Version:  2.0.40 2.2.26 2.4.37 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17

Linux/drivers/net/ethernet/tundra/tsi108_eth.c

  1 /*******************************************************************************
  2 
  3   Copyright(c) 2006 Tundra Semiconductor Corporation.
  4 
  5   This program is free software; you can redistribute it and/or modify it
  6   under the terms of the GNU General Public License as published by the Free
  7   Software Foundation; either version 2 of the License, or (at your option)
  8   any later version.
  9 
 10   This program is distributed in the hope that it will be useful, but WITHOUT
 11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13   more details.
 14 
 15   You should have received a copy of the GNU General Public License along with
 16   this program; if not, write to the Free Software Foundation, Inc., 59
 17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 18 
 19 *******************************************************************************/
 20 
 21 /* This driver is based on the driver code originally developed
 22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
 23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
 24  *
 25  * Currently changes from original version are:
 26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
 27  * - modifications to handle two ports independently and support for
 28  *   additional PHY devices (alexandre.bounine@tundra.com)
 29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
 30  *
 31  */
 32 
 33 #include <linux/module.h>
 34 #include <linux/types.h>
 35 #include <linux/interrupt.h>
 36 #include <linux/net.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/etherdevice.h>
 39 #include <linux/ethtool.h>
 40 #include <linux/skbuff.h>
 41 #include <linux/spinlock.h>
 42 #include <linux/delay.h>
 43 #include <linux/crc32.h>
 44 #include <linux/mii.h>
 45 #include <linux/device.h>
 46 #include <linux/pci.h>
 47 #include <linux/rtnetlink.h>
 48 #include <linux/timer.h>
 49 #include <linux/platform_device.h>
 50 #include <linux/gfp.h>
 51 
 52 #include <asm/io.h>
 53 #include <asm/tsi108.h>
 54 
 55 #include "tsi108_eth.h"
 56 
 57 #define MII_READ_DELAY 10000    /* max link wait time in msec */
 58 
 59 #define TSI108_RXRING_LEN     256
 60 
 61 /* NOTE: The driver currently does not support receiving packets
 62  * larger than the buffer size, so don't decrease this (unless you
 63  * want to add such support).
 64  */
 65 #define TSI108_RXBUF_SIZE     1536
 66 
 67 #define TSI108_TXRING_LEN     256
 68 
 69 #define TSI108_TX_INT_FREQ    64
 70 
 71 /* Check the phy status every half a second. */
 72 #define CHECK_PHY_INTERVAL (HZ/2)
 73 
 74 static int tsi108_init_one(struct platform_device *pdev);
 75 static int tsi108_ether_remove(struct platform_device *pdev);
 76 
 77 struct tsi108_prv_data {
 78         void  __iomem *regs;    /* Base of normal regs */
 79         void  __iomem *phyregs; /* Base of register bank used for PHY access */
 80 
 81         struct net_device *dev;
 82         struct napi_struct napi;
 83 
 84         unsigned int phy;               /* Index of PHY for this interface */
 85         unsigned int irq_num;
 86         unsigned int id;
 87         unsigned int phy_type;
 88 
 89         struct timer_list timer;/* Timer that triggers the check phy function */
 90         unsigned int rxtail;    /* Next entry in rxring to read */
 91         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
 92         unsigned int rxfree;    /* Number of free, allocated RX buffers */
 93 
 94         unsigned int rxpending; /* Non-zero if there are still descriptors
 95                                  * to be processed from a previous descriptor
 96                                  * interrupt condition that has been cleared */
 97 
 98         unsigned int txtail;    /* Next TX descriptor to check status on */
 99         unsigned int txhead;    /* Next TX descriptor to use */
100 
101         /* Number of free TX descriptors.  This could be calculated from
102          * rxhead and rxtail if one descriptor were left unused to disambiguate
103          * full and empty conditions, but it's simpler to just keep track
104          * explicitly. */
105 
106         unsigned int txfree;
107 
108         unsigned int phy_ok;            /* The PHY is currently powered on. */
109 
110         /* PHY status (duplex is 1 for half, 2 for full,
111          * so that the default 0 indicates that neither has
112          * yet been configured). */
113 
114         unsigned int link_up;
115         unsigned int speed;
116         unsigned int duplex;
117 
118         tx_desc *txring;
119         rx_desc *rxring;
120         struct sk_buff *txskbs[TSI108_TXRING_LEN];
121         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122 
123         dma_addr_t txdma, rxdma;
124 
125         /* txlock nests in misclock and phy_lock */
126 
127         spinlock_t txlock, misclock;
128 
129         /* stats is used to hold the upper bits of each hardware counter,
130          * and tmpstats is used to hold the full values for returning
131          * to the caller of get_stats().  They must be separate in case
132          * an overflow interrupt occurs before the stats are consumed.
133          */
134 
135         struct net_device_stats stats;
136         struct net_device_stats tmpstats;
137 
138         /* These stats are kept separate in hardware, thus require individual
139          * fields for handling carry.  They are combined in get_stats.
140          */
141 
142         unsigned long rx_fcs;   /* Add to rx_frame_errors */
143         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
144         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
145         unsigned long rx_underruns;     /* Add to rx_length_errors */
146         unsigned long rx_overruns;      /* Add to rx_length_errors */
147 
148         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
149         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
150 
151         unsigned long mc_hash[16];
152         u32 msg_enable;                 /* debug message level */
153         struct mii_if_info mii_if;
154         unsigned int init_media;
155 };
156 
157 /* Structure for a device driver */
158 
159 static struct platform_driver tsi_eth_driver = {
160         .probe = tsi108_init_one,
161         .remove = tsi108_ether_remove,
162         .driver = {
163                 .name = "tsi-ethernet",
164                 .owner = THIS_MODULE,
165         },
166 };
167 
168 static void tsi108_timed_checker(unsigned long dev_ptr);
169 
170 static void dump_eth_one(struct net_device *dev)
171 {
172         struct tsi108_prv_data *data = netdev_priv(dev);
173 
174         printk("Dumping %s...\n", dev->name);
175         printk("intstat %x intmask %x phy_ok %d"
176                " link %d speed %d duplex %d\n",
177                TSI_READ(TSI108_EC_INTSTAT),
178                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179                data->link_up, data->speed, data->duplex);
180 
181         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182                data->txhead, data->txtail, data->txfree,
183                TSI_READ(TSI108_EC_TXSTAT),
184                TSI_READ(TSI108_EC_TXESTAT),
185                TSI_READ(TSI108_EC_TXERR));
186 
187         printk("RX: head %d, tail %d, free %d, stat %x,"
188                " estat %x, err %x, pending %d\n\n",
189                data->rxhead, data->rxtail, data->rxfree,
190                TSI_READ(TSI108_EC_RXSTAT),
191                TSI_READ(TSI108_EC_RXESTAT),
192                TSI_READ(TSI108_EC_RXERR), data->rxpending);
193 }
194 
195 /* Synchronization is needed between the thread and up/down events.
196  * Note that the PHY is accessed through the same registers for both
197  * interfaces, so this can't be made interface-specific.
198  */
199 
200 static DEFINE_SPINLOCK(phy_lock);
201 
202 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
203 {
204         unsigned i;
205 
206         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
207                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
208                                 (reg << TSI108_MAC_MII_ADDR_REG));
209         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
210         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
211         for (i = 0; i < 100; i++) {
212                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
213                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
214                         break;
215                 udelay(10);
216         }
217 
218         if (i == 100)
219                 return 0xffff;
220         else
221                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
222 }
223 
224 static void tsi108_write_mii(struct tsi108_prv_data *data,
225                                 int reg, u16 val)
226 {
227         unsigned i = 100;
228         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
229                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
230                                 (reg << TSI108_MAC_MII_ADDR_REG));
231         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
232         while (i--) {
233                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
234                         TSI108_MAC_MII_IND_BUSY))
235                         break;
236                 udelay(10);
237         }
238 }
239 
240 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
241 {
242         struct tsi108_prv_data *data = netdev_priv(dev);
243         return tsi108_read_mii(data, reg);
244 }
245 
246 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
247 {
248         struct tsi108_prv_data *data = netdev_priv(dev);
249         tsi108_write_mii(data, reg, val);
250 }
251 
252 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
253                                         int reg, u16 val)
254 {
255         unsigned i = 1000;
256         TSI_WRITE(TSI108_MAC_MII_ADDR,
257                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
258                              | (reg << TSI108_MAC_MII_ADDR_REG));
259         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
260         while(i--) {
261                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
262                         return;
263                 udelay(10);
264         }
265         printk(KERN_ERR "%s function time out\n", __func__);
266 }
267 
268 static int mii_speed(struct mii_if_info *mii)
269 {
270         int advert, lpa, val, media;
271         int lpa2 = 0;
272         int speed;
273 
274         if (!mii_link_ok(mii))
275                 return 0;
276 
277         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
278         if ((val & BMSR_ANEGCOMPLETE) == 0)
279                 return 0;
280 
281         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
282         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
283         media = mii_nway_result(advert & lpa);
284 
285         if (mii->supports_gmii)
286                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
287 
288         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
289                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
290         return speed;
291 }
292 
293 static void tsi108_check_phy(struct net_device *dev)
294 {
295         struct tsi108_prv_data *data = netdev_priv(dev);
296         u32 mac_cfg2_reg, portctrl_reg;
297         u32 duplex;
298         u32 speed;
299         unsigned long flags;
300 
301         spin_lock_irqsave(&phy_lock, flags);
302 
303         if (!data->phy_ok)
304                 goto out;
305 
306         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
307         data->init_media = 0;
308 
309         if (netif_carrier_ok(dev)) {
310 
311                 speed = mii_speed(&data->mii_if);
312 
313                 if ((speed != data->speed) || duplex) {
314 
315                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
316                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
317 
318                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
319 
320                         if (speed == 1000) {
321                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
322                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
323                         } else {
324                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
325                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
326                         }
327 
328                         data->speed = speed;
329 
330                         if (data->mii_if.full_duplex) {
331                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
332                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
333                                 data->duplex = 2;
334                         } else {
335                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
336                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
337                                 data->duplex = 1;
338                         }
339 
340                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
341                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
342                 }
343 
344                 if (data->link_up == 0) {
345                         /* The manual says it can take 3-4 usecs for the speed change
346                          * to take effect.
347                          */
348                         udelay(5);
349 
350                         spin_lock(&data->txlock);
351                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
352                                 netif_wake_queue(dev);
353 
354                         data->link_up = 1;
355                         spin_unlock(&data->txlock);
356                 }
357         } else {
358                 if (data->link_up == 1) {
359                         netif_stop_queue(dev);
360                         data->link_up = 0;
361                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
362                 }
363 
364                 goto out;
365         }
366 
367 
368 out:
369         spin_unlock_irqrestore(&phy_lock, flags);
370 }
371 
372 static inline void
373 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
374                       unsigned long *upper)
375 {
376         if (carry & carry_bit)
377                 *upper += carry_shift;
378 }
379 
380 static void tsi108_stat_carry(struct net_device *dev)
381 {
382         struct tsi108_prv_data *data = netdev_priv(dev);
383         u32 carry1, carry2;
384 
385         spin_lock_irq(&data->misclock);
386 
387         carry1 = TSI_READ(TSI108_STAT_CARRY1);
388         carry2 = TSI_READ(TSI108_STAT_CARRY2);
389 
390         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
391         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
392 
393         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
394                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
395 
396         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
397                               TSI108_STAT_RXPKTS_CARRY,
398                               &data->stats.rx_packets);
399 
400         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
401                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
402 
403         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
404                               TSI108_STAT_RXMCAST_CARRY,
405                               &data->stats.multicast);
406 
407         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
408                               TSI108_STAT_RXALIGN_CARRY,
409                               &data->stats.rx_frame_errors);
410 
411         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
412                               TSI108_STAT_RXLENGTH_CARRY,
413                               &data->stats.rx_length_errors);
414 
415         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
416                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
417 
418         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
419                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
420 
421         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
422                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
423 
424         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
425                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
426 
427         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
428                               TSI108_STAT_RXDROP_CARRY,
429                               &data->stats.rx_missed_errors);
430 
431         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
432                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
433 
434         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
435                               TSI108_STAT_TXPKTS_CARRY,
436                               &data->stats.tx_packets);
437 
438         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
439                               TSI108_STAT_TXEXDEF_CARRY,
440                               &data->stats.tx_aborted_errors);
441 
442         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
443                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
444 
445         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
446                               TSI108_STAT_TXTCOL_CARRY,
447                               &data->stats.collisions);
448 
449         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
450                               TSI108_STAT_TXPAUSEDROP_CARRY,
451                               &data->tx_pause_drop);
452 
453         spin_unlock_irq(&data->misclock);
454 }
455 
456 /* Read a stat counter atomically with respect to carries.
457  * data->misclock must be held.
458  */
459 static inline unsigned long
460 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
461                  int carry_shift, unsigned long *upper)
462 {
463         int carryreg;
464         unsigned long val;
465 
466         if (reg < 0xb0)
467                 carryreg = TSI108_STAT_CARRY1;
468         else
469                 carryreg = TSI108_STAT_CARRY2;
470 
471       again:
472         val = TSI_READ(reg) | *upper;
473 
474         /* Check to see if it overflowed, but the interrupt hasn't
475          * been serviced yet.  If so, handle the carry here, and
476          * try again.
477          */
478 
479         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
480                 *upper += carry_shift;
481                 TSI_WRITE(carryreg, carry_bit);
482                 goto again;
483         }
484 
485         return val;
486 }
487 
488 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
489 {
490         unsigned long excol;
491 
492         struct tsi108_prv_data *data = netdev_priv(dev);
493         spin_lock_irq(&data->misclock);
494 
495         data->tmpstats.rx_packets =
496             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
497                              TSI108_STAT_CARRY1_RXPKTS,
498                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
499 
500         data->tmpstats.tx_packets =
501             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
502                              TSI108_STAT_CARRY2_TXPKTS,
503                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
504 
505         data->tmpstats.rx_bytes =
506             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
507                              TSI108_STAT_CARRY1_RXBYTES,
508                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
509 
510         data->tmpstats.tx_bytes =
511             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
512                              TSI108_STAT_CARRY2_TXBYTES,
513                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
514 
515         data->tmpstats.multicast =
516             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
517                              TSI108_STAT_CARRY1_RXMCAST,
518                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
519 
520         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
521                                  TSI108_STAT_CARRY2_TXEXCOL,
522                                  TSI108_STAT_TXEXCOL_CARRY,
523                                  &data->tx_coll_abort);
524 
525         data->tmpstats.collisions =
526             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
527                              TSI108_STAT_CARRY2_TXTCOL,
528                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
529 
530         data->tmpstats.collisions += excol;
531 
532         data->tmpstats.rx_length_errors =
533             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
534                              TSI108_STAT_CARRY1_RXLENGTH,
535                              TSI108_STAT_RXLENGTH_CARRY,
536                              &data->stats.rx_length_errors);
537 
538         data->tmpstats.rx_length_errors +=
539             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
540                              TSI108_STAT_CARRY1_RXRUNT,
541                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
542 
543         data->tmpstats.rx_length_errors +=
544             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
545                              TSI108_STAT_CARRY1_RXJUMBO,
546                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
547 
548         data->tmpstats.rx_frame_errors =
549             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
550                              TSI108_STAT_CARRY1_RXALIGN,
551                              TSI108_STAT_RXALIGN_CARRY,
552                              &data->stats.rx_frame_errors);
553 
554         data->tmpstats.rx_frame_errors +=
555             tsi108_read_stat(data, TSI108_STAT_RXFCS,
556                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
557                              &data->rx_fcs);
558 
559         data->tmpstats.rx_frame_errors +=
560             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
561                              TSI108_STAT_CARRY1_RXFRAG,
562                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
563 
564         data->tmpstats.rx_missed_errors =
565             tsi108_read_stat(data, TSI108_STAT_RXDROP,
566                              TSI108_STAT_CARRY1_RXDROP,
567                              TSI108_STAT_RXDROP_CARRY,
568                              &data->stats.rx_missed_errors);
569 
570         /* These three are maintained by software. */
571         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
572         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
573 
574         data->tmpstats.tx_aborted_errors =
575             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
576                              TSI108_STAT_CARRY2_TXEXDEF,
577                              TSI108_STAT_TXEXDEF_CARRY,
578                              &data->stats.tx_aborted_errors);
579 
580         data->tmpstats.tx_aborted_errors +=
581             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
582                              TSI108_STAT_CARRY2_TXPAUSE,
583                              TSI108_STAT_TXPAUSEDROP_CARRY,
584                              &data->tx_pause_drop);
585 
586         data->tmpstats.tx_aborted_errors += excol;
587 
588         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
589         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
590             data->tmpstats.rx_crc_errors +
591             data->tmpstats.rx_frame_errors +
592             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
593 
594         spin_unlock_irq(&data->misclock);
595         return &data->tmpstats;
596 }
597 
598 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
599 {
600         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
601                              TSI108_EC_RXQ_PTRHIGH_VALID);
602 
603         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
604                              | TSI108_EC_RXCTRL_QUEUE0);
605 }
606 
607 static void tsi108_restart_tx(struct tsi108_prv_data * data)
608 {
609         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
610                              TSI108_EC_TXQ_PTRHIGH_VALID);
611 
612         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
613                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
614 }
615 
616 /* txlock must be held by caller, with IRQs disabled, and
617  * with permission to re-enable them when the lock is dropped.
618  */
619 static void tsi108_complete_tx(struct net_device *dev)
620 {
621         struct tsi108_prv_data *data = netdev_priv(dev);
622         int tx;
623         struct sk_buff *skb;
624         int release = 0;
625 
626         while (!data->txfree || data->txhead != data->txtail) {
627                 tx = data->txtail;
628 
629                 if (data->txring[tx].misc & TSI108_TX_OWN)
630                         break;
631 
632                 skb = data->txskbs[tx];
633 
634                 if (!(data->txring[tx].misc & TSI108_TX_OK))
635                         printk("%s: bad tx packet, misc %x\n",
636                                dev->name, data->txring[tx].misc);
637 
638                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
639                 data->txfree++;
640 
641                 if (data->txring[tx].misc & TSI108_TX_EOF) {
642                         dev_kfree_skb_any(skb);
643                         release++;
644                 }
645         }
646 
647         if (release) {
648                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
649                         netif_wake_queue(dev);
650         }
651 }
652 
653 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
654 {
655         struct tsi108_prv_data *data = netdev_priv(dev);
656         int frags = skb_shinfo(skb)->nr_frags + 1;
657         int i;
658 
659         if (!data->phy_ok && net_ratelimit())
660                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
661 
662         if (!data->link_up) {
663                 printk(KERN_ERR "%s: Transmit while link is down!\n",
664                        dev->name);
665                 netif_stop_queue(dev);
666                 return NETDEV_TX_BUSY;
667         }
668 
669         if (data->txfree < MAX_SKB_FRAGS + 1) {
670                 netif_stop_queue(dev);
671 
672                 if (net_ratelimit())
673                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
674                                dev->name);
675                 return NETDEV_TX_BUSY;
676         }
677 
678         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
679                 netif_stop_queue(dev);
680         }
681 
682         spin_lock_irq(&data->txlock);
683 
684         for (i = 0; i < frags; i++) {
685                 int misc = 0;
686                 int tx = data->txhead;
687 
688                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
689                  * the interrupt bit.  TX descriptor-complete interrupts are
690                  * enabled when the queue fills up, and masked when there is
691                  * still free space.  This way, when saturating the outbound
692                  * link, the tx interrupts are kept to a reasonable level.
693                  * When the queue is not full, reclamation of skbs still occurs
694                  * as new packets are transmitted, or on a queue-empty
695                  * interrupt.
696                  */
697 
698                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
699                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
700                         misc = TSI108_TX_INT;
701 
702                 data->txskbs[tx] = skb;
703 
704                 if (i == 0) {
705                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
706                                         skb_headlen(skb), DMA_TO_DEVICE);
707                         data->txring[tx].len = skb_headlen(skb);
708                         misc |= TSI108_TX_SOF;
709                 } else {
710                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
711 
712                         data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
713                                                                  0,
714                                                                  skb_frag_size(frag),
715                                                                  DMA_TO_DEVICE);
716                         data->txring[tx].len = skb_frag_size(frag);
717                 }
718 
719                 if (i == frags - 1)
720                         misc |= TSI108_TX_EOF;
721 
722                 if (netif_msg_pktdata(data)) {
723                         int i;
724                         printk("%s: Tx Frame contents (%d)\n", dev->name,
725                                skb->len);
726                         for (i = 0; i < skb->len; i++)
727                                 printk(" %2.2x", skb->data[i]);
728                         printk(".\n");
729                 }
730                 data->txring[tx].misc = misc | TSI108_TX_OWN;
731 
732                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
733                 data->txfree--;
734         }
735 
736         tsi108_complete_tx(dev);
737 
738         /* This must be done after the check for completed tx descriptors,
739          * so that the tail pointer is correct.
740          */
741 
742         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
743                 tsi108_restart_tx(data);
744 
745         spin_unlock_irq(&data->txlock);
746         return NETDEV_TX_OK;
747 }
748 
749 static int tsi108_complete_rx(struct net_device *dev, int budget)
750 {
751         struct tsi108_prv_data *data = netdev_priv(dev);
752         int done = 0;
753 
754         while (data->rxfree && done != budget) {
755                 int rx = data->rxtail;
756                 struct sk_buff *skb;
757 
758                 if (data->rxring[rx].misc & TSI108_RX_OWN)
759                         break;
760 
761                 skb = data->rxskbs[rx];
762                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
763                 data->rxfree--;
764                 done++;
765 
766                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
767                         spin_lock_irq(&data->misclock);
768 
769                         if (data->rxring[rx].misc & TSI108_RX_CRC)
770                                 data->stats.rx_crc_errors++;
771                         if (data->rxring[rx].misc & TSI108_RX_OVER)
772                                 data->stats.rx_fifo_errors++;
773 
774                         spin_unlock_irq(&data->misclock);
775 
776                         dev_kfree_skb_any(skb);
777                         continue;
778                 }
779                 if (netif_msg_pktdata(data)) {
780                         int i;
781                         printk("%s: Rx Frame contents (%d)\n",
782                                dev->name, data->rxring[rx].len);
783                         for (i = 0; i < data->rxring[rx].len; i++)
784                                 printk(" %2.2x", skb->data[i]);
785                         printk(".\n");
786                 }
787 
788                 skb_put(skb, data->rxring[rx].len);
789                 skb->protocol = eth_type_trans(skb, dev);
790                 netif_receive_skb(skb);
791         }
792 
793         return done;
794 }
795 
796 static int tsi108_refill_rx(struct net_device *dev, int budget)
797 {
798         struct tsi108_prv_data *data = netdev_priv(dev);
799         int done = 0;
800 
801         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
802                 int rx = data->rxhead;
803                 struct sk_buff *skb;
804 
805                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
806                 data->rxskbs[rx] = skb;
807                 if (!skb)
808                         break;
809 
810                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
811                                                         TSI108_RX_SKB_SIZE,
812                                                         DMA_FROM_DEVICE);
813 
814                 /* Sometimes the hardware sets blen to zero after packet
815                  * reception, even though the manual says that it's only ever
816                  * modified by the driver.
817                  */
818 
819                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
820                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
821 
822                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
823                 data->rxfree++;
824                 done++;
825         }
826 
827         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
828                            TSI108_EC_RXSTAT_QUEUE0))
829                 tsi108_restart_rx(data, dev);
830 
831         return done;
832 }
833 
834 static int tsi108_poll(struct napi_struct *napi, int budget)
835 {
836         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
837         struct net_device *dev = data->dev;
838         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
839         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
840         int num_received = 0, num_filled = 0;
841 
842         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
843             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
844 
845         TSI_WRITE(TSI108_EC_RXESTAT, estat);
846         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
847 
848         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
849                 num_received = tsi108_complete_rx(dev, budget);
850 
851         /* This should normally fill no more slots than the number of
852          * packets received in tsi108_complete_rx().  The exception
853          * is when we previously ran out of memory for RX SKBs.  In that
854          * case, it's helpful to obey the budget, not only so that the
855          * CPU isn't hogged, but so that memory (which may still be low)
856          * is not hogged by one device.
857          *
858          * A work unit is considered to be two SKBs to allow us to catch
859          * up when the ring has shrunk due to out-of-memory but we're
860          * still removing the full budget's worth of packets each time.
861          */
862 
863         if (data->rxfree < TSI108_RXRING_LEN)
864                 num_filled = tsi108_refill_rx(dev, budget * 2);
865 
866         if (intstat & TSI108_INT_RXERROR) {
867                 u32 err = TSI_READ(TSI108_EC_RXERR);
868                 TSI_WRITE(TSI108_EC_RXERR, err);
869 
870                 if (err) {
871                         if (net_ratelimit())
872                                 printk(KERN_DEBUG "%s: RX error %x\n",
873                                        dev->name, err);
874 
875                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
876                               TSI108_EC_RXSTAT_QUEUE0))
877                                 tsi108_restart_rx(data, dev);
878                 }
879         }
880 
881         if (intstat & TSI108_INT_RXOVERRUN) {
882                 spin_lock_irq(&data->misclock);
883                 data->stats.rx_fifo_errors++;
884                 spin_unlock_irq(&data->misclock);
885         }
886 
887         if (num_received < budget) {
888                 data->rxpending = 0;
889                 napi_complete(napi);
890 
891                 TSI_WRITE(TSI108_EC_INTMASK,
892                                      TSI_READ(TSI108_EC_INTMASK)
893                                      & ~(TSI108_INT_RXQUEUE0
894                                          | TSI108_INT_RXTHRESH |
895                                          TSI108_INT_RXOVERRUN |
896                                          TSI108_INT_RXERROR |
897                                          TSI108_INT_RXWAIT));
898         } else {
899                 data->rxpending = 1;
900         }
901 
902         return num_received;
903 }
904 
905 static void tsi108_rx_int(struct net_device *dev)
906 {
907         struct tsi108_prv_data *data = netdev_priv(dev);
908 
909         /* A race could cause dev to already be scheduled, so it's not an
910          * error if that happens (and interrupts shouldn't be re-masked,
911          * because that can cause harmful races, if poll has already
912          * unmasked them but not cleared LINK_STATE_SCHED).
913          *
914          * This can happen if this code races with tsi108_poll(), which masks
915          * the interrupts after tsi108_irq_one() read the mask, but before
916          * napi_schedule is called.  It could also happen due to calls
917          * from tsi108_check_rxring().
918          */
919 
920         if (napi_schedule_prep(&data->napi)) {
921                 /* Mask, rather than ack, the receive interrupts.  The ack
922                  * will happen in tsi108_poll().
923                  */
924 
925                 TSI_WRITE(TSI108_EC_INTMASK,
926                                      TSI_READ(TSI108_EC_INTMASK) |
927                                      TSI108_INT_RXQUEUE0
928                                      | TSI108_INT_RXTHRESH |
929                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
930                                      TSI108_INT_RXWAIT);
931                 __napi_schedule(&data->napi);
932         } else {
933                 if (!netif_running(dev)) {
934                         /* This can happen if an interrupt occurs while the
935                          * interface is being brought down, as the START
936                          * bit is cleared before the stop function is called.
937                          *
938                          * In this case, the interrupts must be masked, or
939                          * they will continue indefinitely.
940                          *
941                          * There's a race here if the interface is brought down
942                          * and then up in rapid succession, as the device could
943                          * be made running after the above check and before
944                          * the masking below.  This will only happen if the IRQ
945                          * thread has a lower priority than the task brining
946                          * up the interface.  Fixing this race would likely
947                          * require changes in generic code.
948                          */
949 
950                         TSI_WRITE(TSI108_EC_INTMASK,
951                                              TSI_READ
952                                              (TSI108_EC_INTMASK) |
953                                              TSI108_INT_RXQUEUE0 |
954                                              TSI108_INT_RXTHRESH |
955                                              TSI108_INT_RXOVERRUN |
956                                              TSI108_INT_RXERROR |
957                                              TSI108_INT_RXWAIT);
958                 }
959         }
960 }
961 
962 /* If the RX ring has run out of memory, try periodically
963  * to allocate some more, as otherwise poll would never
964  * get called (apart from the initial end-of-queue condition).
965  *
966  * This is called once per second (by default) from the thread.
967  */
968 
969 static void tsi108_check_rxring(struct net_device *dev)
970 {
971         struct tsi108_prv_data *data = netdev_priv(dev);
972 
973         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
974          * directly, so as to keep the receive path single-threaded
975          * (and thus not needing a lock).
976          */
977 
978         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
979                 tsi108_rx_int(dev);
980 }
981 
982 static void tsi108_tx_int(struct net_device *dev)
983 {
984         struct tsi108_prv_data *data = netdev_priv(dev);
985         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
986 
987         TSI_WRITE(TSI108_EC_TXESTAT, estat);
988         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
989                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
990         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
991                 u32 err = TSI_READ(TSI108_EC_TXERR);
992                 TSI_WRITE(TSI108_EC_TXERR, err);
993 
994                 if (err && net_ratelimit())
995                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
996         }
997 
998         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
999                 spin_lock(&data->txlock);
1000                 tsi108_complete_tx(dev);
1001                 spin_unlock(&data->txlock);
1002         }
1003 }
1004 
1005 
1006 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1007 {
1008         struct net_device *dev = dev_id;
1009         struct tsi108_prv_data *data = netdev_priv(dev);
1010         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1011 
1012         if (!(stat & TSI108_INT_ANY))
1013                 return IRQ_NONE;        /* Not our interrupt */
1014 
1015         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1016 
1017         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1018                     TSI108_INT_TXERROR))
1019                 tsi108_tx_int(dev);
1020         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1021                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1022                     TSI108_INT_RXERROR))
1023                 tsi108_rx_int(dev);
1024 
1025         if (stat & TSI108_INT_SFN) {
1026                 if (net_ratelimit())
1027                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1028                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1029         }
1030 
1031         if (stat & TSI108_INT_STATCARRY) {
1032                 tsi108_stat_carry(dev);
1033                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1034         }
1035 
1036         return IRQ_HANDLED;
1037 }
1038 
1039 static void tsi108_stop_ethernet(struct net_device *dev)
1040 {
1041         struct tsi108_prv_data *data = netdev_priv(dev);
1042         int i = 1000;
1043         /* Disable all TX and RX queues ... */
1044         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1045         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1046 
1047         /* ...and wait for them to become idle */
1048         while(i--) {
1049                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1050                         break;
1051                 udelay(10);
1052         }
1053         i = 1000;
1054         while(i--){
1055                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1056                         return;
1057                 udelay(10);
1058         }
1059         printk(KERN_ERR "%s function time out\n", __func__);
1060 }
1061 
1062 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1063 {
1064         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1065         udelay(100);
1066         TSI_WRITE(TSI108_MAC_CFG1, 0);
1067 
1068         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1069         udelay(100);
1070         TSI_WRITE(TSI108_EC_PORTCTRL,
1071                              TSI_READ(TSI108_EC_PORTCTRL) &
1072                              ~TSI108_EC_PORTCTRL_STATRST);
1073 
1074         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1075         udelay(100);
1076         TSI_WRITE(TSI108_EC_TXCFG,
1077                              TSI_READ(TSI108_EC_TXCFG) &
1078                              ~TSI108_EC_TXCFG_RST);
1079 
1080         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1081         udelay(100);
1082         TSI_WRITE(TSI108_EC_RXCFG,
1083                              TSI_READ(TSI108_EC_RXCFG) &
1084                              ~TSI108_EC_RXCFG_RST);
1085 
1086         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1087                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1088                              TSI108_MAC_MII_MGMT_RST);
1089         udelay(100);
1090         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1091                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1092                              ~(TSI108_MAC_MII_MGMT_RST |
1093                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1094 }
1095 
1096 static int tsi108_get_mac(struct net_device *dev)
1097 {
1098         struct tsi108_prv_data *data = netdev_priv(dev);
1099         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1100         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1101 
1102         /* Note that the octets are reversed from what the manual says,
1103          * producing an even weirder ordering...
1104          */
1105         if (word2 == 0 && word1 == 0) {
1106                 dev->dev_addr[0] = 0x00;
1107                 dev->dev_addr[1] = 0x06;
1108                 dev->dev_addr[2] = 0xd2;
1109                 dev->dev_addr[3] = 0x00;
1110                 dev->dev_addr[4] = 0x00;
1111                 if (0x8 == data->phy)
1112                         dev->dev_addr[5] = 0x01;
1113                 else
1114                         dev->dev_addr[5] = 0x02;
1115 
1116                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1117 
1118                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1119                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1120 
1121                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1122                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1123         } else {
1124                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1125                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1126                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1127                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1128                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1129                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1130         }
1131 
1132         if (!is_valid_ether_addr(dev->dev_addr)) {
1133                 printk(KERN_ERR
1134                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1135                        dev->name, word1, word2);
1136                 return -EINVAL;
1137         }
1138 
1139         return 0;
1140 }
1141 
1142 static int tsi108_set_mac(struct net_device *dev, void *addr)
1143 {
1144         struct tsi108_prv_data *data = netdev_priv(dev);
1145         u32 word1, word2;
1146         int i;
1147 
1148         if (!is_valid_ether_addr(addr))
1149                 return -EADDRNOTAVAIL;
1150 
1151         for (i = 0; i < 6; i++)
1152                 /* +2 is for the offset of the HW addr type */
1153                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1154 
1155         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1156 
1157         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1158             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1159 
1160         spin_lock_irq(&data->misclock);
1161         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1162         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1163         spin_lock(&data->txlock);
1164 
1165         if (data->txfree && data->link_up)
1166                 netif_wake_queue(dev);
1167 
1168         spin_unlock(&data->txlock);
1169         spin_unlock_irq(&data->misclock);
1170         return 0;
1171 }
1172 
1173 /* Protected by dev->xmit_lock. */
1174 static void tsi108_set_rx_mode(struct net_device *dev)
1175 {
1176         struct tsi108_prv_data *data = netdev_priv(dev);
1177         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1178 
1179         if (dev->flags & IFF_PROMISC) {
1180                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1181                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1182                 goto out;
1183         }
1184 
1185         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1186 
1187         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1188                 int i;
1189                 struct netdev_hw_addr *ha;
1190                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1191 
1192                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1193 
1194                 netdev_for_each_mc_addr(ha, dev) {
1195                         u32 hash, crc;
1196 
1197                         crc = ether_crc(6, ha->addr);
1198                         hash = crc >> 23;
1199                         __set_bit(hash, &data->mc_hash[0]);
1200                 }
1201 
1202                 TSI_WRITE(TSI108_EC_HASHADDR,
1203                                      TSI108_EC_HASHADDR_AUTOINC |
1204                                      TSI108_EC_HASHADDR_MCAST);
1205 
1206                 for (i = 0; i < 16; i++) {
1207                         /* The manual says that the hardware may drop
1208                          * back-to-back writes to the data register.
1209                          */
1210                         udelay(1);
1211                         TSI_WRITE(TSI108_EC_HASHDATA,
1212                                              data->mc_hash[i]);
1213                 }
1214         }
1215 
1216       out:
1217         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1218 }
1219 
1220 static void tsi108_init_phy(struct net_device *dev)
1221 {
1222         struct tsi108_prv_data *data = netdev_priv(dev);
1223         u32 i = 0;
1224         u16 phyval = 0;
1225         unsigned long flags;
1226 
1227         spin_lock_irqsave(&phy_lock, flags);
1228 
1229         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1230         while (--i) {
1231                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1232                         break;
1233                 udelay(10);
1234         }
1235         if (i == 0)
1236                 printk(KERN_ERR "%s function time out\n", __func__);
1237 
1238         if (data->phy_type == TSI108_PHY_BCM54XX) {
1239                 tsi108_write_mii(data, 0x09, 0x0300);
1240                 tsi108_write_mii(data, 0x10, 0x1020);
1241                 tsi108_write_mii(data, 0x1c, 0x8c00);
1242         }
1243 
1244         tsi108_write_mii(data,
1245                          MII_BMCR,
1246                          BMCR_ANENABLE | BMCR_ANRESTART);
1247         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1248                 cpu_relax();
1249 
1250         /* Set G/MII mode and receive clock select in TBI control #2.  The
1251          * second port won't work if this isn't done, even though we don't
1252          * use TBI mode.
1253          */
1254 
1255         tsi108_write_tbi(data, 0x11, 0x30);
1256 
1257         /* FIXME: It seems to take more than 2 back-to-back reads to the
1258          * PHY_STAT register before the link up status bit is set.
1259          */
1260 
1261         data->link_up = 0;
1262 
1263         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1264                  BMSR_LSTATUS)) {
1265                 if (i++ > (MII_READ_DELAY / 10)) {
1266                         break;
1267                 }
1268                 spin_unlock_irqrestore(&phy_lock, flags);
1269                 msleep(10);
1270                 spin_lock_irqsave(&phy_lock, flags);
1271         }
1272 
1273         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1274         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1275         data->phy_ok = 1;
1276         data->init_media = 1;
1277         spin_unlock_irqrestore(&phy_lock, flags);
1278 }
1279 
1280 static void tsi108_kill_phy(struct net_device *dev)
1281 {
1282         struct tsi108_prv_data *data = netdev_priv(dev);
1283         unsigned long flags;
1284 
1285         spin_lock_irqsave(&phy_lock, flags);
1286         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1287         data->phy_ok = 0;
1288         spin_unlock_irqrestore(&phy_lock, flags);
1289 }
1290 
1291 static int tsi108_open(struct net_device *dev)
1292 {
1293         int i;
1294         struct tsi108_prv_data *data = netdev_priv(dev);
1295         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1296         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1297 
1298         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1299         if (i != 0) {
1300                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1301                        data->id, data->irq_num);
1302                 return i;
1303         } else {
1304                 dev->irq = data->irq_num;
1305                 printk(KERN_NOTICE
1306                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1307                        data->id, dev->irq, dev->name);
1308         }
1309 
1310         data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1311                                            GFP_KERNEL);
1312         if (!data->rxring)
1313                 return -ENOMEM;
1314 
1315         data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1316                                            GFP_KERNEL);
1317         if (!data->txring) {
1318                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1319                 return -ENOMEM;
1320         }
1321 
1322         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1323                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1324                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1325                 data->rxring[i].vlan = 0;
1326         }
1327 
1328         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1329 
1330         data->rxtail = 0;
1331         data->rxhead = 0;
1332 
1333         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1334                 struct sk_buff *skb;
1335 
1336                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1337                 if (!skb) {
1338                         /* Bah.  No memory for now, but maybe we'll get
1339                          * some more later.
1340                          * For now, we'll live with the smaller ring.
1341                          */
1342                         printk(KERN_WARNING
1343                                "%s: Could only allocate %d receive skb(s).\n",
1344                                dev->name, i);
1345                         data->rxhead = i;
1346                         break;
1347                 }
1348 
1349                 data->rxskbs[i] = skb;
1350                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1351                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1352         }
1353 
1354         data->rxfree = i;
1355         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1356 
1357         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1358                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1359                 data->txring[i].misc = 0;
1360         }
1361 
1362         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1363         data->txtail = 0;
1364         data->txhead = 0;
1365         data->txfree = TSI108_TXRING_LEN;
1366         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1367         tsi108_init_phy(dev);
1368 
1369         napi_enable(&data->napi);
1370 
1371         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1372         mod_timer(&data->timer, jiffies + 1);
1373 
1374         tsi108_restart_rx(data, dev);
1375 
1376         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1377 
1378         TSI_WRITE(TSI108_EC_INTMASK,
1379                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1380                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1381                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1382                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1383 
1384         TSI_WRITE(TSI108_MAC_CFG1,
1385                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1386         netif_start_queue(dev);
1387         return 0;
1388 }
1389 
1390 static int tsi108_close(struct net_device *dev)
1391 {
1392         struct tsi108_prv_data *data = netdev_priv(dev);
1393 
1394         netif_stop_queue(dev);
1395         napi_disable(&data->napi);
1396 
1397         del_timer_sync(&data->timer);
1398 
1399         tsi108_stop_ethernet(dev);
1400         tsi108_kill_phy(dev);
1401         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1402         TSI_WRITE(TSI108_MAC_CFG1, 0);
1403 
1404         /* Check for any pending TX packets, and drop them. */
1405 
1406         while (!data->txfree || data->txhead != data->txtail) {
1407                 int tx = data->txtail;
1408                 struct sk_buff *skb;
1409                 skb = data->txskbs[tx];
1410                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1411                 data->txfree++;
1412                 dev_kfree_skb(skb);
1413         }
1414 
1415         free_irq(data->irq_num, dev);
1416 
1417         /* Discard the RX ring. */
1418 
1419         while (data->rxfree) {
1420                 int rx = data->rxtail;
1421                 struct sk_buff *skb;
1422 
1423                 skb = data->rxskbs[rx];
1424                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1425                 data->rxfree--;
1426                 dev_kfree_skb(skb);
1427         }
1428 
1429         dma_free_coherent(0,
1430                             TSI108_RXRING_LEN * sizeof(rx_desc),
1431                             data->rxring, data->rxdma);
1432         dma_free_coherent(0,
1433                             TSI108_TXRING_LEN * sizeof(tx_desc),
1434                             data->txring, data->txdma);
1435 
1436         return 0;
1437 }
1438 
1439 static void tsi108_init_mac(struct net_device *dev)
1440 {
1441         struct tsi108_prv_data *data = netdev_priv(dev);
1442 
1443         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1444                              TSI108_MAC_CFG2_PADCRC);
1445 
1446         TSI_WRITE(TSI108_EC_TXTHRESH,
1447                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1448                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1449 
1450         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1451                              ~(TSI108_STAT_CARRY1_RXBYTES |
1452                                TSI108_STAT_CARRY1_RXPKTS |
1453                                TSI108_STAT_CARRY1_RXFCS |
1454                                TSI108_STAT_CARRY1_RXMCAST |
1455                                TSI108_STAT_CARRY1_RXALIGN |
1456                                TSI108_STAT_CARRY1_RXLENGTH |
1457                                TSI108_STAT_CARRY1_RXRUNT |
1458                                TSI108_STAT_CARRY1_RXJUMBO |
1459                                TSI108_STAT_CARRY1_RXFRAG |
1460                                TSI108_STAT_CARRY1_RXJABBER |
1461                                TSI108_STAT_CARRY1_RXDROP));
1462 
1463         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1464                              ~(TSI108_STAT_CARRY2_TXBYTES |
1465                                TSI108_STAT_CARRY2_TXPKTS |
1466                                TSI108_STAT_CARRY2_TXEXDEF |
1467                                TSI108_STAT_CARRY2_TXEXCOL |
1468                                TSI108_STAT_CARRY2_TXTCOL |
1469                                TSI108_STAT_CARRY2_TXPAUSE));
1470 
1471         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1472         TSI_WRITE(TSI108_MAC_CFG1, 0);
1473 
1474         TSI_WRITE(TSI108_EC_RXCFG,
1475                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1476 
1477         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1478                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1479                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1480                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1481 
1482         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1483                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1484                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1485                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1486 
1487         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1488                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1489                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1490                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1491 
1492         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1493                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1494                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1495                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1496 
1497         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1498 }
1499 
1500 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1501 {
1502         struct tsi108_prv_data *data = netdev_priv(dev);
1503         unsigned long flags;
1504         int rc;
1505 
1506         spin_lock_irqsave(&data->txlock, flags);
1507         rc = mii_ethtool_gset(&data->mii_if, cmd);
1508         spin_unlock_irqrestore(&data->txlock, flags);
1509 
1510         return rc;
1511 }
1512 
1513 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1514 {
1515         struct tsi108_prv_data *data = netdev_priv(dev);
1516         unsigned long flags;
1517         int rc;
1518 
1519         spin_lock_irqsave(&data->txlock, flags);
1520         rc = mii_ethtool_sset(&data->mii_if, cmd);
1521         spin_unlock_irqrestore(&data->txlock, flags);
1522 
1523         return rc;
1524 }
1525 
1526 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1527 {
1528         struct tsi108_prv_data *data = netdev_priv(dev);
1529         if (!netif_running(dev))
1530                 return -EINVAL;
1531         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1532 }
1533 
1534 static const struct ethtool_ops tsi108_ethtool_ops = {
1535         .get_link       = ethtool_op_get_link,
1536         .get_settings   = tsi108_get_settings,
1537         .set_settings   = tsi108_set_settings,
1538 };
1539 
1540 static const struct net_device_ops tsi108_netdev_ops = {
1541         .ndo_open               = tsi108_open,
1542         .ndo_stop               = tsi108_close,
1543         .ndo_start_xmit         = tsi108_send_packet,
1544         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1545         .ndo_get_stats          = tsi108_get_stats,
1546         .ndo_do_ioctl           = tsi108_do_ioctl,
1547         .ndo_set_mac_address    = tsi108_set_mac,
1548         .ndo_validate_addr      = eth_validate_addr,
1549         .ndo_change_mtu         = eth_change_mtu,
1550 };
1551 
1552 static int
1553 tsi108_init_one(struct platform_device *pdev)
1554 {
1555         struct net_device *dev = NULL;
1556         struct tsi108_prv_data *data = NULL;
1557         hw_info *einfo;
1558         int err = 0;
1559 
1560         einfo = dev_get_platdata(&pdev->dev);
1561 
1562         if (NULL == einfo) {
1563                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1564                        pdev->id);
1565                 return -ENODEV;
1566         }
1567 
1568         /* Create an ethernet device instance */
1569 
1570         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1571         if (!dev)
1572                 return -ENOMEM;
1573 
1574         printk("tsi108_eth%d: probe...\n", pdev->id);
1575         data = netdev_priv(dev);
1576         data->dev = dev;
1577 
1578         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1579                         pdev->id, einfo->regs, einfo->phyregs,
1580                         einfo->phy, einfo->irq_num);
1581 
1582         data->regs = ioremap(einfo->regs, 0x400);
1583         if (NULL == data->regs) {
1584                 err = -ENOMEM;
1585                 goto regs_fail;
1586         }
1587 
1588         data->phyregs = ioremap(einfo->phyregs, 0x400);
1589         if (NULL == data->phyregs) {
1590                 err = -ENOMEM;
1591                 goto phyregs_fail;
1592         }
1593 /* MII setup */
1594         data->mii_if.dev = dev;
1595         data->mii_if.mdio_read = tsi108_mdio_read;
1596         data->mii_if.mdio_write = tsi108_mdio_write;
1597         data->mii_if.phy_id = einfo->phy;
1598         data->mii_if.phy_id_mask = 0x1f;
1599         data->mii_if.reg_num_mask = 0x1f;
1600 
1601         data->phy = einfo->phy;
1602         data->phy_type = einfo->phy_type;
1603         data->irq_num = einfo->irq_num;
1604         data->id = pdev->id;
1605         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1606         dev->netdev_ops = &tsi108_netdev_ops;
1607         dev->ethtool_ops = &tsi108_ethtool_ops;
1608 
1609         /* Apparently, the Linux networking code won't use scatter-gather
1610          * if the hardware doesn't do checksums.  However, it's faster
1611          * to checksum in place and use SG, as (among other reasons)
1612          * the cache won't be dirtied (which then has to be flushed
1613          * before DMA).  The checksumming is done by the driver (via
1614          * a new function skb_csum_dev() in net/core/skbuff.c).
1615          */
1616 
1617         dev->features = NETIF_F_HIGHDMA;
1618 
1619         spin_lock_init(&data->txlock);
1620         spin_lock_init(&data->misclock);
1621 
1622         tsi108_reset_ether(data);
1623         tsi108_kill_phy(dev);
1624 
1625         if ((err = tsi108_get_mac(dev)) != 0) {
1626                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1627                        dev->name);
1628                 goto register_fail;
1629         }
1630 
1631         tsi108_init_mac(dev);
1632         err = register_netdev(dev);
1633         if (err) {
1634                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1635                                 dev->name);
1636                 goto register_fail;
1637         }
1638 
1639         platform_set_drvdata(pdev, dev);
1640         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1641                dev->name, dev->dev_addr);
1642 #ifdef DEBUG
1643         data->msg_enable = DEBUG;
1644         dump_eth_one(dev);
1645 #endif
1646 
1647         return 0;
1648 
1649 register_fail:
1650         iounmap(data->phyregs);
1651 
1652 phyregs_fail:
1653         iounmap(data->regs);
1654 
1655 regs_fail:
1656         free_netdev(dev);
1657         return err;
1658 }
1659 
1660 /* There's no way to either get interrupts from the PHY when
1661  * something changes, or to have the Tsi108 automatically communicate
1662  * with the PHY to reconfigure itself.
1663  *
1664  * Thus, we have to do it using a timer.
1665  */
1666 
1667 static void tsi108_timed_checker(unsigned long dev_ptr)
1668 {
1669         struct net_device *dev = (struct net_device *)dev_ptr;
1670         struct tsi108_prv_data *data = netdev_priv(dev);
1671 
1672         tsi108_check_phy(dev);
1673         tsi108_check_rxring(dev);
1674         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1675 }
1676 
1677 static int tsi108_ether_remove(struct platform_device *pdev)
1678 {
1679         struct net_device *dev = platform_get_drvdata(pdev);
1680         struct tsi108_prv_data *priv = netdev_priv(dev);
1681 
1682         unregister_netdev(dev);
1683         tsi108_stop_ethernet(dev);
1684         iounmap(priv->regs);
1685         iounmap(priv->phyregs);
1686         free_netdev(dev);
1687 
1688         return 0;
1689 }
1690 module_platform_driver(tsi_eth_driver);
1691 
1692 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1693 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1694 MODULE_LICENSE("GPL");
1695 MODULE_ALIAS("platform:tsi-ethernet");
1696 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us