Version:  2.0.40 2.2.26 2.4.37 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18

Linux/drivers/net/ethernet/sun/sunhme.c

  1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
  2  *           auto carrier detecting ethernet driver.  Also known as the
  3  *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
  4  *
  5  * Copyright (C) 1996, 1998, 1999, 2002, 2003,
  6  *              2006, 2008 David S. Miller (davem@davemloft.net)
  7  *
  8  * Changes :
  9  * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
 10  *   - port to non-sparc architectures. Tested only on x86 and
 11  *     only currently works with QFE PCI cards.
 12  *   - ability to specify the MAC address at module load time by passing this
 13  *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
 14  */
 15 
 16 #include <linux/module.h>
 17 #include <linux/kernel.h>
 18 #include <linux/types.h>
 19 #include <linux/fcntl.h>
 20 #include <linux/interrupt.h>
 21 #include <linux/ioport.h>
 22 #include <linux/in.h>
 23 #include <linux/slab.h>
 24 #include <linux/string.h>
 25 #include <linux/delay.h>
 26 #include <linux/init.h>
 27 #include <linux/ethtool.h>
 28 #include <linux/mii.h>
 29 #include <linux/crc32.h>
 30 #include <linux/random.h>
 31 #include <linux/errno.h>
 32 #include <linux/netdevice.h>
 33 #include <linux/etherdevice.h>
 34 #include <linux/skbuff.h>
 35 #include <linux/mm.h>
 36 #include <linux/bitops.h>
 37 #include <linux/dma-mapping.h>
 38 
 39 #include <asm/io.h>
 40 #include <asm/dma.h>
 41 #include <asm/byteorder.h>
 42 
 43 #ifdef CONFIG_SPARC
 44 #include <linux/of.h>
 45 #include <linux/of_device.h>
 46 #include <asm/idprom.h>
 47 #include <asm/openprom.h>
 48 #include <asm/oplib.h>
 49 #include <asm/prom.h>
 50 #include <asm/auxio.h>
 51 #endif
 52 #include <asm/uaccess.h>
 53 
 54 #include <asm/pgtable.h>
 55 #include <asm/irq.h>
 56 
 57 #ifdef CONFIG_PCI
 58 #include <linux/pci.h>
 59 #endif
 60 
 61 #include "sunhme.h"
 62 
 63 #define DRV_NAME        "sunhme"
 64 #define DRV_VERSION     "3.10"
 65 #define DRV_RELDATE     "August 26, 2008"
 66 #define DRV_AUTHOR      "David S. Miller (davem@davemloft.net)"
 67 
 68 static char version[] =
 69         DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
 70 
 71 MODULE_VERSION(DRV_VERSION);
 72 MODULE_AUTHOR(DRV_AUTHOR);
 73 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
 74 MODULE_LICENSE("GPL");
 75 
 76 static int macaddr[6];
 77 
 78 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
 79 module_param_array(macaddr, int, NULL, 0);
 80 MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
 81 
 82 #ifdef CONFIG_SBUS
 83 static struct quattro *qfe_sbus_list;
 84 #endif
 85 
 86 #ifdef CONFIG_PCI
 87 static struct quattro *qfe_pci_list;
 88 #endif
 89 
 90 #undef HMEDEBUG
 91 #undef SXDEBUG
 92 #undef RXDEBUG
 93 #undef TXDEBUG
 94 #undef TXLOGGING
 95 
 96 #ifdef TXLOGGING
 97 struct hme_tx_logent {
 98         unsigned int tstamp;
 99         int tx_new, tx_old;
100         unsigned int action;
101 #define TXLOG_ACTION_IRQ        0x01
102 #define TXLOG_ACTION_TXMIT      0x02
103 #define TXLOG_ACTION_TBUSY      0x04
104 #define TXLOG_ACTION_NBUFS      0x08
105         unsigned int status;
106 };
107 #define TX_LOG_LEN      128
108 static struct hme_tx_logent tx_log[TX_LOG_LEN];
109 static int txlog_cur_entry;
110 static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
111 {
112         struct hme_tx_logent *tlp;
113         unsigned long flags;
114 
115         local_irq_save(flags);
116         tlp = &tx_log[txlog_cur_entry];
117         tlp->tstamp = (unsigned int)jiffies;
118         tlp->tx_new = hp->tx_new;
119         tlp->tx_old = hp->tx_old;
120         tlp->action = a;
121         tlp->status = s;
122         txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
123         local_irq_restore(flags);
124 }
125 static __inline__ void tx_dump_log(void)
126 {
127         int i, this;
128 
129         this = txlog_cur_entry;
130         for (i = 0; i < TX_LOG_LEN; i++) {
131                 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
132                        tx_log[this].tstamp,
133                        tx_log[this].tx_new, tx_log[this].tx_old,
134                        tx_log[this].action, tx_log[this].status);
135                 this = (this + 1) & (TX_LOG_LEN - 1);
136         }
137 }
138 static __inline__ void tx_dump_ring(struct happy_meal *hp)
139 {
140         struct hmeal_init_block *hb = hp->happy_block;
141         struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
142         int i;
143 
144         for (i = 0; i < TX_RING_SIZE; i+=4) {
145                 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
146                        i, i + 4,
147                        le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
148                        le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
149                        le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
150                        le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
151         }
152 }
153 #else
154 #define tx_add_log(hp, a, s)            do { } while(0)
155 #define tx_dump_log()                   do { } while(0)
156 #define tx_dump_ring(hp)                do { } while(0)
157 #endif
158 
159 #ifdef HMEDEBUG
160 #define HMD(x)  printk x
161 #else
162 #define HMD(x)
163 #endif
164 
165 /* #define AUTO_SWITCH_DEBUG */
166 
167 #ifdef AUTO_SWITCH_DEBUG
168 #define ASD(x)  printk x
169 #else
170 #define ASD(x)
171 #endif
172 
173 #define DEFAULT_IPG0      16 /* For lance-mode only */
174 #define DEFAULT_IPG1       8 /* For all modes */
175 #define DEFAULT_IPG2       4 /* For all modes */
176 #define DEFAULT_JAMSIZE    4 /* Toe jam */
177 
178 /* NOTE: In the descriptor writes one _must_ write the address
179  *       member _first_.  The card must not be allowed to see
180  *       the updated descriptor flags until the address is
181  *       correct.  I've added a write memory barrier between
182  *       the two stores so that I can sleep well at night... -DaveM
183  */
184 
185 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
186 static void sbus_hme_write32(void __iomem *reg, u32 val)
187 {
188         sbus_writel(val, reg);
189 }
190 
191 static u32 sbus_hme_read32(void __iomem *reg)
192 {
193         return sbus_readl(reg);
194 }
195 
196 static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
197 {
198         rxd->rx_addr = (__force hme32)addr;
199         wmb();
200         rxd->rx_flags = (__force hme32)flags;
201 }
202 
203 static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
204 {
205         txd->tx_addr = (__force hme32)addr;
206         wmb();
207         txd->tx_flags = (__force hme32)flags;
208 }
209 
210 static u32 sbus_hme_read_desc32(hme32 *p)
211 {
212         return (__force u32)*p;
213 }
214 
215 static void pci_hme_write32(void __iomem *reg, u32 val)
216 {
217         writel(val, reg);
218 }
219 
220 static u32 pci_hme_read32(void __iomem *reg)
221 {
222         return readl(reg);
223 }
224 
225 static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
226 {
227         rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
228         wmb();
229         rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
230 }
231 
232 static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
233 {
234         txd->tx_addr = (__force hme32)cpu_to_le32(addr);
235         wmb();
236         txd->tx_flags = (__force hme32)cpu_to_le32(flags);
237 }
238 
239 static u32 pci_hme_read_desc32(hme32 *p)
240 {
241         return le32_to_cpup((__le32 *)p);
242 }
243 
244 #define hme_write32(__hp, __reg, __val) \
245         ((__hp)->write32((__reg), (__val)))
246 #define hme_read32(__hp, __reg) \
247         ((__hp)->read32(__reg))
248 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
249         ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
250 #define hme_write_txd(__hp, __txd, __flags, __addr) \
251         ((__hp)->write_txd((__txd), (__flags), (__addr)))
252 #define hme_read_desc32(__hp, __p) \
253         ((__hp)->read_desc32(__p))
254 #define hme_dma_map(__hp, __ptr, __size, __dir) \
255         ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
256 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
257         ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
258 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
259         ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
260 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
261         ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
262 #else
263 #ifdef CONFIG_SBUS
264 /* SBUS only compilation */
265 #define hme_write32(__hp, __reg, __val) \
266         sbus_writel((__val), (__reg))
267 #define hme_read32(__hp, __reg) \
268         sbus_readl(__reg)
269 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
270 do {    (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
271         wmb(); \
272         (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
273 } while(0)
274 #define hme_write_txd(__hp, __txd, __flags, __addr) \
275 do {    (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
276         wmb(); \
277         (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
278 } while(0)
279 #define hme_read_desc32(__hp, __p)      ((__force u32)(hme32)*(__p))
280 #define hme_dma_map(__hp, __ptr, __size, __dir) \
281         dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
282 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
283         dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
284 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
285         dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
286 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
287         dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
288 #else
289 /* PCI only compilation */
290 #define hme_write32(__hp, __reg, __val) \
291         writel((__val), (__reg))
292 #define hme_read32(__hp, __reg) \
293         readl(__reg)
294 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
295 do {    (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
296         wmb(); \
297         (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
298 } while(0)
299 #define hme_write_txd(__hp, __txd, __flags, __addr) \
300 do {    (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
301         wmb(); \
302         (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
303 } while(0)
304 static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
305 {
306         return le32_to_cpup((__le32 *)p);
307 }
308 #define hme_dma_map(__hp, __ptr, __size, __dir) \
309         pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
310 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
311         pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
312 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
313         pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
314 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
315         pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
316 #endif
317 #endif
318 
319 
320 /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
321 static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
322 {
323         hme_write32(hp, tregs + TCVR_BBDATA, bit);
324         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
325         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
326 }
327 
328 #if 0
329 static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
330 {
331         u32 ret;
332 
333         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
334         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
335         ret = hme_read32(hp, tregs + TCVR_CFG);
336         if (internal)
337                 ret &= TCV_CFG_MDIO0;
338         else
339                 ret &= TCV_CFG_MDIO1;
340 
341         return ret;
342 }
343 #endif
344 
345 static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
346 {
347         u32 retval;
348 
349         hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
350         udelay(1);
351         retval = hme_read32(hp, tregs + TCVR_CFG);
352         if (internal)
353                 retval &= TCV_CFG_MDIO0;
354         else
355                 retval &= TCV_CFG_MDIO1;
356         hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
357 
358         return retval;
359 }
360 
361 #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
362 
363 static int happy_meal_bb_read(struct happy_meal *hp,
364                               void __iomem *tregs, int reg)
365 {
366         u32 tmp;
367         int retval = 0;
368         int i;
369 
370         ASD(("happy_meal_bb_read: reg=%d ", reg));
371 
372         /* Enable the MIF BitBang outputs. */
373         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
374 
375         /* Force BitBang into the idle state. */
376         for (i = 0; i < 32; i++)
377                 BB_PUT_BIT(hp, tregs, 1);
378 
379         /* Give it the read sequence. */
380         BB_PUT_BIT(hp, tregs, 0);
381         BB_PUT_BIT(hp, tregs, 1);
382         BB_PUT_BIT(hp, tregs, 1);
383         BB_PUT_BIT(hp, tregs, 0);
384 
385         /* Give it the PHY address. */
386         tmp = hp->paddr & 0xff;
387         for (i = 4; i >= 0; i--)
388                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
389 
390         /* Tell it what register we want to read. */
391         tmp = (reg & 0xff);
392         for (i = 4; i >= 0; i--)
393                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
394 
395         /* Close down the MIF BitBang outputs. */
396         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
397 
398         /* Now read in the value. */
399         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
400         for (i = 15; i >= 0; i--)
401                 retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
402         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
403         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
404         (void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
405         ASD(("value=%x\n", retval));
406         return retval;
407 }
408 
409 static void happy_meal_bb_write(struct happy_meal *hp,
410                                 void __iomem *tregs, int reg,
411                                 unsigned short value)
412 {
413         u32 tmp;
414         int i;
415 
416         ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
417 
418         /* Enable the MIF BitBang outputs. */
419         hme_write32(hp, tregs + TCVR_BBOENAB, 1);
420 
421         /* Force BitBang into the idle state. */
422         for (i = 0; i < 32; i++)
423                 BB_PUT_BIT(hp, tregs, 1);
424 
425         /* Give it write sequence. */
426         BB_PUT_BIT(hp, tregs, 0);
427         BB_PUT_BIT(hp, tregs, 1);
428         BB_PUT_BIT(hp, tregs, 0);
429         BB_PUT_BIT(hp, tregs, 1);
430 
431         /* Give it the PHY address. */
432         tmp = (hp->paddr & 0xff);
433         for (i = 4; i >= 0; i--)
434                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
435 
436         /* Tell it what register we will be writing. */
437         tmp = (reg & 0xff);
438         for (i = 4; i >= 0; i--)
439                 BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
440 
441         /* Tell it to become ready for the bits. */
442         BB_PUT_BIT(hp, tregs, 1);
443         BB_PUT_BIT(hp, tregs, 0);
444 
445         for (i = 15; i >= 0; i--)
446                 BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
447 
448         /* Close down the MIF BitBang outputs. */
449         hme_write32(hp, tregs + TCVR_BBOENAB, 0);
450 }
451 
452 #define TCVR_READ_TRIES   16
453 
454 static int happy_meal_tcvr_read(struct happy_meal *hp,
455                                 void __iomem *tregs, int reg)
456 {
457         int tries = TCVR_READ_TRIES;
458         int retval;
459 
460         ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
461         if (hp->tcvr_type == none) {
462                 ASD(("no transceiver, value=TCVR_FAILURE\n"));
463                 return TCVR_FAILURE;
464         }
465 
466         if (!(hp->happy_flags & HFLAG_FENABLE)) {
467                 ASD(("doing bit bang\n"));
468                 return happy_meal_bb_read(hp, tregs, reg);
469         }
470 
471         hme_write32(hp, tregs + TCVR_FRAME,
472                     (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
473         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
474                 udelay(20);
475         if (!tries) {
476                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
477                 return TCVR_FAILURE;
478         }
479         retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
480         ASD(("value=%04x\n", retval));
481         return retval;
482 }
483 
484 #define TCVR_WRITE_TRIES  16
485 
486 static void happy_meal_tcvr_write(struct happy_meal *hp,
487                                   void __iomem *tregs, int reg,
488                                   unsigned short value)
489 {
490         int tries = TCVR_WRITE_TRIES;
491 
492         ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
493 
494         /* Welcome to Sun Microsystems, can I take your order please? */
495         if (!(hp->happy_flags & HFLAG_FENABLE)) {
496                 happy_meal_bb_write(hp, tregs, reg, value);
497                 return;
498         }
499 
500         /* Would you like fries with that? */
501         hme_write32(hp, tregs + TCVR_FRAME,
502                     (FRAME_WRITE | (hp->paddr << 23) |
503                      ((reg & 0xff) << 18) | (value & 0xffff)));
504         while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
505                 udelay(20);
506 
507         /* Anything else? */
508         if (!tries)
509                 printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
510 
511         /* Fifty-two cents is your change, have a nice day. */
512 }
513 
514 /* Auto negotiation.  The scheme is very simple.  We have a timer routine
515  * that keeps watching the auto negotiation process as it progresses.
516  * The DP83840 is first told to start doing it's thing, we set up the time
517  * and place the timer state machine in it's initial state.
518  *
519  * Here the timer peeks at the DP83840 status registers at each click to see
520  * if the auto negotiation has completed, we assume here that the DP83840 PHY
521  * will time out at some point and just tell us what (didn't) happen.  For
522  * complete coverage we only allow so many of the ticks at this level to run,
523  * when this has expired we print a warning message and try another strategy.
524  * This "other" strategy is to force the interface into various speed/duplex
525  * configurations and we stop when we see a link-up condition before the
526  * maximum number of "peek" ticks have occurred.
527  *
528  * Once a valid link status has been detected we configure the BigMAC and
529  * the rest of the Happy Meal to speak the most efficient protocol we could
530  * get a clean link for.  The priority for link configurations, highest first
531  * is:
532  *                 100 Base-T Full Duplex
533  *                 100 Base-T Half Duplex
534  *                 10 Base-T Full Duplex
535  *                 10 Base-T Half Duplex
536  *
537  * We start a new timer now, after a successful auto negotiation status has
538  * been detected.  This timer just waits for the link-up bit to get set in
539  * the BMCR of the DP83840.  When this occurs we print a kernel log message
540  * describing the link type in use and the fact that it is up.
541  *
542  * If a fatal error of some sort is signalled and detected in the interrupt
543  * service routine, and the chip is reset, or the link is ifconfig'd down
544  * and then back up, this entire process repeats itself all over again.
545  */
546 static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
547 {
548         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
549 
550         /* Downgrade from full to half duplex.  Only possible
551          * via ethtool.
552          */
553         if (hp->sw_bmcr & BMCR_FULLDPLX) {
554                 hp->sw_bmcr &= ~(BMCR_FULLDPLX);
555                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
556                 return 0;
557         }
558 
559         /* Downgrade from 100 to 10. */
560         if (hp->sw_bmcr & BMCR_SPEED100) {
561                 hp->sw_bmcr &= ~(BMCR_SPEED100);
562                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
563                 return 0;
564         }
565 
566         /* We've tried everything. */
567         return -1;
568 }
569 
570 static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
571 {
572         printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
573         if (hp->tcvr_type == external)
574                 printk("external ");
575         else
576                 printk("internal ");
577         printk("transceiver at ");
578         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
579         if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
580                 if (hp->sw_lpa & LPA_100FULL)
581                         printk("100Mb/s, Full Duplex.\n");
582                 else
583                         printk("100Mb/s, Half Duplex.\n");
584         } else {
585                 if (hp->sw_lpa & LPA_10FULL)
586                         printk("10Mb/s, Full Duplex.\n");
587                 else
588                         printk("10Mb/s, Half Duplex.\n");
589         }
590 }
591 
592 static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
593 {
594         printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
595         if (hp->tcvr_type == external)
596                 printk("external ");
597         else
598                 printk("internal ");
599         printk("transceiver at ");
600         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
601         if (hp->sw_bmcr & BMCR_SPEED100)
602                 printk("100Mb/s, ");
603         else
604                 printk("10Mb/s, ");
605         if (hp->sw_bmcr & BMCR_FULLDPLX)
606                 printk("Full Duplex.\n");
607         else
608                 printk("Half Duplex.\n");
609 }
610 
611 static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
612 {
613         int full;
614 
615         /* All we care about is making sure the bigmac tx_cfg has a
616          * proper duplex setting.
617          */
618         if (hp->timer_state == arbwait) {
619                 hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
620                 if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
621                         goto no_response;
622                 if (hp->sw_lpa & LPA_100FULL)
623                         full = 1;
624                 else if (hp->sw_lpa & LPA_100HALF)
625                         full = 0;
626                 else if (hp->sw_lpa & LPA_10FULL)
627                         full = 1;
628                 else
629                         full = 0;
630         } else {
631                 /* Forcing a link mode. */
632                 hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
633                 if (hp->sw_bmcr & BMCR_FULLDPLX)
634                         full = 1;
635                 else
636                         full = 0;
637         }
638 
639         /* Before changing other bits in the tx_cfg register, and in
640          * general any of other the TX config registers too, you
641          * must:
642          * 1) Clear Enable
643          * 2) Poll with reads until that bit reads back as zero
644          * 3) Make TX configuration changes
645          * 4) Set Enable once more
646          */
647         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
648                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
649                     ~(BIGMAC_TXCFG_ENABLE));
650         while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
651                 barrier();
652         if (full) {
653                 hp->happy_flags |= HFLAG_FULL;
654                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
655                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
656                             BIGMAC_TXCFG_FULLDPLX);
657         } else {
658                 hp->happy_flags &= ~(HFLAG_FULL);
659                 hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
660                             hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
661                             ~(BIGMAC_TXCFG_FULLDPLX));
662         }
663         hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
664                     hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
665                     BIGMAC_TXCFG_ENABLE);
666         return 0;
667 no_response:
668         return 1;
669 }
670 
671 static int happy_meal_init(struct happy_meal *hp);
672 
673 static int is_lucent_phy(struct happy_meal *hp)
674 {
675         void __iomem *tregs = hp->tcvregs;
676         unsigned short mr2, mr3;
677         int ret = 0;
678 
679         mr2 = happy_meal_tcvr_read(hp, tregs, 2);
680         mr3 = happy_meal_tcvr_read(hp, tregs, 3);
681         if ((mr2 & 0xffff) == 0x0180 &&
682             ((mr3 & 0xffff) >> 10) == 0x1d)
683                 ret = 1;
684 
685         return ret;
686 }
687 
688 static void happy_meal_timer(unsigned long data)
689 {
690         struct happy_meal *hp = (struct happy_meal *) data;
691         void __iomem *tregs = hp->tcvregs;
692         int restart_timer = 0;
693 
694         spin_lock_irq(&hp->happy_lock);
695 
696         hp->timer_ticks++;
697         switch(hp->timer_state) {
698         case arbwait:
699                 /* Only allow for 5 ticks, thats 10 seconds and much too
700                  * long to wait for arbitration to complete.
701                  */
702                 if (hp->timer_ticks >= 10) {
703                         /* Enter force mode. */
704         do_force_mode:
705                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
706                         printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
707                                hp->dev->name);
708                         hp->sw_bmcr = BMCR_SPEED100;
709                         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
710 
711                         if (!is_lucent_phy(hp)) {
712                                 /* OK, seems we need do disable the transceiver for the first
713                                  * tick to make sure we get an accurate link state at the
714                                  * second tick.
715                                  */
716                                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
717                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
718                                 happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
719                         }
720                         hp->timer_state = ltrywait;
721                         hp->timer_ticks = 0;
722                         restart_timer = 1;
723                 } else {
724                         /* Anything interesting happen? */
725                         hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
726                         if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
727                                 int ret;
728 
729                                 /* Just what we've been waiting for... */
730                                 ret = set_happy_link_modes(hp, tregs);
731                                 if (ret) {
732                                         /* Ooops, something bad happened, go to force
733                                          * mode.
734                                          *
735                                          * XXX Broken hubs which don't support 802.3u
736                                          * XXX auto-negotiation make this happen as well.
737                                          */
738                                         goto do_force_mode;
739                                 }
740 
741                                 /* Success, at least so far, advance our state engine. */
742                                 hp->timer_state = lupwait;
743                                 restart_timer = 1;
744                         } else {
745                                 restart_timer = 1;
746                         }
747                 }
748                 break;
749 
750         case lupwait:
751                 /* Auto negotiation was successful and we are awaiting a
752                  * link up status.  I have decided to let this timer run
753                  * forever until some sort of error is signalled, reporting
754                  * a message to the user at 10 second intervals.
755                  */
756                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
757                 if (hp->sw_bmsr & BMSR_LSTATUS) {
758                         /* Wheee, it's up, display the link mode in use and put
759                          * the timer to sleep.
760                          */
761                         display_link_mode(hp, tregs);
762                         hp->timer_state = asleep;
763                         restart_timer = 0;
764                 } else {
765                         if (hp->timer_ticks >= 10) {
766                                 printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
767                                        "not completely up.\n", hp->dev->name);
768                                 hp->timer_ticks = 0;
769                                 restart_timer = 1;
770                         } else {
771                                 restart_timer = 1;
772                         }
773                 }
774                 break;
775 
776         case ltrywait:
777                 /* Making the timeout here too long can make it take
778                  * annoyingly long to attempt all of the link mode
779                  * permutations, but then again this is essentially
780                  * error recovery code for the most part.
781                  */
782                 hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
783                 hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
784                 if (hp->timer_ticks == 1) {
785                         if (!is_lucent_phy(hp)) {
786                                 /* Re-enable transceiver, we'll re-enable the transceiver next
787                                  * tick, then check link state on the following tick.
788                                  */
789                                 hp->sw_csconfig |= CSCONFIG_TCVDISAB;
790                                 happy_meal_tcvr_write(hp, tregs,
791                                                       DP83840_CSCONFIG, hp->sw_csconfig);
792                         }
793                         restart_timer = 1;
794                         break;
795                 }
796                 if (hp->timer_ticks == 2) {
797                         if (!is_lucent_phy(hp)) {
798                                 hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
799                                 happy_meal_tcvr_write(hp, tregs,
800                                                       DP83840_CSCONFIG, hp->sw_csconfig);
801                         }
802                         restart_timer = 1;
803                         break;
804                 }
805                 if (hp->sw_bmsr & BMSR_LSTATUS) {
806                         /* Force mode selection success. */
807                         display_forced_link_mode(hp, tregs);
808                         set_happy_link_modes(hp, tregs); /* XXX error? then what? */
809                         hp->timer_state = asleep;
810                         restart_timer = 0;
811                 } else {
812                         if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
813                                 int ret;
814 
815                                 ret = try_next_permutation(hp, tregs);
816                                 if (ret == -1) {
817                                         /* Aieee, tried them all, reset the
818                                          * chip and try all over again.
819                                          */
820 
821                                         /* Let the user know... */
822                                         printk(KERN_NOTICE "%s: Link down, cable problem?\n",
823                                                hp->dev->name);
824 
825                                         ret = happy_meal_init(hp);
826                                         if (ret) {
827                                                 /* ho hum... */
828                                                 printk(KERN_ERR "%s: Error, cannot re-init the "
829                                                        "Happy Meal.\n", hp->dev->name);
830                                         }
831                                         goto out;
832                                 }
833                                 if (!is_lucent_phy(hp)) {
834                                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
835                                                                                DP83840_CSCONFIG);
836                                         hp->sw_csconfig |= CSCONFIG_TCVDISAB;
837                                         happy_meal_tcvr_write(hp, tregs,
838                                                               DP83840_CSCONFIG, hp->sw_csconfig);
839                                 }
840                                 hp->timer_ticks = 0;
841                                 restart_timer = 1;
842                         } else {
843                                 restart_timer = 1;
844                         }
845                 }
846                 break;
847 
848         case asleep:
849         default:
850                 /* Can't happens.... */
851                 printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
852                        hp->dev->name);
853                 restart_timer = 0;
854                 hp->timer_ticks = 0;
855                 hp->timer_state = asleep; /* foo on you */
856                 break;
857         }
858 
859         if (restart_timer) {
860                 hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
861                 add_timer(&hp->happy_timer);
862         }
863 
864 out:
865         spin_unlock_irq(&hp->happy_lock);
866 }
867 
868 #define TX_RESET_TRIES     32
869 #define RX_RESET_TRIES     32
870 
871 /* hp->happy_lock must be held */
872 static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
873 {
874         int tries = TX_RESET_TRIES;
875 
876         HMD(("happy_meal_tx_reset: reset, "));
877 
878         /* Would you like to try our SMCC Delux? */
879         hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
880         while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
881                 udelay(20);
882 
883         /* Lettuce, tomato, buggy hardware (no extra charge)? */
884         if (!tries)
885                 printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
886 
887         /* Take care. */
888         HMD(("done\n"));
889 }
890 
891 /* hp->happy_lock must be held */
892 static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
893 {
894         int tries = RX_RESET_TRIES;
895 
896         HMD(("happy_meal_rx_reset: reset, "));
897 
898         /* We have a special on GNU/Viking hardware bugs today. */
899         hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
900         while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
901                 udelay(20);
902 
903         /* Will that be all? */
904         if (!tries)
905                 printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
906 
907         /* Don't forget your vik_1137125_wa.  Have a nice day. */
908         HMD(("done\n"));
909 }
910 
911 #define STOP_TRIES         16
912 
913 /* hp->happy_lock must be held */
914 static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
915 {
916         int tries = STOP_TRIES;
917 
918         HMD(("happy_meal_stop: reset, "));
919 
920         /* We're consolidating our STB products, it's your lucky day. */
921         hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
922         while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
923                 udelay(20);
924 
925         /* Come back next week when we are "Sun Microelectronics". */
926         if (!tries)
927                 printk(KERN_ERR "happy meal: Fry guys.");
928 
929         /* Remember: "Different name, same old buggy as shit hardware." */
930         HMD(("done\n"));
931 }
932 
933 /* hp->happy_lock must be held */
934 static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
935 {
936         struct net_device_stats *stats = &hp->net_stats;
937 
938         stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
939         hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
940 
941         stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
942         hme_write32(hp, bregs + BMAC_UNALECTR, 0);
943 
944         stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
945         hme_write32(hp, bregs + BMAC_GLECTR, 0);
946 
947         stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
948 
949         stats->collisions +=
950                 (hme_read32(hp, bregs + BMAC_EXCTR) +
951                  hme_read32(hp, bregs + BMAC_LTCTR));
952         hme_write32(hp, bregs + BMAC_EXCTR, 0);
953         hme_write32(hp, bregs + BMAC_LTCTR, 0);
954 }
955 
956 /* hp->happy_lock must be held */
957 static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
958 {
959         ASD(("happy_meal_poll_stop: "));
960 
961         /* If polling disabled or not polling already, nothing to do. */
962         if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
963            (HFLAG_POLLENABLE | HFLAG_POLL)) {
964                 HMD(("not polling, return\n"));
965                 return;
966         }
967 
968         /* Shut up the MIF. */
969         ASD(("were polling, mif ints off, "));
970         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
971 
972         /* Turn off polling. */
973         ASD(("polling off, "));
974         hme_write32(hp, tregs + TCVR_CFG,
975                     hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
976 
977         /* We are no longer polling. */
978         hp->happy_flags &= ~(HFLAG_POLL);
979 
980         /* Let the bits set. */
981         udelay(200);
982         ASD(("done\n"));
983 }
984 
985 /* Only Sun can take such nice parts and fuck up the programming interface
986  * like this.  Good job guys...
987  */
988 #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
989 #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
990 
991 /* hp->happy_lock must be held */
992 static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
993 {
994         u32 tconfig;
995         int result, tries = TCVR_RESET_TRIES;
996 
997         tconfig = hme_read32(hp, tregs + TCVR_CFG);
998         ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
999         if (hp->tcvr_type == external) {
1000                 ASD(("external<"));
1001                 hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002                 hp->tcvr_type = internal;
1003                 hp->paddr = TCV_PADDR_ITX;
1004                 ASD(("ISOLATE,"));
1005                 happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006                                       (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008                 if (result == TCVR_FAILURE) {
1009                         ASD(("phyread_fail>\n"));
1010                         return -1;
1011                 }
1012                 ASD(("phyread_ok,PSELECT>"));
1013                 hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014                 hp->tcvr_type = external;
1015                 hp->paddr = TCV_PADDR_ETX;
1016         } else {
1017                 if (tconfig & TCV_CFG_MDIO1) {
1018                         ASD(("internal<PSELECT,"));
1019                         hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020                         ASD(("ISOLATE,"));
1021                         happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022                                               (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023                         result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024                         if (result == TCVR_FAILURE) {
1025                                 ASD(("phyread_fail>\n"));
1026                                 return -1;
1027                         }
1028                         ASD(("phyread_ok,~PSELECT>"));
1029                         hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030                         hp->tcvr_type = internal;
1031                         hp->paddr = TCV_PADDR_ITX;
1032                 }
1033         }
1034 
1035         ASD(("BMCR_RESET "));
1036         happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037 
1038         while (--tries) {
1039                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040                 if (result == TCVR_FAILURE)
1041                         return -1;
1042                 hp->sw_bmcr = result;
1043                 if (!(result & BMCR_RESET))
1044                         break;
1045                 udelay(20);
1046         }
1047         if (!tries) {
1048                 ASD(("BMCR RESET FAILED!\n"));
1049                 return -1;
1050         }
1051         ASD(("RESET_OK\n"));
1052 
1053         /* Get fresh copies of the PHY registers. */
1054         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058 
1059         ASD(("UNISOLATE"));
1060         hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062 
1063         tries = TCVR_UNISOLATE_TRIES;
1064         while (--tries) {
1065                 result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066                 if (result == TCVR_FAILURE)
1067                         return -1;
1068                 if (!(result & BMCR_ISOLATE))
1069                         break;
1070                 udelay(20);
1071         }
1072         if (!tries) {
1073                 ASD((" FAILED!\n"));
1074                 return -1;
1075         }
1076         ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077         if (!is_lucent_phy(hp)) {
1078                 result = happy_meal_tcvr_read(hp, tregs,
1079                                               DP83840_CSCONFIG);
1080                 happy_meal_tcvr_write(hp, tregs,
1081                                       DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082         }
1083         return 0;
1084 }
1085 
1086 /* Figure out whether we have an internal or external transceiver.
1087  *
1088  * hp->happy_lock must be held
1089  */
1090 static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091 {
1092         unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093 
1094         ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095         if (hp->happy_flags & HFLAG_POLL) {
1096                 /* If we are polling, we must stop to get the transceiver type. */
1097                 ASD(("<polling> "));
1098                 if (hp->tcvr_type == internal) {
1099                         if (tconfig & TCV_CFG_MDIO1) {
1100                                 ASD(("<internal> <poll stop> "));
1101                                 happy_meal_poll_stop(hp, tregs);
1102                                 hp->paddr = TCV_PADDR_ETX;
1103                                 hp->tcvr_type = external;
1104                                 ASD(("<external>\n"));
1105                                 tconfig &= ~(TCV_CFG_PENABLE);
1106                                 tconfig |= TCV_CFG_PSELECT;
1107                                 hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108                         }
1109                 } else {
1110                         if (hp->tcvr_type == external) {
1111                                 ASD(("<external> "));
1112                                 if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113                                         ASD(("<poll stop> "));
1114                                         happy_meal_poll_stop(hp, tregs);
1115                                         hp->paddr = TCV_PADDR_ITX;
1116                                         hp->tcvr_type = internal;
1117                                         ASD(("<internal>\n"));
1118                                         hme_write32(hp, tregs + TCVR_CFG,
1119                                                     hme_read32(hp, tregs + TCVR_CFG) &
1120                                                     ~(TCV_CFG_PSELECT));
1121                                 }
1122                                 ASD(("\n"));
1123                         } else {
1124                                 ASD(("<none>\n"));
1125                         }
1126                 }
1127         } else {
1128                 u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129 
1130                 /* Else we can just work off of the MDIO bits. */
1131                 ASD(("<not polling> "));
1132                 if (reread & TCV_CFG_MDIO1) {
1133                         hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134                         hp->paddr = TCV_PADDR_ETX;
1135                         hp->tcvr_type = external;
1136                         ASD(("<external>\n"));
1137                 } else {
1138                         if (reread & TCV_CFG_MDIO0) {
1139                                 hme_write32(hp, tregs + TCVR_CFG,
1140                                             tconfig & ~(TCV_CFG_PSELECT));
1141                                 hp->paddr = TCV_PADDR_ITX;
1142                                 hp->tcvr_type = internal;
1143                                 ASD(("<internal>\n"));
1144                         } else {
1145                                 printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146                                 hp->tcvr_type = none; /* Grrr... */
1147                                 ASD(("<none>\n"));
1148                         }
1149                 }
1150         }
1151 }
1152 
1153 /* The receive ring buffers are a bit tricky to get right.  Here goes...
1154  *
1155  * The buffers we dma into must be 64 byte aligned.  So we use a special
1156  * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157  * we really need.
1158  *
1159  * We use skb_reserve() to align the data block we get in the skb.  We
1160  * also program the etxregs->cfg register to use an offset of 2.  This
1161  * imperical constant plus the ethernet header size will always leave
1162  * us with a nicely aligned ip header once we pass things up to the
1163  * protocol layers.
1164  *
1165  * The numbers work out to:
1166  *
1167  *         Max ethernet frame size         1518
1168  *         Ethernet header size              14
1169  *         Happy Meal base offset             2
1170  *
1171  * Say a skb data area is at 0xf001b010, and its size alloced is
1172  * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173  *
1174  * First our alloc_skb() routine aligns the data base to a 64 byte
1175  * boundary.  We now have 0xf001b040 as our skb data address.  We
1176  * plug this into the receive descriptor address.
1177  *
1178  * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179  * So now the data we will end up looking at starts at 0xf001b042.  When
1180  * the packet arrives, we will check out the size received and subtract
1181  * this from the skb->length.  Then we just pass the packet up to the
1182  * protocols as is, and allocate a new skb to replace this slot we have
1183  * just received from.
1184  *
1185  * The ethernet layer will strip the ether header from the front of the
1186  * skb we just sent to it, this leaves us with the ip header sitting
1187  * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1188  * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1189  * bit checksum is obtained from the low bits of the receive descriptor
1190  * flags, thus:
1191  *
1192  *      skb->csum = rxd->rx_flags & 0xffff;
1193  *      skb->ip_summed = CHECKSUM_COMPLETE;
1194  *
1195  * before sending off the skb to the protocols, and we are good as gold.
1196  */
1197 static void happy_meal_clean_rings(struct happy_meal *hp)
1198 {
1199         int i;
1200 
1201         for (i = 0; i < RX_RING_SIZE; i++) {
1202                 if (hp->rx_skbs[i] != NULL) {
1203                         struct sk_buff *skb = hp->rx_skbs[i];
1204                         struct happy_meal_rxd *rxd;
1205                         u32 dma_addr;
1206 
1207                         rxd = &hp->happy_block->happy_meal_rxd[i];
1208                         dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209                         dma_unmap_single(hp->dma_dev, dma_addr,
1210                                          RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211                         dev_kfree_skb_any(skb);
1212                         hp->rx_skbs[i] = NULL;
1213                 }
1214         }
1215 
1216         for (i = 0; i < TX_RING_SIZE; i++) {
1217                 if (hp->tx_skbs[i] != NULL) {
1218                         struct sk_buff *skb = hp->tx_skbs[i];
1219                         struct happy_meal_txd *txd;
1220                         u32 dma_addr;
1221                         int frag;
1222 
1223                         hp->tx_skbs[i] = NULL;
1224 
1225                         for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226                                 txd = &hp->happy_block->happy_meal_txd[i];
1227                                 dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228                                 if (!frag)
1229                                         dma_unmap_single(hp->dma_dev, dma_addr,
1230                                                          (hme_read_desc32(hp, &txd->tx_flags)
1231                                                           & TXFLAG_SIZE),
1232                                                          DMA_TO_DEVICE);
1233                                 else
1234                                         dma_unmap_page(hp->dma_dev, dma_addr,
1235                                                          (hme_read_desc32(hp, &txd->tx_flags)
1236                                                           & TXFLAG_SIZE),
1237                                                          DMA_TO_DEVICE);
1238 
1239                                 if (frag != skb_shinfo(skb)->nr_frags)
1240                                         i++;
1241                         }
1242 
1243                         dev_kfree_skb_any(skb);
1244                 }
1245         }
1246 }
1247 
1248 /* hp->happy_lock must be held */
1249 static void happy_meal_init_rings(struct happy_meal *hp)
1250 {
1251         struct hmeal_init_block *hb = hp->happy_block;
1252         int i;
1253 
1254         HMD(("happy_meal_init_rings: counters to zero, "));
1255         hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1256 
1257         /* Free any skippy bufs left around in the rings. */
1258         HMD(("clean, "));
1259         happy_meal_clean_rings(hp);
1260 
1261         /* Now get new skippy bufs for the receive ring. */
1262         HMD(("init rxring, "));
1263         for (i = 0; i < RX_RING_SIZE; i++) {
1264                 struct sk_buff *skb;
1265                 u32 mapping;
1266 
1267                 skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1268                 if (!skb) {
1269                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1270                         continue;
1271                 }
1272                 hp->rx_skbs[i] = skb;
1273 
1274                 /* Because we reserve afterwards. */
1275                 skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1276                 mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1277                                          DMA_FROM_DEVICE);
1278                 if (dma_mapping_error(hp->dma_dev, mapping)) {
1279                         dev_kfree_skb_any(skb);
1280                         hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281                         continue;
1282                 }
1283                 hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1284                               (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1285                               mapping);
1286                 skb_reserve(skb, RX_OFFSET);
1287         }
1288 
1289         HMD(("init txring, "));
1290         for (i = 0; i < TX_RING_SIZE; i++)
1291                 hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1292 
1293         HMD(("done\n"));
1294 }
1295 
1296 /* hp->happy_lock must be held */
1297 static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1298                                               void __iomem *tregs,
1299                                               struct ethtool_cmd *ep)
1300 {
1301         int timeout;
1302 
1303         /* Read all of the registers we are interested in now. */
1304         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1305         hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1306         hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1307         hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1308 
1309         /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1310 
1311         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1312         if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1313                 /* Advertise everything we can support. */
1314                 if (hp->sw_bmsr & BMSR_10HALF)
1315                         hp->sw_advertise |= (ADVERTISE_10HALF);
1316                 else
1317                         hp->sw_advertise &= ~(ADVERTISE_10HALF);
1318 
1319                 if (hp->sw_bmsr & BMSR_10FULL)
1320                         hp->sw_advertise |= (ADVERTISE_10FULL);
1321                 else
1322                         hp->sw_advertise &= ~(ADVERTISE_10FULL);
1323                 if (hp->sw_bmsr & BMSR_100HALF)
1324                         hp->sw_advertise |= (ADVERTISE_100HALF);
1325                 else
1326                         hp->sw_advertise &= ~(ADVERTISE_100HALF);
1327                 if (hp->sw_bmsr & BMSR_100FULL)
1328                         hp->sw_advertise |= (ADVERTISE_100FULL);
1329                 else
1330                         hp->sw_advertise &= ~(ADVERTISE_100FULL);
1331                 happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1332 
1333                 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1334                  * XXX and this is because the DP83840 does not support it, changes
1335                  * XXX would need to be made to the tx/rx logic in the driver as well
1336                  * XXX so I completely skip checking for it in the BMSR for now.
1337                  */
1338 
1339 #ifdef AUTO_SWITCH_DEBUG
1340                 ASD(("%s: Advertising [ ", hp->dev->name));
1341                 if (hp->sw_advertise & ADVERTISE_10HALF)
1342                         ASD(("10H "));
1343                 if (hp->sw_advertise & ADVERTISE_10FULL)
1344                         ASD(("10F "));
1345                 if (hp->sw_advertise & ADVERTISE_100HALF)
1346                         ASD(("100H "));
1347                 if (hp->sw_advertise & ADVERTISE_100FULL)
1348                         ASD(("100F "));
1349 #endif
1350 
1351                 /* Enable Auto-Negotiation, this is usually on already... */
1352                 hp->sw_bmcr |= BMCR_ANENABLE;
1353                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1354 
1355                 /* Restart it to make sure it is going. */
1356                 hp->sw_bmcr |= BMCR_ANRESTART;
1357                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1358 
1359                 /* BMCR_ANRESTART self clears when the process has begun. */
1360 
1361                 timeout = 64;  /* More than enough. */
1362                 while (--timeout) {
1363                         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1364                         if (!(hp->sw_bmcr & BMCR_ANRESTART))
1365                                 break; /* got it. */
1366                         udelay(10);
1367                 }
1368                 if (!timeout) {
1369                         printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1370                                "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1371                         printk(KERN_NOTICE "%s: Performing force link detection.\n",
1372                                hp->dev->name);
1373                         goto force_link;
1374                 } else {
1375                         hp->timer_state = arbwait;
1376                 }
1377         } else {
1378 force_link:
1379                 /* Force the link up, trying first a particular mode.
1380                  * Either we are here at the request of ethtool or
1381                  * because the Happy Meal would not start to autoneg.
1382                  */
1383 
1384                 /* Disable auto-negotiation in BMCR, enable the duplex and
1385                  * speed setting, init the timer state machine, and fire it off.
1386                  */
1387                 if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
1388                         hp->sw_bmcr = BMCR_SPEED100;
1389                 } else {
1390                         if (ethtool_cmd_speed(ep) == SPEED_100)
1391                                 hp->sw_bmcr = BMCR_SPEED100;
1392                         else
1393                                 hp->sw_bmcr = 0;
1394                         if (ep->duplex == DUPLEX_FULL)
1395                                 hp->sw_bmcr |= BMCR_FULLDPLX;
1396                 }
1397                 happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1398 
1399                 if (!is_lucent_phy(hp)) {
1400                         /* OK, seems we need do disable the transceiver for the first
1401                          * tick to make sure we get an accurate link state at the
1402                          * second tick.
1403                          */
1404                         hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1405                                                                DP83840_CSCONFIG);
1406                         hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1407                         happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1408                                               hp->sw_csconfig);
1409                 }
1410                 hp->timer_state = ltrywait;
1411         }
1412 
1413         hp->timer_ticks = 0;
1414         hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1415         hp->happy_timer.data = (unsigned long) hp;
1416         hp->happy_timer.function = happy_meal_timer;
1417         add_timer(&hp->happy_timer);
1418 }
1419 
1420 /* hp->happy_lock must be held */
1421 static int happy_meal_init(struct happy_meal *hp)
1422 {
1423         void __iomem *gregs        = hp->gregs;
1424         void __iomem *etxregs      = hp->etxregs;
1425         void __iomem *erxregs      = hp->erxregs;
1426         void __iomem *bregs        = hp->bigmacregs;
1427         void __iomem *tregs        = hp->tcvregs;
1428         u32 regtmp, rxcfg;
1429         unsigned char *e = &hp->dev->dev_addr[0];
1430 
1431         /* If auto-negotiation timer is running, kill it. */
1432         del_timer(&hp->happy_timer);
1433 
1434         HMD(("happy_meal_init: happy_flags[%08x] ",
1435              hp->happy_flags));
1436         if (!(hp->happy_flags & HFLAG_INIT)) {
1437                 HMD(("set HFLAG_INIT, "));
1438                 hp->happy_flags |= HFLAG_INIT;
1439                 happy_meal_get_counters(hp, bregs);
1440         }
1441 
1442         /* Stop polling. */
1443         HMD(("to happy_meal_poll_stop\n"));
1444         happy_meal_poll_stop(hp, tregs);
1445 
1446         /* Stop transmitter and receiver. */
1447         HMD(("happy_meal_init: to happy_meal_stop\n"));
1448         happy_meal_stop(hp, gregs);
1449 
1450         /* Alloc and reset the tx/rx descriptor chains. */
1451         HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1452         happy_meal_init_rings(hp);
1453 
1454         /* Shut up the MIF. */
1455         HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1456              hme_read32(hp, tregs + TCVR_IMASK)));
1457         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1458 
1459         /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1460         if (hp->happy_flags & HFLAG_FENABLE) {
1461                 HMD(("use frame old[%08x], ",
1462                      hme_read32(hp, tregs + TCVR_CFG)));
1463                 hme_write32(hp, tregs + TCVR_CFG,
1464                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1465         } else {
1466                 HMD(("use bitbang old[%08x], ",
1467                      hme_read32(hp, tregs + TCVR_CFG)));
1468                 hme_write32(hp, tregs + TCVR_CFG,
1469                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1470         }
1471 
1472         /* Check the state of the transceiver. */
1473         HMD(("to happy_meal_transceiver_check\n"));
1474         happy_meal_transceiver_check(hp, tregs);
1475 
1476         /* Put the Big Mac into a sane state. */
1477         HMD(("happy_meal_init: "));
1478         switch(hp->tcvr_type) {
1479         case none:
1480                 /* Cannot operate if we don't know the transceiver type! */
1481                 HMD(("AAIEEE no transceiver type, EAGAIN"));
1482                 return -EAGAIN;
1483 
1484         case internal:
1485                 /* Using the MII buffers. */
1486                 HMD(("internal, using MII, "));
1487                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1488                 break;
1489 
1490         case external:
1491                 /* Not using the MII, disable it. */
1492                 HMD(("external, disable MII, "));
1493                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1494                 break;
1495         }
1496 
1497         if (happy_meal_tcvr_reset(hp, tregs))
1498                 return -EAGAIN;
1499 
1500         /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1501         HMD(("tx/rx reset, "));
1502         happy_meal_tx_reset(hp, bregs);
1503         happy_meal_rx_reset(hp, bregs);
1504 
1505         /* Set jam size and inter-packet gaps to reasonable defaults. */
1506         HMD(("jsize/ipg1/ipg2, "));
1507         hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1508         hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1509         hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1510 
1511         /* Load up the MAC address and random seed. */
1512         HMD(("rseed/macaddr, "));
1513 
1514         /* The docs recommend to use the 10LSB of our MAC here. */
1515         hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1516 
1517         hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1518         hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1519         hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1520 
1521         HMD(("htable, "));
1522         if ((hp->dev->flags & IFF_ALLMULTI) ||
1523             (netdev_mc_count(hp->dev) > 64)) {
1524                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1525                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1526                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1527                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1528         } else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1529                 u16 hash_table[4];
1530                 struct netdev_hw_addr *ha;
1531                 u32 crc;
1532 
1533                 memset(hash_table, 0, sizeof(hash_table));
1534                 netdev_for_each_mc_addr(ha, hp->dev) {
1535                         crc = ether_crc_le(6, ha->addr);
1536                         crc >>= 26;
1537                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
1538                 }
1539                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1540                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1541                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1542                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1543         } else {
1544                 hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1545                 hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1546                 hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1547                 hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1548         }
1549 
1550         /* Set the RX and TX ring ptrs. */
1551         HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1553              ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1554         hme_write32(hp, erxregs + ERX_RING,
1555                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1556         hme_write32(hp, etxregs + ETX_RING,
1557                     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1558 
1559         /* Parity issues in the ERX unit of some HME revisions can cause some
1560          * registers to not be written unless their parity is even.  Detect such
1561          * lost writes and simply rewrite with a low bit set (which will be ignored
1562          * since the rxring needs to be 2K aligned).
1563          */
1564         if (hme_read32(hp, erxregs + ERX_RING) !=
1565             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1566                 hme_write32(hp, erxregs + ERX_RING,
1567                             ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1568                             | 0x4);
1569 
1570         /* Set the supported burst sizes. */
1571         HMD(("happy_meal_init: old[%08x] bursts<",
1572              hme_read32(hp, gregs + GREG_CFG)));
1573 
1574 #ifndef CONFIG_SPARC
1575         /* It is always PCI and can handle 64byte bursts. */
1576         hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1577 #else
1578         if ((hp->happy_bursts & DMA_BURST64) &&
1579             ((hp->happy_flags & HFLAG_PCI) != 0
1580 #ifdef CONFIG_SBUS
1581              || sbus_can_burst64()
1582 #endif
1583              || 0)) {
1584                 u32 gcfg = GREG_CFG_BURST64;
1585 
1586                 /* I have no idea if I should set the extended
1587                  * transfer mode bit for Cheerio, so for now I
1588                  * do not.  -DaveM
1589                  */
1590 #ifdef CONFIG_SBUS
1591                 if ((hp->happy_flags & HFLAG_PCI) == 0) {
1592                         struct platform_device *op = hp->happy_dev;
1593                         if (sbus_can_dma_64bit()) {
1594                                 sbus_set_sbus64(&op->dev,
1595                                                 hp->happy_bursts);
1596                                 gcfg |= GREG_CFG_64BIT;
1597                         }
1598                 }
1599 #endif
1600 
1601                 HMD(("64>"));
1602                 hme_write32(hp, gregs + GREG_CFG, gcfg);
1603         } else if (hp->happy_bursts & DMA_BURST32) {
1604                 HMD(("32>"));
1605                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1606         } else if (hp->happy_bursts & DMA_BURST16) {
1607                 HMD(("16>"));
1608                 hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1609         } else {
1610                 HMD(("XXX>"));
1611                 hme_write32(hp, gregs + GREG_CFG, 0);
1612         }
1613 #endif /* CONFIG_SPARC */
1614 
1615         /* Turn off interrupts we do not want to hear. */
1616         HMD((", enable global interrupts, "));
1617         hme_write32(hp, gregs + GREG_IMASK,
1618                     (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1619                      GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1620 
1621         /* Set the transmit ring buffer size. */
1622         HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1623              hme_read32(hp, etxregs + ETX_RSIZE)));
1624         hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1625 
1626         /* Enable transmitter DVMA. */
1627         HMD(("tx dma enable old[%08x], ",
1628              hme_read32(hp, etxregs + ETX_CFG)));
1629         hme_write32(hp, etxregs + ETX_CFG,
1630                     hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1631 
1632         /* This chip really rots, for the receiver sometimes when you
1633          * write to its control registers not all the bits get there
1634          * properly.  I cannot think of a sane way to provide complete
1635          * coverage for this hardware bug yet.
1636          */
1637         HMD(("erx regs bug old[%08x]\n",
1638              hme_read32(hp, erxregs + ERX_CFG)));
1639         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1640         regtmp = hme_read32(hp, erxregs + ERX_CFG);
1641         hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1642         if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1643                 printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1644                 printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1645                        ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1646                 /* XXX Should return failure here... */
1647         }
1648 
1649         /* Enable Big Mac hash table filter. */
1650         HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651              hme_read32(hp, bregs + BMAC_RXCFG)));
1652         rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1653         if (hp->dev->flags & IFF_PROMISC)
1654                 rxcfg |= BIGMAC_RXCFG_PMISC;
1655         hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1656 
1657         /* Let the bits settle in the chip. */
1658         udelay(10);
1659 
1660         /* Ok, configure the Big Mac transmitter. */
1661         HMD(("BIGMAC init, "));
1662         regtmp = 0;
1663         if (hp->happy_flags & HFLAG_FULL)
1664                 regtmp |= BIGMAC_TXCFG_FULLDPLX;
1665 
1666         /* Don't turn on the "don't give up" bit for now.  It could cause hme
1667          * to deadlock with the PHY if a Jabber occurs.
1668          */
1669         hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1670 
1671         /* Give up after 16 TX attempts. */
1672         hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1673 
1674         /* Enable the output drivers no matter what. */
1675         regtmp = BIGMAC_XCFG_ODENABLE;
1676 
1677         /* If card can do lance mode, enable it. */
1678         if (hp->happy_flags & HFLAG_LANCE)
1679                 regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1680 
1681         /* Disable the MII buffers if using external transceiver. */
1682         if (hp->tcvr_type == external)
1683                 regtmp |= BIGMAC_XCFG_MIIDISAB;
1684 
1685         HMD(("XIF config old[%08x], ",
1686              hme_read32(hp, bregs + BMAC_XIFCFG)));
1687         hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1688 
1689         /* Start things up. */
1690         HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691              hme_read32(hp, bregs + BMAC_TXCFG),
1692              hme_read32(hp, bregs + BMAC_RXCFG)));
1693 
1694         /* Set larger TX/RX size to allow for 802.1q */
1695         hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1696         hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1697 
1698         hme_write32(hp, bregs + BMAC_TXCFG,
1699                     hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1700         hme_write32(hp, bregs + BMAC_RXCFG,
1701                     hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1702 
1703         /* Get the autonegotiation started, and the watch timer ticking. */
1704         happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1705 
1706         /* Success. */
1707         return 0;
1708 }
1709 
1710 /* hp->happy_lock must be held */
1711 static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1712 {
1713         void __iomem *tregs     = hp->tcvregs;
1714         void __iomem *bregs     = hp->bigmacregs;
1715         void __iomem *gregs     = hp->gregs;
1716 
1717         happy_meal_stop(hp, gregs);
1718         hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1719         if (hp->happy_flags & HFLAG_FENABLE)
1720                 hme_write32(hp, tregs + TCVR_CFG,
1721                             hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1722         else
1723                 hme_write32(hp, tregs + TCVR_CFG,
1724                             hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1725         happy_meal_transceiver_check(hp, tregs);
1726         switch(hp->tcvr_type) {
1727         case none:
1728                 return;
1729         case internal:
1730                 hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1731                 break;
1732         case external:
1733                 hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1734                 break;
1735         }
1736         if (happy_meal_tcvr_reset(hp, tregs))
1737                 return;
1738 
1739         /* Latch PHY registers as of now. */
1740         hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1741         hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1742 
1743         /* Advertise everything we can support. */
1744         if (hp->sw_bmsr & BMSR_10HALF)
1745                 hp->sw_advertise |= (ADVERTISE_10HALF);
1746         else
1747                 hp->sw_advertise &= ~(ADVERTISE_10HALF);
1748 
1749         if (hp->sw_bmsr & BMSR_10FULL)
1750                 hp->sw_advertise |= (ADVERTISE_10FULL);
1751         else
1752                 hp->sw_advertise &= ~(ADVERTISE_10FULL);
1753         if (hp->sw_bmsr & BMSR_100HALF)
1754                 hp->sw_advertise |= (ADVERTISE_100HALF);
1755         else
1756                 hp->sw_advertise &= ~(ADVERTISE_100HALF);
1757         if (hp->sw_bmsr & BMSR_100FULL)
1758                 hp->sw_advertise |= (ADVERTISE_100FULL);
1759         else
1760                 hp->sw_advertise &= ~(ADVERTISE_100FULL);
1761 
1762         /* Update the PHY advertisement register. */
1763         happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1764 }
1765 
1766 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1767  * the hardware, so we cannot re-read it and get a correct value.
1768  *
1769  * hp->happy_lock must be held
1770  */
1771 static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1772 {
1773         int reset = 0;
1774 
1775         /* Only print messages for non-counter related interrupts. */
1776         if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1777                       GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1778                       GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1779                       GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1780                       GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1781                       GREG_STAT_SLVPERR))
1782                 printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1783                        hp->dev->name, status);
1784 
1785         if (status & GREG_STAT_RFIFOVF) {
1786                 /* Receive FIFO overflow is harmless and the hardware will take
1787                    care of it, just some packets are lost. Who cares. */
1788                 printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1789         }
1790 
1791         if (status & GREG_STAT_STSTERR) {
1792                 /* BigMAC SQE link test failed. */
1793                 printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1794                 reset = 1;
1795         }
1796 
1797         if (status & GREG_STAT_TFIFO_UND) {
1798                 /* Transmit FIFO underrun, again DMA error likely. */
1799                 printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800                        hp->dev->name);
1801                 reset = 1;
1802         }
1803 
1804         if (status & GREG_STAT_MAXPKTERR) {
1805                 /* Driver error, tried to transmit something larger
1806                  * than ethernet max mtu.
1807                  */
1808                 printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1809                 reset = 1;
1810         }
1811 
1812         if (status & GREG_STAT_NORXD) {
1813                 /* This is harmless, it just means the system is
1814                  * quite loaded and the incoming packet rate was
1815                  * faster than the interrupt handler could keep up
1816                  * with.
1817                  */
1818                 printk(KERN_INFO "%s: Happy Meal out of receive "
1819                        "descriptors, packet dropped.\n",
1820                        hp->dev->name);
1821         }
1822 
1823         if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1824                 /* All sorts of DMA receive errors. */
1825                 printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1826                 if (status & GREG_STAT_RXERR)
1827                         printk("GenericError ");
1828                 if (status & GREG_STAT_RXPERR)
1829                         printk("ParityError ");
1830                 if (status & GREG_STAT_RXTERR)
1831                         printk("RxTagBotch ");
1832                 printk("]\n");
1833                 reset = 1;
1834         }
1835 
1836         if (status & GREG_STAT_EOPERR) {
1837                 /* Driver bug, didn't set EOP bit in tx descriptor given
1838                  * to the happy meal.
1839                  */
1840                 printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1841                        hp->dev->name);
1842                 reset = 1;
1843         }
1844 
1845         if (status & GREG_STAT_MIFIRQ) {
1846                 /* MIF signalled an interrupt, were we polling it? */
1847                 printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1848         }
1849 
1850         if (status &
1851             (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1852                 /* All sorts of transmit DMA errors. */
1853                 printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1854                 if (status & GREG_STAT_TXEACK)
1855                         printk("GenericError ");
1856                 if (status & GREG_STAT_TXLERR)
1857                         printk("LateError ");
1858                 if (status & GREG_STAT_TXPERR)
1859                         printk("ParityErro ");
1860                 if (status & GREG_STAT_TXTERR)
1861                         printk("TagBotch ");
1862                 printk("]\n");
1863                 reset = 1;
1864         }
1865 
1866         if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1867                 /* Bus or parity error when cpu accessed happy meal registers
1868                  * or it's internal FIFO's.  Should never see this.
1869                  */
1870                 printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1871                        hp->dev->name,
1872                        (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1873                 reset = 1;
1874         }
1875 
1876         if (reset) {
1877                 printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1878                 happy_meal_init(hp);
1879                 return 1;
1880         }
1881         return 0;
1882 }
1883 
1884 /* hp->happy_lock must be held */
1885 static void happy_meal_mif_interrupt(struct happy_meal *hp)
1886 {
1887         void __iomem *tregs = hp->tcvregs;
1888 
1889         printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1890         hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1891         hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1892 
1893         /* Use the fastest transmission protocol possible. */
1894         if (hp->sw_lpa & LPA_100FULL) {
1895                 printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1896                 hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1897         } else if (hp->sw_lpa & LPA_100HALF) {
1898                 printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1899                 hp->sw_bmcr |= BMCR_SPEED100;
1900         } else if (hp->sw_lpa & LPA_10FULL) {
1901                 printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1902                 hp->sw_bmcr |= BMCR_FULLDPLX;
1903         } else {
1904                 printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1905         }
1906         happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1907 
1908         /* Finally stop polling and shut up the MIF. */
1909         happy_meal_poll_stop(hp, tregs);
1910 }
1911 
1912 #ifdef TXDEBUG
1913 #define TXD(x) printk x
1914 #else
1915 #define TXD(x)
1916 #endif
1917 
1918 /* hp->happy_lock must be held */
1919 static void happy_meal_tx(struct happy_meal *hp)
1920 {
1921         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1922         struct happy_meal_txd *this;
1923         struct net_device *dev = hp->dev;
1924         int elem;
1925 
1926         elem = hp->tx_old;
1927         TXD(("TX<"));
1928         while (elem != hp->tx_new) {
1929                 struct sk_buff *skb;
1930                 u32 flags, dma_addr, dma_len;
1931                 int frag;
1932 
1933                 TXD(("[%d]", elem));
1934                 this = &txbase[elem];
1935                 flags = hme_read_desc32(hp, &this->tx_flags);
1936                 if (flags & TXFLAG_OWN)
1937                         break;
1938                 skb = hp->tx_skbs[elem];
1939                 if (skb_shinfo(skb)->nr_frags) {
1940                         int last;
1941 
1942                         last = elem + skb_shinfo(skb)->nr_frags;
1943                         last &= (TX_RING_SIZE - 1);
1944                         flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1945                         if (flags & TXFLAG_OWN)
1946                                 break;
1947                 }
1948                 hp->tx_skbs[elem] = NULL;
1949                 hp->net_stats.tx_bytes += skb->len;
1950 
1951                 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1952                         dma_addr = hme_read_desc32(hp, &this->tx_addr);
1953                         dma_len = hme_read_desc32(hp, &this->tx_flags);
1954 
1955                         dma_len &= TXFLAG_SIZE;
1956                         if (!frag)
1957                                 dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1958                         else
1959                                 dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1960 
1961                         elem = NEXT_TX(elem);
1962                         this = &txbase[elem];
1963                 }
1964 
1965                 dev_kfree_skb_irq(skb);
1966                 hp->net_stats.tx_packets++;
1967         }
1968         hp->tx_old = elem;
1969         TXD((">"));
1970 
1971         if (netif_queue_stopped(dev) &&
1972             TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1973                 netif_wake_queue(dev);
1974 }
1975 
1976 #ifdef RXDEBUG
1977 #define RXD(x) printk x
1978 #else
1979 #define RXD(x)
1980 #endif
1981 
1982 /* Originally I used to handle the allocation failure by just giving back just
1983  * that one ring buffer to the happy meal.  Problem is that usually when that
1984  * condition is triggered, the happy meal expects you to do something reasonable
1985  * with all of the packets it has DMA'd in.  So now I just drop the entire
1986  * ring when we cannot get a new skb and give them all back to the happy meal,
1987  * maybe things will be "happier" now.
1988  *
1989  * hp->happy_lock must be held
1990  */
1991 static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1992 {
1993         struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1994         struct happy_meal_rxd *this;
1995         int elem = hp->rx_new, drops = 0;
1996         u32 flags;
1997 
1998         RXD(("RX<"));
1999         this = &rxbase[elem];
2000         while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2001                 struct sk_buff *skb;
2002                 int len = flags >> 16;
2003                 u16 csum = flags & RXFLAG_CSUM;
2004                 u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2005 
2006                 RXD(("[%d ", elem));
2007 
2008                 /* Check for errors. */
2009                 if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2010                         RXD(("ERR(%08x)]", flags));
2011                         hp->net_stats.rx_errors++;
2012                         if (len < ETH_ZLEN)
2013                                 hp->net_stats.rx_length_errors++;
2014                         if (len & (RXFLAG_OVERFLOW >> 16)) {
2015                                 hp->net_stats.rx_over_errors++;
2016                                 hp->net_stats.rx_fifo_errors++;
2017                         }
2018 
2019                         /* Return it to the Happy meal. */
2020         drop_it:
2021                         hp->net_stats.rx_dropped++;
2022                         hme_write_rxd(hp, this,
2023                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2024                                       dma_addr);
2025                         goto next;
2026                 }
2027                 skb = hp->rx_skbs[elem];
2028                 if (len > RX_COPY_THRESHOLD) {
2029                         struct sk_buff *new_skb;
2030                         u32 mapping;
2031 
2032                         /* Now refill the entry, if we can. */
2033                         new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2034                         if (new_skb == NULL) {
2035                                 drops++;
2036                                 goto drop_it;
2037                         }
2038                         skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2039                         mapping = dma_map_single(hp->dma_dev, new_skb->data,
2040                                                  RX_BUF_ALLOC_SIZE,
2041                                                  DMA_FROM_DEVICE);
2042                         if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2043                                 dev_kfree_skb_any(new_skb);
2044                                 drops++;
2045                                 goto drop_it;
2046                         }
2047 
2048                         dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2049                         hp->rx_skbs[elem] = new_skb;
2050                         hme_write_rxd(hp, this,
2051                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2052                                       mapping);
2053                         skb_reserve(new_skb, RX_OFFSET);
2054 
2055                         /* Trim the original skb for the netif. */
2056                         skb_trim(skb, len);
2057                 } else {
2058                         struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2059 
2060                         if (copy_skb == NULL) {
2061                                 drops++;
2062                                 goto drop_it;
2063                         }
2064 
2065                         skb_reserve(copy_skb, 2);
2066                         skb_put(copy_skb, len);
2067                         dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2068                         skb_copy_from_linear_data(skb, copy_skb->data, len);
2069                         dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2070                         /* Reuse original ring buffer. */
2071                         hme_write_rxd(hp, this,
2072                                       (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2073                                       dma_addr);
2074 
2075                         skb = copy_skb;
2076                 }
2077 
2078                 /* This card is _fucking_ hot... */
2079                 skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2080                 skb->ip_summed = CHECKSUM_COMPLETE;
2081 
2082                 RXD(("len=%d csum=%4x]", len, csum));
2083                 skb->protocol = eth_type_trans(skb, dev);
2084                 netif_rx(skb);
2085 
2086                 hp->net_stats.rx_packets++;
2087                 hp->net_stats.rx_bytes += len;
2088         next:
2089                 elem = NEXT_RX(elem);
2090                 this = &rxbase[elem];
2091         }
2092         hp->rx_new = elem;
2093         if (drops)
2094                 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2095         RXD((">"));
2096 }
2097 
2098 static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2099 {
2100         struct net_device *dev = dev_id;
2101         struct happy_meal *hp  = netdev_priv(dev);
2102         u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2103 
2104         HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2105 
2106         spin_lock(&hp->happy_lock);
2107 
2108         if (happy_status & GREG_STAT_ERRORS) {
2109                 HMD(("ERRORS "));
2110                 if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2111                         goto out;
2112         }
2113 
2114         if (happy_status & GREG_STAT_MIFIRQ) {
2115                 HMD(("MIFIRQ "));
2116                 happy_meal_mif_interrupt(hp);
2117         }
2118 
2119         if (happy_status & GREG_STAT_TXALL) {
2120                 HMD(("TXALL "));
2121                 happy_meal_tx(hp);
2122         }
2123 
2124         if (happy_status & GREG_STAT_RXTOHOST) {
2125                 HMD(("RXTOHOST "));
2126                 happy_meal_rx(hp, dev);
2127         }
2128 
2129         HMD(("done\n"));
2130 out:
2131         spin_unlock(&hp->happy_lock);
2132 
2133         return IRQ_HANDLED;
2134 }
2135 
2136 #ifdef CONFIG_SBUS
2137 static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2138 {
2139         struct quattro *qp = (struct quattro *) cookie;
2140         int i;
2141 
2142         for (i = 0; i < 4; i++) {
2143                 struct net_device *dev = qp->happy_meals[i];
2144                 struct happy_meal *hp  = netdev_priv(dev);
2145                 u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2146 
2147                 HMD(("quattro_interrupt: status=%08x ", happy_status));
2148 
2149                 if (!(happy_status & (GREG_STAT_ERRORS |
2150                                       GREG_STAT_MIFIRQ |
2151                                       GREG_STAT_TXALL |
2152                                       GREG_STAT_RXTOHOST)))
2153                         continue;
2154 
2155                 spin_lock(&hp->happy_lock);
2156 
2157                 if (happy_status & GREG_STAT_ERRORS) {
2158                         HMD(("ERRORS "));
2159                         if (happy_meal_is_not_so_happy(hp, happy_status))
2160                                 goto next;
2161                 }
2162 
2163                 if (happy_status & GREG_STAT_MIFIRQ) {
2164                         HMD(("MIFIRQ "));
2165                         happy_meal_mif_interrupt(hp);
2166                 }
2167 
2168                 if (happy_status & GREG_STAT_TXALL) {
2169                         HMD(("TXALL "));
2170                         happy_meal_tx(hp);
2171                 }
2172 
2173                 if (happy_status & GREG_STAT_RXTOHOST) {
2174                         HMD(("RXTOHOST "));
2175                         happy_meal_rx(hp, dev);
2176                 }
2177 
2178         next:
2179                 spin_unlock(&hp->happy_lock);
2180         }
2181         HMD(("done\n"));
2182 
2183         return IRQ_HANDLED;
2184 }
2185 #endif
2186 
2187 static int happy_meal_open(struct net_device *dev)
2188 {
2189         struct happy_meal *hp = netdev_priv(dev);
2190         int res;
2191 
2192         HMD(("happy_meal_open: "));
2193 
2194         /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2195          * into a single source which we register handling at probe time.
2196          */
2197         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2198                 res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2199                                   dev->name, dev);
2200                 if (res) {
2201                         HMD(("EAGAIN\n"));
2202                         printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2203                                hp->irq);
2204 
2205                         return -EAGAIN;
2206                 }
2207         }
2208 
2209         HMD(("to happy_meal_init\n"));
2210 
2211         spin_lock_irq(&hp->happy_lock);
2212         res = happy_meal_init(hp);
2213         spin_unlock_irq(&hp->happy_lock);
2214 
2215         if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2216                 free_irq(hp->irq, dev);
2217         return res;
2218 }
2219 
2220 static int happy_meal_close(struct net_device *dev)
2221 {
2222         struct happy_meal *hp = netdev_priv(dev);
2223 
2224         spin_lock_irq(&hp->happy_lock);
2225         happy_meal_stop(hp, hp->gregs);
2226         happy_meal_clean_rings(hp);
2227 
2228         /* If auto-negotiation timer is running, kill it. */
2229         del_timer(&hp->happy_timer);
2230 
2231         spin_unlock_irq(&hp->happy_lock);
2232 
2233         /* On Quattro QFE cards, all hme interrupts are concentrated
2234          * into a single source which we register handling at probe
2235          * time and never unregister.
2236          */
2237         if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2238                 free_irq(hp->irq, dev);
2239 
2240         return 0;
2241 }
2242 
2243 #ifdef SXDEBUG
2244 #define SXD(x) printk x
2245 #else
2246 #define SXD(x)
2247 #endif
2248 
2249 static void happy_meal_tx_timeout(struct net_device *dev)
2250 {
2251         struct happy_meal *hp = netdev_priv(dev);
2252 
2253         printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2254         tx_dump_log();
2255         printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2256                 hme_read32(hp, hp->gregs + GREG_STAT),
2257                 hme_read32(hp, hp->etxregs + ETX_CFG),
2258                 hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2259 
2260         spin_lock_irq(&hp->happy_lock);
2261         happy_meal_init(hp);
2262         spin_unlock_irq(&hp->happy_lock);
2263 
2264         netif_wake_queue(dev);
2265 }
2266 
2267 static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2268                                  u32 first_len, u32 first_entry, u32 entry)
2269 {
2270         struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2271 
2272         dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2273 
2274         first_entry = NEXT_TX(first_entry);
2275         while (first_entry != entry) {
2276                 struct happy_meal_txd *this = &txbase[first_entry];
2277                 u32 addr, len;
2278 
2279                 addr = hme_read_desc32(hp, &this->tx_addr);
2280                 len = hme_read_desc32(hp, &this->tx_flags);
2281                 len &= TXFLAG_SIZE;
2282                 dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2283         }
2284 }
2285 
2286 static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2287                                          struct net_device *dev)
2288 {
2289         struct happy_meal *hp = netdev_priv(dev);
2290         int entry;
2291         u32 tx_flags;
2292 
2293         tx_flags = TXFLAG_OWN;
2294         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2295                 const u32 csum_start_off = skb_checksum_start_offset(skb);
2296                 const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2297 
2298                 tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2299                             ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2300                             ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2301         }
2302 
2303         spin_lock_irq(&hp->happy_lock);
2304 
2305         if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2306                 netif_stop_queue(dev);
2307                 spin_unlock_irq(&hp->happy_lock);
2308                 printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2309                        dev->name);
2310                 return NETDEV_TX_BUSY;
2311         }
2312 
2313         entry = hp->tx_new;
2314         SXD(("SX<l[%d]e[%d]>", len, entry));
2315         hp->tx_skbs[entry] = skb;
2316 
2317         if (skb_shinfo(skb)->nr_frags == 0) {
2318                 u32 mapping, len;
2319 
2320                 len = skb->len;
2321                 mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2322                 if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2323                         goto out_dma_error;
2324                 tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2325                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2326                               (tx_flags | (len & TXFLAG_SIZE)),
2327                               mapping);
2328                 entry = NEXT_TX(entry);
2329         } else {
2330                 u32 first_len, first_mapping;
2331                 int frag, first_entry = entry;
2332 
2333                 /* We must give this initial chunk to the device last.
2334                  * Otherwise we could race with the device.
2335                  */
2336                 first_len = skb_headlen(skb);
2337                 first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2338                                                DMA_TO_DEVICE);
2339                 if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2340                         goto out_dma_error;
2341                 entry = NEXT_TX(entry);
2342 
2343                 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2344                         const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2345                         u32 len, mapping, this_txflags;
2346 
2347                         len = skb_frag_size(this_frag);
2348                         mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2349                                                    0, len, DMA_TO_DEVICE);
2350                         if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2351                                 unmap_partial_tx_skb(hp, first_mapping, first_len,
2352                                                      first_entry, entry);
2353                                 goto out_dma_error;
2354                         }
2355                         this_txflags = tx_flags;
2356                         if (frag == skb_shinfo(skb)->nr_frags - 1)
2357                                 this_txflags |= TXFLAG_EOP;
2358                         hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2359                                       (this_txflags | (len & TXFLAG_SIZE)),
2360                                       mapping);
2361                         entry = NEXT_TX(entry);
2362                 }
2363                 hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2364                               (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2365                               first_mapping);
2366         }
2367 
2368         hp->tx_new = entry;
2369 
2370         if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2371                 netif_stop_queue(dev);
2372 
2373         /* Get it going. */
2374         hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2375 
2376         spin_unlock_irq(&hp->happy_lock);
2377 
2378         tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2379         return NETDEV_TX_OK;
2380 
2381 out_dma_error:
2382         hp->tx_skbs[hp->tx_new] = NULL;
2383         spin_unlock_irq(&hp->happy_lock);
2384 
2385         dev_kfree_skb_any(skb);
2386         dev->stats.tx_dropped++;
2387         return NETDEV_TX_OK;
2388 }
2389 
2390 static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2391 {
2392         struct happy_meal *hp = netdev_priv(dev);
2393 
2394         spin_lock_irq(&hp->happy_lock);
2395         happy_meal_get_counters(hp, hp->bigmacregs);
2396         spin_unlock_irq(&hp->happy_lock);
2397 
2398         return &hp->net_stats;
2399 }
2400 
2401 static void happy_meal_set_multicast(struct net_device *dev)
2402 {
2403         struct happy_meal *hp = netdev_priv(dev);
2404         void __iomem *bregs = hp->bigmacregs;
2405         struct netdev_hw_addr *ha;
2406         u32 crc;
2407 
2408         spin_lock_irq(&hp->happy_lock);
2409 
2410         if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2411                 hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2412                 hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2413                 hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2414                 hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2415         } else if (dev->flags & IFF_PROMISC) {
2416                 hme_write32(hp, bregs + BMAC_RXCFG,
2417                             hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2418         } else {
2419                 u16 hash_table[4];
2420 
2421                 memset(hash_table, 0, sizeof(hash_table));
2422                 netdev_for_each_mc_addr(ha, dev) {
2423                         crc = ether_crc_le(6, ha->addr);
2424                         crc >>= 26;
2425                         hash_table[crc >> 4] |= 1 << (crc & 0xf);
2426                 }
2427                 hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2428                 hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2429                 hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2430                 hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2431         }
2432 
2433         spin_unlock_irq(&hp->happy_lock);
2434 }
2435 
2436 /* Ethtool support... */
2437 static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2438 {
2439         struct happy_meal *hp = netdev_priv(dev);
2440         u32 speed;
2441 
2442         cmd->supported =
2443                 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2444                  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2445                  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2446 
2447         /* XXX hardcoded stuff for now */
2448         cmd->port = PORT_TP; /* XXX no MII support */
2449         cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
2450         cmd->phy_address = 0; /* XXX fixed PHYAD */
2451 
2452         /* Record PHY settings. */
2453         spin_lock_irq(&hp->happy_lock);
2454         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2455         hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2456         spin_unlock_irq(&hp->happy_lock);
2457 
2458         if (hp->sw_bmcr & BMCR_ANENABLE) {
2459                 cmd->autoneg = AUTONEG_ENABLE;
2460                 speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2461                          SPEED_100 : SPEED_10);
2462                 if (speed == SPEED_100)
2463                         cmd->duplex =
2464                                 (hp->sw_lpa & (LPA_100FULL)) ?
2465                                 DUPLEX_FULL : DUPLEX_HALF;
2466                 else
2467                         cmd->duplex =
2468                                 (hp->sw_lpa & (LPA_10FULL)) ?
2469                                 DUPLEX_FULL : DUPLEX_HALF;
2470         } else {
2471                 cmd->autoneg = AUTONEG_DISABLE;
2472                 speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2473                 cmd->duplex =
2474                         (hp->sw_bmcr & BMCR_FULLDPLX) ?
2475                         DUPLEX_FULL : DUPLEX_HALF;
2476         }
2477         ethtool_cmd_speed_set(cmd, speed);
2478         return 0;
2479 }
2480 
2481 static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2482 {
2483         struct happy_meal *hp = netdev_priv(dev);
2484 
2485         /* Verify the settings we care about. */
2486         if (cmd->autoneg != AUTONEG_ENABLE &&
2487             cmd->autoneg != AUTONEG_DISABLE)
2488                 return -EINVAL;
2489         if (cmd->autoneg == AUTONEG_DISABLE &&
2490             ((ethtool_cmd_speed(cmd) != SPEED_100 &&
2491               ethtool_cmd_speed(cmd) != SPEED_10) ||
2492              (cmd->duplex != DUPLEX_HALF &&
2493               cmd->duplex != DUPLEX_FULL)))
2494                 return -EINVAL;
2495 
2496         /* Ok, do it to it. */
2497         spin_lock_irq(&hp->happy_lock);
2498         del_timer(&hp->happy_timer);
2499         happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2500         spin_unlock_irq(&hp->happy_lock);
2501 
2502         return 0;
2503 }
2504 
2505 static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2506 {
2507         struct happy_meal *hp = netdev_priv(dev);
2508 
2509         strlcpy(info->driver, "sunhme", sizeof(info->driver));
2510         strlcpy(info->version, "2.02", sizeof(info->version));
2511         if (hp->happy_flags & HFLAG_PCI) {
2512                 struct pci_dev *pdev = hp->happy_dev;
2513                 strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2514         }
2515 #ifdef CONFIG_SBUS
2516         else {
2517                 const struct linux_prom_registers *regs;
2518                 struct platform_device *op = hp->happy_dev;
2519                 regs = of_get_property(op->dev.of_node, "regs", NULL);
2520                 if (regs)
2521                         snprintf(info->bus_info, sizeof(info->bus_info),
2522                                 "SBUS:%d",
2523                                 regs->which_io);
2524         }
2525 #endif
2526 }
2527 
2528 static u32 hme_get_link(struct net_device *dev)
2529 {
2530         struct happy_meal *hp = netdev_priv(dev);
2531 
2532         spin_lock_irq(&hp->happy_lock);
2533         hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2534         spin_unlock_irq(&hp->happy_lock);
2535 
2536         return hp->sw_bmsr & BMSR_LSTATUS;
2537 }
2538 
2539 static const struct ethtool_ops hme_ethtool_ops = {
2540         .get_settings           = hme_get_settings,
2541         .set_settings           = hme_set_settings,
2542         .get_drvinfo            = hme_get_drvinfo,
2543         .get_link               = hme_get_link,
2544 };
2545 
2546 static int hme_version_printed;
2547 
2548 #ifdef CONFIG_SBUS
2549 /* Given a happy meal sbus device, find it's quattro parent.
2550  * If none exist, allocate and return a new one.
2551  *
2552  * Return NULL on failure.
2553  */
2554 static struct quattro *quattro_sbus_find(struct platform_device *child)
2555 {
2556         struct device *parent = child->dev.parent;
2557         struct platform_device *op;
2558         struct quattro *qp;
2559 
2560         op = to_platform_device(parent);
2561         qp = platform_get_drvdata(op);
2562         if (qp)
2563                 return qp;
2564 
2565         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2566         if (qp != NULL) {
2567                 int i;
2568 
2569                 for (i = 0; i < 4; i++)
2570                         qp->happy_meals[i] = NULL;
2571 
2572                 qp->quattro_dev = child;
2573                 qp->next = qfe_sbus_list;
2574                 qfe_sbus_list = qp;
2575 
2576                 platform_set_drvdata(op, qp);
2577         }
2578         return qp;
2579 }
2580 
2581 /* After all quattro cards have been probed, we call these functions
2582  * to register the IRQ handlers for the cards that have been
2583  * successfully probed and skip the cards that failed to initialize
2584  */
2585 static int __init quattro_sbus_register_irqs(void)
2586 {
2587         struct quattro *qp;
2588 
2589         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2590                 struct platform_device *op = qp->quattro_dev;
2591                 int err, qfe_slot, skip = 0;
2592 
2593                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2594                         if (!qp->happy_meals[qfe_slot])
2595                                 skip = 1;
2596                 }
2597                 if (skip)
2598                         continue;
2599 
2600                 err = request_irq(op->archdata.irqs[0],
2601                                   quattro_sbus_interrupt,
2602                                   IRQF_SHARED, "Quattro",
2603                                   qp);
2604                 if (err != 0) {
2605                         printk(KERN_ERR "Quattro HME: IRQ registration "
2606                                "error %d.\n", err);
2607                         return err;
2608                 }
2609         }
2610 
2611         return 0;
2612 }
2613 
2614 static void quattro_sbus_free_irqs(void)
2615 {
2616         struct quattro *qp;
2617 
2618         for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2619                 struct platform_device *op = qp->quattro_dev;
2620                 int qfe_slot, skip = 0;
2621 
2622                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2623                         if (!qp->happy_meals[qfe_slot])
2624                                 skip = 1;
2625                 }
2626                 if (skip)
2627                         continue;
2628 
2629                 free_irq(op->archdata.irqs[0], qp);
2630         }
2631 }
2632 #endif /* CONFIG_SBUS */
2633 
2634 #ifdef CONFIG_PCI
2635 static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2636 {
2637         struct pci_dev *bdev = pdev->bus->self;
2638         struct quattro *qp;
2639 
2640         if (!bdev) return NULL;
2641         for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2642                 struct pci_dev *qpdev = qp->quattro_dev;
2643 
2644                 if (qpdev == bdev)
2645                         return qp;
2646         }
2647         qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2648         if (qp != NULL) {
2649                 int i;
2650 
2651                 for (i = 0; i < 4; i++)
2652                         qp->happy_meals[i] = NULL;
2653 
2654                 qp->quattro_dev = bdev;
2655                 qp->next = qfe_pci_list;
2656                 qfe_pci_list = qp;
2657 
2658                 /* No range tricks necessary on PCI. */
2659                 qp->nranges = 0;
2660         }
2661         return qp;
2662 }
2663 #endif /* CONFIG_PCI */
2664 
2665 static const struct net_device_ops hme_netdev_ops = {
2666         .ndo_open               = happy_meal_open,
2667         .ndo_stop               = happy_meal_close,
2668         .ndo_start_xmit         = happy_meal_start_xmit,
2669         .ndo_tx_timeout         = happy_meal_tx_timeout,
2670         .ndo_get_stats          = happy_meal_get_stats,
2671         .ndo_set_rx_mode        = happy_meal_set_multicast,
2672         .ndo_change_mtu         = eth_change_mtu,
2673         .ndo_set_mac_address    = eth_mac_addr,
2674         .ndo_validate_addr      = eth_validate_addr,
2675 };
2676 
2677 #ifdef CONFIG_SBUS
2678 static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2679 {
2680         struct device_node *dp = op->dev.of_node, *sbus_dp;
2681         struct quattro *qp = NULL;
2682         struct happy_meal *hp;
2683         struct net_device *dev;
2684         int i, qfe_slot = -1;
2685         int err = -ENODEV;
2686 
2687         sbus_dp = op->dev.parent->of_node;
2688 
2689         /* We can match PCI devices too, do not accept those here. */
2690         if (strcmp(sbus_dp->name, "sbus") && strcmp(sbus_dp->name, "sbi"))
2691                 return err;
2692 
2693         if (is_qfe) {
2694                 qp = quattro_sbus_find(op);
2695                 if (qp == NULL)
2696                         goto err_out;
2697                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2698                         if (qp->happy_meals[qfe_slot] == NULL)
2699                                 break;
2700                 if (qfe_slot == 4)
2701                         goto err_out;
2702         }
2703 
2704         err = -ENOMEM;
2705         dev = alloc_etherdev(sizeof(struct happy_meal));
2706         if (!dev)
2707                 goto err_out;
2708         SET_NETDEV_DEV(dev, &op->dev);
2709 
2710         if (hme_version_printed++ == 0)
2711                 printk(KERN_INFO "%s", version);
2712 
2713         /* If user did not specify a MAC address specifically, use
2714          * the Quattro local-mac-address property...
2715          */
2716         for (i = 0; i < 6; i++) {
2717                 if (macaddr[i] != 0)
2718                         break;
2719         }
2720         if (i < 6) { /* a mac address was given */
2721                 for (i = 0; i < 6; i++)
2722                         dev->dev_addr[i] = macaddr[i];
2723                 macaddr[5]++;
2724         } else {
2725                 const unsigned char *addr;
2726                 int len;
2727 
2728                 addr = of_get_property(dp, "local-mac-address", &len);
2729 
2730                 if (qfe_slot != -1 && addr && len == ETH_ALEN)
2731                         memcpy(dev->dev_addr, addr, ETH_ALEN);
2732                 else
2733                         memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2734         }
2735 
2736         hp = netdev_priv(dev);
2737 
2738         hp->happy_dev = op;
2739         hp->dma_dev = &op->dev;
2740 
2741         spin_lock_init(&hp->happy_lock);
2742 
2743         err = -ENODEV;
2744         if (qp != NULL) {
2745                 hp->qfe_parent = qp;
2746                 hp->qfe_ent = qfe_slot;
2747                 qp->happy_meals[qfe_slot] = dev;
2748         }
2749 
2750         hp->gregs = of_ioremap(&op->resource[0], 0,
2751                                GREG_REG_SIZE, "HME Global Regs");
2752         if (!hp->gregs) {
2753                 printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2754                 goto err_out_free_netdev;
2755         }
2756 
2757         hp->etxregs = of_ioremap(&op->resource[1], 0,
2758                                  ETX_REG_SIZE, "HME TX Regs");
2759         if (!hp->etxregs) {
2760                 printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2761                 goto err_out_iounmap;
2762         }
2763 
2764         hp->erxregs = of_ioremap(&op->resource[2], 0,
2765                                  ERX_REG_SIZE, "HME RX Regs");
2766         if (!hp->erxregs) {
2767                 printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2768                 goto err_out_iounmap;
2769         }
2770 
2771         hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2772                                     BMAC_REG_SIZE, "HME BIGMAC Regs");
2773         if (!hp->bigmacregs) {
2774                 printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2775                 goto err_out_iounmap;
2776         }
2777 
2778         hp->tcvregs = of_ioremap(&op->resource[4], 0,
2779                                  TCVR_REG_SIZE, "HME Tranceiver Regs");
2780         if (!hp->tcvregs) {
2781                 printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2782                 goto err_out_iounmap;
2783         }
2784 
2785         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2786         if (hp->hm_revision == 0xff)
2787                 hp->hm_revision = 0xa0;
2788 
2789         /* Now enable the feature flags we can. */
2790         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2791                 hp->happy_flags = HFLAG_20_21;
2792         else if (hp->hm_revision != 0xa0)
2793                 hp->happy_flags = HFLAG_NOT_A0;
2794 
2795         if (qp != NULL)
2796                 hp->happy_flags |= HFLAG_QUATTRO;
2797 
2798         /* Get the supported DVMA burst sizes from our Happy SBUS. */
2799         hp->happy_bursts = of_getintprop_default(sbus_dp,
2800                                                  "burst-sizes", 0x00);
2801 
2802         hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2803                                              PAGE_SIZE,
2804                                              &hp->hblock_dvma,
2805                                              GFP_ATOMIC);
2806         err = -ENOMEM;
2807         if (!hp->happy_block)
2808                 goto err_out_iounmap;
2809 
2810         /* Force check of the link first time we are brought up. */
2811         hp->linkcheck = 0;
2812 
2813         /* Force timer state to 'asleep' with count of zero. */
2814         hp->timer_state = asleep;
2815         hp->timer_ticks = 0;
2816 
2817         init_timer(&hp->happy_timer);
2818 
2819         hp->dev = dev;
2820         dev->netdev_ops = &hme_netdev_ops;
2821         dev->watchdog_timeo = 5*HZ;
2822         dev->ethtool_ops = &hme_ethtool_ops;
2823 
2824         /* Happy Meal can do it all... */
2825         dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2826         dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2827 
2828         hp->irq = op->archdata.irqs[0];
2829 
2830 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2831         /* Hook up SBUS register/descriptor accessors. */
2832         hp->read_desc32 = sbus_hme_read_desc32;
2833         hp->write_txd = sbus_hme_write_txd;
2834         hp->write_rxd = sbus_hme_write_rxd;
2835         hp->read32 = sbus_hme_read32;
2836         hp->write32 = sbus_hme_write32;
2837 #endif
2838 
2839         /* Grrr, Happy Meal comes up by default not advertising
2840          * full duplex 100baseT capabilities, fix this.
2841          */
2842         spin_lock_irq(&hp->happy_lock);
2843         happy_meal_set_initial_advertisement(hp);
2844         spin_unlock_irq(&hp->happy_lock);
2845 
2846         err = register_netdev(hp->dev);
2847         if (err) {
2848                 printk(KERN_ERR "happymeal: Cannot register net device, "
2849                        "aborting.\n");
2850                 goto err_out_free_coherent;
2851         }
2852 
2853         platform_set_drvdata(op, hp);
2854 
2855         if (qfe_slot != -1)
2856                 printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2857                        dev->name, qfe_slot);
2858         else
2859                 printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2860                        dev->name);
2861 
2862         printk("%pM\n", dev->dev_addr);
2863 
2864         return 0;
2865 
2866 err_out_free_coherent:
2867         dma_free_coherent(hp->dma_dev,
2868                           PAGE_SIZE,
2869                           hp->happy_block,
2870                           hp->hblock_dvma);
2871 
2872 err_out_iounmap:
2873         if (hp->gregs)
2874                 of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2875         if (hp->etxregs)
2876                 of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2877         if (hp->erxregs)
2878                 of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2879         if (hp->bigmacregs)
2880                 of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2881         if (hp->tcvregs)
2882                 of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2883 
2884         if (qp)
2885                 qp->happy_meals[qfe_slot] = NULL;
2886 
2887 err_out_free_netdev:
2888         free_netdev(dev);
2889 
2890 err_out:
2891         return err;
2892 }
2893 #endif
2894 
2895 #ifdef CONFIG_PCI
2896 #ifndef CONFIG_SPARC
2897 static int is_quattro_p(struct pci_dev *pdev)
2898 {
2899         struct pci_dev *busdev = pdev->bus->self;
2900         struct pci_dev *this_pdev;
2901         int n_hmes;
2902 
2903         if (busdev == NULL ||
2904             busdev->vendor != PCI_VENDOR_ID_DEC ||
2905             busdev->device != PCI_DEVICE_ID_DEC_21153)
2906                 return 0;
2907 
2908         n_hmes = 0;
2909         list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2910                 if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2911                     this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2912                         n_hmes++;
2913         }
2914 
2915         if (n_hmes != 4)
2916                 return 0;
2917 
2918         return 1;
2919 }
2920 
2921 /* Fetch MAC address from vital product data of PCI ROM. */
2922 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2923 {
2924         int this_offset;
2925 
2926         for (this_offset = 0x20; this_offset < len; this_offset++) {
2927                 void __iomem *p = rom_base + this_offset;
2928 
2929                 if (readb(p + 0) != 0x90 ||
2930                     readb(p + 1) != 0x00 ||
2931                     readb(p + 2) != 0x09 ||
2932                     readb(p + 3) != 0x4e ||
2933                     readb(p + 4) != 0x41 ||
2934                     readb(p + 5) != 0x06)
2935                         continue;
2936 
2937                 this_offset += 6;
2938                 p += 6;
2939 
2940                 if (index == 0) {
2941                         int i;
2942 
2943                         for (i = 0; i < 6; i++)
2944                                 dev_addr[i] = readb(p + i);
2945                         return 1;
2946                 }
2947                 index--;
2948         }
2949         return 0;
2950 }
2951 
2952 static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2953 {
2954         size_t size;
2955         void __iomem *p = pci_map_rom(pdev, &size);
2956 
2957         if (p) {
2958                 int index = 0;
2959                 int found;
2960 
2961                 if (is_quattro_p(pdev))
2962                         index = PCI_SLOT(pdev->devfn);
2963 
2964                 found = readb(p) == 0x55 &&
2965                         readb(p + 1) == 0xaa &&
2966                         find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2967                 pci_unmap_rom(pdev, p);
2968                 if (found)
2969                         return;
2970         }
2971 
2972         /* Sun MAC prefix then 3 random bytes. */
2973         dev_addr[0] = 0x08;
2974         dev_addr[1] = 0x00;
2975         dev_addr[2] = 0x20;
2976         get_random_bytes(&dev_addr[3], 3);
2977 }
2978 #endif /* !(CONFIG_SPARC) */
2979 
2980 static int happy_meal_pci_probe(struct pci_dev *pdev,
2981                                 const struct pci_device_id *ent)
2982 {
2983         struct quattro *qp = NULL;
2984 #ifdef CONFIG_SPARC
2985         struct device_node *dp;
2986 #endif
2987         struct happy_meal *hp;
2988         struct net_device *dev;
2989         void __iomem *hpreg_base;
2990         unsigned long hpreg_res;
2991         int i, qfe_slot = -1;
2992         char prom_name[64];
2993         int err;
2994 
2995         /* Now make sure pci_dev cookie is there. */
2996 #ifdef CONFIG_SPARC
2997         dp = pci_device_to_OF_node(pdev);
2998         strcpy(prom_name, dp->name);
2999 #else
3000         if (is_quattro_p(pdev))
3001                 strcpy(prom_name, "SUNW,qfe");
3002         else
3003                 strcpy(prom_name, "SUNW,hme");
3004 #endif
3005 
3006         err = -ENODEV;
3007 
3008         if (pci_enable_device(pdev))
3009                 goto err_out;
3010         pci_set_master(pdev);
3011 
3012         if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3013                 qp = quattro_pci_find(pdev);
3014                 if (qp == NULL)
3015                         goto err_out;
3016                 for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3017                         if (qp->happy_meals[qfe_slot] == NULL)
3018                                 break;
3019                 if (qfe_slot == 4)
3020                         goto err_out;
3021         }
3022 
3023         dev = alloc_etherdev(sizeof(struct happy_meal));
3024         err = -ENOMEM;
3025         if (!dev)
3026                 goto err_out;
3027         SET_NETDEV_DEV(dev, &pdev->dev);
3028 
3029         if (hme_version_printed++ == 0)
3030                 printk(KERN_INFO "%s", version);
3031 
3032         hp = netdev_priv(dev);
3033 
3034         hp->happy_dev = pdev;
3035         hp->dma_dev = &pdev->dev;
3036 
3037         spin_lock_init(&hp->happy_lock);
3038 
3039         if (qp != NULL) {
3040                 hp->qfe_parent = qp;
3041                 hp->qfe_ent = qfe_slot;
3042                 qp->happy_meals[qfe_slot] = dev;
3043         }
3044 
3045         hpreg_res = pci_resource_start(pdev, 0);
3046         err = -ENODEV;
3047         if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3048                 printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3049                 goto err_out_clear_quattro;
3050         }
3051         if (pci_request_regions(pdev, DRV_NAME)) {
3052                 printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3053                        "aborting.\n");
3054                 goto err_out_clear_quattro;
3055         }
3056 
3057         if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3058                 printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3059                 goto err_out_free_res;
3060         }
3061 
3062         for (i = 0; i < 6; i++) {
3063                 if (macaddr[i] != 0)
3064                         break;
3065         }
3066         if (i < 6) { /* a mac address was given */
3067                 for (i = 0; i < 6; i++)
3068                         dev->dev_addr[i] = macaddr[i];
3069                 macaddr[5]++;
3070         } else {
3071 #ifdef CONFIG_SPARC
3072                 const unsigned char *addr;
3073                 int len;
3074 
3075                 if (qfe_slot != -1 &&
3076                     (addr = of_get_property(dp, "local-mac-address", &len))
3077                         != NULL &&
3078                     len == 6) {
3079                         memcpy(dev->dev_addr, addr, ETH_ALEN);
3080                 } else {
3081                         memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3082                 }
3083 #else
3084                 get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3085 #endif
3086         }
3087 
3088         /* Layout registers. */
3089         hp->gregs      = (hpreg_base + 0x0000UL);
3090         hp->etxregs    = (hpreg_base + 0x2000UL);
3091         hp->erxregs    = (hpreg_base + 0x4000UL);
3092         hp->bigmacregs = (hpreg_base + 0x6000UL);
3093         hp->tcvregs    = (hpreg_base + 0x7000UL);
3094 
3095 #ifdef CONFIG_SPARC
3096         hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3097         if (hp->hm_revision == 0xff)
3098                 hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3099 #else
3100         /* works with this on non-sparc hosts */
3101         hp->hm_revision = 0x20;
3102 #endif
3103 
3104         /* Now enable the feature flags we can. */
3105         if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3106                 hp->happy_flags = HFLAG_20_21;
3107         else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3108                 hp->happy_flags = HFLAG_NOT_A0;
3109 
3110         if (qp != NULL)
3111                 hp->happy_flags |= HFLAG_QUATTRO;
3112 
3113         /* And of course, indicate this is PCI. */
3114         hp->happy_flags |= HFLAG_PCI;
3115 
3116 #ifdef CONFIG_SPARC
3117         /* Assume PCI happy meals can handle all burst sizes. */
3118         hp->happy_bursts = DMA_BURSTBITS;
3119 #endif
3120 
3121         hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3122                                              &hp->hblock_dvma, GFP_KERNEL);
3123         err = -ENODEV;
3124         if (!hp->happy_block)
3125                 goto err_out_iounmap;
3126 
3127         hp->linkcheck = 0;
3128         hp->timer_state = asleep;
3129         hp->timer_ticks = 0;
3130 
3131         init_timer(&hp->happy_timer);
3132 
3133         hp->irq = pdev->irq;
3134         hp->dev = dev;
3135         dev->netdev_ops = &hme_netdev_ops;
3136         dev->watchdog_timeo = 5*HZ;
3137         dev->ethtool_ops = &hme_ethtool_ops;
3138 
3139         /* Happy Meal can do it all... */
3140         dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3141         dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3142 
3143 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3144         /* Hook up PCI register/descriptor accessors. */
3145         hp->read_desc32 = pci_hme_read_desc32;
3146         hp->write_txd = pci_hme_write_txd;
3147         hp->write_rxd = pci_hme_write_rxd;
3148         hp->read32 = pci_hme_read32;
3149         hp->write32 = pci_hme_write32;
3150 #endif
3151 
3152         /* Grrr, Happy Meal comes up by default not advertising
3153          * full duplex 100baseT capabilities, fix this.
3154          */
3155         spin_lock_irq(&hp->happy_lock);
3156         happy_meal_set_initial_advertisement(hp);
3157         spin_unlock_irq(&hp->happy_lock);
3158 
3159         err = register_netdev(hp->dev);
3160         if (err) {
3161                 printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3162                        "aborting.\n");
3163                 goto err_out_iounmap;
3164         }
3165 
3166         pci_set_drvdata(pdev, hp);
3167 
3168         if (!qfe_slot) {
3169                 struct pci_dev *qpdev = qp->quattro_dev;
3170 
3171                 prom_name[0] = 0;
3172                 if (!strncmp(dev->name, "eth", 3)) {
3173                         int i = simple_strtoul(dev->name + 3, NULL, 10);
3174                         sprintf(prom_name, "-%d", i + 3);
3175                 }
3176                 printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3177                 if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3178                     qpdev->device == PCI_DEVICE_ID_DEC_21153)
3179                         printk("DEC 21153 PCI Bridge\n");
3180                 else
3181                         printk("unknown bridge %04x.%04x\n",
3182                                 qpdev->vendor, qpdev->device);
3183         }
3184 
3185         if (qfe_slot != -1)
3186                 printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3187                        dev->name, qfe_slot);
3188         else
3189                 printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3190                        dev->name);
3191 
3192         printk("%pM\n", dev->dev_addr);
3193 
3194         return 0;
3195 
3196 err_out_iounmap:
3197         iounmap(hp->gregs);
3198 
3199 err_out_free_res:
3200         pci_release_regions(pdev);
3201 
3202 err_out_clear_quattro:
3203         if (qp != NULL)
3204                 qp->happy_meals[qfe_slot] = NULL;
3205 
3206         free_netdev(dev);
3207 
3208 err_out:
3209         return err;
3210 }
3211 
3212 static void happy_meal_pci_remove(struct pci_dev *pdev)
3213 {
3214         struct happy_meal *hp = pci_get_drvdata(pdev);
3215         struct net_device *net_dev = hp->dev;
3216 
3217         unregister_netdev(net_dev);
3218 
3219         dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3220                           hp->happy_block, hp->hblock_dvma);
3221         iounmap(hp->gregs);
3222         pci_release_regions(hp->happy_dev);
3223 
3224         free_netdev(net_dev);
3225 }
3226 
3227 static const struct pci_device_id happymeal_pci_ids[] = {
3228         { PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3229         { }                     /* Terminating entry */
3230 };
3231 
3232 MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3233 
3234 static struct pci_driver hme_pci_driver = {
3235         .name           = "hme",
3236         .id_table       = happymeal_pci_ids,
3237         .probe          = happy_meal_pci_probe,
3238         .remove         = happy_meal_pci_remove,
3239 };
3240 
3241 static int __init happy_meal_pci_init(void)
3242 {
3243         return pci_register_driver(&hme_pci_driver);
3244 }
3245 
3246 static void happy_meal_pci_exit(void)
3247 {
3248         pci_unregister_driver(&hme_pci_driver);
3249 
3250         while (qfe_pci_list) {
3251                 struct quattro *qfe = qfe_pci_list;
3252                 struct quattro *next = qfe->next;
3253 
3254                 kfree(qfe);
3255 
3256                 qfe_pci_list = next;
3257         }
3258 }
3259 
3260 #endif
3261 
3262 #ifdef CONFIG_SBUS
3263 static const struct of_device_id hme_sbus_match[];
3264 static int hme_sbus_probe(struct platform_device *op)
3265 {
3266         const struct of_device_id *match;
3267         struct device_node *dp = op->dev.of_node;
3268         const char *model = of_get_property(dp, "model", NULL);
3269         int is_qfe;
3270 
3271         match = of_match_device(hme_sbus_match, &op->dev);
3272         if (!match)
3273                 return -EINVAL;
3274         is_qfe = (match->data != NULL);
3275 
3276         if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3277                 is_qfe = 1;
3278 
3279         return happy_meal_sbus_probe_one(op, is_qfe);
3280 }
3281 
3282 static int hme_sbus_remove(struct platform_device *op)
3283 {
3284         struct happy_meal *hp = platform_get_drvdata(op);
3285         struct net_device *net_dev = hp->dev;
3286 
3287         unregister_netdev(net_dev);
3288 
3289         /* XXX qfe parent interrupt... */
3290 
3291         of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3292         of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3293         of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3294         of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3295         of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3296         dma_free_coherent(hp->dma_dev,
3297                           PAGE_SIZE,
3298                           hp->happy_block,
3299                           hp->hblock_dvma);
3300 
3301         free_netdev(net_dev);
3302 
3303         return 0;
3304 }
3305 
3306 static const struct of_device_id hme_sbus_match[] = {
3307         {
3308                 .name = "SUNW,hme",
3309         },
3310         {
3311                 .name = "SUNW,qfe",
3312                 .data = (void *) 1,
3313         },
3314         {
3315                 .name = "qfe",
3316                 .data = (void *) 1,
3317         },
3318         {},
3319 };
3320 
3321 MODULE_DEVICE_TABLE(of, hme_sbus_match);
3322 
3323 static struct platform_driver hme_sbus_driver = {
3324         .driver = {
3325                 .name = "hme",
3326                 .owner = THIS_MODULE,
3327                 .of_match_table = hme_sbus_match,
3328         },
3329         .probe          = hme_sbus_probe,
3330         .remove         = hme_sbus_remove,
3331 };
3332 
3333 static int __init happy_meal_sbus_init(void)
3334 {
3335         int err;
3336 
3337         err = platform_driver_register(&hme_sbus_driver);
3338         if (!err)
3339                 err = quattro_sbus_register_irqs();
3340 
3341         return err;
3342 }
3343 
3344 static void happy_meal_sbus_exit(void)
3345 {
3346         platform_driver_unregister(&hme_sbus_driver);
3347         quattro_sbus_free_irqs();
3348 
3349         while (qfe_sbus_list) {
3350                 struct quattro *qfe = qfe_sbus_list;
3351                 struct quattro *next = qfe->next;
3352 
3353                 kfree(qfe);
3354 
3355                 qfe_sbus_list = next;
3356         }
3357 }
3358 #endif
3359 
3360 static int __init happy_meal_probe(void)
3361 {
3362         int err = 0;
3363 
3364 #ifdef CONFIG_SBUS
3365         err = happy_meal_sbus_init();
3366 #endif
3367 #ifdef CONFIG_PCI
3368         if (!err) {
3369                 err = happy_meal_pci_init();
3370 #ifdef CONFIG_SBUS
3371                 if (err)
3372                         happy_meal_sbus_exit();
3373 #endif
3374         }
3375 #endif
3376 
3377         return err;
3378 }
3379 
3380 
3381 static void __exit happy_meal_exit(void)
3382 {
3383 #ifdef CONFIG_SBUS
3384         happy_meal_sbus_exit();
3385 #endif
3386 #ifdef CONFIG_PCI
3387         happy_meal_pci_exit();
3388 #endif
3389 }
3390 
3391 module_init(happy_meal_probe);
3392 module_exit(happy_meal_exit);
3393 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us