Version:  2.0.40 2.2.26 2.4.37 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18

Linux/drivers/net/wireless/ipw2x00/ipw2100.c

  1 /******************************************************************************
  2 
  3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
  4 
  5   This program is free software; you can redistribute it and/or modify it
  6   under the terms of version 2 of the GNU General Public License as
  7   published by the Free Software Foundation.
  8 
  9   This program is distributed in the hope that it will be useful, but WITHOUT
 10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 12   more details.
 13 
 14   You should have received a copy of the GNU General Public License along with
 15   this program; if not, write to the Free Software Foundation, Inc., 59
 16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 17 
 18   The full GNU General Public License is included in this distribution in the
 19   file called LICENSE.
 20 
 21   Contact Information:
 22   Intel Linux Wireless <ilw@linux.intel.com>
 23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24 
 25   Portions of this file are based on the sample_* files provided by Wireless
 26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
 27   <jt@hpl.hp.com>
 28 
 29   Portions of this file are based on the Host AP project,
 30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
 31     <j@w1.fi>
 32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
 33 
 34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
 35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
 36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
 37 
 38 ******************************************************************************/
 39 /*
 40 
 41  Initial driver on which this is based was developed by Janusz Gorycki,
 42  Maciej Urbaniak, and Maciej Sosnowski.
 43 
 44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
 45 
 46 Theory of Operation
 47 
 48 Tx - Commands and Data
 49 
 50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
 51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
 52 sent to the firmware as well as the length of the data.
 53 
 54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
 55 to the _next_ packet to be written and is advanced when after the TBD has been
 56 filled.
 57 
 58 The firmware pulls from the TBD queue at the READ index.  The READ index points
 59 to the currently being read entry, and is advanced once the firmware is
 60 done with a packet.
 61 
 62 When data is sent to the firmware, the first TBD is used to indicate to the
 63 firmware if a Command or Data is being sent.  If it is Command, all of the
 64 command information is contained within the physical address referred to by the
 65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
 66 of fragments, etc.  The next TBD then refers to the actual packet location.
 67 
 68 The Tx flow cycle is as follows:
 69 
 70 1) ipw2100_tx() is called by kernel with SKB to transmit
 71 2) Packet is move from the tx_free_list and appended to the transmit pending
 72    list (tx_pend_list)
 73 3) work is scheduled to move pending packets into the shared circular queue.
 74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
 75    to a physical address.  That address is entered into a TBD.  Two TBDs are
 76    filled out.  The first indicating a data packet, the second referring to the
 77    actual payload data.
 78 5) the packet is removed from tx_pend_list and placed on the end of the
 79    firmware pending list (fw_pend_list)
 80 6) firmware is notified that the WRITE index has
 81 7) Once the firmware has processed the TBD, INTA is triggered.
 82 8) For each Tx interrupt received from the firmware, the READ index is checked
 83    to see which TBDs are done being processed.
 84 9) For each TBD that has been processed, the ISR pulls the oldest packet
 85    from the fw_pend_list.
 86 10)The packet structure contained in the fw_pend_list is then used
 87    to unmap the DMA address and to free the SKB originally passed to the driver
 88    from the kernel.
 89 11)The packet structure is placed onto the tx_free_list
 90 
 91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
 92 are used instead of tx_free_list/tx_pend_list
 93 
 94 ...
 95 
 96 Critical Sections / Locking :
 97 
 98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
 99 that protects the following:
100 
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102 
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106 
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110 
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114 
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118 
119   The flow of data on the TX side is as follows:
120 
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123 
124   The methods that work on the TBD ring are protected via priv->low_lock.
125 
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129 
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132 
133 
134 */
135 
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165 
166 #include <net/lib80211.h>
167 
168 #include "ipw2100.h"
169 #include "ipw.h"
170 
171 #define IPW2100_VERSION "git-1.2.2"
172 
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177 
178 static struct pm_qos_request ipw2100_pm_qos_req;
179 
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184 
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189 
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198 
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205 
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211 
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213 
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226 
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301 
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308 
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310 
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317 
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319 
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324 
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328 
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344 
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348 
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352 
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356 
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360 
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365 
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369 
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373 
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377 
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381 
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385 
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389 
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393 
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400 
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407 
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414 
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421 
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428 
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435 
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441 
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446 
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454 
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466 
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470 
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476 
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484 
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492 
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504 
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508 
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514 
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521 
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525 
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527 
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530 
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540 
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546 
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550 
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554 
555                         return -EINVAL;
556                 }
557 
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561 
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563 
564                 return 0;
565         }
566 
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568 
569                 ord -= IPW_START_ORD_TAB_2;
570 
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574 
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580 
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583 
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586 
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593 
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597 
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600 
601                 return 0;
602         }
603 
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606 
607         return -EINVAL;
608 }
609 
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615 
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622 
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625 
626                 write_nic_dword(priv->net_dev, addr, *val);
627 
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629 
630                 return 0;
631         }
632 
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636 
637         return -EINVAL;
638 }
639 
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645 
646         out = snprintf(buf, count, "%08X", ofs);
647 
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656 
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664 
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667 
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671 
672         return buf;
673 }
674 
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681 
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690 
691 #define MAX_RESET_BACKOFF 10
692 
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696 
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703 
704         priv->last_reset = get_seconds();
705 
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717 
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720 
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725 
726 }
727 
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736 
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742 
743         spin_lock_irqsave(&priv->low_lock, flags);
744 
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751 
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758 
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765 
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770 
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773 
774         element = priv->msg_free_list.next;
775 
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778 
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785 
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789 
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792 
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795 
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798 
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800 
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806 
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812 
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821 
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827 
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834 
835         return 0;
836 
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839 
840         return err;
841 }
842 
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851 
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854 
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862 
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877 
878         return -EIO;
879 }
880 
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897 
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906 
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917 
918                         return 0;
919                 }
920 
921                 udelay(50);
922         }
923 
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928 
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938 
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942 
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946 
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952 
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955 
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960 
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964 
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970 
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973 
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978 
979         return 0;
980 }
981 
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997 
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002 
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029 
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037 
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044 
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048 
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051 
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059 
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063 
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072 
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087 
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091 
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108 
1109         return 0;
1110 
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115 
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123 
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131 
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135 
1136         IPW_DEBUG_INFO("enter\n");
1137 
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140 
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143 
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146 
1147         ord->table2_size &= 0x0000FFFF;
1148 
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153 
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165 
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170 
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174 
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180 
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186 
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194 
1195         return (value == 0);
1196 }
1197 
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202 
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213 
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215 
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222 
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233 
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236 
1237         return 0;
1238 }
1239 
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250 
1251         IPW_DEBUG_INFO("enter\n");
1252 
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255 
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267 
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271 
1272         ipw2100_hw_set_gpio(priv);
1273 
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276 
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279 
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286 
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288 
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296 
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308 
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317 
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320 
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327 
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330 
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332 
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334 
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337 
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340 
1341         IPW_DEBUG_INFO("exit\n");
1342 
1343         return 0;
1344 }
1345 
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350 
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355 
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361 
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363 
1364         ipw2100_hw_set_gpio(priv);
1365 
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369 
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376 
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380 
1381         priv->status &= ~STATUS_RESET_PENDING;
1382 
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388 
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391 
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394 
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398 
1399         return 0;
1400 }
1401 
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412 
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414 
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422 
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424 
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429 
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433 
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437 
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440 
1441         return -EIO;
1442 }
1443 
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452 
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454 
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457 
1458         mutex_lock(&priv->adapter_mutex);
1459 
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464 
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470 
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477 
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482 
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487 
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491 
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499 
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502 
1503         priv->status |= STATUS_STOPPING;
1504 
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512 
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517 
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539 
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548 
1549         priv->status &= ~STATUS_ENABLED;
1550 
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556 
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563 
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567 
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572 
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575 
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579 
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584 
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588 
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590 
1591         return 0;
1592 }
1593 
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602 
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604 
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607 
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610 
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615 
1616         mutex_lock(&priv->adapter_mutex);
1617 
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624 
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631 
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633 
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638 
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647 
1648         IPW_DEBUG_INFO("enter\n");
1649 
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651 
1652         cmd.host_command_parameters[0] = 0;
1653 
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660 
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662 
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664 
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667 
1668         return err;
1669 }
1670 
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679 
1680         IPW_DEBUG_HC("START_SCAN\n");
1681 
1682         cmd.host_command_parameters[0] = 0;
1683 
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687 
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692 
1693         IPW_DEBUG_INFO("enter\n");
1694 
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701 
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706 
1707         IPW_DEBUG_INFO("exit\n");
1708 
1709         return err;
1710 }
1711 
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723 
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730 
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736 
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743 
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748 
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752 
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756 
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769 
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778 
1779         ipw2100_initialize_ordinals(priv);
1780 
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789 
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793 
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802 
1803         priv->status &= ~STATUS_SCANNING;
1804 
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808 
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814 
1815                 deferred = 1;
1816         }
1817 
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820 
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829 
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840 
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845 
1846       exit:
1847         return rc;
1848 }
1849 
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858 
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864 
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870 
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874 
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880 
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884 
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891 
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893 
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897 
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902 
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909 
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911 
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915 
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947 
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950 
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953 
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959 
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970 
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976 
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982 
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987 
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991 
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994 
1995 }
1996 
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999 
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008 
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015 
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024 
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032 
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049 
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068 
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072 
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080 
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = get_seconds();
2083 
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086 
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097 
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099 
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102 
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108 
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118 
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121 
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128 
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133 
2134         return err;
2135 }
2136 
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142 
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144 
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149 
2150         memset(priv->bssid, 0, ETH_ALEN);
2151         memset(priv->ieee->bssid, 0, ETH_ALEN);
2152 
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155 
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158 
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161 
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164 
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169 
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173 
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178 
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184 
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189 
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196 
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206 
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221 
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227 
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243 
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247 
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253 
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257 
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268 
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271 
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284 
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287 
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289 
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292 
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302 
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309 
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312                                           sizeof(struct ipw2100_rx),
2313                                           PCI_DMA_FROMDEVICE);
2314         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2315          *       dma_addr */
2316 
2317         return 0;
2318 }
2319 
2320 #define SEARCH_ERROR   0xffffffff
2321 #define SEARCH_FAIL    0xfffffffe
2322 #define SEARCH_SUCCESS 0xfffffff0
2323 #define SEARCH_DISCARD 0
2324 #define SEARCH_SNAPSHOT 1
2325 
2326 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2327 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2328 {
2329         int i;
2330         if (!priv->snapshot[0])
2331                 return;
2332         for (i = 0; i < 0x30; i++)
2333                 kfree(priv->snapshot[i]);
2334         priv->snapshot[0] = NULL;
2335 }
2336 
2337 #ifdef IPW2100_DEBUG_C3
2338 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2339 {
2340         int i;
2341         if (priv->snapshot[0])
2342                 return 1;
2343         for (i = 0; i < 0x30; i++) {
2344                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2345                 if (!priv->snapshot[i]) {
2346                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2347                                        "buffer %d\n", priv->net_dev->name, i);
2348                         while (i > 0)
2349                                 kfree(priv->snapshot[--i]);
2350                         priv->snapshot[0] = NULL;
2351                         return 0;
2352                 }
2353         }
2354 
2355         return 1;
2356 }
2357 
2358 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2359                                     size_t len, int mode)
2360 {
2361         u32 i, j;
2362         u32 tmp;
2363         u8 *s, *d;
2364         u32 ret;
2365 
2366         s = in_buf;
2367         if (mode == SEARCH_SNAPSHOT) {
2368                 if (!ipw2100_snapshot_alloc(priv))
2369                         mode = SEARCH_DISCARD;
2370         }
2371 
2372         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2373                 read_nic_dword(priv->net_dev, i, &tmp);
2374                 if (mode == SEARCH_SNAPSHOT)
2375                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2376                 if (ret == SEARCH_FAIL) {
2377                         d = (u8 *) & tmp;
2378                         for (j = 0; j < 4; j++) {
2379                                 if (*s != *d) {
2380                                         s = in_buf;
2381                                         continue;
2382                                 }
2383 
2384                                 s++;
2385                                 d++;
2386 
2387                                 if ((s - in_buf) == len)
2388                                         ret = (i + j) - len + 1;
2389                         }
2390                 } else if (mode == SEARCH_DISCARD)
2391                         return ret;
2392         }
2393 
2394         return ret;
2395 }
2396 #endif
2397 
2398 /*
2399  *
2400  * 0) Disconnect the SKB from the firmware (just unmap)
2401  * 1) Pack the ETH header into the SKB
2402  * 2) Pass the SKB to the network stack
2403  *
2404  * When packet is provided by the firmware, it contains the following:
2405  *
2406  * .  libipw_hdr
2407  * .  libipw_snap_hdr
2408  *
2409  * The size of the constructed ethernet
2410  *
2411  */
2412 #ifdef IPW2100_RX_DEBUG
2413 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2414 #endif
2415 
2416 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2417 {
2418 #ifdef IPW2100_DEBUG_C3
2419         struct ipw2100_status *status = &priv->status_queue.drv[i];
2420         u32 match, reg;
2421         int j;
2422 #endif
2423 
2424         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2425                        i * sizeof(struct ipw2100_status));
2426 
2427 #ifdef IPW2100_DEBUG_C3
2428         /* Halt the firmware so we can get a good image */
2429         write_register(priv->net_dev, IPW_REG_RESET_REG,
2430                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2431         j = 5;
2432         do {
2433                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2434                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2435 
2436                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2437                         break;
2438         } while (j--);
2439 
2440         match = ipw2100_match_buf(priv, (u8 *) status,
2441                                   sizeof(struct ipw2100_status),
2442                                   SEARCH_SNAPSHOT);
2443         if (match < SEARCH_SUCCESS)
2444                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2445                                "offset 0x%06X, length %d:\n",
2446                                priv->net_dev->name, match,
2447                                sizeof(struct ipw2100_status));
2448         else
2449                 IPW_DEBUG_INFO("%s: No DMA status match in "
2450                                "Firmware.\n", priv->net_dev->name);
2451 
2452         printk_buf((u8 *) priv->status_queue.drv,
2453                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2454 #endif
2455 
2456         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2457         priv->net_dev->stats.rx_errors++;
2458         schedule_reset(priv);
2459 }
2460 
2461 static void isr_rx(struct ipw2100_priv *priv, int i,
2462                           struct libipw_rx_stats *stats)
2463 {
2464         struct net_device *dev = priv->net_dev;
2465         struct ipw2100_status *status = &priv->status_queue.drv[i];
2466         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2467 
2468         IPW_DEBUG_RX("Handler...\n");
2469 
2470         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2471                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2472                                "  Dropping.\n",
2473                                dev->name,
2474                                status->frame_size, skb_tailroom(packet->skb));
2475                 dev->stats.rx_errors++;
2476                 return;
2477         }
2478 
2479         if (unlikely(!netif_running(dev))) {
2480                 dev->stats.rx_errors++;
2481                 priv->wstats.discard.misc++;
2482                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2483                 return;
2484         }
2485 
2486         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2487                      !(priv->status & STATUS_ASSOCIATED))) {
2488                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2489                 priv->wstats.discard.misc++;
2490                 return;
2491         }
2492 
2493         pci_unmap_single(priv->pci_dev,
2494                          packet->dma_addr,
2495                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2496 
2497         skb_put(packet->skb, status->frame_size);
2498 
2499 #ifdef IPW2100_RX_DEBUG
2500         /* Make a copy of the frame so we can dump it to the logs if
2501          * libipw_rx fails */
2502         skb_copy_from_linear_data(packet->skb, packet_data,
2503                                   min_t(u32, status->frame_size,
2504                                              IPW_RX_NIC_BUFFER_LENGTH));
2505 #endif
2506 
2507         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2508 #ifdef IPW2100_RX_DEBUG
2509                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2510                                dev->name);
2511                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2512 #endif
2513                 dev->stats.rx_errors++;
2514 
2515                 /* libipw_rx failed, so it didn't free the SKB */
2516                 dev_kfree_skb_any(packet->skb);
2517                 packet->skb = NULL;
2518         }
2519 
2520         /* We need to allocate a new SKB and attach it to the RDB. */
2521         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2522                 printk(KERN_WARNING DRV_NAME ": "
2523                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2524                        "adapter.\n", dev->name);
2525                 /* TODO: schedule adapter shutdown */
2526                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2527         }
2528 
2529         /* Update the RDB entry */
2530         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2531 }
2532 
2533 #ifdef CONFIG_IPW2100_MONITOR
2534 
2535 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2536                    struct libipw_rx_stats *stats)
2537 {
2538         struct net_device *dev = priv->net_dev;
2539         struct ipw2100_status *status = &priv->status_queue.drv[i];
2540         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2541 
2542         /* Magic struct that slots into the radiotap header -- no reason
2543          * to build this manually element by element, we can write it much
2544          * more efficiently than we can parse it. ORDER MATTERS HERE */
2545         struct ipw_rt_hdr {
2546                 struct ieee80211_radiotap_header rt_hdr;
2547                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2548         } *ipw_rt;
2549 
2550         IPW_DEBUG_RX("Handler...\n");
2551 
2552         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2553                                 sizeof(struct ipw_rt_hdr))) {
2554                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2555                                "  Dropping.\n",
2556                                dev->name,
2557                                status->frame_size,
2558                                skb_tailroom(packet->skb));
2559                 dev->stats.rx_errors++;
2560                 return;
2561         }
2562 
2563         if (unlikely(!netif_running(dev))) {
2564                 dev->stats.rx_errors++;
2565                 priv->wstats.discard.misc++;
2566                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2567                 return;
2568         }
2569 
2570         if (unlikely(priv->config & CFG_CRC_CHECK &&
2571                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2572                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2573                 dev->stats.rx_errors++;
2574                 return;
2575         }
2576 
2577         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2578                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2579         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2580                 packet->skb->data, status->frame_size);
2581 
2582         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2583 
2584         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2585         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2586         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2587 
2588         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2589 
2590         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2591 
2592         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2593 
2594         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2595                 dev->stats.rx_errors++;
2596 
2597                 /* libipw_rx failed, so it didn't free the SKB */
2598                 dev_kfree_skb_any(packet->skb);
2599                 packet->skb = NULL;
2600         }
2601 
2602         /* We need to allocate a new SKB and attach it to the RDB. */
2603         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2604                 IPW_DEBUG_WARNING(
2605                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2606                         "adapter.\n", dev->name);
2607                 /* TODO: schedule adapter shutdown */
2608                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2609         }
2610 
2611         /* Update the RDB entry */
2612         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2613 }
2614 
2615 #endif
2616 
2617 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2618 {
2619         struct ipw2100_status *status = &priv->status_queue.drv[i];
2620         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2621         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2622 
2623         switch (frame_type) {
2624         case COMMAND_STATUS_VAL:
2625                 return (status->frame_size != sizeof(u->rx_data.command));
2626         case STATUS_CHANGE_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.status));
2628         case HOST_NOTIFICATION_VAL:
2629                 return (status->frame_size < sizeof(u->rx_data.notification));
2630         case P80211_DATA_VAL:
2631         case P8023_DATA_VAL:
2632 #ifdef CONFIG_IPW2100_MONITOR
2633                 return 0;
2634 #else
2635                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2636                 case IEEE80211_FTYPE_MGMT:
2637                 case IEEE80211_FTYPE_CTL:
2638                         return 0;
2639                 case IEEE80211_FTYPE_DATA:
2640                         return (status->frame_size >
2641                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2642                 }
2643 #endif
2644         }
2645 
2646         return 1;
2647 }
2648 
2649 /*
2650  * ipw2100 interrupts are disabled at this point, and the ISR
2651  * is the only code that calls this method.  So, we do not need
2652  * to play with any locks.
2653  *
2654  * RX Queue works as follows:
2655  *
2656  * Read index - firmware places packet in entry identified by the
2657  *              Read index and advances Read index.  In this manner,
2658  *              Read index will always point to the next packet to
2659  *              be filled--but not yet valid.
2660  *
2661  * Write index - driver fills this entry with an unused RBD entry.
2662  *               This entry has not filled by the firmware yet.
2663  *
2664  * In between the W and R indexes are the RBDs that have been received
2665  * but not yet processed.
2666  *
2667  * The process of handling packets will start at WRITE + 1 and advance
2668  * until it reaches the READ index.
2669  *
2670  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2671  *
2672  */
2673 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2674 {
2675         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2676         struct ipw2100_status_queue *sq = &priv->status_queue;
2677         struct ipw2100_rx_packet *packet;
2678         u16 frame_type;
2679         u32 r, w, i, s;
2680         struct ipw2100_rx *u;
2681         struct libipw_rx_stats stats = {
2682                 .mac_time = jiffies,
2683         };
2684 
2685         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2686         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2687 
2688         if (r >= rxq->entries) {
2689                 IPW_DEBUG_RX("exit - bad read index\n");
2690                 return;
2691         }
2692 
2693         i = (rxq->next + 1) % rxq->entries;
2694         s = i;
2695         while (i != r) {
2696                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2697                    r, rxq->next, i); */
2698 
2699                 packet = &priv->rx_buffers[i];
2700 
2701                 /* Sync the DMA for the RX buffer so CPU is sure to get
2702                  * the correct values */
2703                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2704                                             sizeof(struct ipw2100_rx),
2705                                             PCI_DMA_FROMDEVICE);
2706 
2707                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2708                         ipw2100_corruption_detected(priv, i);
2709                         goto increment;
2710                 }
2711 
2712                 u = packet->rxp;
2713                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2714                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2715                 stats.len = sq->drv[i].frame_size;
2716 
2717                 stats.mask = 0;
2718                 if (stats.rssi != 0)
2719                         stats.mask |= LIBIPW_STATMASK_RSSI;
2720                 stats.freq = LIBIPW_24GHZ_BAND;
2721 
2722                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2723                              priv->net_dev->name, frame_types[frame_type],
2724                              stats.len);
2725 
2726                 switch (frame_type) {
2727                 case COMMAND_STATUS_VAL:
2728                         /* Reset Rx watchdog */
2729                         isr_rx_complete_command(priv, &u->rx_data.command);
2730                         break;
2731 
2732                 case STATUS_CHANGE_VAL:
2733                         isr_status_change(priv, u->rx_data.status);
2734                         break;
2735 
2736                 case P80211_DATA_VAL:
2737                 case P8023_DATA_VAL:
2738 #ifdef CONFIG_IPW2100_MONITOR
2739                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2740                                 isr_rx_monitor(priv, i, &stats);
2741                                 break;
2742                         }
2743 #endif
2744                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2745                                 break;
2746                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2747                         case IEEE80211_FTYPE_MGMT:
2748                                 libipw_rx_mgt(priv->ieee,
2749                                                  &u->rx_data.header, &stats);
2750                                 break;
2751 
2752                         case IEEE80211_FTYPE_CTL:
2753                                 break;
2754 
2755                         case IEEE80211_FTYPE_DATA:
2756                                 isr_rx(priv, i, &stats);
2757                                 break;
2758 
2759                         }
2760                         break;
2761                 }
2762 
2763               increment:
2764                 /* clear status field associated with this RBD */
2765                 rxq->drv[i].status.info.field = 0;
2766 
2767                 i = (i + 1) % rxq->entries;
2768         }
2769 
2770         if (i != s) {
2771                 /* backtrack one entry, wrapping to end if at 0 */
2772                 rxq->next = (i ? i : rxq->entries) - 1;
2773 
2774                 write_register(priv->net_dev,
2775                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2776         }
2777 }
2778 
2779 /*
2780  * __ipw2100_tx_process
2781  *
2782  * This routine will determine whether the next packet on
2783  * the fw_pend_list has been processed by the firmware yet.
2784  *
2785  * If not, then it does nothing and returns.
2786  *
2787  * If so, then it removes the item from the fw_pend_list, frees
2788  * any associated storage, and places the item back on the
2789  * free list of its source (either msg_free_list or tx_free_list)
2790  *
2791  * TX Queue works as follows:
2792  *
2793  * Read index - points to the next TBD that the firmware will
2794  *              process.  The firmware will read the data, and once
2795  *              done processing, it will advance the Read index.
2796  *
2797  * Write index - driver fills this entry with an constructed TBD
2798  *               entry.  The Write index is not advanced until the
2799  *               packet has been configured.
2800  *
2801  * In between the W and R indexes are the TBDs that have NOT been
2802  * processed.  Lagging behind the R index are packets that have
2803  * been processed but have not been freed by the driver.
2804  *
2805  * In order to free old storage, an internal index will be maintained
2806  * that points to the next packet to be freed.  When all used
2807  * packets have been freed, the oldest index will be the same as the
2808  * firmware's read index.
2809  *
2810  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2811  *
2812  * Because the TBD structure can not contain arbitrary data, the
2813  * driver must keep an internal queue of cached allocations such that
2814  * it can put that data back into the tx_free_list and msg_free_list
2815  * for use by future command and data packets.
2816  *
2817  */
2818 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2819 {
2820         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2821         struct ipw2100_bd *tbd;
2822         struct list_head *element;
2823         struct ipw2100_tx_packet *packet;
2824         int descriptors_used;
2825         int e, i;
2826         u32 r, w, frag_num = 0;
2827 
2828         if (list_empty(&priv->fw_pend_list))
2829                 return 0;
2830 
2831         element = priv->fw_pend_list.next;
2832 
2833         packet = list_entry(element, struct ipw2100_tx_packet, list);
2834         tbd = &txq->drv[packet->index];
2835 
2836         /* Determine how many TBD entries must be finished... */
2837         switch (packet->type) {
2838         case COMMAND:
2839                 /* COMMAND uses only one slot; don't advance */
2840                 descriptors_used = 1;
2841                 e = txq->oldest;
2842                 break;
2843 
2844         case DATA:
2845                 /* DATA uses two slots; advance and loop position. */
2846                 descriptors_used = tbd->num_fragments;
2847                 frag_num = tbd->num_fragments - 1;
2848                 e = txq->oldest + frag_num;
2849                 e %= txq->entries;
2850                 break;
2851 
2852         default:
2853                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2854                        priv->net_dev->name);
2855                 return 0;
2856         }
2857 
2858         /* if the last TBD is not done by NIC yet, then packet is
2859          * not ready to be released.
2860          *
2861          */
2862         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2863                       &r);
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2865                       &w);
2866         if (w != txq->next)
2867                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2868                        priv->net_dev->name);
2869 
2870         /*
2871          * txq->next is the index of the last packet written txq->oldest is
2872          * the index of the r is the index of the next packet to be read by
2873          * firmware
2874          */
2875 
2876         /*
2877          * Quick graphic to help you visualize the following
2878          * if / else statement
2879          *
2880          * ===>|                     s---->|===============
2881          *                               e>|
2882          * | a | b | c | d | e | f | g | h | i | j | k | l
2883          *       r---->|
2884          *               w
2885          *
2886          * w - updated by driver
2887          * r - updated by firmware
2888          * s - start of oldest BD entry (txq->oldest)
2889          * e - end of oldest BD entry
2890          *
2891          */
2892         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2893                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2894                 return 0;
2895         }
2896 
2897         list_del(element);
2898         DEC_STAT(&priv->fw_pend_stat);
2899 
2900 #ifdef CONFIG_IPW2100_DEBUG
2901         {
2902                 i = txq->oldest;
2903                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2904                              &txq->drv[i],
2905                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2906                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2907 
2908                 if (packet->type == DATA) {
2909                         i = (i + 1) % txq->entries;
2910 
2911                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2912                                      &txq->drv[i],
2913                                      (u32) (txq->nic + i *
2914                                             sizeof(struct ipw2100_bd)),
2915                                      (u32) txq->drv[i].host_addr,
2916                                      txq->drv[i].buf_length);
2917                 }
2918         }
2919 #endif
2920 
2921         switch (packet->type) {
2922         case DATA:
2923                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2924                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2925                                "Expecting DATA TBD but pulled "
2926                                "something else: ids %d=%d.\n",
2927                                priv->net_dev->name, txq->oldest, packet->index);
2928 
2929                 /* DATA packet; we have to unmap and free the SKB */
2930                 for (i = 0; i < frag_num; i++) {
2931                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2932 
2933                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2934                                      (packet->index + 1 + i) % txq->entries,
2935                                      tbd->host_addr, tbd->buf_length);
2936 
2937                         pci_unmap_single(priv->pci_dev,
2938                                          tbd->host_addr,
2939                                          tbd->buf_length, PCI_DMA_TODEVICE);
2940                 }
2941 
2942                 libipw_txb_free(packet->info.d_struct.txb);
2943                 packet->info.d_struct.txb = NULL;
2944 
2945                 list_add_tail(element, &priv->tx_free_list);
2946                 INC_STAT(&priv->tx_free_stat);
2947 
2948                 /* We have a free slot in the Tx queue, so wake up the
2949                  * transmit layer if it is stopped. */
2950                 if (priv->status & STATUS_ASSOCIATED)
2951                         netif_wake_queue(priv->net_dev);
2952 
2953                 /* A packet was processed by the hardware, so update the
2954                  * watchdog */
2955                 priv->net_dev->trans_start = jiffies;
2956 
2957                 break;
2958 
2959         case COMMAND:
2960                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2961                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2962                                "Expecting COMMAND TBD but pulled "
2963                                "something else: ids %d=%d.\n",
2964                                priv->net_dev->name, txq->oldest, packet->index);
2965 
2966 #ifdef CONFIG_IPW2100_DEBUG
2967                 if (packet->info.c_struct.cmd->host_command_reg <
2968                     ARRAY_SIZE(command_types))
2969                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2970                                      command_types[packet->info.c_struct.cmd->
2971                                                    host_command_reg],
2972                                      packet->info.c_struct.cmd->
2973                                      host_command_reg,
2974                                      packet->info.c_struct.cmd->cmd_status_reg);
2975 #endif
2976 
2977                 list_add_tail(element, &priv->msg_free_list);
2978                 INC_STAT(&priv->msg_free_stat);
2979                 break;
2980         }
2981 
2982         /* advance oldest used TBD pointer to start of next entry */
2983         txq->oldest = (e + 1) % txq->entries;
2984         /* increase available TBDs number */
2985         txq->available += descriptors_used;
2986         SET_STAT(&priv->txq_stat, txq->available);
2987 
2988         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2989                      jiffies - packet->jiffy_start);
2990 
2991         return (!list_empty(&priv->fw_pend_list));
2992 }
2993 
2994 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2995 {
2996         int i = 0;
2997 
2998         while (__ipw2100_tx_process(priv) && i < 200)
2999                 i++;
3000 
3001         if (i == 200) {
3002                 printk(KERN_WARNING DRV_NAME ": "
3003                        "%s: Driver is running slow (%d iters).\n",
3004                        priv->net_dev->name, i);
3005         }
3006 }
3007 
3008 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3009 {
3010         struct list_head *element;
3011         struct ipw2100_tx_packet *packet;
3012         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3013         struct ipw2100_bd *tbd;
3014         int next = txq->next;
3015 
3016         while (!list_empty(&priv->msg_pend_list)) {
3017                 /* if there isn't enough space in TBD queue, then
3018                  * don't stuff a new one in.
3019                  * NOTE: 3 are needed as a command will take one,
3020                  *       and there is a minimum of 2 that must be
3021                  *       maintained between the r and w indexes
3022                  */
3023                 if (txq->available <= 3) {
3024                         IPW_DEBUG_TX("no room in tx_queue\n");
3025                         break;
3026                 }
3027 
3028                 element = priv->msg_pend_list.next;
3029                 list_del(element);
3030                 DEC_STAT(&priv->msg_pend_stat);
3031 
3032                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3033 
3034                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3035                              &txq->drv[txq->next],
3036                              (u32) (txq->nic + txq->next *
3037                                       sizeof(struct ipw2100_bd)));
3038 
3039                 packet->index = txq->next;
3040 
3041                 tbd = &txq->drv[txq->next];
3042 
3043                 /* initialize TBD */
3044                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3045                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3046                 /* not marking number of fragments causes problems
3047                  * with f/w debug version */
3048                 tbd->num_fragments = 1;
3049                 tbd->status.info.field =
3050                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3051                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3052 
3053                 /* update TBD queue counters */
3054                 txq->next++;
3055                 txq->next %= txq->entries;
3056                 txq->available--;
3057                 DEC_STAT(&priv->txq_stat);
3058 
3059                 list_add_tail(element, &priv->fw_pend_list);
3060                 INC_STAT(&priv->fw_pend_stat);
3061         }
3062 
3063         if (txq->next != next) {
3064                 /* kick off the DMA by notifying firmware the
3065                  * write index has moved; make sure TBD stores are sync'd */
3066                 wmb();
3067                 write_register(priv->net_dev,
3068                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3069                                txq->next);
3070         }
3071 }
3072 
3073 /*
3074  * ipw2100_tx_send_data
3075  *
3076  */
3077 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3078 {
3079         struct list_head *element;
3080         struct ipw2100_tx_packet *packet;
3081         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3082         struct ipw2100_bd *tbd;
3083         int next = txq->next;
3084         int i = 0;
3085         struct ipw2100_data_header *ipw_hdr;
3086         struct libipw_hdr_3addr *hdr;
3087 
3088         while (!list_empty(&priv->tx_pend_list)) {
3089                 /* if there isn't enough space in TBD queue, then
3090                  * don't stuff a new one in.
3091                  * NOTE: 4 are needed as a data will take two,
3092                  *       and there is a minimum of 2 that must be
3093                  *       maintained between the r and w indexes
3094                  */
3095                 element = priv->tx_pend_list.next;
3096                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3097 
3098                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3099                              IPW_MAX_BDS)) {
3100                         /* TODO: Support merging buffers if more than
3101                          * IPW_MAX_BDS are used */
3102                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3103                                        "Increase fragmentation level.\n",
3104                                        priv->net_dev->name);
3105                 }
3106 
3107                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3108                         IPW_DEBUG_TX("no room in tx_queue\n");
3109                         break;
3110                 }
3111 
3112                 list_del(element);
3113                 DEC_STAT(&priv->tx_pend_stat);
3114 
3115                 tbd = &txq->drv[txq->next];
3116 
3117                 packet->index = txq->next;
3118 
3119                 ipw_hdr = packet->info.d_struct.data;
3120                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3121                     fragments[0]->data;
3122 
3123                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3124                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3125                            Addr3 = DA */
3126                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3127                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3128                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3129                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3130                            Addr3 = BSSID */
3131                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3133                 }
3134 
3135                 ipw_hdr->host_command_reg = SEND;
3136                 ipw_hdr->host_command_reg1 = 0;
3137 
3138                 /* For now we only support host based encryption */
3139                 ipw_hdr->needs_encryption = 0;
3140                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3141                 if (packet->info.d_struct.txb->nr_frags > 1)
3142                         ipw_hdr->fragment_size =
3143                             packet->info.d_struct.txb->frag_size -
3144                             LIBIPW_3ADDR_LEN;
3145                 else
3146                         ipw_hdr->fragment_size = 0;
3147 
3148                 tbd->host_addr = packet->info.d_struct.data_phys;
3149                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3150                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3151                 tbd->status.info.field =
3152                     IPW_BD_STATUS_TX_FRAME_802_3 |
3153                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3154                 txq->next++;
3155                 txq->next %= txq->entries;
3156 
3157                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3158                              packet->index, tbd->host_addr, tbd->buf_length);
3159 #ifdef CONFIG_IPW2100_DEBUG
3160                 if (packet->info.d_struct.txb->nr_frags > 1)
3161                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3162                                        packet->info.d_struct.txb->nr_frags);
3163 #endif
3164 
3165                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3166                         tbd = &txq->drv[txq->next];
3167                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3168                                 tbd->status.info.field =
3169                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3170                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3171                         else
3172                                 tbd->status.info.field =
3173                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3174                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175 
3176                         tbd->buf_length = packet->info.d_struct.txb->
3177                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3178 
3179                         tbd->host_addr = pci_map_single(priv->pci_dev,
3180                                                         packet->info.d_struct.
3181                                                         txb->fragments[i]->
3182                                                         data +
3183                                                         LIBIPW_3ADDR_LEN,
3184                                                         tbd->buf_length,
3185                                                         PCI_DMA_TODEVICE);
3186 
3187                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3188                                      txq->next, tbd->host_addr,
3189                                      tbd->buf_length);
3190 
3191                         pci_dma_sync_single_for_device(priv->pci_dev,
3192                                                        tbd->host_addr,
3193                                                        tbd->buf_length,
3194                                                        PCI_DMA_TODEVICE);
3195 
3196                         txq->next++;
3197                         txq->next %= txq->entries;
3198                 }
3199 
3200                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3201                 SET_STAT(&priv->txq_stat, txq->available);
3202 
3203                 list_add_tail(element, &priv->fw_pend_list);
3204                 INC_STAT(&priv->fw_pend_stat);
3205         }
3206 
3207         if (txq->next != next) {
3208                 /* kick off the DMA by notifying firmware the
3209                  * write index has moved; make sure TBD stores are sync'd */
3210                 write_register(priv->net_dev,
3211                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3212                                txq->next);
3213         }
3214 }
3215 
3216 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3217 {
3218         struct net_device *dev = priv->net_dev;
3219         unsigned long flags;
3220         u32 inta, tmp;
3221 
3222         spin_lock_irqsave(&priv->low_lock, flags);
3223         ipw2100_disable_interrupts(priv);
3224 
3225         read_register(dev, IPW_REG_INTA, &inta);
3226 
3227         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3228                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3229 
3230         priv->in_isr++;
3231         priv->interrupts++;
3232 
3233         /* We do not loop and keep polling for more interrupts as this
3234          * is frowned upon and doesn't play nicely with other potentially
3235          * chained IRQs */
3236         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3237                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3238 
3239         if (inta & IPW2100_INTA_FATAL_ERROR) {
3240                 printk(KERN_WARNING DRV_NAME
3241                        ": Fatal interrupt. Scheduling firmware restart.\n");
3242                 priv->inta_other++;
3243                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3244 
3245                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3246                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3247                                priv->net_dev->name, priv->fatal_error);
3248 
3249                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3250                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3251                                priv->net_dev->name, tmp);
3252 
3253                 /* Wake up any sleeping jobs */
3254                 schedule_reset(priv);
3255         }
3256 
3257         if (inta & IPW2100_INTA_PARITY_ERROR) {
3258                 printk(KERN_ERR DRV_NAME
3259                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3260                 priv->inta_other++;
3261                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3262         }
3263 
3264         if (inta & IPW2100_INTA_RX_TRANSFER) {
3265                 IPW_DEBUG_ISR("RX interrupt\n");
3266 
3267                 priv->rx_interrupts++;
3268 
3269                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3270 
3271                 __ipw2100_rx_process(priv);
3272                 __ipw2100_tx_complete(priv);
3273         }
3274 
3275         if (inta & IPW2100_INTA_TX_TRANSFER) {
3276                 IPW_DEBUG_ISR("TX interrupt\n");
3277 
3278                 priv->tx_interrupts++;
3279 
3280                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3281 
3282                 __ipw2100_tx_complete(priv);
3283                 ipw2100_tx_send_commands(priv);
3284                 ipw2100_tx_send_data(priv);
3285         }
3286 
3287         if (inta & IPW2100_INTA_TX_COMPLETE) {
3288                 IPW_DEBUG_ISR("TX complete\n");
3289                 priv->inta_other++;
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3291 
3292                 __ipw2100_tx_complete(priv);
3293         }
3294 
3295         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3296                 /* ipw2100_handle_event(dev); */
3297                 priv->inta_other++;
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3299         }
3300 
3301         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3302                 IPW_DEBUG_ISR("FW init done interrupt\n");
3303                 priv->inta_other++;
3304 
3305                 read_register(dev, IPW_REG_INTA, &tmp);
3306                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3307                            IPW2100_INTA_PARITY_ERROR)) {
3308                         write_register(dev, IPW_REG_INTA,
3309                                        IPW2100_INTA_FATAL_ERROR |
3310                                        IPW2100_INTA_PARITY_ERROR);
3311                 }
3312 
3313                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3314         }
3315 
3316         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3317                 IPW_DEBUG_ISR("Status change interrupt\n");
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3320         }
3321 
3322         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3323                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3324                 priv->inta_other++;
3325                 write_register(dev, IPW_REG_INTA,
3326                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3327         }
3328 
3329         priv->in_isr--;
3330         ipw2100_enable_interrupts(priv);
3331 
3332         spin_unlock_irqrestore(&priv->low_lock, flags);
3333 
3334         IPW_DEBUG_ISR("exit\n");
3335 }
3336 
3337 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3338 {
3339         struct ipw2100_priv *priv = data;
3340         u32 inta, inta_mask;
3341 
3342         if (!data)
3343                 return IRQ_NONE;
3344 
3345         spin_lock(&priv->low_lock);
3346 
3347         /* We check to see if we should be ignoring interrupts before
3348          * we touch the hardware.  During ucode load if we try and handle
3349          * an interrupt we can cause keyboard problems as well as cause
3350          * the ucode to fail to initialize */
3351         if (!(priv->status & STATUS_INT_ENABLED)) {
3352                 /* Shared IRQ */
3353                 goto none;
3354         }
3355 
3356         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3357         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3358 
3359         if (inta == 0xFFFFFFFF) {
3360                 /* Hardware disappeared */
3361                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3362                 goto none;
3363         }
3364 
3365         inta &= IPW_INTERRUPT_MASK;
3366 
3367         if (!(inta & inta_mask)) {
3368                 /* Shared interrupt */
3369                 goto none;
3370         }
3371 
3372         /* We disable the hardware interrupt here just to prevent unneeded
3373          * calls to be made.  We disable this again within the actual
3374          * work tasklet, so if another part of the code re-enables the
3375          * interrupt, that is fine */
3376         ipw2100_disable_interrupts(priv);
3377 
3378         tasklet_schedule(&priv->irq_tasklet);
3379         spin_unlock(&priv->low_lock);
3380 
3381         return IRQ_HANDLED;
3382       none:
3383         spin_unlock(&priv->low_lock);
3384         return IRQ_NONE;
3385 }
3386 
3387 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3388                               struct net_device *dev, int pri)
3389 {
3390         struct ipw2100_priv *priv = libipw_priv(dev);
3391         struct list_head *element;
3392         struct ipw2100_tx_packet *packet;
3393         unsigned long flags;
3394 
3395         spin_lock_irqsave(&priv->low_lock, flags);
3396 
3397         if (!(priv->status & STATUS_ASSOCIATED)) {
3398                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3399                 priv->net_dev->stats.tx_carrier_errors++;
3400                 netif_stop_queue(dev);
3401                 goto fail_unlock;
3402         }
3403 
3404         if (list_empty(&priv->tx_free_list))
3405                 goto fail_unlock;
3406 
3407         element = priv->tx_free_list.next;
3408         packet = list_entry(element, struct ipw2100_tx_packet, list);
3409 
3410         packet->info.d_struct.txb = txb;
3411 
3412         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3413         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3414 
3415         packet->jiffy_start = jiffies;
3416 
3417         list_del(element);
3418         DEC_STAT(&priv->tx_free_stat);
3419 
3420         list_add_tail(element, &priv->tx_pend_list);
3421         INC_STAT(&priv->tx_pend_stat);
3422 
3423         ipw2100_tx_send_data(priv);
3424 
3425         spin_unlock_irqrestore(&priv->low_lock, flags);
3426         return NETDEV_TX_OK;
3427 
3428 fail_unlock:
3429         netif_stop_queue(dev);
3430         spin_unlock_irqrestore(&priv->low_lock, flags);
3431         return NETDEV_TX_BUSY;
3432 }
3433 
3434 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3435 {
3436         int i, j, err = -EINVAL;
3437         void *v;
3438         dma_addr_t p;
3439 
3440         priv->msg_buffers =
3441             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3442                     GFP_KERNEL);
3443         if (!priv->msg_buffers)
3444                 return -ENOMEM;
3445 
3446         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3447                 v = pci_zalloc_consistent(priv->pci_dev,
3448                                           sizeof(struct ipw2100_cmd_header),
3449                                           &p);
3450                 if (!v) {
3451                         printk(KERN_ERR DRV_NAME ": "
3452                                "%s: PCI alloc failed for msg "
3453                                "buffers.\n", priv->net_dev->name);
3454                         err = -ENOMEM;
3455                         break;
3456                 }
3457 
3458                 priv->msg_buffers[i].type = COMMAND;
3459                 priv->msg_buffers[i].info.c_struct.cmd =
3460                     (struct ipw2100_cmd_header *)v;
3461                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3462         }
3463 
3464         if (i == IPW_COMMAND_POOL_SIZE)
3465                 return 0;
3466 
3467         for (j = 0; j < i; j++) {
3468                 pci_free_consistent(priv->pci_dev,
3469                                     sizeof(struct ipw2100_cmd_header),
3470                                     priv->msg_buffers[j].info.c_struct.cmd,
3471                                     priv->msg_buffers[j].info.c_struct.
3472                                     cmd_phys);
3473         }
3474 
3475         kfree(priv->msg_buffers);
3476         priv->msg_buffers = NULL;
3477 
3478         return err;
3479 }
3480 
3481 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3482 {
3483         int i;
3484 
3485         INIT_LIST_HEAD(&priv->msg_free_list);
3486         INIT_LIST_HEAD(&priv->msg_pend_list);
3487 
3488         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3489                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3490         SET_STAT(&priv->msg_free_stat, i);
3491 
3492         return 0;
3493 }
3494 
3495 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3496 {
3497         int i;
3498 
3499         if (!priv->msg_buffers)
3500                 return;
3501 
3502         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3503                 pci_free_consistent(priv->pci_dev,
3504                                     sizeof(struct ipw2100_cmd_header),
3505                                     priv->msg_buffers[i].info.c_struct.cmd,
3506                                     priv->msg_buffers[i].info.c_struct.
3507                                     cmd_phys);
3508         }
3509 
3510         kfree(priv->msg_buffers);
3511         priv->msg_buffers = NULL;
3512 }
3513 
3514 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3515                         char *buf)
3516 {
3517         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3518         char *out = buf;
3519         int i, j;
3520         u32 val;
3521 
3522         for (i = 0; i < 16; i++) {
3523                 out += sprintf(out, "[%08X] ", i * 16);
3524                 for (j = 0; j < 16; j += 4) {
3525                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3526                         out += sprintf(out, "%08X ", val);
3527                 }
3528                 out += sprintf(out, "\n");
3529         }
3530 
3531         return out - buf;
3532 }
3533 
3534 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3535 
3536 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3537                         char *buf)
3538 {
3539         struct ipw2100_priv *p = dev_get_drvdata(d);
3540         return sprintf(buf, "0x%08x\n", (int)p->config);
3541 }
3542 
3543 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3544 
3545 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3546                            char *buf)
3547 {
3548         struct ipw2100_priv *p = dev_get_drvdata(d);
3549         return sprintf(buf, "0x%08x\n", (int)p->status);
3550 }
3551 
3552 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3553 
3554 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3555                                char *buf)
3556 {
3557         struct ipw2100_priv *p = dev_get_drvdata(d);
3558         return sprintf(buf, "0x%08x\n", (int)p->capability);
3559 }
3560 
3561 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3562 
3563 #define IPW2100_REG(x) { IPW_ ##x, #x }
3564 static const struct {
3565         u32 addr;
3566         const char *name;
3567 } hw_data[] = {
3568 IPW2100_REG(REG_GP_CNTRL),
3569             IPW2100_REG(REG_GPIO),
3570             IPW2100_REG(REG_INTA),
3571             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3572 #define IPW2100_NIC(x, s) { x, #x, s }
3573 static const struct {
3574         u32 addr;
3575         const char *name;
3576         size_t size;
3577 } nic_data[] = {
3578 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3579             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3580 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3581 static const struct {
3582         u8 index;
3583         const char *name;
3584         const char *desc;
3585 } ord_data[] = {
3586 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3587             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3588                                 "successful Host Tx's (MSDU)"),
3589             IPW2100_ORD(STAT_TX_DIR_DATA,
3590                                 "successful Directed Tx's (MSDU)"),
3591             IPW2100_ORD(STAT_TX_DIR_DATA1,
3592                                 "successful Directed Tx's (MSDU) @ 1MB"),
3593             IPW2100_ORD(STAT_TX_DIR_DATA2,
3594                                 "successful Directed Tx's (MSDU) @ 2MB"),
3595             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3596                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA11,
3598                                 "successful Directed Tx's (MSDU) @ 11MB"),
3599             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3600                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3601             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3602                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3603             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3604                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3605             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3606                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3607             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3608             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3609             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3610             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3611             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3612             IPW2100_ORD(STAT_TX_ASSN_RESP,
3613                                 "successful Association response Tx's"),
3614             IPW2100_ORD(STAT_TX_REASSN,
3615                                 "successful Reassociation Tx's"),
3616             IPW2100_ORD(STAT_TX_REASSN_RESP,
3617                                 "successful Reassociation response Tx's"),
3618             IPW2100_ORD(STAT_TX_PROBE,
3619                                 "probes successfully transmitted"),
3620             IPW2100_ORD(STAT_TX_PROBE_RESP,
3621                                 "probe responses successfully transmitted"),
3622             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3623             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3624             IPW2100_ORD(STAT_TX_DISASSN,
3625                                 "successful Disassociation TX"),
3626             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3627             IPW2100_ORD(STAT_TX_DEAUTH,
3628                                 "successful Deauthentication TX"),
3629             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3630                                 "Total successful Tx data bytes"),
3631             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3632             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3633             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3634             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3635             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3636             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3637             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3638                                 "times max tries in a hop failed"),
3639             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3640                                 "times disassociation failed"),
3641             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3642             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3643             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3644             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3645             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3646             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3647             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3648                                 "directed packets at 5.5MB"),
3649             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3650             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3651             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3652                                 "nondirected packets at 1MB"),
3653             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3654                                 "nondirected packets at 2MB"),
3655             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3656                                 "nondirected packets at 5.5MB"),
3657             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3658                                 "nondirected packets at 11MB"),
3659             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3660             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3661                                                                     "Rx CTS"),
3662             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3663             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3664             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3665             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3666             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3667             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3668             IPW2100_ORD(STAT_RX_REASSN_RESP,
3669                                 "Reassociation response Rx's"),
3670             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3671             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3672             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3673             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3674             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3675             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3676             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3677             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3678                                 "Total rx data bytes received"),
3679             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3680             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3681             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3682             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3683             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3684             IPW2100_ORD(STAT_RX_DUPLICATE1,
3685                                 "duplicate rx packets at 1MB"),
3686             IPW2100_ORD(STAT_RX_DUPLICATE2,
3687                                 "duplicate rx packets at 2MB"),
3688             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3689                                 "duplicate rx packets at 5.5MB"),
3690             IPW2100_ORD(STAT_RX_DUPLICATE11,
3691                                 "duplicate rx packets at 11MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3693             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3694             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3695             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3696             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3697                                 "rx frames with invalid protocol"),
3698             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3699             IPW2100_ORD(STAT_RX_NO_BUFFER,
3700                                 "rx frames rejected due to no buffer"),
3701             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3702                                 "rx frames dropped due to missing fragment"),
3703             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3704                                 "rx frames dropped due to non-sequential fragment"),
3705             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3706                                 "rx frames dropped due to unmatched 1st frame"),
3707             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3708                                 "rx frames dropped due to uncompleted frame"),
3709             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3710                                 "ICV errors during decryption"),
3711             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3712             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3713             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3714                                 "poll response timeouts"),
3715             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3716                                 "timeouts waiting for last {broad,multi}cast pkt"),
3717             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3718             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3719             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3720             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3721             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3722                                 "current calculation of % missed beacons"),
3723             IPW2100_ORD(STAT_PERCENT_RETRIES,
3724                                 "current calculation of % missed tx retries"),
3725             IPW2100_ORD(ASSOCIATED_AP_PTR,
3726                                 "0 if not associated, else pointer to AP table entry"),
3727             IPW2100_ORD(AVAILABLE_AP_CNT,
3728                                 "AP's decsribed in the AP table"),
3729             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3730             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3731             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3732             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3733                                 "failures due to response fail"),
3734             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3735             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3736             IPW2100_ORD(STAT_ROAM_INHIBIT,
3737                                 "times roaming was inhibited due to activity"),
3738             IPW2100_ORD(RSSI_AT_ASSN,
3739                                 "RSSI of associated AP at time of association"),
3740             IPW2100_ORD(STAT_ASSN_CAUSE1,
3741                                 "reassociation: no probe response or TX on hop"),
3742             IPW2100_ORD(STAT_ASSN_CAUSE2,
3743                                 "reassociation: poor tx/rx quality"),
3744             IPW2100_ORD(STAT_ASSN_CAUSE3,
3745                                 "reassociation: tx/rx quality (excessive AP load"),
3746             IPW2100_ORD(STAT_ASSN_CAUSE4,
3747                                 "reassociation: AP RSSI level"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE5,
3749                                 "reassociations due to load leveling"),
3750             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3751             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3752                                 "times authentication response failed"),
3753             IPW2100_ORD(STATION_TABLE_CNT,
3754                                 "entries in association table"),
3755             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3756             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3757             IPW2100_ORD(COUNTRY_CODE,
3758                                 "IEEE country code as recv'd from beacon"),
3759             IPW2100_ORD(COUNTRY_CHANNELS,
3760                                 "channels supported by country"),
3761             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3762             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3763             IPW2100_ORD(ANTENNA_DIVERSITY,
3764                                 "TRUE if antenna diversity is disabled"),
3765             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3766             IPW2100_ORD(OUR_FREQ,
3767                                 "current radio freq lower digits - channel ID"),
3768             IPW2100_ORD(RTC_TIME, "current RTC time"),
3769             IPW2100_ORD(PORT_TYPE, "operating mode"),
3770             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3771             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3772             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3773             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3774             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3775             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3776             IPW2100_ORD(CAPABILITIES,
3777                                 "Management frame capability field"),
3778             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3779             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3780             IPW2100_ORD(RTS_THRESHOLD,
3781                                 "Min packet length for RTS handshaking"),
3782             IPW2100_ORD(INT_MODE, "International mode"),
3783             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3784                                 "protocol frag threshold"),
3785             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3786                                 "EEPROM offset in SRAM"),
3787             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3788                                 "EEPROM size in SRAM"),
3789             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3790             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3791                                 "EEPROM IBSS 11b channel set"),
3792             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3793             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3794             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3795             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3796             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3797 
3798 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3799                               char *buf)
3800 {
3801         int i;
3802         struct ipw2100_priv *priv = dev_get_drvdata(d);
3803         struct net_device *dev = priv->net_dev;
3804         char *out = buf;
3805         u32 val = 0;
3806 
3807         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3808 
3809         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3810                 read_register(dev, hw_data[i].addr, &val);
3811                 out += sprintf(out, "%30s [%08X] : %08X\n",
3812                                hw_data[i].name, hw_data[i].addr, val);
3813         }
3814 
3815         return out - buf;
3816 }
3817 
3818 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3819 
3820 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3821                              char *buf)
3822 {
3823         struct ipw2100_priv *priv = dev_get_drvdata(d);
3824         struct net_device *dev = priv->net_dev;
3825         char *out = buf;
3826         int i;
3827 
3828         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3829 
3830         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3831                 u8 tmp8;
3832                 u16 tmp16;
3833                 u32 tmp32;
3834 
3835                 switch (nic_data[i].size) {
3836                 case 1:
3837                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3838                         out += sprintf(out, "%30s [%08X] : %02X\n",
3839                                        nic_data[i].name, nic_data[i].addr,
3840                                        tmp8);
3841                         break;
3842                 case 2:
3843                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3844                         out += sprintf(out, "%30s [%08X] : %04X\n",
3845                                        nic_data[i].name, nic_data[i].addr,
3846                                        tmp16);
3847                         break;
3848                 case 4:
3849                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3850                         out += sprintf(out, "%30s [%08X] : %08X\n",
3851                                        nic_data[i].name, nic_data[i].addr,
3852                                        tmp32);
3853                         break;
3854                 }
3855         }
3856         return out - buf;
3857 }
3858 
3859 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3860 
3861 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3862                            char *buf)
3863 {
3864         struct ipw2100_priv *priv = dev_get_drvdata(d);
3865         struct net_device *dev = priv->net_dev;
3866         static unsigned long loop = 0;
3867         int len = 0;
3868         u32 buffer[4];
3869         int i;
3870         char line[81];
3871 
3872         if (loop >= 0x30000)
3873                 loop = 0;
3874 
3875         /* sysfs provides us PAGE_SIZE buffer */
3876         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3877 
3878                 if (priv->snapshot[0])
3879                         for (i = 0; i < 4; i++)
3880                                 buffer[i] =
3881                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3882                 else
3883                         for (i = 0; i < 4; i++)
3884                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3885 
3886                 if (priv->dump_raw)
3887                         len += sprintf(buf + len,
3888                                        "%c%c%c%c"
3889                                        "%c%c%c%c"
3890                                        "%c%c%c%c"
3891                                        "%c%c%c%c",
3892                                        ((u8 *) buffer)[0x0],
3893                                        ((u8 *) buffer)[0x1],
3894                                        ((u8 *) buffer)[0x2],
3895                                        ((u8 *) buffer)[0x3],
3896                                        ((u8 *) buffer)[0x4],
3897                                        ((u8 *) buffer)[0x5],
3898                                        ((u8 *) buffer)[0x6],
3899                                        ((u8 *) buffer)[0x7],
3900                                        ((u8 *) buffer)[0x8],
3901                                        ((u8 *) buffer)[0x9],
3902                                        ((u8 *) buffer)[0xa],
3903                                        ((u8 *) buffer)[0xb],
3904                                        ((u8 *) buffer)[0xc],
3905                                        ((u8 *) buffer)[0xd],
3906                                        ((u8 *) buffer)[0xe],
3907                                        ((u8 *) buffer)[0xf]);
3908                 else
3909                         len += sprintf(buf + len, "%s\n",
3910                                        snprint_line(line, sizeof(line),
3911                                                     (u8 *) buffer, 16, loop));
3912                 loop += 16;
3913         }
3914 
3915         return len;
3916 }
3917 
3918 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3919                             const char *buf, size_t count)
3920 {
3921         struct ipw2100_priv *priv = dev_get_drvdata(d);
3922         struct net_device *dev = priv->net_dev;
3923         const char *p = buf;
3924 
3925         (void)dev;              /* kill unused-var warning for debug-only code */
3926 
3927         if (count < 1)
3928                 return count;
3929 
3930         if (p[0] == '1' ||
3931             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3932                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3933                                dev->name);
3934                 priv->dump_raw = 1;
3935 
3936         } else if (p[0] == '' || (count >= 2 && tolower(p[0]) == 'o' &&
3937                                    tolower(p[1]) == 'f')) {
3938                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3939                                dev->name);
3940                 priv->dump_raw = 0;
3941 
3942         } else if (tolower(p[0]) == 'r') {
3943                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3944                 ipw2100_snapshot_free(priv);
3945 
3946         } else
3947                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3948                                "reset = clear memory snapshot\n", dev->name);
3949 
3950         return count;
3951 }
3952 
3953 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3954 
3955 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3956                              char *buf)
3957 {
3958         struct ipw2100_priv *priv = dev_get_drvdata(d);
3959         u32 val = 0;
3960         int len = 0;
3961         u32 val_len;
3962         static int loop = 0;
3963 
3964         if (priv->status & STATUS_RF_KILL_MASK)
3965                 return 0;
3966 
3967         if (loop >= ARRAY_SIZE(ord_data))
3968                 loop = 0;
3969 
3970         /* sysfs provides us PAGE_SIZE buffer */
3971         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3972                 val_len = sizeof(u32);
3973 
3974                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3975                                         &val_len))
3976                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3977                                        ord_data[loop].index,
3978                                        ord_data[loop].desc);
3979                 else
3980                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3981                                        ord_data[loop].index, val,
3982                                        ord_data[loop].desc);
3983                 loop++;
3984         }
3985 
3986         return len;
3987 }
3988 
3989 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3990 
3991 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3992                           char *buf)
3993 {
3994         struct ipw2100_priv *priv = dev_get_drvdata(d);
3995         char *out = buf;
3996 
3997         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3998                        priv->interrupts, priv->tx_interrupts,
3999                        priv->rx_interrupts, priv->inta_other);
4000         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4001         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4002 #ifdef CONFIG_IPW2100_DEBUG
4003         out += sprintf(out, "packet mismatch image: %s\n",
4004                        priv->snapshot[0] ? "YES" : "NO");
4005 #endif
4006 
4007         return out - buf;
4008 }
4009 
4010 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4011 
4012 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4013 {
4014         int err;
4015 
4016         if (mode == priv->ieee->iw_mode)
4017                 return 0;
4018 
4019         err = ipw2100_disable_adapter(priv);
4020         if (err) {
4021                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4022                        priv->net_dev->name, err);
4023                 return err;
4024         }
4025 
4026         switch (mode) {
4027         case IW_MODE_INFRA:
4028                 priv->net_dev->type = ARPHRD_ETHER;
4029                 break;
4030         case IW_MODE_ADHOC:
4031                 priv->net_dev->type = ARPHRD_ETHER;
4032                 break;
4033 #ifdef CONFIG_IPW2100_MONITOR
4034         case IW_MODE_MONITOR:
4035                 priv->last_mode = priv->ieee->iw_mode;
4036                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4037                 break;
4038 #endif                          /* CONFIG_IPW2100_MONITOR */
4039         }
4040 
4041         priv->ieee->iw_mode = mode;
4042 
4043 #ifdef CONFIG_PM
4044         /* Indicate ipw2100_download_firmware download firmware
4045          * from disk instead of memory. */
4046         ipw2100_firmware.version = 0;
4047 #endif
4048 
4049         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4050         priv->reset_backoff = 0;
4051         schedule_reset(priv);
4052 
4053         return 0;
4054 }
4055 
4056 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4057                               char *buf)
4058 {
4059         struct ipw2100_priv *priv = dev_get_drvdata(d);
4060         int len = 0;
4061 
4062 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4063 
4064         if (priv->status & STATUS_ASSOCIATED)
4065                 len += sprintf(buf + len, "connected: %lu\n",
4066                                get_seconds() - priv->connect_start);
4067         else
4068                 len += sprintf(buf + len, "not connected\n");
4069 
4070         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4071         DUMP_VAR(status, "08lx");
4072         DUMP_VAR(config, "08lx");
4073         DUMP_VAR(capability, "08lx");
4074 
4075         len +=
4076             sprintf(buf + len, "last_rtc: %lu\n",
4077                     (unsigned long)priv->last_rtc);
4078 
4079         DUMP_VAR(fatal_error, "d");
4080         DUMP_VAR(stop_hang_check, "d");
4081         DUMP_VAR(stop_rf_kill, "d");
4082         DUMP_VAR(messages_sent, "d");
4083 
4084         DUMP_VAR(tx_pend_stat.value, "d");
4085         DUMP_VAR(tx_pend_stat.hi, "d");
4086 
4087         DUMP_VAR(tx_free_stat.value, "d");
4088         DUMP_VAR(tx_free_stat.lo, "d");
4089 
4090         DUMP_VAR(msg_free_stat.value, "d");
4091         DUMP_VAR(msg_free_stat.lo, "d");
4092 
4093         DUMP_VAR(msg_pend_stat.value, "d");
4094         DUMP_VAR(msg_pend_stat.hi, "d");
4095 
4096         DUMP_VAR(fw_pend_stat.value, "d");
4097         DUMP_VAR(fw_pend_stat.hi, "d");
4098 
4099         DUMP_VAR(txq_stat.value, "d");
4100         DUMP_VAR(txq_stat.lo, "d");
4101 
4102         DUMP_VAR(ieee->scans, "d");
4103         DUMP_VAR(reset_backoff, "d");
4104 
4105         return len;
4106 }
4107 
4108 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4109 
4110 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4111                             char *buf)
4112 {
4113         struct ipw2100_priv *priv = dev_get_drvdata(d);
4114         char essid[IW_ESSID_MAX_SIZE + 1];
4115         u8 bssid[ETH_ALEN];
4116         u32 chan = 0;
4117         char *out = buf;
4118         unsigned int length;
4119         int ret;
4120 
4121         if (priv->status & STATUS_RF_KILL_MASK)
4122                 return 0;
4123 
4124         memset(essid, 0, sizeof(essid));
4125         memset(bssid, 0, sizeof(bssid));
4126 
4127         length = IW_ESSID_MAX_SIZE;
4128         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4129         if (ret)
4130                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4131                                __LINE__);
4132 
4133         length = sizeof(bssid);
4134         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4135                                   bssid, &length);
4136         if (ret)
4137                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138                                __LINE__);
4139 
4140         length = sizeof(u32);
4141         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4142         if (ret)
4143                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144                                __LINE__);
4145 
4146         out += sprintf(out, "ESSID: %s\n", essid);
4147         out += sprintf(out, "BSSID:   %pM\n", bssid);
4148         out += sprintf(out, "Channel: %d\n", chan);
4149 
4150         return out - buf;
4151 }
4152 
4153 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4154 
4155 #ifdef CONFIG_IPW2100_DEBUG
4156 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4157 {
4158         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4159 }
4160 
4161 static ssize_t store_debug_level(struct device_driver *d,
4162                                  const char *buf, size_t count)
4163 {
4164         u32 val;
4165         int ret;
4166 
4167         ret = kstrtou32(buf, 0, &val);
4168         if (ret)
4169                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4170         else
4171                 ipw2100_debug_level = val;
4172 
4173         return strnlen(buf, count);
4174 }
4175 
4176 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4177                    store_debug_level);
4178 #endif                          /* CONFIG_IPW2100_DEBUG */
4179 
4180 static ssize_t show_fatal_error(struct device *d,
4181                                 struct device_attribute *attr, char *buf)
4182 {
4183         struct ipw2100_priv *priv = dev_get_drvdata(d);
4184         char *out = buf;
4185         int i;
4186 
4187         if (priv->fatal_error)
4188                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4189         else
4190                 out += sprintf(out, "\n");
4191 
4192         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4193                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4194                                         IPW2100_ERROR_QUEUE])
4195                         continue;
4196 
4197                 out += sprintf(out, "%d. 0x%08X\n", i,
4198                                priv->fatal_errors[(priv->fatal_index - i) %
4199                                                   IPW2100_ERROR_QUEUE]);
4200         }
4201 
4202         return out - buf;
4203 }
4204 
4205 static ssize_t store_fatal_error(struct device *d,
4206                                  struct device_attribute *attr, const char *buf,
4207                                  size_t count)
4208 {
4209         struct ipw2100_priv *priv = dev_get_drvdata(d);
4210         schedule_reset(priv);
4211         return count;
4212 }
4213 
4214 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4215                    store_fatal_error);
4216 
4217 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4218                              char *buf)
4219 {
4220         struct ipw2100_priv *priv = dev_get_drvdata(d);
4221         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4222 }
4223 
4224 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4225                               const char *buf, size_t count)
4226 {
4227         struct ipw2100_priv *priv = dev_get_drvdata(d);
4228         struct net_device *dev = priv->net_dev;
4229         unsigned long val;
4230         int ret;
4231 
4232         (void)dev;              /* kill unused-var warning for debug-only code */
4233 
4234         IPW_DEBUG_INFO("enter\n");
4235 
4236         ret = kstrtoul(buf, 0, &val);
4237         if (ret) {
4238                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4239         } else {
4240                 priv->ieee->scan_age = val;
4241                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4242         }
4243 
4244         IPW_DEBUG_INFO("exit\n");
4245         return strnlen(buf, count);
4246 }
4247 
4248 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4249 
4250 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4251                             char *buf)
4252 {
4253         /* 0 - RF kill not enabled
4254            1 - SW based RF kill active (sysfs)
4255            2 - HW based RF kill active
4256            3 - Both HW and SW baed RF kill active */
4257         struct ipw2100_priv *priv = dev_get_drvdata(d);
4258         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4259             (rf_kill_active(priv) ? 0x2 : 0x0);
4260         return sprintf(buf, "%i\n", val);
4261 }
4262 
4263 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4264 {
4265         if ((disable_radio ? 1 : 0) ==
4266             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4267                 return 0;
4268 
4269         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4270                           disable_radio ? "OFF" : "ON");
4271 
4272         mutex_lock(&priv->action_mutex);
4273 
4274         if (disable_radio) {
4275                 priv->status |= STATUS_RF_KILL_SW;
4276                 ipw2100_down(priv);
4277         } else {
4278                 priv->status &= ~STATUS_RF_KILL_SW;
4279                 if (rf_kill_active(priv)) {
4280                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4281                                           "disabled by HW switch\n");
4282                         /* Make sure the RF_KILL check timer is running */
4283                         priv->stop_rf_kill = 0;
4284                         mod_delayed_work(system_wq, &priv->rf_kill,
4285                                          round_jiffies_relative(HZ));
4286                 } else
4287                         schedule_reset(priv);
4288         }
4289 
4290         mutex_unlock(&priv->action_mutex);
4291         return 1;
4292 }
4293 
4294 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4295                              const char *buf, size_t count)
4296 {
4297         struct ipw2100_priv *priv = dev_get_drvdata(d);
4298         ipw_radio_kill_sw(priv, buf[0] == '1');
4299         return count;
4300 }
4301 
4302 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4303 
4304 static struct attribute *ipw2100_sysfs_entries[] = {
4305         &dev_attr_hardware.attr,
4306         &dev_attr_registers.attr,
4307         &dev_attr_ordinals.attr,
4308         &dev_attr_pci.attr,
4309         &dev_attr_stats.attr,
4310         &dev_attr_internals.attr,
4311         &dev_attr_bssinfo.attr,
4312         &dev_attr_memory.attr,
4313         &dev_attr_scan_age.attr,
4314         &dev_attr_fatal_error.attr,
4315         &dev_attr_rf_kill.attr,
4316         &dev_attr_cfg.attr,
4317         &dev_attr_status.attr,
4318         &dev_attr_capability.attr,
4319         NULL,
4320 };
4321 
4322 static struct attribute_group ipw2100_attribute_group = {
4323         .attrs = ipw2100_sysfs_entries,
4324 };
4325 
4326 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4327 {
4328         struct ipw2100_status_queue *q = &priv->status_queue;
4329 
4330         IPW_DEBUG_INFO("enter\n");
4331 
4332         q->size = entries * sizeof(struct ipw2100_status);
4333         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4334         if (!q->drv) {
4335                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4336                 return -ENOMEM;
4337         }
4338 
4339         IPW_DEBUG_INFO("exit\n");
4340 
4341         return 0;
4342 }
4343 
4344 static void status_queue_free(struct ipw2100_priv *priv)
4345 {
4346         IPW_DEBUG_INFO("enter\n");
4347 
4348         if (priv->status_queue.drv) {
4349                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4350                                     priv->status_queue.drv,
4351                                     priv->status_queue.nic);
4352                 priv->status_queue.drv = NULL;
4353         }
4354 
4355         IPW_DEBUG_INFO("exit\n");
4356 }
4357 
4358 static int bd_queue_allocate(struct ipw2100_priv *priv,
4359                              struct ipw2100_bd_queue *q, int entries)
4360 {
4361         IPW_DEBUG_INFO("enter\n");
4362 
4363         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4364 
4365         q->entries = entries;
4366         q->size = entries * sizeof(struct ipw2100_bd);
4367         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4368         if (!q->drv) {
4369                 IPW_DEBUG_INFO
4370                     ("can't allocate shared memory for buffer descriptors\n");
4371                 return -ENOMEM;
4372         }
4373 
4374         IPW_DEBUG_INFO("exit\n");
4375 
4376         return 0;
4377 }
4378 
4379 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4380 {
4381         IPW_DEBUG_INFO("enter\n");
4382 
4383         if (!q)
4384                 return;
4385 
4386         if (q->drv) {
4387                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4388                 q->drv = NULL;
4389         }
4390 
4391         IPW_DEBUG_INFO("exit\n");
4392 }
4393 
4394 static void bd_queue_initialize(struct ipw2100_priv *priv,
4395                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4396                                 u32 r, u32 w)
4397 {
4398         IPW_DEBUG_INFO("enter\n");
4399 
4400         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4401                        (u32) q->nic);
4402 
4403         write_register(priv->net_dev, base, q->nic);
4404         write_register(priv->net_dev, size, q->entries);
4405         write_register(priv->net_dev, r, q->oldest);
4406         write_register(priv->net_dev, w, q->next);
4407 
4408         IPW_DEBUG_INFO("exit\n");
4409 }
4410 
4411 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4412 {
4413         priv->stop_rf_kill = 1;
4414         priv->stop_hang_check = 1;
4415         cancel_delayed_work_sync(&priv->reset_work);
4416         cancel_delayed_work_sync(&priv->security_work);
4417         cancel_delayed_work_sync(&priv->wx_event_work);
4418         cancel_delayed_work_sync(&priv->hang_check);
4419         cancel_delayed_work_sync(&priv->rf_kill);
4420         cancel_delayed_work_sync(&priv->scan_event);
4421 }
4422 
4423 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4424 {
4425         int i, j, err = -EINVAL;
4426         void *v;
4427         dma_addr_t p;
4428 
4429         IPW_DEBUG_INFO("enter\n");
4430 
4431         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4432         if (err) {
4433                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4434                                 priv->net_dev->name);
4435                 return err;
4436         }
4437 
4438         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4439                                          sizeof(struct ipw2100_tx_packet),
4440                                          GFP_ATOMIC);
4441         if (!priv->tx_buffers) {
4442                 bd_queue_free(priv, &priv->tx_queue);
4443                 return -ENOMEM;
4444         }
4445 
4446         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4447                 v = pci_alloc_consistent(priv->pci_dev,
4448                                          sizeof(struct ipw2100_data_header),
4449                                          &p);
4450                 if (!v) {
4451                         printk(KERN_ERR DRV_NAME
4452                                ": %s: PCI alloc failed for tx " "buffers.\n",
4453                                priv->net_dev->name);
4454                         err = -ENOMEM;
4455                         break;
4456                 }
4457 
4458                 priv->tx_buffers[i].type = DATA;
4459                 priv->tx_buffers[i].info.d_struct.data =
4460                     (struct ipw2100_data_header *)v;
4461                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4462                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4463         }
4464 
4465         if (i == TX_PENDED_QUEUE_LENGTH)
4466                 return 0;
4467 
4468         for (j = 0; j < i; j++) {
4469                 pci_free_consistent(priv->pci_dev,
4470                                     sizeof(struct ipw2100_data_header),
4471                                     priv->tx_buffers[j].info.d_struct.data,
4472                                     priv->tx_buffers[j].info.d_struct.
4473                                     data_phys);
4474         }
4475 
4476         kfree(priv->tx_buffers);
4477         priv->tx_buffers = NULL;
4478 
4479         return err;
4480 }
4481 
4482 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4483 {
4484         int i;
4485 
4486         IPW_DEBUG_INFO("enter\n");
4487 
4488         /*
4489          * reinitialize packet info lists
4490          */
4491         INIT_LIST_HEAD(&priv->fw_pend_list);
4492         INIT_STAT(&priv->fw_pend_stat);
4493 
4494         /*
4495          * reinitialize lists
4496          */
4497         INIT_LIST_HEAD(&priv->tx_pend_list);
4498         INIT_LIST_HEAD(&priv->tx_free_list);
4499         INIT_STAT(&priv->tx_pend_stat);
4500         INIT_STAT(&priv->tx_free_stat);
4501 
4502         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4503                 /* We simply drop any SKBs that have been queued for
4504                  * transmit */
4505                 if (priv->tx_buffers[i].info.d_struct.txb) {
4506                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4507                                            txb);
4508                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4509                 }
4510 
4511                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4512         }
4513 
4514         SET_STAT(&priv->tx_free_stat, i);
4515 
4516         priv->tx_queue.oldest = 0;
4517         priv->tx_queue.available = priv->tx_queue.entries;
4518         priv->tx_queue.next = 0;
4519         INIT_STAT(&priv->txq_stat);
4520         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4521 
4522         bd_queue_initialize(priv, &priv->tx_queue,
4523                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4524                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4525                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4526                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4527 
4528         IPW_DEBUG_INFO("exit\n");
4529 
4530 }
4531 
4532 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4533 {
4534         int i;
4535 
4536         IPW_DEBUG_INFO("enter\n");
4537 
4538         bd_queue_free(priv, &priv->tx_queue);
4539 
4540         if (!priv->tx_buffers)
4541                 return;
4542 
4543         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4544                 if (priv->tx_buffers[i].info.d_struct.txb) {
4545                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4546                                            txb);
4547                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4548                 }
4549                 if (priv->tx_buffers[i].info.d_struct.data)
4550                         pci_free_consistent(priv->pci_dev,
4551                                             sizeof(struct ipw2100_data_header),
4552                                             priv->tx_buffers[i].info.d_struct.
4553                                             data,
4554                                             priv->tx_buffers[i].info.d_struct.
4555                                             data_phys);
4556         }
4557 
4558         kfree(priv->tx_buffers);
4559         priv->tx_buffers = NULL;
4560 
4561         IPW_DEBUG_INFO("exit\n");
4562 }
4563 
4564 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4565 {
4566         int i, j, err = -EINVAL;
4567 
4568         IPW_DEBUG_INFO("enter\n");
4569 
4570         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4571         if (err) {
4572                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4573                 return err;
4574         }
4575 
4576         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4577         if (err) {
4578                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4579                 bd_queue_free(priv, &priv->rx_queue);
4580                 return err;
4581         }
4582 
4583         /*
4584          * allocate packets
4585          */
4586         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4587                                    sizeof(struct ipw2100_rx_packet),
4588                                    GFP_KERNEL);
4589         if (!priv->rx_buffers) {
4590                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4591 
4592                 bd_queue_free(priv, &priv->rx_queue);
4593 
4594                 status_queue_free(priv);
4595 
4596                 return -ENOMEM;
4597         }
4598 
4599         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4600                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4601 
4602                 err = ipw2100_alloc_skb(priv, packet);
4603                 if (unlikely(err)) {
4604                         err = -ENOMEM;
4605                         break;
4606                 }
4607 
4608                 /* The BD holds the cache aligned address */
4609                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4610                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4611                 priv->status_queue.drv[i].status_fields = 0;
4612         }
4613 
4614         if (i == RX_QUEUE_LENGTH)
4615                 return 0;
4616 
4617         for (j = 0; j < i; j++) {
4618                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4619                                  sizeof(struct ipw2100_rx_packet),
4620                                  PCI_DMA_FROMDEVICE);
4621                 dev_kfree_skb(priv->rx_buffers[j].skb);
4622         }
4623 
4624         kfree(priv->rx_buffers);
4625         priv->rx_buffers = NULL;
4626 
4627         bd_queue_free(priv, &priv->rx_queue);
4628 
4629         status_queue_free(priv);
4630 
4631         return err;
4632 }
4633 
4634 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4635 {
4636         IPW_DEBUG_INFO("enter\n");
4637 
4638         priv->rx_queue.oldest = 0;
4639         priv->rx_queue.available = priv->rx_queue.entries - 1;
4640         priv->rx_queue.next = priv->rx_queue.entries - 1;
4641 
4642         INIT_STAT(&priv->rxq_stat);
4643         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4644 
4645         bd_queue_initialize(priv, &priv->rx_queue,
4646                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4647                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4648                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4649                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4650 
4651         /* set up the status queue */
4652         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4653                        priv->status_queue.nic);
4654 
4655         IPW_DEBUG_INFO("exit\n");
4656 }
4657 
4658 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4659 {
4660         int i;
4661 
4662         IPW_DEBUG_INFO("enter\n");
4663 
4664         bd_queue_free(priv, &priv->rx_queue);
4665         status_queue_free(priv);
4666 
4667         if (!priv->rx_buffers)
4668                 return;
4669 
4670         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4671                 if (priv->rx_buffers[i].rxp) {
4672                         pci_unmap_single(priv->pci_dev,
4673                                          priv->rx_buffers[i].dma_addr,
4674                                          sizeof(struct ipw2100_rx),
4675                                          PCI_DMA_FROMDEVICE);
4676                         dev_kfree_skb(priv->rx_buffers[i].skb);
4677                 }
4678         }
4679 
4680         kfree(priv->rx_buffers);
4681         priv->rx_buffers = NULL;
4682 
4683         IPW_DEBUG_INFO("exit\n");
4684 }
4685 
4686 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4687 {
4688         u32 length = ETH_ALEN;
4689         u8 addr[ETH_ALEN];
4690 
4691         int err;
4692 
4693         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4694         if (err) {
4695                 IPW_DEBUG_INFO("MAC address read failed\n");
4696                 return -EIO;
4697         }
4698 
4699         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4700         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4701 
4702         return 0;
4703 }
4704 
4705 /********************************************************************
4706  *
4707  * Firmware Commands
4708  *
4709  ********************************************************************/
4710 
4711 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4712 {
4713         struct host_command cmd = {
4714                 .host_command = ADAPTER_ADDRESS,
4715                 .host_command_sequence = 0,
4716                 .host_command_length = ETH_ALEN
4717         };
4718         int err;
4719 
4720         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4721 
4722         IPW_DEBUG_INFO("enter\n");
4723 
4724         if (priv->config & CFG_CUSTOM_MAC) {
4725                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4726                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4727         } else
4728                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4729                        ETH_ALEN);
4730 
4731         err = ipw2100_hw_send_command(priv, &cmd);
4732 
4733         IPW_DEBUG_INFO("exit\n");
4734         return err;
4735 }
4736 
4737 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4738                                  int batch_mode)
4739 {
4740         struct host_command cmd = {
4741                 .host_command = PORT_TYPE,
4742                 .host_command_sequence = 0,
4743                 .host_command_length = sizeof(u32)
4744         };
4745         int err;
4746 
4747         switch (port_type) {
4748         case IW_MODE_INFRA:
4749                 cmd.host_command_parameters[0] = IPW_BSS;
4750                 break;
4751         case IW_MODE_ADHOC:
4752                 cmd.host_command_parameters[0] = IPW_IBSS;
4753                 break;
4754         }
4755 
4756         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4757                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4758 
4759         if (!batch_mode) {
4760                 err = ipw2100_disable_adapter(priv);
4761                 if (err) {
4762                         printk(KERN_ERR DRV_NAME
4763                                ": %s: Could not disable adapter %d\n",
4764                                priv->net_dev->name, err);
4765                         return err;
4766                 }
4767         }
4768 
4769         /* send cmd to firmware */
4770         err = ipw2100_hw_send_command(priv, &cmd);
4771 
4772         if (!batch_mode)
4773                 ipw2100_enable_adapter(priv);
4774 
4775         return err;
4776 }
4777 
4778 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4779                                int batch_mode)
4780 {
4781         struct host_command cmd = {
4782                 .host_command = CHANNEL,
4783                 .host_command_sequence = 0,
4784                 .host_command_length = sizeof(u32)
4785         };
4786         int err;
4787 
4788         cmd.host_command_parameters[0] = channel;
4789 
4790         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4791 
4792         /* If BSS then we don't support channel selection */
4793         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4794                 return 0;
4795 
4796         if ((channel != 0) &&
4797             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4798                 return -EINVAL;
4799 
4800         if (!batch_mode) {
4801                 err = ipw2100_disable_adapter(priv);
4802                 if (err)
4803                         return err;
4804         }
4805 
4806         err = ipw2100_hw_send_command(priv, &cmd);
4807         if (err) {
4808                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4809                 return err;
4810         }
4811 
4812         if (channel)
4813                 priv->config |= CFG_STATIC_CHANNEL;
4814         else
4815                 priv->config &= ~CFG_STATIC_CHANNEL;
4816 
4817         priv->channel = channel;
4818 
4819         if (!batch_mode) {
4820                 err = ipw2100_enable_adapter(priv);
4821                 if (err)
4822                         return err;
4823         }
4824 
4825         return 0;
4826 }
4827 
4828 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4829 {
4830         struct host_command cmd = {
4831                 .host_command = SYSTEM_CONFIG,
4832                 .host_command_sequence = 0,
4833                 .host_command_length = 12,
4834         };
4835         u32 ibss_mask, len = sizeof(u32);
4836         int err;
4837 
4838         /* Set system configuration */
4839 
4840         if (!batch_mode) {
4841                 err = ipw2100_disable_adapter(priv);
4842                 if (err)
4843                         return err;
4844         }
4845 
4846         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4847                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4848 
4849         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4850             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4851 
4852         if (!(priv->config & CFG_LONG_PREAMBLE))
4853                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4854 
4855         err = ipw2100_get_ordinal(priv,
4856                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4857                                   &ibss_mask, &len);
4858         if (err)
4859                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4860 
4861         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4862         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4863 
4864         /* 11b only */
4865         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4866 
4867         err = ipw2100_hw_send_command(priv, &cmd);
4868         if (err)
4869                 return err;
4870 
4871 /* If IPv6 is configured in the kernel then we don't want to filter out all
4872  * of the multicast packets as IPv6 needs some. */
4873 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4874         cmd.host_command = ADD_MULTICAST;
4875         cmd.host_command_sequence = 0;
4876         cmd.host_command_length = 0;
4877 
4878         ipw2100_hw_send_command(priv, &cmd);
4879 #endif
4880         if (!batch_mode) {
4881                 err = ipw2100_enable_adapter(priv);
4882                 if (err)
4883                         return err;
4884         }
4885 
4886         return 0;
4887 }
4888 
4889 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4890                                 int batch_mode)
4891 {
4892         struct host_command cmd = {
4893                 .host_command = BASIC_TX_RATES,
4894                 .host_command_sequence = 0,
4895                 .host_command_length = 4
4896         };
4897         int err;
4898 
4899         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4900 
4901         if (!batch_mode) {
4902                 err = ipw2100_disable_adapter(priv);
4903                 if (err)
4904                         return err;
4905         }
4906 
4907         /* Set BASIC TX Rate first */
4908         ipw2100_hw_send_command(priv, &cmd);
4909 
4910         /* Set TX Rate */
4911         cmd.host_command = TX_RATES;
4912         ipw2100_hw_send_command(priv, &cmd);
4913 
4914         /* Set MSDU TX Rate */
4915         cmd.host_command = MSDU_TX_RATES;
4916         ipw2100_hw_send_command(priv, &cmd);
4917 
4918         if (!batch_mode) {
4919                 err = ipw2100_enable_adapter(priv);
4920                 if (err)
4921                         return err;
4922         }
4923 
4924         priv->tx_rates = rate;
4925 
4926         return 0;
4927 }
4928 
4929 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4930 {
4931         struct host_command cmd = {
4932                 .host_command = POWER_MODE,
4933                 .host_command_sequence = 0,
4934                 .host_command_length = 4
4935         };
4936         int err;
4937 
4938         cmd.host_command_parameters[0] = power_level;
4939 
4940         err = ipw2100_hw_send_command(priv, &cmd);
4941         if (err)
4942                 return err;
4943 
4944         if (power_level == IPW_POWER_MODE_CAM)
4945                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4946         else
4947                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4948 
4949 #ifdef IPW2100_TX_POWER
4950         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4951                 /* Set beacon interval */
4952                 cmd.host_command = TX_POWER_INDEX;
4953                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4954 
4955                 err = ipw2100_hw_send_command(priv, &cmd);
4956                 if (err)
4957                         return err;
4958         }
4959 #endif
4960 
4961         return 0;
4962 }
4963 
4964 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4965 {
4966         struct host_command cmd = {
4967                 .host_command = RTS_THRESHOLD,
4968                 .host_command_sequence = 0,
4969                 .host_command_length = 4
4970         };
4971         int err;
4972 
4973         if (threshold & RTS_DISABLED)
4974                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4975         else
4976                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4977 
4978         err = ipw2100_hw_send_command(priv, &cmd);
4979         if (err)
4980                 return err;
4981 
4982         priv->rts_threshold = threshold;
4983 
4984         return 0;
4985 }
4986 
4987 #if 0
4988 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4989                                         u32 threshold, int batch_mode)
4990 {
4991         struct host_command cmd = {
4992                 .host_command = FRAG_THRESHOLD,
4993                 .host_command_sequence = 0,
4994                 .host_command_length = 4,
4995                 .host_command_parameters[0] = 0,
4996         };
4997         int err;
4998 
4999         if (!batch_mode) {
5000                 err = ipw2100_disable_adapter(priv);
5001                 if (err)
5002                         return err;
5003         }
5004 
5005         if (threshold == 0)
5006                 threshold = DEFAULT_FRAG_THRESHOLD;
5007         else {
5008                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5009                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5010         }
5011 
5012         cmd.host_command_parameters[0] = threshold;
5013 
5014         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5015 
5016         err = ipw2100_hw_send_command(priv, &cmd);
5017 
5018         if (!batch_mode)
5019                 ipw2100_enable_adapter(priv);
5020 
5021         if (!err)
5022                 priv->frag_threshold = threshold;
5023 
5024         return err;
5025 }
5026 #endif
5027 
5028 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5029 {
5030         struct host_command cmd = {
5031                 .host_command = SHORT_RETRY_LIMIT,
5032                 .host_command_sequence = 0,
5033                 .host_command_length = 4
5034         };
5035         int err;
5036 
5037         cmd.host_command_parameters[0] = retry;
5038 
5039         err = ipw2100_hw_send_command(priv, &cmd);
5040         if (err)
5041                 return err;
5042 
5043         priv->short_retry_limit = retry;
5044 
5045         return 0;
5046 }
5047 
5048 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5049 {
5050         struct host_command cmd = {
5051                 .host_command = LONG_RETRY_LIMIT,
5052                 .host_command_sequence = 0,
5053                 .host_command_length = 4
5054         };
5055         int err;
5056 
5057         cmd.host_command_parameters[0] = retry;
5058 
5059         err = ipw2100_hw_send_command(priv, &cmd);
5060         if (err)
5061                 return err;
5062 
5063         priv->long_retry_limit = retry;
5064 
5065         return 0;
5066 }
5067 
5068 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5069                                        int batch_mode)
5070 {
5071         struct host_command cmd = {
5072                 .host_command = MANDATORY_BSSID,
5073                 .host_command_sequence = 0,
5074                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5075         };
5076         int err;
5077 
5078 #ifdef CONFIG_IPW2100_DEBUG
5079         if (bssid != NULL)
5080                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5081         else
5082                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5083 #endif
5084         /* if BSSID is empty then we disable mandatory bssid mode */
5085         if (bssid != NULL)
5086                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5087 
5088         if (!batch_mode) {
5089                 err = ipw2100_disable_adapter(priv);
5090                 if (err)
5091                         return err;
5092         }
5093 
5094         err = ipw2100_hw_send_command(priv, &cmd);
5095 
5096         if (!batch_mode)
5097                 ipw2100_enable_adapter(priv);
5098 
5099         return err;
5100 }
5101 
5102 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5103 {
5104         struct host_command cmd = {
5105                 .host_command = DISASSOCIATION_BSSID,
5106                 .host_command_sequence = 0,
5107                 .host_command_length = ETH_ALEN
5108         };
5109         int err;
5110         int len;
5111 
5112         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5113 
5114         len = ETH_ALEN;
5115         /* The Firmware currently ignores the BSSID and just disassociates from
5116          * the currently associated AP -- but in the off chance that a future
5117          * firmware does use the BSSID provided here, we go ahead and try and
5118          * set it to the currently associated AP's BSSID */
5119         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5120 
5121         err = ipw2100_hw_send_command(priv, &cmd);
5122 
5123         return err;
5124 }
5125 
5126 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5127                               struct ipw2100_wpa_assoc_frame *, int)
5128     __attribute__ ((unused));
5129 
5130 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5131                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5132                               int batch_mode)
5133 {
5134         struct host_command cmd = {
5135                 .host_command = SET_WPA_IE,
5136                 .host_command_sequence = 0,
5137                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5138         };
5139         int err;
5140 
5141         IPW_DEBUG_HC("SET_WPA_IE\n");
5142 
5143         if (!batch_mode) {
5144                 err = ipw2100_disable_adapter(priv);
5145                 if (err)
5146                         return err;
5147         }
5148 
5149         memcpy(cmd.host_command_parameters, wpa_frame,
5150                sizeof(struct ipw2100_wpa_assoc_frame));
5151 
5152         err = ipw2100_hw_send_command(priv, &cmd);
5153 
5154         if (!batch_mode) {
5155                 if (ipw2100_enable_adapter(priv))
5156                         err = -EIO;
5157         }
5158 
5159         return err;
5160 }
5161 
5162 struct security_info_params {
5163         u32 allowed_ciphers;
5164         u16 version;
5165         u8 auth_mode;
5166         u8 replay_counters_number;
5167         u8 unicast_using_group;
5168 } __packed;
5169 
5170 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5171                                             int auth_mode,
5172                                             int security_level,
5173                                             int unicast_using_group,
5174                                             int batch_mode)
5175 {
5176         struct host_command cmd = {
5177                 .host_command = SET_SECURITY_INFORMATION,
5178                 .host_command_sequence = 0,
5179                 .host_command_length = sizeof(struct security_info_params)
5180         };
5181         struct security_info_params *security =
5182             (struct security_info_params *)&cmd.host_command_parameters;
5183         int err;
5184         memset(security, 0, sizeof(*security));
5185 
5186         /* If shared key AP authentication is turned on, then we need to
5187          * configure the firmware to try and use it.
5188          *
5189          * Actual data encryption/decryption is handled by the host. */
5190         security->auth_mode = auth_mode;
5191         security->unicast_using_group = unicast_using_group;
5192 
5193         switch (security_level) {
5194         default:
5195         case SEC_LEVEL_0:
5196                 security->allowed_ciphers = IPW_NONE_CIPHER;
5197                 break;
5198         case SEC_LEVEL_1:
5199                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5200                     IPW_WEP104_CIPHER;
5201                 break;
5202         case SEC_LEVEL_2:
5203                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5204                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5205                 break;
5206         case SEC_LEVEL_2_CKIP:
5207                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5208                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5209                 break;
5210         case SEC_LEVEL_3:
5211                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5212                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5213                 break;
5214         }
5215 
5216         IPW_DEBUG_HC
5217             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5218              security->auth_mode, security->allowed_ciphers, security_level);
5219 
5220         security->replay_counters_number = 0;
5221 
5222         if (!batch_mode) {
5223                 err = ipw2100_disable_adapter(priv);
5224                 if (err)
5225                         return err;
5226         }
5227 
5228         err = ipw2100_hw_send_command(priv, &cmd);
5229 
5230         if (!batch_mode)
5231                 ipw2100_enable_adapter(priv);
5232 
5233         return err;
5234 }
5235 
5236 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5237 {
5238         struct host_command cmd = {
5239                 .host_command = TX_POWER_INDEX,
5240                 .host_command_sequence = 0,
5241                 .host_command_length = 4
5242         };
5243         int err = 0;
5244         u32 tmp = tx_power;
5245 
5246         if (tx_power != IPW_TX_POWER_DEFAULT)
5247                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5248                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5249 
5250         cmd.host_command_parameters[0] = tmp;
5251 
5252         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5253                 err = ipw2100_hw_send_command(priv, &cmd);
5254         if (!err)
5255                 priv->tx_power = tx_power;
5256 
5257         return 0;
5258 }
5259 
5260 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5261                                             u32 interval, int batch_mode)
5262 {
5263         struct host_command cmd = {
5264                 .host_command = BEACON_INTERVAL,
5265                 .host_command_sequence = 0,
5266                 .host_command_length = 4
5267         };
5268         int err;
5269 
5270         cmd.host_command_parameters[0] = interval;
5271 
5272         IPW_DEBUG_INFO("enter\n");
5273 
5274         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5275                 if (!batch_mode) {
5276                         err = ipw2100_disable_adapter(priv);
5277                         if (err)
5278                                 return err;
5279                 }
5280 
5281                 ipw2100_hw_send_command(priv, &cmd);
5282 
5283                 if (!batch_mode) {
5284                         err = ipw2100_enable_adapter(priv);
5285                         if (err)
5286                                 return err;
5287                 }
5288         }
5289 
5290         IPW_DEBUG_INFO("exit\n");
5291 
5292         return 0;
5293 }
5294 
5295 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5296 {
5297         ipw2100_tx_initialize(priv);
5298         ipw2100_rx_initialize(priv);
5299         ipw2100_msg_initialize(priv);
5300 }
5301 
5302 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5303 {
5304         ipw2100_tx_free(priv);
5305         ipw2100_rx_free(priv);
5306         ipw2100_msg_free(priv);
5307 }
5308 
5309 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5310 {
5311         if (ipw2100_tx_allocate(priv) ||
5312             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5313                 goto fail;
5314 
5315         return 0;
5316 
5317       fail:
5318         ipw2100_tx_free(priv);
5319         ipw2100_rx_free(priv);
5320         ipw2100_msg_free(priv);
5321         return -ENOMEM;
5322 }
5323 
5324 #define IPW_PRIVACY_CAPABLE 0x0008
5325 
5326 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5327                                  int batch_mode)
5328 {
5329         struct host_command cmd = {
5330                 .host_command = WEP_FLAGS,
5331                 .host_command_sequence = 0,
5332                 .host_command_length = 4
5333         };
5334         int err;
5335 
5336         cmd.host_command_parameters[0] = flags;
5337 
5338         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5339 
5340         if (!batch_mode) {
5341                 err = ipw2100_disable_adapter(priv);
5342                 if (err) {
5343                         printk(KERN_ERR DRV_NAME
5344                                ": %s: Could not disable adapter %d\n",
5345                                priv->net_dev->name, err);
5346                         return err;
5347                 }
5348         }
5349 
5350         /* send cmd to firmware */
5351         err = ipw2100_hw_send_command(priv, &cmd);
5352 
5353         if (!batch_mode)
5354                 ipw2100_enable_adapter(priv);
5355 
5356         return err;
5357 }
5358 
5359 struct ipw2100_wep_key {
5360         u8 idx;
5361         u8 len;
5362         u8 key[13];
5363 };
5364 
5365 /* Macros to ease up priting WEP keys */
5366 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5367 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5368 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5369 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5370 
5371 /**
5372  * Set a the wep key
5373  *
5374  * @priv: struct to work on
5375  * @idx: index of the key we want to set
5376  * @key: ptr to the key data to set
5377  * @len: length of the buffer at @key
5378  * @batch_mode: FIXME perform the operation in batch mode, not
5379  *              disabling the device.
5380  *
5381  * @returns 0 if OK, < 0 errno code on error.
5382  *
5383  * Fill out a command structure with the new wep key, length an
5384  * index and send it down the wire.
5385  */
5386 static int ipw2100_set_key(struct ipw2100_priv *priv,
5387                            int idx, char *key, int len, int batch_mode)
5388 {
5389         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5390         struct host_command cmd = {
5391                 .host_command = WEP_KEY_INFO,
5392                 .host_command_sequence = 0,
5393                 .host_command_length = sizeof(struct ipw2100_wep_key),
5394         };
5395         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5396         int err;
5397 
5398         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5399                      idx, keylen, len);
5400 
5401         /* NOTE: We don't check cached values in case the firmware was reset
5402          * or some other problem is occurring.  If the user is setting the key,
5403          * then we push the change */
5404 
5405         wep_key->idx = idx;
5406         wep_key->len = keylen;
5407 
5408         if (keylen) {
5409                 memcpy(wep_key->key, key, len);
5410                 memset(wep_key->key + len, 0, keylen - len);
5411         }
5412 
5413         /* Will be optimized out on debug not being configured in */
5414         if (keylen == 0)
5415                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5416                               priv->net_dev->name, wep_key->idx);
5417         else if (keylen == 5)
5418                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5419                               priv->net_dev->name, wep_key->idx, wep_key->len,
5420                               WEP_STR_64(wep_key->key));
5421         else
5422                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5423                               "\n",
5424                               priv->net_dev->name, wep_key->idx, wep_key->len,
5425                               WEP_STR_128(wep_key->key));
5426 
5427         if (!batch_mode) {
5428                 err = ipw2100_disable_adapter(priv);
5429                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5430                 if (err) {
5431                         printk(KERN_ERR DRV_NAME
5432                                ": %s: Could not disable adapter %d\n",
5433                                priv->net_dev->name, err);
5434                         return err;
5435                 }
5436         }
5437 
5438         /* send cmd to firmware */
5439         err = ipw2100_hw_send_command(priv, &cmd);
5440 
5441         if (!batch_mode) {
5442                 int err2 = ipw2100_enable_adapter(priv);
5443                 if (err == 0)
5444                         err = err2;
5445         }
5446         return err;
5447 }
5448 
5449 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5450                                  int idx, int batch_mode)
5451 {
5452         struct host_command cmd = {
5453                 .host_command = WEP_KEY_INDEX,
5454                 .host_command_sequence = 0,
5455                 .host_command_length = 4,
5456                 .host_command_parameters = {idx},
5457         };
5458         int err;
5459 
5460         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5461 
5462         if (idx < 0 || idx > 3)
5463                 return -EINVAL;
5464 
5465         if (!batch_mode) {
5466                 err = ipw2100_disable_adapter(priv);
5467                 if (err) {
5468                         printk(KERN_ERR DRV_NAME
5469                                ": %s: Could not disable adapter %d\n",
5470                                priv->net_dev->name, err);
5471                         return err;
5472                 }
5473         }
5474 
5475         /* send cmd to firmware */
5476         err = ipw2100_hw_send_command(priv, &cmd);
5477 
5478         if (!batch_mode)
5479                 ipw2100_enable_adapter(priv);
5480 
5481         return err;
5482 }
5483 
5484 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5485 {
5486         int i, err, auth_mode, sec_level, use_group;
5487 
5488         if (!(priv->status & STATUS_RUNNING))
5489                 return 0;
5490 
5491         if (!batch_mode) {
5492                 err = ipw2100_disable_adapter(priv);
5493                 if (err)
5494                         return err;
5495         }
5496 
5497         if (!priv->ieee->sec.enabled) {
5498                 err =
5499                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5500                                                      SEC_LEVEL_0, 0, 1);
5501         } else {
5502                 auth_mode = IPW_AUTH_OPEN;
5503                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5504                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5505                                 auth_mode = IPW_AUTH_SHARED;
5506                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5507                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5508                 }
5509 
5510                 sec_level = SEC_LEVEL_0;
5511                 if (priv->ieee->sec.flags & SEC_LEVEL)
5512                         sec_level = priv->ieee->sec.level;
5513 
5514                 use_group = 0;
5515                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5516                         use_group = priv->ieee->sec.unicast_uses_group;
5517 
5518                 err =
5519                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5520                                                      use_group, 1);
5521         }
5522 
5523         if (err)
5524                 goto exit;
5525 
5526         if (priv->ieee->sec.enabled) {
5527                 for (i = 0; i < 4; i++) {
5528                         if (!(priv->ieee->sec.flags & (1 << i))) {
5529                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5530                                 priv->ieee->sec.key_sizes[i] = 0;
5531                         } else {
5532                                 err = ipw2100_set_key(priv, i,
5533                                                       priv->ieee->sec.keys[i],
5534                                                       priv->ieee->sec.
5535                                                       key_sizes[i], 1);
5536                                 if (err)
5537                                         goto exit;
5538                         }
5539                 }
5540 
5541                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5542         }
5543 
5544         /* Always enable privacy so the Host can filter WEP packets if
5545          * encrypted data is sent up */
5546         err =
5547             ipw2100_set_wep_flags(priv,
5548                                   priv->ieee->sec.
5549                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5550         if (err)
5551                 goto exit;
5552 
5553         priv->status &= ~STATUS_SECURITY_UPDATED;
5554 
5555       exit:
5556         if (!batch_mode)
5557                 ipw2100_enable_adapter(priv);
5558 
5559         return err;
5560 }
5561 
5562 static void ipw2100_security_work(struct work_struct *work)
5563 {
5564         struct ipw2100_priv *priv =
5565                 container_of(work, struct ipw2100_priv, security_work.work);
5566 
5567         /* If we happen to have reconnected before we get a chance to
5568          * process this, then update the security settings--which causes
5569          * a disassociation to occur */
5570         if (!(priv->status & STATUS_ASSOCIATED) &&
5571             priv->status & STATUS_SECURITY_UPDATED)
5572                 ipw2100_configure_security(priv, 0);
5573 }
5574 
5575 static void shim__set_security(struct net_device *dev,
5576                                struct libipw_security *sec)
5577 {
5578         struct ipw2100_priv *priv = libipw_priv(dev);
5579         int i, force_update = 0;
5580 
5581         mutex_lock(&priv->action_mutex);
5582         if (!(priv->status & STATUS_INITIALIZED))
5583                 goto done;
5584 
5585         for (i = 0; i < 4; i++) {
5586                 if (sec->flags & (1 << i)) {
5587                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5588                         if (sec->key_sizes[i] == 0)
5589                                 priv->ieee->sec.flags &= ~(1 << i);
5590                         else
5591                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5592                                        sec->key_sizes[i]);
5593                         if (sec->level == SEC_LEVEL_1) {
5594                                 priv->ieee->sec.flags |= (1 << i);
5595                                 priv->status |= STATUS_SECURITY_UPDATED;
5596                         } else
5597                                 priv->ieee->sec.flags &= ~(1 << i);
5598                 }
5599         }
5600 
5601         if ((sec->flags & SEC_ACTIVE_KEY) &&
5602             priv->ieee->sec.active_key != sec->active_key) {
5603                 if (sec->active_key <= 3) {
5604                         priv->ieee->sec.active_key = sec->active_key;
5605                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5606                 } else
5607                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5608 
5609                 priv->status |= STATUS_SECURITY_UPDATED;
5610         }
5611 
5612         if ((sec->flags & SEC_AUTH_MODE) &&
5613             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5614                 priv->ieee->sec.auth_mode = sec->auth_mode;
5615                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5616                 priv->status |= STATUS_SECURITY_UPDATED;
5617         }
5618 
5619         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5620                 priv->ieee->sec.flags |= SEC_ENABLED;
5621                 priv->ieee->sec.enabled = sec->enabled;
5622                 priv->status |= STATUS_SECURITY_UPDATED;
5623                 force_update = 1;
5624         }
5625 
5626         if (sec->flags & SEC_ENCRYPT)
5627                 priv->ieee->sec.encrypt = sec->encrypt;
5628 
5629         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5630                 priv->ieee->sec.level = sec->level;
5631                 priv->ieee->sec.flags |= SEC_LEVEL;
5632                 priv->status |= STATUS_SECURITY_UPDATED;
5633         }
5634 
5635         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5636                       priv->ieee->sec.flags & (1 << 8) ? '1' : '',
5637                       priv->ieee->sec.flags & (1 << 7) ? '1' : '',
5638                       priv->ieee->sec.flags & (1 << 6) ? '1' : '',
5639                       priv->ieee->sec.flags & (1 << 5) ? '1' : '',
5640                       priv->ieee->sec.flags & (1 << 4) ? '1' : '',
5641                       priv->ieee->sec.flags & (1 << 3) ? '1' : '',
5642                       priv->ieee->sec.flags & (1 << 2) ? '1' : '',
5643                       priv->ieee->sec.flags & (1 << 1) ? '1' : '',
5644                       priv->ieee->sec.flags & (1 << 0) ? '1' : '');
5645 
5646 /* As a temporary work around to enable WPA until we figure out why
5647  * wpa_supplicant toggles the security capability of the driver, which
5648  * forces a disassocation with force_update...
5649  *
5650  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5651         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5652                 ipw2100_configure_security(priv, 0);
5653       done:
5654         mutex_unlock(&priv->action_mutex);
5655 }
5656 
5657 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5658 {
5659         int err;
5660         int batch_mode = 1;
5661         u8 *bssid;
5662 
5663         IPW_DEBUG_INFO("enter\n");
5664 
5665         err = ipw2100_disable_adapter(priv);
5666         if (err)
5667                 return err;
5668 #ifdef CONFIG_IPW2100_MONITOR
5669         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5670                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5671                 if (err)
5672                         return err;
5673 
5674                 IPW_DEBUG_INFO("exit\n");
5675 
5676                 return 0;
5677         }
5678 #endif                          /* CONFIG_IPW2100_MONITOR */
5679 
5680         err = ipw2100_read_mac_address(priv);
5681         if (err)
5682                 return -EIO;
5683 
5684         err = ipw2100_set_mac_address(priv, batch_mode);
5685         if (err)
5686                 return err;
5687 
5688         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5689         if (err)
5690                 return err;
5691 
5692         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5693                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5694                 if (err)
5695                         return err;
5696         }
5697 
5698         err = ipw2100_system_config(priv, batch_mode);
5699         if (err)
5700                 return err;
5701 
5702         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5703         if (err)
5704                 return err;
5705 
5706         /* Default to power mode OFF */
5707         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5708         if (err)
5709                 return err;
5710 
5711         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5712         if (err)
5713                 return err;
5714 
5715         if (priv->config & CFG_STATIC_BSSID)
5716                 bssid = priv->bssid;
5717         else
5718                 bssid = NULL;
5719         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5720         if (err)
5721                 return err;
5722 
5723         if (priv->config & CFG_STATIC_ESSID)
5724                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5725                                         batch_mode);
5726         else
5727                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5728         if (err)
5729                 return err;
5730 
5731         err = ipw2100_configure_security(priv, batch_mode);
5732         if (err)
5733                 return err;
5734 
5735         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5736                 err =
5737                     ipw2100_set_ibss_beacon_interval(priv,
5738                                                      priv->beacon_interval,
5739                                                      batch_mode);
5740                 if (err)
5741                         return err;
5742 
5743                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5744                 if (err)
5745                         return err;
5746         }
5747 
5748         /*
5749            err = ipw2100_set_fragmentation_threshold(
5750            priv, priv->frag_threshold, batch_mode);
5751            if (err)
5752            return err;
5753          */
5754 
5755         IPW_DEBUG_INFO("exit\n");
5756 
5757         return 0;
5758 }
5759 
5760 /*************************************************************************
5761  *
5762  * EXTERNALLY CALLED METHODS
5763  *
5764  *************************************************************************/
5765 
5766 /* This method is called by the network layer -- not to be confused with
5767  * ipw2100_set_mac_address() declared above called by this driver (and this
5768  * method as well) to talk to the firmware */
5769 static int ipw2100_set_address(struct net_device *dev, void *p)
5770 {
5771         struct ipw2100_priv *priv = libipw_priv(dev);
5772         struct sockaddr *addr = p;
5773         int err = 0;
5774 
5775         if (!is_valid_ether_addr(addr->sa_data))
5776                 return -EADDRNOTAVAIL;
5777 
5778         mutex_lock(&priv->action_mutex);
5779 
5780         priv->config |= CFG_CUSTOM_MAC;
5781         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5782 
5783         err = ipw2100_set_mac_address(priv, 0);
5784         if (err)
5785                 goto done;
5786 
5787         priv->reset_backoff = 0;
5788         mutex_unlock(&priv->action_mutex);
5789         ipw2100_reset_adapter(&priv->reset_work.work);
5790         return 0;
5791 
5792       done:
5793         mutex_unlock(&priv->action_mutex);
5794         return err;
5795 }
5796 
5797 static int ipw2100_open(struct net_device *dev)
5798 {
5799         struct ipw2100_priv *priv = libipw_priv(dev);
5800         unsigned long flags;
5801         IPW_DEBUG_INFO("dev->open\n");
5802 
5803         spin_lock_irqsave(&priv->low_lock, flags);
5804         if (priv->status & STATUS_ASSOCIATED) {
5805                 netif_carrier_on(dev);
5806                 netif_start_queue(dev);
5807         }
5808         spin_unlock_irqrestore(&priv->low_lock, flags);
5809 
5810         return 0;
5811 }
5812 
5813 static int ipw2100_close(struct net_device *dev)
5814 {
5815         struct ipw2100_priv *priv = libipw_priv(dev);
5816         unsigned long flags;
5817         struct list_head *element;
5818         struct ipw2100_tx_packet *packet;
5819 
5820         IPW_DEBUG_INFO("enter\n");
5821 
5822         spin_lock_irqsave(&priv->low_lock, flags);
5823 
5824         if (priv->status & STATUS_ASSOCIATED)
5825                 netif_carrier_off(dev);
5826         netif_stop_queue(dev);
5827 
5828         /* Flush the TX queue ... */
5829         while (!list_empty(&priv->tx_pend_list)) {
5830                 element = priv->tx_pend_list.next;
5831                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5832 
5833                 list_del(element);
5834                 DEC_STAT(&priv->tx_pend_stat);
5835 
5836                 libipw_txb_free(packet->info.d_struct.txb);
5837                 packet->info.d_struct.txb = NULL;
5838 
5839                 list_add_tail(element, &priv->tx_free_list);
5840                 INC_STAT(&priv->tx_free_stat);
5841         }
5842         spin_unlock_irqrestore(&priv->low_lock, flags);
5843 
5844         IPW_DEBUG_INFO("exit\n");
5845 
5846         return 0;
5847 }
5848 
5849 /*
5850  * TODO:  Fix this function... its just wrong
5851  */
5852 static void ipw2100_tx_timeout(struct net_device *dev)
5853 {
5854         struct ipw2100_priv *priv = libipw_priv(dev);
5855 
5856         dev->stats.tx_errors++;
5857 
5858 #ifdef CONFIG_IPW2100_MONITOR
5859         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5860                 return;
5861 #endif
5862 
5863         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5864                        dev->name);
5865         schedule_reset(priv);
5866 }
5867 
5868 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5869 {
5870         /* This is called when wpa_supplicant loads and closes the driver
5871          * interface. */
5872         priv->ieee->wpa_enabled = value;
5873         return 0;
5874 }
5875 
5876 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5877 {
5878 
5879         struct libipw_device *ieee = priv->ieee;
5880         struct libipw_security sec = {
5881                 .flags = SEC_AUTH_MODE,
5882         };
5883         int ret = 0;
5884 
5885         if (value & IW_AUTH_ALG_SHARED_KEY) {
5886                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5887                 ieee->open_wep = 0;
5888         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5889                 sec.auth_mode = WLAN_AUTH_OPEN;
5890                 ieee->open_wep = 1;
5891         } else if (value & IW_AUTH_ALG_LEAP) {
5892                 sec.auth_mode = WLAN_AUTH_LEAP;
5893                 ieee->open_wep = 1;
5894         } else
5895                 return -EINVAL;
5896 
5897         if (ieee->set_security)
5898                 ieee->set_security(ieee->dev, &sec);
5899         else
5900                 ret = -EOPNOTSUPP;
5901 
5902         return ret;
5903 }
5904 
5905 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5906                                     char *wpa_ie, int wpa_ie_len)
5907 {
5908 
5909         struct ipw2100_wpa_assoc_frame frame;
5910 
5911         frame.fixed_ie_mask = 0;
5912 
5913         /* copy WPA IE */
5914         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5915         frame.var_ie_len = wpa_ie_len;
5916 
5917         /* make sure WPA is enabled */
5918         ipw2100_wpa_enable(priv, 1);
5919         ipw2100_set_wpa_ie(priv, &frame, 0);
5920 }
5921 
5922 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5923                                     struct ethtool_drvinfo *info)
5924 {
5925         struct ipw2100_priv *priv = libipw_priv(dev);
5926         char fw_ver[64], ucode_ver[64];
5927 
5928         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5929         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5930 
5931         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5932         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5933 
5934         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5935                  fw_ver, priv->eeprom_version, ucode_ver);
5936 
5937         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5938                 sizeof(info->bus_info));
5939 }
5940 
5941 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5942 {
5943         struct ipw2100_priv *priv = libipw_priv(dev);
5944         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5945 }
5946 
5947 static const struct ethtool_ops ipw2100_ethtool_ops = {
5948         .get_link = ipw2100_ethtool_get_link,
5949         .get_drvinfo = ipw_ethtool_get_drvinfo,
5950 };
5951 
5952 static void ipw2100_hang_check(struct work_struct *work)
5953 {
5954         struct ipw2100_priv *priv =
5955                 container_of(work, struct ipw2100_priv, hang_check.work);
5956         unsigned long flags;
5957         u32 rtc = 0xa5a5a5a5;
5958         u32 len = sizeof(rtc);
5959         int restart = 0;
5960 
5961         spin_lock_irqsave(&priv->low_lock, flags);
5962 
5963         if (priv->fatal_error != 0) {
5964                 /* If fatal_error is set then we need to restart */
5965                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5966                                priv->net_dev->name);
5967 
5968                 restart = 1;
5969         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5970                    (rtc == priv->last_rtc)) {
5971                 /* Check if firmware is hung */
5972                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5973                                priv->net_dev->name);
5974 
5975                 restart = 1;
5976         }
5977 
5978         if (restart) {
5979                 /* Kill timer */
5980                 priv->stop_hang_check = 1;
5981                 priv->hangs++;
5982 
5983                 /* Restart the NIC */
5984                 schedule_reset(priv);
5985         }
5986 
5987         priv->last_rtc = rtc;
5988 
5989         if (!priv->stop_hang_check)
5990                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5991 
5992         spin_unlock_irqrestore(&priv->low_lock, flags);
5993 }
5994 
5995 static void ipw2100_rf_kill(struct work_struct *work)
5996 {
5997         struct ipw2100_priv *priv =
5998                 container_of(work, struct ipw2100_priv, rf_kill.work);
5999         unsigned long flags;
6000 
6001         spin_lock_irqsave(&priv->low_lock, flags);
6002 
6003         if (rf_kill_active(priv)) {
6004                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6005                 if (!priv->stop_rf_kill)
6006                         schedule_delayed_work(&priv->rf_kill,
6007                                               round_jiffies_relative(HZ));
6008                 goto exit_unlock;
6009         }
6010 
6011         /* RF Kill is now disabled, so bring the device back up */
6012 
6013         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6014                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6015                                   "device\n");
6016                 schedule_reset(priv);
6017         } else
6018                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6019                                   "enabled\n");
6020 
6021       exit_unlock:
6022         spin_unlock_irqrestore(&priv->low_lock, flags);
6023 }
6024 
6025 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6026 
6027 static const struct net_device_ops ipw2100_netdev_ops = {
6028         .ndo_open               = ipw2100_open,
6029         .ndo_stop               = ipw2100_close,
6030         .ndo_start_xmit         = libipw_xmit,
6031         .ndo_change_mtu         = libipw_change_mtu,
6032         .ndo_tx_timeout         = ipw2100_tx_timeout,
6033         .ndo_set_mac_address    = ipw2100_set_address,
6034         .ndo_validate_addr      = eth_validate_addr,
6035 };
6036 
6037 /* Look into using netdev destructor to shutdown libipw? */
6038 
6039 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6040                                                void __iomem * ioaddr)
6041 {
6042         struct ipw2100_priv *priv;
6043         struct net_device *dev;
6044 
6045         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6046         if (!dev)
6047                 return NULL;
6048         priv = libipw_priv(dev);
6049         priv->ieee = netdev_priv(dev);
6050         priv->pci_dev = pci_dev;
6051         priv->net_dev = dev;
6052         priv->ioaddr = ioaddr;
6053 
6054         priv->ieee->hard_start_xmit = ipw2100_tx;
6055         priv->ieee->set_security = shim__set_security;
6056 
6057         priv->ieee->perfect_rssi = -20;
6058         priv->ieee->worst_rssi = -85;
6059 
6060         dev->netdev_ops = &ipw2100_netdev_ops;
6061         dev->ethtool_ops = &ipw2100_ethtool_ops;
6062         dev->wireless_handlers = &ipw2100_wx_handler_def;
6063         priv->wireless_data.libipw = priv->ieee;
6064         dev->wireless_data = &priv->wireless_data;
6065         dev->watchdog_timeo = 3 * HZ;
6066         dev->irq = 0;
6067 
6068         /* NOTE: We don't use the wireless_handlers hook
6069          * in dev as the system will start throwing WX requests
6070          * to us before we're actually initialized and it just
6071          * ends up causing problems.  So, we just handle
6072          * the WX extensions through the ipw2100_ioctl interface */
6073 
6074         /* memset() puts everything to 0, so we only have explicitly set
6075          * those values that need to be something else */
6076 
6077         /* If power management is turned on, default to AUTO mode */
6078         priv->power_mode = IPW_POWER_AUTO;
6079 
6080 #ifdef CONFIG_IPW2100_MONITOR
6081         priv->config |= CFG_CRC_CHECK;
6082 #endif
6083         priv->ieee->wpa_enabled = 0;
6084         priv->ieee->drop_unencrypted = 0;
6085         priv->ieee->privacy_invoked = 0;
6086         priv->ieee->ieee802_1x = 1;
6087 
6088         /* Set module parameters */
6089         switch (network_mode) {
6090         case 1:
6091                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6092                 break;
6093 #ifdef CONFIG_IPW2100_MONITOR
6094         case 2:
6095                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6096                 break;
6097 #endif
6098         default:
6099         case 0:
6100                 priv->ieee->iw_mode = IW_MODE_INFRA;
6101                 break;
6102         }
6103 
6104         if (disable == 1)
6105                 priv->status |= STATUS_RF_KILL_SW;
6106 
6107         if (channel != 0 &&
6108             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6109                 priv->config |= CFG_STATIC_CHANNEL;
6110                 priv->channel = channel;
6111         }
6112 
6113         if (associate)
6114                 priv->config |= CFG_ASSOCIATE;
6115 
6116         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6117         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6118         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6119         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6120         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6121         priv->tx_power = IPW_TX_POWER_DEFAULT;
6122         priv->tx_rates = DEFAULT_TX_RATES;
6123 
6124         strcpy(priv->nick, "ipw2100");
6125 
6126         spin_lock_init(&priv->low_lock);
6127         mutex_init(&priv->action_mutex);
6128         mutex_init(&priv->adapter_mutex);
6129 
6130         init_waitqueue_head(&priv->wait_command_queue);
6131 
6132         netif_carrier_off(dev);
6133 
6134         INIT_LIST_HEAD(&priv->msg_free_list);
6135         INIT_LIST_HEAD(&priv->msg_pend_list);
6136         INIT_STAT(&priv->msg_free_stat);
6137         INIT_STAT(&priv->msg_pend_stat);
6138 
6139         INIT_LIST_HEAD(&priv->tx_free_list);
6140         INIT_LIST_HEAD(&priv->tx_pend_list);
6141         INIT_STAT(&priv->tx_free_stat);
6142         INIT_STAT(&priv->tx_pend_stat);
6143 
6144         INIT_LIST_HEAD(&priv->fw_pend_list);
6145         INIT_STAT(&priv->fw_pend_stat);
6146 
6147         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6148         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6149         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6150         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6151         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6152         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6153 
6154         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6155                      ipw2100_irq_tasklet, (unsigned long)priv);
6156 
6157         /* NOTE:  We do not start the deferred work for status checks yet */
6158         priv->stop_rf_kill = 1;
6159         priv->stop_hang_check = 1;
6160 
6161         return dev;
6162 }
6163 
6164 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6165                                 const struct pci_device_id *ent)
6166 {
6167         void __iomem *ioaddr;
6168         struct net_device *dev = NULL;
6169         struct ipw2100_priv *priv = NULL;
6170         int err = 0;
6171         int registered = 0;
6172         u32 val;
6173 
6174         IPW_DEBUG_INFO("enter\n");
6175 
6176         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6177                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6178                 err = -ENODEV;
6179                 goto out;
6180         }
6181 
6182         ioaddr = pci_iomap(pci_dev, 0, 0);
6183         if (!ioaddr) {
6184                 printk(KERN_WARNING DRV_NAME
6185                        "Error calling ioremap_nocache.\n");
6186                 err = -EIO;
6187                 goto fail;
6188         }
6189 
6190         /* allocate and initialize our net_device */
6191         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6192         if (!dev) {
6193                 printk(KERN_WARNING DRV_NAME
6194                        "Error calling ipw2100_alloc_device.\n");
6195                 err = -ENOMEM;
6196                 goto fail;
6197         }
6198 
6199         /* set up PCI mappings for device */
6200         err = pci_enable_device(pci_dev);
6201         if (err) {
6202                 printk(KERN_WARNING DRV_NAME
6203                        "Error calling pci_enable_device.\n");
6204                 return err;
6205         }
6206 
6207         priv = libipw_priv(dev);
6208 
6209         pci_set_master(pci_dev);
6210         pci_set_drvdata(pci_dev, priv);
6211 
6212         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6213         if (err) {
6214                 printk(KERN_WARNING DRV_NAME
6215                        "Error calling pci_set_dma_mask.\n");
6216                 pci_disable_device(pci_dev);
6217                 return err;
6218         }
6219 
6220         err = pci_request_regions(pci_dev, DRV_NAME);
6221         if (err) {
6222                 printk(KERN_WARNING DRV_NAME
6223                        "Error calling pci_request_regions.\n");
6224                 pci_disable_device(pci_dev);
6225                 return err;
6226         }
6227 
6228         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6229          * PCI Tx retries from interfering with C3 CPU state */
6230         pci_read_config_dword(pci_dev, 0x40, &val);
6231         if ((val & 0x0000ff00) != 0)
6232                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6233 
6234         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6235                 printk(KERN_WARNING DRV_NAME
6236                        "Device not found via register read.\n");
6237                 err = -ENODEV;
6238                 goto fail;
6239         }
6240 
6241         SET_NETDEV_DEV(dev, &pci_dev->dev);
6242 
6243         /* Force interrupts to be shut off on the device */
6244         priv->status |= STATUS_INT_ENABLED;
6245         ipw2100_disable_interrupts(priv);
6246 
6247         /* Allocate and initialize the Tx/Rx queues and lists */
6248         if (ipw2100_queues_allocate(priv)) {
6249                 printk(KERN_WARNING DRV_NAME
6250                        "Error calling ipw2100_queues_allocate.\n");
6251                 err = -ENOMEM;
6252                 goto fail;
6253         }
6254         ipw2100_queues_initialize(priv);
6255 
6256         err = request_irq(pci_dev->irq,
6257                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6258         if (err) {
6259                 printk(KERN_WARNING DRV_NAME
6260                        "Error calling request_irq: %d.\n", pci_dev->irq);
6261                 goto fail;
6262         }
6263         dev->irq = pci_dev->irq;
6264 
6265         IPW_DEBUG_INFO("Attempting to register device...\n");
6266 
6267         printk(KERN_INFO DRV_NAME
6268                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6269 
6270         err = ipw2100_up(priv, 1);
6271         if (err)
6272                 goto fail;
6273 
6274         err = ipw2100_wdev_init(dev);
6275         if (err)
6276                 goto fail;
6277         registered = 1;
6278 
6279         /* Bring up the interface.  Pre 0.46, after we registered the
6280          * network device we would call ipw2100_up.  This introduced a race
6281          * condition with newer hotplug configurations (network was coming
6282          * up and making calls before the device was initialized).
6283          */
6284         err = register_netdev(dev);
6285         if (err) {
6286                 printk(KERN_WARNING DRV_NAME
6287                        "Error calling register_netdev.\n");
6288                 goto fail;
6289         }
6290         registered = 2;
6291 
6292         mutex_lock(&priv->action_mutex);
6293 
6294         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6295 
6296         /* perform this after register_netdev so that dev->name is set */
6297         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6298         if (err)
6299                 goto fail_unlock;
6300 
6301         /* If the RF Kill switch is disabled, go ahead and complete the
6302          * startup sequence */
6303         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6304                 /* Enable the adapter - sends HOST_COMPLETE */
6305                 if (ipw2100_enable_adapter(priv)) {
6306                         printk(KERN_WARNING DRV_NAME
6307                                ": %s: failed in call to enable adapter.\n",
6308                                priv->net_dev->name);
6309                         ipw2100_hw_stop_adapter(priv);
6310                         err = -EIO;
6311                         goto fail_unlock;
6312                 }
6313 
6314                 /* Start a scan . . . */
6315                 ipw2100_set_scan_options(priv);
6316                 ipw2100_start_scan(priv);
6317         }
6318 
6319         IPW_DEBUG_INFO("exit\n");
6320 
6321         priv->status |= STATUS_INITIALIZED;
6322 
6323         mutex_unlock(&priv->action_mutex);
6324 out:
6325         return err;
6326 
6327       fail_unlock:
6328         mutex_unlock(&priv->action_mutex);
6329       fail:
6330         if (dev) {
6331                 if (registered >= 2)
6332                         unregister_netdev(dev);
6333 
6334                 if (registered) {
6335                         wiphy_unregister(priv->ieee->wdev.wiphy);
6336                         kfree(priv->ieee->bg_band.channels);
6337                 }
6338 
6339                 ipw2100_hw_stop_adapter(priv);
6340 
6341                 ipw2100_disable_interrupts(priv);
6342 
6343                 if (dev->irq)
6344                         free_irq(dev->irq, priv);
6345 
6346                 ipw2100_kill_works(priv);
6347 
6348                 /* These are safe to call even if they weren't allocated */
6349                 ipw2100_queues_free(priv);
6350                 sysfs_remove_group(&pci_dev->dev.kobj,
6351                                    &ipw2100_attribute_group);
6352 
6353                 free_libipw(dev, 0);
6354         }
6355 
6356         pci_iounmap(pci_dev, ioaddr);
6357 
6358         pci_release_regions(pci_dev);
6359         pci_disable_device(pci_dev);
6360         goto out;
6361 }
6362 
6363 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6364 {
6365         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6366         struct net_device *dev = priv->net_dev;
6367 
6368         mutex_lock(&priv->action_mutex);
6369 
6370         priv->status &= ~STATUS_INITIALIZED;
6371 
6372         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6373 
6374 #ifdef CONFIG_PM
6375         if (ipw2100_firmware.version)
6376                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6377 #endif
6378         /* Take down the hardware */
6379         ipw2100_down(priv);
6380 
6381         /* Release the mutex so that the network subsystem can
6382          * complete any needed calls into the driver... */
6383         mutex_unlock(&priv->action_mutex);
6384 
6385         /* Unregister the device first - this results in close()
6386          * being called if the device is open.  If we free storage
6387          * first, then close() will crash.
6388          * FIXME: remove the comment above. */
6389         unregister_netdev(dev);
6390 
6391         ipw2100_kill_works(priv);
6392 
6393         ipw2100_queues_free(priv);
6394 
6395         /* Free potential debugging firmware snapshot */
6396         ipw2100_snapshot_free(priv);
6397 
6398         free_irq(dev->irq, priv);
6399 
6400         pci_iounmap(pci_dev, priv->ioaddr);
6401 
6402         /* wiphy_unregister needs to be here, before free_libipw */
6403         wiphy_unregister(priv->ieee->wdev.wiphy);
6404         kfree(priv->ieee->bg_band.channels);
6405         free_libipw(dev, 0);
6406 
6407         pci_release_regions(pci_dev);
6408         pci_disable_device(pci_dev);
6409 
6410         IPW_DEBUG_INFO("exit\n");
6411 }
6412 
6413 #ifdef CONFIG_PM
6414 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6415 {
6416         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6417         struct net_device *dev = priv->net_dev;
6418 
6419         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6420 
6421         mutex_lock(&priv->action_mutex);
6422         if (priv->status & STATUS_INITIALIZED) {
6423                 /* Take down the device; powers it off, etc. */
6424                 ipw2100_down(priv);
6425         }
6426 
6427         /* Remove the PRESENT state of the device */
6428         netif_device_detach(dev);
6429 
6430         pci_save_state(pci_dev);
6431         pci_disable_device(pci_dev);
6432         pci_set_power_state(pci_dev, PCI_D3hot);
6433 
6434         priv->suspend_at = get_seconds();
6435 
6436         mutex_unlock(&priv->action_mutex);
6437 
6438         return 0;
6439 }
6440 
6441 static int ipw2100_resume(struct pci_dev *pci_dev)
6442 {
6443         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6444         struct net_device *dev = priv->net_dev;
6445         int err;
6446         u32 val;
6447 
6448         if (IPW2100_PM_DISABLED)
6449                 return 0;
6450 
6451         mutex_lock(&priv->action_mutex);
6452 
6453         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6454 
6455         pci_set_power_state(pci_dev, PCI_D0);
6456         err = pci_enable_device(pci_dev);
6457         if (err) {
6458                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6459                        dev->name);
6460                 mutex_unlock(&priv->action_mutex);
6461                 return err;
6462         }
6463         pci_restore_state(pci_dev);
6464 
6465         /*
6466          * Suspend/Resume resets the PCI configuration space, so we have to
6467          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6468          * from interfering with C3 CPU state. pci_restore_state won't help
6469          * here since it only restores the first 64 bytes pci config header.
6470          */
6471         pci_read_config_dword(pci_dev, 0x40, &val);
6472         if ((val & 0x0000ff00) != 0)
6473                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6474 
6475         /* Set the device back into the PRESENT state; this will also wake
6476          * the queue of needed */
6477         netif_device_attach(dev);
6478 
6479         priv->suspend_time = get_seconds() - priv->suspend_at;
6480 
6481         /* Bring the device back up */
6482         if (!(priv->status & STATUS_RF_KILL_SW))
6483                 ipw2100_up(priv, 0);
6484 
6485         mutex_unlock(&priv->action_mutex);
6486 
6487         return 0;
6488 }
6489 #endif
6490 
6491 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6492 {
6493         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6494 
6495         /* Take down the device; powers it off, etc. */
6496         ipw2100_down(priv);
6497 
6498         pci_disable_device(pci_dev);
6499 }
6500 
6501 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6502 
6503 static const struct pci_device_id ipw2100_pci_id_table[] = {
6504         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6505         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6506         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6507         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6508         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6509         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6510         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6511         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6512         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6513         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6514         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6515         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6516         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6517 
6518         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6519         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6520         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6522         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6523 
6524         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6525         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6526         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6527         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6528         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6529         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6530         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6531 
6532         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6533 
6534         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6535         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6536         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6537         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6538         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6539         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6540         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6541 
6542         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6543         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6544         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6548 
6549         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6550         {0,},
6551 };
6552 
6553 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6554 
6555 static struct pci_driver ipw2100_pci_driver = {
6556         .name = DRV_NAME,
6557         .id_table = ipw2100_pci_id_table,
6558         .probe = ipw2100_pci_init_one,
6559         .remove = ipw2100_pci_remove_one,
6560 #ifdef CONFIG_PM
6561         .suspend = ipw2100_suspend,
6562         .resume = ipw2100_resume,
6563 #endif
6564         .shutdown = ipw2100_shutdown,
6565 };
6566 
6567 /**
6568  * Initialize the ipw2100 driver/module
6569  *
6570  * @returns 0 if ok, < 0 errno node con error.
6571  *
6572  * Note: we cannot init the /proc stuff until the PCI driver is there,
6573  * or we risk an unlikely race condition on someone accessing
6574  * uninitialized data in the PCI dev struct through /proc.
6575  */
6576 static int __init ipw2100_init(void)
6577 {
6578         int ret;
6579 
6580         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6581         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6582 
6583         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6584                            PM_QOS_DEFAULT_VALUE);
6585 
6586         ret = pci_register_driver(&ipw2100_pci_driver);
6587         if (ret)
6588                 goto out;
6589 
6590 #ifdef CONFIG_IPW2100_DEBUG
6591         ipw2100_debug_level = debug;
6592         ret = driver_create_file(&ipw2100_pci_driver.driver,
6593                                  &driver_attr_debug_level);
6594 #endif
6595 
6596 out:
6597         return ret;
6598 }
6599 
6600 /**
6601  * Cleanup ipw2100 driver registration
6602  */
6603 static void __exit ipw2100_exit(void)
6604 {
6605         /* FIXME: IPG: check that we have no instances of the devices open */
6606 #ifdef CONFIG_IPW2100_DEBUG
6607         driver_remove_file(&ipw2100_pci_driver.driver,
6608                            &driver_attr_debug_level);
6609 #endif
6610         pci_unregister_driver(&ipw2100_pci_driver);
6611         pm_qos_remove_request(&ipw2100_pm_qos_req);
6612 }
6613 
6614 module_init(ipw2100_init);
6615 module_exit(ipw2100_exit);
6616 
6617 static int ipw2100_wx_get_name(struct net_device *dev,
6618                                struct iw_request_info *info,
6619                                union iwreq_data *wrqu, char *extra)
6620 {
6621         /*
6622          * This can be called at any time.  No action lock required
6623          */
6624 
6625         struct ipw2100_priv *priv = libipw_priv(dev);
6626         if (!(priv->status & STATUS_ASSOCIATED))
6627                 strcpy(wrqu->name, "unassociated");
6628         else
6629                 snprintf(wrqu->name, IFNAMSIZ,