Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c

  1 /*******************************************************************************
  2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  3   ST Ethernet IPs are built around a Synopsys IP Core.
  4 
  5         Copyright(C) 2007-2011 STMicroelectronics Ltd
  6 
  7   This program is free software; you can redistribute it and/or modify it
  8   under the terms and conditions of the GNU General Public License,
  9   version 2, as published by the Free Software Foundation.
 10 
 11   This program is distributed in the hope it will be useful, but WITHOUT
 12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14   more details.
 15 
 16   You should have received a copy of the GNU General Public License along with
 17   this program; if not, write to the Free Software Foundation, Inc.,
 18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 19 
 20   The full GNU General Public License is included in this distribution in
 21   the file called "COPYING".
 22 
 23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
 24 
 25   Documentation available at:
 26         http://www.stlinux.com
 27   Support available at:
 28         https://bugzilla.stlinux.com/
 29 *******************************************************************************/
 30 
 31 #include <linux/clk.h>
 32 #include <linux/kernel.h>
 33 #include <linux/interrupt.h>
 34 #include <linux/ip.h>
 35 #include <linux/tcp.h>
 36 #include <linux/skbuff.h>
 37 #include <linux/ethtool.h>
 38 #include <linux/if_ether.h>
 39 #include <linux/crc32.h>
 40 #include <linux/mii.h>
 41 #include <linux/if.h>
 42 #include <linux/if_vlan.h>
 43 #include <linux/dma-mapping.h>
 44 #include <linux/slab.h>
 45 #include <linux/prefetch.h>
 46 #include <linux/pinctrl/consumer.h>
 47 #ifdef CONFIG_DEBUG_FS
 48 #include <linux/debugfs.h>
 49 #include <linux/seq_file.h>
 50 #endif /* CONFIG_DEBUG_FS */
 51 #include <linux/net_tstamp.h>
 52 #include "stmmac_ptp.h"
 53 #include "stmmac.h"
 54 #include <linux/reset.h>
 55 
 56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
 57 
 58 /* Module parameters */
 59 #define TX_TIMEO        5000
 60 static int watchdog = TX_TIMEO;
 61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
 62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
 63 
 64 static int debug = -1;
 65 module_param(debug, int, S_IRUGO | S_IWUSR);
 66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
 67 
 68 static int phyaddr = -1;
 69 module_param(phyaddr, int, S_IRUGO);
 70 MODULE_PARM_DESC(phyaddr, "Physical device address");
 71 
 72 #define DMA_TX_SIZE 256
 73 static int dma_txsize = DMA_TX_SIZE;
 74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
 75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
 76 
 77 #define DMA_RX_SIZE 256
 78 static int dma_rxsize = DMA_RX_SIZE;
 79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
 80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
 81 
 82 static int flow_ctrl = FLOW_OFF;
 83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
 84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
 85 
 86 static int pause = PAUSE_TIME;
 87 module_param(pause, int, S_IRUGO | S_IWUSR);
 88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
 89 
 90 #define TC_DEFAULT 64
 91 static int tc = TC_DEFAULT;
 92 module_param(tc, int, S_IRUGO | S_IWUSR);
 93 MODULE_PARM_DESC(tc, "DMA threshold control value");
 94 
 95 #define DEFAULT_BUFSIZE 1536
 96 static int buf_sz = DEFAULT_BUFSIZE;
 97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
 98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
 99 
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
102                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103 
104 #define STMMAC_DEFAULT_LPI_TIMER        1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109 
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111  * but passing this value so user can force to use the chain instead of the ring
112  */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116 
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118 
119 #ifdef CONFIG_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(struct net_device *dev);
122 #endif
123 
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125 
126 /**
127  * stmmac_verify_args - verify the driver parameters.
128  * Description: it checks the driver parameters and set a default in case of
129  * errors.
130  */
131 static void stmmac_verify_args(void)
132 {
133         if (unlikely(watchdog < 0))
134                 watchdog = TX_TIMEO;
135         if (unlikely(dma_rxsize < 0))
136                 dma_rxsize = DMA_RX_SIZE;
137         if (unlikely(dma_txsize < 0))
138                 dma_txsize = DMA_TX_SIZE;
139         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140                 buf_sz = DEFAULT_BUFSIZE;
141         if (unlikely(flow_ctrl > 1))
142                 flow_ctrl = FLOW_AUTO;
143         else if (likely(flow_ctrl < 0))
144                 flow_ctrl = FLOW_OFF;
145         if (unlikely((pause < 0) || (pause > 0xffff)))
146                 pause = PAUSE_TIME;
147         if (eee_timer < 0)
148                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150 
151 /**
152  * stmmac_clk_csr_set - dynamically set the MDC clock
153  * @priv: driver private structure
154  * Description: this is to dynamically set the MDC clock according to the csr
155  * clock input.
156  * Note:
157  *      If a specific clk_csr value is passed from the platform
158  *      this means that the CSR Clock Range selection cannot be
159  *      changed at run-time and it is fixed (as reported in the driver
160  *      documentation). Viceversa the driver will try to set the MDC
161  *      clock dynamically according to the actual clock input.
162  */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165         u32 clk_rate;
166 
167         clk_rate = clk_get_rate(priv->stmmac_clk);
168 
169         /* Platform provided default clk_csr would be assumed valid
170          * for all other cases except for the below mentioned ones.
171          * For values higher than the IEEE 802.3 specified frequency
172          * we can not estimate the proper divider as it is not known
173          * the frequency of clk_csr_i. So we do not change the default
174          * divider.
175          */
176         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177                 if (clk_rate < CSR_F_35M)
178                         priv->clk_csr = STMMAC_CSR_20_35M;
179                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180                         priv->clk_csr = STMMAC_CSR_35_60M;
181                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182                         priv->clk_csr = STMMAC_CSR_60_100M;
183                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184                         priv->clk_csr = STMMAC_CSR_100_150M;
185                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186                         priv->clk_csr = STMMAC_CSR_150_250M;
187                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188                         priv->clk_csr = STMMAC_CSR_250_300M;
189         }
190 }
191 
192 static void print_pkt(unsigned char *buf, int len)
193 {
194         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
195         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
196 }
197 
198 /* minimum number of free TX descriptors required to wake up TX process */
199 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
200 
201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
202 {
203         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
204 }
205 
206 /**
207  * stmmac_hw_fix_mac_speed - callback for speed selection
208  * @priv: driver private structure
209  * Description: on some platforms (e.g. ST), some HW system configuraton
210  * registers have to be set according to the link speed negotiated.
211  */
212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
213 {
214         struct phy_device *phydev = priv->phydev;
215 
216         if (likely(priv->plat->fix_mac_speed))
217                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
218 }
219 
220 /**
221  * stmmac_enable_eee_mode - check and enter in LPI mode
222  * @priv: driver private structure
223  * Description: this function is to verify and enter in LPI mode in case of
224  * EEE.
225  */
226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
227 {
228         /* Check and enter in LPI mode */
229         if ((priv->dirty_tx == priv->cur_tx) &&
230             (priv->tx_path_in_lpi_mode == false))
231                 priv->hw->mac->set_eee_mode(priv->hw);
232 }
233 
234 /**
235  * stmmac_disable_eee_mode - disable and exit from LPI mode
236  * @priv: driver private structure
237  * Description: this function is to exit and disable EEE in case of
238  * LPI state is true. This is called by the xmit.
239  */
240 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
241 {
242         priv->hw->mac->reset_eee_mode(priv->hw);
243         del_timer_sync(&priv->eee_ctrl_timer);
244         priv->tx_path_in_lpi_mode = false;
245 }
246 
247 /**
248  * stmmac_eee_ctrl_timer - EEE TX SW timer.
249  * @arg : data hook
250  * Description:
251  *  if there is no data transfer and if we are not in LPI state,
252  *  then MAC Transmitter can be moved to LPI state.
253  */
254 static void stmmac_eee_ctrl_timer(unsigned long arg)
255 {
256         struct stmmac_priv *priv = (struct stmmac_priv *)arg;
257 
258         stmmac_enable_eee_mode(priv);
259         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
260 }
261 
262 /**
263  * stmmac_eee_init - init EEE
264  * @priv: driver private structure
265  * Description:
266  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
267  *  can also manage EEE, this function enable the LPI state and start related
268  *  timer.
269  */
270 bool stmmac_eee_init(struct stmmac_priv *priv)
271 {
272         char *phy_bus_name = priv->plat->phy_bus_name;
273         unsigned long flags;
274         bool ret = false;
275 
276         /* Using PCS we cannot dial with the phy registers at this stage
277          * so we do not support extra feature like EEE.
278          */
279         if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
280             (priv->pcs == STMMAC_PCS_RTBI))
281                 goto out;
282 
283         /* Never init EEE in case of a switch is attached */
284         if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
285                 goto out;
286 
287         /* MAC core supports the EEE feature. */
288         if (priv->dma_cap.eee) {
289                 int tx_lpi_timer = priv->tx_lpi_timer;
290 
291                 /* Check if the PHY supports EEE */
292                 if (phy_init_eee(priv->phydev, 1)) {
293                         /* To manage at run-time if the EEE cannot be supported
294                          * anymore (for example because the lp caps have been
295                          * changed).
296                          * In that case the driver disable own timers.
297                          */
298                         spin_lock_irqsave(&priv->lock, flags);
299                         if (priv->eee_active) {
300                                 pr_debug("stmmac: disable EEE\n");
301                                 del_timer_sync(&priv->eee_ctrl_timer);
302                                 priv->hw->mac->set_eee_timer(priv->hw, 0,
303                                                              tx_lpi_timer);
304                         }
305                         priv->eee_active = 0;
306                         spin_unlock_irqrestore(&priv->lock, flags);
307                         goto out;
308                 }
309                 /* Activate the EEE and start timers */
310                 spin_lock_irqsave(&priv->lock, flags);
311                 if (!priv->eee_active) {
312                         priv->eee_active = 1;
313                         setup_timer(&priv->eee_ctrl_timer,
314                                     stmmac_eee_ctrl_timer,
315                                     (unsigned long)priv);
316                         mod_timer(&priv->eee_ctrl_timer,
317                                   STMMAC_LPI_T(eee_timer));
318 
319                         priv->hw->mac->set_eee_timer(priv->hw,
320                                                      STMMAC_DEFAULT_LIT_LS,
321                                                      tx_lpi_timer);
322                 }
323                 /* Set HW EEE according to the speed */
324                 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
325 
326                 ret = true;
327                 spin_unlock_irqrestore(&priv->lock, flags);
328 
329                 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
330         }
331 out:
332         return ret;
333 }
334 
335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
336  * @priv: driver private structure
337  * @entry : descriptor index to be used.
338  * @skb : the socket buffer
339  * Description :
340  * This function will read timestamp from the descriptor & pass it to stack.
341  * and also perform some sanity checks.
342  */
343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
344                                    unsigned int entry, struct sk_buff *skb)
345 {
346         struct skb_shared_hwtstamps shhwtstamp;
347         u64 ns;
348         void *desc = NULL;
349 
350         if (!priv->hwts_tx_en)
351                 return;
352 
353         /* exit if skb doesn't support hw tstamp */
354         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
355                 return;
356 
357         if (priv->adv_ts)
358                 desc = (priv->dma_etx + entry);
359         else
360                 desc = (priv->dma_tx + entry);
361 
362         /* check tx tstamp status */
363         if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
364                 return;
365 
366         /* get the valid tstamp */
367         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
368 
369         memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
370         shhwtstamp.hwtstamp = ns_to_ktime(ns);
371         /* pass tstamp to stack */
372         skb_tstamp_tx(skb, &shhwtstamp);
373 
374         return;
375 }
376 
377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
378  * @priv: driver private structure
379  * @entry : descriptor index to be used.
380  * @skb : the socket buffer
381  * Description :
382  * This function will read received packet's timestamp from the descriptor
383  * and pass it to stack. It also perform some sanity checks.
384  */
385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
386                                    unsigned int entry, struct sk_buff *skb)
387 {
388         struct skb_shared_hwtstamps *shhwtstamp = NULL;
389         u64 ns;
390         void *desc = NULL;
391 
392         if (!priv->hwts_rx_en)
393                 return;
394 
395         if (priv->adv_ts)
396                 desc = (priv->dma_erx + entry);
397         else
398                 desc = (priv->dma_rx + entry);
399 
400         /* exit if rx tstamp is not valid */
401         if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
402                 return;
403 
404         /* get valid tstamp */
405         ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
406         shhwtstamp = skb_hwtstamps(skb);
407         memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
408         shhwtstamp->hwtstamp = ns_to_ktime(ns);
409 }
410 
411 /**
412  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
413  *  @dev: device pointer.
414  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
415  *  a proprietary structure used to pass information to the driver.
416  *  Description:
417  *  This function configures the MAC to enable/disable both outgoing(TX)
418  *  and incoming(RX) packets time stamping based on user input.
419  *  Return Value:
420  *  0 on success and an appropriate -ve integer on failure.
421  */
422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
423 {
424         struct stmmac_priv *priv = netdev_priv(dev);
425         struct hwtstamp_config config;
426         struct timespec now;
427         u64 temp = 0;
428         u32 ptp_v2 = 0;
429         u32 tstamp_all = 0;
430         u32 ptp_over_ipv4_udp = 0;
431         u32 ptp_over_ipv6_udp = 0;
432         u32 ptp_over_ethernet = 0;
433         u32 snap_type_sel = 0;
434         u32 ts_master_en = 0;
435         u32 ts_event_en = 0;
436         u32 value = 0;
437 
438         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
439                 netdev_alert(priv->dev, "No support for HW time stamping\n");
440                 priv->hwts_tx_en = 0;
441                 priv->hwts_rx_en = 0;
442 
443                 return -EOPNOTSUPP;
444         }
445 
446         if (copy_from_user(&config, ifr->ifr_data,
447                            sizeof(struct hwtstamp_config)))
448                 return -EFAULT;
449 
450         pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
451                  __func__, config.flags, config.tx_type, config.rx_filter);
452 
453         /* reserved for future extensions */
454         if (config.flags)
455                 return -EINVAL;
456 
457         if (config.tx_type != HWTSTAMP_TX_OFF &&
458             config.tx_type != HWTSTAMP_TX_ON)
459                 return -ERANGE;
460 
461         if (priv->adv_ts) {
462                 switch (config.rx_filter) {
463                 case HWTSTAMP_FILTER_NONE:
464                         /* time stamp no incoming packet at all */
465                         config.rx_filter = HWTSTAMP_FILTER_NONE;
466                         break;
467 
468                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
469                         /* PTP v1, UDP, any kind of event packet */
470                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
471                         /* take time stamp for all event messages */
472                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
473 
474                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
475                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
476                         break;
477 
478                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
479                         /* PTP v1, UDP, Sync packet */
480                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
481                         /* take time stamp for SYNC messages only */
482                         ts_event_en = PTP_TCR_TSEVNTENA;
483 
484                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
485                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
486                         break;
487 
488                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
489                         /* PTP v1, UDP, Delay_req packet */
490                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
491                         /* take time stamp for Delay_Req messages only */
492                         ts_master_en = PTP_TCR_TSMSTRENA;
493                         ts_event_en = PTP_TCR_TSEVNTENA;
494 
495                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
496                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
497                         break;
498 
499                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
500                         /* PTP v2, UDP, any kind of event packet */
501                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
502                         ptp_v2 = PTP_TCR_TSVER2ENA;
503                         /* take time stamp for all event messages */
504                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
505 
506                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
507                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
508                         break;
509 
510                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
511                         /* PTP v2, UDP, Sync packet */
512                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
513                         ptp_v2 = PTP_TCR_TSVER2ENA;
514                         /* take time stamp for SYNC messages only */
515                         ts_event_en = PTP_TCR_TSEVNTENA;
516 
517                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519                         break;
520 
521                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
522                         /* PTP v2, UDP, Delay_req packet */
523                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
524                         ptp_v2 = PTP_TCR_TSVER2ENA;
525                         /* take time stamp for Delay_Req messages only */
526                         ts_master_en = PTP_TCR_TSMSTRENA;
527                         ts_event_en = PTP_TCR_TSEVNTENA;
528 
529                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
530                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
531                         break;
532 
533                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
534                         /* PTP v2/802.AS1 any layer, any kind of event packet */
535                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
536                         ptp_v2 = PTP_TCR_TSVER2ENA;
537                         /* take time stamp for all event messages */
538                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
539 
540                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542                         ptp_over_ethernet = PTP_TCR_TSIPENA;
543                         break;
544 
545                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
546                         /* PTP v2/802.AS1, any layer, Sync packet */
547                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
548                         ptp_v2 = PTP_TCR_TSVER2ENA;
549                         /* take time stamp for SYNC messages only */
550                         ts_event_en = PTP_TCR_TSEVNTENA;
551 
552                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
553                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
554                         ptp_over_ethernet = PTP_TCR_TSIPENA;
555                         break;
556 
557                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
558                         /* PTP v2/802.AS1, any layer, Delay_req packet */
559                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
560                         ptp_v2 = PTP_TCR_TSVER2ENA;
561                         /* take time stamp for Delay_Req messages only */
562                         ts_master_en = PTP_TCR_TSMSTRENA;
563                         ts_event_en = PTP_TCR_TSEVNTENA;
564 
565                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567                         ptp_over_ethernet = PTP_TCR_TSIPENA;
568                         break;
569 
570                 case HWTSTAMP_FILTER_ALL:
571                         /* time stamp any incoming packet */
572                         config.rx_filter = HWTSTAMP_FILTER_ALL;
573                         tstamp_all = PTP_TCR_TSENALL;
574                         break;
575 
576                 default:
577                         return -ERANGE;
578                 }
579         } else {
580                 switch (config.rx_filter) {
581                 case HWTSTAMP_FILTER_NONE:
582                         config.rx_filter = HWTSTAMP_FILTER_NONE;
583                         break;
584                 default:
585                         /* PTP v1, UDP, any kind of event packet */
586                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
587                         break;
588                 }
589         }
590         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
591         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
592 
593         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
594                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
595         else {
596                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
597                          tstamp_all | ptp_v2 | ptp_over_ethernet |
598                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
599                          ts_master_en | snap_type_sel);
600 
601                 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
602 
603                 /* program Sub Second Increment reg */
604                 priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
605 
606                 /* calculate default added value:
607                  * formula is :
608                  * addend = (2^32)/freq_div_ratio;
609                  * where, freq_div_ratio = clk_ptp_ref_i/50MHz
610                  * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
611                  * NOTE: clk_ptp_ref_i should be >= 50MHz to
612                  *       achieve 20ns accuracy.
613                  *
614                  * 2^x * y == (y << x), hence
615                  * 2^32 * 50000000 ==> (50000000 << 32)
616                  */
617                 temp = (u64) (50000000ULL << 32);
618                 priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
619                 priv->hw->ptp->config_addend(priv->ioaddr,
620                                              priv->default_addend);
621 
622                 /* initialize system time */
623                 getnstimeofday(&now);
624                 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
625                                             now.tv_nsec);
626         }
627 
628         return copy_to_user(ifr->ifr_data, &config,
629                             sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631 
632 /**
633  * stmmac_init_ptp - init PTP
634  * @priv: driver private structure
635  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636  * This is done by looking at the HW cap. register.
637  * This function also registers the ptp driver.
638  */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642                 return -EOPNOTSUPP;
643 
644         /* Fall-back to main clock in case of no PTP ref is passed */
645         priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646         if (IS_ERR(priv->clk_ptp_ref)) {
647                 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648                 priv->clk_ptp_ref = NULL;
649         } else {
650                 clk_prepare_enable(priv->clk_ptp_ref);
651                 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652         }
653 
654         priv->adv_ts = 0;
655         if (priv->dma_cap.atime_stamp && priv->extend_desc)
656                 priv->adv_ts = 1;
657 
658         if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659                 pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660 
661         if (netif_msg_hw(priv) && priv->adv_ts)
662                 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663 
664         priv->hw->ptp = &stmmac_ptp;
665         priv->hwts_tx_en = 0;
666         priv->hwts_rx_en = 0;
667 
668         return stmmac_ptp_register(priv);
669 }
670 
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673         if (priv->clk_ptp_ref)
674                 clk_disable_unprepare(priv->clk_ptp_ref);
675         stmmac_ptp_unregister(priv);
676 }
677 
678 /**
679  * stmmac_adjust_link - adjusts the link parameters
680  * @dev: net device structure
681  * Description: this is the helper called by the physical abstraction layer
682  * drivers to communicate the phy link status. According the speed and duplex
683  * this driver can invoke registered glue-logic as well.
684  * It also invoke the eee initialization because it could happen when switch
685  * on different networks (that are eee capable).
686  */
687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689         struct stmmac_priv *priv = netdev_priv(dev);
690         struct phy_device *phydev = priv->phydev;
691         unsigned long flags;
692         int new_state = 0;
693         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694 
695         if (phydev == NULL)
696                 return;
697 
698         spin_lock_irqsave(&priv->lock, flags);
699 
700         if (phydev->link) {
701                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702 
703                 /* Now we make sure that we can be in full duplex mode.
704                  * If not, we operate in half-duplex mode. */
705                 if (phydev->duplex != priv->oldduplex) {
706                         new_state = 1;
707                         if (!(phydev->duplex))
708                                 ctrl &= ~priv->hw->link.duplex;
709                         else
710                                 ctrl |= priv->hw->link.duplex;
711                         priv->oldduplex = phydev->duplex;
712                 }
713                 /* Flow Control operation */
714                 if (phydev->pause)
715                         priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716                                                  fc, pause_time);
717 
718                 if (phydev->speed != priv->speed) {
719                         new_state = 1;
720                         switch (phydev->speed) {
721                         case 1000:
722                                 if (likely(priv->plat->has_gmac))
723                                         ctrl &= ~priv->hw->link.port;
724                                 stmmac_hw_fix_mac_speed(priv);
725                                 break;
726                         case 100:
727                         case 10:
728                                 if (priv->plat->has_gmac) {
729                                         ctrl |= priv->hw->link.port;
730                                         if (phydev->speed == SPEED_100) {
731                                                 ctrl |= priv->hw->link.speed;
732                                         } else {
733                                                 ctrl &= ~(priv->hw->link.speed);
734                                         }
735                                 } else {
736                                         ctrl &= ~priv->hw->link.port;
737                                 }
738                                 stmmac_hw_fix_mac_speed(priv);
739                                 break;
740                         default:
741                                 if (netif_msg_link(priv))
742                                         pr_warn("%s: Speed (%d) not 10/100\n",
743                                                 dev->name, phydev->speed);
744                                 break;
745                         }
746 
747                         priv->speed = phydev->speed;
748                 }
749 
750                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751 
752                 if (!priv->oldlink) {
753                         new_state = 1;
754                         priv->oldlink = 1;
755                 }
756         } else if (priv->oldlink) {
757                 new_state = 1;
758                 priv->oldlink = 0;
759                 priv->speed = 0;
760                 priv->oldduplex = -1;
761         }
762 
763         if (new_state && netif_msg_link(priv))
764                 phy_print_status(phydev);
765 
766         spin_unlock_irqrestore(&priv->lock, flags);
767 
768         /* At this stage, it could be needed to setup the EEE or adjust some
769          * MAC related HW registers.
770          */
771         priv->eee_enabled = stmmac_eee_init(priv);
772 }
773 
774 /**
775  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776  * @priv: driver private structure
777  * Description: this is to verify if the HW supports the PCS.
778  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779  * configured for the TBI, RTBI, or SGMII PHY interface.
780  */
781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783         int interface = priv->plat->interface;
784 
785         if (priv->dma_cap.pcs) {
786                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790                         pr_debug("STMMAC: PCS RGMII support enable\n");
791                         priv->pcs = STMMAC_PCS_RGMII;
792                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
793                         pr_debug("STMMAC: PCS SGMII support enable\n");
794                         priv->pcs = STMMAC_PCS_SGMII;
795                 }
796         }
797 }
798 
799 /**
800  * stmmac_init_phy - PHY initialization
801  * @dev: net device structure
802  * Description: it initializes the driver's PHY state, and attaches the PHY
803  * to the mac driver.
804  *  Return value:
805  *  0 on success
806  */
807 static int stmmac_init_phy(struct net_device *dev)
808 {
809         struct stmmac_priv *priv = netdev_priv(dev);
810         struct phy_device *phydev;
811         char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812         char bus_id[MII_BUS_ID_SIZE];
813         int interface = priv->plat->interface;
814         int max_speed = priv->plat->max_speed;
815         priv->oldlink = 0;
816         priv->speed = 0;
817         priv->oldduplex = -1;
818 
819         if (priv->plat->phy_bus_name)
820                 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
821                          priv->plat->phy_bus_name, priv->plat->bus_id);
822         else
823                 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
824                          priv->plat->bus_id);
825 
826         snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
827                  priv->plat->phy_addr);
828         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
829 
830         phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
831 
832         if (IS_ERR(phydev)) {
833                 pr_err("%s: Could not attach to PHY\n", dev->name);
834                 return PTR_ERR(phydev);
835         }
836 
837         /* Stop Advertising 1000BASE Capability if interface is not GMII */
838         if ((interface == PHY_INTERFACE_MODE_MII) ||
839             (interface == PHY_INTERFACE_MODE_RMII) ||
840                 (max_speed < 1000 && max_speed > 0))
841                 phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
842                                          SUPPORTED_1000baseT_Full);
843 
844         /*
845          * Broken HW is sometimes missing the pull-up resistor on the
846          * MDIO line, which results in reads to non-existent devices returning
847          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
848          * device as well.
849          * Note: phydev->phy_id is the result of reading the UID PHY registers.
850          */
851         if (phydev->phy_id == 0) {
852                 phy_disconnect(phydev);
853                 return -ENODEV;
854         }
855         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
856                  " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
857 
858         priv->phydev = phydev;
859 
860         return 0;
861 }
862 
863 /**
864  * stmmac_display_ring - display ring
865  * @head: pointer to the head of the ring passed.
866  * @size: size of the ring.
867  * @extend_desc: to verify if extended descriptors are used.
868  * Description: display the control/status and buffer descriptors.
869  */
870 static void stmmac_display_ring(void *head, int size, int extend_desc)
871 {
872         int i;
873         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
874         struct dma_desc *p = (struct dma_desc *)head;
875 
876         for (i = 0; i < size; i++) {
877                 u64 x;
878                 if (extend_desc) {
879                         x = *(u64 *) ep;
880                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
881                                 i, (unsigned int)virt_to_phys(ep),
882                                 (unsigned int)x, (unsigned int)(x >> 32),
883                                 ep->basic.des2, ep->basic.des3);
884                         ep++;
885                 } else {
886                         x = *(u64 *) p;
887                         pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
888                                 i, (unsigned int)virt_to_phys(p),
889                                 (unsigned int)x, (unsigned int)(x >> 32),
890                                 p->des2, p->des3);
891                         p++;
892                 }
893                 pr_info("\n");
894         }
895 }
896 
897 static void stmmac_display_rings(struct stmmac_priv *priv)
898 {
899         unsigned int txsize = priv->dma_tx_size;
900         unsigned int rxsize = priv->dma_rx_size;
901 
902         if (priv->extend_desc) {
903                 pr_info("Extended RX descriptor ring:\n");
904                 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
905                 pr_info("Extended TX descriptor ring:\n");
906                 stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
907         } else {
908                 pr_info("RX descriptor ring:\n");
909                 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
910                 pr_info("TX descriptor ring:\n");
911                 stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
912         }
913 }
914 
915 static int stmmac_set_bfsize(int mtu, int bufsize)
916 {
917         int ret = bufsize;
918 
919         if (mtu >= BUF_SIZE_4KiB)
920                 ret = BUF_SIZE_8KiB;
921         else if (mtu >= BUF_SIZE_2KiB)
922                 ret = BUF_SIZE_4KiB;
923         else if (mtu > DEFAULT_BUFSIZE)
924                 ret = BUF_SIZE_2KiB;
925         else
926                 ret = DEFAULT_BUFSIZE;
927 
928         return ret;
929 }
930 
931 /**
932  * stmmac_clear_descriptors - clear descriptors
933  * @priv: driver private structure
934  * Description: this function is called to clear the tx and rx descriptors
935  * in case of both basic and extended descriptors are used.
936  */
937 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
938 {
939         int i;
940         unsigned int txsize = priv->dma_tx_size;
941         unsigned int rxsize = priv->dma_rx_size;
942 
943         /* Clear the Rx/Tx descriptors */
944         for (i = 0; i < rxsize; i++)
945                 if (priv->extend_desc)
946                         priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
947                                                      priv->use_riwt, priv->mode,
948                                                      (i == rxsize - 1));
949                 else
950                         priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
951                                                      priv->use_riwt, priv->mode,
952                                                      (i == rxsize - 1));
953         for (i = 0; i < txsize; i++)
954                 if (priv->extend_desc)
955                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
956                                                      priv->mode,
957                                                      (i == txsize - 1));
958                 else
959                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
960                                                      priv->mode,
961                                                      (i == txsize - 1));
962 }
963 
964 /**
965  * stmmac_init_rx_buffers - init the RX descriptor buffer.
966  * @priv: driver private structure
967  * @p: descriptor pointer
968  * @i: descriptor index
969  * @flags: gfp flag.
970  * Description: this function is called to allocate a receive buffer, perform
971  * the DMA mapping and init the descriptor.
972  */
973 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
974                                   int i, gfp_t flags)
975 {
976         struct sk_buff *skb;
977 
978         skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
979                                  flags);
980         if (!skb) {
981                 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
982                 return -ENOMEM;
983         }
984         skb_reserve(skb, NET_IP_ALIGN);
985         priv->rx_skbuff[i] = skb;
986         priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
987                                                 priv->dma_buf_sz,
988                                                 DMA_FROM_DEVICE);
989         if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
990                 pr_err("%s: DMA mapping error\n", __func__);
991                 dev_kfree_skb_any(skb);
992                 return -EINVAL;
993         }
994 
995         p->des2 = priv->rx_skbuff_dma[i];
996 
997         if ((priv->hw->mode->init_desc3) &&
998             (priv->dma_buf_sz == BUF_SIZE_16KiB))
999                 priv->hw->mode->init_desc3(p);
1000 
1001         return 0;
1002 }
1003 
1004 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1005 {
1006         if (priv->rx_skbuff[i]) {
1007                 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1008                                  priv->dma_buf_sz, DMA_FROM_DEVICE);
1009                 dev_kfree_skb_any(priv->rx_skbuff[i]);
1010         }
1011         priv->rx_skbuff[i] = NULL;
1012 }
1013 
1014 /**
1015  * init_dma_desc_rings - init the RX/TX descriptor rings
1016  * @dev: net device structure
1017  * @flags: gfp flag.
1018  * Description: this function initializes the DMA RX/TX descriptors
1019  * and allocates the socket buffers. It suppors the chained and ring
1020  * modes.
1021  */
1022 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1023 {
1024         int i;
1025         struct stmmac_priv *priv = netdev_priv(dev);
1026         unsigned int txsize = priv->dma_tx_size;
1027         unsigned int rxsize = priv->dma_rx_size;
1028         unsigned int bfsize = 0;
1029         int ret = -ENOMEM;
1030 
1031         if (priv->hw->mode->set_16kib_bfsize)
1032                 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1033 
1034         if (bfsize < BUF_SIZE_16KiB)
1035                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1036 
1037         priv->dma_buf_sz = bfsize;
1038 
1039         if (netif_msg_probe(priv))
1040                 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1041                          txsize, rxsize, bfsize);
1042 
1043         if (netif_msg_probe(priv)) {
1044                 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1045                          (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1046 
1047                 /* RX INITIALIZATION */
1048                 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1049         }
1050         for (i = 0; i < rxsize; i++) {
1051                 struct dma_desc *p;
1052                 if (priv->extend_desc)
1053                         p = &((priv->dma_erx + i)->basic);
1054                 else
1055                         p = priv->dma_rx + i;
1056 
1057                 ret = stmmac_init_rx_buffers(priv, p, i, flags);
1058                 if (ret)
1059                         goto err_init_rx_buffers;
1060 
1061                 if (netif_msg_probe(priv))
1062                         pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1063                                  priv->rx_skbuff[i]->data,
1064                                  (unsigned int)priv->rx_skbuff_dma[i]);
1065         }
1066         priv->cur_rx = 0;
1067         priv->dirty_rx = (unsigned int)(i - rxsize);
1068         buf_sz = bfsize;
1069 
1070         /* Setup the chained descriptor addresses */
1071         if (priv->mode == STMMAC_CHAIN_MODE) {
1072                 if (priv->extend_desc) {
1073                         priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1074                                              rxsize, 1);
1075                         priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1076                                              txsize, 1);
1077                 } else {
1078                         priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1079                                              rxsize, 0);
1080                         priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1081                                              txsize, 0);
1082                 }
1083         }
1084 
1085         /* TX INITIALIZATION */
1086         for (i = 0; i < txsize; i++) {
1087                 struct dma_desc *p;
1088                 if (priv->extend_desc)
1089                         p = &((priv->dma_etx + i)->basic);
1090                 else
1091                         p = priv->dma_tx + i;
1092                 p->des2 = 0;
1093                 priv->tx_skbuff_dma[i].buf = 0;
1094                 priv->tx_skbuff_dma[i].map_as_page = false;
1095                 priv->tx_skbuff[i] = NULL;
1096         }
1097 
1098         priv->dirty_tx = 0;
1099         priv->cur_tx = 0;
1100         netdev_reset_queue(priv->dev);
1101 
1102         stmmac_clear_descriptors(priv);
1103 
1104         if (netif_msg_hw(priv))
1105                 stmmac_display_rings(priv);
1106 
1107         return 0;
1108 err_init_rx_buffers:
1109         while (--i >= 0)
1110                 stmmac_free_rx_buffers(priv, i);
1111         return ret;
1112 }
1113 
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116         int i;
1117 
1118         for (i = 0; i < priv->dma_rx_size; i++)
1119                 stmmac_free_rx_buffers(priv, i);
1120 }
1121 
1122 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1123 {
1124         int i;
1125 
1126         for (i = 0; i < priv->dma_tx_size; i++) {
1127                 struct dma_desc *p;
1128 
1129                 if (priv->extend_desc)
1130                         p = &((priv->dma_etx + i)->basic);
1131                 else
1132                         p = priv->dma_tx + i;
1133 
1134                 if (priv->tx_skbuff_dma[i].buf) {
1135                         if (priv->tx_skbuff_dma[i].map_as_page)
1136                                 dma_unmap_page(priv->device,
1137                                                priv->tx_skbuff_dma[i].buf,
1138                                                priv->hw->desc->get_tx_len(p),
1139                                                DMA_TO_DEVICE);
1140                         else
1141                                 dma_unmap_single(priv->device,
1142                                                  priv->tx_skbuff_dma[i].buf,
1143                                                  priv->hw->desc->get_tx_len(p),
1144                                                  DMA_TO_DEVICE);
1145                 }
1146 
1147                 if (priv->tx_skbuff[i] != NULL) {
1148                         dev_kfree_skb_any(priv->tx_skbuff[i]);
1149                         priv->tx_skbuff[i] = NULL;
1150                         priv->tx_skbuff_dma[i].buf = 0;
1151                         priv->tx_skbuff_dma[i].map_as_page = false;
1152                 }
1153         }
1154 }
1155 
1156 /**
1157  * alloc_dma_desc_resources - alloc TX/RX resources.
1158  * @priv: private structure
1159  * Description: according to which descriptor can be used (extend or basic)
1160  * this function allocates the resources for TX and RX paths. In case of
1161  * reception, for example, it pre-allocated the RX socket buffer in order to
1162  * allow zero-copy mechanism.
1163  */
1164 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1165 {
1166         unsigned int txsize = priv->dma_tx_size;
1167         unsigned int rxsize = priv->dma_rx_size;
1168         int ret = -ENOMEM;
1169 
1170         priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1171                                             GFP_KERNEL);
1172         if (!priv->rx_skbuff_dma)
1173                 return -ENOMEM;
1174 
1175         priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1176                                         GFP_KERNEL);
1177         if (!priv->rx_skbuff)
1178                 goto err_rx_skbuff;
1179 
1180         priv->tx_skbuff_dma = kmalloc_array(txsize,
1181                                             sizeof(*priv->tx_skbuff_dma),
1182                                             GFP_KERNEL);
1183         if (!priv->tx_skbuff_dma)
1184                 goto err_tx_skbuff_dma;
1185 
1186         priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1187                                         GFP_KERNEL);
1188         if (!priv->tx_skbuff)
1189                 goto err_tx_skbuff;
1190 
1191         if (priv->extend_desc) {
1192                 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1193                                                    sizeof(struct
1194                                                           dma_extended_desc),
1195                                                    &priv->dma_rx_phy,
1196                                                    GFP_KERNEL);
1197                 if (!priv->dma_erx)
1198                         goto err_dma;
1199 
1200                 priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1201                                                    sizeof(struct
1202                                                           dma_extended_desc),
1203                                                    &priv->dma_tx_phy,
1204                                                    GFP_KERNEL);
1205                 if (!priv->dma_etx) {
1206                         dma_free_coherent(priv->device, priv->dma_rx_size *
1207                                         sizeof(struct dma_extended_desc),
1208                                         priv->dma_erx, priv->dma_rx_phy);
1209                         goto err_dma;
1210                 }
1211         } else {
1212                 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1213                                                   sizeof(struct dma_desc),
1214                                                   &priv->dma_rx_phy,
1215                                                   GFP_KERNEL);
1216                 if (!priv->dma_rx)
1217                         goto err_dma;
1218 
1219                 priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1220                                                   sizeof(struct dma_desc),
1221                                                   &priv->dma_tx_phy,
1222                                                   GFP_KERNEL);
1223                 if (!priv->dma_tx) {
1224                         dma_free_coherent(priv->device, priv->dma_rx_size *
1225                                         sizeof(struct dma_desc),
1226                                         priv->dma_rx, priv->dma_rx_phy);
1227                         goto err_dma;
1228                 }
1229         }
1230 
1231         return 0;
1232 
1233 err_dma:
1234         kfree(priv->tx_skbuff);
1235 err_tx_skbuff:
1236         kfree(priv->tx_skbuff_dma);
1237 err_tx_skbuff_dma:
1238         kfree(priv->rx_skbuff);
1239 err_rx_skbuff:
1240         kfree(priv->rx_skbuff_dma);
1241         return ret;
1242 }
1243 
1244 static void free_dma_desc_resources(struct stmmac_priv *priv)
1245 {
1246         /* Release the DMA TX/RX socket buffers */
1247         dma_free_rx_skbufs(priv);
1248         dma_free_tx_skbufs(priv);
1249 
1250         /* Free DMA regions of consistent memory previously allocated */
1251         if (!priv->extend_desc) {
1252                 dma_free_coherent(priv->device,
1253                                   priv->dma_tx_size * sizeof(struct dma_desc),
1254                                   priv->dma_tx, priv->dma_tx_phy);
1255                 dma_free_coherent(priv->device,
1256                                   priv->dma_rx_size * sizeof(struct dma_desc),
1257                                   priv->dma_rx, priv->dma_rx_phy);
1258         } else {
1259                 dma_free_coherent(priv->device, priv->dma_tx_size *
1260                                   sizeof(struct dma_extended_desc),
1261                                   priv->dma_etx, priv->dma_tx_phy);
1262                 dma_free_coherent(priv->device, priv->dma_rx_size *
1263                                   sizeof(struct dma_extended_desc),
1264                                   priv->dma_erx, priv->dma_rx_phy);
1265         }
1266         kfree(priv->rx_skbuff_dma);
1267         kfree(priv->rx_skbuff);
1268         kfree(priv->tx_skbuff_dma);
1269         kfree(priv->tx_skbuff);
1270 }
1271 
1272 /**
1273  *  stmmac_dma_operation_mode - HW DMA operation mode
1274  *  @priv: driver private structure
1275  *  Description: it is used for configuring the DMA operation mode register in
1276  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1277  */
1278 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1279 {
1280         int rxfifosz = priv->plat->rx_fifo_size;
1281 
1282         if (priv->plat->force_thresh_dma_mode)
1283                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1284         else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1285                 /*
1286                  * In case of GMAC, SF mode can be enabled
1287                  * to perform the TX COE in HW. This depends on:
1288                  * 1) TX COE if actually supported
1289                  * 2) There is no bugged Jumbo frame support
1290                  *    that needs to not insert csum in the TDES.
1291                  */
1292                 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1293                                         rxfifosz);
1294                 priv->xstats.threshold = SF_DMA_MODE;
1295         } else
1296                 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1297                                         rxfifosz);
1298 }
1299 
1300 /**
1301  * stmmac_tx_clean - to manage the transmission completion
1302  * @priv: driver private structure
1303  * Description: it reclaims the transmit resources after transmission completes.
1304  */
1305 static void stmmac_tx_clean(struct stmmac_priv *priv)
1306 {
1307         unsigned int txsize = priv->dma_tx_size;
1308         unsigned int bytes_compl = 0, pkts_compl = 0;
1309 
1310         spin_lock(&priv->tx_lock);
1311 
1312         priv->xstats.tx_clean++;
1313 
1314         while (priv->dirty_tx != priv->cur_tx) {
1315                 int last;
1316                 unsigned int entry = priv->dirty_tx % txsize;
1317                 struct sk_buff *skb = priv->tx_skbuff[entry];
1318                 struct dma_desc *p;
1319 
1320                 if (priv->extend_desc)
1321                         p = (struct dma_desc *)(priv->dma_etx + entry);
1322                 else
1323                         p = priv->dma_tx + entry;
1324 
1325                 /* Check if the descriptor is owned by the DMA. */
1326                 if (priv->hw->desc->get_tx_owner(p))
1327                         break;
1328 
1329                 /* Verify tx error by looking at the last segment. */
1330                 last = priv->hw->desc->get_tx_ls(p);
1331                 if (likely(last)) {
1332                         int tx_error =
1333                             priv->hw->desc->tx_status(&priv->dev->stats,
1334                                                       &priv->xstats, p,
1335                                                       priv->ioaddr);
1336                         if (likely(tx_error == 0)) {
1337                                 priv->dev->stats.tx_packets++;
1338                                 priv->xstats.tx_pkt_n++;
1339                         } else
1340                                 priv->dev->stats.tx_errors++;
1341 
1342                         stmmac_get_tx_hwtstamp(priv, entry, skb);
1343                 }
1344                 if (netif_msg_tx_done(priv))
1345                         pr_debug("%s: curr %d, dirty %d\n", __func__,
1346                                  priv->cur_tx, priv->dirty_tx);
1347 
1348                 if (likely(priv->tx_skbuff_dma[entry].buf)) {
1349                         if (priv->tx_skbuff_dma[entry].map_as_page)
1350                                 dma_unmap_page(priv->device,
1351                                                priv->tx_skbuff_dma[entry].buf,
1352                                                priv->hw->desc->get_tx_len(p),
1353                                                DMA_TO_DEVICE);
1354                         else
1355                                 dma_unmap_single(priv->device,
1356                                                  priv->tx_skbuff_dma[entry].buf,
1357                                                  priv->hw->desc->get_tx_len(p),
1358                                                  DMA_TO_DEVICE);
1359                         priv->tx_skbuff_dma[entry].buf = 0;
1360                         priv->tx_skbuff_dma[entry].map_as_page = false;
1361                 }
1362                 priv->hw->mode->clean_desc3(priv, p);
1363 
1364                 if (likely(skb != NULL)) {
1365                         pkts_compl++;
1366                         bytes_compl += skb->len;
1367                         dev_consume_skb_any(skb);
1368                         priv->tx_skbuff[entry] = NULL;
1369                 }
1370 
1371                 priv->hw->desc->release_tx_desc(p, priv->mode);
1372 
1373                 priv->dirty_tx++;
1374         }
1375 
1376         netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1377 
1378         if (unlikely(netif_queue_stopped(priv->dev) &&
1379                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1380                 netif_tx_lock(priv->dev);
1381                 if (netif_queue_stopped(priv->dev) &&
1382                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1383                         if (netif_msg_tx_done(priv))
1384                                 pr_debug("%s: restart transmit\n", __func__);
1385                         netif_wake_queue(priv->dev);
1386                 }
1387                 netif_tx_unlock(priv->dev);
1388         }
1389 
1390         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1391                 stmmac_enable_eee_mode(priv);
1392                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1393         }
1394         spin_unlock(&priv->tx_lock);
1395 }
1396 
1397 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1398 {
1399         priv->hw->dma->enable_dma_irq(priv->ioaddr);
1400 }
1401 
1402 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1403 {
1404         priv->hw->dma->disable_dma_irq(priv->ioaddr);
1405 }
1406 
1407 /**
1408  * stmmac_tx_err - to manage the tx error
1409  * @priv: driver private structure
1410  * Description: it cleans the descriptors and restarts the transmission
1411  * in case of transmission errors.
1412  */
1413 static void stmmac_tx_err(struct stmmac_priv *priv)
1414 {
1415         int i;
1416         int txsize = priv->dma_tx_size;
1417         netif_stop_queue(priv->dev);
1418 
1419         priv->hw->dma->stop_tx(priv->ioaddr);
1420         dma_free_tx_skbufs(priv);
1421         for (i = 0; i < txsize; i++)
1422                 if (priv->extend_desc)
1423                         priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1424                                                      priv->mode,
1425                                                      (i == txsize - 1));
1426                 else
1427                         priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1428                                                      priv->mode,
1429                                                      (i == txsize - 1));
1430         priv->dirty_tx = 0;
1431         priv->cur_tx = 0;
1432         netdev_reset_queue(priv->dev);
1433         priv->hw->dma->start_tx(priv->ioaddr);
1434 
1435         priv->dev->stats.tx_errors++;
1436         netif_wake_queue(priv->dev);
1437 }
1438 
1439 /**
1440  * stmmac_dma_interrupt - DMA ISR
1441  * @priv: driver private structure
1442  * Description: this is the DMA ISR. It is called by the main ISR.
1443  * It calls the dwmac dma routine and schedule poll method in case of some
1444  * work can be done.
1445  */
1446 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1447 {
1448         int status;
1449         int rxfifosz = priv->plat->rx_fifo_size;
1450 
1451         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1452         if (likely((status & handle_rx)) || (status & handle_tx)) {
1453                 if (likely(napi_schedule_prep(&priv->napi))) {
1454                         stmmac_disable_dma_irq(priv);
1455                         __napi_schedule(&priv->napi);
1456                 }
1457         }
1458         if (unlikely(status & tx_hard_error_bump_tc)) {
1459                 /* Try to bump up the dma threshold on this failure */
1460                 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1461                     (tc <= 256)) {
1462                         tc += 64;
1463                         if (priv->plat->force_thresh_dma_mode)
1464                                 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1465                                                         rxfifosz);
1466                         else
1467                                 priv->hw->dma->dma_mode(priv->ioaddr, tc,
1468                                                         SF_DMA_MODE, rxfifosz);
1469                         priv->xstats.threshold = tc;
1470                 }
1471         } else if (unlikely(status == tx_hard_error))
1472                 stmmac_tx_err(priv);
1473 }
1474 
1475 /**
1476  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1477  * @priv: driver private structure
1478  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1479  */
1480 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1481 {
1482         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1483             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1484 
1485         dwmac_mmc_intr_all_mask(priv->ioaddr);
1486 
1487         if (priv->dma_cap.rmon) {
1488                 dwmac_mmc_ctrl(priv->ioaddr, mode);
1489                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1490         } else
1491                 pr_info(" No MAC Management Counters available\n");
1492 }
1493 
1494 /**
1495  * stmmac_get_synopsys_id - return the SYINID.
1496  * @priv: driver private structure
1497  * Description: this simple function is to decode and return the SYINID
1498  * starting from the HW core register.
1499  */
1500 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1501 {
1502         u32 hwid = priv->hw->synopsys_uid;
1503 
1504         /* Check Synopsys Id (not available on old chips) */
1505         if (likely(hwid)) {
1506                 u32 uid = ((hwid & 0x0000ff00) >> 8);
1507                 u32 synid = (hwid & 0x000000ff);
1508 
1509                 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1510                         uid, synid);
1511 
1512                 return synid;
1513         }
1514         return 0;
1515 }
1516 
1517 /**
1518  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1519  * @priv: driver private structure
1520  * Description: select the Enhanced/Alternate or Normal descriptors.
1521  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1522  * supported by the HW capability register.
1523  */
1524 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1525 {
1526         if (priv->plat->enh_desc) {
1527                 pr_info(" Enhanced/Alternate descriptors\n");
1528 
1529                 /* GMAC older than 3.50 has no extended descriptors */
1530                 if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1531                         pr_info("\tEnabled extended descriptors\n");
1532                         priv->extend_desc = 1;
1533                 } else
1534                         pr_warn("Extended descriptors not supported\n");
1535 
1536                 priv->hw->desc = &enh_desc_ops;
1537         } else {
1538                 pr_info(" Normal descriptors\n");
1539                 priv->hw->desc = &ndesc_ops;
1540         }
1541 }
1542 
1543 /**
1544  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1545  * @priv: driver private structure
1546  * Description:
1547  *  new GMAC chip generations have a new register to indicate the
1548  *  presence of the optional feature/functions.
1549  *  This can be also used to override the value passed through the
1550  *  platform and necessary for old MAC10/100 and GMAC chips.
1551  */
1552 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1553 {
1554         u32 hw_cap = 0;
1555 
1556         if (priv->hw->dma->get_hw_feature) {
1557                 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1558 
1559                 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1560                 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1561                 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1562                 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1563                 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1564                 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1565                 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1566                 priv->dma_cap.pmt_remote_wake_up =
1567                     (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1568                 priv->dma_cap.pmt_magic_frame =
1569                     (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1570                 /* MMC */
1571                 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1572                 /* IEEE 1588-2002 */
1573                 priv->dma_cap.time_stamp =
1574                     (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1575                 /* IEEE 1588-2008 */
1576                 priv->dma_cap.atime_stamp =
1577                     (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1578                 /* 802.3az - Energy-Efficient Ethernet (EEE) */
1579                 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1580                 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1581                 /* TX and RX csum */
1582                 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1583                 priv->dma_cap.rx_coe_type1 =
1584                     (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1585                 priv->dma_cap.rx_coe_type2 =
1586                     (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1587                 priv->dma_cap.rxfifo_over_2048 =
1588                     (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1589                 /* TX and RX number of channels */
1590                 priv->dma_cap.number_rx_channel =
1591                     (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1592                 priv->dma_cap.number_tx_channel =
1593                     (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1594                 /* Alternate (enhanced) DESC mode */
1595                 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1596         }
1597 
1598         return hw_cap;
1599 }
1600 
1601 /**
1602  * stmmac_check_ether_addr - check if the MAC addr is valid
1603  * @priv: driver private structure
1604  * Description:
1605  * it is to verify if the MAC address is valid, in case of failures it
1606  * generates a random MAC address
1607  */
1608 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1609 {
1610         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1611                 priv->hw->mac->get_umac_addr(priv->hw,
1612                                              priv->dev->dev_addr, 0);
1613                 if (!is_valid_ether_addr(priv->dev->dev_addr))
1614                         eth_hw_addr_random(priv->dev);
1615                 pr_info("%s: device MAC address %pM\n", priv->dev->name,
1616                         priv->dev->dev_addr);
1617         }
1618 }
1619 
1620 /**
1621  * stmmac_init_dma_engine - DMA init.
1622  * @priv: driver private structure
1623  * Description:
1624  * It inits the DMA invoking the specific MAC/GMAC callback.
1625  * Some DMA parameters can be passed from the platform;
1626  * in case of these are not passed a default is kept for the MAC or GMAC.
1627  */
1628 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1629 {
1630         int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1631         int mixed_burst = 0;
1632         int atds = 0;
1633 
1634         if (priv->plat->dma_cfg) {
1635                 pbl = priv->plat->dma_cfg->pbl;
1636                 fixed_burst = priv->plat->dma_cfg->fixed_burst;
1637                 mixed_burst = priv->plat->dma_cfg->mixed_burst;
1638                 burst_len = priv->plat->dma_cfg->burst_len;
1639         }
1640 
1641         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1642                 atds = 1;
1643 
1644         return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1645                                    burst_len, priv->dma_tx_phy,
1646                                    priv->dma_rx_phy, atds);
1647 }
1648 
1649 /**
1650  * stmmac_tx_timer - mitigation sw timer for tx.
1651  * @data: data pointer
1652  * Description:
1653  * This is the timer handler to directly invoke the stmmac_tx_clean.
1654  */
1655 static void stmmac_tx_timer(unsigned long data)
1656 {
1657         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1658 
1659         stmmac_tx_clean(priv);
1660 }
1661 
1662 /**
1663  * stmmac_init_tx_coalesce - init tx mitigation options.
1664  * @priv: driver private structure
1665  * Description:
1666  * This inits the transmit coalesce parameters: i.e. timer rate,
1667  * timer handler and default threshold used for enabling the
1668  * interrupt on completion bit.
1669  */
1670 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1671 {
1672         priv->tx_coal_frames = STMMAC_TX_FRAMES;
1673         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1674         init_timer(&priv->txtimer);
1675         priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1676         priv->txtimer.data = (unsigned long)priv;
1677         priv->txtimer.function = stmmac_tx_timer;
1678         add_timer(&priv->txtimer);
1679 }
1680 
1681 /**
1682  * stmmac_hw_setup - setup mac in a usable state.
1683  *  @dev : pointer to the device structure.
1684  *  Description:
1685  *  this is the main function to setup the HW in a usable state because the
1686  *  dma engine is reset, the core registers are configured (e.g. AXI,
1687  *  Checksum features, timers). The DMA is ready to start receiving and
1688  *  transmitting.
1689  *  Return value:
1690  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1691  *  file on failure.
1692  */
1693 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1694 {
1695         struct stmmac_priv *priv = netdev_priv(dev);
1696         int ret;
1697 
1698         /* DMA initialization and SW reset */
1699         ret = stmmac_init_dma_engine(priv);
1700         if (ret < 0) {
1701                 pr_err("%s: DMA engine initialization failed\n", __func__);
1702                 return ret;
1703         }
1704 
1705         /* Copy the MAC addr into the HW  */
1706         priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1707 
1708         /* If required, perform hw setup of the bus. */
1709         if (priv->plat->bus_setup)
1710                 priv->plat->bus_setup(priv->ioaddr);
1711 
1712         /* Initialize the MAC Core */
1713         priv->hw->mac->core_init(priv->hw, dev->mtu);
1714 
1715         ret = priv->hw->mac->rx_ipc(priv->hw);
1716         if (!ret) {
1717                 pr_warn(" RX IPC Checksum Offload disabled\n");
1718                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1719                 priv->hw->rx_csum = 0;
1720         }
1721 
1722         /* Enable the MAC Rx/Tx */
1723         stmmac_set_mac(priv->ioaddr, true);
1724 
1725         /* Set the HW DMA mode and the COE */
1726         stmmac_dma_operation_mode(priv);
1727 
1728         stmmac_mmc_setup(priv);
1729 
1730         if (init_ptp) {
1731                 ret = stmmac_init_ptp(priv);
1732                 if (ret && ret != -EOPNOTSUPP)
1733                         pr_warn("%s: failed PTP initialisation\n", __func__);
1734         }
1735 
1736 #ifdef CONFIG_DEBUG_FS
1737         ret = stmmac_init_fs(dev);
1738         if (ret < 0)
1739                 pr_warn("%s: failed debugFS registration\n", __func__);
1740 #endif
1741         /* Start the ball rolling... */
1742         pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1743         priv->hw->dma->start_tx(priv->ioaddr);
1744         priv->hw->dma->start_rx(priv->ioaddr);
1745 
1746         /* Dump DMA/MAC registers */
1747         if (netif_msg_hw(priv)) {
1748                 priv->hw->mac->dump_regs(priv->hw);
1749                 priv->hw->dma->dump_regs(priv->ioaddr);
1750         }
1751         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1752 
1753         if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1754                 priv->rx_riwt = MAX_DMA_RIWT;
1755                 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1756         }
1757 
1758         if (priv->pcs && priv->hw->mac->ctrl_ane)
1759                 priv->hw->mac->ctrl_ane(priv->hw, 0);
1760 
1761         return 0;
1762 }
1763 
1764 /**
1765  *  stmmac_open - open entry point of the driver
1766  *  @dev : pointer to the device structure.
1767  *  Description:
1768  *  This function is the open entry point of the driver.
1769  *  Return value:
1770  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1771  *  file on failure.
1772  */
1773 static int stmmac_open(struct net_device *dev)
1774 {
1775         struct stmmac_priv *priv = netdev_priv(dev);
1776         int ret;
1777 
1778         stmmac_check_ether_addr(priv);
1779 
1780         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1781             priv->pcs != STMMAC_PCS_RTBI) {
1782                 ret = stmmac_init_phy(dev);
1783                 if (ret) {
1784                         pr_err("%s: Cannot attach to PHY (error: %d)\n",
1785                                __func__, ret);
1786                         return ret;
1787                 }
1788         }
1789 
1790         /* Extra statistics */
1791         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1792         priv->xstats.threshold = tc;
1793 
1794         /* Create and initialize the TX/RX descriptors chains. */
1795         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1796         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1797         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1798 
1799         ret = alloc_dma_desc_resources(priv);
1800         if (ret < 0) {
1801                 pr_err("%s: DMA descriptors allocation failed\n", __func__);
1802                 goto dma_desc_error;
1803         }
1804 
1805         ret = init_dma_desc_rings(dev, GFP_KERNEL);
1806         if (ret < 0) {
1807                 pr_err("%s: DMA descriptors initialization failed\n", __func__);
1808                 goto init_error;
1809         }
1810 
1811         ret = stmmac_hw_setup(dev, true);
1812         if (ret < 0) {
1813                 pr_err("%s: Hw setup failed\n", __func__);
1814                 goto init_error;
1815         }
1816 
1817         stmmac_init_tx_coalesce(priv);
1818 
1819         if (priv->phydev)
1820                 phy_start(priv->phydev);
1821 
1822         /* Request the IRQ lines */
1823         ret = request_irq(dev->irq, stmmac_interrupt,
1824                           IRQF_SHARED, dev->name, dev);
1825         if (unlikely(ret < 0)) {
1826                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1827                        __func__, dev->irq, ret);
1828                 goto init_error;
1829         }
1830 
1831         /* Request the Wake IRQ in case of another line is used for WoL */
1832         if (priv->wol_irq != dev->irq) {
1833                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
1834                                   IRQF_SHARED, dev->name, dev);
1835                 if (unlikely(ret < 0)) {
1836                         pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1837                                __func__, priv->wol_irq, ret);
1838                         goto wolirq_error;
1839                 }
1840         }
1841 
1842         /* Request the IRQ lines */
1843         if (priv->lpi_irq > 0) {
1844                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1845                                   dev->name, dev);
1846                 if (unlikely(ret < 0)) {
1847                         pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1848                                __func__, priv->lpi_irq, ret);
1849                         goto lpiirq_error;
1850                 }
1851         }
1852 
1853         napi_enable(&priv->napi);
1854         netif_start_queue(dev);
1855 
1856         return 0;
1857 
1858 lpiirq_error:
1859         if (priv->wol_irq != dev->irq)
1860                 free_irq(priv->wol_irq, dev);
1861 wolirq_error:
1862         free_irq(dev->irq, dev);
1863 
1864 init_error:
1865         free_dma_desc_resources(priv);
1866 dma_desc_error:
1867         if (priv->phydev)
1868                 phy_disconnect(priv->phydev);
1869 
1870         return ret;
1871 }
1872 
1873 /**
1874  *  stmmac_release - close entry point of the driver
1875  *  @dev : device pointer.
1876  *  Description:
1877  *  This is the stop entry point of the driver.
1878  */
1879 static int stmmac_release(struct net_device *dev)
1880 {
1881         struct stmmac_priv *priv = netdev_priv(dev);
1882 
1883         if (priv->eee_enabled)
1884                 del_timer_sync(&priv->eee_ctrl_timer);
1885 
1886         /* Stop and disconnect the PHY */
1887         if (priv->phydev) {
1888                 phy_stop(priv->phydev);
1889                 phy_disconnect(priv->phydev);
1890                 priv->phydev = NULL;
1891         }
1892 
1893         netif_stop_queue(dev);
1894 
1895         napi_disable(&priv->napi);
1896 
1897         del_timer_sync(&priv->txtimer);
1898 
1899         /* Free the IRQ lines */
1900         free_irq(dev->irq, dev);
1901         if (priv->wol_irq != dev->irq)
1902                 free_irq(priv->wol_irq, dev);
1903         if (priv->lpi_irq > 0)
1904                 free_irq(priv->lpi_irq, dev);
1905 
1906         /* Stop TX/RX DMA and clear the descriptors */
1907         priv->hw->dma->stop_tx(priv->ioaddr);
1908         priv->hw->dma->stop_rx(priv->ioaddr);
1909 
1910         /* Release and free the Rx/Tx resources */
1911         free_dma_desc_resources(priv);
1912 
1913         /* Disable the MAC Rx/Tx */
1914         stmmac_set_mac(priv->ioaddr, false);
1915 
1916         netif_carrier_off(dev);
1917 
1918 #ifdef CONFIG_DEBUG_FS
1919         stmmac_exit_fs(dev);
1920 #endif
1921 
1922         stmmac_release_ptp(priv);
1923 
1924         return 0;
1925 }
1926 
1927 /**
1928  *  stmmac_xmit - Tx entry point of the driver
1929  *  @skb : the socket buffer
1930  *  @dev : device pointer
1931  *  Description : this is the tx entry point of the driver.
1932  *  It programs the chain or the ring and supports oversized frames
1933  *  and SG feature.
1934  */
1935 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1936 {
1937         struct stmmac_priv *priv = netdev_priv(dev);
1938         unsigned int txsize = priv->dma_tx_size;
1939         unsigned int entry;
1940         int i, csum_insertion = 0, is_jumbo = 0;
1941         int nfrags = skb_shinfo(skb)->nr_frags;
1942         struct dma_desc *desc, *first;
1943         unsigned int nopaged_len = skb_headlen(skb);
1944         unsigned int enh_desc = priv->plat->enh_desc;
1945 
1946         spin_lock(&priv->tx_lock);
1947 
1948         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1949                 spin_unlock(&priv->tx_lock);
1950                 if (!netif_queue_stopped(dev)) {
1951                         netif_stop_queue(dev);
1952                         /* This is a hard error, log it. */
1953                         pr_err("%s: Tx Ring full when queue awake\n", __func__);
1954                 }
1955                 return NETDEV_TX_BUSY;
1956         }
1957 
1958         if (priv->tx_path_in_lpi_mode)
1959                 stmmac_disable_eee_mode(priv);
1960 
1961         entry = priv->cur_tx % txsize;
1962 
1963         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1964 
1965         if (priv->extend_desc)
1966                 desc = (struct dma_desc *)(priv->dma_etx + entry);
1967         else
1968                 desc = priv->dma_tx + entry;
1969 
1970         first = desc;
1971 
1972         /* To program the descriptors according to the size of the frame */
1973         if (enh_desc)
1974                 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1975 
1976         if (likely(!is_jumbo)) {
1977                 desc->des2 = dma_map_single(priv->device, skb->data,
1978                                             nopaged_len, DMA_TO_DEVICE);
1979                 if (dma_mapping_error(priv->device, desc->des2))
1980                         goto dma_map_err;
1981                 priv->tx_skbuff_dma[entry].buf = desc->des2;
1982                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1983                                                 csum_insertion, priv->mode);
1984         } else {
1985                 desc = first;
1986                 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1987                 if (unlikely(entry < 0))
1988                         goto dma_map_err;
1989         }
1990 
1991         for (i = 0; i < nfrags; i++) {
1992                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1993                 int len = skb_frag_size(frag);
1994 
1995                 priv->tx_skbuff[entry] = NULL;
1996                 entry = (++priv->cur_tx) % txsize;
1997                 if (priv->extend_desc)
1998                         desc = (struct dma_desc *)(priv->dma_etx + entry);
1999                 else
2000                         desc = priv->dma_tx + entry;
2001 
2002                 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2003                                               DMA_TO_DEVICE);
2004                 if (dma_mapping_error(priv->device, desc->des2))
2005                         goto dma_map_err; /* should reuse desc w/o issues */
2006 
2007                 priv->tx_skbuff_dma[entry].buf = desc->des2;
2008                 priv->tx_skbuff_dma[entry].map_as_page = true;
2009                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2010                                                 priv->mode);
2011                 wmb();
2012                 priv->hw->desc->set_tx_owner(desc);
2013                 wmb();
2014         }
2015 
2016         priv->tx_skbuff[entry] = skb;
2017 
2018         /* Finalize the latest segment. */
2019         priv->hw->desc->close_tx_desc(desc);
2020 
2021         wmb();
2022         /* According to the coalesce parameter the IC bit for the latest
2023          * segment could be reset and the timer re-started to invoke the
2024          * stmmac_tx function. This approach takes care about the fragments.
2025          */
2026         priv->tx_count_frames += nfrags + 1;
2027         if (priv->tx_coal_frames > priv->tx_count_frames) {
2028                 priv->hw->desc->clear_tx_ic(desc);
2029                 priv->xstats.tx_reset_ic_bit++;
2030                 mod_timer(&priv->txtimer,
2031                           STMMAC_COAL_TIMER(priv->tx_coal_timer));
2032         } else
2033                 priv->tx_count_frames = 0;
2034 
2035         /* To avoid raise condition */
2036         priv->hw->desc->set_tx_owner(first);
2037         wmb();
2038 
2039         priv->cur_tx++;
2040 
2041         if (netif_msg_pktdata(priv)) {
2042                 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2043                         __func__, (priv->cur_tx % txsize),
2044                         (priv->dirty_tx % txsize), entry, first, nfrags);
2045 
2046                 if (priv->extend_desc)
2047                         stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2048                 else
2049                         stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2050 
2051                 pr_debug(">>> frame to be transmitted: ");
2052                 print_pkt(skb->data, skb->len);
2053         }
2054         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2055                 if (netif_msg_hw(priv))
2056                         pr_debug("%s: stop transmitted packets\n", __func__);
2057                 netif_stop_queue(dev);
2058         }
2059 
2060         dev->stats.tx_bytes += skb->len;
2061 
2062         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2063                      priv->hwts_tx_en)) {
2064                 /* declare that device is doing timestamping */
2065                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2066                 priv->hw->desc->enable_tx_timestamp(first);
2067         }
2068 
2069         if (!priv->hwts_tx_en)
2070                 skb_tx_timestamp(skb);
2071 
2072         netdev_sent_queue(dev, skb->len);
2073         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2074 
2075         spin_unlock(&priv->tx_lock);
2076         return NETDEV_TX_OK;
2077 
2078 dma_map_err:
2079         spin_unlock(&priv->tx_lock);
2080         dev_err(priv->device, "Tx dma map failed\n");
2081         dev_kfree_skb(skb);
2082         priv->dev->stats.tx_dropped++;
2083         return NETDEV_TX_OK;
2084 }
2085 
2086 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2087 {
2088         struct ethhdr *ehdr;
2089         u16 vlanid;
2090 
2091         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2092             NETIF_F_HW_VLAN_CTAG_RX &&
2093             !__vlan_get_tag(skb, &vlanid)) {
2094                 /* pop the vlan tag */
2095                 ehdr = (struct ethhdr *)skb->data;
2096                 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2097                 skb_pull(skb, VLAN_HLEN);
2098                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2099         }
2100 }
2101 
2102 
2103 /**
2104  * stmmac_rx_refill - refill used skb preallocated buffers
2105  * @priv: driver private structure
2106  * Description : this is to reallocate the skb for the reception process
2107  * that is based on zero-copy.
2108  */
2109 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2110 {
2111         unsigned int rxsize = priv->dma_rx_size;
2112         int bfsize = priv->dma_buf_sz;
2113 
2114         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2115                 unsigned int entry = priv->dirty_rx % rxsize;
2116                 struct dma_desc *p;
2117 
2118                 if (priv->extend_desc)
2119                         p = (struct dma_desc *)(priv->dma_erx + entry);
2120                 else
2121                         p = priv->dma_rx + entry;
2122 
2123                 if (likely(priv->rx_skbuff[entry] == NULL)) {
2124                         struct sk_buff *skb;
2125 
2126                         skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2127 
2128                         if (unlikely(skb == NULL))
2129                                 break;
2130 
2131                         priv->rx_skbuff[entry] = skb;
2132                         priv->rx_skbuff_dma[entry] =
2133                             dma_map_single(priv->device, skb->data, bfsize,
2134                                            DMA_FROM_DEVICE);
2135                         if (dma_mapping_error(priv->device,
2136                                               priv->rx_skbuff_dma[entry])) {
2137                                 dev_err(priv->device, "Rx dma map failed\n");
2138                                 dev_kfree_skb(skb);
2139                                 break;
2140                         }
2141                         p->des2 = priv->rx_skbuff_dma[entry];
2142 
2143                         priv->hw->mode->refill_desc3(priv, p);
2144 
2145                         if (netif_msg_rx_status(priv))
2146                                 pr_debug("\trefill entry #%d\n", entry);
2147                 }
2148                 wmb();
2149                 priv->hw->desc->set_rx_owner(p);
2150                 wmb();
2151         }
2152 }
2153 
2154 /**
2155  * stmmac_rx - manage the receive process
2156  * @priv: driver private structure
2157  * @limit: napi bugget.
2158  * Description :  this the function called by the napi poll method.
2159  * It gets all the frames inside the ring.
2160  */
2161 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2162 {
2163         unsigned int rxsize = priv->dma_rx_size;
2164         unsigned int entry = priv->cur_rx % rxsize;
2165         unsigned int next_entry;
2166         unsigned int count = 0;
2167         int coe = priv->hw->rx_csum;
2168 
2169         if (netif_msg_rx_status(priv)) {
2170                 pr_debug("%s: descriptor ring:\n", __func__);
2171                 if (priv->extend_desc)
2172                         stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2173                 else
2174                         stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2175         }
2176         while (count < limit) {
2177                 int status;
2178                 struct dma_desc *p;
2179 
2180                 if (priv->extend_desc)
2181                         p = (struct dma_desc *)(priv->dma_erx + entry);
2182                 else
2183                         p = priv->dma_rx + entry;
2184 
2185                 if (priv->hw->desc->get_rx_owner(p))
2186                         break;
2187 
2188                 count++;
2189 
2190                 next_entry = (++priv->cur_rx) % rxsize;
2191                 if (priv->extend_desc)
2192                         prefetch(priv->dma_erx + next_entry);
2193                 else
2194                         prefetch(priv->dma_rx + next_entry);
2195 
2196                 /* read the status of the incoming frame */
2197                 status = priv->hw->desc->rx_status(&priv->dev->stats,
2198                                                    &priv->xstats, p);
2199                 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2200                         priv->hw->desc->rx_extended_status(&priv->dev->stats,
2201                                                            &priv->xstats,
2202                                                            priv->dma_erx +
2203                                                            entry);
2204                 if (unlikely(status == discard_frame)) {
2205                         priv->dev->stats.rx_errors++;
2206                         if (priv->hwts_rx_en && !priv->extend_desc) {
2207                                 /* DESC2 & DESC3 will be overwitten by device
2208                                  * with timestamp value, hence reinitialize
2209                                  * them in stmmac_rx_refill() function so that
2210                                  * device can reuse it.
2211                                  */
2212                                 priv->rx_skbuff[entry] = NULL;
2213                                 dma_unmap_single(priv->device,
2214                                                  priv->rx_skbuff_dma[entry],
2215                                                  priv->dma_buf_sz,
2216                                                  DMA_FROM_DEVICE);
2217                         }
2218                 } else {
2219                         struct sk_buff *skb;
2220                         int frame_len;
2221 
2222                         frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2223 
2224                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2225                          * Type frames (LLC/LLC-SNAP)
2226                          */
2227                         if (unlikely(status != llc_snap))
2228                                 frame_len -= ETH_FCS_LEN;
2229 
2230                         if (netif_msg_rx_status(priv)) {
2231                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2232                                          p, entry, p->des2);
2233                                 if (frame_len > ETH_FRAME_LEN)
2234                                         pr_debug("\tframe size %d, COE: %d\n",
2235                                                  frame_len, status);
2236                         }
2237                         skb = priv->rx_skbuff[entry];
2238                         if (unlikely(!skb)) {
2239                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
2240                                        priv->dev->name);
2241                                 priv->dev->stats.rx_dropped++;
2242                                 break;
2243                         }
2244                         prefetch(skb->data - NET_IP_ALIGN);
2245                         priv->rx_skbuff[entry] = NULL;
2246 
2247                         stmmac_get_rx_hwtstamp(priv, entry, skb);
2248 
2249                         skb_put(skb, frame_len);
2250                         dma_unmap_single(priv->device,
2251                                          priv->rx_skbuff_dma[entry],
2252                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
2253 
2254                         if (netif_msg_pktdata(priv)) {
2255                                 pr_debug("frame received (%dbytes)", frame_len);
2256                                 print_pkt(skb->data, frame_len);
2257                         }
2258 
2259                         stmmac_rx_vlan(priv->dev, skb);
2260 
2261                         skb->protocol = eth_type_trans(skb, priv->dev);
2262 
2263                         if (unlikely(!coe))
2264                                 skb_checksum_none_assert(skb);
2265                         else
2266                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2267 
2268                         napi_gro_receive(&priv->napi, skb);
2269 
2270                         priv->dev->stats.rx_packets++;
2271                         priv->dev->stats.rx_bytes += frame_len;
2272                 }
2273                 entry = next_entry;
2274         }
2275 
2276         stmmac_rx_refill(priv);
2277 
2278         priv->xstats.rx_pkt_n += count;
2279 
2280         return count;
2281 }
2282 
2283 /**
2284  *  stmmac_poll - stmmac poll method (NAPI)
2285  *  @napi : pointer to the napi structure.
2286  *  @budget : maximum number of packets that the current CPU can receive from
2287  *            all interfaces.
2288  *  Description :
2289  *  To look at the incoming frames and clear the tx resources.
2290  */
2291 static int stmmac_poll(struct napi_struct *napi, int budget)
2292 {
2293         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2294         int work_done = 0;
2295 
2296         priv->xstats.napi_poll++;
2297         stmmac_tx_clean(priv);
2298 
2299         work_done = stmmac_rx(priv, budget);
2300         if (work_done < budget) {
2301                 napi_complete(napi);
2302                 stmmac_enable_dma_irq(priv);
2303         }
2304         return work_done;
2305 }
2306 
2307 /**
2308  *  stmmac_tx_timeout
2309  *  @dev : Pointer to net device structure
2310  *  Description: this function is called when a packet transmission fails to
2311  *   complete within a reasonable time. The driver will mark the error in the
2312  *   netdev structure and arrange for the device to be reset to a sane state
2313  *   in order to transmit a new packet.
2314  */
2315 static void stmmac_tx_timeout(struct net_device *dev)
2316 {
2317         struct stmmac_priv *priv = netdev_priv(dev);
2318 
2319         /* Clear Tx resources and restart transmitting again */
2320         stmmac_tx_err(priv);
2321 }
2322 
2323 /**
2324  *  stmmac_set_rx_mode - entry point for multicast addressing
2325  *  @dev : pointer to the device structure
2326  *  Description:
2327  *  This function is a driver entry point which gets called by the kernel
2328  *  whenever multicast addresses must be enabled/disabled.
2329  *  Return value:
2330  *  void.
2331  */
2332 static void stmmac_set_rx_mode(struct net_device *dev)
2333 {
2334         struct stmmac_priv *priv = netdev_priv(dev);
2335 
2336         priv->hw->mac->set_filter(priv->hw, dev);
2337 }
2338 
2339 /**
2340  *  stmmac_change_mtu - entry point to change MTU size for the device.
2341  *  @dev : device pointer.
2342  *  @new_mtu : the new MTU size for the device.
2343  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2344  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2345  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2346  *  Return value:
2347  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2348  *  file on failure.
2349  */
2350 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2351 {
2352         struct stmmac_priv *priv = netdev_priv(dev);
2353         int max_mtu;
2354 
2355         if (netif_running(dev)) {
2356                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
2357                 return -EBUSY;
2358         }
2359 
2360         if (priv->plat->enh_desc)
2361                 max_mtu = JUMBO_LEN;
2362         else
2363                 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2364 
2365         if (priv->plat->maxmtu < max_mtu)
2366                 max_mtu = priv->plat->maxmtu;
2367 
2368         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2369                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2370                 return -EINVAL;
2371         }
2372 
2373         dev->mtu = new_mtu;
2374         netdev_update_features(dev);
2375 
2376         return 0;
2377 }
2378 
2379 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2380                                              netdev_features_t features)
2381 {
2382         struct stmmac_priv *priv = netdev_priv(dev);
2383 
2384         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2385                 features &= ~NETIF_F_RXCSUM;
2386 
2387         if (!priv->plat->tx_coe)
2388                 features &= ~NETIF_F_ALL_CSUM;
2389 
2390         /* Some GMAC devices have a bugged Jumbo frame support that
2391          * needs to have the Tx COE disabled for oversized frames
2392          * (due to limited buffer sizes). In this case we disable
2393          * the TX csum insertionin the TDES and not use SF.
2394          */
2395         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2396                 features &= ~NETIF_F_ALL_CSUM;
2397 
2398         return features;
2399 }
2400 
2401 static int stmmac_set_features(struct net_device *netdev,
2402                                netdev_features_t features)
2403 {
2404         struct stmmac_priv *priv = netdev_priv(netdev);
2405 
2406         /* Keep the COE Type in case of csum is supporting */
2407         if (features & NETIF_F_RXCSUM)
2408                 priv->hw->rx_csum = priv->plat->rx_coe;
2409         else
2410                 priv->hw->rx_csum = 0;
2411         /* No check needed because rx_coe has been set before and it will be
2412          * fixed in case of issue.
2413          */
2414         priv->hw->mac->rx_ipc(priv->hw);
2415 
2416         return 0;
2417 }
2418 
2419 /**
2420  *  stmmac_interrupt - main ISR
2421  *  @irq: interrupt number.
2422  *  @dev_id: to pass the net device pointer.
2423  *  Description: this is the main driver interrupt service routine.
2424  *  It can call:
2425  *  o DMA service routine (to manage incoming frame reception and transmission
2426  *    status)
2427  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2428  *    interrupts.
2429  */
2430 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2431 {
2432         struct net_device *dev = (struct net_device *)dev_id;
2433         struct stmmac_priv *priv = netdev_priv(dev);
2434 
2435         if (priv->irq_wake)
2436                 pm_wakeup_event(priv->device, 0);
2437 
2438         if (unlikely(!dev)) {
2439                 pr_err("%s: invalid dev pointer\n", __func__);
2440                 return IRQ_NONE;
2441         }
2442 
2443         /* To handle GMAC own interrupts */
2444         if (priv->plat->has_gmac) {
2445                 int status = priv->hw->mac->host_irq_status(priv->hw,
2446                                                             &priv->xstats);
2447                 if (unlikely(status)) {
2448                         /* For LPI we need to save the tx status */
2449                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2450                                 priv->tx_path_in_lpi_mode = true;
2451                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2452                                 priv->tx_path_in_lpi_mode = false;
2453                 }
2454         }
2455 
2456         /* To handle DMA interrupts */
2457         stmmac_dma_interrupt(priv);
2458 
2459         return IRQ_HANDLED;
2460 }
2461 
2462 #ifdef CONFIG_NET_POLL_CONTROLLER
2463 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2464  * to allow network I/O with interrupts disabled.
2465  */
2466 static void stmmac_poll_controller(struct net_device *dev)
2467 {
2468         disable_irq(dev->irq);
2469         stmmac_interrupt(dev->irq, dev);
2470         enable_irq(dev->irq);
2471 }
2472 #endif
2473 
2474 /**
2475  *  stmmac_ioctl - Entry point for the Ioctl
2476  *  @dev: Device pointer.
2477  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2478  *  a proprietary structure used to pass information to the driver.
2479  *  @cmd: IOCTL command
2480  *  Description:
2481  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2482  */
2483 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2484 {
2485         struct stmmac_priv *priv = netdev_priv(dev);
2486         int ret = -EOPNOTSUPP;
2487 
2488         if (!netif_running(dev))
2489                 return -EINVAL;
2490 
2491         switch (cmd) {
2492         case SIOCGMIIPHY:
2493         case SIOCGMIIREG:
2494         case SIOCSMIIREG:
2495                 if (!priv->phydev)
2496                         return -EINVAL;
2497                 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2498                 break;
2499         case SIOCSHWTSTAMP:
2500                 ret = stmmac_hwtstamp_ioctl(dev, rq);
2501                 break;
2502         default:
2503                 break;
2504         }
2505 
2506         return ret;
2507 }
2508 
2509 #ifdef CONFIG_DEBUG_FS
2510 static struct dentry *stmmac_fs_dir;
2511 
2512 static void sysfs_display_ring(void *head, int size, int extend_desc,
2513                                struct seq_file *seq)
2514 {
2515         int i;
2516         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2517         struct dma_desc *p = (struct dma_desc *)head;
2518 
2519         for (i = 0; i < size; i++) {
2520                 u64 x;
2521                 if (extend_desc) {
2522                         x = *(u64 *) ep;
2523                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2524                                    i, (unsigned int)virt_to_phys(ep),
2525                                    (unsigned int)x, (unsigned int)(x >> 32),
2526                                    ep->basic.des2, ep->basic.des3);
2527                         ep++;
2528                 } else {
2529                         x = *(u64 *) p;
2530                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2531                                    i, (unsigned int)virt_to_phys(ep),
2532                                    (unsigned int)x, (unsigned int)(x >> 32),
2533                                    p->des2, p->des3);
2534                         p++;
2535                 }
2536                 seq_printf(seq, "\n");
2537         }
2538 }
2539 
2540 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2541 {
2542         struct net_device *dev = seq->private;
2543         struct stmmac_priv *priv = netdev_priv(dev);
2544         unsigned int txsize = priv->dma_tx_size;
2545         unsigned int rxsize = priv->dma_rx_size;
2546 
2547         if (priv->extend_desc) {
2548                 seq_printf(seq, "Extended RX descriptor ring:\n");
2549                 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2550                 seq_printf(seq, "Extended TX descriptor ring:\n");
2551                 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2552         } else {
2553                 seq_printf(seq, "RX descriptor ring:\n");
2554                 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2555                 seq_printf(seq, "TX descriptor ring:\n");
2556                 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2557         }
2558 
2559         return 0;
2560 }
2561 
2562 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2563 {
2564         return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2565 }
2566 
2567 static const struct file_operations stmmac_rings_status_fops = {
2568         .owner = THIS_MODULE,
2569         .open = stmmac_sysfs_ring_open,
2570         .read = seq_read,
2571         .llseek = seq_lseek,
2572         .release = single_release,
2573 };
2574 
2575 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2576 {
2577         struct net_device *dev = seq->private;
2578         struct stmmac_priv *priv = netdev_priv(dev);
2579 
2580         if (!priv->hw_cap_support) {
2581                 seq_printf(seq, "DMA HW features not supported\n");
2582                 return 0;
2583         }
2584 
2585         seq_printf(seq, "==============================\n");
2586         seq_printf(seq, "\tDMA HW features\n");
2587         seq_printf(seq, "==============================\n");
2588 
2589         seq_printf(seq, "\t10/100 Mbps %s\n",
2590                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2591         seq_printf(seq, "\t1000 Mbps %s\n",
2592                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
2593         seq_printf(seq, "\tHalf duple %s\n",
2594                    (priv->dma_cap.half_duplex) ? "Y" : "N");
2595         seq_printf(seq, "\tHash Filter: %s\n",
2596                    (priv->dma_cap.hash_filter) ? "Y" : "N");
2597         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2598                    (priv->dma_cap.multi_addr) ? "Y" : "N");
2599         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2600                    (priv->dma_cap.pcs) ? "Y" : "N");
2601         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2602                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
2603         seq_printf(seq, "\tPMT Remote wake up: %s\n",
2604                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2605         seq_printf(seq, "\tPMT Magic Frame: %s\n",
2606                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2607         seq_printf(seq, "\tRMON module: %s\n",
2608                    (priv->dma_cap.rmon) ? "Y" : "N");
2609         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2610                    (priv->dma_cap.time_stamp) ? "Y" : "N");
2611         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2612                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
2613         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2614                    (priv->dma_cap.eee) ? "Y" : "N");
2615         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2616         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2617                    (priv->dma_cap.tx_coe) ? "Y" : "N");
2618         seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2619                    (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2620         seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2621                    (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2622         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2623                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2624         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2625                    priv->dma_cap.number_rx_channel);
2626         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2627                    priv->dma_cap.number_tx_channel);
2628         seq_printf(seq, "\tEnhanced descriptors: %s\n",
2629                    (priv->dma_cap.enh_desc) ? "Y" : "N");
2630 
2631         return 0;
2632 }
2633 
2634 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2635 {
2636         return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2637 }
2638 
2639 static const struct file_operations stmmac_dma_cap_fops = {
2640         .owner = THIS_MODULE,
2641         .open = stmmac_sysfs_dma_cap_open,
2642         .read = seq_read,
2643         .llseek = seq_lseek,
2644         .release = single_release,
2645 };
2646 
2647 static int stmmac_init_fs(struct net_device *dev)
2648 {
2649         struct stmmac_priv *priv = netdev_priv(dev);
2650 
2651         /* Create per netdev entries */
2652         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2653 
2654         if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2655                 pr_err("ERROR %s/%s, debugfs create directory failed\n",
2656                        STMMAC_RESOURCE_NAME, dev->name);
2657 
2658                 return -ENOMEM;
2659         }
2660 
2661         /* Entry to report DMA RX/TX rings */
2662         priv->dbgfs_rings_status =
2663                 debugfs_create_file("descriptors_status", S_IRUGO,
2664                                     priv->dbgfs_dir, dev,
2665                                     &stmmac_rings_status_fops);
2666 
2667         if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2668                 pr_info("ERROR creating stmmac ring debugfs file\n");
2669                 debugfs_remove_recursive(priv->dbgfs_dir);
2670 
2671                 return -ENOMEM;
2672         }
2673 
2674         /* Entry to report the DMA HW features */
2675         priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2676                                             priv->dbgfs_dir,
2677                                             dev, &stmmac_dma_cap_fops);
2678 
2679         if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2680                 pr_info("ERROR creating stmmac MMC debugfs file\n");
2681                 debugfs_remove_recursive(priv->dbgfs_dir);
2682 
2683                 return -ENOMEM;
2684         }
2685 
2686         return 0;
2687 }
2688 
2689 static void stmmac_exit_fs(struct net_device *dev)
2690 {
2691         struct stmmac_priv *priv = netdev_priv(dev);
2692 
2693         debugfs_remove_recursive(priv->dbgfs_dir);
2694 }
2695 #endif /* CONFIG_DEBUG_FS */
2696 
2697 static const struct net_device_ops stmmac_netdev_ops = {
2698         .ndo_open = stmmac_open,
2699         .ndo_start_xmit = stmmac_xmit,
2700         .ndo_stop = stmmac_release,
2701         .ndo_change_mtu = stmmac_change_mtu,
2702         .ndo_fix_features = stmmac_fix_features,
2703         .ndo_set_features = stmmac_set_features,
2704         .ndo_set_rx_mode = stmmac_set_rx_mode,
2705         .ndo_tx_timeout = stmmac_tx_timeout,
2706         .ndo_do_ioctl = stmmac_ioctl,
2707 #ifdef CONFIG_NET_POLL_CONTROLLER
2708         .ndo_poll_controller = stmmac_poll_controller,
2709 #endif
2710         .ndo_set_mac_address = eth_mac_addr,
2711 };
2712 
2713 /**
2714  *  stmmac_hw_init - Init the MAC device
2715  *  @priv: driver private structure
2716  *  Description: this function is to configure the MAC device according to
2717  *  some platform parameters or the HW capability register. It prepares the
2718  *  driver to use either ring or chain modes and to setup either enhanced or
2719  *  normal descriptors.
2720  */
2721 static int stmmac_hw_init(struct stmmac_priv *priv)
2722 {
2723         struct mac_device_info *mac;
2724 
2725         /* Identify the MAC HW device */
2726         if (priv->plat->has_gmac) {
2727                 priv->dev->priv_flags |= IFF_UNICAST_FLT;
2728                 mac = dwmac1000_setup(priv->ioaddr,
2729                                       priv->plat->multicast_filter_bins,
2730                                       priv->plat->unicast_filter_entries);
2731         } else {
2732                 mac = dwmac100_setup(priv->ioaddr);
2733         }
2734         if (!mac)
2735                 return -ENOMEM;
2736 
2737         priv->hw = mac;
2738 
2739         /* Get and dump the chip ID */
2740         priv->synopsys_id = stmmac_get_synopsys_id(priv);
2741 
2742         /* To use the chained or ring mode */
2743         if (chain_mode) {
2744                 priv->hw->mode = &chain_mode_ops;
2745                 pr_info(" Chain mode enabled\n");
2746                 priv->mode = STMMAC_CHAIN_MODE;
2747         } else {
2748                 priv->hw->mode = &ring_mode_ops;
2749                 pr_info(" Ring mode enabled\n");
2750                 priv->mode = STMMAC_RING_MODE;
2751         }
2752 
2753         /* Get the HW capability (new GMAC newer than 3.50a) */
2754         priv->hw_cap_support = stmmac_get_hw_features(priv);
2755         if (priv->hw_cap_support) {
2756                 pr_info(" DMA HW capability register supported");
2757 
2758                 /* We can override some gmac/dma configuration fields: e.g.
2759                  * enh_desc, tx_coe (e.g. that are passed through the
2760                  * platform) with the values from the HW capability
2761                  * register (if supported).
2762                  */
2763                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
2764                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2765 
2766                 /* TXCOE doesn't work in thresh DMA mode */
2767                 if (priv->plat->force_thresh_dma_mode)
2768                         priv->plat->tx_coe = 0;
2769                 else
2770                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
2771 
2772                 if (priv->dma_cap.rx_coe_type2)
2773                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2774                 else if (priv->dma_cap.rx_coe_type1)
2775                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2776 
2777         } else
2778                 pr_info(" No HW DMA feature register supported");
2779 
2780         /* To use alternate (extended) or normal descriptor structures */
2781         stmmac_selec_desc_mode(priv);
2782 
2783         if (priv->plat->rx_coe) {
2784                 priv->hw->rx_csum = priv->plat->rx_coe;
2785                 pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2786                         priv->plat->rx_coe);
2787         }
2788         if (priv->plat->tx_coe)
2789                 pr_info(" TX Checksum insertion supported\n");
2790 
2791         if (priv->plat->pmt) {
2792                 pr_info(" Wake-Up On Lan supported\n");
2793                 device_set_wakeup_capable(priv->device, 1);
2794         }
2795 
2796         return 0;
2797 }
2798 
2799 /**
2800  * stmmac_dvr_probe
2801  * @device: device pointer
2802  * @plat_dat: platform data pointer
2803  * @addr: iobase memory address
2804  * Description: this is the main probe function used to
2805  * call the alloc_etherdev, allocate the priv structure.
2806  * Return:
2807  * on success the new private structure is returned, otherwise the error
2808  * pointer.
2809  */
2810 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2811                                      struct plat_stmmacenet_data *plat_dat,
2812                                      void __iomem *addr)
2813 {
2814         int ret = 0;
2815         struct net_device *ndev = NULL;
2816         struct stmmac_priv *priv;
2817 
2818         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2819         if (!ndev)
2820                 return ERR_PTR(-ENOMEM);
2821 
2822         SET_NETDEV_DEV(ndev, device);
2823 
2824         priv = netdev_priv(ndev);
2825         priv->device = device;
2826         priv->dev = ndev;
2827 
2828         stmmac_set_ethtool_ops(ndev);
2829         priv->pause = pause;
2830         priv->plat = plat_dat;
2831         priv->ioaddr = addr;
2832         priv->dev->base_addr = (unsigned long)addr;
2833 
2834         /* Verify driver arguments */
2835         stmmac_verify_args();
2836 
2837         /* Override with kernel parameters if supplied XXX CRS XXX
2838          * this needs to have multiple instances
2839          */
2840         if ((phyaddr >= 0) && (phyaddr <= 31))
2841                 priv->plat->phy_addr = phyaddr;
2842 
2843         priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2844         if (IS_ERR(priv->stmmac_clk)) {
2845                 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2846                          __func__);
2847                 /* If failed to obtain stmmac_clk and specific clk_csr value
2848                  * is NOT passed from the platform, probe fail.
2849                  */
2850                 if (!priv->plat->clk_csr) {
2851                         ret = PTR_ERR(priv->stmmac_clk);
2852                         goto error_clk_get;
2853                 } else {
2854                         priv->stmmac_clk = NULL;
2855                 }
2856         }
2857         clk_prepare_enable(priv->stmmac_clk);
2858 
2859         priv->pclk = devm_clk_get(priv->device, "pclk");
2860         if (IS_ERR(priv->pclk)) {
2861                 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2862                         ret = -EPROBE_DEFER;
2863                         goto error_pclk_get;
2864                 }
2865                 priv->pclk = NULL;
2866         }
2867         clk_prepare_enable(priv->pclk);
2868 
2869         priv->stmmac_rst = devm_reset_control_get(priv->device,
2870                                                   STMMAC_RESOURCE_NAME);
2871         if (IS_ERR(priv->stmmac_rst)) {
2872                 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2873                         ret = -EPROBE_DEFER;
2874                         goto error_hw_init;
2875                 }
2876                 dev_info(priv->device, "no reset control found\n");
2877                 priv->stmmac_rst = NULL;
2878         }
2879         if (priv->stmmac_rst)
2880                 reset_control_deassert(priv->stmmac_rst);
2881 
2882         /* Init MAC and get the capabilities */
2883         ret = stmmac_hw_init(priv);
2884         if (ret)
2885                 goto error_hw_init;
2886 
2887         ndev->netdev_ops = &stmmac_netdev_ops;
2888 
2889         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2890                             NETIF_F_RXCSUM;
2891         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2892         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2893 #ifdef STMMAC_VLAN_TAG_USED
2894         /* Both mac100 and gmac support receive VLAN tag detection */
2895         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2896 #endif
2897         priv->msg_enable = netif_msg_init(debug, default_msg_level);
2898 
2899         if (flow_ctrl)
2900                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2901 
2902         /* Rx Watchdog is available in the COREs newer than the 3.40.
2903          * In some case, for example on bugged HW this feature
2904          * has to be disable and this can be done by passing the
2905          * riwt_off field from the platform.
2906          */
2907         if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2908                 priv->use_riwt = 1;
2909                 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2910         }
2911 
2912         netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2913 
2914         spin_lock_init(&priv->lock);
2915         spin_lock_init(&priv->tx_lock);
2916 
2917         ret = register_netdev(ndev);
2918         if (ret) {
2919                 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2920                 goto error_netdev_register;
2921         }
2922 
2923         /* If a specific clk_csr value is passed from the platform
2924          * this means that the CSR Clock Range selection cannot be
2925          * changed at run-time and it is fixed. Viceversa the driver'll try to
2926          * set the MDC clock dynamically according to the csr actual
2927          * clock input.
2928          */
2929         if (!priv->plat->clk_csr)
2930                 stmmac_clk_csr_set(priv);
2931         else
2932                 priv->clk_csr = priv->plat->clk_csr;
2933 
2934         stmmac_check_pcs_mode(priv);
2935 
2936         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2937             priv->pcs != STMMAC_PCS_RTBI) {
2938                 /* MDIO bus Registration */
2939                 ret = stmmac_mdio_register(ndev);
2940                 if (ret < 0) {
2941                         pr_debug("%s: MDIO bus (id: %d) registration failed",
2942                                  __func__, priv->plat->bus_id);
2943                         goto error_mdio_register;
2944                 }
2945         }
2946 
2947         return priv;
2948 
2949 error_mdio_register:
2950         unregister_netdev(ndev);
2951 error_netdev_register:
2952         netif_napi_del(&priv->napi);
2953 error_hw_init:
2954         clk_disable_unprepare(priv->pclk);
2955 error_pclk_get:
2956         clk_disable_unprepare(priv->stmmac_clk);
2957 error_clk_get:
2958         free_netdev(ndev);
2959 
2960         return ERR_PTR(ret);
2961 }
2962 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2963 
2964 /**
2965  * stmmac_dvr_remove
2966  * @ndev: net device pointer
2967  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2968  * changes the link status, releases the DMA descriptor rings.
2969  */
2970 int stmmac_dvr_remove(struct net_device *ndev)
2971 {
2972         struct stmmac_priv *priv = netdev_priv(ndev);
2973 
2974         pr_info("%s:\n\tremoving driver", __func__);
2975 
2976         priv->hw->dma->stop_rx(priv->ioaddr);
2977         priv->hw->dma->stop_tx(priv->ioaddr);
2978 
2979         stmmac_set_mac(priv->ioaddr, false);
2980         netif_carrier_off(ndev);
2981         unregister_netdev(ndev);
2982         if (priv->stmmac_rst)
2983                 reset_control_assert(priv->stmmac_rst);
2984         clk_disable_unprepare(priv->pclk);
2985         clk_disable_unprepare(priv->stmmac_clk);
2986         if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2987             priv->pcs != STMMAC_PCS_RTBI)
2988                 stmmac_mdio_unregister(ndev);
2989         free_netdev(ndev);
2990 
2991         return 0;
2992 }
2993 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
2994 
2995 /**
2996  * stmmac_suspend - suspend callback
2997  * @ndev: net device pointer
2998  * Description: this is the function to suspend the device and it is called
2999  * by the platform driver to stop the network queue, release the resources,
3000  * program the PMT register (for WoL), clean and release driver resources.
3001  */
3002 int stmmac_suspend(struct net_device *ndev)
3003 {
3004         struct stmmac_priv *priv = netdev_priv(ndev);
3005         unsigned long flags;
3006 
3007         if (!ndev || !netif_running(ndev))
3008                 return 0;
3009 
3010         if (priv->phydev)
3011                 phy_stop(priv->phydev);
3012 
3013         spin_lock_irqsave(&priv->lock, flags);
3014 
3015         netif_device_detach(ndev);
3016         netif_stop_queue(ndev);
3017 
3018         napi_disable(&priv->napi);
3019 
3020         /* Stop TX/RX DMA */
3021         priv->hw->dma->stop_tx(priv->ioaddr);
3022         priv->hw->dma->stop_rx(priv->ioaddr);
3023 
3024         stmmac_clear_descriptors(priv);
3025 
3026         /* Enable Power down mode by programming the PMT regs */
3027         if (device_may_wakeup(priv->device)) {
3028                 priv->hw->mac->pmt(priv->hw, priv->wolopts);
3029                 priv->irq_wake = 1;
3030         } else {
3031                 stmmac_set_mac(priv->ioaddr, false);
3032                 pinctrl_pm_select_sleep_state(priv->device);
3033                 /* Disable clock in case of PWM is off */
3034                 clk_disable(priv->pclk);
3035                 clk_disable(priv->stmmac_clk);
3036         }
3037         spin_unlock_irqrestore(&priv->lock, flags);
3038 
3039         priv->oldlink = 0;
3040         priv->speed = 0;
3041         priv->oldduplex = -1;
3042         return 0;
3043 }
3044 EXPORT_SYMBOL_GPL(stmmac_suspend);
3045 
3046 /**
3047  * stmmac_resume - resume callback
3048  * @ndev: net device pointer
3049  * Description: when resume this function is invoked to setup the DMA and CORE
3050  * in a usable state.
3051  */
3052 int stmmac_resume(struct net_device *ndev)
3053 {
3054         struct stmmac_priv *priv = netdev_priv(ndev);
3055         unsigned long flags;
3056 
3057         if (!netif_running(ndev))
3058                 return 0;
3059 
3060         spin_lock_irqsave(&priv->lock, flags);
3061 
3062         /* Power Down bit, into the PM register, is cleared
3063          * automatically as soon as a magic packet or a Wake-up frame
3064          * is received. Anyway, it's better to manually clear
3065          * this bit because it can generate problems while resuming
3066          * from another devices (e.g. serial console).
3067          */
3068         if (device_may_wakeup(priv->device)) {
3069                 priv->hw->mac->pmt(priv->hw, 0);
3070                 priv->irq_wake = 0;
3071         } else {
3072                 pinctrl_pm_select_default_state(priv->device);
3073                 /* enable the clk prevously disabled */
3074                 clk_enable(priv->stmmac_clk);
3075                 clk_enable(priv->pclk);
3076                 /* reset the phy so that it's ready */
3077                 if (priv->mii)
3078                         stmmac_mdio_reset(priv->mii);
3079         }
3080 
3081         netif_device_attach(ndev);
3082 
3083         init_dma_desc_rings(ndev, GFP_ATOMIC);
3084         stmmac_hw_setup(ndev, false);
3085         stmmac_init_tx_coalesce(priv);
3086 
3087         napi_enable(&priv->napi);
3088 
3089         netif_start_queue(ndev);
3090 
3091         spin_unlock_irqrestore(&priv->lock, flags);
3092 
3093         if (priv->phydev)
3094                 phy_start(priv->phydev);
3095 
3096         return 0;
3097 }
3098 EXPORT_SYMBOL_GPL(stmmac_resume);
3099 
3100 #ifndef MODULE
3101 static int __init stmmac_cmdline_opt(char *str)
3102 {
3103         char *opt;
3104 
3105         if (!str || !*str)
3106                 return -EINVAL;
3107         while ((opt = strsep(&str, ",")) != NULL) {
3108                 if (!strncmp(opt, "debug:", 6)) {
3109                         if (kstrtoint(opt + 6, 0, &debug))
3110                                 goto err;
3111                 } else if (!strncmp(opt, "phyaddr:", 8)) {
3112                         if (kstrtoint(opt + 8, 0, &phyaddr))
3113                                 goto err;
3114                 } else if (!strncmp(opt, "dma_txsize:", 11)) {
3115                         if (kstrtoint(opt + 11, 0, &dma_txsize))
3116                                 goto err;
3117                 } else if (!strncmp(opt, "dma_rxsize:", 11)) {
3118                         if (kstrtoint(opt + 11, 0, &dma_rxsize))
3119                                 goto err;
3120                 } else if (!strncmp(opt, "buf_sz:", 7)) {
3121                         if (kstrtoint(opt + 7, 0, &buf_sz))
3122                                 goto err;
3123                 } else if (!strncmp(opt, "tc:", 3)) {
3124                         if (kstrtoint(opt + 3, 0, &tc))
3125                                 goto err;
3126                 } else if (!strncmp(opt, "watchdog:", 9)) {
3127                         if (kstrtoint(opt + 9, 0, &watchdog))
3128                                 goto err;
3129                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
3130                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
3131                                 goto err;
3132                 } else if (!strncmp(opt, "pause:", 6)) {
3133                         if (kstrtoint(opt + 6, 0, &pause))
3134                                 goto err;
3135                 } else if (!strncmp(opt, "eee_timer:", 10)) {
3136                         if (kstrtoint(opt + 10, 0, &eee_timer))
3137                                 goto err;
3138                 } else if (!strncmp(opt, "chain_mode:", 11)) {
3139                         if (kstrtoint(opt + 11, 0, &chain_mode))
3140                                 goto err;
3141                 }
3142         }
3143         return 0;
3144 
3145 err:
3146         pr_err("%s: ERROR broken module parameter conversion", __func__);
3147         return -EINVAL;
3148 }
3149 
3150 __setup("stmmaceth=", stmmac_cmdline_opt);
3151 #endif /* MODULE */
3152 
3153 static int __init stmmac_init(void)
3154 {
3155 #ifdef CONFIG_DEBUG_FS
3156         /* Create debugfs main directory if it doesn't exist yet */
3157         if (!stmmac_fs_dir) {
3158                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3159 
3160                 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3161                         pr_err("ERROR %s, debugfs create directory failed\n",
3162                                STMMAC_RESOURCE_NAME);
3163 
3164                         return -ENOMEM;
3165                 }
3166         }
3167 #endif
3168 
3169         return 0;
3170 }
3171 
3172 static void __exit stmmac_exit(void)
3173 {
3174 #ifdef CONFIG_DEBUG_FS
3175         debugfs_remove_recursive(stmmac_fs_dir);
3176 #endif
3177 }
3178 
3179 module_init(stmmac_init)
3180 module_exit(stmmac_exit)
3181 
3182 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3183 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3184 MODULE_LICENSE("GPL");
3185 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us