logical_drive->queue_depth;
4903 
4904         return scsi_change_queue_depth(sdev, qdepth);
4905 }
4906 
4907 static int hpsa_scan_finished(struct Scsi_Host *sh,
4908         unsigned long elapsed_time)
4909 {
4910         struct ctlr_info *h = shost_to_hba(sh);
4911         unsigned long flags;
4912         int finished;
4913 
4914         spin_lock_irqsave(&h->scan_lock, flags);
4915         finished = h->scan_finished;
4916         spin_unlock_irqrestore(&h->scan_lock, flags);
4917         return finished;
4918 }
4919 
4920 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
4921 {
4922         struct Scsi_Host *sh;
4923         int error;
4924 
4925         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4926         if (sh == NULL) {
4927                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
4928                 return -ENOMEM;
4929         }
4930 
4931         sh->io_port = 0;
4932         sh->n_io_port = 0;
4933         sh->this_id = -1;
4934         sh->max_channel = 3;
4935         sh->max_cmd_len = MAX_COMMAND_SIZE;
4936         sh->max_lun = HPSA_MAX_LUN;
4937         sh->max_id = HPSA_MAX_LUN;
4938         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4939         sh->cmd_per_lun = sh->can_queue;
4940         sh->sg_tablesize = h->maxsgentries;
4941         sh->hostdata[0] = (unsigned long) h;
4942         sh->irq = h->intr[h->intr_mode];
4943         sh->unique_id = sh->irq;
4944         error = scsi_init_shared_tag_map(sh, sh->can_queue);
4945         if (error) {
4946                 dev_err(&h->pdev->dev,
4947                         "%s: scsi_init_shared_tag_map failed for controller %d\n",
4948                         __func__, h->ctlr);
4949                         scsi_host_put(sh);
4950                         return error;
4951         }
4952         h->scsi_host = sh;
4953         return 0;
4954 }
4955 
4956 static int hpsa_scsi_add_host(struct ctlr_info *h)
4957 {
4958         int rv;
4959 
4960         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
4961         if (rv) {
4962                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
4963                 return rv;
4964         }
4965         scsi_scan_host(h->scsi_host);
4966         return 0;
4967 }
4968 
4969 /*
4970  * The block layer has already gone to the trouble of picking out a unique,
4971  * small-integer tag for this request.  We use an offset from that value as
4972  * an index to select our command block.  (The offset allows us to reserve the
4973  * low-numbered entries for our own uses.)
4974  */
4975 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
4976 {
4977         int idx = scmd->request->tag;
4978 
4979         if (idx < 0)
4980                 return idx;
4981 
4982         /* Offset to leave space for internal cmds. */
4983         return idx += HPSA_NRESERVED_CMDS;
4984 }
4985 
4986 /*
4987  * Send a TEST_UNIT_READY command to the specified LUN using the specified
4988  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
4989  */
4990 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
4991                                 struct CommandList *c, unsigned char lunaddr[],
4992                                 int reply_queue)
4993 {
4994         int rc;
4995 
4996         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4997         (void) fill_cmd(c, TEST_UNIT_READY, h,
4998                         NULL, 0, 0, lunaddr, TYPE_CMD);
4999         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5000         if (rc)
5001                 return rc;
5002         /* no unmap needed here because no data xfer. */
5003 
5004         /* Check if the unit is already ready. */
5005         if (c->err_info->CommandStatus == CMD_SUCCESS)
5006                 return 0;
5007 
5008         /*
5009          * The first command sent after reset will receive "unit attention" to
5010          * indicate that the LUN has been reset...this is actually what we're
5011          * looking for (but, success is good too).
5012          */
5013         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5014                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5015                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5016                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5017                 return 0;
5018 
5019         return 1;
5020 }
5021 
5022 /*
5023  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5024  * returns zero when the unit is ready, and non-zero when giving up.
5025  */
5026 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5027                                 struct CommandList *c,
5028                                 unsigned char lunaddr[], int reply_queue)
5029 {
5030         int rc;
5031         int count = 0;
5032         int waittime = 1; /* seconds */
5033 
5034         /* Send test unit ready until device ready, or give up. */
5035         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5036 
5037                 /*
5038                  * Wait for a bit.  do this first, because if we send
5039                  * the TUR right away, the reset will just abort it.
5040                  */
5041                 msleep(1000 * waittime);
5042 
5043                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5044                 if (!rc)
5045                         break;
5046 
5047                 /* Increase wait time with each try, up to a point. */
5048                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5049                         waittime *= 2;
5050 
5051                 dev_warn(&h->pdev->dev,
5052                          "waiting %d secs for device to become ready.\n",
5053                          waittime);
5054         }
5055 
5056         return rc;
5057 }
5058 
5059 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5060                                            unsigned char lunaddr[],
5061                                            int reply_queue)
5062 {
5063         int first_queue;
5064         int last_queue;
5065         int rq;
5066         int rc = 0;
5067         struct CommandList *c;
5068 
5069         c = cmd_alloc(h);
5070 
5071         /*
5072          * If no specific reply queue was requested, then send the TUR
5073          * repeatedly, requesting a reply on each reply queue; otherwise execute
5074          * the loop exactly once using only the specified queue.
5075          */
5076         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5077                 first_queue = 0;
5078                 last_queue = h->nreply_queues - 1;
5079         } else {
5080                 first_queue = reply_queue;
5081                 last_queue = reply_queue;
5082         }
5083 
5084         for (rq = first_queue; rq <= last_queue; rq++) {
5085                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5086                 if (rc)
5087                         break;
5088         }
5089 
5090         if (rc)
5091                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5092         else
5093                 dev_warn(&h->pdev->dev, "device is ready.\n");
5094 
5095         cmd_free(h, c);
5096         return rc;
5097 }
5098 
5099 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5100  * complaining.  Doing a host- or bus-reset can't do anything good here.
5101  */
5102 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5103 {
5104         int rc;
5105         struct ctlr_info *h;
5106         struct hpsa_scsi_dev_t *dev;
5107         char msg[40];
5108 
5109         /* find the controller to which the command to be aborted was sent */
5110         h = sdev_to_hba(scsicmd->device);
5111         if (h == NULL) /* paranoia */
5112                 return FAILED;
5113 
5114         if (lockup_detected(h))
5115                 return FAILED;
5116 
5117         dev = scsicmd->device->hostdata;
5118         if (!dev) {
5119                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5120                 return FAILED;
5121         }
5122 
5123         /* if controller locked up, we can guarantee command won't complete */
5124         if (lockup_detected(h)) {
5125                 sprintf(msg, "cmd %d RESET FAILED, lockup detected",
5126                                 hpsa_get_cmd_index(scsicmd));
5127                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5128                 return FAILED;
5129         }
5130 
5131         /* this reset request might be the result of a lockup; check */
5132         if (detect_controller_lockup(h)) {
5133                 sprintf(msg, "cmd %d RESET FAILED, new lockup detected",
5134                                 hpsa_get_cmd_index(scsicmd));
5135                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5136                 return FAILED;
5137         }
5138 
5139         /* Do not attempt on controller */
5140         if (is_hba_lunid(dev->scsi3addr))
5141                 return SUCCESS;
5142 
5143         hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");
5144 
5145         /* send a reset to the SCSI LUN which the command was sent to */
5146         rc = hpsa_do_reset(h, dev, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
5147                            DEFAULT_REPLY_QUEUE);
5148         sprintf(msg, "reset %s", rc == 0 ? "completed successfully" : "failed");
5149         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5150         return rc == 0 ? SUCCESS : FAILED;
5151 }
5152 
5153 static void swizzle_abort_tag(u8 *tag)
5154 {
5155         u8 original_tag[8];
5156 
5157         memcpy(original_tag, tag, 8);
5158         tag[0] = original_tag[3];
5159         tag[1] = original_tag[2];
5160         tag[2] = original_tag[1];
5161         tag[3] = original_tag[0];
5162         tag[4] = original_tag[7];
5163         tag[5] = original_tag[6];
5164         tag[6] = original_tag[5];
5165         tag[7] = original_tag[4];
5166 }
5167 
5168 static void hpsa_get_tag(struct ctlr_info *h,
5169         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5170 {
5171         u64 tag;
5172         if (c->cmd_type == CMD_IOACCEL1) {
5173                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5174                         &h->ioaccel_cmd_pool[c->cmdindex];
5175                 tag = le64_to_cpu(cm1->tag);
5176                 *tagupper = cpu_to_le32(tag >> 32);
5177                 *taglower = cpu_to_le32(tag);
5178                 return;
5179         }
5180         if (c->cmd_type == CMD_IOACCEL2) {
5181                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5182                         &h->ioaccel2_cmd_pool[c->cmdindex];
5183                 /* upper tag not used in ioaccel2 mode */
5184                 memset(tagupper, 0, sizeof(*tagupper));
5185                 *taglower = cm2->Tag;
5186                 return;
5187         }
5188         tag = le64_to_cpu(c->Header.tag);
5189         *tagupper = cpu_to_le32(tag >> 32);
5190         *taglower = cpu_to_le32(tag);
5191 }
5192 
5193 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5194         struct CommandList *abort, int reply_queue)
5195 {
5196         int rc = IO_OK;
5197         struct CommandList *c;
5198         struct ErrorInfo *ei;
5199         __le32 tagupper, taglower;
5200 
5201         c = cmd_alloc(h);
5202 
5203         /* fill_cmd can't fail here, no buffer to map */
5204         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5205                 0, 0, scsi3addr, TYPE_MSG);
5206         if (h->needs_abort_tags_swizzled)
5207                 swizzle_abort_tag(&c->Request.CDB[4]);
5208         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5209         hpsa_get_tag(h, abort, &taglower, &tagupper);
5210         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5211                 __func__, tagupper, taglower);
5212         /* no unmap needed here because no data xfer. */
5213 
5214         ei = c->err_info;
5215         switch (ei->CommandStatus) {
5216         case CMD_SUCCESS:
5217                 break;
5218         case CMD_TMF_STATUS:
5219                 rc = hpsa_evaluate_tmf_status(h, c);
5220                 break;
5221         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5222                 rc = -1;
5223                 break;
5224         default:
5225                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5226                         __func__, tagupper, taglower);
5227                 hpsa_scsi_interpret_error(h, c);
5228                 rc = -1;
5229                 break;
5230         }
5231         cmd_free(h, c);
5232         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5233                 __func__, tagupper, taglower);
5234         return rc;
5235 }
5236 
5237 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5238         struct CommandList *command_to_abort, int reply_queue)
5239 {
5240         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5241         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5242         struct io_accel2_cmd *c2a =
5243                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5244         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5245         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5246 
5247         /*
5248          * We're overlaying struct hpsa_tmf_struct on top of something which
5249          * was allocated as a struct io_accel2_cmd, so we better be sure it
5250          * actually fits, and doesn't overrun the error info space.
5251          */
5252         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5253                         sizeof(struct io_accel2_cmd));
5254         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5255                         offsetof(struct hpsa_tmf_struct, error_len) +
5256                                 sizeof(ac->error_len));
5257 
5258         c->cmd_type = IOACCEL2_TMF;
5259         c->scsi_cmd = SCSI_CMD_BUSY;
5260 
5261         /* Adjust the DMA address to point to the accelerated command buffer */
5262         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5263                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5264         BUG_ON(c->busaddr & 0x0000007F);
5265 
5266         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5267         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5268         ac->reply_queue = reply_queue;
5269         ac->tmf = IOACCEL2_TMF_ABORT;
5270         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5271         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5272         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5273         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5274         ac->error_ptr = cpu_to_le64(c->busaddr +
5275                         offsetof(struct io_accel2_cmd, error_data));
5276         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5277 }
5278 
5279 /* ioaccel2 path firmware cannot handle abort task requests.
5280  * Change abort requests to physical target reset, and send to the
5281  * address of the physical disk used for the ioaccel 2 command.
5282  * Return 0 on success (IO_OK)
5283  *       -1 on failure
5284  */
5285 
5286 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5287         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5288 {
5289         int rc = IO_OK;
5290         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5291         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5292         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5293         unsigned char *psa = &phys_scsi3addr[0];
5294 
5295         /* Get a pointer to the hpsa logical device. */
5296         scmd = abort->scsi_cmd;
5297         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5298         if (dev == NULL) {
5299                 dev_warn(&h->pdev->dev,
5300                         "Cannot abort: no device pointer for command.\n");
5301                         return -1; /* not abortable */
5302         }
5303 
5304         if (h->raid_offload_debug > 0)
5305                 dev_info(&h->pdev->dev,
5306                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5307                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5308                         "Reset as abort",
5309                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5310                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5311 
5312         if (!dev->offload_enabled) {
5313                 dev_warn(&h->pdev->dev,
5314                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5315                 return -1; /* not abortable */
5316         }
5317 
5318         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5319         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5320                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5321                 return -1; /* not abortable */
5322         }
5323 
5324         /* send the reset */
5325         if (h->raid_offload_debug > 0)
5326                 dev_info(&h->pdev->dev,
5327                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5328                         psa[0], psa[1], psa[2], psa[3],
5329                         psa[4], psa[5], psa[6], psa[7]);
5330         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5331         if (rc != 0) {
5332                 dev_warn(&h->pdev->dev,
5333                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5334                         psa[0], psa[1], psa[2], psa[3],
5335                         psa[4], psa[5], psa[6], psa[7]);
5336                 return rc; /* failed to reset */
5337         }
5338 
5339         /* wait for device to recover */
5340         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5341                 dev_warn(&h->pdev->dev,
5342                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5343                         psa[0], psa[1], psa[2], psa[3],
5344                         psa[4], psa[5], psa[6], psa[7]);
5345                 return -1;  /* failed to recover */
5346         }
5347 
5348         /* device recovered */
5349         dev_info(&h->pdev->dev,
5350                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5351                 psa[0], psa[1], psa[2], psa[3],
5352                 psa[4], psa[5], psa[6], psa[7]);
5353 
5354         return rc; /* success */
5355 }
5356 
5357 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5358         struct CommandList *abort, int reply_queue)
5359 {
5360         int rc = IO_OK;
5361         struct CommandList *c;
5362         __le32 taglower, tagupper;
5363         struct hpsa_scsi_dev_t *dev;
5364         struct io_accel2_cmd *c2;
5365 
5366         dev = abort->scsi_cmd->device->hostdata;
5367         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5368                 return -1;
5369 
5370         c = cmd_alloc(h);
5371         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5372         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5373         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5374         hpsa_get_tag(h, abort, &taglower, &tagupper);
5375         dev_dbg(&h->pdev->dev,
5376                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5377                 __func__, tagupper, taglower);
5378         /* no unmap needed here because no data xfer. */
5379 
5380         dev_dbg(&h->pdev->dev,
5381                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5382                 __func__, tagupper, taglower, c2->error_data.serv_response);
5383         switch (c2->error_data.serv_response) {
5384         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5385         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5386                 rc = 0;
5387                 break;
5388         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5389         case IOACCEL2_SERV_RESPONSE_FAILURE:
5390         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5391                 rc = -1;
5392                 break;
5393         default:
5394                 dev_warn(&h->pdev->dev,
5395                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5396                         __func__, tagupper, taglower,
5397                         c2->error_data.serv_response);
5398                 rc = -1;
5399         }
5400         cmd_free(h, c);
5401         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5402                 tagupper, taglower);
5403         return rc;
5404 }
5405 
5406 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5407         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5408 {
5409         /*
5410          * ioccelerator mode 2 commands should be aborted via the
5411          * accelerated path, since RAID path is unaware of these commands,
5412          * but not all underlying firmware can handle abort TMF.
5413          * Change abort to physical device reset when abort TMF is unsupported.
5414          */
5415         if (abort->cmd_type == CMD_IOACCEL2) {
5416                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5417                         return hpsa_send_abort_ioaccel2(h, abort,
5418                                                 reply_queue);
5419                 else
5420                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5421                                                         abort, reply_queue);
5422         }
5423         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5424 }
5425 
5426 /* Find out which reply queue a command was meant to return on */
5427 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5428                                         struct CommandList *c)
5429 {
5430         if (c->cmd_type == CMD_IOACCEL2)
5431                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5432         return c->Header.ReplyQueue;
5433 }
5434 
5435 /*
5436  * Limit concurrency of abort commands to prevent
5437  * over-subscription of commands
5438  */
5439 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5440 {
5441 #define ABORT_CMD_WAIT_MSECS 5000
5442         return !wait_event_timeout(h->abort_cmd_wait_queue,
5443                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5444                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5445 }
5446 
5447 /* Send an abort for the specified command.
5448  *      If the device and controller support it,
5449  *              send a task abort request.
5450  */
5451 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5452 {
5453 
5454         int rc;
5455         struct ctlr_info *h;
5456         struct hpsa_scsi_dev_t *dev;
5457         struct CommandList *abort; /* pointer to command to be aborted */
5458         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5459         char msg[256];          /* For debug messaging. */
5460         int ml = 0;
5461         __le32 tagupper, taglower;
5462         int refcount, reply_queue;
5463 
5464         if (sc == NULL)
5465                 return FAILED;
5466 
5467         if (sc->device == NULL)
5468                 return FAILED;
5469 
5470         /* Find the controller of the command to be aborted */
5471         h = sdev_to_hba(sc->device);
5472         if (h == NULL)
5473                 return FAILED;
5474 
5475         /* Find the device of the command to be aborted */
5476         dev = sc->device->hostdata;
5477         if (!dev) {
5478                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5479                                 msg);
5480                 return FAILED;
5481         }
5482 
5483         /* If controller locked up, we can guarantee command won't complete */
5484         if (lockup_detected(h)) {
5485                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5486                                         "ABORT FAILED, lockup detected");
5487                 return FAILED;
5488         }
5489 
5490         /* This is a good time to check if controller lockup has occurred */
5491         if (detect_controller_lockup(h)) {
5492                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5493                                         "ABORT FAILED, new lockup detected");
5494                 return FAILED;
5495         }
5496 
5497         /* Check that controller supports some kind of task abort */
5498         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5499                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5500                 return FAILED;
5501 
5502         memset(msg, 0, sizeof(msg));
5503         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5504                 h->scsi_host->host_no, sc->device->channel,
5505                 sc->device->id, sc->device->lun,
5506                 "Aborting command", sc);
5507 
5508         /* Get SCSI command to be aborted */
5509         abort = (struct CommandList *) sc->host_scribble;
5510         if (abort == NULL) {
5511                 /* This can happen if the command already completed. */
5512                 return SUCCESS;
5513         }
5514         refcount = atomic_inc_return(&abort->refcount);
5515         if (refcount == 1) { /* Command is done already. */
5516                 cmd_free(h, abort);
5517                 return SUCCESS;
5518         }
5519 
5520         /* Don't bother trying the abort if we know it won't work. */
5521         if (abort->cmd_type != CMD_IOACCEL2 &&
5522                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5523                 cmd_free(h, abort);
5524                 return FAILED;
5525         }
5526 
5527         /*
5528          * Check that we're aborting the right command.
5529          * It's possible the CommandList already completed and got re-used.
5530          */
5531         if (abort->scsi_cmd != sc) {
5532                 cmd_free(h, abort);
5533                 return SUCCESS;
5534         }
5535 
5536         abort->abort_pending = true;
5537         hpsa_get_tag(h, abort, &taglower, &tagupper);
5538         reply_queue = hpsa_extract_reply_queue(h, abort);
5539         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5540         as  = abort->scsi_cmd;
5541         if (as != NULL)
5542                 ml += sprintf(msg+ml,
5543                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5544                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5545                         as->serial_number);
5546         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5547         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5548 
5549         /*
5550          * Command is in flight, or possibly already completed
5551          * by the firmware (but not to the scsi mid layer) but we can't
5552          * distinguish which.  Send the abort down.
5553          */
5554         if (wait_for_available_abort_cmd(h)) {
5555                 dev_warn(&h->pdev->dev,
5556                         "%s FAILED, timeout waiting for an abort command to become available.\n",
5557                         msg);
5558                 cmd_free(h, abort);
5559                 return FAILED;
5560         }
5561         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
5562         atomic_inc(&h->abort_cmds_available);
5563         wake_up_all(&h->abort_cmd_wait_queue);
5564         if (rc != 0) {
5565                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
5566                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5567                                 "FAILED to abort command");
5568                 cmd_free(h, abort);
5569                 return FAILED;
5570         }
5571         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
5572         wait_event(h->event_sync_wait_queue,
5573                    abort->scsi_cmd != sc || lockup_detected(h));
5574         cmd_free(h, abort);
5575         return !lockup_detected(h) ? SUCCESS : FAILED;
5576 }
5577 
5578 /*
5579  * For operations with an associated SCSI command, a command block is allocated
5580  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
5581  * block request tag as an index into a table of entries.  cmd_tagged_free() is
5582  * the complement, although cmd_free() may be called instead.
5583  */
5584 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
5585                                             struct scsi_cmnd *scmd)
5586 {
5587         int idx = hpsa_get_cmd_index(scmd);
5588         struct CommandList *c = h->cmd_pool + idx;
5589 
5590         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
5591                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
5592                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
5593                 /* The index value comes from the block layer, so if it's out of
5594                  * bounds, it's probably not our bug.
5595                  */
5596                 BUG();
5597         }
5598 
5599         atomic_inc(&c->refcount);
5600         if (unlikely(!hpsa_is_cmd_idle(c))) {
5601                 /*
5602                  * We expect that the SCSI layer will hand us a unique tag
5603                  * value.  Thus, there should never be a collision here between
5604                  * two requests...because if the selected command isn't idle
5605                  * then someone is going to be very disappointed.
5606                  */
5607                 dev_err(&h->pdev->dev,
5608                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
5609                         idx);
5610                 if (c->scsi_cmd != NULL)
5611                         scsi_print_command(c->scsi_cmd);
5612                 scsi_print_command(scmd);
5613         }
5614 
5615         hpsa_cmd_partial_init(h, idx, c);
5616         return c;
5617 }
5618 
5619 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
5620 {
5621         /*
5622          * Release our reference to the block.  We don't need to do anything
5623          * else to free it, because it is accessed by index.  (There's no point
5624          * in checking the result of the decrement, since we cannot guarantee
5625          * that there isn't a concurrent abort which is also accessing it.)
5626          */
5627         (void)atomic_dec(&c->refcount);
5628 }
5629 
5630 /*
5631  * For operations that cannot sleep, a command block is allocated at init,
5632  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
5633  * which ones are free or in use.  Lock must be held when calling this.
5634  * cmd_free() is the complement.
5635  * This function never gives up and returns NULL.  If it hangs,
5636  * another thread must call cmd_free() to free some tags.
5637  */
5638 
5639 static struct CommandList *cmd_alloc(struct ctlr_info *h)
5640 {
5641         struct CommandList *c;
5642         int refcount, i;
5643         int offset = 0;
5644 
5645         /*
5646          * There is some *extremely* small but non-zero chance that that
5647          * multiple threads could get in here, and one thread could
5648          * be scanning through the list of bits looking for a free
5649          * one, but the free ones are always behind him, and other
5650          * threads sneak in behind him and eat them before he can
5651          * get to them, so that while there is always a free one, a
5652          * very unlucky thread might be starved anyway, never able to
5653          * beat the other threads.  In reality, this happens so
5654          * infrequently as to be indistinguishable from never.
5655          *
5656          * Note that we start allocating commands before the SCSI host structure
5657          * is initialized.  Since the search starts at bit zero, this
5658          * all works, since we have at least one command structure available;
5659          * however, it means that the structures with the low indexes have to be
5660          * reserved for driver-initiated requests, while requests from the block
5661          * layer will use the higher indexes.
5662          */
5663 
5664         for (;;) {
5665                 i = find_next_zero_bit(h->cmd_pool_bits,
5666                                         HPSA_NRESERVED_CMDS,
5667                                         offset);
5668                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
5669                         offset = 0;
5670                         continue;
5671                 }
5672                 c = h->cmd_pool + i;
5673                 refcount = atomic_inc_return(&c->refcount);
5674                 if (unlikely(refcount > 1)) {
5675                         cmd_free(h, c); /* already in use */
5676                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
5677                         continue;
5678                 }
5679                 set_bit(i & (BITS_PER_LONG - 1),
5680                         h->cmd_pool_bits + (i / BITS_PER_LONG));
5681                 break; /* it's ours now. */
5682         }
5683         hpsa_cmd_partial_init(h, i, c);
5684         return c;
5685 }
5686 
5687 /*
5688  * This is the complementary operation to cmd_alloc().  Note, however, in some
5689  * corner cases it may also be used to free blocks allocated by
5690  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
5691  * the clear-bit is harmless.
5692  */
5693 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
5694 {
5695         if (atomic_dec_and_test(&c->refcount)) {
5696                 int i;
5697 
5698                 i = c - h->cmd_pool;
5699                 clear_bit(i & (BITS_PER_LONG - 1),
5700                           h->cmd_pool_bits + (i / BITS_PER_LONG));
5701         }
5702 }
5703 
5704 #ifdef CONFIG_COMPAT
5705 
5706 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
5707         void __user *arg)
5708 {
5709         IOCTL32_Command_struct __user *arg32 =
5710             (IOCTL32_Command_struct __user *) arg;
5711         IOCTL_Command_struct arg64;
5712         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
5713         int err;
5714         u32 cp;
5715 
5716         memset(&arg64, 0, sizeof(arg64));
5717         err = 0;
5718         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5719                            sizeof(arg64.LUN_info));
5720         err |= copy_from_user(&arg64.Request, &arg32->Request,
5721                            sizeof(arg64.Request));
5722         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5723                            sizeof(arg64.error_info));
5724         err |= get_user(arg64.buf_size, &arg32->buf_size);
5725         err |= get_user(cp, &arg32->buf);
5726         arg64.buf = compat_ptr(cp);
5727         err |= copy_to_user(p, &arg64, sizeof(arg64));
5728 
5729         if (err)
5730                 return -EFAULT;
5731 
5732         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5733         if (err)
5734                 return err;
5735         err |= copy_in_user(&arg32->error_info, &p->error_info,
5736                          sizeof(arg32->error_info));
5737         if (err)
5738                 return -EFAULT;
5739         return err;
5740 }
5741 
5742 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
5743         int cmd, void __user *arg)
5744 {
5745         BIG_IOCTL32_Command_struct __user *arg32 =
5746             (BIG_IOCTL32_Command_struct __user *) arg;
5747         BIG_IOCTL_Command_struct arg64;
5748         BIG_IOCTL_Command_struct __user *p =
5749             compat_alloc_user_space(sizeof(arg64));
5750         int err;
5751         u32 cp;
5752 
5753         memset(&arg64, 0, sizeof(arg64));
5754         err = 0;
5755         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
5756                            sizeof(arg64.LUN_info));
5757         err |= copy_from_user(&arg64.Request, &arg32->Request,
5758                            sizeof(arg64.Request));
5759         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
5760                            sizeof(arg64.error_info));
5761         err |= get_user(arg64.buf_size, &arg32->buf_size);
5762         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
5763         err |= get_user(cp, &arg32->buf);
5764         arg64.buf = compat_ptr(cp);
5765         err |= copy_to_user(p, &arg64, sizeof(arg64));
5766 
5767         if (err)
5768                 return -EFAULT;
5769 
5770         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5771         if (err)
5772                 return err;
5773         err |= copy_in_user(&arg32->error_info, &p->error_info,
5774                          sizeof(arg32->error_info));
5775         if (err)
5776                 return -EFAULT;
5777         return err;
5778 }
5779 
5780 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5781 {
5782         switch (cmd) {
5783         case CCISS_GETPCIINFO:
5784         case CCISS_GETINTINFO:
5785         case CCISS_SETINTINFO:
5786         case CCISS_GETNODENAME:
5787         case CCISS_SETNODENAME:
5788         case CCISS_GETHEARTBEAT:
5789         case CCISS_GETBUSTYPES:
5790         case CCISS_GETFIRMVER:
5791         case CCISS_GETDRIVVER:
5792         case CCISS_REVALIDVOLS:
5793         case CCISS_DEREGDISK:
5794         case CCISS_REGNEWDISK:
5795         case CCISS_REGNEWD:
5796         case CCISS_RESCANDISK:
5797         case CCISS_GETLUNINFO:
5798                 return hpsa_ioctl(dev, cmd, arg);
5799 
5800         case CCISS_PASSTHRU32:
5801                 return hpsa_ioctl32_passthru(dev, cmd, arg);
5802         case CCISS_BIG_PASSTHRU32:
5803                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
5804 
5805         default:
5806                 return -ENOIOCTLCMD;
5807         }
5808 }
5809 #endif
5810 
5811 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
5812 {
5813         struct hpsa_pci_info pciinfo;
5814 
5815         if (!argp)
5816                 return -EINVAL;
5817         pciinfo.domain = pci_domain_nr(h->pdev->bus);
5818         pciinfo.bus = h->pdev->bus->number;
5819         pciinfo.dev_fn = h->pdev->devfn;
5820         pciinfo.board_id = h->board_id;
5821         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
5822                 return -EFAULT;
5823         return 0;
5824 }
5825 
5826 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
5827 {
5828         DriverVer_type DriverVer;
5829         unsigned char vmaj, vmin, vsubmin;
5830         int rc;
5831 
5832         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
5833                 &vmaj, &vmin, &vsubmin);
5834         if (rc != 3) {
5835                 dev_info(&h->pdev->dev, "driver version string '%s' "
5836                         "unrecognized.", HPSA_DRIVER_VERSION);
5837                 vmaj = 0;
5838                 vmin = 0;
5839                 vsubmin = 0;
5840         }
5841         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
5842         if (!argp)
5843                 return -EINVAL;
5844         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
5845                 return -EFAULT;
5846         return 0;
5847 }
5848 
5849 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5850 {
5851         IOCTL_Command_struct iocommand;
5852         struct CommandList *c;
5853         char *buff = NULL;
5854         u64 temp64;
5855         int rc = 0;
5856 
5857         if (!argp)
5858                 return -EINVAL;
5859         if (!capable(CAP_SYS_RAWIO))
5860                 return -EPERM;
5861         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
5862                 return -EFAULT;
5863         if ((iocommand.buf_size < 1) &&
5864             (iocommand.Request.Type.Direction != XFER_NONE)) {
5865                 return -EINVAL;
5866         }
5867         if (iocommand.buf_size > 0) {
5868                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
5869                 if (buff == NULL)
5870                         return -ENOMEM;
5871                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
5872                         /* Copy the data into the buffer we created */
5873                         if (copy_from_user(buff, iocommand.buf,
5874                                 iocommand.buf_size)) {
5875                                 rc = -EFAULT;
5876                                 goto out_kfree;
5877                         }
5878                 } else {
5879                         memset(buff, 0, iocommand.buf_size);
5880                 }
5881         }
5882         c = cmd_alloc(h);
5883 
5884         /* Fill in the command type */
5885         c->cmd_type = CMD_IOCTL_PEND;
5886         c->scsi_cmd = SCSI_CMD_BUSY;
5887         /* Fill in Command Header */
5888         c->Header.ReplyQueue = 0; /* unused in simple mode */
5889         if (iocommand.buf_size > 0) {   /* buffer to fill */
5890                 c->Header.SGList = 1;
5891                 c->Header.SGTotal = cpu_to_le16(1);
5892         } else  { /* no buffers to fill */
5893                 c->Header.SGList = 0;
5894                 c->Header.SGTotal = cpu_to_le16(0);
5895         }
5896         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
5897 
5898         /* Fill in Request block */
5899         memcpy(&c->Request, &iocommand.Request,
5900                 sizeof(c->Request));
5901 
5902         /* Fill in the scatter gather information */
5903         if (iocommand.buf_size > 0) {
5904                 temp64 = pci_map_single(h->pdev, buff,
5905                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5906                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
5907                         c->SG[0].Addr = cpu_to_le64(0);
5908                         c->SG[0].Len = cpu_to_le32(0);
5909                         rc = -ENOMEM;
5910                         goto out;
5911                 }
5912                 c->SG[0].Addr = cpu_to_le64(temp64);
5913                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
5914                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5915         }
5916         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5917         if (iocommand.buf_size > 0)
5918                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5919         check_ioctl_unit_attention(h, c);
5920         if (rc) {
5921                 rc = -EIO;
5922                 goto out;
5923         }
5924 
5925         /* Copy the error information out */
5926         memcpy(&iocommand.error_info, c->err_info,
5927                 sizeof(iocommand.error_info));
5928         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5929                 rc = -EFAULT;
5930                 goto out;
5931         }
5932         if ((iocommand.Request.Type.Direction & XFER_READ) &&
5933                 iocommand.buf_size > 0) {
5934                 /* Copy the data out of the buffer we created */
5935                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5936                         rc = -EFAULT;
5937                         goto out;
5938                 }
5939         }
5940 out:
5941         cmd_free(h, c);
5942 out_kfree:
5943         kfree(buff);
5944         return rc;
5945 }
5946 
5947 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5948 {
5949         BIG_IOCTL_Command_struct *ioc;
5950         struct CommandList *c;
5951         unsigned char **buff = NULL;
5952         int *buff_size = NULL;
5953         u64 temp64;
5954         BYTE sg_used = 0;
5955         int status = 0;
5956         u32 left;
5957         u32 sz;
5958         BYTE __user *data_ptr;
5959 
5960         if (!argp)
5961                 return -EINVAL;
5962         if (!capable(CAP_SYS_RAWIO))
5963                 return -EPERM;
5964         ioc = (BIG_IOCTL_Command_struct *)
5965             kmalloc(sizeof(*ioc), GFP_KERNEL);
5966         if (!ioc) {
5967                 status = -ENOMEM;
5968                 goto cleanup1;
5969         }
5970         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5971                 status = -EFAULT;
5972                 goto cleanup1;
5973         }
5974         if ((ioc->buf_size < 1) &&
5975             (ioc->Request.Type.Direction != XFER_NONE)) {
5976                 status = -EINVAL;
5977                 goto cleanup1;
5978         }
5979         /* Check kmalloc limits  using all SGs */
5980         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5981                 status = -EINVAL;
5982                 goto cleanup1;
5983         }
5984         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5985                 status = -EINVAL;
5986                 goto cleanup1;
5987         }
5988         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5989         if (!buff) {
5990                 status = -ENOMEM;
5991                 goto cleanup1;
5992         }
5993         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5994         if (!buff_size) {
5995                 status = -ENOMEM;
5996                 goto cleanup1;
5997         }
5998         left = ioc->buf_size;
5999         data_ptr = ioc->buf;
6000         while (left) {
6001                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6002                 buff_size[sg_used] = sz;
6003                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6004                 if (buff[sg_used] == NULL) {
6005                         status = -ENOMEM;
6006                         goto cleanup1;
6007                 }
6008                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6009                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6010                                 status = -EFAULT;
6011                                 goto cleanup1;
6012                         }
6013                 } else
6014                         memset(buff[sg_used], 0, sz);
6015                 left -= sz;
6016                 data_ptr += sz;
6017                 sg_used++;
6018         }
6019         c = cmd_alloc(h);
6020 
6021         c->cmd_type = CMD_IOCTL_PEND;
6022         c->scsi_cmd = SCSI_CMD_BUSY;
6023         c->Header.ReplyQueue = 0;
6024         c->Header.SGList = (u8) sg_used;
6025         c->Header.SGTotal = cpu_to_le16(sg_used);
6026         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6027         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6028         if (ioc->buf_size > 0) {
6029                 int i;
6030                 for (i = 0; i < sg_used; i++) {
6031                         temp64 = pci_map_single(h->pdev, buff[i],
6032                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6033                         if (dma_mapping_error(&h->pdev->dev,
6034                                                         (dma_addr_t) temp64)) {
6035                                 c->SG[i].Addr = cpu_to_le64(0);
6036                                 c->SG[i].Len = cpu_to_le32(0);
6037                                 hpsa_pci_unmap(h->pdev, c, i,
6038                                         PCI_DMA_BIDIRECTIONAL);
6039                                 status = -ENOMEM;
6040                                 goto cleanup0;
6041                         }
6042                         c->SG[i].Addr = cpu_to_le64(temp64);
6043                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6044                         c->SG[i].Ext = cpu_to_le32(0);
6045                 }
6046                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6047         }
6048         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6049         if (sg_used)
6050                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6051         check_ioctl_unit_attention(h, c);
6052         if (status) {
6053                 status = -EIO;
6054                 goto cleanup0;
6055         }
6056 
6057         /* Copy the error information out */
6058         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6059         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6060                 status = -EFAULT;
6061                 goto cleanup0;
6062         }
6063         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6064                 int i;
6065 
6066                 /* Copy the data out of the buffer we created */
6067                 BYTE __user *ptr = ioc->buf;
6068                 for (i = 0; i < sg_used; i++) {
6069                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6070                                 status = -EFAULT;
6071                                 goto cleanup0;
6072                         }
6073                         ptr += buff_size[i];
6074                 }
6075         }
6076         status = 0;
6077 cleanup0:
6078         cmd_free(h, c);
6079 cleanup1:
6080         if (buff) {
6081                 int i;
6082 
6083                 for (i = 0; i < sg_used; i++)
6084                         kfree(buff[i]);
6085                 kfree(buff);
6086         }
6087         kfree(buff_size);
6088         kfree(ioc);
6089         return status;
6090 }
6091 
6092 static void check_ioctl_unit_attention(struct ctlr_info *h,
6093         struct CommandList *c)
6094 {
6095         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6096                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6097                 (void) check_for_unit_attention(h, c);
6098 }
6099 
6100 /*
6101  * ioctl
6102  */
6103 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6104 {
6105         struct ctlr_info *h;
6106         void __user *argp = (void __user *)arg;
6107         int rc;
6108 
6109         h = sdev_to_hba(dev);
6110 
6111         switch (cmd) {
6112         case CCISS_DEREGDISK:
6113         case CCISS_REGNEWDISK:
6114         case CCISS_REGNEWD:
6115                 hpsa_scan_start(h->scsi_host);
6116                 return 0;
6117         case CCISS_GETPCIINFO:
6118                 return hpsa_getpciinfo_ioctl(h, argp);
6119         case CCISS_GETDRIVVER:
6120                 return hpsa_getdrivver_ioctl(h, argp);
6121         case CCISS_PASSTHRU:
6122                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6123                         return -EAGAIN;
6124                 rc = hpsa_passthru_ioctl(h, argp);
6125                 atomic_inc(&h->passthru_cmds_avail);
6126                 return rc;
6127         case CCISS_BIG_PASSTHRU:
6128                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6129                         return -EAGAIN;
6130                 rc = hpsa_big_passthru_ioctl(h, argp);
6131                 atomic_inc(&h->passthru_cmds_avail);
6132                 return rc;
6133         default:
6134                 return -ENOTTY;
6135         }
6136 }
6137 
6138 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6139                                 u8 reset_type)
6140 {
6141         struct CommandList *c;
6142 
6143         c = cmd_alloc(h);
6144 
6145         /* fill_cmd can't fail here, no data buffer to map */
6146         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6147                 RAID_CTLR_LUNID, TYPE_MSG);
6148         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6149         c->waiting = NULL;
6150         enqueue_cmd_and_start_io(h, c);
6151         /* Don't wait for completion, the reset won't complete.  Don't free
6152          * the command either.  This is the last command we will send before
6153          * re-initializing everything, so it doesn't matter and won't leak.
6154          */
6155         return;
6156 }
6157 
6158 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6159         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6160         int cmd_type)
6161 {
6162         int pci_dir = XFER_NONE;
6163         u64 tag; /* for commands to be aborted */
6164 
6165         c->cmd_type = CMD_IOCTL_PEND;
6166         c->scsi_cmd = SCSI_CMD_BUSY;
6167         c->Header.ReplyQueue = 0;
6168         if (buff != NULL && size > 0) {
6169                 c->Header.SGList = 1;
6170                 c->Header.SGTotal = cpu_to_le16(1);
6171         } else {
6172                 c->Header.SGList = 0;
6173                 c->Header.SGTotal = cpu_to_le16(0);
6174         }
6175         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6176 
6177         if (cmd_type == TYPE_CMD) {
6178                 switch (cmd) {
6179                 case HPSA_INQUIRY:
6180                         /* are we trying to read a vital product page */
6181                         if (page_code & VPD_PAGE) {
6182                                 c->Request.CDB[1] = 0x01;
6183                                 c->Request.CDB[2] = (page_code & 0xff);
6184                         }
6185                         c->Request.CDBLen = 6;
6186                         c->Request.type_attr_dir =
6187                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6188                         c->Request.Timeout = 0;
6189                         c->Request.CDB[0] = HPSA_INQUIRY;
6190                         c->Request.CDB[4] = size & 0xFF;
6191                         break;
6192                 case HPSA_REPORT_LOG:
6193                 case HPSA_REPORT_PHYS:
6194                         /* Talking to controller so It's a physical command
6195                            mode = 00 target = 0.  Nothing to write.
6196                          */
6197                         c->Request.CDBLen = 12;
6198                         c->Request.type_attr_dir =
6199                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6200                         c->Request.Timeout = 0;
6201                         c->Request.CDB[0] = cmd;
6202                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6203                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6204                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6205                         c->Request.CDB[9] = size & 0xFF;
6206                         break;
6207                 case HPSA_CACHE_FLUSH:
6208                         c->Request.CDBLen = 12;
6209                         c->Request.type_attr_dir =
6210                                         TYPE_ATTR_DIR(cmd_type,
6211                                                 ATTR_SIMPLE, XFER_WRITE);
6212                         c->Request.Timeout = 0;
6213                         c->Request.CDB[0] = BMIC_WRITE;
6214                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6215                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6216                         c->Request.CDB[8] = size & 0xFF;
6217                         break;
6218                 case TEST_UNIT_READY:
6219                         c->Request.CDBLen = 6;
6220                         c->Request.type_attr_dir =
6221                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6222                         c->Request.Timeout = 0;
6223                         break;
6224                 case HPSA_GET_RAID_MAP:
6225                         c->Request.CDBLen = 12;
6226                         c->Request.type_attr_dir =
6227                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6228                         c->Request.Timeout = 0;
6229                         c->Request.CDB[0] = HPSA_CISS_READ;
6230                         c->Request.CDB[1] = cmd;
6231                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6232                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6233                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6234                         c->Request.CDB[9] = size & 0xFF;
6235                         break;
6236                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6237                         c->Request.CDBLen = 10;
6238                         c->Request.type_attr_dir =
6239                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6240                         c->Request.Timeout = 0;
6241                         c->Request.CDB[0] = BMIC_READ;
6242                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6243                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6244                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6245                         break;
6246                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6247                         c->Request.CDBLen = 10;
6248                         c->Request.type_attr_dir =
6249                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6250                         c->Request.Timeout = 0;
6251                         c->Request.CDB[0] = BMIC_READ;
6252                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6253                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6254                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6255                         break;
6256                 default:
6257                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6258                         BUG();
6259                         return -1;
6260                 }
6261         } else if (cmd_type == TYPE_MSG) {
6262                 switch (cmd) {
6263 
6264                 case  HPSA_DEVICE_RESET_MSG:
6265                         c->Request.CDBLen = 16;
6266                         c->Request.type_attr_dir =
6267                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6268                         c->Request.Timeout = 0; /* Don't time out */
6269                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6270                         c->Request.CDB[0] =  cmd;
6271                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6272                         /* If bytes 4-7 are zero, it means reset the */
6273                         /* LunID device */
6274                         c->Request.CDB[4] = 0x00;
6275                         c->Request.CDB[5] = 0x00;
6276                         c->Request.CDB[6] = 0x00;
6277                         c->Request.CDB[7] = 0x00;
6278                         break;
6279                 case  HPSA_ABORT_MSG:
6280                         memcpy(&tag, buff, sizeof(tag));
6281                         dev_dbg(&h->pdev->dev,
6282                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6283                                 tag, c->Header.tag);
6284                         c->Request.CDBLen = 16;
6285                         c->Request.type_attr_dir =
6286                                         TYPE_ATTR_DIR(cmd_type,
6287                                                 ATTR_SIMPLE, XFER_WRITE);
6288                         c->Request.Timeout = 0; /* Don't time out */
6289                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6290                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6291                         c->Request.CDB[2] = 0x00; /* reserved */
6292                         c->Request.CDB[3] = 0x00; /* reserved */
6293                         /* Tag to abort goes in CDB[4]-CDB[11] */
6294                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6295                         c->Request.CDB[12] = 0x00; /* reserved */
6296                         c->Request.CDB[13] = 0x00; /* reserved */
6297                         c->Request.CDB[14] = 0x00; /* reserved */
6298                         c->Request.CDB[15] = 0x00; /* reserved */
6299                 break;
6300                 default:
6301                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6302                                 cmd);
6303                         BUG();
6304                 }
6305         } else {
6306                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6307                 BUG();
6308         }
6309 
6310         switch (GET_DIR(c->Request.type_attr_dir)) {
6311         case XFER_READ:
6312                 pci_dir = PCI_DMA_FROMDEVICE;
6313                 break;
6314         case XFER_WRITE:
6315                 pci_dir = PCI_DMA_TODEVICE;
6316                 break;
6317         case XFER_NONE:
6318                 pci_dir = PCI_DMA_NONE;
6319                 break;
6320         default:
6321                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6322         }
6323         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6324                 return -1;
6325         return 0;
6326 }
6327 
6328 /*
6329  * Map (physical) PCI mem into (virtual) kernel space
6330  */
6331 static void __iomem *remap_pci_mem(ulong base, ulong size)
6332 {
6333         ulong page_base = ((ulong) base) & PAGE_MASK;
6334         ulong page_offs = ((ulong) base) - page_base;
6335         void __iomem *page_remapped = ioremap_nocache(page_base,
6336                 page_offs + size);
6337 
6338         return page_remapped ? (page_remapped + page_offs) : NULL;
6339 }
6340 
6341 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6342 {
6343         return h->access.command_completed(h, q);
6344 }
6345 
6346 static inline bool interrupt_pending(struct ctlr_info *h)
6347 {
6348         return h->access.intr_pending(h);
6349 }
6350 
6351 static inline long interrupt_not_for_us(struct ctlr_info *h)
6352 {
6353         return (h->access.intr_pending(h) == 0) ||
6354                 (h->interrupts_enabled == 0);
6355 }
6356 
6357 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6358         u32 raw_tag)
6359 {
6360         if (unlikely(tag_index >= h->nr_cmds)) {
6361                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6362                 return 1;
6363         }
6364         return 0;
6365 }
6366 
6367 static inline void finish_cmd(struct CommandList *c)
6368 {
6369         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6370         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6371                         || c->cmd_type == CMD_IOACCEL2))
6372                 complete_scsi_command(c);
6373         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6374                 complete(c->waiting);
6375 }
6376 
6377 
6378 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
6379 {
6380 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
6381 #define HPSA_SIMPLE_ERROR_BITS 0x03
6382         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
6383                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
6384         return tag & ~HPSA_PERF_ERROR_BITS;
6385 }
6386 
6387 /* process completion of an indexed ("direct lookup") command */
6388 static inline void process_indexed_cmd(struct ctlr_info *h,
6389         u32 raw_tag)
6390 {
6391         u32 tag_index;
6392         struct CommandList *c;
6393 
6394         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6395         if (!bad_tag(h, tag_index, raw_tag)) {
6396                 c = h->cmd_pool + tag_index;
6397                 finish_cmd(c);
6398         }
6399 }
6400 
6401 /* Some controllers, like p400, will give us one interrupt
6402  * after a soft reset, even if we turned interrupts off.
6403  * Only need to check for this in the hpsa_xxx_discard_completions
6404  * functions.
6405  */
6406 static int ignore_bogus_interrupt(struct ctlr_info *h)
6407 {
6408         if (likely(!reset_devices))
6409                 return 0;
6410 
6411         if (likely(h->interrupts_enabled))
6412                 return 0;
6413 
6414         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6415                 "(known firmware bug.)  Ignoring.\n");
6416 
6417         return 1;
6418 }
6419 
6420 /*
6421  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6422  * Relies on (h-q[x] == x) being true for x such that
6423  * 0 <= x < MAX_REPLY_QUEUES.
6424  */
6425 static struct ctlr_info *queue_to_hba(u8 *queue)
6426 {
6427         return container_of((queue - *queue), struct ctlr_info, q[0]);
6428 }
6429 
6430 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6431 {
6432         struct ctlr_info *h = queue_to_hba(queue);
6433         u8 q = *(u8 *) queue;
6434         u32 raw_tag;
6435 
6436         if (ignore_bogus_interrupt(h))
6437                 return IRQ_NONE;
6438 
6439         if (interrupt_not_for_us(h))
6440                 return IRQ_NONE;
6441         h->last_intr_timestamp = get_jiffies_64();
6442         while (interrupt_pending(h)) {
6443                 raw_tag = get_next_completion(h, q);
6444                 while (raw_tag != FIFO_EMPTY)
6445                         raw_tag = next_command(h, q);
6446         }
6447         return IRQ_HANDLED;
6448 }
6449 
6450 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6451 {
6452         struct ctlr_info *h = queue_to_hba(queue);
6453         u32 raw_tag;
6454         u8 q = *(u8 *) queue;
6455 
6456         if (ignore_bogus_interrupt(h))
6457                 return IRQ_NONE;
6458 
6459         h->last_intr_timestamp = get_jiffies_64();
6460         raw_tag = get_next_completion(h, q);
6461         while (raw_tag != FIFO_EMPTY)
6462                 raw_tag = next_command(h, q);
6463         return IRQ_HANDLED;
6464 }
6465 
6466 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6467 {
6468         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6469         u32 raw_tag;
6470         u8 q = *(u8 *) queue;
6471 
6472         if (interrupt_not_for_us(h))
6473                 return IRQ_NONE;
6474         h->last_intr_timestamp = get_jiffies_64();
6475         while (interrupt_pending(h)) {
6476                 raw_tag = get_next_completion(h, q);
6477                 while (raw_tag != FIFO_EMPTY) {
6478                         process_indexed_cmd(h, raw_tag);
6479                         raw_tag = next_command(h, q);
6480                 }
6481         }
6482         return IRQ_HANDLED;
6483 }
6484 
6485 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6486 {
6487         struct ctlr_info *h = queue_to_hba(queue);
6488         u32 raw_tag;
6489         u8 q = *(u8 *) queue;
6490 
6491         h->last_intr_timestamp = get_jiffies_64();
6492         raw_tag = get_next_completion(h, q);
6493         while (raw_tag != FIFO_EMPTY) {
6494                 process_indexed_cmd(h, raw_tag);
6495                 raw_tag = next_command(h, q);
6496         }
6497         return IRQ_HANDLED;
6498 }
6499 
6500 /* Send a message CDB to the firmware. Careful, this only works
6501  * in simple mode, not performant mode due to the tag lookup.
6502  * We only ever use this immediately after a controller reset.
6503  */
6504 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6505                         unsigned char type)
6506 {
6507         struct Command {
6508                 struct CommandListHeader CommandHeader;
6509                 struct RequestBlock Request;
6510                 struct ErrDescriptor ErrorDescriptor;
6511         };
6512         struct Command *cmd;
6513         static const size_t cmd_sz = sizeof(*cmd) +
6514                                         sizeof(cmd->ErrorDescriptor);
6515         dma_addr_t paddr64;
6516         __le32 paddr32;
6517         u32 tag;
6518         void __iomem *vaddr;
6519         int i, err;
6520 
6521         vaddr = pci_ioremap_bar(pdev, 0);
6522         if (vaddr == NULL)
6523                 return -ENOMEM;
6524 
6525         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
6526          * CCISS commands, so they must be allocated from the lower 4GiB of
6527          * memory.
6528          */
6529         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6530         if (err) {
6531                 iounmap(vaddr);
6532                 return err;
6533         }
6534 
6535         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
6536         if (cmd == NULL) {
6537                 iounmap(vaddr);
6538                 return -ENOMEM;
6539         }
6540 
6541         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
6542          * although there's no guarantee, we assume that the address is at
6543          * least 4-byte aligned (most likely, it's page-aligned).
6544          */
6545         paddr32 = cpu_to_le32(paddr64);
6546 
6547         cmd->CommandHeader.ReplyQueue = 0;
6548         cmd->CommandHeader.SGList = 0;
6549         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
6550         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
6551         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
6552 
6553         cmd->Request.CDBLen = 16;
6554         cmd->Request.type_attr_dir =
6555                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
6556         cmd->Request.Timeout = 0; /* Don't time out */
6557         cmd->Request.CDB[0] = opcode;
6558         cmd->Request.CDB[1] = type;
6559         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
6560         cmd->ErrorDescriptor.Addr =
6561                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
6562         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
6563 
6564         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
6565 
6566         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
6567                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
6568                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
6569                         break;
6570                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
6571         }
6572 
6573         iounmap(vaddr);
6574 
6575         /* we leak the DMA buffer here ... no choice since the controller could
6576          *  still complete the command.
6577          */
6578         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
6579                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
6580                         opcode, type);
6581                 return -ETIMEDOUT;
6582         }
6583 
6584         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
6585 
6586         if (tag & HPSA_ERROR_BIT) {
6587                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
6588                         opcode, type);
6589                 return -EIO;
6590         }
6591 
6592         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
6593                 opcode, type);
6594         return 0;
6595 }
6596 
6597 #define hpsa_noop(p) hpsa_message(p, 3, 0)
6598 
6599 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
6600         void __iomem *vaddr, u32 use_doorbell)
6601 {
6602 
6603         if (use_doorbell) {
6604                 /* For everything after the P600, the PCI power state method
6605                  * of resetting the controller doesn't work, so we have this
6606                  * other way using the doorbell register.
6607                  */
6608                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
6609                 writel(use_doorbell, vaddr + SA5_DOORBELL);
6610 
6611                 /* PMC hardware guys tell us we need a 10 second delay after
6612                  * doorbell reset and before any attempt to talk to the board
6613                  * at all to ensure that this actually works and doesn't fall
6614                  * over in some weird corner cases.
6615                  */
6616                 msleep(10000);
6617         } else { /* Try to do it the PCI power state way */
6618 
6619                 /* Quoting from the Open CISS Specification: "The Power
6620                  * Management Control/Status Register (CSR) controls the power
6621                  * state of the device.  The normal operating state is D0,
6622                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
6623                  * the controller, place the interface device in D3 then to D0,
6624                  * this causes a secondary PCI reset which will reset the
6625                  * controller." */
6626 
6627                 int rc = 0;
6628 
6629                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
6630 
6631                 /* enter the D3hot power management state */
6632                 rc = pci_set_power_state(pdev, PCI_D3hot);
6633                 if (rc)
6634                         return rc;
6635 
6636                 msleep(500);
6637 
6638                 /* enter the D0 power management state */
6639                 rc = pci_set_power_state(pdev, PCI_D0);
6640                 if (rc)
6641                         return rc;
6642 
6643                 /*
6644                  * The P600 requires a small delay when changing states.
6645                  * Otherwise we may think the board did not reset and we bail.
6646                  * This for kdump only and is particular to the P600.
6647                  */
6648                 msleep(500);
6649         }
6650         return 0;
6651 }
6652 
6653 static void init_driver_version(char *driver_version, int len)
6654 {
6655         memset(driver_version, 0, len);
6656         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
6657 }
6658 
6659 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
6660 {
6661         char *driver_version;
6662         int i, size = sizeof(cfgtable->driver_version);
6663 
6664         driver_version = kmalloc(size, GFP_KERNEL);
6665         if (!driver_version)
6666                 return -ENOMEM;
6667 
6668         init_driver_version(driver_version, size);
6669         for (i = 0; i < size; i++)
6670                 writeb(driver_version[i], &cfgtable->driver_version[i]);
6671         kfree(driver_version);
6672         return 0;
6673 }
6674 
6675 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
6676                                           unsigned char *driver_ver)
6677 {
6678         int i;
6679 
6680         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
6681                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
6682 }
6683 
6684 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
6685 {
6686 
6687         char *driver_ver, *old_driver_ver;
6688         int rc, size = sizeof(cfgtable->driver_version);
6689 
6690         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
6691         if (!old_driver_ver)
6692                 return -ENOMEM;
6693         driver_ver = old_driver_ver + size;
6694 
6695         /* After a reset, the 32 bytes of "driver version" in the cfgtable
6696          * should have been changed, otherwise we know the reset failed.
6697          */
6698         init_driver_version(old_driver_ver, size);
6699         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
6700         rc = !memcmp(driver_ver, old_driver_ver, size);
6701         kfree(old_driver_ver);
6702         return rc;
6703 }
6704 /* This does a hard reset of the controller using PCI power management
6705  * states or the using the doorbell register.
6706  */
6707 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6708 {
6709         u64 cfg_offset;
6710         u32 cfg_base_addr;
6711         u64 cfg_base_addr_index;
6712         void __iomem *vaddr;
6713         unsigned long paddr;
6714         u32 misc_fw_support;
6715         int rc;
6716         struct CfgTable __iomem *cfgtable;
6717         u32 use_doorbell;
6718         u16 command_register;
6719 
6720         /* For controllers as old as the P600, this is very nearly
6721          * the same thing as
6722          *
6723          * pci_save_state(pci_dev);
6724          * pci_set_power_state(pci_dev, PCI_D3hot);
6725          * pci_set_power_state(pci_dev, PCI_D0);
6726          * pci_restore_state(pci_dev);
6727          *
6728          * For controllers newer than the P600, the pci power state
6729          * method of resetting doesn't work so we have another way
6730          * using the doorbell register.
6731          */
6732 
6733         if (!ctlr_is_resettable(board_id)) {
6734                 dev_warn(&pdev->dev, "Controller not resettable\n");
6735                 return -ENODEV;
6736         }
6737 
6738         /* if controller is soft- but not hard resettable... */
6739         if (!ctlr_is_hard_resettable(board_id))
6740                 return -ENOTSUPP; /* try soft reset later. */
6741 
6742         /* Save the PCI command register */
6743         pci_read_config_word(pdev, 4, &command_register);
6744         pci_save_state(pdev);
6745 
6746         /* find the first memory BAR, so we can find the cfg table */
6747         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
6748         if (rc)
6749                 return rc;
6750         vaddr = remap_pci_mem(paddr, 0x250);
6751         if (!vaddr)
6752                 return -ENOMEM;
6753 
6754         /* find cfgtable in order to check if reset via doorbell is supported */
6755         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
6756                                         &cfg_base_addr_index, &cfg_offset);
6757         if (rc)
6758                 goto unmap_vaddr;
6759         cfgtable = remap_pci_mem(pci_resource_start(pdev,
6760                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6761         if (!cfgtable) {
6762                 rc = -ENOMEM;
6763                 goto unmap_vaddr;
6764         }
6765         rc = write_driver_ver_to_cfgtable(cfgtable);
6766         if (rc)
6767                 goto unmap_cfgtable;
6768 
6769         /* If reset via doorbell register is supported, use that.
6770          * There are two such methods.  Favor the newest method.
6771          */
6772         misc_fw_support = readl(&cfgtable->misc_fw_support);
6773         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6774         if (use_doorbell) {
6775                 use_doorbell = DOORBELL_CTLR_RESET2;
6776         } else {
6777                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6778                 if (use_doorbell) {
6779                         dev_warn(&pdev->dev,
6780                                 "Soft reset not supported. Firmware update is required.\n");
6781                         rc = -ENOTSUPP; /* try soft reset */
6782                         goto unmap_cfgtable;
6783                 }
6784         }
6785 
6786         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6787         if (rc)
6788                 goto unmap_cfgtable;
6789 
6790         pci_restore_state(pdev);
6791         pci_write_config_word(pdev, 4, command_register);
6792 
6793         /* Some devices (notably the HP Smart Array 5i Controller)
6794            need a little pause here */
6795         msleep(HPSA_POST_RESET_PAUSE_MSECS);
6796 
6797         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6798         if (rc) {
6799                 dev_warn(&pdev->dev,
6800                         "Failed waiting for board to become ready after hard reset\n");
6801                 goto unmap_cfgtable;
6802         }
6803 
6804         rc = controller_reset_failed(vaddr);
6805         if (rc < 0)
6806                 goto unmap_cfgtable;
6807         if (rc) {
6808                 dev_warn(&pdev->dev, "Unable to successfully reset "
6809                         "controller. Will try soft reset.\n");
6810                 rc = -ENOTSUPP;
6811         } else {
6812                 dev_info(&pdev->dev, "board ready after hard reset.\n");
6813         }
6814 
6815 unmap_cfgtable:
6816         iounmap(cfgtable);
6817 
6818 unmap_vaddr:
6819         iounmap(vaddr);
6820         return rc;
6821 }
6822 
6823 /*
6824  *  We cannot read the structure directly, for portability we must use
6825  *   the io functions.
6826  *   This is for debug only.
6827  */
6828 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6829 {
6830 #ifdef HPSA_DEBUG
6831         int i;
6832         char temp_name[17];
6833 
6834         dev_info(dev, "Controller Configuration information\n");
6835         dev_info(dev, "------------------------------------\n");
6836         for (i = 0; i < 4; i++)
6837                 temp_name[i] = readb(&(tb->Signature[i]));
6838         temp_name[4] = '\0';
6839         dev_info(dev, "   Signature = %s\n", temp_name);
6840         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
6841         dev_info(dev, "   Transport methods supported = 0x%x\n",
6842                readl(&(tb->TransportSupport)));
6843         dev_info(dev, "   Transport methods active = 0x%x\n",
6844                readl(&(tb->TransportActive)));
6845         dev_info(dev, "   Requested transport Method = 0x%x\n",
6846                readl(&(tb->HostWrite.TransportRequest)));
6847         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
6848                readl(&(tb->HostWrite.CoalIntDelay)));
6849         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
6850                readl(&(tb->HostWrite.CoalIntCount)));
6851         dev_info(dev, "   Max outstanding commands = %d\n",
6852                readl(&(tb->CmdsOutMax)));
6853         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6854         for (i = 0; i < 16; i++)
6855                 temp_name[i] = readb(&(tb->ServerName[i]));
6856         temp_name[16] = '\0';
6857         dev_info(dev, "   Server Name = %s\n", temp_name);
6858         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
6859                 readl(&(tb->HeartBeat)));
6860 #endif                          /* HPSA_DEBUG */
6861 }
6862 
6863 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6864 {
6865         int i, offset, mem_type, bar_type;
6866 
6867         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6868                 return 0;
6869         offset = 0;
6870         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6871                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6872                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6873                         offset += 4;
6874                 else {
6875                         mem_type = pci_resource_flags(pdev, i) &
6876                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6877                         switch (mem_type) {
6878                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
6879                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6880                                 offset += 4;    /* 32 bit */
6881                                 break;
6882                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
6883                                 offset += 8;
6884                                 break;
6885                         default:        /* reserved in PCI 2.2 */
6886                                 dev_warn(&pdev->dev,
6887                                        "base address is invalid\n");
6888                                 return -1;
6889                                 break;
6890                         }
6891                 }
6892                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6893                         return i + 1;
6894         }
6895         return -1;
6896 }
6897 
6898 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
6899 {
6900         if (h->msix_vector) {
6901                 if (h->pdev->msix_enabled)
6902                         pci_disable_msix(h->pdev);
6903                 h->msix_vector = 0;
6904         } else if (h->msi_vector) {
6905                 if (h->pdev->msi_enabled)
6906                         pci_disable_msi(h->pdev);
6907                 h->msi_vector = 0;
6908         }
6909 }
6910 
6911 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6912  * controllers that are capable. If not, we use legacy INTx mode.
6913  */
6914 static void hpsa_interrupt_mode(struct ctlr_info *h)
6915 {
6916 #ifdef CONFIG_PCI_MSI
6917         int err, i;
6918         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6919 
6920         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6921                 hpsa_msix_entries[i].vector = 0;
6922                 hpsa_msix_entries[i].entry = i;
6923         }
6924 
6925         /* Some boards advertise MSI but don't really support it */
6926         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6927             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6928                 goto default_int_mode;
6929         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6930                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6931                 h->msix_vector = MAX_REPLY_QUEUES;
6932                 if (h->msix_vector > num_online_cpus())
6933                         h->msix_vector = num_online_cpus();
6934                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
6935                                             1, h->msix_vector);
6936                 if (err < 0) {
6937                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
6938                         h->msix_vector = 0;
6939                         goto single_msi_mode;
6940                 } else if (err < h->msix_vector) {
6941                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6942                                "available\n", err);
6943                 }
6944                 h->msix_vector = err;
6945                 for (i = 0; i < h->msix_vector; i++)
6946                         h->intr[i] = hpsa_msix_entries[i].vector;
6947                 return;
6948         }
6949 single_msi_mode:
6950         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6951                 dev_info(&h->pdev->dev, "MSI capable controller\n");
6952                 if (!pci_enable_msi(h->pdev))
6953                         h->msi_vector = 1;
6954                 else
6955                         dev_warn(&h->pdev->dev, "MSI init failed\n");
6956         }
6957 default_int_mode:
6958 #endif                          /* CONFIG_PCI_MSI */
6959         /* if we get here we're going to use the default interrupt mode */
6960         h->intr[h->intr_mode] = h->pdev->irq;
6961 }
6962 
6963 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6964 {
6965         int i;
6966         u32 subsystem_vendor_id, subsystem_device_id;
6967 
6968         subsystem_vendor_id = pdev->subsystem_vendor;
6969         subsystem_device_id = pdev->subsystem_device;
6970         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6971                     subsystem_vendor_id;
6972 
6973         for (i = 0; i < ARRAY_SIZE(products); i++)
6974                 if (*board_id == products[i].board_id)
6975                         return i;
6976 
6977         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6978                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6979                 !hpsa_allow_any) {
6980                 dev_warn(&pdev->dev, "unrecognized board ID: "
6981                         "0x%08x, ignoring.\n", *board_id);
6982                         return -ENODEV;
6983         }
6984         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6985 }
6986 
6987 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6988                                     unsigned long *memory_bar)
6989 {
6990         int i;
6991 
6992         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6993                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6994                         /* addressing mode bits already removed */
6995                         *memory_bar = pci_resource_start(pdev, i);
6996                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6997                                 *memory_bar);
6998                         return 0;
6999                 }
7000         dev_warn(&pdev->dev, "no memory BAR found\n");
7001         return -ENODEV;
7002 }
7003 
7004 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7005                                      int wait_for_ready)
7006 {
7007         int i, iterations;
7008         u32 scratchpad;
7009         if (wait_for_ready)
7010                 iterations = HPSA_BOARD_READY_ITERATIONS;
7011         else
7012                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7013 
7014         for (i = 0; i < iterations; i++) {
7015                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7016                 if (wait_for_ready) {
7017                         if (scratchpad == HPSA_FIRMWARE_READY)
7018                                 return 0;
7019                 } else {
7020                         if (scratchpad != HPSA_FIRMWARE_READY)
7021                                 return 0;
7022                 }
7023                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7024         }
7025         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7026         return -ENODEV;
7027 }
7028 
7029 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7030                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7031                                u64 *cfg_offset)
7032 {
7033         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7034         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7035         *cfg_base_addr &= (u32) 0x0000ffff;
7036         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7037         if (*cfg_base_addr_index == -1) {
7038                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7039                 return -ENODEV;
7040         }
7041         return 0;
7042 }
7043 
7044 static void hpsa_free_cfgtables(struct ctlr_info *h)
7045 {
7046         if (h->transtable) {
7047                 iounmap(h->transtable);
7048                 h->transtable = NULL;
7049         }
7050         if (h->cfgtable) {
7051                 iounmap(h->cfgtable);
7052                 h->cfgtable = NULL;
7053         }
7054 }
7055 
7056 /* Find and map CISS config table and transfer table
7057 + * several items must be unmapped (freed) later
7058 + * */
7059 static int hpsa_find_cfgtables(struct ctlr_info *h)
7060 {
7061         u64 cfg_offset;
7062         u32 cfg_base_addr;
7063         u64 cfg_base_addr_index;
7064         u32 trans_offset;
7065         int rc;
7066 
7067         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7068                 &cfg_base_addr_index, &cfg_offset);
7069         if (rc)
7070                 return rc;
7071         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7072                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7073         if (!h->cfgtable) {
7074                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7075                 return -ENOMEM;
7076         }
7077         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7078         if (rc)
7079                 return rc;
7080         /* Find performant mode table. */
7081         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7082         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7083                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7084                                 sizeof(*h->transtable));
7085         if (!h->transtable) {
7086                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7087                 hpsa_free_cfgtables(h);
7088                 return -ENOMEM;
7089         }
7090         return 0;
7091 }
7092 
7093 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7094 {
7095 #define MIN_MAX_COMMANDS 16
7096         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7097 
7098         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7099 
7100         /* Limit commands in memory limited kdump scenario. */
7101         if (reset_devices && h->max_commands > 32)
7102                 h->max_commands = 32;
7103 
7104         if (h->max_commands < MIN_MAX_COMMANDS) {
7105                 dev_warn(&h->pdev->dev,
7106                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7107                         h->max_commands,
7108                         MIN_MAX_COMMANDS);
7109                 h->max_commands = MIN_MAX_COMMANDS;
7110         }
7111 }
7112 
7113 /* If the controller reports that the total max sg entries is greater than 512,
7114  * then we know that chained SG blocks work.  (Original smart arrays did not
7115  * support chained SG blocks and would return zero for max sg entries.)
7116  */
7117 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7118 {
7119         return h->maxsgentries > 512;
7120 }
7121 
7122 /* Interrogate the hardware for some limits:
7123  * max commands, max SG elements without chaining, and with chaining,
7124  * SG chain block size, etc.
7125  */
7126 static void hpsa_find_board_params(struct ctlr_info *h)
7127 {
7128         hpsa_get_max_perf_mode_cmds(h);
7129         h->nr_cmds = h->max_commands;
7130         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7131         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7132         if (hpsa_supports_chained_sg_blocks(h)) {
7133                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7134                 h->max_cmd_sg_entries = 32;
7135                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7136                 h->maxsgentries--; /* save one for chain pointer */
7137         } else {
7138                 /*
7139                  * Original smart arrays supported at most 31 s/g entries
7140                  * embedded inline in the command (trying to use more
7141                  * would lock up the controller)
7142                  */
7143                 h->max_cmd_sg_entries = 31;
7144                 h->maxsgentries = 31; /* default to traditional values */
7145                 h->chainsize = 0;
7146         }
7147 
7148         /* Find out what task management functions are supported and cache */
7149         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7150         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7151                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7152         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7153                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7154         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7155                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7156 }
7157 
7158 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7159 {
7160         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7161                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7162                 return false;
7163         }
7164         return true;
7165 }
7166 
7167 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7168 {
7169         u32 driver_support;
7170 
7171         driver_support = readl(&(h->cfgtable->driver_support));
7172         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7173 #ifdef CONFIG_X86
7174         driver_support |= ENABLE_SCSI_PREFETCH;
7175 #endif
7176         driver_support |= ENABLE_UNIT_ATTN;
7177         writel(driver_support, &(h->cfgtable->driver_support));
7178 }
7179 
7180 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7181  * in a prefetch beyond physical memory.
7182  */
7183 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7184 {
7185         u32 dma_prefetch;
7186 
7187         if (h->board_id != 0x3225103C)
7188                 return;
7189         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7190         dma_prefetch |= 0x8000;
7191         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7192 }
7193 
7194 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7195 {
7196         int i;
7197         u32 doorbell_value;
7198         unsigned long flags;
7199         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7200         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7201                 spin_lock_irqsave(&h->lock, flags);
7202                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7203                 spin_unlock_irqrestore(&h->lock, flags);
7204                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7205                         goto done;
7206                 /* delay and try again */
7207                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7208         }
7209         return -ENODEV;
7210 done:
7211         return 0;
7212 }
7213 
7214 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7215 {
7216         int i;
7217         u32 doorbell_value;
7218         unsigned long flags;
7219 
7220         /* under certain very rare conditions, this can take awhile.
7221          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7222          * as we enter this code.)
7223          */
7224         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7225                 if (h->remove_in_progress)
7226                         goto done;
7227                 spin_lock_irqsave(&h->lock, flags);
7228                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7229                 spin_unlock_irqrestore(&h->lock, flags);
7230                 if (!(doorbell_value & CFGTBL_ChangeReq))
7231                         goto done;
7232                 /* delay and try again */
7233                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7234         }
7235         return -ENODEV;
7236 done:
7237         return 0;
7238 }
7239 
7240 /* return -ENODEV or other reason on error, 0 on success */
7241 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7242 {
7243         u32 trans_support;
7244 
7245         trans_support = readl(&(h->cfgtable->TransportSupport));
7246         if (!(trans_support & SIMPLE_MODE))
7247                 return -ENOTSUPP;
7248 
7249         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7250 
7251         /* Update the field, and then ring the doorbell */
7252         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7253         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7254         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7255         if (hpsa_wait_for_mode_change_ack(h))
7256                 goto error;
7257         print_cfg_table(&h->pdev->dev, h->cfgtable);
7258         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7259                 goto error;
7260         h->transMethod = CFGTBL_Trans_Simple;
7261         return 0;
7262 error:
7263         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7264         return -ENODEV;
7265 }
7266 
7267 /* free items allocated or mapped by hpsa_pci_init */
7268 static void hpsa_free_pci_init(struct ctlr_info *h)
7269 {
7270         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7271         iounmap(h->vaddr);                      /* pci_init 3 */
7272         h->vaddr = NULL;
7273         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7274         /*
7275          * call pci_disable_device before pci_release_regions per
7276          * Documentation/PCI/pci.txt
7277          */
7278         pci_disable_device(h->pdev);            /* pci_init 1 */
7279         pci_release_regions(h->pdev);           /* pci_init 2 */
7280 }
7281 
7282 /* several items must be freed later */
7283 static int hpsa_pci_init(struct ctlr_info *h)
7284 {
7285         int prod_index, err;
7286 
7287         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7288         if (prod_index < 0)
7289                 return prod_index;
7290         h->product_name = products[prod_index].product_name;
7291         h->access = *(products[prod_index].access);
7292 
7293         h->needs_abort_tags_swizzled =
7294                 ctlr_needs_abort_tags_swizzled(h->board_id);
7295 
7296         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7297                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7298 
7299         err = pci_enable_device(h->pdev);
7300         if (err) {
7301                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7302                 pci_disable_device(h->pdev);
7303                 return err;
7304         }
7305 
7306         err = pci_request_regions(h->pdev, HPSA);
7307         if (err) {
7308                 dev_err(&h->pdev->dev,
7309                         "failed to obtain PCI resources\n");
7310                 pci_disable_device(h->pdev);
7311                 return err;
7312         }
7313 
7314         pci_set_master(h->pdev);
7315 
7316         hpsa_interrupt_mode(h);
7317         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7318         if (err)
7319                 goto clean2;    /* intmode+region, pci */
7320         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7321         if (!h->vaddr) {
7322                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7323                 err = -ENOMEM;
7324                 goto clean2;    /* intmode+region, pci */
7325         }
7326         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7327         if (err)
7328                 goto clean3;    /* vaddr, intmode+region, pci */
7329         err = hpsa_find_cfgtables(h);
7330         if (err)
7331                 goto c