Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/power/ab8500_fg.c

  1 /*
  2  * Copyright (C) ST-Ericsson AB 2012
  3  *
  4  * Main and Back-up battery management driver.
  5  *
  6  * Note: Backup battery management is required in case of Li-Ion battery and not
  7  * for capacitive battery. HREF boards have capacitive battery and hence backup
  8  * battery management is not used and the supported code is available in this
  9  * driver.
 10  *
 11  * License Terms: GNU General Public License v2
 12  * Author:
 13  *      Johan Palsson <johan.palsson@stericsson.com>
 14  *      Karl Komierowski <karl.komierowski@stericsson.com>
 15  *      Arun R Murthy <arun.murthy@stericsson.com>
 16  */
 17 
 18 #include <linux/init.h>
 19 #include <linux/module.h>
 20 #include <linux/device.h>
 21 #include <linux/interrupt.h>
 22 #include <linux/platform_device.h>
 23 #include <linux/power_supply.h>
 24 #include <linux/kobject.h>
 25 #include <linux/slab.h>
 26 #include <linux/delay.h>
 27 #include <linux/time.h>
 28 #include <linux/time64.h>
 29 #include <linux/of.h>
 30 #include <linux/completion.h>
 31 #include <linux/mfd/core.h>
 32 #include <linux/mfd/abx500.h>
 33 #include <linux/mfd/abx500/ab8500.h>
 34 #include <linux/mfd/abx500/ab8500-bm.h>
 35 #include <linux/mfd/abx500/ab8500-gpadc.h>
 36 #include <linux/kernel.h>
 37 
 38 #define MILLI_TO_MICRO                  1000
 39 #define FG_LSB_IN_MA                    1627
 40 #define QLSB_NANO_AMP_HOURS_X10         1071
 41 #define INS_CURR_TIMEOUT                (3 * HZ)
 42 
 43 #define SEC_TO_SAMPLE(S)                (S * 4)
 44 
 45 #define NBR_AVG_SAMPLES                 20
 46 
 47 #define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
 48 
 49 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
 50 #define BATT_OK_MIN                     2360 /* mV */
 51 #define BATT_OK_INCREMENT               50 /* mV */
 52 #define BATT_OK_MAX_NR_INCREMENTS       0xE
 53 
 54 /* FG constants */
 55 #define BATT_OVV                        0x01
 56 
 57 #define interpolate(x, x1, y1, x2, y2) \
 58         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
 59 
 60 /**
 61  * struct ab8500_fg_interrupts - ab8500 fg interupts
 62  * @name:       name of the interrupt
 63  * @isr         function pointer to the isr
 64  */
 65 struct ab8500_fg_interrupts {
 66         char *name;
 67         irqreturn_t (*isr)(int irq, void *data);
 68 };
 69 
 70 enum ab8500_fg_discharge_state {
 71         AB8500_FG_DISCHARGE_INIT,
 72         AB8500_FG_DISCHARGE_INITMEASURING,
 73         AB8500_FG_DISCHARGE_INIT_RECOVERY,
 74         AB8500_FG_DISCHARGE_RECOVERY,
 75         AB8500_FG_DISCHARGE_READOUT_INIT,
 76         AB8500_FG_DISCHARGE_READOUT,
 77         AB8500_FG_DISCHARGE_WAKEUP,
 78 };
 79 
 80 static char *discharge_state[] = {
 81         "DISCHARGE_INIT",
 82         "DISCHARGE_INITMEASURING",
 83         "DISCHARGE_INIT_RECOVERY",
 84         "DISCHARGE_RECOVERY",
 85         "DISCHARGE_READOUT_INIT",
 86         "DISCHARGE_READOUT",
 87         "DISCHARGE_WAKEUP",
 88 };
 89 
 90 enum ab8500_fg_charge_state {
 91         AB8500_FG_CHARGE_INIT,
 92         AB8500_FG_CHARGE_READOUT,
 93 };
 94 
 95 static char *charge_state[] = {
 96         "CHARGE_INIT",
 97         "CHARGE_READOUT",
 98 };
 99 
100 enum ab8500_fg_calibration_state {
101         AB8500_FG_CALIB_INIT,
102         AB8500_FG_CALIB_WAIT,
103         AB8500_FG_CALIB_END,
104 };
105 
106 struct ab8500_fg_avg_cap {
107         int avg;
108         int samples[NBR_AVG_SAMPLES];
109         time64_t time_stamps[NBR_AVG_SAMPLES];
110         int pos;
111         int nbr_samples;
112         int sum;
113 };
114 
115 struct ab8500_fg_cap_scaling {
116         bool enable;
117         int cap_to_scale[2];
118         int disable_cap_level;
119         int scaled_cap;
120 };
121 
122 struct ab8500_fg_battery_capacity {
123         int max_mah_design;
124         int max_mah;
125         int mah;
126         int permille;
127         int level;
128         int prev_mah;
129         int prev_percent;
130         int prev_level;
131         int user_mah;
132         struct ab8500_fg_cap_scaling cap_scale;
133 };
134 
135 struct ab8500_fg_flags {
136         bool fg_enabled;
137         bool conv_done;
138         bool charging;
139         bool fully_charged;
140         bool force_full;
141         bool low_bat_delay;
142         bool low_bat;
143         bool bat_ovv;
144         bool batt_unknown;
145         bool calibrate;
146         bool user_cap;
147         bool batt_id_received;
148 };
149 
150 struct inst_curr_result_list {
151         struct list_head list;
152         int *result;
153 };
154 
155 /**
156  * struct ab8500_fg - ab8500 FG device information
157  * @dev:                Pointer to the structure device
158  * @node:               a list of AB8500 FGs, hence prepared for reentrance
159  * @irq                 holds the CCEOC interrupt number
160  * @vbat:               Battery voltage in mV
161  * @vbat_nom:           Nominal battery voltage in mV
162  * @inst_curr:          Instantenous battery current in mA
163  * @avg_curr:           Average battery current in mA
164  * @bat_temp            battery temperature
165  * @fg_samples:         Number of samples used in the FG accumulation
166  * @accu_charge:        Accumulated charge from the last conversion
167  * @recovery_cnt:       Counter for recovery mode
168  * @high_curr_cnt:      Counter for high current mode
169  * @init_cnt:           Counter for init mode
170  * @low_bat_cnt         Counter for number of consecutive low battery measures
171  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
172  * @recovery_needed:    Indicate if recovery is needed
173  * @high_curr_mode:     Indicate if we're in high current mode
174  * @init_capacity:      Indicate if initial capacity measuring should be done
175  * @turn_off_fg:        True if fg was off before current measurement
176  * @calib_state         State during offset calibration
177  * @discharge_state:    Current discharge state
178  * @charge_state:       Current charge state
179  * @ab8500_fg_started   Completion struct used for the instant current start
180  * @ab8500_fg_complete  Completion struct used for the instant current reading
181  * @flags:              Structure for information about events triggered
182  * @bat_cap:            Structure for battery capacity specific parameters
183  * @avg_cap:            Average capacity filter
184  * @parent:             Pointer to the struct ab8500
185  * @gpadc:              Pointer to the struct gpadc
186  * @bm:                 Platform specific battery management information
187  * @fg_psy:             Structure that holds the FG specific battery properties
188  * @fg_wq:              Work queue for running the FG algorithm
189  * @fg_periodic_work:   Work to run the FG algorithm periodically
190  * @fg_low_bat_work:    Work to check low bat condition
191  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
192  * @fg_work:            Work to run the FG algorithm instantly
193  * @fg_acc_cur_work:    Work to read the FG accumulator
194  * @fg_check_hw_failure_work:   Work for checking HW state
195  * @cc_lock:            Mutex for locking the CC
196  * @fg_kobject:         Structure of type kobject
197  */
198 struct ab8500_fg {
199         struct device *dev;
200         struct list_head node;
201         int irq;
202         int vbat;
203         int vbat_nom;
204         int inst_curr;
205         int avg_curr;
206         int bat_temp;
207         int fg_samples;
208         int accu_charge;
209         int recovery_cnt;
210         int high_curr_cnt;
211         int init_cnt;
212         int low_bat_cnt;
213         int nbr_cceoc_irq_cnt;
214         bool recovery_needed;
215         bool high_curr_mode;
216         bool init_capacity;
217         bool turn_off_fg;
218         enum ab8500_fg_calibration_state calib_state;
219         enum ab8500_fg_discharge_state discharge_state;
220         enum ab8500_fg_charge_state charge_state;
221         struct completion ab8500_fg_started;
222         struct completion ab8500_fg_complete;
223         struct ab8500_fg_flags flags;
224         struct ab8500_fg_battery_capacity bat_cap;
225         struct ab8500_fg_avg_cap avg_cap;
226         struct ab8500 *parent;
227         struct ab8500_gpadc *gpadc;
228         struct abx500_bm_data *bm;
229         struct power_supply *fg_psy;
230         struct workqueue_struct *fg_wq;
231         struct delayed_work fg_periodic_work;
232         struct delayed_work fg_low_bat_work;
233         struct delayed_work fg_reinit_work;
234         struct work_struct fg_work;
235         struct work_struct fg_acc_cur_work;
236         struct delayed_work fg_check_hw_failure_work;
237         struct mutex cc_lock;
238         struct kobject fg_kobject;
239 };
240 static LIST_HEAD(ab8500_fg_list);
241 
242 /**
243  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244  * (i.e. the first fuel gauge in the instance list)
245  */
246 struct ab8500_fg *ab8500_fg_get(void)
247 {
248         struct ab8500_fg *fg;
249 
250         if (list_empty(&ab8500_fg_list))
251                 return NULL;
252 
253         fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
254         return fg;
255 }
256 
257 /* Main battery properties */
258 static enum power_supply_property ab8500_fg_props[] = {
259         POWER_SUPPLY_PROP_VOLTAGE_NOW,
260         POWER_SUPPLY_PROP_CURRENT_NOW,
261         POWER_SUPPLY_PROP_CURRENT_AVG,
262         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
263         POWER_SUPPLY_PROP_ENERGY_FULL,
264         POWER_SUPPLY_PROP_ENERGY_NOW,
265         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
266         POWER_SUPPLY_PROP_CHARGE_FULL,
267         POWER_SUPPLY_PROP_CHARGE_NOW,
268         POWER_SUPPLY_PROP_CAPACITY,
269         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
270 };
271 
272 /*
273  * This array maps the raw hex value to lowbat voltage used by the AB8500
274  * Values taken from the UM0836
275  */
276 static int ab8500_fg_lowbat_voltage_map[] = {
277         2300 ,
278         2325 ,
279         2350 ,
280         2375 ,
281         2400 ,
282         2425 ,
283         2450 ,
284         2475 ,
285         2500 ,
286         2525 ,
287         2550 ,
288         2575 ,
289         2600 ,
290         2625 ,
291         2650 ,
292         2675 ,
293         2700 ,
294         2725 ,
295         2750 ,
296         2775 ,
297         2800 ,
298         2825 ,
299         2850 ,
300         2875 ,
301         2900 ,
302         2925 ,
303         2950 ,
304         2975 ,
305         3000 ,
306         3025 ,
307         3050 ,
308         3075 ,
309         3100 ,
310         3125 ,
311         3150 ,
312         3175 ,
313         3200 ,
314         3225 ,
315         3250 ,
316         3275 ,
317         3300 ,
318         3325 ,
319         3350 ,
320         3375 ,
321         3400 ,
322         3425 ,
323         3450 ,
324         3475 ,
325         3500 ,
326         3525 ,
327         3550 ,
328         3575 ,
329         3600 ,
330         3625 ,
331         3650 ,
332         3675 ,
333         3700 ,
334         3725 ,
335         3750 ,
336         3775 ,
337         3800 ,
338         3825 ,
339         3850 ,
340         3850 ,
341 };
342 
343 static u8 ab8500_volt_to_regval(int voltage)
344 {
345         int i;
346 
347         if (voltage < ab8500_fg_lowbat_voltage_map[0])
348                 return 0;
349 
350         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
351                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
352                         return (u8) i - 1;
353         }
354 
355         /* If not captured above, return index of last element */
356         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
357 }
358 
359 /**
360  * ab8500_fg_is_low_curr() - Low or high current mode
361  * @di:         pointer to the ab8500_fg structure
362  * @curr:       the current to base or our decision on
363  *
364  * Low current mode if the current consumption is below a certain threshold
365  */
366 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
367 {
368         /*
369          * We want to know if we're in low current mode
370          */
371         if (curr > -di->bm->fg_params->high_curr_threshold)
372                 return true;
373         else
374                 return false;
375 }
376 
377 /**
378  * ab8500_fg_add_cap_sample() - Add capacity to average filter
379  * @di:         pointer to the ab8500_fg structure
380  * @sample:     the capacity in mAh to add to the filter
381  *
382  * A capacity is added to the filter and a new mean capacity is calculated and
383  * returned
384  */
385 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
386 {
387         struct timespec64 ts64;
388         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
389 
390         getnstimeofday64(&ts64);
391 
392         do {
393                 avg->sum += sample - avg->samples[avg->pos];
394                 avg->samples[avg->pos] = sample;
395                 avg->time_stamps[avg->pos] = ts64.tv_sec;
396                 avg->pos++;
397 
398                 if (avg->pos == NBR_AVG_SAMPLES)
399                         avg->pos = 0;
400 
401                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
402                         avg->nbr_samples++;
403 
404                 /*
405                  * Check the time stamp for each sample. If too old,
406                  * replace with latest sample
407                  */
408         } while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
409 
410         avg->avg = avg->sum / avg->nbr_samples;
411 
412         return avg->avg;
413 }
414 
415 /**
416  * ab8500_fg_clear_cap_samples() - Clear average filter
417  * @di:         pointer to the ab8500_fg structure
418  *
419  * The capacity filter is is reset to zero.
420  */
421 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
422 {
423         int i;
424         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
425 
426         avg->pos = 0;
427         avg->nbr_samples = 0;
428         avg->sum = 0;
429         avg->avg = 0;
430 
431         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
432                 avg->samples[i] = 0;
433                 avg->time_stamps[i] = 0;
434         }
435 }
436 
437 /**
438  * ab8500_fg_fill_cap_sample() - Fill average filter
439  * @di:         pointer to the ab8500_fg structure
440  * @sample:     the capacity in mAh to fill the filter with
441  *
442  * The capacity filter is filled with a capacity in mAh
443  */
444 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
445 {
446         int i;
447         struct timespec64 ts64;
448         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
449 
450         getnstimeofday64(&ts64);
451 
452         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
453                 avg->samples[i] = sample;
454                 avg->time_stamps[i] = ts64.tv_sec;
455         }
456 
457         avg->pos = 0;
458         avg->nbr_samples = NBR_AVG_SAMPLES;
459         avg->sum = sample * NBR_AVG_SAMPLES;
460         avg->avg = sample;
461 }
462 
463 /**
464  * ab8500_fg_coulomb_counter() - enable coulomb counter
465  * @di:         pointer to the ab8500_fg structure
466  * @enable:     enable/disable
467  *
468  * Enable/Disable coulomb counter.
469  * On failure returns negative value.
470  */
471 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
472 {
473         int ret = 0;
474         mutex_lock(&di->cc_lock);
475         if (enable) {
476                 /* To be able to reprogram the number of samples, we have to
477                  * first stop the CC and then enable it again */
478                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
479                         AB8500_RTC_CC_CONF_REG, 0x00);
480                 if (ret)
481                         goto cc_err;
482 
483                 /* Program the samples */
484                 ret = abx500_set_register_interruptible(di->dev,
485                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
486                         di->fg_samples);
487                 if (ret)
488                         goto cc_err;
489 
490                 /* Start the CC */
491                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
492                         AB8500_RTC_CC_CONF_REG,
493                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
494                 if (ret)
495                         goto cc_err;
496 
497                 di->flags.fg_enabled = true;
498         } else {
499                 /* Clear any pending read requests */
500                 ret = abx500_mask_and_set_register_interruptible(di->dev,
501                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
502                         (RESET_ACCU | READ_REQ), 0);
503                 if (ret)
504                         goto cc_err;
505 
506                 ret = abx500_set_register_interruptible(di->dev,
507                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
508                 if (ret)
509                         goto cc_err;
510 
511                 /* Stop the CC */
512                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
513                         AB8500_RTC_CC_CONF_REG, 0);
514                 if (ret)
515                         goto cc_err;
516 
517                 di->flags.fg_enabled = false;
518 
519         }
520         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
521                 enable, di->fg_samples);
522 
523         mutex_unlock(&di->cc_lock);
524 
525         return ret;
526 cc_err:
527         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
528         mutex_unlock(&di->cc_lock);
529         return ret;
530 }
531 
532 /**
533  * ab8500_fg_inst_curr_start() - start battery instantaneous current
534  * @di:         pointer to the ab8500_fg structure
535  *
536  * Returns 0 or error code
537  * Note: This is part "one" and has to be called before
538  * ab8500_fg_inst_curr_finalize()
539  */
540 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
541 {
542         u8 reg_val;
543         int ret;
544 
545         mutex_lock(&di->cc_lock);
546 
547         di->nbr_cceoc_irq_cnt = 0;
548         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
549                 AB8500_RTC_CC_CONF_REG, &reg_val);
550         if (ret < 0)
551                 goto fail;
552 
553         if (!(reg_val & CC_PWR_UP_ENA)) {
554                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
555                 di->turn_off_fg = true;
556 
557                 /* Program the samples */
558                 ret = abx500_set_register_interruptible(di->dev,
559                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
560                         SEC_TO_SAMPLE(10));
561                 if (ret)
562                         goto fail;
563 
564                 /* Start the CC */
565                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
566                         AB8500_RTC_CC_CONF_REG,
567                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
568                 if (ret)
569                         goto fail;
570         } else {
571                 di->turn_off_fg = false;
572         }
573 
574         /* Return and WFI */
575         reinit_completion(&di->ab8500_fg_started);
576         reinit_completion(&di->ab8500_fg_complete);
577         enable_irq(di->irq);
578 
579         /* Note: cc_lock is still locked */
580         return 0;
581 fail:
582         mutex_unlock(&di->cc_lock);
583         return ret;
584 }
585 
586 /**
587  * ab8500_fg_inst_curr_started() - check if fg conversion has started
588  * @di:         pointer to the ab8500_fg structure
589  *
590  * Returns 1 if conversion started, 0 if still waiting
591  */
592 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
593 {
594         return completion_done(&di->ab8500_fg_started);
595 }
596 
597 /**
598  * ab8500_fg_inst_curr_done() - check if fg conversion is done
599  * @di:         pointer to the ab8500_fg structure
600  *
601  * Returns 1 if conversion done, 0 if still waiting
602  */
603 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
604 {
605         return completion_done(&di->ab8500_fg_complete);
606 }
607 
608 /**
609  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
610  * @di:         pointer to the ab8500_fg structure
611  * @res:        battery instantenous current(on success)
612  *
613  * Returns 0 or an error code
614  * Note: This is part "two" and has to be called at earliest 250 ms
615  * after ab8500_fg_inst_curr_start()
616  */
617 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
618 {
619         u8 low, high;
620         int val;
621         int ret;
622         unsigned long timeout;
623 
624         if (!completion_done(&di->ab8500_fg_complete)) {
625                 timeout = wait_for_completion_timeout(
626                         &di->ab8500_fg_complete,
627                         INS_CURR_TIMEOUT);
628                 dev_dbg(di->dev, "Finalize time: %d ms\n",
629                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
630                 if (!timeout) {
631                         ret = -ETIME;
632                         disable_irq(di->irq);
633                         di->nbr_cceoc_irq_cnt = 0;
634                         dev_err(di->dev, "completion timed out [%d]\n",
635                                 __LINE__);
636                         goto fail;
637                 }
638         }
639 
640         disable_irq(di->irq);
641         di->nbr_cceoc_irq_cnt = 0;
642 
643         ret = abx500_mask_and_set_register_interruptible(di->dev,
644                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
645                         READ_REQ, READ_REQ);
646 
647         /* 100uS between read request and read is needed */
648         usleep_range(100, 100);
649 
650         /* Read CC Sample conversion value Low and high */
651         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
652                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
653         if (ret < 0)
654                 goto fail;
655 
656         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
657                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
658         if (ret < 0)
659                 goto fail;
660 
661         /*
662          * negative value for Discharging
663          * convert 2's compliment into decimal
664          */
665         if (high & 0x10)
666                 val = (low | (high << 8) | 0xFFFFE000);
667         else
668                 val = (low | (high << 8));
669 
670         /*
671          * Convert to unit value in mA
672          * Full scale input voltage is
673          * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
674          * Given a 250ms conversion cycle time the LSB corresponds
675          * to 107.1 nAh. Convert to current by dividing by the conversion
676          * time in hours (250ms = 1 / (3600 * 4)h)
677          * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
678          */
679         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
680                 (1000 * di->bm->fg_res);
681 
682         if (di->turn_off_fg) {
683                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
684 
685                 /* Clear any pending read requests */
686                 ret = abx500_set_register_interruptible(di->dev,
687                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
688                 if (ret)
689                         goto fail;
690 
691                 /* Stop the CC */
692                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
693                         AB8500_RTC_CC_CONF_REG, 0);
694                 if (ret)
695                         goto fail;
696         }
697         mutex_unlock(&di->cc_lock);
698         (*res) = val;
699 
700         return 0;
701 fail:
702         mutex_unlock(&di->cc_lock);
703         return ret;
704 }
705 
706 /**
707  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
708  * @di:         pointer to the ab8500_fg structure
709  * @res:        battery instantenous current(on success)
710  *
711  * Returns 0 else error code
712  */
713 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
714 {
715         int ret;
716         unsigned long timeout;
717         int res = 0;
718 
719         ret = ab8500_fg_inst_curr_start(di);
720         if (ret) {
721                 dev_err(di->dev, "Failed to initialize fg_inst\n");
722                 return 0;
723         }
724 
725         /* Wait for CC to actually start */
726         if (!completion_done(&di->ab8500_fg_started)) {
727                 timeout = wait_for_completion_timeout(
728                         &di->ab8500_fg_started,
729                         INS_CURR_TIMEOUT);
730                 dev_dbg(di->dev, "Start time: %d ms\n",
731                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
732                 if (!timeout) {
733                         ret = -ETIME;
734                         dev_err(di->dev, "completion timed out [%d]\n",
735                                 __LINE__);
736                         goto fail;
737                 }
738         }
739 
740         ret = ab8500_fg_inst_curr_finalize(di, &res);
741         if (ret) {
742                 dev_err(di->dev, "Failed to finalize fg_inst\n");
743                 return 0;
744         }
745 
746         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
747         return res;
748 fail:
749         disable_irq(di->irq);
750         mutex_unlock(&di->cc_lock);
751         return ret;
752 }
753 
754 /**
755  * ab8500_fg_acc_cur_work() - average battery current
756  * @work:       pointer to the work_struct structure
757  *
758  * Updated the average battery current obtained from the
759  * coulomb counter.
760  */
761 static void ab8500_fg_acc_cur_work(struct work_struct *work)
762 {
763         int val;
764         int ret;
765         u8 low, med, high;
766 
767         struct ab8500_fg *di = container_of(work,
768                 struct ab8500_fg, fg_acc_cur_work);
769 
770         mutex_lock(&di->cc_lock);
771         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
772                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
773         if (ret)
774                 goto exit;
775 
776         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
777                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
778         if (ret < 0)
779                 goto exit;
780 
781         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
782                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
783         if (ret < 0)
784                 goto exit;
785 
786         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
787                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
788         if (ret < 0)
789                 goto exit;
790 
791         /* Check for sign bit in case of negative value, 2's compliment */
792         if (high & 0x10)
793                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
794         else
795                 val = (low | (med << 8) | (high << 16));
796 
797         /*
798          * Convert to uAh
799          * Given a 250ms conversion cycle time the LSB corresponds
800          * to 112.9 nAh.
801          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
802          */
803         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
804                 (100 * di->bm->fg_res);
805 
806         /*
807          * Convert to unit value in mA
808          * by dividing by the conversion
809          * time in hours (= samples / (3600 * 4)h)
810          * and multiply with 1000
811          */
812         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
813                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
814 
815         di->flags.conv_done = true;
816 
817         mutex_unlock(&di->cc_lock);
818 
819         queue_work(di->fg_wq, &di->fg_work);
820 
821         dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
822                                 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
823         return;
824 exit:
825         dev_err(di->dev,
826                 "Failed to read or write gas gauge registers\n");
827         mutex_unlock(&di->cc_lock);
828         queue_work(di->fg_wq, &di->fg_work);
829 }
830 
831 /**
832  * ab8500_fg_bat_voltage() - get battery voltage
833  * @di:         pointer to the ab8500_fg structure
834  *
835  * Returns battery voltage(on success) else error code
836  */
837 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
838 {
839         int vbat;
840         static int prev;
841 
842         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
843         if (vbat < 0) {
844                 dev_err(di->dev,
845                         "%s gpadc conversion failed, using previous value\n",
846                         __func__);
847                 return prev;
848         }
849 
850         prev = vbat;
851         return vbat;
852 }
853 
854 /**
855  * ab8500_fg_volt_to_capacity() - Voltage based capacity
856  * @di:         pointer to the ab8500_fg structure
857  * @voltage:    The voltage to convert to a capacity
858  *
859  * Returns battery capacity in per mille based on voltage
860  */
861 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
862 {
863         int i, tbl_size;
864         const struct abx500_v_to_cap *tbl;
865         int cap = 0;
866 
867         tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
868         tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
869 
870         for (i = 0; i < tbl_size; ++i) {
871                 if (voltage > tbl[i].voltage)
872                         break;
873         }
874 
875         if ((i > 0) && (i < tbl_size)) {
876                 cap = interpolate(voltage,
877                         tbl[i].voltage,
878                         tbl[i].capacity * 10,
879                         tbl[i-1].voltage,
880                         tbl[i-1].capacity * 10);
881         } else if (i == 0) {
882                 cap = 1000;
883         } else {
884                 cap = 0;
885         }
886 
887         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
888                 __func__, voltage, cap);
889 
890         return cap;
891 }
892 
893 /**
894  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
895  * @di:         pointer to the ab8500_fg structure
896  *
897  * Returns battery capacity based on battery voltage that is not compensated
898  * for the voltage drop due to the load
899  */
900 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
901 {
902         di->vbat = ab8500_fg_bat_voltage(di);
903         return ab8500_fg_volt_to_capacity(di, di->vbat);
904 }
905 
906 /**
907  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
908  * @di:         pointer to the ab8500_fg structure
909  *
910  * Returns battery inner resistance added with the fuel gauge resistor value
911  * to get the total resistance in the whole link from gnd to bat+ node.
912  */
913 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
914 {
915         int i, tbl_size;
916         const struct batres_vs_temp *tbl;
917         int resist = 0;
918 
919         tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
920         tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
921 
922         for (i = 0; i < tbl_size; ++i) {
923                 if (di->bat_temp / 10 > tbl[i].temp)
924                         break;
925         }
926 
927         if ((i > 0) && (i < tbl_size)) {
928                 resist = interpolate(di->bat_temp / 10,
929                         tbl[i].temp,
930                         tbl[i].resist,
931                         tbl[i-1].temp,
932                         tbl[i-1].resist);
933         } else if (i == 0) {
934                 resist = tbl[0].resist;
935         } else {
936                 resist = tbl[tbl_size - 1].resist;
937         }
938 
939         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
940             " fg resistance %d, total: %d (mOhm)\n",
941                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
942                 (di->bm->fg_res / 10) + resist);
943 
944         /* fg_res variable is in 0.1mOhm */
945         resist += di->bm->fg_res / 10;
946 
947         return resist;
948 }
949 
950 /**
951  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
952  * @di:         pointer to the ab8500_fg structure
953  *
954  * Returns battery capacity based on battery voltage that is load compensated
955  * for the voltage drop
956  */
957 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
958 {
959         int vbat_comp, res;
960         int i = 0;
961         int vbat = 0;
962 
963         ab8500_fg_inst_curr_start(di);
964 
965         do {
966                 vbat += ab8500_fg_bat_voltage(di);
967                 i++;
968                 usleep_range(5000, 6000);
969         } while (!ab8500_fg_inst_curr_done(di));
970 
971         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
972 
973         di->vbat = vbat / i;
974         res = ab8500_fg_battery_resistance(di);
975 
976         /* Use Ohms law to get the load compensated voltage */
977         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
978 
979         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
980                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
981                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
982 
983         return ab8500_fg_volt_to_capacity(di, vbat_comp);
984 }
985 
986 /**
987  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
988  * @di:         pointer to the ab8500_fg structure
989  * @cap_mah:    capacity in mAh
990  *
991  * Converts capacity in mAh to capacity in permille
992  */
993 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
994 {
995         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
996 }
997 
998 /**
999  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1000  * @di:         pointer to the ab8500_fg structure
1001  * @cap_pm:     capacity in permille
1002  *
1003  * Converts capacity in permille to capacity in mAh
1004  */
1005 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1006 {
1007         return cap_pm * di->bat_cap.max_mah_design / 1000;
1008 }
1009 
1010 /**
1011  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1012  * @di:         pointer to the ab8500_fg structure
1013  * @cap_mah:    capacity in mAh
1014  *
1015  * Converts capacity in mAh to capacity in uWh
1016  */
1017 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1018 {
1019         u64 div_res;
1020         u32 div_rem;
1021 
1022         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1023         div_rem = do_div(div_res, 1000);
1024 
1025         /* Make sure to round upwards if necessary */
1026         if (div_rem >= 1000 / 2)
1027                 div_res++;
1028 
1029         return (int) div_res;
1030 }
1031 
1032 /**
1033  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1034  * @di:         pointer to the ab8500_fg structure
1035  *
1036  * Return the capacity in mAh based on previous calculated capcity and the FG
1037  * accumulator register value. The filter is filled with this capacity
1038  */
1039 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1040 {
1041         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1042                 __func__,
1043                 di->bat_cap.mah,
1044                 di->accu_charge);
1045 
1046         /* Capacity should not be less than 0 */
1047         if (di->bat_cap.mah + di->accu_charge > 0)
1048                 di->bat_cap.mah += di->accu_charge;
1049         else
1050                 di->bat_cap.mah = 0;
1051         /*
1052          * We force capacity to 100% once when the algorithm
1053          * reports that it's full.
1054          */
1055         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1056                 di->flags.force_full) {
1057                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1058         }
1059 
1060         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1061         di->bat_cap.permille =
1062                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1063 
1064         /* We need to update battery voltage and inst current when charging */
1065         di->vbat = ab8500_fg_bat_voltage(di);
1066         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1067 
1068         return di->bat_cap.mah;
1069 }
1070 
1071 /**
1072  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1073  * @di:         pointer to the ab8500_fg structure
1074  * @comp:       if voltage should be load compensated before capacity calc
1075  *
1076  * Return the capacity in mAh based on the battery voltage. The voltage can
1077  * either be load compensated or not. This value is added to the filter and a
1078  * new mean value is calculated and returned.
1079  */
1080 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1081 {
1082         int permille, mah;
1083 
1084         if (comp)
1085                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1086         else
1087                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1088 
1089         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1090 
1091         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1092         di->bat_cap.permille =
1093                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1094 
1095         return di->bat_cap.mah;
1096 }
1097 
1098 /**
1099  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1100  * @di:         pointer to the ab8500_fg structure
1101  *
1102  * Return the capacity in mAh based on previous calculated capcity and the FG
1103  * accumulator register value. This value is added to the filter and a
1104  * new mean value is calculated and returned.
1105  */
1106 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1107 {
1108         int permille_volt, permille;
1109 
1110         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1111                 __func__,
1112                 di->bat_cap.mah,
1113                 di->accu_charge);
1114 
1115         /* Capacity should not be less than 0 */
1116         if (di->bat_cap.mah + di->accu_charge > 0)
1117                 di->bat_cap.mah += di->accu_charge;
1118         else
1119                 di->bat_cap.mah = 0;
1120 
1121         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1122                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1123 
1124         /*
1125          * Check against voltage based capacity. It can not be lower
1126          * than what the uncompensated voltage says
1127          */
1128         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1129         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1130 
1131         if (permille < permille_volt) {
1132                 di->bat_cap.permille = permille_volt;
1133                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1134                         di->bat_cap.permille);
1135 
1136                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1137                         __func__,
1138                         permille,
1139                         permille_volt);
1140 
1141                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1142         } else {
1143                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144                 di->bat_cap.permille =
1145                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1146         }
1147 
1148         return di->bat_cap.mah;
1149 }
1150 
1151 /**
1152  * ab8500_fg_capacity_level() - Get the battery capacity level
1153  * @di:         pointer to the ab8500_fg structure
1154  *
1155  * Get the battery capacity level based on the capacity in percent
1156  */
1157 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1158 {
1159         int ret, percent;
1160 
1161         percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1162 
1163         if (percent <= di->bm->cap_levels->critical ||
1164                 di->flags.low_bat)
1165                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1166         else if (percent <= di->bm->cap_levels->low)
1167                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1168         else if (percent <= di->bm->cap_levels->normal)
1169                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1170         else if (percent <= di->bm->cap_levels->high)
1171                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1172         else
1173                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1174 
1175         return ret;
1176 }
1177 
1178 /**
1179  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1180  * @di:         pointer to the ab8500_fg structure
1181  *
1182  * Calculates the capacity to be shown to upper layers. Scales the capacity
1183  * to have 100% as a reference from the actual capacity upon removal of charger
1184  * when charging is in maintenance mode.
1185  */
1186 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1187 {
1188         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1189         int capacity = di->bat_cap.prev_percent;
1190 
1191         if (!cs->enable)
1192                 return capacity;
1193 
1194         /*
1195          * As long as we are in fully charge mode scale the capacity
1196          * to show 100%.
1197          */
1198         if (di->flags.fully_charged) {
1199                 cs->cap_to_scale[0] = 100;
1200                 cs->cap_to_scale[1] =
1201                         max(capacity, di->bm->fg_params->maint_thres);
1202                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1203                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1204         }
1205 
1206         /* Calculates the scaled capacity. */
1207         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1208                                         && (cs->cap_to_scale[1] > 0))
1209                 capacity = min(100,
1210                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1211                                                  cs->cap_to_scale[0],
1212                                                  cs->cap_to_scale[1]));
1213 
1214         if (di->flags.charging) {
1215                 if (capacity < cs->disable_cap_level) {
1216                         cs->disable_cap_level = capacity;
1217                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1218                                 cs->disable_cap_level);
1219                 } else if (!di->flags.fully_charged) {
1220                         if (di->bat_cap.prev_percent >=
1221                             cs->disable_cap_level) {
1222                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1223                                 cs->enable = false;
1224                                 capacity = di->bat_cap.prev_percent;
1225                         } else {
1226                                 dev_dbg(di->dev,
1227                                         "Waiting in cap to level %d%%\n",
1228                                         cs->disable_cap_level);
1229                                 capacity = cs->disable_cap_level;
1230                         }
1231                 }
1232         }
1233 
1234         return capacity;
1235 }
1236 
1237 /**
1238  * ab8500_fg_update_cap_scalers() - Capacity scaling
1239  * @di:         pointer to the ab8500_fg structure
1240  *
1241  * To be called when state change from charge<->discharge to update
1242  * the capacity scalers.
1243  */
1244 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1245 {
1246         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1247 
1248         if (!cs->enable)
1249                 return;
1250         if (di->flags.charging) {
1251                 di->bat_cap.cap_scale.disable_cap_level =
1252                         di->bat_cap.cap_scale.scaled_cap;
1253                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1254                                 di->bat_cap.cap_scale.disable_cap_level);
1255         } else {
1256                 if (cs->scaled_cap != 100) {
1257                         cs->cap_to_scale[0] = cs->scaled_cap;
1258                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1259                 } else {
1260                         cs->cap_to_scale[0] = 100;
1261                         cs->cap_to_scale[1] =
1262                                 max(di->bat_cap.prev_percent,
1263                                     di->bm->fg_params->maint_thres);
1264                 }
1265 
1266                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1267                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1268         }
1269 }
1270 
1271 /**
1272  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1273  * @di:         pointer to the ab8500_fg structure
1274  * @init:       capacity is allowed to go up in init mode
1275  *
1276  * Check if capacity or capacity limit has changed and notify the system
1277  * about it using the power_supply framework
1278  */
1279 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1280 {
1281         bool changed = false;
1282         int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1283 
1284         di->bat_cap.level = ab8500_fg_capacity_level(di);
1285 
1286         if (di->bat_cap.level != di->bat_cap.prev_level) {
1287                 /*
1288                  * We do not allow reported capacity level to go up
1289                  * unless we're charging or if we're in init
1290                  */
1291                 if (!(!di->flags.charging && di->bat_cap.level >
1292                         di->bat_cap.prev_level) || init) {
1293                         dev_dbg(di->dev, "level changed from %d to %d\n",
1294                                 di->bat_cap.prev_level,
1295                                 di->bat_cap.level);
1296                         di->bat_cap.prev_level = di->bat_cap.level;
1297                         changed = true;
1298                 } else {
1299                         dev_dbg(di->dev, "level not allowed to go up "
1300                                 "since no charger is connected: %d to %d\n",
1301                                 di->bat_cap.prev_level,
1302                                 di->bat_cap.level);
1303                 }
1304         }
1305 
1306         /*
1307          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1308          * shutdown
1309          */
1310         if (di->flags.low_bat) {
1311                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1312                 di->bat_cap.prev_percent = 0;
1313                 di->bat_cap.permille = 0;
1314                 percent = 0;
1315                 di->bat_cap.prev_mah = 0;
1316                 di->bat_cap.mah = 0;
1317                 changed = true;
1318         } else if (di->flags.fully_charged) {
1319                 /*
1320                  * We report 100% if algorithm reported fully charged
1321                  * and show 100% during maintenance charging (scaling).
1322                  */
1323                 if (di->flags.force_full) {
1324                         di->bat_cap.prev_percent = percent;
1325                         di->bat_cap.prev_mah = di->bat_cap.mah;
1326 
1327                         changed = true;
1328 
1329                         if (!di->bat_cap.cap_scale.enable &&
1330                                                 di->bm->capacity_scaling) {
1331                                 di->bat_cap.cap_scale.enable = true;
1332                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1333                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1334                                                 di->bat_cap.prev_percent;
1335                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1336                         }
1337                 } else if (di->bat_cap.prev_percent != percent) {
1338                         dev_dbg(di->dev,
1339                                 "battery reported full "
1340                                 "but capacity dropping: %d\n",
1341                                 percent);
1342                         di->bat_cap.prev_percent = percent;
1343                         di->bat_cap.prev_mah = di->bat_cap.mah;
1344 
1345                         changed = true;
1346                 }
1347         } else if (di->bat_cap.prev_percent != percent) {
1348                 if (percent == 0) {
1349                         /*
1350                          * We will not report 0% unless we've got
1351                          * the LOW_BAT IRQ, no matter what the FG
1352                          * algorithm says.
1353                          */
1354                         di->bat_cap.prev_percent = 1;
1355                         percent = 1;
1356 
1357                         changed = true;
1358                 } else if (!(!di->flags.charging &&
1359                         percent > di->bat_cap.prev_percent) || init) {
1360                         /*
1361                          * We do not allow reported capacity to go up
1362                          * unless we're charging or if we're in init
1363                          */
1364                         dev_dbg(di->dev,
1365                                 "capacity changed from %d to %d (%d)\n",
1366                                 di->bat_cap.prev_percent,
1367                                 percent,
1368                                 di->bat_cap.permille);
1369                         di->bat_cap.prev_percent = percent;
1370                         di->bat_cap.prev_mah = di->bat_cap.mah;
1371 
1372                         changed = true;
1373                 } else {
1374                         dev_dbg(di->dev, "capacity not allowed to go up since "
1375                                 "no charger is connected: %d to %d (%d)\n",
1376                                 di->bat_cap.prev_percent,
1377                                 percent,
1378                                 di->bat_cap.permille);
1379                 }
1380         }
1381 
1382         if (changed) {
1383                 if (di->bm->capacity_scaling) {
1384                         di->bat_cap.cap_scale.scaled_cap =
1385                                 ab8500_fg_calculate_scaled_capacity(di);
1386 
1387                         dev_info(di->dev, "capacity=%d (%d)\n",
1388                                 di->bat_cap.prev_percent,
1389                                 di->bat_cap.cap_scale.scaled_cap);
1390                 }
1391                 power_supply_changed(di->fg_psy);
1392                 if (di->flags.fully_charged && di->flags.force_full) {
1393                         dev_dbg(di->dev, "Battery full, notifying.\n");
1394                         di->flags.force_full = false;
1395                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1396                 }
1397                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1398         }
1399 }
1400 
1401 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1402         enum ab8500_fg_charge_state new_state)
1403 {
1404         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1405                 di->charge_state,
1406                 charge_state[di->charge_state],
1407                 new_state,
1408                 charge_state[new_state]);
1409 
1410         di->charge_state = new_state;
1411 }
1412 
1413 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1414         enum ab8500_fg_discharge_state new_state)
1415 {
1416         dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1417                 di->discharge_state,
1418                 discharge_state[di->discharge_state],
1419                 new_state,
1420                 discharge_state[new_state]);
1421 
1422         di->discharge_state = new_state;
1423 }
1424 
1425 /**
1426  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1427  * @di:         pointer to the ab8500_fg structure
1428  *
1429  * Battery capacity calculation state machine for when we're charging
1430  */
1431 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1432 {
1433         /*
1434          * If we change to discharge mode
1435          * we should start with recovery
1436          */
1437         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1438                 ab8500_fg_discharge_state_to(di,
1439                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1440 
1441         switch (di->charge_state) {
1442         case AB8500_FG_CHARGE_INIT:
1443                 di->fg_samples = SEC_TO_SAMPLE(
1444                         di->bm->fg_params->accu_charging);
1445 
1446                 ab8500_fg_coulomb_counter(di, true);
1447                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1448 
1449                 break;
1450 
1451         case AB8500_FG_CHARGE_READOUT:
1452                 /*
1453                  * Read the FG and calculate the new capacity
1454                  */
1455                 mutex_lock(&di->cc_lock);
1456                 if (!di->flags.conv_done && !di->flags.force_full) {
1457                         /* Wasn't the CC IRQ that got us here */
1458                         mutex_unlock(&di->cc_lock);
1459                         dev_dbg(di->dev, "%s CC conv not done\n",
1460                                 __func__);
1461 
1462                         break;
1463                 }
1464                 di->flags.conv_done = false;
1465                 mutex_unlock(&di->cc_lock);
1466 
1467                 ab8500_fg_calc_cap_charging(di);
1468 
1469                 break;
1470 
1471         default:
1472                 break;
1473         }
1474 
1475         /* Check capacity limits */
1476         ab8500_fg_check_capacity_limits(di, false);
1477 }
1478 
1479 static void force_capacity(struct ab8500_fg *di)
1480 {
1481         int cap;
1482 
1483         ab8500_fg_clear_cap_samples(di);
1484         cap = di->bat_cap.user_mah;
1485         if (cap > di->bat_cap.max_mah_design) {
1486                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1487                         " %d\n", cap, di->bat_cap.max_mah_design);
1488                 cap = di->bat_cap.max_mah_design;
1489         }
1490         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1491         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1492         di->bat_cap.mah = cap;
1493         ab8500_fg_check_capacity_limits(di, true);
1494 }
1495 
1496 static bool check_sysfs_capacity(struct ab8500_fg *di)
1497 {
1498         int cap, lower, upper;
1499         int cap_permille;
1500 
1501         cap = di->bat_cap.user_mah;
1502 
1503         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1504                 di->bat_cap.user_mah);
1505 
1506         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1507         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1508 
1509         if (lower < 0)
1510                 lower = 0;
1511         /* 1000 is permille, -> 100 percent */
1512         if (upper > 1000)
1513                 upper = 1000;
1514 
1515         dev_dbg(di->dev, "Capacity limits:"
1516                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1517                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1518 
1519         /* If within limits, use the saved capacity and exit estimation...*/
1520         if (cap_permille > lower && cap_permille < upper) {
1521                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1522                 force_capacity(di);
1523                 return true;
1524         }
1525         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1526         return false;
1527 }
1528 
1529 /**
1530  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1531  * @di:         pointer to the ab8500_fg structure
1532  *
1533  * Battery capacity calculation state machine for when we're discharging
1534  */
1535 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1536 {
1537         int sleep_time;
1538 
1539         /* If we change to charge mode we should start with init */
1540         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1541                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1542 
1543         switch (di->discharge_state) {
1544         case AB8500_FG_DISCHARGE_INIT:
1545                 /* We use the FG IRQ to work on */
1546                 di->init_cnt = 0;
1547                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1548                 ab8500_fg_coulomb_counter(di, true);
1549                 ab8500_fg_discharge_state_to(di,
1550                         AB8500_FG_DISCHARGE_INITMEASURING);
1551 
1552                 /* Intentional fallthrough */
1553         case AB8500_FG_DISCHARGE_INITMEASURING:
1554                 /*
1555                  * Discard a number of samples during startup.
1556                  * After that, use compensated voltage for a few
1557                  * samples to get an initial capacity.
1558                  * Then go to READOUT
1559                  */
1560                 sleep_time = di->bm->fg_params->init_timer;
1561 
1562                 /* Discard the first [x] seconds */
1563                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1564                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1565 
1566                         ab8500_fg_check_capacity_limits(di, true);
1567                 }
1568 
1569                 di->init_cnt += sleep_time;
1570                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1571                         ab8500_fg_discharge_state_to(di,
1572                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1573 
1574                 break;
1575 
1576         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1577                 di->recovery_cnt = 0;
1578                 di->recovery_needed = true;
1579                 ab8500_fg_discharge_state_to(di,
1580                         AB8500_FG_DISCHARGE_RECOVERY);
1581 
1582                 /* Intentional fallthrough */
1583 
1584         case AB8500_FG_DISCHARGE_RECOVERY:
1585                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1586 
1587                 /*
1588                  * We should check the power consumption
1589                  * If low, go to READOUT (after x min) or
1590                  * RECOVERY_SLEEP if time left.
1591                  * If high, go to READOUT
1592                  */
1593                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1594 
1595                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1596                         if (di->recovery_cnt >
1597                                 di->bm->fg_params->recovery_total_time) {
1598                                 di->fg_samples = SEC_TO_SAMPLE(
1599                                         di->bm->fg_params->accu_high_curr);
1600                                 ab8500_fg_coulomb_counter(di, true);
1601                                 ab8500_fg_discharge_state_to(di,
1602                                         AB8500_FG_DISCHARGE_READOUT);
1603                                 di->recovery_needed = false;
1604                         } else {
1605                                 queue_delayed_work(di->fg_wq,
1606                                         &di->fg_periodic_work,
1607                                         sleep_time * HZ);
1608                         }
1609                         di->recovery_cnt += sleep_time;
1610                 } else {
1611                         di->fg_samples = SEC_TO_SAMPLE(
1612                                 di->bm->fg_params->accu_high_curr);
1613                         ab8500_fg_coulomb_counter(di, true);
1614                         ab8500_fg_discharge_state_to(di,
1615                                 AB8500_FG_DISCHARGE_READOUT);
1616                 }
1617                 break;
1618 
1619         case AB8500_FG_DISCHARGE_READOUT_INIT:
1620                 di->fg_samples = SEC_TO_SAMPLE(
1621                         di->bm->fg_params->accu_high_curr);
1622                 ab8500_fg_coulomb_counter(di, true);
1623                 ab8500_fg_discharge_state_to(di,
1624                                 AB8500_FG_DISCHARGE_READOUT);
1625                 break;
1626 
1627         case AB8500_FG_DISCHARGE_READOUT:
1628                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1629 
1630                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1631                         /* Detect mode change */
1632                         if (di->high_curr_mode) {
1633                                 di->high_curr_mode = false;
1634                                 di->high_curr_cnt = 0;
1635                         }
1636 
1637                         if (di->recovery_needed) {
1638                                 ab8500_fg_discharge_state_to(di,
1639                                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1640 
1641                                 queue_delayed_work(di->fg_wq,
1642                                         &di->fg_periodic_work, 0);
1643 
1644                                 break;
1645                         }
1646 
1647                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1648                 } else {
1649                         mutex_lock(&di->cc_lock);
1650                         if (!di->flags.conv_done) {
1651                                 /* Wasn't the CC IRQ that got us here */
1652                                 mutex_unlock(&di->cc_lock);
1653                                 dev_dbg(di->dev, "%s CC conv not done\n",
1654                                         __func__);
1655 
1656                                 break;
1657                         }
1658                         di->flags.conv_done = false;
1659                         mutex_unlock(&di->cc_lock);
1660 
1661                         /* Detect mode change */
1662                         if (!di->high_curr_mode) {
1663                                 di->high_curr_mode = true;
1664                                 di->high_curr_cnt = 0;
1665                         }
1666 
1667                         di->high_curr_cnt +=
1668                                 di->bm->fg_params->accu_high_curr;
1669                         if (di->high_curr_cnt >
1670                                 di->bm->fg_params->high_curr_time)
1671                                 di->recovery_needed = true;
1672 
1673                         ab8500_fg_calc_cap_discharge_fg(di);
1674                 }
1675 
1676                 ab8500_fg_check_capacity_limits(di, false);
1677 
1678                 break;
1679 
1680         case AB8500_FG_DISCHARGE_WAKEUP:
1681                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1682 
1683                 di->fg_samples = SEC_TO_SAMPLE(
1684                         di->bm->fg_params->accu_high_curr);
1685                 ab8500_fg_coulomb_counter(di, true);
1686                 ab8500_fg_discharge_state_to(di,
1687                                 AB8500_FG_DISCHARGE_READOUT);
1688 
1689                 ab8500_fg_check_capacity_limits(di, false);
1690 
1691                 break;
1692 
1693         default:
1694                 break;
1695         }
1696 }
1697 
1698 /**
1699  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1700  * @di:         pointer to the ab8500_fg structure
1701  *
1702  */
1703 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1704 {
1705         int ret;
1706 
1707         switch (di->calib_state) {
1708         case AB8500_FG_CALIB_INIT:
1709                 dev_dbg(di->dev, "Calibration ongoing...\n");
1710 
1711                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1712                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1713                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1714                 if (ret < 0)
1715                         goto err;
1716 
1717                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1718                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1719                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1720                 if (ret < 0)
1721                         goto err;
1722                 di->calib_state = AB8500_FG_CALIB_WAIT;
1723                 break;
1724         case AB8500_FG_CALIB_END:
1725                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1726                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1727                         CC_MUXOFFSET, CC_MUXOFFSET);
1728                 if (ret < 0)
1729                         goto err;
1730                 di->flags.calibrate = false;
1731                 dev_dbg(di->dev, "Calibration done...\n");
1732                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1733                 break;
1734         case AB8500_FG_CALIB_WAIT:
1735                 dev_dbg(di->dev, "Calibration WFI\n");
1736         default:
1737                 break;
1738         }
1739         return;
1740 err:
1741         /* Something went wrong, don't calibrate then */
1742         dev_err(di->dev, "failed to calibrate the CC\n");
1743         di->flags.calibrate = false;
1744         di->calib_state = AB8500_FG_CALIB_INIT;
1745         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1746 }
1747 
1748 /**
1749  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1750  * @di:         pointer to the ab8500_fg structure
1751  *
1752  * Entry point for the battery capacity calculation state machine
1753  */
1754 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1755 {
1756         if (di->flags.calibrate)
1757                 ab8500_fg_algorithm_calibrate(di);
1758         else {
1759                 if (di->flags.charging)
1760                         ab8500_fg_algorithm_charging(di);
1761                 else
1762                         ab8500_fg_algorithm_discharging(di);
1763         }
1764 
1765         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1766                 "%d %d %d %d %d %d %d\n",
1767                 di->bat_cap.max_mah_design,
1768                 di->bat_cap.max_mah,
1769                 di->bat_cap.mah,
1770                 di->bat_cap.permille,
1771                 di->bat_cap.level,
1772                 di->bat_cap.prev_mah,
1773                 di->bat_cap.prev_percent,
1774                 di->bat_cap.prev_level,
1775                 di->vbat,
1776                 di->inst_curr,
1777                 di->avg_curr,
1778                 di->accu_charge,
1779                 di->flags.charging,
1780                 di->charge_state,
1781                 di->discharge_state,
1782                 di->high_curr_mode,
1783                 di->recovery_needed);
1784 }
1785 
1786 /**
1787  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1788  * @work:       pointer to the work_struct structure
1789  *
1790  * Work queue function for periodic work
1791  */
1792 static void ab8500_fg_periodic_work(struct work_struct *work)
1793 {
1794         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1795                 fg_periodic_work.work);
1796 
1797         if (di->init_capacity) {
1798                 /* Get an initial capacity calculation */
1799                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1800                 ab8500_fg_check_capacity_limits(di, true);
1801                 di->init_capacity = false;
1802 
1803                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1804         } else if (di->flags.user_cap) {
1805                 if (check_sysfs_capacity(di)) {
1806                         ab8500_fg_check_capacity_limits(di, true);
1807                         if (di->flags.charging)
1808                                 ab8500_fg_charge_state_to(di,
1809                                         AB8500_FG_CHARGE_INIT);
1810                         else
1811                                 ab8500_fg_discharge_state_to(di,
1812                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1813                 }
1814                 di->flags.user_cap = false;
1815                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1816         } else
1817                 ab8500_fg_algorithm(di);
1818 
1819 }
1820 
1821 /**
1822  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1823  * @work:       pointer to the work_struct structure
1824  *
1825  * Work queue function for checking the OVV_BAT condition
1826  */
1827 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1828 {
1829         int ret;
1830         u8 reg_value;
1831 
1832         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1833                 fg_check_hw_failure_work.work);
1834 
1835         /*
1836          * If we have had a battery over-voltage situation,
1837          * check ovv-bit to see if it should be reset.
1838          */
1839         ret = abx500_get_register_interruptible(di->dev,
1840                 AB8500_CHARGER, AB8500_CH_STAT_REG,
1841                 &reg_value);
1842         if (ret < 0) {
1843                 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1844                 return;
1845         }
1846         if ((reg_value & BATT_OVV) == BATT_OVV) {
1847                 if (!di->flags.bat_ovv) {
1848                         dev_dbg(di->dev, "Battery OVV\n");
1849                         di->flags.bat_ovv = true;
1850                         power_supply_changed(di->fg_psy);
1851                 }
1852                 /* Not yet recovered from ovv, reschedule this test */
1853                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1854                                    HZ);
1855                 } else {
1856                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1857                         di->flags.bat_ovv = false;
1858                         power_supply_changed(di->fg_psy);
1859         }
1860 }
1861 
1862 /**
1863  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1864  * @work:       pointer to the work_struct structure
1865  *
1866  * Work queue function for checking the LOW_BAT condition
1867  */
1868 static void ab8500_fg_low_bat_work(struct work_struct *work)
1869 {
1870         int vbat;
1871 
1872         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1873                 fg_low_bat_work.work);
1874 
1875         vbat = ab8500_fg_bat_voltage(di);
1876 
1877         /* Check if LOW_BAT still fulfilled */
1878         if (vbat < di->bm->fg_params->lowbat_threshold) {
1879                 /* Is it time to shut down? */
1880                 if (di->low_bat_cnt < 1) {
1881                         di->flags.low_bat = true;
1882                         dev_warn(di->dev, "Shut down pending...\n");
1883                 } else {
1884                         /*
1885                         * Else we need to re-schedule this check to be able to detect
1886                         * if the voltage increases again during charging or
1887                         * due to decreasing load.
1888                         */
1889                         di->low_bat_cnt--;
1890                         dev_warn(di->dev, "Battery voltage still LOW\n");
1891                         queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1892                                 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1893                 }
1894         } else {
1895                 di->flags.low_bat_delay = false;
1896                 di->low_bat_cnt = 10;
1897                 dev_warn(di->dev, "Battery voltage OK again\n");
1898         }
1899 
1900         /* This is needed to dispatch LOW_BAT */
1901         ab8500_fg_check_capacity_limits(di, false);
1902 }
1903 
1904 /**
1905  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1906  * to the target voltage.
1907  * @di:       pointer to the ab8500_fg structure
1908  * @target    target voltage
1909  *
1910  * Returns bit pattern closest to the target voltage
1911  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1912  */
1913 
1914 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1915 {
1916         if (target > BATT_OK_MIN +
1917                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1918                 return BATT_OK_MAX_NR_INCREMENTS;
1919         if (target < BATT_OK_MIN)
1920                 return 0;
1921         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1922 }
1923 
1924 /**
1925  * ab8500_fg_battok_init_hw_register - init battok levels
1926  * @di:       pointer to the ab8500_fg structure
1927  *
1928  */
1929 
1930 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1931 {
1932         int selected;
1933         int sel0;
1934         int sel1;
1935         int cbp_sel0;
1936         int cbp_sel1;
1937         int ret;
1938         int new_val;
1939 
1940         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1941         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1942 
1943         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1944         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1945 
1946         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1947 
1948         if (selected != sel0)
1949                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1950                         sel0, selected, cbp_sel0);
1951 
1952         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1953 
1954         if (selected != sel1)
1955                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1956                         sel1, selected, cbp_sel1);
1957 
1958         new_val = cbp_sel0 | (cbp_sel1 << 4);
1959 
1960         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1961         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1962                 AB8500_BATT_OK_REG, new_val);
1963         return ret;
1964 }
1965 
1966 /**
1967  * ab8500_fg_instant_work() - Run the FG state machine instantly
1968  * @work:       pointer to the work_struct structure
1969  *
1970  * Work queue function for instant work
1971  */
1972 static void ab8500_fg_instant_work(struct work_struct *work)
1973 {
1974         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1975 
1976         ab8500_fg_algorithm(di);
1977 }
1978 
1979 /**
1980  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1981  * @irq:       interrupt number
1982  * @_di:       pointer to the ab8500_fg structure
1983  *
1984  * Returns IRQ status(IRQ_HANDLED)
1985  */
1986 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1987 {
1988         struct ab8500_fg *di = _di;
1989         if (!di->nbr_cceoc_irq_cnt) {
1990                 di->nbr_cceoc_irq_cnt++;
1991                 complete(&di->ab8500_fg_started);
1992         } else {
1993                 di->nbr_cceoc_irq_cnt = 0;
1994                 complete(&di->ab8500_fg_complete);
1995         }
1996         return IRQ_HANDLED;
1997 }
1998 
1999 /**
2000  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2001  * @irq:       interrupt number
2002  * @_di:       pointer to the ab8500_fg structure
2003  *
2004  * Returns IRQ status(IRQ_HANDLED)
2005  */
2006 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2007 {
2008         struct ab8500_fg *di = _di;
2009         di->calib_state = AB8500_FG_CALIB_END;
2010         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2011         return IRQ_HANDLED;
2012 }
2013 
2014 /**
2015  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2016  * @irq:       interrupt number
2017  * @_di:       pointer to the ab8500_fg structure
2018  *
2019  * Returns IRQ status(IRQ_HANDLED)
2020  */
2021 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2022 {
2023         struct ab8500_fg *di = _di;
2024 
2025         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2026 
2027         return IRQ_HANDLED;
2028 }
2029 
2030 /**
2031  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2032  * @irq:       interrupt number
2033  * @_di:       pointer to the ab8500_fg structure
2034  *
2035  * Returns IRQ status(IRQ_HANDLED)
2036  */
2037 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2038 {
2039         struct ab8500_fg *di = _di;
2040 
2041         dev_dbg(di->dev, "Battery OVV\n");
2042 
2043         /* Schedule a new HW failure check */
2044         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2045 
2046         return IRQ_HANDLED;
2047 }
2048 
2049 /**
2050  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2051  * @irq:       interrupt number
2052  * @_di:       pointer to the ab8500_fg structure
2053  *
2054  * Returns IRQ status(IRQ_HANDLED)
2055  */
2056 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2057 {
2058         struct ab8500_fg *di = _di;
2059 
2060         /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2061         if (!di->flags.low_bat_delay) {
2062                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2063                 di->flags.low_bat_delay = true;
2064                 /*
2065                  * Start a timer to check LOW_BAT again after some time
2066                  * This is done to avoid shutdown on single voltage dips
2067                  */
2068                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2069                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2070         }
2071         return IRQ_HANDLED;
2072 }
2073 
2074 /**
2075  * ab8500_fg_get_property() - get the fg properties
2076  * @psy:        pointer to the power_supply structure
2077  * @psp:        pointer to the power_supply_property structure
2078  * @val:        pointer to the power_supply_propval union
2079  *
2080  * This function gets called when an application tries to get the
2081  * fg properties by reading the sysfs files.
2082  * voltage_now:         battery voltage
2083  * current_now:         battery instant current
2084  * current_avg:         battery average current
2085  * charge_full_design:  capacity where battery is considered full
2086  * charge_now:          battery capacity in nAh
2087  * capacity:            capacity in percent
2088  * capacity_level:      capacity level
2089  *
2090  * Returns error code in case of failure else 0 on success
2091  */
2092 static int ab8500_fg_get_property(struct power_supply *psy,
2093         enum power_supply_property psp,
2094         union power_supply_propval *val)
2095 {
2096         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2097 
2098         /*
2099          * If battery is identified as unknown and charging of unknown
2100          * batteries is disabled, we always report 100% capacity and
2101          * capacity level UNKNOWN, since we can't calculate
2102          * remaining capacity
2103          */
2104 
2105         switch (psp) {
2106         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2107                 if (di->flags.bat_ovv)
2108                         val->intval = BATT_OVV_VALUE * 1000;
2109                 else
2110                         val->intval = di->vbat * 1000;
2111                 break;
2112         case POWER_SUPPLY_PROP_CURRENT_NOW:
2113                 val->intval = di->inst_curr * 1000;
2114                 break;
2115         case POWER_SUPPLY_PROP_CURRENT_AVG:
2116                 val->intval = di->avg_curr * 1000;
2117                 break;
2118         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2119                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2120                                 di->bat_cap.max_mah_design);
2121                 break;
2122         case POWER_SUPPLY_PROP_ENERGY_FULL:
2123                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124                                 di->bat_cap.max_mah);
2125                 break;
2126         case POWER_SUPPLY_PROP_ENERGY_NOW:
2127                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2128                                 di->flags.batt_id_received)
2129                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2130                                         di->bat_cap.max_mah);
2131                 else
2132                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2133                                         di->bat_cap.prev_mah);
2134                 break;
2135         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2136                 val->intval = di->bat_cap.max_mah_design;
2137                 break;
2138         case POWER_SUPPLY_PROP_CHARGE_FULL:
2139                 val->intval = di->bat_cap.max_mah;
2140                 break;
2141         case POWER_SUPPLY_PROP_CHARGE_NOW:
2142                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2143                                 di->flags.batt_id_received)
2144                         val->intval = di->bat_cap.max_mah;
2145                 else
2146                         val->intval = di->bat_cap.prev_mah;
2147                 break;
2148         case POWER_SUPPLY_PROP_CAPACITY:
2149                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2150                                 di->flags.batt_id_received)
2151                         val->intval = 100;
2152                 else
2153                         val->intval = di->bat_cap.prev_percent;
2154                 break;
2155         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2156                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2157                                 di->flags.batt_id_received)
2158                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2159                 else
2160                         val->intval = di->bat_cap.prev_level;
2161                 break;
2162         default:
2163                 return -EINVAL;
2164         }
2165         return 0;
2166 }
2167 
2168 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2169 {
2170         struct power_supply *psy;
2171         struct power_supply *ext;
2172         struct ab8500_fg *di;
2173         union power_supply_propval ret;
2174         int i, j;
2175         bool psy_found = false;
2176 
2177         psy = (struct power_supply *)data;
2178         ext = dev_get_drvdata(dev);
2179         di = power_supply_get_drvdata(psy);
2180 
2181         /*
2182          * For all psy where the name of your driver
2183          * appears in any supplied_to
2184          */
2185         for (i = 0; i < ext->num_supplicants; i++) {
2186                 if (!strcmp(ext->supplied_to[i], psy->desc->name))
2187                         psy_found = true;
2188         }
2189 
2190         if (!psy_found)
2191                 return 0;
2192 
2193         /* Go through all properties for the psy */
2194         for (j = 0; j < ext->desc->num_properties; j++) {
2195                 enum power_supply_property prop;
2196                 prop = ext->desc->properties[j];
2197 
2198                 if (power_supply_get_property(ext, prop, &ret))
2199                         continue;
2200 
2201                 switch (prop) {
2202                 case POWER_SUPPLY_PROP_STATUS:
2203                         switch (ext->desc->type) {
2204                         case POWER_SUPPLY_TYPE_BATTERY:
2205                                 switch (ret.intval) {
2206                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2207                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2208                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2209                                         if (!di->flags.charging)
2210                                                 break;
2211                                         di->flags.charging = false;
2212                                         di->flags.fully_charged = false;
2213                                         if (di->bm->capacity_scaling)
2214                                                 ab8500_fg_update_cap_scalers(di);
2215                                         queue_work(di->fg_wq, &di->fg_work);
2216                                         break;
2217                                 case POWER_SUPPLY_STATUS_FULL:
2218                                         if (di->flags.fully_charged)
2219                                                 break;
2220                                         di->flags.fully_charged = true;
2221                                         di->flags.force_full = true;
2222                                         /* Save current capacity as maximum */
2223                                         di->bat_cap.max_mah = di->bat_cap.mah;
2224                                         queue_work(di->fg_wq, &di->fg_work);
2225                                         break;
2226                                 case POWER_SUPPLY_STATUS_CHARGING:
2227                                         if (di->flags.charging &&
2228                                                 !di->flags.fully_charged)
2229                                                 break;
2230                                         di->flags.charging = true;
2231                                         di->flags.fully_charged = false;
2232                                         if (di->bm->capacity_scaling)
2233                                                 ab8500_fg_update_cap_scalers(di);
2234                                         queue_work(di->fg_wq, &di->fg_work);
2235                                         break;
2236                                 };
2237                         default:
2238                                 break;
2239                         };
2240                         break;
2241                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2242                         switch (ext->desc->type) {
2243                         case POWER_SUPPLY_TYPE_BATTERY:
2244                                 if (!di->flags.batt_id_received &&
2245                                     di->bm->batt_id != BATTERY_UNKNOWN) {
2246                                         const struct abx500_battery_type *b;
2247 
2248                                         b = &(di->bm->bat_type[di->bm->batt_id]);
2249 
2250                                         di->flags.batt_id_received = true;
2251 
2252                                         di->bat_cap.max_mah_design =
2253                                                 MILLI_TO_MICRO *
2254                                                 b->charge_full_design;
2255 
2256                                         di->bat_cap.max_mah =
2257                                                 di->bat_cap.max_mah_design;
2258 
2259                                         di->vbat_nom = b->nominal_voltage;
2260                                 }
2261 
2262                                 if (ret.intval)
2263                                         di->flags.batt_unknown = false;
2264                                 else
2265                                         di->flags.batt_unknown = true;
2266                                 break;
2267                         default:
2268                                 break;
2269                         }
2270                         break;
2271                 case POWER_SUPPLY_PROP_TEMP:
2272                         switch (ext->desc->type) {
2273                         case POWER_SUPPLY_TYPE_BATTERY:
2274                                 if (di->flags.batt_id_received)
2275                                         di->bat_temp = ret.intval;
2276                                 break;
2277                         default:
2278                                 break;
2279                         }
2280                         break;
2281                 default:
2282                         break;
2283                 }
2284         }
2285         return 0;
2286 }
2287 
2288 /**
2289  * ab8500_fg_init_hw_registers() - Set up FG related registers
2290  * @di:         pointer to the ab8500_fg structure
2291  *
2292  * Set up battery OVV, low battery voltage registers
2293  */
2294 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2295 {
2296         int ret;
2297 
2298         /* Set VBAT OVV threshold */
2299         ret = abx500_mask_and_set_register_interruptible(di->dev,
2300                 AB8500_CHARGER,
2301                 AB8500_BATT_OVV,
2302                 BATT_OVV_TH_4P75,
2303                 BATT_OVV_TH_4P75);
2304         if (ret) {
2305                 dev_err(di->dev, "failed to set BATT_OVV\n");
2306                 goto out;
2307         }
2308 
2309         /* Enable VBAT OVV detection */
2310         ret = abx500_mask_and_set_register_interruptible(di->dev,
2311                 AB8500_CHARGER,
2312                 AB8500_BATT_OVV,
2313                 BATT_OVV_ENA,
2314                 BATT_OVV_ENA);
2315         if (ret) {
2316                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2317                 goto out;
2318         }
2319 
2320         /* Low Battery Voltage */
2321         ret = abx500_set_register_interruptible(di->dev,
2322                 AB8500_SYS_CTRL2_BLOCK,
2323                 AB8500_LOW_BAT_REG,
2324                 ab8500_volt_to_regval(
2325                         di->bm->fg_params->lowbat_threshold) << 1 |
2326                 LOW_BAT_ENABLE);
2327         if (ret) {
2328                 dev_err(di->dev, "%s write failed\n", __func__);
2329                 goto out;
2330         }
2331 
2332         /* Battery OK threshold */
2333         ret = ab8500_fg_battok_init_hw_register(di);
2334         if (ret) {
2335                 dev_err(di->dev, "BattOk init write failed.\n");
2336                 goto out;
2337         }
2338 
2339         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2340                         abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2341                         || is_ab8540(di->parent)) {
2342                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2343                         AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2344 
2345                 if (ret) {
2346                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2347                         goto out;
2348                 };
2349 
2350                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2351                         AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2352 
2353                 if (ret) {
2354                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2355                         goto out;
2356                 };
2357 
2358                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2359                         AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2360 
2361                 if (ret) {
2362                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2363                         goto out;
2364                 };
2365 
2366                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2367                         AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2368 
2369                 if (ret) {
2370                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2371                         goto out;
2372                 };
2373 
2374                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2375                         AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2376 
2377                 if (ret) {
2378                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2379                         goto out;
2380                 };
2381         }
2382 out:
2383         return ret;
2384 }
2385 
2386 /**
2387  * ab8500_fg_external_power_changed() - callback for power supply changes
2388  * @psy:       pointer to the structure power_supply
2389  *
2390  * This function is the entry point of the pointer external_power_changed
2391  * of the structure power_supply.
2392  * This function gets executed when there is a change in any external power
2393  * supply that this driver needs to be notified of.
2394  */
2395 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2396 {
2397         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2398 
2399         class_for_each_device(power_supply_class, NULL,
2400                 di->fg_psy, ab8500_fg_get_ext_psy_data);
2401 }
2402 
2403 /**
2404  * abab8500_fg_reinit_work() - work to reset the FG algorithm
2405  * @work:       pointer to the work_struct structure
2406  *
2407  * Used to reset the current battery capacity to be able to
2408  * retrigger a new voltage base capacity calculation. For
2409  * test and verification purpose.
2410  */
2411 static void ab8500_fg_reinit_work(struct work_struct *work)
2412 {
2413         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2414                 fg_reinit_work.work);
2415 
2416         if (di->flags.calibrate == false) {
2417                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2418                 ab8500_fg_clear_cap_samples(di);
2419                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2420                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2421                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2422                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2423 
2424         } else {
2425                 dev_err(di->dev, "Residual offset calibration ongoing "
2426                         "retrying..\n");
2427                 /* Wait one second until next try*/
2428                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2429                         round_jiffies(1));
2430         }
2431 }
2432 
2433 /* Exposure to the sysfs interface */
2434 
2435 struct ab8500_fg_sysfs_entry {
2436         struct attribute attr;
2437         ssize_t (*show)(struct ab8500_fg *, char *);
2438         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2439 };
2440 
2441 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2442 {
2443         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2444 }
2445 
2446 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2447                                  size_t count)
2448 {
2449         unsigned long charge_full;
2450         ssize_t ret;
2451 
2452         ret = kstrtoul(buf, 10, &charge_full);
2453 
2454         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2455 
2456         if (!ret) {
2457                 di->bat_cap.max_mah = (int) charge_full;
2458                 ret = count;
2459         }
2460         return ret;
2461 }
2462 
2463 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2464 {
2465         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2466 }
2467 
2468 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2469                                  size_t count)
2470 {
2471         unsigned long charge_now;
2472         ssize_t ret;
2473 
2474         ret = kstrtoul(buf, 10, &charge_now);
2475 
2476         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2477                 ret, charge_now, di->bat_cap.prev_mah);
2478 
2479         if (!ret) {
2480                 di->bat_cap.user_mah = (int) charge_now;
2481                 di->flags.user_cap = true;
2482                 ret = count;
2483                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2484         }
2485         return ret;
2486 }
2487 
2488 static struct ab8500_fg_sysfs_entry charge_full_attr =
2489         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2490 
2491 static struct ab8500_fg_sysfs_entry charge_now_attr =
2492         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2493 
2494 static ssize_t
2495 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2496 {
2497         struct ab8500_fg_sysfs_entry *entry;
2498         struct ab8500_fg *di;
2499 
2500         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2501         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2502 
2503         if (!entry->show)
2504                 return -EIO;
2505 
2506         return entry->show(di, buf);
2507 }
2508 static ssize_t
2509 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2510                 size_t count)
2511 {
2512         struct ab8500_fg_sysfs_entry *entry;
2513         struct ab8500_fg *di;
2514 
2515         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2516         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2517 
2518         if (!entry->store)
2519                 return -EIO;
2520 
2521         return entry->store(di, buf, count);
2522 }
2523 
2524 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2525         .show = ab8500_fg_show,
2526         .store = ab8500_fg_store,
2527 };
2528 
2529 static struct attribute *ab8500_fg_attrs[] = {
2530         &charge_full_attr.attr,
2531         &charge_now_attr.attr,
2532         NULL,
2533 };
2534 
2535 static struct kobj_type ab8500_fg_ktype = {
2536         .sysfs_ops = &ab8500_fg_sysfs_ops,
2537         .default_attrs = ab8500_fg_attrs,
2538 };
2539 
2540 /**
2541  * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2542  * @di:                pointer to the struct ab8500_chargalg
2543  *
2544  * This function removes the entry in sysfs.
2545  */
2546 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2547 {
2548         kobject_del(&di->fg_kobject);
2549 }
2550 
2551 /**
2552  * ab8500_chargalg_sysfs_init() - init of sysfs entry
2553  * @di:                pointer to the struct ab8500_chargalg
2554  *
2555  * This function adds an entry in sysfs.
2556  * Returns error code in case of failure else 0(on success)
2557  */
2558 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2559 {
2560         int ret = 0;
2561 
2562         ret = kobject_init_and_add(&di->fg_kobject,
2563                 &ab8500_fg_ktype,
2564                 NULL, "battery");
2565         if (ret < 0)
2566                 dev_err(di->dev, "failed to create sysfs entry\n");
2567 
2568         return ret;
2569 }
2570 
2571 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2572                              struct device_attribute *attr,
2573                              char *buf)
2574 {
2575         int ret;
2576         u8 reg_value;
2577         struct power_supply *psy = dev_get_drvdata(dev);
2578         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2579 
2580         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2581                 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2582 
2583         if (ret < 0) {
2584                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2585                 goto fail;
2586         }
2587 
2588         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2589 
2590 fail:
2591         return ret;
2592 }
2593 
2594 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2595                                   struct device_attribute *attr,
2596                                   const char *buf, size_t count)
2597 {
2598         int ret;
2599         long unsigned reg_value;
2600         struct power_supply *psy = dev_get_drvdata(dev);
2601         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2602 
2603         reg_value = simple_strtoul(buf, NULL, 10);
2604 
2605         if (reg_value > 0x7F) {
2606                 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2607                 goto fail;
2608         }
2609 
2610         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2611                 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2612 
2613         if (ret < 0)
2614                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2615 
2616 fail:
2617         return count;
2618 }
2619 
2620 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2621                              struct device_attribute *attr,
2622                              char *buf)
2623 {
2624         int ret;
2625         u8 reg_value;
2626         struct power_supply *psy = dev_get_drvdata(dev);
2627         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2628 
2629         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2630                 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2631 
2632         if (ret < 0) {
2633                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2634                 goto fail;
2635         }
2636 
2637         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2638 
2639 fail:
2640         return ret;
2641 
2642 }
2643 
2644 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2645                                   struct device_attribute *attr,
2646                                   const char *buf, size_t count)
2647 {
2648         int ret;
2649         int reg_value;
2650         struct power_supply *psy = dev_get_drvdata(dev);
2651         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2652 
2653         reg_value = simple_strtoul(buf, NULL, 10);
2654         if (reg_value > 0x7F) {
2655                 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2656                 goto fail;
2657         }
2658 
2659         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2660                 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2661 
2662         if (ret < 0)
2663                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2664 
2665 fail:
2666         return count;
2667 }
2668 
2669 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2670                              struct device_attribute *attr,
2671                              char *buf)
2672 {
2673         int ret;
2674         u8 reg_value;
2675         struct power_supply *psy = dev_get_drvdata(dev);
2676         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2677 
2678         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2679                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2680 
2681         if (ret < 0) {
2682                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2683                 goto fail;
2684         }
2685 
2686         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2687 
2688 fail:
2689         return ret;
2690 }
2691 
2692 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2693                                              struct device_attribute *attr,
2694                                              const char *buf, size_t count)
2695 {
2696         int ret;
2697         int reg_value;
2698         struct power_supply *psy = dev_get_drvdata(dev);
2699         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2700 
2701         reg_value = simple_strtoul(buf, NULL, 10);
2702         if (reg_value > 0xF) {
2703                 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2704                 goto fail;
2705         }
2706 
2707         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2708                                                 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2709 
2710         if (ret < 0)
2711                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2712 
2713 fail:
2714         return count;
2715 
2716 }
2717 
2718 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2719                                           struct device_attribute *attr,
2720                                           char *buf)
2721 {
2722         int ret;
2723         u8 reg_value;
2724         struct power_supply *psy = dev_get_drvdata(dev);
2725         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2726 
2727         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2728                                                 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2729 
2730         if (ret < 0) {
2731                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2732                 goto fail;
2733         }
2734 
2735         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2736 
2737 fail:
2738         return ret;
2739 }
2740 
2741 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2742                                                     struct device_attribute *attr,
2743                                                     char *buf)
2744 {
2745         int ret;
2746         u8 reg_value;
2747         struct power_supply *psy = dev_get_drvdata(dev);
2748         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2749 
2750         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2751                                                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2752 
2753         if (ret < 0) {
2754                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2755                 goto fail;
2756         }
2757 
2758         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2759 
2760 fail:
2761         return ret;
2762 }
2763 
2764 static ssize_t ab8505_powercut_read(struct device *dev,
2765                                     struct device_attribute *attr,
2766                                     char *buf)
2767 {
2768         int ret;
2769         u8 reg_value;
2770         struct power_supply *psy = dev_get_drvdata(dev);
2771         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2772 
2773         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2774                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2775 
2776         if (ret < 0)
2777                 goto fail;
2778 
2779         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2780 
2781 fail:
2782         return ret;
2783 }
2784 
2785 static ssize_t ab8505_powercut_write(struct device *dev,
2786                                      struct device_attribute *attr,
2787                                      const char *buf, size_t count)
2788 {
2789         int ret;
2790         int reg_value;
2791         struct power_supply *psy = dev_get_drvdata(dev);
2792         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2793 
2794         reg_value = simple_strtoul(buf, NULL, 10);
2795         if (reg_value > 0x1) {
2796                 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2797                 goto fail;
2798         }
2799 
2800         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2801                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2802 
2803         if (ret < 0)
2804                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2805 
2806 fail:
2807         return count;
2808 }
2809 
2810 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2811                                          struct device_attribute *attr,
2812                                          char *buf)
2813 {
2814 
2815         int ret;
2816         u8 reg_value;
2817         struct power_supply *psy = dev_get_drvdata(dev);
2818         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2819 
2820         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2821                                                 AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2822 
2823         if (ret < 0) {
2824                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2825                 goto fail;
2826         }
2827 
2828         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2829 
2830 fail:
2831         return ret;
2832 }
2833 
2834 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2835                                              struct device_attribute *attr,
2836                                              char *buf)
2837 {
2838         int ret;
2839         u8 reg_value;
2840         struct power_supply *psy = dev_get_drvdata(dev);
2841         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2842 
2843         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2844                                                 AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2845 
2846         if (ret < 0) {
2847                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2848                 goto fail;
2849         }
2850 
2851         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2852 
2853 fail:
2854         return ret;
2855 }
2856 
2857 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2858                                               struct device_attribute *attr,
2859                                               const char *buf, size_t count)
2860 {
2861         int ret;
2862         int reg_value;
2863         struct power_supply *psy = dev_get_drvdata(dev);
2864         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2865 
2866         reg_value = simple_strtoul(buf, NULL, 10);
2867         if (reg_value > 0x7) {
2868                 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2869                 goto fail;
2870         }
2871 
2872         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2873                                                 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2874 
2875         if (ret < 0)
2876                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2877 
2878 fail:
2879         return count;
2880 }
2881 
2882 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2883                                                   struct device_attribute *attr,
2884                                                   char *buf)
2885 {
2886         int ret;
2887         u8 reg_value;
2888         struct power_supply *psy = dev_get_drvdata(dev);
2889         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2890 
2891         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2892                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2893 
2894         if (ret < 0) {
2895                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2896                 goto fail;
2897         }
2898 
2899         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2900 
2901 fail:
2902         return ret;
2903 }
2904 
2905 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2906         __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2907                 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2908         __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2909                 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2910         __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2911                 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2912         __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2913         __ATTR(powercut_restart_counter, S_IRUGO,
2914                 ab8505_powercut_restart_counter_read, NULL),
2915         __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2916                 ab8505_powercut_read, ab8505_powercut_write),
2917         __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2918         __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2919                 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2920         __ATTR(powercut_enable_status, S_IRUGO,
2921                 ab8505_powercut_enable_status_read, NULL),
2922 };
2923 
2924 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2925 {
2926         unsigned int i;
2927 
2928         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2929              abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2930             || is_ab8540(di->parent)) {
2931                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2932                         if (device_create_file(&di->fg_psy->dev,
2933                                                &ab8505_fg_sysfs_psy_attrs[i]))
2934                                 goto sysfs_psy_create_attrs_failed_ab8505;
2935         }
2936         return 0;
2937 sysfs_psy_create_attrs_failed_ab8505:
2938         dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2939         while (i--)
2940                 device_remove_file(&di->fg_psy->dev,
2941                                    &ab8505_fg_sysfs_psy_attrs[i]);
2942 
2943         return -EIO;
2944 }
2945 
2946 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2947 {
2948         unsigned int i;
2949 
2950         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2951              abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2952             || is_ab8540(di->parent)) {
2953                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2954                         (void)device_remove_file(&di->fg_psy->dev,
2955                                                  &ab8505_fg_sysfs_psy_attrs[i]);
2956         }
2957 }
2958 
2959 /* Exposure to the sysfs interface <<END>> */
2960 
2961 #if defined(CONFIG_PM)
2962 static int ab8500_fg_resume(struct platform_device *pdev)
2963 {
2964         struct ab8500_fg *di = platform_get_drvdata(pdev);
2965 
2966         /*
2967          * Change state if we're not charging. If we're charging we will wake
2968          * up on the FG IRQ
2969          */
2970         if (!di->flags.charging) {
2971                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2972                 queue_work(di->fg_wq, &di->fg_work);
2973         }
2974 
2975         return 0;
2976 }
2977 
2978 static int ab8500_fg_suspend(struct platform_device *pdev,
2979         pm_message_t state)
2980 {
2981         struct ab8500_fg *di = platform_get_drvdata(pdev);
2982 
2983         flush_delayed_work(&di->fg_periodic_work);
2984         flush_work(&di->fg_work);
2985         flush_work(&di->fg_acc_cur_work);
2986         flush_delayed_work(&di->fg_reinit_work);
2987         flush_delayed_work(&di->fg_low_bat_work);
2988         flush_delayed_work(&di->fg_check_hw_failure_work);
2989 
2990         /*
2991          * If the FG is enabled we will disable it before going to suspend
2992          * only if we're not charging
2993          */
2994         if (di->flags.fg_enabled && !di->flags.charging)
2995                 ab8500_fg_coulomb_counter(di, false);
2996 
2997         return 0;
2998 }
2999 #else
3000 #define ab8500_fg_suspend      NULL
3001 #define ab8500_fg_resume       NULL
3002 #endif
3003 
3004 static int ab8500_fg_remove(struct platform_device *pdev)
3005 {
3006         int ret = 0;
3007         struct ab8500_fg *di = platform_get_drvdata(pdev);
3008 
3009         list_del(&di->node);
3010 
3011         /* Disable coulomb counter */
3012         ret = ab8500_fg_coulomb_counter(di, false);
3013         if (ret)
3014                 dev_err(di->dev, "failed to disable coulomb counter\n");
3015 
3016         destroy_workqueue(di->fg_wq);
3017         ab8500_fg_sysfs_exit(di);
3018 
3019         flush_scheduled_work();
3020         ab8500_fg_sysfs_psy_remove_attrs(di);
3021         power_supply_unregister(di->fg_psy);
3022         return ret;
3023 }
3024 
3025 /* ab8500 fg driver interrupts and their respective isr */
3026 static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3027         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3028         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3029         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3030         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3031 };
3032 
3033 static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3034         {"CCEOC", ab8500_fg_cc_data_end_handler},
3035 };
3036 
3037 static char *supply_interface[] = {
3038         "ab8500_chargalg",
3039         "ab8500_usb",
3040 };
3041 
3042 static const struct power_supply_desc ab8500_fg_desc = {
3043         .name                   = "ab8500_fg",
3044         .type                   = POWER_SUPPLY_TYPE_BATTERY,
3045         .properties             = ab8500_fg_props,
3046         .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3047         .get_property           = ab8500_fg_get_property,
3048         .external_power_changed = ab8500_fg_external_power_changed,
3049 };
3050 
3051 static int ab8500_fg_probe(struct platform_device *pdev)
3052 {
3053         struct device_node *np = pdev->dev.of_node;
3054         struct abx500_bm_data *plat = pdev->dev.platform_data;
3055         struct power_supply_config psy_cfg = {};
3056         struct ab8500_fg *di;
3057         int i, irq;
3058         int ret = 0;
3059 
3060         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3061         if (!di) {
3062                 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3063                 return -ENOMEM;
3064         }
3065 
3066         if (!plat) {
3067                 dev_err(&pdev->dev, "no battery management data supplied\n");
3068                 return -EINVAL;
3069         }
3070         di->bm = plat;
3071 
3072         if (np) {
3073                 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3074                 if (ret) {
3075                         dev_err(&pdev->dev, "failed to get battery information\n");
3076                         return ret;
3077                 }
3078         }
3079 
3080         mutex_init(&di->cc_lock);
3081 
3082         /* get parent data */
3083         di->dev = &pdev->dev;
3084         di->parent = dev_get_drvdata(pdev->dev.parent);
3085         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3086 
3087         psy_cfg.supplied_to = supply_interface;
3088         psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3089         psy_cfg.drv_data = di;
3090 
3091         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3092                 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3093 
3094         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3095 
3096         di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3097 
3098         di->init_capacity = true;
3099 
3100         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3101         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3102 
3103         /* Create a work queue for running the FG algorithm */
3104         di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3105         if (di->fg_wq == NULL) {
3106                 dev_err(di->dev, "failed to create work queue\n");
3107                 return -ENOMEM;
3108         }
3109 
3110         /* Init work for running the fg algorithm instantly */
3111         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3112 
3113         /* Init work for getting the battery accumulated current */
3114         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3115 
3116         /* Init work for reinitialising the fg algorithm */
3117         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3118                 ab8500_fg_reinit_work);
3119 
3120         /* Work delayed Queue to run the state machine */
3121         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3122                 ab8500_fg_periodic_work);
3123 
3124         /* Work to check low battery condition */
3125         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3126                 ab8500_fg_low_bat_work);
3127 
3128         /* Init work for HW failure check */
3129         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3130                 ab8500_fg_check_hw_failure_work);
3131 
3132         /* Reset battery low voltage flag */
3133         di->flags.low_bat = false;
3134 
3135         /* Initialize low battery counter */
3136         di->low_bat_cnt = 10;
3137 
3138         /* Initialize OVV, and other registers */
3139         ret = ab8500_fg_init_hw_registers(di);
3140         if (ret) {
3141                 dev_err(di->dev, "failed to initialize registers\n");
3142                 goto free_inst_curr_wq;
3143         }
3144 
3145         /* Consider battery unknown until we're informed otherwise */
3146         di->flags.batt_unknown = true;
3147         di->flags.batt_id_received = false;
3148 
3149         /* Register FG power supply class */
3150         di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3151         if (IS_ERR(di->fg_psy)) {
3152                 dev_err(di->dev, "failed to register FG psy\n");
3153                 ret = PTR_ERR(di->fg_psy);
3154                 goto free_inst_curr_wq;
3155         }
3156 
3157         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3158         ab8500_fg_coulomb_counter(di, true);
3159 
3160         /*
3161          * Initialize completion used to notify completion and start
3162          * of inst current
3163          */
3164         init_completion(&di->ab8500_fg_started);
3165         init_completion(&di->ab8500_fg_complete);
3166 
3167         /* Register primary interrupt handlers */
3168         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3169                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3170                 ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3171                                   IRQF_SHARED | IRQF_NO_SUSPEND,
3172                                   ab8500_fg_irq_th[i].name, di);
3173 
3174                 if (ret != 0) {
3175                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3176                                 ab8500_fg_irq_th[i].name, irq, ret);
3177                         goto free_irq;
3178                 }
3179                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3180                         ab8500_fg_irq_th[i].name, irq, ret);
3181         }
3182 
3183         /* Register threaded interrupt handler */
3184         irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3185         ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3186                                 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3187                         ab8500_fg_irq_bh[0].name, di);
3188 
3189         if (ret != 0) {
3190                 dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3191                         ab8500_fg_irq_bh[0].name, irq, ret);
3192                 goto free_irq;
3193         }
3194         dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3195                 ab8500_fg_irq_bh[0].name, irq, ret);
3196 
3197         di->irq = platform_get_irq_byname(pdev, "CCEOC");
3198         disable_irq(di->irq);
3199         di->nbr_cceoc_irq_cnt = 0;
3200 
3201         platform_set_drvdata(pdev, di);
3202 
3203         ret = ab8500_fg_sysfs_init(di);
3204         if (ret) {
3205                 dev_err(di->dev, "failed to create sysfs entry\n");
3206                 goto free_irq;
3207         }
3208 
3209         ret = ab8500_fg_sysfs_psy_create_attrs(di);
3210         if (ret) {
3211                 dev_err(di->dev, "failed to create FG psy\n");
3212                 ab8500_fg_sysfs_exit(di);
3213                 goto free_irq;
3214         }
3215 
3216         /* Calibrate the fg first time */
3217         di->flags.calibrate = true;
3218         di->calib_state = AB8500_FG_CALIB_INIT;
3219 
3220         /* Use room temp as default value until we get an update from driver. */
3221         di->bat_temp = 210;
3222 
3223         /* Run the FG algorithm */
3224         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3225 
3226         list_add_tail(&di->node, &ab8500_fg_list);
3227 
3228         return ret;
3229 
3230 free_irq:
3231         power_supply_unregister(di->fg_psy);
3232 
3233         /* We also have to free all registered irqs */
3234         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3235                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3236                 free_irq(irq, di);
3237         }
3238         irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3239         free_irq(irq, di);
3240 free_inst_curr_wq:
3241         destroy_workqueue(di->fg_wq);
3242         return ret;
3243 }
3244 
3245 static const struct of_device_id ab8500_fg_match[] = {
3246         { .compatible = "stericsson,ab8500-fg", },
3247         { },
3248 };
3249 
3250 static struct platform_driver ab8500_fg_driver = {
3251         .probe = ab8500_fg_probe,
3252         .remove = ab8500_fg_remove,
3253         .suspend = ab8500_fg_suspend,
3254         .resume = ab8500_fg_resume,
3255         .driver = {
3256                 .name = "ab8500-fg",
3257                 .of_match_table = ab8500_fg_match,
3258         },
3259 };
3260 
3261 static int __init ab8500_fg_init(void)
3262 {
3263         return platform_driver_register(&ab8500_fg_driver);
3264 }
3265 
3266 static void __exit ab8500_fg_exit(void)
3267 {
3268         platform_driver_unregister(&ab8500_fg_driver);
3269 }
3270 
3271 subsys_initcall_sync(ab8500_fg_init);
3272 module_exit(ab8500_fg_exit);
3273 
3274 MODULE_LICENSE("GPL v2");
3275 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3276 MODULE_ALIAS("platform:ab8500-fg");
3277 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
3278 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us