Version:  2.0.40 2.2.26 2.4.37 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18

Linux/drivers/rtc/rtc-cmos.c

  1 /*
  2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
  3  *
  4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5  * Copyright (C) 2006 David Brownell (convert to new framework)
  6  *
  7  * This program is free software; you can redistribute it and/or
  8  * modify it under the terms of the GNU General Public License
  9  * as published by the Free Software Foundation; either version
 10  * 2 of the License, or (at your option) any later version.
 11  */
 12 
 13 /*
 14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
 15  * That defined the register interface now provided by all PCs, some
 16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
 17  * integrate an MC146818 clone in their southbridge, and boards use
 18  * that instead of discrete clones like the DS12887 or M48T86.  There
 19  * are also clones that connect using the LPC bus.
 20  *
 21  * That register API is also used directly by various other drivers
 22  * (notably for integrated NVRAM), infrastructure (x86 has code to
 23  * bypass the RTC framework, directly reading the RTC during boot
 24  * and updating minutes/seconds for systems using NTP synch) and
 25  * utilities (like userspace 'hwclock', if no /dev node exists).
 26  *
 27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
 28  * interrupts disabled, holding the global rtc_lock, to exclude those
 29  * other drivers and utilities on correctly configured systems.
 30  */
 31 #include <linux/kernel.h>
 32 #include <linux/module.h>
 33 #include <linux/init.h>
 34 #include <linux/interrupt.h>
 35 #include <linux/spinlock.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/log2.h>
 38 #include <linux/pm.h>
 39 #include <linux/of.h>
 40 #include <linux/of_platform.h>
 41 #include <linux/dmi.h>
 42 
 43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
 44 #include <asm-generic/rtc.h>
 45 
 46 struct cmos_rtc {
 47         struct rtc_device       *rtc;
 48         struct device           *dev;
 49         int                     irq;
 50         struct resource         *iomem;
 51 
 52         void                    (*wake_on)(struct device *);
 53         void                    (*wake_off)(struct device *);
 54 
 55         u8                      enabled_wake;
 56         u8                      suspend_ctrl;
 57 
 58         /* newer hardware extends the original register set */
 59         u8                      day_alrm;
 60         u8                      mon_alrm;
 61         u8                      century;
 62 };
 63 
 64 /* both platform and pnp busses use negative numbers for invalid irqs */
 65 #define is_valid_irq(n)         ((n) > 0)
 66 
 67 static const char driver_name[] = "rtc_cmos";
 68 
 69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 72  */
 73 #define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
 74 
 75 static inline int is_intr(u8 rtc_intr)
 76 {
 77         if (!(rtc_intr & RTC_IRQF))
 78                 return 0;
 79         return rtc_intr & RTC_IRQMASK;
 80 }
 81 
 82 /*----------------------------------------------------------------*/
 83 
 84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 86  * used in a broken "legacy replacement" mode.  The breakage includes
 87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 88  * other (better) use.
 89  *
 90  * When that broken mode is in use, platform glue provides a partial
 91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 92  * want to use HPET for anything except those IRQs though...
 93  */
 94 #ifdef CONFIG_HPET_EMULATE_RTC
 95 #include <asm/hpet.h>
 96 #else
 97 
 98 static inline int is_hpet_enabled(void)
 99 {
100         return 0;
101 }
102 
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105         return 0;
106 }
107 
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110         return 0;
111 }
112 
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116         return 0;
117 }
118 
119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121         return 0;
122 }
123 
124 static inline int hpet_rtc_dropped_irq(void)
125 {
126         return 0;
127 }
128 
129 static inline int hpet_rtc_timer_init(void)
130 {
131         return 0;
132 }
133 
134 extern irq_handler_t hpet_rtc_interrupt;
135 
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138         return 0;
139 }
140 
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143         return 0;
144 }
145 
146 #endif
147 
148 /*----------------------------------------------------------------*/
149 
150 #ifdef RTC_PORT
151 
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2       true
157 
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160         outb(addr, RTC_PORT(2));
161         return inb(RTC_PORT(3));
162 }
163 
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166         outb(addr, RTC_PORT(2));
167         outb(val, RTC_PORT(3));
168 }
169 
170 #else
171 
172 #define can_bank2       false
173 
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176         return 0;
177 }
178 
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182 
183 #endif
184 
185 /*----------------------------------------------------------------*/
186 
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189         /* REVISIT:  if the clock has a "century" register, use
190          * that instead of the heuristic in get_rtc_time().
191          * That'll make Y3K compatility (year > 2070) easy!
192          */
193         get_rtc_time(t);
194         return 0;
195 }
196 
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199         /* REVISIT:  set the "century" register if available
200          *
201          * NOTE: this ignores the issue whereby updating the seconds
202          * takes effect exactly 500ms after we write the register.
203          * (Also queueing and other delays before we get this far.)
204          */
205         return set_rtc_time(t);
206 }
207 
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210         struct cmos_rtc *cmos = dev_get_drvdata(dev);
211         unsigned char   rtc_control;
212 
213         if (!is_valid_irq(cmos->irq))
214                 return -EIO;
215 
216         /* Basic alarms only support hour, minute, and seconds fields.
217          * Some also support day and month, for alarms up to a year in
218          * the future.
219          */
220         t->time.tm_mday = -1;
221         t->time.tm_mon = -1;
222 
223         spin_lock_irq(&rtc_lock);
224         t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225         t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226         t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227 
228         if (cmos->day_alrm) {
229                 /* ignore upper bits on readback per ACPI spec */
230                 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231                 if (!t->time.tm_mday)
232                         t->time.tm_mday = -1;
233 
234                 if (cmos->mon_alrm) {
235                         t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236                         if (!t->time.tm_mon)
237                                 t->time.tm_mon = -1;
238                 }
239         }
240 
241         rtc_control = CMOS_READ(RTC_CONTROL);
242         spin_unlock_irq(&rtc_lock);
243 
244         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245                 if (((unsigned)t->time.tm_sec) < 0x60)
246                         t->time.tm_sec = bcd2bin(t->time.tm_sec);
247                 else
248                         t->time.tm_sec = -1;
249                 if (((unsigned)t->time.tm_min) < 0x60)
250                         t->time.tm_min = bcd2bin(t->time.tm_min);
251                 else
252                         t->time.tm_min = -1;
253                 if (((unsigned)t->time.tm_hour) < 0x24)
254                         t->time.tm_hour = bcd2bin(t->time.tm_hour);
255                 else
256                         t->time.tm_hour = -1;
257 
258                 if (cmos->day_alrm) {
259                         if (((unsigned)t->time.tm_mday) <= 0x31)
260                                 t->time.tm_mday = bcd2bin(t->time.tm_mday);
261                         else
262                                 t->time.tm_mday = -1;
263 
264                         if (cmos->mon_alrm) {
265                                 if (((unsigned)t->time.tm_mon) <= 0x12)
266                                         t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267                                 else
268                                         t->time.tm_mon = -1;
269                         }
270                 }
271         }
272         t->time.tm_year = -1;
273 
274         t->enabled = !!(rtc_control & RTC_AIE);
275         t->pending = 0;
276 
277         return 0;
278 }
279 
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282         unsigned char   rtc_intr;
283 
284         /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285          * allegedly some older rtcs need that to handle irqs properly
286          */
287         rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288 
289         if (is_hpet_enabled())
290                 return;
291 
292         rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293         if (is_intr(rtc_intr))
294                 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296 
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299         unsigned char   rtc_control;
300 
301         /* flush any pending IRQ status, notably for update irqs,
302          * before we enable new IRQs
303          */
304         rtc_control = CMOS_READ(RTC_CONTROL);
305         cmos_checkintr(cmos, rtc_control);
306 
307         rtc_control |= mask;
308         CMOS_WRITE(rtc_control, RTC_CONTROL);
309         hpet_set_rtc_irq_bit(mask);
310 
311         cmos_checkintr(cmos, rtc_control);
312 }
313 
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316         unsigned char   rtc_control;
317 
318         rtc_control = CMOS_READ(RTC_CONTROL);
319         rtc_control &= ~mask;
320         CMOS_WRITE(rtc_control, RTC_CONTROL);
321         hpet_mask_rtc_irq_bit(mask);
322 
323         cmos_checkintr(cmos, rtc_control);
324 }
325 
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328         struct cmos_rtc *cmos = dev_get_drvdata(dev);
329         unsigned char mon, mday, hrs, min, sec, rtc_control;
330 
331         if (!is_valid_irq(cmos->irq))
332                 return -EIO;
333 
334         mon = t->time.tm_mon + 1;
335         mday = t->time.tm_mday;
336         hrs = t->time.tm_hour;
337         min = t->time.tm_min;
338         sec = t->time.tm_sec;
339 
340         rtc_control = CMOS_READ(RTC_CONTROL);
341         if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342                 /* Writing 0xff means "don't care" or "match all".  */
343                 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344                 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345                 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346                 min = (min < 60) ? bin2bcd(min) : 0xff;
347                 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348         }
349 
350         spin_lock_irq(&rtc_lock);
351 
352         /* next rtc irq must not be from previous alarm setting */
353         cmos_irq_disable(cmos, RTC_AIE);
354 
355         /* update alarm */
356         CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357         CMOS_WRITE(min, RTC_MINUTES_ALARM);
358         CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359 
360         /* the system may support an "enhanced" alarm */
361         if (cmos->day_alrm) {
362                 CMOS_WRITE(mday, cmos->day_alrm);
363                 if (cmos->mon_alrm)
364                         CMOS_WRITE(mon, cmos->mon_alrm);
365         }
366 
367         /* FIXME the HPET alarm glue currently ignores day_alrm
368          * and mon_alrm ...
369          */
370         hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371 
372         if (t->enabled)
373                 cmos_irq_enable(cmos, RTC_AIE);
374 
375         spin_unlock_irq(&rtc_lock);
376 
377         return 0;
378 }
379 
380 /*
381  * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382  */
383 static bool alarm_disable_quirk;
384 
385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387         alarm_disable_quirk = true;
388         pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389         pr_info("RTC alarms disabled\n");
390         return 0;
391 }
392 
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394         /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395         {
396                 .callback = set_alarm_disable_quirk,
397                 .ident    = "IBM Truman",
398                 .matches  = {
399                         DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400                         DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401                 },
402         },
403         /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404         {
405                 .callback = set_alarm_disable_quirk,
406                 .ident    = "Gigabyte GA-990XA-UD3",
407                 .matches  = {
408                         DMI_MATCH(DMI_SYS_VENDOR,
409                                         "Gigabyte Technology Co., Ltd."),
410                         DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411                 },
412         },
413         /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414         {
415                 .callback = set_alarm_disable_quirk,
416                 .ident    = "Toshiba Satellite L300",
417                 .matches  = {
418                         DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419                         DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420                 },
421         },
422         {}
423 };
424 
425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427         struct cmos_rtc *cmos = dev_get_drvdata(dev);
428         unsigned long   flags;
429 
430         if (!is_valid_irq(cmos->irq))
431                 return -EINVAL;
432 
433         if (alarm_disable_quirk)
434                 return 0;
435 
436         spin_lock_irqsave(&rtc_lock, flags);
437 
438         if (enabled)
439                 cmos_irq_enable(cmos, RTC_AIE);
440         else
441                 cmos_irq_disable(cmos, RTC_AIE);
442 
443         spin_unlock_irqrestore(&rtc_lock, flags);
444         return 0;
445 }
446 
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448 
449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451         struct cmos_rtc *cmos = dev_get_drvdata(dev);
452         unsigned char   rtc_control, valid;
453 
454         spin_lock_irq(&rtc_lock);
455         rtc_control = CMOS_READ(RTC_CONTROL);
456         valid = CMOS_READ(RTC_VALID);
457         spin_unlock_irq(&rtc_lock);
458 
459         /* NOTE:  at least ICH6 reports battery status using a different
460          * (non-RTC) bit; and SQWE is ignored on many current systems.
461          */
462         return seq_printf(seq,
463                         "periodic_IRQ\t: %s\n"
464                         "update_IRQ\t: %s\n"
465                         "HPET_emulated\t: %s\n"
466                         // "square_wave\t: %s\n"
467                         "BCD\t\t: %s\n"
468                         "DST_enable\t: %s\n"
469                         "periodic_freq\t: %d\n"
470                         "batt_status\t: %s\n",
471                         (rtc_control & RTC_PIE) ? "yes" : "no",
472                         (rtc_control & RTC_UIE) ? "yes" : "no",
473                         is_hpet_enabled() ? "yes" : "no",
474                         // (rtc_control & RTC_SQWE) ? "yes" : "no",
475                         (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476                         (rtc_control & RTC_DST_EN) ? "yes" : "no",
477                         cmos->rtc->irq_freq,
478                         (valid & RTC_VRT) ? "okay" : "dead");
479 }
480 
481 #else
482 #define cmos_procfs     NULL
483 #endif
484 
485 static const struct rtc_class_ops cmos_rtc_ops = {
486         .read_time              = cmos_read_time,
487         .set_time               = cmos_set_time,
488         .read_alarm             = cmos_read_alarm,
489         .set_alarm              = cmos_set_alarm,
490         .proc                   = cmos_procfs,
491         .alarm_irq_enable       = cmos_alarm_irq_enable,
492 };
493 
494 /*----------------------------------------------------------------*/
495 
496 /*
497  * All these chips have at least 64 bytes of address space, shared by
498  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
499  * by boot firmware.  Modern chips have 128 or 256 bytes.
500  */
501 
502 #define NVRAM_OFFSET    (RTC_REG_D + 1)
503 
504 static ssize_t
505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506                 struct bin_attribute *attr,
507                 char *buf, loff_t off, size_t count)
508 {
509         int     retval;
510 
511         if (unlikely(off >= attr->size))
512                 return 0;
513         if (unlikely(off < 0))
514                 return -EINVAL;
515         if ((off + count) > attr->size)
516                 count = attr->size - off;
517 
518         off += NVRAM_OFFSET;
519         spin_lock_irq(&rtc_lock);
520         for (retval = 0; count; count--, off++, retval++) {
521                 if (off < 128)
522                         *buf++ = CMOS_READ(off);
523                 else if (can_bank2)
524                         *buf++ = cmos_read_bank2(off);
525                 else
526                         break;
527         }
528         spin_unlock_irq(&rtc_lock);
529 
530         return retval;
531 }
532 
533 static ssize_t
534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535                 struct bin_attribute *attr,
536                 char *buf, loff_t off, size_t count)
537 {
538         struct cmos_rtc *cmos;
539         int             retval;
540 
541         cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542         if (unlikely(off >= attr->size))
543                 return -EFBIG;
544         if (unlikely(off < 0))
545                 return -EINVAL;
546         if ((off + count) > attr->size)
547                 count = attr->size - off;
548 
549         /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
550          * checksum on part of the NVRAM data.  That's currently ignored
551          * here.  If userspace is smart enough to know what fields of
552          * NVRAM to update, updating checksums is also part of its job.
553          */
554         off += NVRAM_OFFSET;
555         spin_lock_irq(&rtc_lock);
556         for (retval = 0; count; count--, off++, retval++) {
557                 /* don't trash RTC registers */
558                 if (off == cmos->day_alrm
559                                 || off == cmos->mon_alrm
560                                 || off == cmos->century)
561                         buf++;
562                 else if (off < 128)
563                         CMOS_WRITE(*buf++, off);
564                 else if (can_bank2)
565                         cmos_write_bank2(*buf++, off);
566                 else
567                         break;
568         }
569         spin_unlock_irq(&rtc_lock);
570 
571         return retval;
572 }
573 
574 static struct bin_attribute nvram = {
575         .attr = {
576                 .name   = "nvram",
577                 .mode   = S_IRUGO | S_IWUSR,
578         },
579 
580         .read   = cmos_nvram_read,
581         .write  = cmos_nvram_write,
582         /* size gets set up later */
583 };
584 
585 /*----------------------------------------------------------------*/
586 
587 static struct cmos_rtc  cmos_rtc;
588 
589 static irqreturn_t cmos_interrupt(int irq, void *p)
590 {
591         u8              irqstat;
592         u8              rtc_control;
593 
594         spin_lock(&rtc_lock);
595 
596         /* When the HPET interrupt handler calls us, the interrupt
597          * status is passed as arg1 instead of the irq number.  But
598          * always clear irq status, even when HPET is in the way.
599          *
600          * Note that HPET and RTC are almost certainly out of phase,
601          * giving different IRQ status ...
602          */
603         irqstat = CMOS_READ(RTC_INTR_FLAGS);
604         rtc_control = CMOS_READ(RTC_CONTROL);
605         if (is_hpet_enabled())
606                 irqstat = (unsigned long)irq & 0xF0;
607 
608         /* If we were suspended, RTC_CONTROL may not be accurate since the
609          * bios may have cleared it.
610          */
611         if (!cmos_rtc.suspend_ctrl)
612                 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
613         else
614                 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
615 
616         /* All Linux RTC alarms should be treated as if they were oneshot.
617          * Similar code may be needed in system wakeup paths, in case the
618          * alarm woke the system.
619          */
620         if (irqstat & RTC_AIE) {
621                 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
622                 rtc_control &= ~RTC_AIE;
623                 CMOS_WRITE(rtc_control, RTC_CONTROL);
624                 hpet_mask_rtc_irq_bit(RTC_AIE);
625                 CMOS_READ(RTC_INTR_FLAGS);
626         }
627         spin_unlock(&rtc_lock);
628 
629         if (is_intr(irqstat)) {
630                 rtc_update_irq(p, 1, irqstat);
631                 return IRQ_HANDLED;
632         } else
633                 return IRQ_NONE;
634 }
635 
636 #ifdef  CONFIG_PNP
637 #define INITSECTION
638 
639 #else
640 #define INITSECTION     __init
641 #endif
642 
643 static int INITSECTION
644 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
645 {
646         struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
647         int                             retval = 0;
648         unsigned char                   rtc_control;
649         unsigned                        address_space;
650         u32                             flags = 0;
651 
652         /* there can be only one ... */
653         if (cmos_rtc.dev)
654                 return -EBUSY;
655 
656         if (!ports)
657                 return -ENODEV;
658 
659         /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
660          *
661          * REVISIT non-x86 systems may instead use memory space resources
662          * (needing ioremap etc), not i/o space resources like this ...
663          */
664         if (RTC_IOMAPPED)
665                 ports = request_region(ports->start, resource_size(ports),
666                                        driver_name);
667         else
668                 ports = request_mem_region(ports->start, resource_size(ports),
669                                            driver_name);
670         if (!ports) {
671                 dev_dbg(dev, "i/o registers already in use\n");
672                 return -EBUSY;
673         }
674 
675         cmos_rtc.irq = rtc_irq;
676         cmos_rtc.iomem = ports;
677 
678         /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
679          * driver did, but don't reject unknown configs.   Old hardware
680          * won't address 128 bytes.  Newer chips have multiple banks,
681          * though they may not be listed in one I/O resource.
682          */
683 #if     defined(CONFIG_ATARI)
684         address_space = 64;
685 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
686                         || defined(__sparc__) || defined(__mips__) \
687                         || defined(__powerpc__)
688         address_space = 128;
689 #else
690 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
691         address_space = 128;
692 #endif
693         if (can_bank2 && ports->end > (ports->start + 1))
694                 address_space = 256;
695 
696         /* For ACPI systems extension info comes from the FADT.  On others,
697          * board specific setup provides it as appropriate.  Systems where
698          * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
699          * some almost-clones) can provide hooks to make that behave.
700          *
701          * Note that ACPI doesn't preclude putting these registers into
702          * "extended" areas of the chip, including some that we won't yet
703          * expect CMOS_READ and friends to handle.
704          */
705         if (info) {
706                 if (info->flags)
707                         flags = info->flags;
708                 if (info->address_space)
709                         address_space = info->address_space;
710 
711                 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
712                         cmos_rtc.day_alrm = info->rtc_day_alarm;
713                 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
714                         cmos_rtc.mon_alrm = info->rtc_mon_alarm;
715                 if (info->rtc_century && info->rtc_century < 128)
716                         cmos_rtc.century = info->rtc_century;
717 
718                 if (info->wake_on && info->wake_off) {
719                         cmos_rtc.wake_on = info->wake_on;
720                         cmos_rtc.wake_off = info->wake_off;
721                 }
722         }
723 
724         cmos_rtc.dev = dev;
725         dev_set_drvdata(dev, &cmos_rtc);
726 
727         cmos_rtc.rtc = rtc_device_register(driver_name, dev,
728                                 &cmos_rtc_ops, THIS_MODULE);
729         if (IS_ERR(cmos_rtc.rtc)) {
730                 retval = PTR_ERR(cmos_rtc.rtc);
731                 goto cleanup0;
732         }
733 
734         rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
735 
736         spin_lock_irq(&rtc_lock);
737 
738         if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
739                 /* force periodic irq to CMOS reset default of 1024Hz;
740                  *
741                  * REVISIT it's been reported that at least one x86_64 ALI
742                  * mobo doesn't use 32KHz here ... for portability we might
743                  * need to do something about other clock frequencies.
744                  */
745                 cmos_rtc.rtc->irq_freq = 1024;
746                 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
747                 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
748         }
749 
750         /* disable irqs */
751         if (is_valid_irq(rtc_irq))
752                 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
753 
754         rtc_control = CMOS_READ(RTC_CONTROL);
755 
756         spin_unlock_irq(&rtc_lock);
757 
758         /* FIXME:
759          * <asm-generic/rtc.h> doesn't know 12-hour mode either.
760          */
761         if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
762                 dev_warn(dev, "only 24-hr supported\n");
763                 retval = -ENXIO;
764                 goto cleanup1;
765         }
766 
767         if (is_valid_irq(rtc_irq)) {
768                 irq_handler_t rtc_cmos_int_handler;
769 
770                 if (is_hpet_enabled()) {
771                         rtc_cmos_int_handler = hpet_rtc_interrupt;
772                         retval = hpet_register_irq_handler(cmos_interrupt);
773                         if (retval) {
774                                 dev_warn(dev, "hpet_register_irq_handler "
775                                                 " failed in rtc_init().");
776                                 goto cleanup1;
777                         }
778                 } else
779                         rtc_cmos_int_handler = cmos_interrupt;
780 
781                 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
782                                 0, dev_name(&cmos_rtc.rtc->dev),
783                                 cmos_rtc.rtc);
784                 if (retval < 0) {
785                         dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
786                         goto cleanup1;
787                 }
788         }
789         hpet_rtc_timer_init();
790 
791         /* export at least the first block of NVRAM */
792         nvram.size = address_space - NVRAM_OFFSET;
793         retval = sysfs_create_bin_file(&dev->kobj, &nvram);
794         if (retval < 0) {
795                 dev_dbg(dev, "can't create nvram file? %d\n", retval);
796                 goto cleanup2;
797         }
798 
799         dev_info(dev, "%s%s, %zd bytes nvram%s\n",
800                 !is_valid_irq(rtc_irq) ? "no alarms" :
801                         cmos_rtc.mon_alrm ? "alarms up to one year" :
802                         cmos_rtc.day_alrm ? "alarms up to one month" :
803                         "alarms up to one day",
804                 cmos_rtc.century ? ", y3k" : "",
805                 nvram.size,
806                 is_hpet_enabled() ? ", hpet irqs" : "");
807 
808         return 0;
809 
810 cleanup2:
811         if (is_valid_irq(rtc_irq))
812                 free_irq(rtc_irq, cmos_rtc.rtc);
813 cleanup1:
814         cmos_rtc.dev = NULL;
815         rtc_device_unregister(cmos_rtc.rtc);
816 cleanup0:
817         if (RTC_IOMAPPED)
818                 release_region(ports->start, resource_size(ports));
819         else
820                 release_mem_region(ports->start, resource_size(ports));
821         return retval;
822 }
823 
824 static void cmos_do_shutdown(int rtc_irq)
825 {
826         spin_lock_irq(&rtc_lock);
827         if (is_valid_irq(rtc_irq))
828                 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
829         spin_unlock_irq(&rtc_lock);
830 }
831 
832 static void __exit cmos_do_remove(struct device *dev)
833 {
834         struct cmos_rtc *cmos = dev_get_drvdata(dev);
835         struct resource *ports;
836 
837         cmos_do_shutdown(cmos->irq);
838 
839         sysfs_remove_bin_file(&dev->kobj, &nvram);
840 
841         if (is_valid_irq(cmos->irq)) {
842                 free_irq(cmos->irq, cmos->rtc);
843                 hpet_unregister_irq_handler(cmos_interrupt);
844         }
845 
846         rtc_device_unregister(cmos->rtc);
847         cmos->rtc = NULL;
848 
849         ports = cmos->iomem;
850         if (RTC_IOMAPPED)
851                 release_region(ports->start, resource_size(ports));
852         else
853                 release_mem_region(ports->start, resource_size(ports));
854         cmos->iomem = NULL;
855 
856         cmos->dev = NULL;
857 }
858 
859 #ifdef CONFIG_PM
860 
861 static int cmos_suspend(struct device *dev)
862 {
863         struct cmos_rtc *cmos = dev_get_drvdata(dev);
864         unsigned char   tmp;
865 
866         /* only the alarm might be a wakeup event source */
867         spin_lock_irq(&rtc_lock);
868         cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
869         if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
870                 unsigned char   mask;
871 
872                 if (device_may_wakeup(dev))
873                         mask = RTC_IRQMASK & ~RTC_AIE;
874                 else
875                         mask = RTC_IRQMASK;
876                 tmp &= ~mask;
877                 CMOS_WRITE(tmp, RTC_CONTROL);
878                 hpet_mask_rtc_irq_bit(mask);
879 
880                 cmos_checkintr(cmos, tmp);
881         }
882         spin_unlock_irq(&rtc_lock);
883 
884         if (tmp & RTC_AIE) {
885                 cmos->enabled_wake = 1;
886                 if (cmos->wake_on)
887                         cmos->wake_on(dev);
888                 else
889                         enable_irq_wake(cmos->irq);
890         }
891 
892         dev_dbg(dev, "suspend%s, ctrl %02x\n",
893                         (tmp & RTC_AIE) ? ", alarm may wake" : "",
894                         tmp);
895 
896         return 0;
897 }
898 
899 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
900  * after a detour through G3 "mechanical off", although the ACPI spec
901  * says wakeup should only work from G1/S4 "hibernate".  To most users,
902  * distinctions between S4 and S5 are pointless.  So when the hardware
903  * allows, don't draw that distinction.
904  */
905 static inline int cmos_poweroff(struct device *dev)
906 {
907         return cmos_suspend(dev);
908 }
909 
910 #ifdef  CONFIG_PM_SLEEP
911 
912 static int cmos_resume(struct device *dev)
913 {
914         struct cmos_rtc *cmos = dev_get_drvdata(dev);
915         unsigned char tmp;
916 
917         if (cmos->enabled_wake) {
918                 if (cmos->wake_off)
919                         cmos->wake_off(dev);
920                 else
921                         disable_irq_wake(cmos->irq);
922                 cmos->enabled_wake = 0;
923         }
924 
925         spin_lock_irq(&rtc_lock);
926         tmp = cmos->suspend_ctrl;
927         cmos->suspend_ctrl = 0;
928         /* re-enable any irqs previously active */
929         if (tmp & RTC_IRQMASK) {
930                 unsigned char   mask;
931 
932                 if (device_may_wakeup(dev))
933                         hpet_rtc_timer_init();
934 
935                 do {
936                         CMOS_WRITE(tmp, RTC_CONTROL);
937                         hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
938 
939                         mask = CMOS_READ(RTC_INTR_FLAGS);
940                         mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
941                         if (!is_hpet_enabled() || !is_intr(mask))
942                                 break;
943 
944                         /* force one-shot behavior if HPET blocked
945                          * the wake alarm's irq
946                          */
947                         rtc_update_irq(cmos->rtc, 1, mask);
948                         tmp &= ~RTC_AIE;
949                         hpet_mask_rtc_irq_bit(RTC_AIE);
950                 } while (mask & RTC_AIE);
951         }
952         spin_unlock_irq(&rtc_lock);
953 
954         dev_dbg(dev, "resume, ctrl %02x\n", tmp);
955 
956         return 0;
957 }
958 
959 #endif
960 #else
961 
962 static inline int cmos_poweroff(struct device *dev)
963 {
964         return -ENOSYS;
965 }
966 
967 #endif
968 
969 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
970 
971 /*----------------------------------------------------------------*/
972 
973 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
974  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
975  * probably list them in similar PNPBIOS tables; so PNP is more common.
976  *
977  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
978  * predate even PNPBIOS should set up platform_bus devices.
979  */
980 
981 #ifdef  CONFIG_ACPI
982 
983 #include <linux/acpi.h>
984 
985 static u32 rtc_handler(void *context)
986 {
987         struct device *dev = context;
988 
989         pm_wakeup_event(dev, 0);
990         acpi_clear_event(ACPI_EVENT_RTC);
991         acpi_disable_event(ACPI_EVENT_RTC, 0);
992         return ACPI_INTERRUPT_HANDLED;
993 }
994 
995 static inline void rtc_wake_setup(struct device *dev)
996 {
997         acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
998         /*
999          * After the RTC handler is installed, the Fixed_RTC event should
1000          * be disabled. Only when the RTC alarm is set will it be enabled.
1001          */
1002         acpi_clear_event(ACPI_EVENT_RTC);
1003         acpi_disable_event(ACPI_EVENT_RTC, 0);
1004 }
1005 
1006 static void rtc_wake_on(struct device *dev)
1007 {
1008         acpi_clear_event(ACPI_EVENT_RTC);
1009         acpi_enable_event(ACPI_EVENT_RTC, 0);
1010 }
1011 
1012 static void rtc_wake_off(struct device *dev)
1013 {
1014         acpi_disable_event(ACPI_EVENT_RTC, 0);
1015 }
1016 
1017 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1018  * its device node and pass extra config data.  This helps its driver use
1019  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1020  * that this board's RTC is wakeup-capable (per ACPI spec).
1021  */
1022 static struct cmos_rtc_board_info acpi_rtc_info;
1023 
1024 static void cmos_wake_setup(struct device *dev)
1025 {
1026         if (acpi_disabled)
1027                 return;
1028 
1029         rtc_wake_setup(dev);
1030         acpi_rtc_info.wake_on = rtc_wake_on;
1031         acpi_rtc_info.wake_off = rtc_wake_off;
1032 
1033         /* workaround bug in some ACPI tables */
1034         if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1035                 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1036                         acpi_gbl_FADT.month_alarm);
1037                 acpi_gbl_FADT.month_alarm = 0;
1038         }
1039 
1040         acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1041         acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1042         acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1043 
1044         /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1045         if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1046                 dev_info(dev, "RTC can wake from S4\n");
1047 
1048         dev->platform_data = &acpi_rtc_info;
1049 
1050         /* RTC always wakes from S1/S2/S3, and often S4/STD */
1051         device_init_wakeup(dev, 1);
1052 }
1053 
1054 #else
1055 
1056 static void cmos_wake_setup(struct device *dev)
1057 {
1058 }
1059 
1060 #endif
1061 
1062 #ifdef  CONFIG_PNP
1063 
1064 #include <linux/pnp.h>
1065 
1066 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1067 {
1068         cmos_wake_setup(&pnp->dev);
1069 
1070         if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1071                 /* Some machines contain a PNP entry for the RTC, but
1072                  * don't define the IRQ. It should always be safe to
1073                  * hardcode it in these cases
1074                  */
1075                 return cmos_do_probe(&pnp->dev,
1076                                 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1077         else
1078                 return cmos_do_probe(&pnp->dev,
1079                                 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1080                                 pnp_irq(pnp, 0));
1081 }
1082 
1083 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1084 {
1085         cmos_do_remove(&pnp->dev);
1086 }
1087 
1088 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1089 {
1090         struct device *dev = &pnp->dev;
1091         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1092 
1093         if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1094                 return;
1095 
1096         cmos_do_shutdown(cmos->irq);
1097 }
1098 
1099 static const struct pnp_device_id rtc_ids[] = {
1100         { .id = "PNP0b00", },
1101         { .id = "PNP0b01", },
1102         { .id = "PNP0b02", },
1103         { },
1104 };
1105 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1106 
1107 static struct pnp_driver cmos_pnp_driver = {
1108         .name           = (char *) driver_name,
1109         .id_table       = rtc_ids,
1110         .probe          = cmos_pnp_probe,
1111         .remove         = __exit_p(cmos_pnp_remove),
1112         .shutdown       = cmos_pnp_shutdown,
1113 
1114         /* flag ensures resume() gets called, and stops syslog spam */
1115         .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1116         .driver         = {
1117                         .pm = &cmos_pm_ops,
1118         },
1119 };
1120 
1121 #endif  /* CONFIG_PNP */
1122 
1123 #ifdef CONFIG_OF
1124 static const struct of_device_id of_cmos_match[] = {
1125         {
1126                 .compatible = "motorola,mc146818",
1127         },
1128         { },
1129 };
1130 MODULE_DEVICE_TABLE(of, of_cmos_match);
1131 
1132 static __init void cmos_of_init(struct platform_device *pdev)
1133 {
1134         struct device_node *node = pdev->dev.of_node;
1135         struct rtc_time time;
1136         int ret;
1137         const __be32 *val;
1138 
1139         if (!node)
1140                 return;
1141 
1142         val = of_get_property(node, "ctrl-reg", NULL);
1143         if (val)
1144                 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1145 
1146         val = of_get_property(node, "freq-reg", NULL);
1147         if (val)
1148                 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1149 
1150         get_rtc_time(&time);
1151         ret = rtc_valid_tm(&time);
1152         if (ret) {
1153                 struct rtc_time def_time = {
1154                         .tm_year = 1,
1155                         .tm_mday = 1,
1156                 };
1157                 set_rtc_time(&def_time);
1158         }
1159 }
1160 #else
1161 static inline void cmos_of_init(struct platform_device *pdev) {}
1162 #endif
1163 /*----------------------------------------------------------------*/
1164 
1165 /* Platform setup should have set up an RTC device, when PNP is
1166  * unavailable ... this could happen even on (older) PCs.
1167  */
1168 
1169 static int __init cmos_platform_probe(struct platform_device *pdev)
1170 {
1171         struct resource *resource;
1172         int irq;
1173 
1174         cmos_of_init(pdev);
1175         cmos_wake_setup(&pdev->dev);
1176 
1177         if (RTC_IOMAPPED)
1178                 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1179         else
1180                 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1181         irq = platform_get_irq(pdev, 0);
1182         if (irq < 0)
1183                 irq = -1;
1184 
1185         return cmos_do_probe(&pdev->dev, resource, irq);
1186 }
1187 
1188 static int __exit cmos_platform_remove(struct platform_device *pdev)
1189 {
1190         cmos_do_remove(&pdev->dev);
1191         return 0;
1192 }
1193 
1194 static void cmos_platform_shutdown(struct platform_device *pdev)
1195 {
1196         struct device *dev = &pdev->dev;
1197         struct cmos_rtc *cmos = dev_get_drvdata(dev);
1198 
1199         if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1200                 return;
1201 
1202         cmos_do_shutdown(cmos->irq);
1203 }
1204 
1205 /* work with hotplug and coldplug */
1206 MODULE_ALIAS("platform:rtc_cmos");
1207 
1208 static struct platform_driver cmos_platform_driver = {
1209         .remove         = __exit_p(cmos_platform_remove),
1210         .shutdown       = cmos_platform_shutdown,
1211         .driver = {
1212                 .name           = driver_name,
1213 #ifdef CONFIG_PM
1214                 .pm             = &cmos_pm_ops,
1215 #endif
1216                 .of_match_table = of_match_ptr(of_cmos_match),
1217         }
1218 };
1219 
1220 #ifdef CONFIG_PNP
1221 static bool pnp_driver_registered;
1222 #endif
1223 static bool platform_driver_registered;
1224 
1225 static int __init cmos_init(void)
1226 {
1227         int retval = 0;
1228 
1229 #ifdef  CONFIG_PNP
1230         retval = pnp_register_driver(&cmos_pnp_driver);
1231         if (retval == 0)
1232                 pnp_driver_registered = true;
1233 #endif
1234 
1235         if (!cmos_rtc.dev) {
1236                 retval = platform_driver_probe(&cmos_platform_driver,
1237                                                cmos_platform_probe);
1238                 if (retval == 0)
1239                         platform_driver_registered = true;
1240         }
1241 
1242         dmi_check_system(rtc_quirks);
1243 
1244         if (retval == 0)
1245                 return 0;
1246 
1247 #ifdef  CONFIG_PNP
1248         if (pnp_driver_registered)
1249                 pnp_unregister_driver(&cmos_pnp_driver);
1250 #endif
1251         return retval;
1252 }
1253 module_init(cmos_init);
1254 
1255 static void __exit cmos_exit(void)
1256 {
1257 #ifdef  CONFIG_PNP
1258         if (pnp_driver_registered)
1259                 pnp_unregister_driver(&cmos_pnp_driver);
1260 #endif
1261         if (platform_driver_registered)
1262                 platform_driver_unregister(&cmos_platform_driver);
1263 }
1264 module_exit(cmos_exit);
1265 
1266 
1267 MODULE_AUTHOR("David Brownell");
1268 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1269 MODULE_LICENSE("GPL");
1270 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us