Version:  2.0.40 2.2.26 2.4.37 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Linux/drivers/net/ethernet/tundra/tsi108_eth.c

  1 /*******************************************************************************
  2 
  3   Copyright(c) 2006 Tundra Semiconductor Corporation.
  4 
  5   This program is free software; you can redistribute it and/or modify it
  6   under the terms of the GNU General Public License as published by the Free
  7   Software Foundation; either version 2 of the License, or (at your option)
  8   any later version.
  9 
 10   This program is distributed in the hope that it will be useful, but WITHOUT
 11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13   more details.
 14 
 15   You should have received a copy of the GNU General Public License along with
 16   this program; if not, write to the Free Software Foundation, Inc., 59
 17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 18 
 19 *******************************************************************************/
 20 
 21 /* This driver is based on the driver code originally developed
 22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
 23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
 24  *
 25  * Currently changes from original version are:
 26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
 27  * - modifications to handle two ports independently and support for
 28  *   additional PHY devices (alexandre.bounine@tundra.com)
 29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
 30  *
 31  */
 32 
 33 #include <linux/module.h>
 34 #include <linux/types.h>
 35 #include <linux/interrupt.h>
 36 #include <linux/net.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/etherdevice.h>
 39 #include <linux/ethtool.h>
 40 #include <linux/skbuff.h>
 41 #include <linux/spinlock.h>
 42 #include <linux/delay.h>
 43 #include <linux/crc32.h>
 44 #include <linux/mii.h>
 45 #include <linux/device.h>
 46 #include <linux/pci.h>
 47 #include <linux/rtnetlink.h>
 48 #include <linux/timer.h>
 49 #include <linux/platform_device.h>
 50 #include <linux/gfp.h>
 51 
 52 #include <asm/io.h>
 53 #include <asm/tsi108.h>
 54 
 55 #include "tsi108_eth.h"
 56 
 57 #define MII_READ_DELAY 10000    /* max link wait time in msec */
 58 
 59 #define TSI108_RXRING_LEN     256
 60 
 61 /* NOTE: The driver currently does not support receiving packets
 62  * larger than the buffer size, so don't decrease this (unless you
 63  * want to add such support).
 64  */
 65 #define TSI108_RXBUF_SIZE     1536
 66 
 67 #define TSI108_TXRING_LEN     256
 68 
 69 #define TSI108_TX_INT_FREQ    64
 70 
 71 /* Check the phy status every half a second. */
 72 #define CHECK_PHY_INTERVAL (HZ/2)
 73 
 74 static int tsi108_init_one(struct platform_device *pdev);
 75 static int tsi108_ether_remove(struct platform_device *pdev);
 76 
 77 struct tsi108_prv_data {
 78         void  __iomem *regs;    /* Base of normal regs */
 79         void  __iomem *phyregs; /* Base of register bank used for PHY access */
 80 
 81         struct net_device *dev;
 82         struct napi_struct napi;
 83 
 84         unsigned int phy;               /* Index of PHY for this interface */
 85         unsigned int irq_num;
 86         unsigned int id;
 87         unsigned int phy_type;
 88 
 89         struct timer_list timer;/* Timer that triggers the check phy function */
 90         unsigned int rxtail;    /* Next entry in rxring to read */
 91         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
 92         unsigned int rxfree;    /* Number of free, allocated RX buffers */
 93 
 94         unsigned int rxpending; /* Non-zero if there are still descriptors
 95                                  * to be processed from a previous descriptor
 96                                  * interrupt condition that has been cleared */
 97 
 98         unsigned int txtail;    /* Next TX descriptor to check status on */
 99         unsigned int txhead;    /* Next TX descriptor to use */
100 
101         /* Number of free TX descriptors.  This could be calculated from
102          * rxhead and rxtail if one descriptor were left unused to disambiguate
103          * full and empty conditions, but it's simpler to just keep track
104          * explicitly. */
105 
106         unsigned int txfree;
107 
108         unsigned int phy_ok;            /* The PHY is currently powered on. */
109 
110         /* PHY status (duplex is 1 for half, 2 for full,
111          * so that the default 0 indicates that neither has
112          * yet been configured). */
113 
114         unsigned int link_up;
115         unsigned int speed;
116         unsigned int duplex;
117 
118         tx_desc *txring;
119         rx_desc *rxring;
120         struct sk_buff *txskbs[TSI108_TXRING_LEN];
121         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
122 
123         dma_addr_t txdma, rxdma;
124 
125         /* txlock nests in misclock and phy_lock */
126 
127         spinlock_t txlock, misclock;
128 
129         /* stats is used to hold the upper bits of each hardware counter,
130          * and tmpstats is used to hold the full values for returning
131          * to the caller of get_stats().  They must be separate in case
132          * an overflow interrupt occurs before the stats are consumed.
133          */
134 
135         struct net_device_stats stats;
136         struct net_device_stats tmpstats;
137 
138         /* These stats are kept separate in hardware, thus require individual
139          * fields for handling carry.  They are combined in get_stats.
140          */
141 
142         unsigned long rx_fcs;   /* Add to rx_frame_errors */
143         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
144         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
145         unsigned long rx_underruns;     /* Add to rx_length_errors */
146         unsigned long rx_overruns;      /* Add to rx_length_errors */
147 
148         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
149         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
150 
151         unsigned long mc_hash[16];
152         u32 msg_enable;                 /* debug message level */
153         struct mii_if_info mii_if;
154         unsigned int init_media;
155 };
156 
157 /* Structure for a device driver */
158 
159 static struct platform_driver tsi_eth_driver = {
160         .probe = tsi108_init_one,
161         .remove = tsi108_ether_remove,
162         .driver = {
163                 .name = "tsi-ethernet",
164         },
165 };
166 
167 static void tsi108_timed_checker(unsigned long dev_ptr);
168 
169 #ifdef DEBUG
170 static void dump_eth_one(struct net_device *dev)
171 {
172         struct tsi108_prv_data *data = netdev_priv(dev);
173 
174         printk("Dumping %s...\n", dev->name);
175         printk("intstat %x intmask %x phy_ok %d"
176                " link %d speed %d duplex %d\n",
177                TSI_READ(TSI108_EC_INTSTAT),
178                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
179                data->link_up, data->speed, data->duplex);
180 
181         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
182                data->txhead, data->txtail, data->txfree,
183                TSI_READ(TSI108_EC_TXSTAT),
184                TSI_READ(TSI108_EC_TXESTAT),
185                TSI_READ(TSI108_EC_TXERR));
186 
187         printk("RX: head %d, tail %d, free %d, stat %x,"
188                " estat %x, err %x, pending %d\n\n",
189                data->rxhead, data->rxtail, data->rxfree,
190                TSI_READ(TSI108_EC_RXSTAT),
191                TSI_READ(TSI108_EC_RXESTAT),
192                TSI_READ(TSI108_EC_RXERR), data->rxpending);
193 }
194 #endif
195 
196 /* Synchronization is needed between the thread and up/down events.
197  * Note that the PHY is accessed through the same registers for both
198  * interfaces, so this can't be made interface-specific.
199  */
200 
201 static DEFINE_SPINLOCK(phy_lock);
202 
203 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
204 {
205         unsigned i;
206 
207         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
208                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
209                                 (reg << TSI108_MAC_MII_ADDR_REG));
210         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
211         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
212         for (i = 0; i < 100; i++) {
213                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
214                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
215                         break;
216                 udelay(10);
217         }
218 
219         if (i == 100)
220                 return 0xffff;
221         else
222                 return TSI_READ_PHY(TSI108_MAC_MII_DATAIN);
223 }
224 
225 static void tsi108_write_mii(struct tsi108_prv_data *data,
226                                 int reg, u16 val)
227 {
228         unsigned i = 100;
229         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
230                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
231                                 (reg << TSI108_MAC_MII_ADDR_REG));
232         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
233         while (i--) {
234                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
235                         TSI108_MAC_MII_IND_BUSY))
236                         break;
237                 udelay(10);
238         }
239 }
240 
241 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
242 {
243         struct tsi108_prv_data *data = netdev_priv(dev);
244         return tsi108_read_mii(data, reg);
245 }
246 
247 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
248 {
249         struct tsi108_prv_data *data = netdev_priv(dev);
250         tsi108_write_mii(data, reg, val);
251 }
252 
253 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
254                                         int reg, u16 val)
255 {
256         unsigned i = 1000;
257         TSI_WRITE(TSI108_MAC_MII_ADDR,
258                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
259                              | (reg << TSI108_MAC_MII_ADDR_REG));
260         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
261         while(i--) {
262                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
263                         return;
264                 udelay(10);
265         }
266         printk(KERN_ERR "%s function time out\n", __func__);
267 }
268 
269 static int mii_speed(struct mii_if_info *mii)
270 {
271         int advert, lpa, val, media;
272         int lpa2 = 0;
273         int speed;
274 
275         if (!mii_link_ok(mii))
276                 return 0;
277 
278         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
279         if ((val & BMSR_ANEGCOMPLETE) == 0)
280                 return 0;
281 
282         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
283         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
284         media = mii_nway_result(advert & lpa);
285 
286         if (mii->supports_gmii)
287                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
288 
289         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
290                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
291         return speed;
292 }
293 
294 static void tsi108_check_phy(struct net_device *dev)
295 {
296         struct tsi108_prv_data *data = netdev_priv(dev);
297         u32 mac_cfg2_reg, portctrl_reg;
298         u32 duplex;
299         u32 speed;
300         unsigned long flags;
301 
302         spin_lock_irqsave(&phy_lock, flags);
303 
304         if (!data->phy_ok)
305                 goto out;
306 
307         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
308         data->init_media = 0;
309 
310         if (netif_carrier_ok(dev)) {
311 
312                 speed = mii_speed(&data->mii_if);
313 
314                 if ((speed != data->speed) || duplex) {
315 
316                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
317                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
318 
319                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
320 
321                         if (speed == 1000) {
322                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
323                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
324                         } else {
325                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
326                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
327                         }
328 
329                         data->speed = speed;
330 
331                         if (data->mii_if.full_duplex) {
332                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
333                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
334                                 data->duplex = 2;
335                         } else {
336                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
337                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
338                                 data->duplex = 1;
339                         }
340 
341                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
342                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
343                 }
344 
345                 if (data->link_up == 0) {
346                         /* The manual says it can take 3-4 usecs for the speed change
347                          * to take effect.
348                          */
349                         udelay(5);
350 
351                         spin_lock(&data->txlock);
352                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
353                                 netif_wake_queue(dev);
354 
355                         data->link_up = 1;
356                         spin_unlock(&data->txlock);
357                 }
358         } else {
359                 if (data->link_up == 1) {
360                         netif_stop_queue(dev);
361                         data->link_up = 0;
362                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
363                 }
364 
365                 goto out;
366         }
367 
368 
369 out:
370         spin_unlock_irqrestore(&phy_lock, flags);
371 }
372 
373 static inline void
374 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
375                       unsigned long *upper)
376 {
377         if (carry & carry_bit)
378                 *upper += carry_shift;
379 }
380 
381 static void tsi108_stat_carry(struct net_device *dev)
382 {
383         struct tsi108_prv_data *data = netdev_priv(dev);
384         u32 carry1, carry2;
385 
386         spin_lock_irq(&data->misclock);
387 
388         carry1 = TSI_READ(TSI108_STAT_CARRY1);
389         carry2 = TSI_READ(TSI108_STAT_CARRY2);
390 
391         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
392         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
393 
394         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
395                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
396 
397         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
398                               TSI108_STAT_RXPKTS_CARRY,
399                               &data->stats.rx_packets);
400 
401         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
402                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
403 
404         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
405                               TSI108_STAT_RXMCAST_CARRY,
406                               &data->stats.multicast);
407 
408         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
409                               TSI108_STAT_RXALIGN_CARRY,
410                               &data->stats.rx_frame_errors);
411 
412         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
413                               TSI108_STAT_RXLENGTH_CARRY,
414                               &data->stats.rx_length_errors);
415 
416         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
417                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
418 
419         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
420                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
421 
422         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
423                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
424 
425         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
426                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
427 
428         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
429                               TSI108_STAT_RXDROP_CARRY,
430                               &data->stats.rx_missed_errors);
431 
432         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
433                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
434 
435         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
436                               TSI108_STAT_TXPKTS_CARRY,
437                               &data->stats.tx_packets);
438 
439         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
440                               TSI108_STAT_TXEXDEF_CARRY,
441                               &data->stats.tx_aborted_errors);
442 
443         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
444                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
445 
446         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
447                               TSI108_STAT_TXTCOL_CARRY,
448                               &data->stats.collisions);
449 
450         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
451                               TSI108_STAT_TXPAUSEDROP_CARRY,
452                               &data->tx_pause_drop);
453 
454         spin_unlock_irq(&data->misclock);
455 }
456 
457 /* Read a stat counter atomically with respect to carries.
458  * data->misclock must be held.
459  */
460 static inline unsigned long
461 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
462                  int carry_shift, unsigned long *upper)
463 {
464         int carryreg;
465         unsigned long val;
466 
467         if (reg < 0xb0)
468                 carryreg = TSI108_STAT_CARRY1;
469         else
470                 carryreg = TSI108_STAT_CARRY2;
471 
472       again:
473         val = TSI_READ(reg) | *upper;
474 
475         /* Check to see if it overflowed, but the interrupt hasn't
476          * been serviced yet.  If so, handle the carry here, and
477          * try again.
478          */
479 
480         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
481                 *upper += carry_shift;
482                 TSI_WRITE(carryreg, carry_bit);
483                 goto again;
484         }
485 
486         return val;
487 }
488 
489 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
490 {
491         unsigned long excol;
492 
493         struct tsi108_prv_data *data = netdev_priv(dev);
494         spin_lock_irq(&data->misclock);
495 
496         data->tmpstats.rx_packets =
497             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
498                              TSI108_STAT_CARRY1_RXPKTS,
499                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
500 
501         data->tmpstats.tx_packets =
502             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
503                              TSI108_STAT_CARRY2_TXPKTS,
504                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
505 
506         data->tmpstats.rx_bytes =
507             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
508                              TSI108_STAT_CARRY1_RXBYTES,
509                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
510 
511         data->tmpstats.tx_bytes =
512             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
513                              TSI108_STAT_CARRY2_TXBYTES,
514                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
515 
516         data->tmpstats.multicast =
517             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
518                              TSI108_STAT_CARRY1_RXMCAST,
519                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
520 
521         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
522                                  TSI108_STAT_CARRY2_TXEXCOL,
523                                  TSI108_STAT_TXEXCOL_CARRY,
524                                  &data->tx_coll_abort);
525 
526         data->tmpstats.collisions =
527             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
528                              TSI108_STAT_CARRY2_TXTCOL,
529                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
530 
531         data->tmpstats.collisions += excol;
532 
533         data->tmpstats.rx_length_errors =
534             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
535                              TSI108_STAT_CARRY1_RXLENGTH,
536                              TSI108_STAT_RXLENGTH_CARRY,
537                              &data->stats.rx_length_errors);
538 
539         data->tmpstats.rx_length_errors +=
540             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
541                              TSI108_STAT_CARRY1_RXRUNT,
542                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
543 
544         data->tmpstats.rx_length_errors +=
545             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
546                              TSI108_STAT_CARRY1_RXJUMBO,
547                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
548 
549         data->tmpstats.rx_frame_errors =
550             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
551                              TSI108_STAT_CARRY1_RXALIGN,
552                              TSI108_STAT_RXALIGN_CARRY,
553                              &data->stats.rx_frame_errors);
554 
555         data->tmpstats.rx_frame_errors +=
556             tsi108_read_stat(data, TSI108_STAT_RXFCS,
557                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
558                              &data->rx_fcs);
559 
560         data->tmpstats.rx_frame_errors +=
561             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
562                              TSI108_STAT_CARRY1_RXFRAG,
563                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
564 
565         data->tmpstats.rx_missed_errors =
566             tsi108_read_stat(data, TSI108_STAT_RXDROP,
567                              TSI108_STAT_CARRY1_RXDROP,
568                              TSI108_STAT_RXDROP_CARRY,
569                              &data->stats.rx_missed_errors);
570 
571         /* These three are maintained by software. */
572         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
573         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
574 
575         data->tmpstats.tx_aborted_errors =
576             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
577                              TSI108_STAT_CARRY2_TXEXDEF,
578                              TSI108_STAT_TXEXDEF_CARRY,
579                              &data->stats.tx_aborted_errors);
580 
581         data->tmpstats.tx_aborted_errors +=
582             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
583                              TSI108_STAT_CARRY2_TXPAUSE,
584                              TSI108_STAT_TXPAUSEDROP_CARRY,
585                              &data->tx_pause_drop);
586 
587         data->tmpstats.tx_aborted_errors += excol;
588 
589         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
590         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
591             data->tmpstats.rx_crc_errors +
592             data->tmpstats.rx_frame_errors +
593             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
594 
595         spin_unlock_irq(&data->misclock);
596         return &data->tmpstats;
597 }
598 
599 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
600 {
601         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
602                              TSI108_EC_RXQ_PTRHIGH_VALID);
603 
604         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
605                              | TSI108_EC_RXCTRL_QUEUE0);
606 }
607 
608 static void tsi108_restart_tx(struct tsi108_prv_data * data)
609 {
610         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
611                              TSI108_EC_TXQ_PTRHIGH_VALID);
612 
613         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
614                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
615 }
616 
617 /* txlock must be held by caller, with IRQs disabled, and
618  * with permission to re-enable them when the lock is dropped.
619  */
620 static void tsi108_complete_tx(struct net_device *dev)
621 {
622         struct tsi108_prv_data *data = netdev_priv(dev);
623         int tx;
624         struct sk_buff *skb;
625         int release = 0;
626 
627         while (!data->txfree || data->txhead != data->txtail) {
628                 tx = data->txtail;
629 
630                 if (data->txring[tx].misc & TSI108_TX_OWN)
631                         break;
632 
633                 skb = data->txskbs[tx];
634 
635                 if (!(data->txring[tx].misc & TSI108_TX_OK))
636                         printk("%s: bad tx packet, misc %x\n",
637                                dev->name, data->txring[tx].misc);
638 
639                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
640                 data->txfree++;
641 
642                 if (data->txring[tx].misc & TSI108_TX_EOF) {
643                         dev_kfree_skb_any(skb);
644                         release++;
645                 }
646         }
647 
648         if (release) {
649                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
650                         netif_wake_queue(dev);
651         }
652 }
653 
654 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
655 {
656         struct tsi108_prv_data *data = netdev_priv(dev);
657         int frags = skb_shinfo(skb)->nr_frags + 1;
658         int i;
659 
660         if (!data->phy_ok && net_ratelimit())
661                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
662 
663         if (!data->link_up) {
664                 printk(KERN_ERR "%s: Transmit while link is down!\n",
665                        dev->name);
666                 netif_stop_queue(dev);
667                 return NETDEV_TX_BUSY;
668         }
669 
670         if (data->txfree < MAX_SKB_FRAGS + 1) {
671                 netif_stop_queue(dev);
672 
673                 if (net_ratelimit())
674                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
675                                dev->name);
676                 return NETDEV_TX_BUSY;
677         }
678 
679         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
680                 netif_stop_queue(dev);
681         }
682 
683         spin_lock_irq(&data->txlock);
684 
685         for (i = 0; i < frags; i++) {
686                 int misc = 0;
687                 int tx = data->txhead;
688 
689                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
690                  * the interrupt bit.  TX descriptor-complete interrupts are
691                  * enabled when the queue fills up, and masked when there is
692                  * still free space.  This way, when saturating the outbound
693                  * link, the tx interrupts are kept to a reasonable level.
694                  * When the queue is not full, reclamation of skbs still occurs
695                  * as new packets are transmitted, or on a queue-empty
696                  * interrupt.
697                  */
698 
699                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
700                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
701                         misc = TSI108_TX_INT;
702 
703                 data->txskbs[tx] = skb;
704 
705                 if (i == 0) {
706                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
707                                         skb_headlen(skb), DMA_TO_DEVICE);
708                         data->txring[tx].len = skb_headlen(skb);
709                         misc |= TSI108_TX_SOF;
710                 } else {
711                         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
712 
713                         data->txring[tx].buf0 = skb_frag_dma_map(NULL, frag,
714                                                                  0,
715                                                                  skb_frag_size(frag),
716                                                                  DMA_TO_DEVICE);
717                         data->txring[tx].len = skb_frag_size(frag);
718                 }
719 
720                 if (i == frags - 1)
721                         misc |= TSI108_TX_EOF;
722 
723                 if (netif_msg_pktdata(data)) {
724                         int i;
725                         printk("%s: Tx Frame contents (%d)\n", dev->name,
726                                skb->len);
727                         for (i = 0; i < skb->len; i++)
728                                 printk(" %2.2x", skb->data[i]);
729                         printk(".\n");
730                 }
731                 data->txring[tx].misc = misc | TSI108_TX_OWN;
732 
733                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
734                 data->txfree--;
735         }
736 
737         tsi108_complete_tx(dev);
738 
739         /* This must be done after the check for completed tx descriptors,
740          * so that the tail pointer is correct.
741          */
742 
743         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
744                 tsi108_restart_tx(data);
745 
746         spin_unlock_irq(&data->txlock);
747         return NETDEV_TX_OK;
748 }
749 
750 static int tsi108_complete_rx(struct net_device *dev, int budget)
751 {
752         struct tsi108_prv_data *data = netdev_priv(dev);
753         int done = 0;
754 
755         while (data->rxfree && done != budget) {
756                 int rx = data->rxtail;
757                 struct sk_buff *skb;
758 
759                 if (data->rxring[rx].misc & TSI108_RX_OWN)
760                         break;
761 
762                 skb = data->rxskbs[rx];
763                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
764                 data->rxfree--;
765                 done++;
766 
767                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
768                         spin_lock_irq(&data->misclock);
769 
770                         if (data->rxring[rx].misc & TSI108_RX_CRC)
771                                 data->stats.rx_crc_errors++;
772                         if (data->rxring[rx].misc & TSI108_RX_OVER)
773                                 data->stats.rx_fifo_errors++;
774 
775                         spin_unlock_irq(&data->misclock);
776 
777                         dev_kfree_skb_any(skb);
778                         continue;
779                 }
780                 if (netif_msg_pktdata(data)) {
781                         int i;
782                         printk("%s: Rx Frame contents (%d)\n",
783                                dev->name, data->rxring[rx].len);
784                         for (i = 0; i < data->rxring[rx].len; i++)
785                                 printk(" %2.2x", skb->data[i]);
786                         printk(".\n");
787                 }
788 
789                 skb_put(skb, data->rxring[rx].len);
790                 skb->protocol = eth_type_trans(skb, dev);
791                 netif_receive_skb(skb);
792         }
793 
794         return done;
795 }
796 
797 static int tsi108_refill_rx(struct net_device *dev, int budget)
798 {
799         struct tsi108_prv_data *data = netdev_priv(dev);
800         int done = 0;
801 
802         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
803                 int rx = data->rxhead;
804                 struct sk_buff *skb;
805 
806                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
807                 data->rxskbs[rx] = skb;
808                 if (!skb)
809                         break;
810 
811                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
812                                                         TSI108_RX_SKB_SIZE,
813                                                         DMA_FROM_DEVICE);
814 
815                 /* Sometimes the hardware sets blen to zero after packet
816                  * reception, even though the manual says that it's only ever
817                  * modified by the driver.
818                  */
819 
820                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
821                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
822 
823                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
824                 data->rxfree++;
825                 done++;
826         }
827 
828         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
829                            TSI108_EC_RXSTAT_QUEUE0))
830                 tsi108_restart_rx(data, dev);
831 
832         return done;
833 }
834 
835 static int tsi108_poll(struct napi_struct *napi, int budget)
836 {
837         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
838         struct net_device *dev = data->dev;
839         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
840         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
841         int num_received = 0, num_filled = 0;
842 
843         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
844             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
845 
846         TSI_WRITE(TSI108_EC_RXESTAT, estat);
847         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
848 
849         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
850                 num_received = tsi108_complete_rx(dev, budget);
851 
852         /* This should normally fill no more slots than the number of
853          * packets received in tsi108_complete_rx().  The exception
854          * is when we previously ran out of memory for RX SKBs.  In that
855          * case, it's helpful to obey the budget, not only so that the
856          * CPU isn't hogged, but so that memory (which may still be low)
857          * is not hogged by one device.
858          *
859          * A work unit is considered to be two SKBs to allow us to catch
860          * up when the ring has shrunk due to out-of-memory but we're
861          * still removing the full budget's worth of packets each time.
862          */
863 
864         if (data->rxfree < TSI108_RXRING_LEN)
865                 num_filled = tsi108_refill_rx(dev, budget * 2);
866 
867         if (intstat & TSI108_INT_RXERROR) {
868                 u32 err = TSI_READ(TSI108_EC_RXERR);
869                 TSI_WRITE(TSI108_EC_RXERR, err);
870 
871                 if (err) {
872                         if (net_ratelimit())
873                                 printk(KERN_DEBUG "%s: RX error %x\n",
874                                        dev->name, err);
875 
876                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
877                               TSI108_EC_RXSTAT_QUEUE0))
878                                 tsi108_restart_rx(data, dev);
879                 }
880         }
881 
882         if (intstat & TSI108_INT_RXOVERRUN) {
883                 spin_lock_irq(&data->misclock);
884                 data->stats.rx_fifo_errors++;
885                 spin_unlock_irq(&data->misclock);
886         }
887 
888         if (num_received < budget) {
889                 data->rxpending = 0;
890                 napi_complete(napi);
891 
892                 TSI_WRITE(TSI108_EC_INTMASK,
893                                      TSI_READ(TSI108_EC_INTMASK)
894                                      & ~(TSI108_INT_RXQUEUE0
895                                          | TSI108_INT_RXTHRESH |
896                                          TSI108_INT_RXOVERRUN |
897                                          TSI108_INT_RXERROR |
898                                          TSI108_INT_RXWAIT));
899         } else {
900                 data->rxpending = 1;
901         }
902 
903         return num_received;
904 }
905 
906 static void tsi108_rx_int(struct net_device *dev)
907 {
908         struct tsi108_prv_data *data = netdev_priv(dev);
909 
910         /* A race could cause dev to already be scheduled, so it's not an
911          * error if that happens (and interrupts shouldn't be re-masked,
912          * because that can cause harmful races, if poll has already
913          * unmasked them but not cleared LINK_STATE_SCHED).
914          *
915          * This can happen if this code races with tsi108_poll(), which masks
916          * the interrupts after tsi108_irq_one() read the mask, but before
917          * napi_schedule is called.  It could also happen due to calls
918          * from tsi108_check_rxring().
919          */
920 
921         if (napi_schedule_prep(&data->napi)) {
922                 /* Mask, rather than ack, the receive interrupts.  The ack
923                  * will happen in tsi108_poll().
924                  */
925 
926                 TSI_WRITE(TSI108_EC_INTMASK,
927                                      TSI_READ(TSI108_EC_INTMASK) |
928                                      TSI108_INT_RXQUEUE0
929                                      | TSI108_INT_RXTHRESH |
930                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
931                                      TSI108_INT_RXWAIT);
932                 __napi_schedule(&data->napi);
933         } else {
934                 if (!netif_running(dev)) {
935                         /* This can happen if an interrupt occurs while the
936                          * interface is being brought down, as the START
937                          * bit is cleared before the stop function is called.
938                          *
939                          * In this case, the interrupts must be masked, or
940                          * they will continue indefinitely.
941                          *
942                          * There's a race here if the interface is brought down
943                          * and then up in rapid succession, as the device could
944                          * be made running after the above check and before
945                          * the masking below.  This will only happen if the IRQ
946                          * thread has a lower priority than the task brining
947                          * up the interface.  Fixing this race would likely
948                          * require changes in generic code.
949                          */
950 
951                         TSI_WRITE(TSI108_EC_INTMASK,
952                                              TSI_READ
953                                              (TSI108_EC_INTMASK) |
954                                              TSI108_INT_RXQUEUE0 |
955                                              TSI108_INT_RXTHRESH |
956                                              TSI108_INT_RXOVERRUN |
957                                              TSI108_INT_RXERROR |
958                                              TSI108_INT_RXWAIT);
959                 }
960         }
961 }
962 
963 /* If the RX ring has run out of memory, try periodically
964  * to allocate some more, as otherwise poll would never
965  * get called (apart from the initial end-of-queue condition).
966  *
967  * This is called once per second (by default) from the thread.
968  */
969 
970 static void tsi108_check_rxring(struct net_device *dev)
971 {
972         struct tsi108_prv_data *data = netdev_priv(dev);
973 
974         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
975          * directly, so as to keep the receive path single-threaded
976          * (and thus not needing a lock).
977          */
978 
979         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
980                 tsi108_rx_int(dev);
981 }
982 
983 static void tsi108_tx_int(struct net_device *dev)
984 {
985         struct tsi108_prv_data *data = netdev_priv(dev);
986         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
987 
988         TSI_WRITE(TSI108_EC_TXESTAT, estat);
989         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
990                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
991         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
992                 u32 err = TSI_READ(TSI108_EC_TXERR);
993                 TSI_WRITE(TSI108_EC_TXERR, err);
994 
995                 if (err && net_ratelimit())
996                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
997         }
998 
999         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1000                 spin_lock(&data->txlock);
1001                 tsi108_complete_tx(dev);
1002                 spin_unlock(&data->txlock);
1003         }
1004 }
1005 
1006 
1007 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1008 {
1009         struct net_device *dev = dev_id;
1010         struct tsi108_prv_data *data = netdev_priv(dev);
1011         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1012 
1013         if (!(stat & TSI108_INT_ANY))
1014                 return IRQ_NONE;        /* Not our interrupt */
1015 
1016         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1017 
1018         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1019                     TSI108_INT_TXERROR))
1020                 tsi108_tx_int(dev);
1021         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1022                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1023                     TSI108_INT_RXERROR))
1024                 tsi108_rx_int(dev);
1025 
1026         if (stat & TSI108_INT_SFN) {
1027                 if (net_ratelimit())
1028                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1029                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1030         }
1031 
1032         if (stat & TSI108_INT_STATCARRY) {
1033                 tsi108_stat_carry(dev);
1034                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1035         }
1036 
1037         return IRQ_HANDLED;
1038 }
1039 
1040 static void tsi108_stop_ethernet(struct net_device *dev)
1041 {
1042         struct tsi108_prv_data *data = netdev_priv(dev);
1043         int i = 1000;
1044         /* Disable all TX and RX queues ... */
1045         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1046         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1047 
1048         /* ...and wait for them to become idle */
1049         while(i--) {
1050                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1051                         break;
1052                 udelay(10);
1053         }
1054         i = 1000;
1055         while(i--){
1056                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1057                         return;
1058                 udelay(10);
1059         }
1060         printk(KERN_ERR "%s function time out\n", __func__);
1061 }
1062 
1063 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1064 {
1065         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1066         udelay(100);
1067         TSI_WRITE(TSI108_MAC_CFG1, 0);
1068 
1069         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1070         udelay(100);
1071         TSI_WRITE(TSI108_EC_PORTCTRL,
1072                              TSI_READ(TSI108_EC_PORTCTRL) &
1073                              ~TSI108_EC_PORTCTRL_STATRST);
1074 
1075         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1076         udelay(100);
1077         TSI_WRITE(TSI108_EC_TXCFG,
1078                              TSI_READ(TSI108_EC_TXCFG) &
1079                              ~TSI108_EC_TXCFG_RST);
1080 
1081         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1082         udelay(100);
1083         TSI_WRITE(TSI108_EC_RXCFG,
1084                              TSI_READ(TSI108_EC_RXCFG) &
1085                              ~TSI108_EC_RXCFG_RST);
1086 
1087         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1088                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1089                              TSI108_MAC_MII_MGMT_RST);
1090         udelay(100);
1091         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1092                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1093                              ~(TSI108_MAC_MII_MGMT_RST |
1094                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1095 }
1096 
1097 static int tsi108_get_mac(struct net_device *dev)
1098 {
1099         struct tsi108_prv_data *data = netdev_priv(dev);
1100         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1101         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1102 
1103         /* Note that the octets are reversed from what the manual says,
1104          * producing an even weirder ordering...
1105          */
1106         if (word2 == 0 && word1 == 0) {
1107                 dev->dev_addr[0] = 0x00;
1108                 dev->dev_addr[1] = 0x06;
1109                 dev->dev_addr[2] = 0xd2;
1110                 dev->dev_addr[3] = 0x00;
1111                 dev->dev_addr[4] = 0x00;
1112                 if (0x8 == data->phy)
1113                         dev->dev_addr[5] = 0x01;
1114                 else
1115                         dev->dev_addr[5] = 0x02;
1116 
1117                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1118 
1119                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1120                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1121 
1122                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1123                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1124         } else {
1125                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1126                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1127                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1128                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1129                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1130                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1131         }
1132 
1133         if (!is_valid_ether_addr(dev->dev_addr)) {
1134                 printk(KERN_ERR
1135                        "%s: Invalid MAC address. word1: %08x, word2: %08x\n",
1136                        dev->name, word1, word2);
1137                 return -EINVAL;
1138         }
1139 
1140         return 0;
1141 }
1142 
1143 static int tsi108_set_mac(struct net_device *dev, void *addr)
1144 {
1145         struct tsi108_prv_data *data = netdev_priv(dev);
1146         u32 word1, word2;
1147         int i;
1148 
1149         if (!is_valid_ether_addr(addr))
1150                 return -EADDRNOTAVAIL;
1151 
1152         for (i = 0; i < 6; i++)
1153                 /* +2 is for the offset of the HW addr type */
1154                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1155 
1156         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1157 
1158         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1159             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1160 
1161         spin_lock_irq(&data->misclock);
1162         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1163         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1164         spin_lock(&data->txlock);
1165 
1166         if (data->txfree && data->link_up)
1167                 netif_wake_queue(dev);
1168 
1169         spin_unlock(&data->txlock);
1170         spin_unlock_irq(&data->misclock);
1171         return 0;
1172 }
1173 
1174 /* Protected by dev->xmit_lock. */
1175 static void tsi108_set_rx_mode(struct net_device *dev)
1176 {
1177         struct tsi108_prv_data *data = netdev_priv(dev);
1178         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1179 
1180         if (dev->flags & IFF_PROMISC) {
1181                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1182                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1183                 goto out;
1184         }
1185 
1186         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1187 
1188         if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
1189                 int i;
1190                 struct netdev_hw_addr *ha;
1191                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1192 
1193                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1194 
1195                 netdev_for_each_mc_addr(ha, dev) {
1196                         u32 hash, crc;
1197 
1198                         crc = ether_crc(6, ha->addr);
1199                         hash = crc >> 23;
1200                         __set_bit(hash, &data->mc_hash[0]);
1201                 }
1202 
1203                 TSI_WRITE(TSI108_EC_HASHADDR,
1204                                      TSI108_EC_HASHADDR_AUTOINC |
1205                                      TSI108_EC_HASHADDR_MCAST);
1206 
1207                 for (i = 0; i < 16; i++) {
1208                         /* The manual says that the hardware may drop
1209                          * back-to-back writes to the data register.
1210                          */
1211                         udelay(1);
1212                         TSI_WRITE(TSI108_EC_HASHDATA,
1213                                              data->mc_hash[i]);
1214                 }
1215         }
1216 
1217       out:
1218         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1219 }
1220 
1221 static void tsi108_init_phy(struct net_device *dev)
1222 {
1223         struct tsi108_prv_data *data = netdev_priv(dev);
1224         u32 i = 0;
1225         u16 phyval = 0;
1226         unsigned long flags;
1227 
1228         spin_lock_irqsave(&phy_lock, flags);
1229 
1230         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1231         while (--i) {
1232                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1233                         break;
1234                 udelay(10);
1235         }
1236         if (i == 0)
1237                 printk(KERN_ERR "%s function time out\n", __func__);
1238 
1239         if (data->phy_type == TSI108_PHY_BCM54XX) {
1240                 tsi108_write_mii(data, 0x09, 0x0300);
1241                 tsi108_write_mii(data, 0x10, 0x1020);
1242                 tsi108_write_mii(data, 0x1c, 0x8c00);
1243         }
1244 
1245         tsi108_write_mii(data,
1246                          MII_BMCR,
1247                          BMCR_ANENABLE | BMCR_ANRESTART);
1248         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1249                 cpu_relax();
1250 
1251         /* Set G/MII mode and receive clock select in TBI control #2.  The
1252          * second port won't work if this isn't done, even though we don't
1253          * use TBI mode.
1254          */
1255 
1256         tsi108_write_tbi(data, 0x11, 0x30);
1257 
1258         /* FIXME: It seems to take more than 2 back-to-back reads to the
1259          * PHY_STAT register before the link up status bit is set.
1260          */
1261 
1262         data->link_up = 0;
1263 
1264         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1265                  BMSR_LSTATUS)) {
1266                 if (i++ > (MII_READ_DELAY / 10)) {
1267                         break;
1268                 }
1269                 spin_unlock_irqrestore(&phy_lock, flags);
1270                 msleep(10);
1271                 spin_lock_irqsave(&phy_lock, flags);
1272         }
1273 
1274         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1275         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1276         data->phy_ok = 1;
1277         data->init_media = 1;
1278         spin_unlock_irqrestore(&phy_lock, flags);
1279 }
1280 
1281 static void tsi108_kill_phy(struct net_device *dev)
1282 {
1283         struct tsi108_prv_data *data = netdev_priv(dev);
1284         unsigned long flags;
1285 
1286         spin_lock_irqsave(&phy_lock, flags);
1287         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1288         data->phy_ok = 0;
1289         spin_unlock_irqrestore(&phy_lock, flags);
1290 }
1291 
1292 static int tsi108_open(struct net_device *dev)
1293 {
1294         int i;
1295         struct tsi108_prv_data *data = netdev_priv(dev);
1296         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1297         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1298 
1299         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1300         if (i != 0) {
1301                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1302                        data->id, data->irq_num);
1303                 return i;
1304         } else {
1305                 dev->irq = data->irq_num;
1306                 printk(KERN_NOTICE
1307                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1308                        data->id, dev->irq, dev->name);
1309         }
1310 
1311         data->rxring = dma_zalloc_coherent(NULL, rxring_size, &data->rxdma,
1312                                            GFP_KERNEL);
1313         if (!data->rxring)
1314                 return -ENOMEM;
1315 
1316         data->txring = dma_zalloc_coherent(NULL, txring_size, &data->txdma,
1317                                            GFP_KERNEL);
1318         if (!data->txring) {
1319                 pci_free_consistent(NULL, rxring_size, data->rxring,
1320                                     data->rxdma);
1321                 return -ENOMEM;
1322         }
1323 
1324         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1325                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1326                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1327                 data->rxring[i].vlan = 0;
1328         }
1329 
1330         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1331 
1332         data->rxtail = 0;
1333         data->rxhead = 0;
1334 
1335         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1336                 struct sk_buff *skb;
1337 
1338                 skb = netdev_alloc_skb_ip_align(dev, TSI108_RXBUF_SIZE);
1339                 if (!skb) {
1340                         /* Bah.  No memory for now, but maybe we'll get
1341                          * some more later.
1342                          * For now, we'll live with the smaller ring.
1343                          */
1344                         printk(KERN_WARNING
1345                                "%s: Could only allocate %d receive skb(s).\n",
1346                                dev->name, i);
1347                         data->rxhead = i;
1348                         break;
1349                 }
1350 
1351                 data->rxskbs[i] = skb;
1352                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1353                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1354         }
1355 
1356         data->rxfree = i;
1357         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1358 
1359         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1360                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1361                 data->txring[i].misc = 0;
1362         }
1363 
1364         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1365         data->txtail = 0;
1366         data->txhead = 0;
1367         data->txfree = TSI108_TXRING_LEN;
1368         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1369         tsi108_init_phy(dev);
1370 
1371         napi_enable(&data->napi);
1372 
1373         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1374         mod_timer(&data->timer, jiffies + 1);
1375 
1376         tsi108_restart_rx(data, dev);
1377 
1378         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1379 
1380         TSI_WRITE(TSI108_EC_INTMASK,
1381                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1382                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1383                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1384                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1385 
1386         TSI_WRITE(TSI108_MAC_CFG1,
1387                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1388         netif_start_queue(dev);
1389         return 0;
1390 }
1391 
1392 static int tsi108_close(struct net_device *dev)
1393 {
1394         struct tsi108_prv_data *data = netdev_priv(dev);
1395 
1396         netif_stop_queue(dev);
1397         napi_disable(&data->napi);
1398 
1399         del_timer_sync(&data->timer);
1400 
1401         tsi108_stop_ethernet(dev);
1402         tsi108_kill_phy(dev);
1403         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1404         TSI_WRITE(TSI108_MAC_CFG1, 0);
1405 
1406         /* Check for any pending TX packets, and drop them. */
1407 
1408         while (!data->txfree || data->txhead != data->txtail) {
1409                 int tx = data->txtail;
1410                 struct sk_buff *skb;
1411                 skb = data->txskbs[tx];
1412                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1413                 data->txfree++;
1414                 dev_kfree_skb(skb);
1415         }
1416 
1417         free_irq(data->irq_num, dev);
1418 
1419         /* Discard the RX ring. */
1420 
1421         while (data->rxfree) {
1422                 int rx = data->rxtail;
1423                 struct sk_buff *skb;
1424 
1425                 skb = data->rxskbs[rx];
1426                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1427                 data->rxfree--;
1428                 dev_kfree_skb(skb);
1429         }
1430 
1431         dma_free_coherent(0,
1432                             TSI108_RXRING_LEN * sizeof(rx_desc),
1433                             data->rxring, data->rxdma);
1434         dma_free_coherent(0,
1435                             TSI108_TXRING_LEN * sizeof(tx_desc),
1436                             data->txring, data->txdma);
1437 
1438         return 0;
1439 }
1440 
1441 static void tsi108_init_mac(struct net_device *dev)
1442 {
1443         struct tsi108_prv_data *data = netdev_priv(dev);
1444 
1445         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1446                              TSI108_MAC_CFG2_PADCRC);
1447 
1448         TSI_WRITE(TSI108_EC_TXTHRESH,
1449                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1450                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1451 
1452         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1453                              ~(TSI108_STAT_CARRY1_RXBYTES |
1454                                TSI108_STAT_CARRY1_RXPKTS |
1455                                TSI108_STAT_CARRY1_RXFCS |
1456                                TSI108_STAT_CARRY1_RXMCAST |
1457                                TSI108_STAT_CARRY1_RXALIGN |
1458                                TSI108_STAT_CARRY1_RXLENGTH |
1459                                TSI108_STAT_CARRY1_RXRUNT |
1460                                TSI108_STAT_CARRY1_RXJUMBO |
1461                                TSI108_STAT_CARRY1_RXFRAG |
1462                                TSI108_STAT_CARRY1_RXJABBER |
1463                                TSI108_STAT_CARRY1_RXDROP));
1464 
1465         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1466                              ~(TSI108_STAT_CARRY2_TXBYTES |
1467                                TSI108_STAT_CARRY2_TXPKTS |
1468                                TSI108_STAT_CARRY2_TXEXDEF |
1469                                TSI108_STAT_CARRY2_TXEXCOL |
1470                                TSI108_STAT_CARRY2_TXTCOL |
1471                                TSI108_STAT_CARRY2_TXPAUSE));
1472 
1473         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1474         TSI_WRITE(TSI108_MAC_CFG1, 0);
1475 
1476         TSI_WRITE(TSI108_EC_RXCFG,
1477                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1478 
1479         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1480                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1481                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1482                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1483 
1484         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1485                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1486                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1487                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1488 
1489         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1490                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1491                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1492                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1493 
1494         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1495                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1496                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1497                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1498 
1499         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1500 }
1501 
1502 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1503 {
1504         struct tsi108_prv_data *data = netdev_priv(dev);
1505         unsigned long flags;
1506         int rc;
1507 
1508         spin_lock_irqsave(&data->txlock, flags);
1509         rc = mii_ethtool_gset(&data->mii_if, cmd);
1510         spin_unlock_irqrestore(&data->txlock, flags);
1511 
1512         return rc;
1513 }
1514 
1515 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1516 {
1517         struct tsi108_prv_data *data = netdev_priv(dev);
1518         unsigned long flags;
1519         int rc;
1520 
1521         spin_lock_irqsave(&data->txlock, flags);
1522         rc = mii_ethtool_sset(&data->mii_if, cmd);
1523         spin_unlock_irqrestore(&data->txlock, flags);
1524 
1525         return rc;
1526 }
1527 
1528 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1529 {
1530         struct tsi108_prv_data *data = netdev_priv(dev);
1531         if (!netif_running(dev))
1532                 return -EINVAL;
1533         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1534 }
1535 
1536 static const struct ethtool_ops tsi108_ethtool_ops = {
1537         .get_link       = ethtool_op_get_link,
1538         .get_settings   = tsi108_get_settings,
1539         .set_settings   = tsi108_set_settings,
1540 };
1541 
1542 static const struct net_device_ops tsi108_netdev_ops = {
1543         .ndo_open               = tsi108_open,
1544         .ndo_stop               = tsi108_close,
1545         .ndo_start_xmit         = tsi108_send_packet,
1546         .ndo_set_rx_mode        = tsi108_set_rx_mode,
1547         .ndo_get_stats          = tsi108_get_stats,
1548         .ndo_do_ioctl           = tsi108_do_ioctl,
1549         .ndo_set_mac_address    = tsi108_set_mac,
1550         .ndo_validate_addr      = eth_validate_addr,
1551         .ndo_change_mtu         = eth_change_mtu,
1552 };
1553 
1554 static int
1555 tsi108_init_one(struct platform_device *pdev)
1556 {
1557         struct net_device *dev = NULL;
1558         struct tsi108_prv_data *data = NULL;
1559         hw_info *einfo;
1560         int err = 0;
1561 
1562         einfo = dev_get_platdata(&pdev->dev);
1563 
1564         if (NULL == einfo) {
1565                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1566                        pdev->id);
1567                 return -ENODEV;
1568         }
1569 
1570         /* Create an ethernet device instance */
1571 
1572         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1573         if (!dev)
1574                 return -ENOMEM;
1575 
1576         printk("tsi108_eth%d: probe...\n", pdev->id);
1577         data = netdev_priv(dev);
1578         data->dev = dev;
1579 
1580         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1581                         pdev->id, einfo->regs, einfo->phyregs,
1582                         einfo->phy, einfo->irq_num);
1583 
1584         data->regs = ioremap(einfo->regs, 0x400);
1585         if (NULL == data->regs) {
1586                 err = -ENOMEM;
1587                 goto regs_fail;
1588         }
1589 
1590         data->phyregs = ioremap(einfo->phyregs, 0x400);
1591         if (NULL == data->phyregs) {
1592                 err = -ENOMEM;
1593                 goto phyregs_fail;
1594         }
1595 /* MII setup */
1596         data->mii_if.dev = dev;
1597         data->mii_if.mdio_read = tsi108_mdio_read;
1598         data->mii_if.mdio_write = tsi108_mdio_write;
1599         data->mii_if.phy_id = einfo->phy;
1600         data->mii_if.phy_id_mask = 0x1f;
1601         data->mii_if.reg_num_mask = 0x1f;
1602 
1603         data->phy = einfo->phy;
1604         data->phy_type = einfo->phy_type;
1605         data->irq_num = einfo->irq_num;
1606         data->id = pdev->id;
1607         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1608         dev->netdev_ops = &tsi108_netdev_ops;
1609         dev->ethtool_ops = &tsi108_ethtool_ops;
1610 
1611         /* Apparently, the Linux networking code won't use scatter-gather
1612          * if the hardware doesn't do checksums.  However, it's faster
1613          * to checksum in place and use SG, as (among other reasons)
1614          * the cache won't be dirtied (which then has to be flushed
1615          * before DMA).  The checksumming is done by the driver (via
1616          * a new function skb_csum_dev() in net/core/skbuff.c).
1617          */
1618 
1619         dev->features = NETIF_F_HIGHDMA;
1620 
1621         spin_lock_init(&data->txlock);
1622         spin_lock_init(&data->misclock);
1623 
1624         tsi108_reset_ether(data);
1625         tsi108_kill_phy(dev);
1626 
1627         if ((err = tsi108_get_mac(dev)) != 0) {
1628                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1629                        dev->name);
1630                 goto register_fail;
1631         }
1632 
1633         tsi108_init_mac(dev);
1634         err = register_netdev(dev);
1635         if (err) {
1636                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1637                                 dev->name);
1638                 goto register_fail;
1639         }
1640 
1641         platform_set_drvdata(pdev, dev);
1642         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %pM\n",
1643                dev->name, dev->dev_addr);
1644 #ifdef DEBUG
1645         data->msg_enable = DEBUG;
1646         dump_eth_one(dev);
1647 #endif
1648 
1649         return 0;
1650 
1651 register_fail:
1652         iounmap(data->phyregs);
1653 
1654 phyregs_fail:
1655         iounmap(data->regs);
1656 
1657 regs_fail:
1658         free_netdev(dev);
1659         return err;
1660 }
1661 
1662 /* There's no way to either get interrupts from the PHY when
1663  * something changes, or to have the Tsi108 automatically communicate
1664  * with the PHY to reconfigure itself.
1665  *
1666  * Thus, we have to do it using a timer.
1667  */
1668 
1669 static void tsi108_timed_checker(unsigned long dev_ptr)
1670 {
1671         struct net_device *dev = (struct net_device *)dev_ptr;
1672         struct tsi108_prv_data *data = netdev_priv(dev);
1673 
1674         tsi108_check_phy(dev);
1675         tsi108_check_rxring(dev);
1676         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1677 }
1678 
1679 static int tsi108_ether_remove(struct platform_device *pdev)
1680 {
1681         struct net_device *dev = platform_get_drvdata(pdev);
1682         struct tsi108_prv_data *priv = netdev_priv(dev);
1683 
1684         unregister_netdev(dev);
1685         tsi108_stop_ethernet(dev);
1686         iounmap(priv->regs);
1687         iounmap(priv->phyregs);
1688         free_netdev(dev);
1689 
1690         return 0;
1691 }
1692 module_platform_driver(tsi_eth_driver);
1693 
1694 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1695 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1696 MODULE_LICENSE("GPL");
1697 MODULE_ALIAS("platform:tsi-ethernet");
1698 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us