Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c

  1 /*******************************************************************************
  2 
  3   Intel 82599 Virtual Function driver
  4   Copyright(c) 1999 - 2015 Intel Corporation.
  5 
  6   This program is free software; you can redistribute it and/or modify it
  7   under the terms and conditions of the GNU General Public License,
  8   version 2, as published by the Free Software Foundation.
  9 
 10   This program is distributed in the hope it will be useful, but WITHOUT
 11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13   more details.
 14 
 15   You should have received a copy of the GNU General Public License along with
 16   this program; if not, see <http://www.gnu.org/licenses/>.
 17 
 18   The full GNU General Public License is included in this distribution in
 19   the file called "COPYING".
 20 
 21   Contact Information:
 22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24 
 25 *******************************************************************************/
 26 
 27 /******************************************************************************
 28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
 29 ******************************************************************************/
 30 
 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 32 
 33 #include <linux/types.h>
 34 #include <linux/bitops.h>
 35 #include <linux/module.h>
 36 #include <linux/pci.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/vmalloc.h>
 39 #include <linux/string.h>
 40 #include <linux/in.h>
 41 #include <linux/ip.h>
 42 #include <linux/tcp.h>
 43 #include <linux/sctp.h>
 44 #include <linux/ipv6.h>
 45 #include <linux/slab.h>
 46 #include <net/checksum.h>
 47 #include <net/ip6_checksum.h>
 48 #include <linux/ethtool.h>
 49 #include <linux/if.h>
 50 #include <linux/if_vlan.h>
 51 #include <linux/prefetch.h>
 52 
 53 #include "ixgbevf.h"
 54 
 55 const char ixgbevf_driver_name[] = "ixgbevf";
 56 static const char ixgbevf_driver_string[] =
 57         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
 58 
 59 #define DRV_VERSION "2.12.1-k"
 60 const char ixgbevf_driver_version[] = DRV_VERSION;
 61 static char ixgbevf_copyright[] =
 62         "Copyright (c) 2009 - 2012 Intel Corporation.";
 63 
 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
 65         [board_82599_vf] = &ixgbevf_82599_vf_info,
 66         [board_X540_vf]  = &ixgbevf_X540_vf_info,
 67         [board_X550_vf]  = &ixgbevf_X550_vf_info,
 68         [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
 69 };
 70 
 71 /* ixgbevf_pci_tbl - PCI Device ID Table
 72  *
 73  * Wildcard entries (PCI_ANY_ID) should come last
 74  * Last entry must be all 0s
 75  *
 76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 77  *   Class, Class Mask, private data (not used) }
 78  */
 79 static const struct pci_device_id ixgbevf_pci_tbl[] = {
 80         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
 81         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
 82         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
 83         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
 84         /* required last entry */
 85         {0, }
 86 };
 87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
 88 
 89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
 91 MODULE_LICENSE("GPL");
 92 MODULE_VERSION(DRV_VERSION);
 93 
 94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 95 static int debug = -1;
 96 module_param(debug, int, 0);
 97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 98 
 99 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
100 {
101         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
102             !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
103             !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
104                 schedule_work(&adapter->service_task);
105 }
106 
107 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
108 {
109         BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
110 
111         /* flush memory to make sure state is correct before next watchdog */
112         smp_mb__before_atomic();
113         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
114 }
115 
116 /* forward decls */
117 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
118 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
119 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
120 
121 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
122 {
123         struct ixgbevf_adapter *adapter = hw->back;
124 
125         if (!hw->hw_addr)
126                 return;
127         hw->hw_addr = NULL;
128         dev_err(&adapter->pdev->dev, "Adapter removed\n");
129         if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
130                 ixgbevf_service_event_schedule(adapter);
131 }
132 
133 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
134 {
135         u32 value;
136 
137         /* The following check not only optimizes a bit by not
138          * performing a read on the status register when the
139          * register just read was a status register read that
140          * returned IXGBE_FAILED_READ_REG. It also blocks any
141          * potential recursion.
142          */
143         if (reg == IXGBE_VFSTATUS) {
144                 ixgbevf_remove_adapter(hw);
145                 return;
146         }
147         value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
148         if (value == IXGBE_FAILED_READ_REG)
149                 ixgbevf_remove_adapter(hw);
150 }
151 
152 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
153 {
154         u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
155         u32 value;
156 
157         if (IXGBE_REMOVED(reg_addr))
158                 return IXGBE_FAILED_READ_REG;
159         value = readl(reg_addr + reg);
160         if (unlikely(value == IXGBE_FAILED_READ_REG))
161                 ixgbevf_check_remove(hw, reg);
162         return value;
163 }
164 
165 /**
166  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
167  * @adapter: pointer to adapter struct
168  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
169  * @queue: queue to map the corresponding interrupt to
170  * @msix_vector: the vector to map to the corresponding queue
171  **/
172 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
173                              u8 queue, u8 msix_vector)
174 {
175         u32 ivar, index;
176         struct ixgbe_hw *hw = &adapter->hw;
177 
178         if (direction == -1) {
179                 /* other causes */
180                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
181                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
182                 ivar &= ~0xFF;
183                 ivar |= msix_vector;
184                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
185         } else {
186                 /* Tx or Rx causes */
187                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
188                 index = ((16 * (queue & 1)) + (8 * direction));
189                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
190                 ivar &= ~(0xFF << index);
191                 ivar |= (msix_vector << index);
192                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
193         }
194 }
195 
196 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
197                                         struct ixgbevf_tx_buffer *tx_buffer)
198 {
199         if (tx_buffer->skb) {
200                 dev_kfree_skb_any(tx_buffer->skb);
201                 if (dma_unmap_len(tx_buffer, len))
202                         dma_unmap_single(tx_ring->dev,
203                                          dma_unmap_addr(tx_buffer, dma),
204                                          dma_unmap_len(tx_buffer, len),
205                                          DMA_TO_DEVICE);
206         } else if (dma_unmap_len(tx_buffer, len)) {
207                 dma_unmap_page(tx_ring->dev,
208                                dma_unmap_addr(tx_buffer, dma),
209                                dma_unmap_len(tx_buffer, len),
210                                DMA_TO_DEVICE);
211         }
212         tx_buffer->next_to_watch = NULL;
213         tx_buffer->skb = NULL;
214         dma_unmap_len_set(tx_buffer, len, 0);
215         /* tx_buffer must be completely set up in the transmit path */
216 }
217 
218 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
219 {
220         return ring->stats.packets;
221 }
222 
223 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
224 {
225         struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
226         struct ixgbe_hw *hw = &adapter->hw;
227 
228         u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
229         u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
230 
231         if (head != tail)
232                 return (head < tail) ?
233                         tail - head : (tail + ring->count - head);
234 
235         return 0;
236 }
237 
238 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
239 {
240         u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
241         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
242         u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
243 
244         clear_check_for_tx_hang(tx_ring);
245 
246         /* Check for a hung queue, but be thorough. This verifies
247          * that a transmit has been completed since the previous
248          * check AND there is at least one packet pending. The
249          * ARMED bit is set to indicate a potential hang.
250          */
251         if ((tx_done_old == tx_done) && tx_pending) {
252                 /* make sure it is true for two checks in a row */
253                 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
254                                         &tx_ring->state);
255         }
256         /* reset the countdown */
257         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
258 
259         /* update completed stats and continue */
260         tx_ring->tx_stats.tx_done_old = tx_done;
261 
262         return false;
263 }
264 
265 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
266 {
267         /* Do the reset outside of interrupt context */
268         if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
269                 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
270                 ixgbevf_service_event_schedule(adapter);
271         }
272 }
273 
274 /**
275  * ixgbevf_tx_timeout - Respond to a Tx Hang
276  * @netdev: network interface device structure
277  **/
278 static void ixgbevf_tx_timeout(struct net_device *netdev)
279 {
280         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
281 
282         ixgbevf_tx_timeout_reset(adapter);
283 }
284 
285 /**
286  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
287  * @q_vector: board private structure
288  * @tx_ring: tx ring to clean
289  **/
290 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
291                                  struct ixgbevf_ring *tx_ring)
292 {
293         struct ixgbevf_adapter *adapter = q_vector->adapter;
294         struct ixgbevf_tx_buffer *tx_buffer;
295         union ixgbe_adv_tx_desc *tx_desc;
296         unsigned int total_bytes = 0, total_packets = 0;
297         unsigned int budget = tx_ring->count / 2;
298         unsigned int i = tx_ring->next_to_clean;
299 
300         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
301                 return true;
302 
303         tx_buffer = &tx_ring->tx_buffer_info[i];
304         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
305         i -= tx_ring->count;
306 
307         do {
308                 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
309 
310                 /* if next_to_watch is not set then there is no work pending */
311                 if (!eop_desc)
312                         break;
313 
314                 /* prevent any other reads prior to eop_desc */
315                 read_barrier_depends();
316 
317                 /* if DD is not set pending work has not been completed */
318                 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
319                         break;
320 
321                 /* clear next_to_watch to prevent false hangs */
322                 tx_buffer->next_to_watch = NULL;
323 
324                 /* update the statistics for this packet */
325                 total_bytes += tx_buffer->bytecount;
326                 total_packets += tx_buffer->gso_segs;
327 
328                 /* free the skb */
329                 dev_kfree_skb_any(tx_buffer->skb);
330 
331                 /* unmap skb header data */
332                 dma_unmap_single(tx_ring->dev,
333                                  dma_unmap_addr(tx_buffer, dma),
334                                  dma_unmap_len(tx_buffer, len),
335                                  DMA_TO_DEVICE);
336 
337                 /* clear tx_buffer data */
338                 tx_buffer->skb = NULL;
339                 dma_unmap_len_set(tx_buffer, len, 0);
340 
341                 /* unmap remaining buffers */
342                 while (tx_desc != eop_desc) {
343                         tx_buffer++;
344                         tx_desc++;
345                         i++;
346                         if (unlikely(!i)) {
347                                 i -= tx_ring->count;
348                                 tx_buffer = tx_ring->tx_buffer_info;
349                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350                         }
351 
352                         /* unmap any remaining paged data */
353                         if (dma_unmap_len(tx_buffer, len)) {
354                                 dma_unmap_page(tx_ring->dev,
355                                                dma_unmap_addr(tx_buffer, dma),
356                                                dma_unmap_len(tx_buffer, len),
357                                                DMA_TO_DEVICE);
358                                 dma_unmap_len_set(tx_buffer, len, 0);
359                         }
360                 }
361 
362                 /* move us one more past the eop_desc for start of next pkt */
363                 tx_buffer++;
364                 tx_desc++;
365                 i++;
366                 if (unlikely(!i)) {
367                         i -= tx_ring->count;
368                         tx_buffer = tx_ring->tx_buffer_info;
369                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
370                 }
371 
372                 /* issue prefetch for next Tx descriptor */
373                 prefetch(tx_desc);
374 
375                 /* update budget accounting */
376                 budget--;
377         } while (likely(budget));
378 
379         i += tx_ring->count;
380         tx_ring->next_to_clean = i;
381         u64_stats_update_begin(&tx_ring->syncp);
382         tx_ring->stats.bytes += total_bytes;
383         tx_ring->stats.packets += total_packets;
384         u64_stats_update_end(&tx_ring->syncp);
385         q_vector->tx.total_bytes += total_bytes;
386         q_vector->tx.total_packets += total_packets;
387 
388         if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
389                 struct ixgbe_hw *hw = &adapter->hw;
390                 union ixgbe_adv_tx_desc *eop_desc;
391 
392                 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
393 
394                 pr_err("Detected Tx Unit Hang\n"
395                        "  Tx Queue             <%d>\n"
396                        "  TDH, TDT             <%x>, <%x>\n"
397                        "  next_to_use          <%x>\n"
398                        "  next_to_clean        <%x>\n"
399                        "tx_buffer_info[next_to_clean]\n"
400                        "  next_to_watch        <%p>\n"
401                        "  eop_desc->wb.status  <%x>\n"
402                        "  time_stamp           <%lx>\n"
403                        "  jiffies              <%lx>\n",
404                        tx_ring->queue_index,
405                        IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
406                        IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
407                        tx_ring->next_to_use, i,
408                        eop_desc, (eop_desc ? eop_desc->wb.status : 0),
409                        tx_ring->tx_buffer_info[i].time_stamp, jiffies);
410 
411                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
412 
413                 /* schedule immediate reset if we believe we hung */
414                 ixgbevf_tx_timeout_reset(adapter);
415 
416                 return true;
417         }
418 
419 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
420         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
421                      (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
422                 /* Make sure that anybody stopping the queue after this
423                  * sees the new next_to_clean.
424                  */
425                 smp_mb();
426 
427                 if (__netif_subqueue_stopped(tx_ring->netdev,
428                                              tx_ring->queue_index) &&
429                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
430                         netif_wake_subqueue(tx_ring->netdev,
431                                             tx_ring->queue_index);
432                         ++tx_ring->tx_stats.restart_queue;
433                 }
434         }
435 
436         return !!budget;
437 }
438 
439 /**
440  * ixgbevf_rx_skb - Helper function to determine proper Rx method
441  * @q_vector: structure containing interrupt and ring information
442  * @skb: packet to send up
443  **/
444 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
445                            struct sk_buff *skb)
446 {
447 #ifdef CONFIG_NET_RX_BUSY_POLL
448         skb_mark_napi_id(skb, &q_vector->napi);
449 
450         if (ixgbevf_qv_busy_polling(q_vector)) {
451                 netif_receive_skb(skb);
452                 /* exit early if we busy polled */
453                 return;
454         }
455 #endif /* CONFIG_NET_RX_BUSY_POLL */
456 
457         napi_gro_receive(&q_vector->napi, skb);
458 }
459 
460 /**
461  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
462  * @ring: structure containig ring specific data
463  * @rx_desc: current Rx descriptor being processed
464  * @skb: skb currently being received and modified
465  **/
466 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
467                                        union ixgbe_adv_rx_desc *rx_desc,
468                                        struct sk_buff *skb)
469 {
470         skb_checksum_none_assert(skb);
471 
472         /* Rx csum disabled */
473         if (!(ring->netdev->features & NETIF_F_RXCSUM))
474                 return;
475 
476         /* if IP and error */
477         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
478             ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
479                 ring->rx_stats.csum_err++;
480                 return;
481         }
482 
483         if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
484                 return;
485 
486         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
487                 ring->rx_stats.csum_err++;
488                 return;
489         }
490 
491         /* It must be a TCP or UDP packet with a valid checksum */
492         skb->ip_summed = CHECKSUM_UNNECESSARY;
493 }
494 
495 /**
496  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
497  * @rx_ring: rx descriptor ring packet is being transacted on
498  * @rx_desc: pointer to the EOP Rx descriptor
499  * @skb: pointer to current skb being populated
500  *
501  * This function checks the ring, descriptor, and packet information in
502  * order to populate the checksum, VLAN, protocol, and other fields within
503  * the skb.
504  **/
505 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
506                                        union ixgbe_adv_rx_desc *rx_desc,
507                                        struct sk_buff *skb)
508 {
509         ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
510 
511         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
512                 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
513                 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
514 
515                 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
516                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
517         }
518 
519         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
520 }
521 
522 /**
523  * ixgbevf_is_non_eop - process handling of non-EOP buffers
524  * @rx_ring: Rx ring being processed
525  * @rx_desc: Rx descriptor for current buffer
526  * @skb: current socket buffer containing buffer in progress
527  *
528  * This function updates next to clean.  If the buffer is an EOP buffer
529  * this function exits returning false, otherwise it will place the
530  * sk_buff in the next buffer to be chained and return true indicating
531  * that this is in fact a non-EOP buffer.
532  **/
533 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
534                                union ixgbe_adv_rx_desc *rx_desc)
535 {
536         u32 ntc = rx_ring->next_to_clean + 1;
537 
538         /* fetch, update, and store next to clean */
539         ntc = (ntc < rx_ring->count) ? ntc : 0;
540         rx_ring->next_to_clean = ntc;
541 
542         prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
543 
544         if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
545                 return false;
546 
547         return true;
548 }
549 
550 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
551                                       struct ixgbevf_rx_buffer *bi)
552 {
553         struct page *page = bi->page;
554         dma_addr_t dma = bi->dma;
555 
556         /* since we are recycling buffers we should seldom need to alloc */
557         if (likely(page))
558                 return true;
559 
560         /* alloc new page for storage */
561         page = dev_alloc_page();
562         if (unlikely(!page)) {
563                 rx_ring->rx_stats.alloc_rx_page_failed++;
564                 return false;
565         }
566 
567         /* map page for use */
568         dma = dma_map_page(rx_ring->dev, page, 0,
569                            PAGE_SIZE, DMA_FROM_DEVICE);
570 
571         /* if mapping failed free memory back to system since
572          * there isn't much point in holding memory we can't use
573          */
574         if (dma_mapping_error(rx_ring->dev, dma)) {
575                 __free_page(page);
576 
577                 rx_ring->rx_stats.alloc_rx_buff_failed++;
578                 return false;
579         }
580 
581         bi->dma = dma;
582         bi->page = page;
583         bi->page_offset = 0;
584 
585         return true;
586 }
587 
588 /**
589  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
590  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
591  * @cleaned_count: number of buffers to replace
592  **/
593 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
594                                      u16 cleaned_count)
595 {
596         union ixgbe_adv_rx_desc *rx_desc;
597         struct ixgbevf_rx_buffer *bi;
598         unsigned int i = rx_ring->next_to_use;
599 
600         /* nothing to do or no valid netdev defined */
601         if (!cleaned_count || !rx_ring->netdev)
602                 return;
603 
604         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
605         bi = &rx_ring->rx_buffer_info[i];
606         i -= rx_ring->count;
607 
608         do {
609                 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
610                         break;
611 
612                 /* Refresh the desc even if pkt_addr didn't change
613                  * because each write-back erases this info.
614                  */
615                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
616 
617                 rx_desc++;
618                 bi++;
619                 i++;
620                 if (unlikely(!i)) {
621                         rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
622                         bi = rx_ring->rx_buffer_info;
623                         i -= rx_ring->count;
624                 }
625 
626                 /* clear the hdr_addr for the next_to_use descriptor */
627                 rx_desc->read.hdr_addr = 0;
628 
629                 cleaned_count--;
630         } while (cleaned_count);
631 
632         i += rx_ring->count;
633 
634         if (rx_ring->next_to_use != i) {
635                 /* record the next descriptor to use */
636                 rx_ring->next_to_use = i;
637 
638                 /* update next to alloc since we have filled the ring */
639                 rx_ring->next_to_alloc = i;
640 
641                 /* Force memory writes to complete before letting h/w
642                  * know there are new descriptors to fetch.  (Only
643                  * applicable for weak-ordered memory model archs,
644                  * such as IA-64).
645                  */
646                 wmb();
647                 ixgbevf_write_tail(rx_ring, i);
648         }
649 }
650 
651 /**
652  * ixgbevf_pull_tail - ixgbevf specific version of skb_pull_tail
653  * @rx_ring: rx descriptor ring packet is being transacted on
654  * @skb: pointer to current skb being adjusted
655  *
656  * This function is an ixgbevf specific version of __pskb_pull_tail.  The
657  * main difference between this version and the original function is that
658  * this function can make several assumptions about the state of things
659  * that allow for significant optimizations versus the standard function.
660  * As a result we can do things like drop a frag and maintain an accurate
661  * truesize for the skb.
662  **/
663 static void ixgbevf_pull_tail(struct ixgbevf_ring *rx_ring,
664                               struct sk_buff *skb)
665 {
666         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
667         unsigned char *va;
668         unsigned int pull_len;
669 
670         /* it is valid to use page_address instead of kmap since we are
671          * working with pages allocated out of the lomem pool per
672          * alloc_page(GFP_ATOMIC)
673          */
674         va = skb_frag_address(frag);
675 
676         /* we need the header to contain the greater of either ETH_HLEN or
677          * 60 bytes if the skb->len is less than 60 for skb_pad.
678          */
679         pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
680 
681         /* align pull length to size of long to optimize memcpy performance */
682         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
683 
684         /* update all of the pointers */
685         skb_frag_size_sub(frag, pull_len);
686         frag->page_offset += pull_len;
687         skb->data_len -= pull_len;
688         skb->tail += pull_len;
689 }
690 
691 /**
692  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
693  * @rx_ring: rx descriptor ring packet is being transacted on
694  * @rx_desc: pointer to the EOP Rx descriptor
695  * @skb: pointer to current skb being fixed
696  *
697  * Check for corrupted packet headers caused by senders on the local L2
698  * embedded NIC switch not setting up their Tx Descriptors right.  These
699  * should be very rare.
700  *
701  * Also address the case where we are pulling data in on pages only
702  * and as such no data is present in the skb header.
703  *
704  * In addition if skb is not at least 60 bytes we need to pad it so that
705  * it is large enough to qualify as a valid Ethernet frame.
706  *
707  * Returns true if an error was encountered and skb was freed.
708  **/
709 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
710                                     union ixgbe_adv_rx_desc *rx_desc,
711                                     struct sk_buff *skb)
712 {
713         /* verify that the packet does not have any known errors */
714         if (unlikely(ixgbevf_test_staterr(rx_desc,
715                                           IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
716                 struct net_device *netdev = rx_ring->netdev;
717 
718                 if (!(netdev->features & NETIF_F_RXALL)) {
719                         dev_kfree_skb_any(skb);
720                         return true;
721                 }
722         }
723 
724         /* place header in linear portion of buffer */
725         if (skb_is_nonlinear(skb))
726                 ixgbevf_pull_tail(rx_ring, skb);
727 
728         /* if eth_skb_pad returns an error the skb was freed */
729         if (eth_skb_pad(skb))
730                 return true;
731 
732         return false;
733 }
734 
735 /**
736  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
737  * @rx_ring: rx descriptor ring to store buffers on
738  * @old_buff: donor buffer to have page reused
739  *
740  * Synchronizes page for reuse by the adapter
741  **/
742 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
743                                   struct ixgbevf_rx_buffer *old_buff)
744 {
745         struct ixgbevf_rx_buffer *new_buff;
746         u16 nta = rx_ring->next_to_alloc;
747 
748         new_buff = &rx_ring->rx_buffer_info[nta];
749 
750         /* update, and store next to alloc */
751         nta++;
752         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
753 
754         /* transfer page from old buffer to new buffer */
755         new_buff->page = old_buff->page;
756         new_buff->dma = old_buff->dma;
757         new_buff->page_offset = old_buff->page_offset;
758 
759         /* sync the buffer for use by the device */
760         dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
761                                          new_buff->page_offset,
762                                          IXGBEVF_RX_BUFSZ,
763                                          DMA_FROM_DEVICE);
764 }
765 
766 static inline bool ixgbevf_page_is_reserved(struct page *page)
767 {
768         return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
769 }
770 
771 /**
772  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
773  * @rx_ring: rx descriptor ring to transact packets on
774  * @rx_buffer: buffer containing page to add
775  * @rx_desc: descriptor containing length of buffer written by hardware
776  * @skb: sk_buff to place the data into
777  *
778  * This function will add the data contained in rx_buffer->page to the skb.
779  * This is done either through a direct copy if the data in the buffer is
780  * less than the skb header size, otherwise it will just attach the page as
781  * a frag to the skb.
782  *
783  * The function will then update the page offset if necessary and return
784  * true if the buffer can be reused by the adapter.
785  **/
786 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
787                                 struct ixgbevf_rx_buffer *rx_buffer,
788                                 union ixgbe_adv_rx_desc *rx_desc,
789                                 struct sk_buff *skb)
790 {
791         struct page *page = rx_buffer->page;
792         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
793 #if (PAGE_SIZE < 8192)
794         unsigned int truesize = IXGBEVF_RX_BUFSZ;
795 #else
796         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
797 #endif
798 
799         if ((size <= IXGBEVF_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
800                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
801 
802                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
803 
804                 /* page is not reserved, we can reuse buffer as is */
805                 if (likely(!ixgbevf_page_is_reserved(page)))
806                         return true;
807 
808                 /* this page cannot be reused so discard it */
809                 put_page(page);
810                 return false;
811         }
812 
813         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
814                         rx_buffer->page_offset, size, truesize);
815 
816         /* avoid re-using remote pages */
817         if (unlikely(ixgbevf_page_is_reserved(page)))
818                 return false;
819 
820 #if (PAGE_SIZE < 8192)
821         /* if we are only owner of page we can reuse it */
822         if (unlikely(page_count(page) != 1))
823                 return false;
824 
825         /* flip page offset to other buffer */
826         rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
827 
828 #else
829         /* move offset up to the next cache line */
830         rx_buffer->page_offset += truesize;
831 
832         if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
833                 return false;
834 
835 #endif
836         /* Even if we own the page, we are not allowed to use atomic_set()
837          * This would break get_page_unless_zero() users.
838          */
839         atomic_inc(&page->_count);
840 
841         return true;
842 }
843 
844 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
845                                                union ixgbe_adv_rx_desc *rx_desc,
846                                                struct sk_buff *skb)
847 {
848         struct ixgbevf_rx_buffer *rx_buffer;
849         struct page *page;
850 
851         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
852         page = rx_buffer->page;
853         prefetchw(page);
854 
855         if (likely(!skb)) {
856                 void *page_addr = page_address(page) +
857                                   rx_buffer->page_offset;
858 
859                 /* prefetch first cache line of first page */
860                 prefetch(page_addr);
861 #if L1_CACHE_BYTES < 128
862                 prefetch(page_addr + L1_CACHE_BYTES);
863 #endif
864 
865                 /* allocate a skb to store the frags */
866                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
867                                                 IXGBEVF_RX_HDR_SIZE);
868                 if (unlikely(!skb)) {
869                         rx_ring->rx_stats.alloc_rx_buff_failed++;
870                         return NULL;
871                 }
872 
873                 /* we will be copying header into skb->data in
874                  * pskb_may_pull so it is in our interest to prefetch
875                  * it now to avoid a possible cache miss
876                  */
877                 prefetchw(skb->data);
878         }
879 
880         /* we are reusing so sync this buffer for CPU use */
881         dma_sync_single_range_for_cpu(rx_ring->dev,
882                                       rx_buffer->dma,
883                                       rx_buffer->page_offset,
884                                       IXGBEVF_RX_BUFSZ,
885                                       DMA_FROM_DEVICE);
886 
887         /* pull page into skb */
888         if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
889                 /* hand second half of page back to the ring */
890                 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
891         } else {
892                 /* we are not reusing the buffer so unmap it */
893                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
894                                PAGE_SIZE, DMA_FROM_DEVICE);
895         }
896 
897         /* clear contents of buffer_info */
898         rx_buffer->dma = 0;
899         rx_buffer->page = NULL;
900 
901         return skb;
902 }
903 
904 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
905                                              u32 qmask)
906 {
907         struct ixgbe_hw *hw = &adapter->hw;
908 
909         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
910 }
911 
912 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
913                                 struct ixgbevf_ring *rx_ring,
914                                 int budget)
915 {
916         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
917         u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
918         struct sk_buff *skb = rx_ring->skb;
919 
920         while (likely(total_rx_packets < budget)) {
921                 union ixgbe_adv_rx_desc *rx_desc;
922 
923                 /* return some buffers to hardware, one at a time is too slow */
924                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
925                         ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
926                         cleaned_count = 0;
927                 }
928 
929                 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
930 
931                 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
932                         break;
933 
934                 /* This memory barrier is needed to keep us from reading
935                  * any other fields out of the rx_desc until we know the
936                  * RXD_STAT_DD bit is set
937                  */
938                 rmb();
939 
940                 /* retrieve a buffer from the ring */
941                 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
942 
943                 /* exit if we failed to retrieve a buffer */
944                 if (!skb)
945                         break;
946 
947                 cleaned_count++;
948 
949                 /* fetch next buffer in frame if non-eop */
950                 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
951                         continue;
952 
953                 /* verify the packet layout is correct */
954                 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
955                         skb = NULL;
956                         continue;
957                 }
958 
959                 /* probably a little skewed due to removing CRC */
960                 total_rx_bytes += skb->len;
961 
962                 /* Workaround hardware that can't do proper VEPA multicast
963                  * source pruning.
964                  */
965                 if ((skb->pkt_type == PACKET_BROADCAST ||
966                      skb->pkt_type == PACKET_MULTICAST) &&
967                     ether_addr_equal(rx_ring->netdev->dev_addr,
968                                      eth_hdr(skb)->h_source)) {
969                         dev_kfree_skb_irq(skb);
970                         continue;
971                 }
972 
973                 /* populate checksum, VLAN, and protocol */
974                 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
975 
976                 ixgbevf_rx_skb(q_vector, skb);
977 
978                 /* reset skb pointer */
979                 skb = NULL;
980 
981                 /* update budget accounting */
982                 total_rx_packets++;
983         }
984 
985         /* place incomplete frames back on ring for completion */
986         rx_ring->skb = skb;
987 
988         u64_stats_update_begin(&rx_ring->syncp);
989         rx_ring->stats.packets += total_rx_packets;
990         rx_ring->stats.bytes += total_rx_bytes;
991         u64_stats_update_end(&rx_ring->syncp);
992         q_vector->rx.total_packets += total_rx_packets;
993         q_vector->rx.total_bytes += total_rx_bytes;
994 
995         return total_rx_packets;
996 }
997 
998 /**
999  * ixgbevf_poll - NAPI polling calback
1000  * @napi: napi struct with our devices info in it
1001  * @budget: amount of work driver is allowed to do this pass, in packets
1002  *
1003  * This function will clean more than one or more rings associated with a
1004  * q_vector.
1005  **/
1006 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1007 {
1008         struct ixgbevf_q_vector *q_vector =
1009                 container_of(napi, struct ixgbevf_q_vector, napi);
1010         struct ixgbevf_adapter *adapter = q_vector->adapter;
1011         struct ixgbevf_ring *ring;
1012         int per_ring_budget;
1013         bool clean_complete = true;
1014 
1015         ixgbevf_for_each_ring(ring, q_vector->tx)
1016                 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1017 
1018 #ifdef CONFIG_NET_RX_BUSY_POLL
1019         if (!ixgbevf_qv_lock_napi(q_vector))
1020                 return budget;
1021 #endif
1022 
1023         /* attempt to distribute budget to each queue fairly, but don't allow
1024          * the budget to go below 1 because we'll exit polling
1025          */
1026         if (q_vector->rx.count > 1)
1027                 per_ring_budget = max(budget/q_vector->rx.count, 1);
1028         else
1029                 per_ring_budget = budget;
1030 
1031         ixgbevf_for_each_ring(ring, q_vector->rx)
1032                 clean_complete &= (ixgbevf_clean_rx_irq(q_vector, ring,
1033                                                         per_ring_budget)
1034                                    < per_ring_budget);
1035 
1036 #ifdef CONFIG_NET_RX_BUSY_POLL
1037         ixgbevf_qv_unlock_napi(q_vector);
1038 #endif
1039 
1040         /* If all work not completed, return budget and keep polling */
1041         if (!clean_complete)
1042                 return budget;
1043         /* all work done, exit the polling mode */
1044         napi_complete(napi);
1045         if (adapter->rx_itr_setting & 1)
1046                 ixgbevf_set_itr(q_vector);
1047         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1048             !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1049                 ixgbevf_irq_enable_queues(adapter,
1050                                           1 << q_vector->v_idx);
1051 
1052         return 0;
1053 }
1054 
1055 /**
1056  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1057  * @q_vector: structure containing interrupt and ring information
1058  **/
1059 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1060 {
1061         struct ixgbevf_adapter *adapter = q_vector->adapter;
1062         struct ixgbe_hw *hw = &adapter->hw;
1063         int v_idx = q_vector->v_idx;
1064         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1065 
1066         /* set the WDIS bit to not clear the timer bits and cause an
1067          * immediate assertion of the interrupt
1068          */
1069         itr_reg |= IXGBE_EITR_CNT_WDIS;
1070 
1071         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1072 }
1073 
1074 #ifdef CONFIG_NET_RX_BUSY_POLL
1075 /* must be called with local_bh_disable()d */
1076 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1077 {
1078         struct ixgbevf_q_vector *q_vector =
1079                         container_of(napi, struct ixgbevf_q_vector, napi);
1080         struct ixgbevf_adapter *adapter = q_vector->adapter;
1081         struct ixgbevf_ring  *ring;
1082         int found = 0;
1083 
1084         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1085                 return LL_FLUSH_FAILED;
1086 
1087         if (!ixgbevf_qv_lock_poll(q_vector))
1088                 return LL_FLUSH_BUSY;
1089 
1090         ixgbevf_for_each_ring(ring, q_vector->rx) {
1091                 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1092 #ifdef BP_EXTENDED_STATS
1093                 if (found)
1094                         ring->stats.cleaned += found;
1095                 else
1096                         ring->stats.misses++;
1097 #endif
1098                 if (found)
1099                         break;
1100         }
1101 
1102         ixgbevf_qv_unlock_poll(q_vector);
1103 
1104         return found;
1105 }
1106 #endif /* CONFIG_NET_RX_BUSY_POLL */
1107 
1108 /**
1109  * ixgbevf_configure_msix - Configure MSI-X hardware
1110  * @adapter: board private structure
1111  *
1112  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1113  * interrupts.
1114  **/
1115 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1116 {
1117         struct ixgbevf_q_vector *q_vector;
1118         int q_vectors, v_idx;
1119 
1120         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1121         adapter->eims_enable_mask = 0;
1122 
1123         /* Populate the IVAR table and set the ITR values to the
1124          * corresponding register.
1125          */
1126         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1127                 struct ixgbevf_ring *ring;
1128 
1129                 q_vector = adapter->q_vector[v_idx];
1130 
1131                 ixgbevf_for_each_ring(ring, q_vector->rx)
1132                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1133 
1134                 ixgbevf_for_each_ring(ring, q_vector->tx)
1135                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1136 
1137                 if (q_vector->tx.ring && !q_vector->rx.ring) {
1138                         /* Tx only vector */
1139                         if (adapter->tx_itr_setting == 1)
1140                                 q_vector->itr = IXGBE_10K_ITR;
1141                         else
1142                                 q_vector->itr = adapter->tx_itr_setting;
1143                 } else {
1144                         /* Rx or Rx/Tx vector */
1145                         if (adapter->rx_itr_setting == 1)
1146                                 q_vector->itr = IXGBE_20K_ITR;
1147                         else
1148                                 q_vector->itr = adapter->rx_itr_setting;
1149                 }
1150 
1151                 /* add q_vector eims value to global eims_enable_mask */
1152                 adapter->eims_enable_mask |= 1 << v_idx;
1153 
1154                 ixgbevf_write_eitr(q_vector);
1155         }
1156 
1157         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1158         /* setup eims_other and add value to global eims_enable_mask */
1159         adapter->eims_other = 1 << v_idx;
1160         adapter->eims_enable_mask |= adapter->eims_other;
1161 }
1162 
1163 enum latency_range {
1164         lowest_latency = 0,
1165         low_latency = 1,
1166         bulk_latency = 2,
1167         latency_invalid = 255
1168 };
1169 
1170 /**
1171  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1172  * @q_vector: structure containing interrupt and ring information
1173  * @ring_container: structure containing ring performance data
1174  *
1175  * Stores a new ITR value based on packets and byte
1176  * counts during the last interrupt.  The advantage of per interrupt
1177  * computation is faster updates and more accurate ITR for the current
1178  * traffic pattern.  Constants in this function were computed
1179  * based on theoretical maximum wire speed and thresholds were set based
1180  * on testing data as well as attempting to minimize response time
1181  * while increasing bulk throughput.
1182  **/
1183 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1184                                struct ixgbevf_ring_container *ring_container)
1185 {
1186         int bytes = ring_container->total_bytes;
1187         int packets = ring_container->total_packets;
1188         u32 timepassed_us;
1189         u64 bytes_perint;
1190         u8 itr_setting = ring_container->itr;
1191 
1192         if (packets == 0)
1193                 return;
1194 
1195         /* simple throttle rate management
1196          *    0-20MB/s lowest (100000 ints/s)
1197          *   20-100MB/s low   (20000 ints/s)
1198          *  100-1249MB/s bulk (8000 ints/s)
1199          */
1200         /* what was last interrupt timeslice? */
1201         timepassed_us = q_vector->itr >> 2;
1202         bytes_perint = bytes / timepassed_us; /* bytes/usec */
1203 
1204         switch (itr_setting) {
1205         case lowest_latency:
1206                 if (bytes_perint > 10)
1207                         itr_setting = low_latency;
1208                 break;
1209         case low_latency:
1210                 if (bytes_perint > 20)
1211                         itr_setting = bulk_latency;
1212                 else if (bytes_perint <= 10)
1213                         itr_setting = lowest_latency;
1214                 break;
1215         case bulk_latency:
1216                 if (bytes_perint <= 20)
1217                         itr_setting = low_latency;
1218                 break;
1219         }
1220 
1221         /* clear work counters since we have the values we need */
1222         ring_container->total_bytes = 0;
1223         ring_container->total_packets = 0;
1224 
1225         /* write updated itr to ring container */
1226         ring_container->itr = itr_setting;
1227 }
1228 
1229 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1230 {
1231         u32 new_itr = q_vector->itr;
1232         u8 current_itr;
1233 
1234         ixgbevf_update_itr(q_vector, &q_vector->tx);
1235         ixgbevf_update_itr(q_vector, &q_vector->rx);
1236 
1237         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1238 
1239         switch (current_itr) {
1240         /* counts and packets in update_itr are dependent on these numbers */
1241         case lowest_latency:
1242                 new_itr = IXGBE_100K_ITR;
1243                 break;
1244         case low_latency:
1245                 new_itr = IXGBE_20K_ITR;
1246                 break;
1247         case bulk_latency:
1248         default:
1249                 new_itr = IXGBE_8K_ITR;
1250                 break;
1251         }
1252 
1253         if (new_itr != q_vector->itr) {
1254                 /* do an exponential smoothing */
1255                 new_itr = (10 * new_itr * q_vector->itr) /
1256                           ((9 * new_itr) + q_vector->itr);
1257 
1258                 /* save the algorithm value here */
1259                 q_vector->itr = new_itr;
1260 
1261                 ixgbevf_write_eitr(q_vector);
1262         }
1263 }
1264 
1265 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1266 {
1267         struct ixgbevf_adapter *adapter = data;
1268         struct ixgbe_hw *hw = &adapter->hw;
1269 
1270         hw->mac.get_link_status = 1;
1271 
1272         ixgbevf_service_event_schedule(adapter);
1273 
1274         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1275 
1276         return IRQ_HANDLED;
1277 }
1278 
1279 /**
1280  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1281  * @irq: unused
1282  * @data: pointer to our q_vector struct for this interrupt vector
1283  **/
1284 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1285 {
1286         struct ixgbevf_q_vector *q_vector = data;
1287 
1288         /* EIAM disabled interrupts (on this vector) for us */
1289         if (q_vector->rx.ring || q_vector->tx.ring)
1290                 napi_schedule(&q_vector->napi);
1291 
1292         return IRQ_HANDLED;
1293 }
1294 
1295 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1296                                      int r_idx)
1297 {
1298         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1299 
1300         a->rx_ring[r_idx]->next = q_vector->rx.ring;
1301         q_vector->rx.ring = a->rx_ring[r_idx];
1302         q_vector->rx.count++;
1303 }
1304 
1305 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1306                                      int t_idx)
1307 {
1308         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1309 
1310         a->tx_ring[t_idx]->next = q_vector->tx.ring;
1311         q_vector->tx.ring = a->tx_ring[t_idx];
1312         q_vector->tx.count++;
1313 }
1314 
1315 /**
1316  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1317  * @adapter: board private structure to initialize
1318  *
1319  * This function maps descriptor rings to the queue-specific vectors
1320  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1321  * one vector per ring/queue, but on a constrained vector budget, we
1322  * group the rings as "efficiently" as possible.  You would add new
1323  * mapping configurations in here.
1324  **/
1325 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1326 {
1327         int q_vectors;
1328         int v_start = 0;
1329         int rxr_idx = 0, txr_idx = 0;
1330         int rxr_remaining = adapter->num_rx_queues;
1331         int txr_remaining = adapter->num_tx_queues;
1332         int i, j;
1333         int rqpv, tqpv;
1334         int err = 0;
1335 
1336         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1337 
1338         /* The ideal configuration...
1339          * We have enough vectors to map one per queue.
1340          */
1341         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1342                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1343                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1344 
1345                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1346                         map_vector_to_txq(adapter, v_start, txr_idx);
1347                 goto out;
1348         }
1349 
1350         /* If we don't have enough vectors for a 1-to-1
1351          * mapping, we'll have to group them so there are
1352          * multiple queues per vector.
1353          */
1354         /* Re-adjusting *qpv takes care of the remainder. */
1355         for (i = v_start; i < q_vectors; i++) {
1356                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1357                 for (j = 0; j < rqpv; j++) {
1358                         map_vector_to_rxq(adapter, i, rxr_idx);
1359                         rxr_idx++;
1360                         rxr_remaining--;
1361                 }
1362         }
1363         for (i = v_start; i < q_vectors; i++) {
1364                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1365                 for (j = 0; j < tqpv; j++) {
1366                         map_vector_to_txq(adapter, i, txr_idx);
1367                         txr_idx++;
1368                         txr_remaining--;
1369                 }
1370         }
1371 
1372 out:
1373         return err;
1374 }
1375 
1376 /**
1377  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1378  * @adapter: board private structure
1379  *
1380  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1381  * interrupts from the kernel.
1382  **/
1383 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1384 {
1385         struct net_device *netdev = adapter->netdev;
1386         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1387         int vector, err;
1388         int ri = 0, ti = 0;
1389 
1390         for (vector = 0; vector < q_vectors; vector++) {
1391                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1392                 struct msix_entry *entry = &adapter->msix_entries[vector];
1393 
1394                 if (q_vector->tx.ring && q_vector->rx.ring) {
1395                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1396                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
1397                         ti++;
1398                 } else if (q_vector->rx.ring) {
1399                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1400                                  "%s-%s-%d", netdev->name, "rx", ri++);
1401                 } else if (q_vector->tx.ring) {
1402                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1403                                  "%s-%s-%d", netdev->name, "tx", ti++);
1404                 } else {
1405                         /* skip this unused q_vector */
1406                         continue;
1407                 }
1408                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1409                                   q_vector->name, q_vector);
1410                 if (err) {
1411                         hw_dbg(&adapter->hw,
1412                                "request_irq failed for MSIX interrupt Error: %d\n",
1413                                err);
1414                         goto free_queue_irqs;
1415                 }
1416         }
1417 
1418         err = request_irq(adapter->msix_entries[vector].vector,
1419                           &ixgbevf_msix_other, 0, netdev->name, adapter);
1420         if (err) {
1421                 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1422                        err);
1423                 goto free_queue_irqs;
1424         }
1425 
1426         return 0;
1427 
1428 free_queue_irqs:
1429         while (vector) {
1430                 vector--;
1431                 free_irq(adapter->msix_entries[vector].vector,
1432                          adapter->q_vector[vector]);
1433         }
1434         /* This failure is non-recoverable - it indicates the system is
1435          * out of MSIX vector resources and the VF driver cannot run
1436          * without them.  Set the number of msix vectors to zero
1437          * indicating that not enough can be allocated.  The error
1438          * will be returned to the user indicating device open failed.
1439          * Any further attempts to force the driver to open will also
1440          * fail.  The only way to recover is to unload the driver and
1441          * reload it again.  If the system has recovered some MSIX
1442          * vectors then it may succeed.
1443          */
1444         adapter->num_msix_vectors = 0;
1445         return err;
1446 }
1447 
1448 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1449 {
1450         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1451 
1452         for (i = 0; i < q_vectors; i++) {
1453                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1454 
1455                 q_vector->rx.ring = NULL;
1456                 q_vector->tx.ring = NULL;
1457                 q_vector->rx.count = 0;
1458                 q_vector->tx.count = 0;
1459         }
1460 }
1461 
1462 /**
1463  * ixgbevf_request_irq - initialize interrupts
1464  * @adapter: board private structure
1465  *
1466  * Attempts to configure interrupts using the best available
1467  * capabilities of the hardware and kernel.
1468  **/
1469 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1470 {
1471         int err = 0;
1472 
1473         err = ixgbevf_request_msix_irqs(adapter);
1474 
1475         if (err)
1476                 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1477 
1478         return err;
1479 }
1480 
1481 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1482 {
1483         int i, q_vectors;
1484 
1485         q_vectors = adapter->num_msix_vectors;
1486         i = q_vectors - 1;
1487 
1488         free_irq(adapter->msix_entries[i].vector, adapter);
1489         i--;
1490 
1491         for (; i >= 0; i--) {
1492                 /* free only the irqs that were actually requested */
1493                 if (!adapter->q_vector[i]->rx.ring &&
1494                     !adapter->q_vector[i]->tx.ring)
1495                         continue;
1496 
1497                 free_irq(adapter->msix_entries[i].vector,
1498                          adapter->q_vector[i]);
1499         }
1500 
1501         ixgbevf_reset_q_vectors(adapter);
1502 }
1503 
1504 /**
1505  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1506  * @adapter: board private structure
1507  **/
1508 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1509 {
1510         struct ixgbe_hw *hw = &adapter->hw;
1511         int i;
1512 
1513         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1514         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1515         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1516 
1517         IXGBE_WRITE_FLUSH(hw);
1518 
1519         for (i = 0; i < adapter->num_msix_vectors; i++)
1520                 synchronize_irq(adapter->msix_entries[i].vector);
1521 }
1522 
1523 /**
1524  * ixgbevf_irq_enable - Enable default interrupt generation settings
1525  * @adapter: board private structure
1526  **/
1527 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1528 {
1529         struct ixgbe_hw *hw = &adapter->hw;
1530 
1531         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1532         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1533         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1534 }
1535 
1536 /**
1537  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1538  * @adapter: board private structure
1539  * @ring: structure containing ring specific data
1540  *
1541  * Configure the Tx descriptor ring after a reset.
1542  **/
1543 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1544                                       struct ixgbevf_ring *ring)
1545 {
1546         struct ixgbe_hw *hw = &adapter->hw;
1547         u64 tdba = ring->dma;
1548         int wait_loop = 10;
1549         u32 txdctl = IXGBE_TXDCTL_ENABLE;
1550         u8 reg_idx = ring->reg_idx;
1551 
1552         /* disable queue to avoid issues while updating state */
1553         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1554         IXGBE_WRITE_FLUSH(hw);
1555 
1556         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1557         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1558         IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1559                         ring->count * sizeof(union ixgbe_adv_tx_desc));
1560 
1561         /* disable head writeback */
1562         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1563         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1564 
1565         /* enable relaxed ordering */
1566         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1567                         (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1568                          IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1569 
1570         /* reset head and tail pointers */
1571         IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1572         IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1573         ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1574 
1575         /* reset ntu and ntc to place SW in sync with hardwdare */
1576         ring->next_to_clean = 0;
1577         ring->next_to_use = 0;
1578 
1579         /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1580          * to or less than the number of on chip descriptors, which is
1581          * currently 40.
1582          */
1583         txdctl |= (8 << 16);    /* WTHRESH = 8 */
1584 
1585         /* Setting PTHRESH to 32 both improves performance */
1586         txdctl |= (1 << 8) |    /* HTHRESH = 1 */
1587                   32;          /* PTHRESH = 32 */
1588 
1589         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1590 
1591         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1592 
1593         /* poll to verify queue is enabled */
1594         do {
1595                 usleep_range(1000, 2000);
1596                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1597         }  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1598         if (!wait_loop)
1599                 pr_err("Could not enable Tx Queue %d\n", reg_idx);
1600 }
1601 
1602 /**
1603  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1604  * @adapter: board private structure
1605  *
1606  * Configure the Tx unit of the MAC after a reset.
1607  **/
1608 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1609 {
1610         u32 i;
1611 
1612         /* Setup the HW Tx Head and Tail descriptor pointers */
1613         for (i = 0; i < adapter->num_tx_queues; i++)
1614                 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1615 }
1616 
1617 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1618 
1619 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1620 {
1621         struct ixgbe_hw *hw = &adapter->hw;
1622         u32 srrctl;
1623 
1624         srrctl = IXGBE_SRRCTL_DROP_EN;
1625 
1626         srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1627         srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1628         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1629 
1630         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1631 }
1632 
1633 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1634 {
1635         struct ixgbe_hw *hw = &adapter->hw;
1636 
1637         /* PSRTYPE must be initialized in 82599 */
1638         u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1639                       IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1640                       IXGBE_PSRTYPE_L2HDR;
1641 
1642         if (adapter->num_rx_queues > 1)
1643                 psrtype |= 1 << 29;
1644 
1645         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1646 }
1647 
1648 #define IXGBEVF_MAX_RX_DESC_POLL 10
1649 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1650                                      struct ixgbevf_ring *ring)
1651 {
1652         struct ixgbe_hw *hw = &adapter->hw;
1653         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1654         u32 rxdctl;
1655         u8 reg_idx = ring->reg_idx;
1656 
1657         if (IXGBE_REMOVED(hw->hw_addr))
1658                 return;
1659         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1660         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1661 
1662         /* write value back with RXDCTL.ENABLE bit cleared */
1663         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1664 
1665         /* the hardware may take up to 100us to really disable the Rx queue */
1666         do {
1667                 udelay(10);
1668                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1669         } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1670 
1671         if (!wait_loop)
1672                 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1673                        reg_idx);
1674 }
1675 
1676 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1677                                          struct ixgbevf_ring *ring)
1678 {
1679         struct ixgbe_hw *hw = &adapter->hw;
1680         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1681         u32 rxdctl;
1682         u8 reg_idx = ring->reg_idx;
1683 
1684         if (IXGBE_REMOVED(hw->hw_addr))
1685                 return;
1686         do {
1687                 usleep_range(1000, 2000);
1688                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1689         } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1690 
1691         if (!wait_loop)
1692                 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1693                        reg_idx);
1694 }
1695 
1696 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1697 {
1698         struct ixgbe_hw *hw = &adapter->hw;
1699         u32 vfmrqc = 0, vfreta = 0;
1700         u32 rss_key[10];
1701         u16 rss_i = adapter->num_rx_queues;
1702         int i, j;
1703 
1704         /* Fill out hash function seeds */
1705         netdev_rss_key_fill(rss_key, sizeof(rss_key));
1706         for (i = 0; i < 10; i++)
1707                 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), rss_key[i]);
1708 
1709         /* Fill out redirection table */
1710         for (i = 0, j = 0; i < 64; i++, j++) {
1711                 if (j == rss_i)
1712                         j = 0;
1713                 vfreta = (vfreta << 8) | (j * 0x1);
1714                 if ((i & 3) == 3)
1715                         IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1716         }
1717 
1718         /* Perform hash on these packet types */
1719         vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1720                 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1721                 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1722                 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1723 
1724         vfmrqc |= IXGBE_VFMRQC_RSSEN;
1725 
1726         IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1727 }
1728 
1729 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1730                                       struct ixgbevf_ring *ring)
1731 {
1732         struct ixgbe_hw *hw = &adapter->hw;
1733         u64 rdba = ring->dma;
1734         u32 rxdctl;
1735         u8 reg_idx = ring->reg_idx;
1736 
1737         /* disable queue to avoid issues while updating state */
1738         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1739         ixgbevf_disable_rx_queue(adapter, ring);
1740 
1741         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1742         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1743         IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1744                         ring->count * sizeof(union ixgbe_adv_rx_desc));
1745 
1746         /* enable relaxed ordering */
1747         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1748                         IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1749 
1750         /* reset head and tail pointers */
1751         IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1752         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1753         ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1754 
1755         /* reset ntu and ntc to place SW in sync with hardwdare */
1756         ring->next_to_clean = 0;
1757         ring->next_to_use = 0;
1758         ring->next_to_alloc = 0;
1759 
1760         ixgbevf_configure_srrctl(adapter, reg_idx);
1761 
1762         /* allow any size packet since we can handle overflow */
1763         rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1764 
1765         rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1766         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1767 
1768         ixgbevf_rx_desc_queue_enable(adapter, ring);
1769         ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1770 }
1771 
1772 /**
1773  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1774  * @adapter: board private structure
1775  *
1776  * Configure the Rx unit of the MAC after a reset.
1777  **/
1778 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1779 {
1780         int i;
1781         struct ixgbe_hw *hw = &adapter->hw;
1782         struct net_device *netdev = adapter->netdev;
1783 
1784         ixgbevf_setup_psrtype(adapter);
1785         if (hw->mac.type >= ixgbe_mac_X550_vf)
1786                 ixgbevf_setup_vfmrqc(adapter);
1787 
1788         /* notify the PF of our intent to use this size of frame */
1789         ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1790 
1791         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1792          * the Base and Length of the Rx Descriptor Ring
1793          */
1794         for (i = 0; i < adapter->num_rx_queues; i++)
1795                 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1796 }
1797 
1798 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1799                                    __be16 proto, u16 vid)
1800 {
1801         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1802         struct ixgbe_hw *hw = &adapter->hw;
1803         int err;
1804 
1805         spin_lock_bh(&adapter->mbx_lock);
1806 
1807         /* add VID to filter table */
1808         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1809 
1810         spin_unlock_bh(&adapter->mbx_lock);
1811 
1812         /* translate error return types so error makes sense */
1813         if (err == IXGBE_ERR_MBX)
1814                 return -EIO;
1815 
1816         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1817                 return -EACCES;
1818 
1819         set_bit(vid, adapter->active_vlans);
1820 
1821         return err;
1822 }
1823 
1824 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1825                                     __be16 proto, u16 vid)
1826 {
1827         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1828         struct ixgbe_hw *hw = &adapter->hw;
1829         int err = -EOPNOTSUPP;
1830 
1831         spin_lock_bh(&adapter->mbx_lock);
1832 
1833         /* remove VID from filter table */
1834         err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1835 
1836         spin_unlock_bh(&adapter->mbx_lock);
1837 
1838         clear_bit(vid, adapter->active_vlans);
1839 
1840         return err;
1841 }
1842 
1843 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1844 {
1845         u16 vid;
1846 
1847         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1848                 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1849                                         htons(ETH_P_8021Q), vid);
1850 }
1851 
1852 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1853 {
1854         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1855         struct ixgbe_hw *hw = &adapter->hw;
1856         int count = 0;
1857 
1858         if ((netdev_uc_count(netdev)) > 10) {
1859                 pr_err("Too many unicast filters - No Space\n");
1860                 return -ENOSPC;
1861         }
1862 
1863         if (!netdev_uc_empty(netdev)) {
1864                 struct netdev_hw_addr *ha;
1865 
1866                 netdev_for_each_uc_addr(ha, netdev) {
1867                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1868                         udelay(200);
1869                 }
1870         } else {
1871                 /* If the list is empty then send message to PF driver to
1872                  * clear all MAC VLANs on this VF.
1873                  */
1874                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1875         }
1876 
1877         return count;
1878 }
1879 
1880 /**
1881  * ixgbevf_set_rx_mode - Multicast and unicast set
1882  * @netdev: network interface device structure
1883  *
1884  * The set_rx_method entry point is called whenever the multicast address
1885  * list, unicast address list or the network interface flags are updated.
1886  * This routine is responsible for configuring the hardware for proper
1887  * multicast mode and configuring requested unicast filters.
1888  **/
1889 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1890 {
1891         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1892         struct ixgbe_hw *hw = &adapter->hw;
1893 
1894         spin_lock_bh(&adapter->mbx_lock);
1895 
1896         /* reprogram multicast list */
1897         hw->mac.ops.update_mc_addr_list(hw, netdev);
1898 
1899         ixgbevf_write_uc_addr_list(netdev);
1900 
1901         spin_unlock_bh(&adapter->mbx_lock);
1902 }
1903 
1904 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1905 {
1906         int q_idx;
1907         struct ixgbevf_q_vector *q_vector;
1908         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1909 
1910         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1911                 q_vector = adapter->q_vector[q_idx];
1912 #ifdef CONFIG_NET_RX_BUSY_POLL
1913                 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1914 #endif
1915                 napi_enable(&q_vector->napi);
1916         }
1917 }
1918 
1919 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1920 {
1921         int q_idx;
1922         struct ixgbevf_q_vector *q_vector;
1923         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1924 
1925         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1926                 q_vector = adapter->q_vector[q_idx];
1927                 napi_disable(&q_vector->napi);
1928 #ifdef CONFIG_NET_RX_BUSY_POLL
1929                 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1930                         pr_info("QV %d locked\n", q_idx);
1931                         usleep_range(1000, 20000);
1932                 }
1933 #endif /* CONFIG_NET_RX_BUSY_POLL */
1934         }
1935 }
1936 
1937 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1938 {
1939         struct ixgbe_hw *hw = &adapter->hw;
1940         unsigned int def_q = 0;
1941         unsigned int num_tcs = 0;
1942         unsigned int num_rx_queues = adapter->num_rx_queues;
1943         unsigned int num_tx_queues = adapter->num_tx_queues;
1944         int err;
1945 
1946         spin_lock_bh(&adapter->mbx_lock);
1947 
1948         /* fetch queue configuration from the PF */
1949         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1950 
1951         spin_unlock_bh(&adapter->mbx_lock);
1952 
1953         if (err)
1954                 return err;
1955 
1956         if (num_tcs > 1) {
1957                 /* we need only one Tx queue */
1958                 num_tx_queues = 1;
1959 
1960                 /* update default Tx ring register index */
1961                 adapter->tx_ring[0]->reg_idx = def_q;
1962 
1963                 /* we need as many queues as traffic classes */
1964                 num_rx_queues = num_tcs;
1965         }
1966 
1967         /* if we have a bad config abort request queue reset */
1968         if ((adapter->num_rx_queues != num_rx_queues) ||
1969             (adapter->num_tx_queues != num_tx_queues)) {
1970                 /* force mailbox timeout to prevent further messages */
1971                 hw->mbx.timeout = 0;
1972 
1973                 /* wait for watchdog to come around and bail us out */
1974                 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1975         }
1976 
1977         return 0;
1978 }
1979 
1980 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1981 {
1982         ixgbevf_configure_dcb(adapter);
1983 
1984         ixgbevf_set_rx_mode(adapter->netdev);
1985 
1986         ixgbevf_restore_vlan(adapter);
1987 
1988         ixgbevf_configure_tx(adapter);
1989         ixgbevf_configure_rx(adapter);
1990 }
1991 
1992 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1993 {
1994         /* Only save pre-reset stats if there are some */
1995         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1996                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1997                         adapter->stats.base_vfgprc;
1998                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1999                         adapter->stats.base_vfgptc;
2000                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2001                         adapter->stats.base_vfgorc;
2002                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2003                         adapter->stats.base_vfgotc;
2004                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2005                         adapter->stats.base_vfmprc;
2006         }
2007 }
2008 
2009 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2010 {
2011         struct ixgbe_hw *hw = &adapter->hw;
2012 
2013         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2014         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2015         adapter->stats.last_vfgorc |=
2016                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2017         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2018         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2019         adapter->stats.last_vfgotc |=
2020                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2021         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2022 
2023         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2024         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2025         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2026         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2027         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2028 }
2029 
2030 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2031 {
2032         struct ixgbe_hw *hw = &adapter->hw;
2033         int api[] = { ixgbe_mbox_api_12,
2034                       ixgbe_mbox_api_11,
2035                       ixgbe_mbox_api_10,
2036                       ixgbe_mbox_api_unknown };
2037         int err = 0, idx = 0;
2038 
2039         spin_lock_bh(&adapter->mbx_lock);
2040 
2041         while (api[idx] != ixgbe_mbox_api_unknown) {
2042                 err = ixgbevf_negotiate_api_version(hw, api[idx]);
2043                 if (!err)
2044                         break;
2045                 idx++;
2046         }
2047 
2048         spin_unlock_bh(&adapter->mbx_lock);
2049 }
2050 
2051 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2052 {
2053         struct net_device *netdev = adapter->netdev;
2054         struct ixgbe_hw *hw = &adapter->hw;
2055 
2056         ixgbevf_configure_msix(adapter);
2057 
2058         spin_lock_bh(&adapter->mbx_lock);
2059 
2060         if (is_valid_ether_addr(hw->mac.addr))
2061                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2062         else
2063                 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2064 
2065         spin_unlock_bh(&adapter->mbx_lock);
2066 
2067         smp_mb__before_atomic();
2068         clear_bit(__IXGBEVF_DOWN, &adapter->state);
2069         ixgbevf_napi_enable_all(adapter);
2070 
2071         /* clear any pending interrupts, may auto mask */
2072         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2073         ixgbevf_irq_enable(adapter);
2074 
2075         /* enable transmits */
2076         netif_tx_start_all_queues(netdev);
2077 
2078         ixgbevf_save_reset_stats(adapter);
2079         ixgbevf_init_last_counter_stats(adapter);
2080 
2081         hw->mac.get_link_status = 1;
2082         mod_timer(&adapter->service_timer, jiffies);
2083 }
2084 
2085 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2086 {
2087         ixgbevf_configure(adapter);
2088 
2089         ixgbevf_up_complete(adapter);
2090 }
2091 
2092 /**
2093  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2094  * @rx_ring: ring to free buffers from
2095  **/
2096 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2097 {
2098         struct device *dev = rx_ring->dev;
2099         unsigned long size;
2100         unsigned int i;
2101 
2102         /* Free Rx ring sk_buff */
2103         if (rx_ring->skb) {
2104                 dev_kfree_skb(rx_ring->skb);
2105                 rx_ring->skb = NULL;
2106         }
2107 
2108         /* ring already cleared, nothing to do */
2109         if (!rx_ring->rx_buffer_info)
2110                 return;
2111 
2112         /* Free all the Rx ring pages */
2113         for (i = 0; i < rx_ring->count; i++) {
2114                 struct ixgbevf_rx_buffer *rx_buffer;
2115 
2116                 rx_buffer = &rx_ring->rx_buffer_info[i];
2117                 if (rx_buffer->dma)
2118                         dma_unmap_page(dev, rx_buffer->dma,
2119                                        PAGE_SIZE, DMA_FROM_DEVICE);
2120                 rx_buffer->dma = 0;
2121                 if (rx_buffer->page)
2122                         __free_page(rx_buffer->page);
2123                 rx_buffer->page = NULL;
2124         }
2125 
2126         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2127         memset(rx_ring->rx_buffer_info, 0, size);
2128 
2129         /* Zero out the descriptor ring */
2130         memset(rx_ring->desc, 0, rx_ring->size);
2131 }
2132 
2133 /**
2134  * ixgbevf_clean_tx_ring - Free Tx Buffers
2135  * @tx_ring: ring to be cleaned
2136  **/
2137 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2138 {
2139         struct ixgbevf_tx_buffer *tx_buffer_info;
2140         unsigned long size;
2141         unsigned int i;
2142 
2143         if (!tx_ring->tx_buffer_info)
2144                 return;
2145 
2146         /* Free all the Tx ring sk_buffs */
2147         for (i = 0; i < tx_ring->count; i++) {
2148                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2149                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2150         }
2151 
2152         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2153         memset(tx_ring->tx_buffer_info, 0, size);
2154 
2155         memset(tx_ring->desc, 0, tx_ring->size);
2156 }
2157 
2158 /**
2159  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2160  * @adapter: board private structure
2161  **/
2162 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2163 {
2164         int i;
2165 
2166         for (i = 0; i < adapter->num_rx_queues; i++)
2167                 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2168 }
2169 
2170 /**
2171  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2172  * @adapter: board private structure
2173  **/
2174 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2175 {
2176         int i;
2177 
2178         for (i = 0; i < adapter->num_tx_queues; i++)
2179                 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2180 }
2181 
2182 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2183 {
2184         struct net_device *netdev = adapter->netdev;
2185         struct ixgbe_hw *hw = &adapter->hw;
2186         int i;
2187 
2188         /* signal that we are down to the interrupt handler */
2189         if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2190                 return; /* do nothing if already down */
2191 
2192         /* disable all enabled Rx queues */
2193         for (i = 0; i < adapter->num_rx_queues; i++)
2194                 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2195 
2196         usleep_range(10000, 20000);
2197 
2198         netif_tx_stop_all_queues(netdev);
2199 
2200         /* call carrier off first to avoid false dev_watchdog timeouts */
2201         netif_carrier_off(netdev);
2202         netif_tx_disable(netdev);
2203 
2204         ixgbevf_irq_disable(adapter);
2205 
2206         ixgbevf_napi_disable_all(adapter);
2207 
2208         del_timer_sync(&adapter->service_timer);
2209 
2210         /* disable transmits in the hardware now that interrupts are off */
2211         for (i = 0; i < adapter->num_tx_queues; i++) {
2212                 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2213 
2214                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2215                                 IXGBE_TXDCTL_SWFLSH);
2216         }
2217 
2218         if (!pci_channel_offline(adapter->pdev))
2219                 ixgbevf_reset(adapter);
2220 
2221         ixgbevf_clean_all_tx_rings(adapter);
2222         ixgbevf_clean_all_rx_rings(adapter);
2223 }
2224 
2225 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2226 {
2227         WARN_ON(in_interrupt());
2228 
2229         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2230                 msleep(1);
2231 
2232         ixgbevf_down(adapter);
2233         ixgbevf_up(adapter);
2234 
2235         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2236 }
2237 
2238 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2239 {
2240         struct ixgbe_hw *hw = &adapter->hw;
2241         struct net_device *netdev = adapter->netdev;
2242 
2243         if (hw->mac.ops.reset_hw(hw)) {
2244                 hw_dbg(hw, "PF still resetting\n");
2245         } else {
2246                 hw->mac.ops.init_hw(hw);
2247                 ixgbevf_negotiate_api(adapter);
2248         }
2249 
2250         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2251                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2252                        netdev->addr_len);
2253                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
2254                        netdev->addr_len);
2255         }
2256 
2257         adapter->last_reset = jiffies;
2258 }
2259 
2260 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2261                                         int vectors)
2262 {
2263         int vector_threshold;
2264 
2265         /* We'll want at least 2 (vector_threshold):
2266          * 1) TxQ[0] + RxQ[0] handler
2267          * 2) Other (Link Status Change, etc.)
2268          */
2269         vector_threshold = MIN_MSIX_COUNT;
2270 
2271         /* The more we get, the more we will assign to Tx/Rx Cleanup
2272          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2273          * Right now, we simply care about how many we'll get; we'll
2274          * set them up later while requesting irq's.
2275          */
2276         vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2277                                         vector_threshold, vectors);
2278 
2279         if (vectors < 0) {
2280                 dev_err(&adapter->pdev->dev,
2281                         "Unable to allocate MSI-X interrupts\n");
2282                 kfree(adapter->msix_entries);
2283                 adapter->msix_entries = NULL;
2284                 return vectors;
2285         }
2286 
2287         /* Adjust for only the vectors we'll use, which is minimum
2288          * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2289          * vectors we were allocated.
2290          */
2291         adapter->num_msix_vectors = vectors;
2292 
2293         return 0;
2294 }
2295 
2296 /**
2297  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2298  * @adapter: board private structure to initialize
2299  *
2300  * This is the top level queue allocation routine.  The order here is very
2301  * important, starting with the "most" number of features turned on at once,
2302  * and ending with the smallest set of features.  This way large combinations
2303  * can be allocated if they're turned on, and smaller combinations are the
2304  * fallthrough conditions.
2305  *
2306  **/
2307 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2308 {
2309         struct ixgbe_hw *hw = &adapter->hw;
2310         unsigned int def_q = 0;
2311         unsigned int num_tcs = 0;
2312         int err;
2313 
2314         /* Start with base case */
2315         adapter->num_rx_queues = 1;
2316         adapter->num_tx_queues = 1;
2317 
2318         spin_lock_bh(&adapter->mbx_lock);
2319 
2320         /* fetch queue configuration from the PF */
2321         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2322 
2323         spin_unlock_bh(&adapter->mbx_lock);
2324 
2325         if (err)
2326                 return;
2327 
2328         /* we need as many queues as traffic classes */
2329         if (num_tcs > 1) {
2330                 adapter->num_rx_queues = num_tcs;
2331         } else {
2332                 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2333 
2334                 switch (hw->api_version) {
2335                 case ixgbe_mbox_api_11:
2336                 case ixgbe_mbox_api_12:
2337                         adapter->num_rx_queues = rss;
2338                         adapter->num_tx_queues = rss;
2339                 default:
2340                         break;
2341                 }
2342         }
2343 }
2344 
2345 /**
2346  * ixgbevf_alloc_queues - Allocate memory for all rings
2347  * @adapter: board private structure to initialize
2348  *
2349  * We allocate one ring per queue at run-time since we don't know the
2350  * number of queues at compile-time.  The polling_netdev array is
2351  * intended for Multiqueue, but should work fine with a single queue.
2352  **/
2353 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2354 {
2355         struct ixgbevf_ring *ring;
2356         int rx = 0, tx = 0;
2357 
2358         for (; tx < adapter->num_tx_queues; tx++) {
2359                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2360                 if (!ring)
2361                         goto err_allocation;
2362 
2363                 ring->dev = &adapter->pdev->dev;
2364                 ring->netdev = adapter->netdev;
2365                 ring->count = adapter->tx_ring_count;
2366                 ring->queue_index = tx;
2367                 ring->reg_idx = tx;
2368 
2369                 adapter->tx_ring[tx] = ring;
2370         }
2371 
2372         for (; rx < adapter->num_rx_queues; rx++) {
2373                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2374                 if (!ring)
2375                         goto err_allocation;
2376 
2377                 ring->dev = &adapter->pdev->dev;
2378                 ring->netdev = adapter->netdev;
2379 
2380                 ring->count = adapter->rx_ring_count;
2381                 ring->queue_index = rx;
2382                 ring->reg_idx = rx;
2383 
2384                 adapter->rx_ring[rx] = ring;
2385         }
2386 
2387         return 0;
2388 
2389 err_allocation:
2390         while (tx) {
2391                 kfree(adapter->tx_ring[--tx]);
2392                 adapter->tx_ring[tx] = NULL;
2393         }
2394 
2395         while (rx) {
2396                 kfree(adapter->rx_ring[--rx]);
2397                 adapter->rx_ring[rx] = NULL;
2398         }
2399         return -ENOMEM;
2400 }
2401 
2402 /**
2403  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2404  * @adapter: board private structure to initialize
2405  *
2406  * Attempt to configure the interrupts using the best available
2407  * capabilities of the hardware and the kernel.
2408  **/
2409 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2410 {
2411         struct net_device *netdev = adapter->netdev;
2412         int err = 0;
2413         int vector, v_budget;
2414 
2415         /* It's easy to be greedy for MSI-X vectors, but it really
2416          * doesn't do us much good if we have a lot more vectors
2417          * than CPU's.  So let's be conservative and only ask for
2418          * (roughly) the same number of vectors as there are CPU's.
2419          * The default is to use pairs of vectors.
2420          */
2421         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2422         v_budget = min_t(int, v_budget, num_online_cpus());
2423         v_budget += NON_Q_VECTORS;
2424 
2425         /* A failure in MSI-X entry allocation isn't fatal, but it does
2426          * mean we disable MSI-X capabilities of the adapter.
2427          */
2428         adapter->msix_entries = kcalloc(v_budget,
2429                                         sizeof(struct msix_entry), GFP_KERNEL);
2430         if (!adapter->msix_entries) {
2431                 err = -ENOMEM;
2432                 goto out;
2433         }
2434 
2435         for (vector = 0; vector < v_budget; vector++)
2436                 adapter->msix_entries[vector].entry = vector;
2437 
2438         err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2439         if (err)
2440                 goto out;
2441 
2442         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2443         if (err)
2444                 goto out;
2445 
2446         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2447 
2448 out:
2449         return err;
2450 }
2451 
2452 /**
2453  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2454  * @adapter: board private structure to initialize
2455  *
2456  * We allocate one q_vector per queue interrupt.  If allocation fails we
2457  * return -ENOMEM.
2458  **/
2459 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2460 {
2461         int q_idx, num_q_vectors;
2462         struct ixgbevf_q_vector *q_vector;
2463 
2464         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2465 
2466         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2467                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2468                 if (!q_vector)
2469                         goto err_out;
2470                 q_vector->adapter = adapter;
2471                 q_vector->v_idx = q_idx;
2472                 netif_napi_add(adapter->netdev, &q_vector->napi,
2473                                ixgbevf_poll, 64);
2474 #ifdef CONFIG_NET_RX_BUSY_POLL
2475                 napi_hash_add(&q_vector->napi);
2476 #endif
2477                 adapter->q_vector[q_idx] = q_vector;
2478         }
2479 
2480         return 0;
2481 
2482 err_out:
2483         while (q_idx) {
2484                 q_idx--;
2485                 q_vector = adapter->q_vector[q_idx];
2486 #ifdef CONFIG_NET_RX_BUSY_POLL
2487                 napi_hash_del(&q_vector->napi);
2488 #endif
2489                 netif_napi_del(&q_vector->napi);
2490                 kfree(q_vector);
2491                 adapter->q_vector[q_idx] = NULL;
2492         }
2493         return -ENOMEM;
2494 }
2495 
2496 /**
2497  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2498  * @adapter: board private structure to initialize
2499  *
2500  * This function frees the memory allocated to the q_vectors.  In addition if
2501  * NAPI is enabled it will delete any references to the NAPI struct prior
2502  * to freeing the q_vector.
2503  **/
2504 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2505 {
2506         int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2507 
2508         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2509                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2510 
2511                 adapter->q_vector[q_idx] = NULL;
2512 #ifdef CONFIG_NET_RX_BUSY_POLL
2513                 napi_hash_del(&q_vector->napi);
2514 #endif
2515                 netif_napi_del(&q_vector->napi);
2516                 kfree(q_vector);
2517         }
2518 }
2519 
2520 /**
2521  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2522  * @adapter: board private structure
2523  *
2524  **/
2525 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2526 {
2527         pci_disable_msix(adapter->pdev);
2528         kfree(adapter->msix_entries);
2529         adapter->msix_entries = NULL;
2530 }
2531 
2532 /**
2533  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2534  * @adapter: board private structure to initialize
2535  *
2536  **/
2537 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2538 {
2539         int err;
2540 
2541         /* Number of supported queues */
2542         ixgbevf_set_num_queues(adapter);
2543 
2544         err = ixgbevf_set_interrupt_capability(adapter);
2545         if (err) {
2546                 hw_dbg(&adapter->hw,
2547                        "Unable to setup interrupt capabilities\n");
2548                 goto err_set_interrupt;
2549         }
2550 
2551         err = ixgbevf_alloc_q_vectors(adapter);
2552         if (err) {
2553                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2554                 goto err_alloc_q_vectors;
2555         }
2556 
2557         err = ixgbevf_alloc_queues(adapter);
2558         if (err) {
2559                 pr_err("Unable to allocate memory for queues\n");
2560                 goto err_alloc_queues;
2561         }
2562 
2563         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2564                (adapter->num_rx_queues > 1) ? "Enabled" :
2565                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2566 
2567         set_bit(__IXGBEVF_DOWN, &adapter->state);
2568 
2569         return 0;
2570 err_alloc_queues:
2571         ixgbevf_free_q_vectors(adapter);
2572 err_alloc_q_vectors:
2573         ixgbevf_reset_interrupt_capability(adapter);
2574 err_set_interrupt:
2575         return err;
2576 }
2577 
2578 /**
2579  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2580  * @adapter: board private structure to clear interrupt scheme on
2581  *
2582  * We go through and clear interrupt specific resources and reset the structure
2583  * to pre-load conditions
2584  **/
2585 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2586 {
2587         int i;
2588 
2589         for (i = 0; i < adapter->num_tx_queues; i++) {
2590                 kfree(adapter->tx_ring[i]);
2591                 adapter->tx_ring[i] = NULL;
2592         }
2593         for (i = 0; i < adapter->num_rx_queues; i++) {
2594                 kfree(adapter->rx_ring[i]);
2595                 adapter->rx_ring[i] = NULL;
2596         }
2597 
2598         adapter->num_tx_queues = 0;
2599         adapter->num_rx_queues = 0;
2600 
2601         ixgbevf_free_q_vectors(adapter);
2602         ixgbevf_reset_interrupt_capability(adapter);
2603 }
2604 
2605 /**
2606  * ixgbevf_sw_init - Initialize general software structures
2607  * @adapter: board private structure to initialize
2608  *
2609  * ixgbevf_sw_init initializes the Adapter private data structure.
2610  * Fields are initialized based on PCI device information and
2611  * OS network device settings (MTU size).
2612  **/
2613 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2614 {
2615         struct ixgbe_hw *hw = &adapter->hw;
2616         struct pci_dev *pdev = adapter->pdev;
2617         struct net_device *netdev = adapter->netdev;
2618         int err;
2619 
2620         /* PCI config space info */
2621         hw->vendor_id = pdev->vendor;
2622         hw->device_id = pdev->device;
2623         hw->revision_id = pdev->revision;
2624         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2625         hw->subsystem_device_id = pdev->subsystem_device;
2626 
2627         hw->mbx.ops.init_params(hw);
2628 
2629         /* assume legacy case in which PF would only give VF 2 queues */
2630         hw->mac.max_tx_queues = 2;
2631         hw->mac.max_rx_queues = 2;
2632 
2633         /* lock to protect mailbox accesses */
2634         spin_lock_init(&adapter->mbx_lock);
2635 
2636         err = hw->mac.ops.reset_hw(hw);
2637         if (err) {
2638                 dev_info(&pdev->dev,
2639                          "PF still in reset state.  Is the PF interface up?\n");
2640         } else {
2641                 err = hw->mac.ops.init_hw(hw);
2642                 if (err) {
2643                         pr_err("init_shared_code failed: %d\n", err);
2644                         goto out;
2645                 }
2646                 ixgbevf_negotiate_api(adapter);
2647                 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2648                 if (err)
2649                         dev_info(&pdev->dev, "Error reading MAC address\n");
2650                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2651                         dev_info(&pdev->dev,
2652                                  "MAC address not assigned by administrator.\n");
2653                 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2654         }
2655 
2656         if (!is_valid_ether_addr(netdev->dev_addr)) {
2657                 dev_info(&pdev->dev, "Assigning random MAC address\n");
2658                 eth_hw_addr_random(netdev);
2659                 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2660         }
2661 
2662         /* Enable dynamic interrupt throttling rates */
2663         adapter->rx_itr_setting = 1;
2664         adapter->tx_itr_setting = 1;
2665 
2666         /* set default ring sizes */
2667         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2668         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2669 
2670         set_bit(__IXGBEVF_DOWN, &adapter->state);
2671         return 0;
2672 
2673 out:
2674         return err;
2675 }
2676 
2677 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2678         {                                                       \
2679                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2680                 if (current_counter < last_counter)             \
2681                         counter += 0x100000000LL;               \
2682                 last_counter = current_counter;                 \
2683                 counter &= 0xFFFFFFFF00000000LL;                \
2684                 counter |= current_counter;                     \
2685         }
2686 
2687 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2688         {                                                                \
2689                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2690                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2691                 u64 current_counter = (current_counter_msb << 32) |      \
2692                         current_counter_lsb;                             \
2693                 if (current_counter < last_counter)                      \
2694                         counter += 0x1000000000LL;                       \
2695                 last_counter = current_counter;                          \
2696                 counter &= 0xFFFFFFF000000000LL;                         \
2697                 counter |= current_counter;                              \
2698         }
2699 /**
2700  * ixgbevf_update_stats - Update the board statistics counters.
2701  * @adapter: board private structure
2702  **/
2703 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2704 {
2705         struct ixgbe_hw *hw = &adapter->hw;
2706         int i;
2707 
2708         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2709             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2710                 return;
2711 
2712         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2713                                 adapter->stats.vfgprc);
2714         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2715                                 adapter->stats.vfgptc);
2716         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2717                                 adapter->stats.last_vfgorc,
2718                                 adapter->stats.vfgorc);
2719         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2720                                 adapter->stats.last_vfgotc,
2721                                 adapter->stats.vfgotc);
2722         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2723                                 adapter->stats.vfmprc);
2724 
2725         for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2726                 adapter->hw_csum_rx_error +=
2727                         adapter->rx_ring[i]->hw_csum_rx_error;
2728                 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2729         }
2730 }
2731 
2732 /**
2733  * ixgbevf_service_timer - Timer Call-back
2734  * @data: pointer to adapter cast into an unsigned long
2735  **/
2736 static void ixgbevf_service_timer(unsigned long data)
2737 {
2738         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2739 
2740         /* Reset the timer */
2741         mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2742 
2743         ixgbevf_service_event_schedule(adapter);
2744 }
2745 
2746 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2747 {
2748         if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2749                 return;
2750 
2751         adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2752 
2753         /* If we're already down or resetting, just bail */
2754         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2755             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2756                 return;
2757 
2758         adapter->tx_timeout_count++;
2759 
2760         ixgbevf_reinit_locked(adapter);
2761 }
2762 
2763 /**
2764  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2765  * @adapter: pointer to the device adapter structure
2766  *
2767  * This function serves two purposes.  First it strobes the interrupt lines
2768  * in order to make certain interrupts are occurring.  Secondly it sets the
2769  * bits needed to check for TX hangs.  As a result we should immediately
2770  * determine if a hang has occurred.
2771  **/
2772 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2773 {
2774         struct ixgbe_hw *hw = &adapter->hw;
2775         u32 eics = 0;
2776         int i;
2777 
2778         /* If we're down or resetting, just bail */
2779         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2780             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2781                 return;
2782 
2783         /* Force detection of hung controller */
2784         if (netif_carrier_ok(adapter->netdev)) {
2785                 for (i = 0; i < adapter->num_tx_queues; i++)
2786                         set_check_for_tx_hang(adapter->tx_ring[i]);
2787         }
2788 
2789         /* get one bit for every active Tx/Rx interrupt vector */
2790         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2791                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2792 
2793                 if (qv->rx.ring || qv->tx.ring)
2794                         eics |= 1 << i;
2795         }
2796 
2797         /* Cause software interrupt to ensure rings are cleaned */
2798         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2799 }
2800 
2801 /**
2802  * ixgbevf_watchdog_update_link - update the link status
2803  * @adapter: pointer to the device adapter structure
2804  **/
2805 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2806 {
2807         struct ixgbe_hw *hw = &adapter->hw;
2808         u32 link_speed = adapter->link_speed;
2809         bool link_up = adapter->link_up;
2810         s32 err;
2811 
2812         spin_lock_bh(&adapter->mbx_lock);
2813 
2814         err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2815 
2816         spin_unlock_bh(&adapter->mbx_lock);
2817 
2818         /* if check for link returns error we will need to reset */
2819         if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2820                 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2821                 link_up = false;
2822         }
2823 
2824         adapter->link_up = link_up;
2825         adapter->link_speed = link_speed;
2826 }
2827 
2828 /**
2829  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2830  *                               print link up message
2831  * @adapter: pointer to the device adapter structure
2832  **/
2833 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2834 {
2835         struct net_device *netdev = adapter->netdev;
2836 
2837         /* only continue if link was previously down */
2838         if (netif_carrier_ok(netdev))
2839                 return;
2840 
2841         dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2842                  (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2843                  "10 Gbps" :
2844                  (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2845                  "1 Gbps" :
2846                  (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2847                  "100 Mbps" :
2848                  "unknown speed");
2849 
2850         netif_carrier_on(netdev);
2851 }
2852 
2853 /**
2854  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2855  *                                 print link down message
2856  * @adapter: pointer to the adapter structure
2857  **/
2858 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2859 {
2860         struct net_device *netdev = adapter->netdev;
2861 
2862         adapter->link_speed = 0;
2863 
2864         /* only continue if link was up previously */
2865         if (!netif_carrier_ok(netdev))
2866                 return;
2867 
2868         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2869 
2870         netif_carrier_off(netdev);
2871 }
2872 
2873 /**
2874  * ixgbevf_watchdog_subtask - worker thread to bring link up
2875  * @work: pointer to work_struct containing our data
2876  **/
2877 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2878 {
2879         /* if interface is down do nothing */
2880         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2881             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2882                 return;
2883 
2884         ixgbevf_watchdog_update_link(adapter);
2885 
2886         if (adapter->link_up)
2887                 ixgbevf_watchdog_link_is_up(adapter);
2888         else
2889                 ixgbevf_watchdog_link_is_down(adapter);
2890 
2891         ixgbevf_update_stats(adapter);
2892 }
2893 
2894 /**
2895  * ixgbevf_service_task - manages and runs subtasks
2896  * @work: pointer to work_struct containing our data
2897  **/
2898 static void ixgbevf_service_task(struct work_struct *work)
2899 {
2900         struct ixgbevf_adapter *adapter = container_of(work,
2901                                                        struct ixgbevf_adapter,
2902                                                        service_task);
2903         struct ixgbe_hw *hw = &adapter->hw;
2904 
2905         if (IXGBE_REMOVED(hw->hw_addr)) {
2906                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2907                         rtnl_lock();
2908                         ixgbevf_down(adapter);
2909                         rtnl_unlock();
2910                 }
2911                 return;
2912         }
2913 
2914         ixgbevf_queue_reset_subtask(adapter);
2915         ixgbevf_reset_subtask(adapter);
2916         ixgbevf_watchdog_subtask(adapter);
2917         ixgbevf_check_hang_subtask(adapter);
2918 
2919         ixgbevf_service_event_complete(adapter);
2920 }
2921 
2922 /**
2923  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2924  * @tx_ring: Tx descriptor ring for a specific queue
2925  *
2926  * Free all transmit software resources
2927  **/
2928 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2929 {
2930         ixgbevf_clean_tx_ring(tx_ring);
2931 
2932         vfree(tx_ring->tx_buffer_info);
2933         tx_ring->tx_buffer_info = NULL;
2934 
2935         /* if not set, then don't free */
2936         if (!tx_ring->desc)
2937                 return;
2938 
2939         dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2940                           tx_ring->dma);
2941 
2942         tx_ring->desc = NULL;
2943 }
2944 
2945 /**
2946  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2947  * @adapter: board private structure
2948  *
2949  * Free all transmit software resources
2950  **/
2951 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2952 {
2953         int i;
2954 
2955         for (i = 0; i < adapter->num_tx_queues; i++)
2956                 if (adapter->tx_ring[i]->desc)
2957                         ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2958 }
2959 
2960 /**
2961  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2962  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2963  *
2964  * Return 0 on success, negative on failure
2965  **/
2966 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2967 {
2968         int size;
2969 
2970         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2971         tx_ring->tx_buffer_info = vzalloc(size);
2972         if (!tx_ring->tx_buffer_info)
2973                 goto err;
2974 
2975         /* round up to nearest 4K */
2976         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2977         tx_ring->size = ALIGN(tx_ring->size, 4096);
2978 
2979         tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2980                                            &tx_ring->dma, GFP_KERNEL);
2981         if (!tx_ring->desc)
2982                 goto err;
2983 
2984         return 0;
2985 
2986 err:
2987         vfree(tx_ring->tx_buffer_info);
2988         tx_ring->tx_buffer_info = NULL;
2989         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
2990         return -ENOMEM;
2991 }
2992 
2993 /**
2994  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2995  * @adapter: board private structure
2996  *
2997  * If this function returns with an error, then it's possible one or
2998  * more of the rings is populated (while the rest are not).  It is the
2999  * callers duty to clean those orphaned rings.
3000  *
3001  * Return 0 on success, negative on failure
3002  **/
3003 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3004 {
3005         int i, err = 0;
3006 
3007         for (i = 0; i < adapter->num_tx_queues; i++) {
3008                 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3009                 if (!err)
3010                         continue;
3011                 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3012                 break;
3013         }
3014 
3015         return err;
3016 }
3017 
3018 /**
3019  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3020  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3021  *
3022  * Returns 0 on success, negative on failure
3023  **/
3024 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3025 {
3026         int size;
3027 
3028         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3029         rx_ring->rx_buffer_info = vzalloc(size);
3030         if (!rx_ring->rx_buffer_info)
3031                 goto err;
3032 
3033         /* Round up to nearest 4K */
3034         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3035         rx_ring->size = ALIGN(rx_ring->size, 4096);
3036 
3037         rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3038                                            &rx_ring->dma, GFP_KERNEL);
3039 
3040         if (!rx_ring->desc)
3041                 goto err;
3042 
3043         return 0;
3044 err:
3045         vfree(rx_ring->rx_buffer_info);
3046         rx_ring->rx_buffer_info = NULL;
3047         dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3048         return -ENOMEM;
3049 }
3050 
3051 /**
3052  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3053  * @adapter: board private structure
3054  *
3055  * If this function returns with an error, then it's possible one or
3056  * more of the rings is populated (while the rest are not).  It is the
3057  * callers duty to clean those orphaned rings.
3058  *
3059  * Return 0 on success, negative on failure
3060  **/
3061 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3062 {
3063         int i, err = 0;
3064 
3065         for (i = 0; i < adapter->num_rx_queues; i++) {
3066                 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3067                 if (!err)
3068                         continue;
3069                 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3070                 break;
3071         }
3072         return err;
3073 }
3074 
3075 /**
3076  * ixgbevf_free_rx_resources - Free Rx Resources
3077  * @rx_ring: ring to clean the resources from
3078  *
3079  * Free all receive software resources
3080  **/
3081 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3082 {
3083         ixgbevf_clean_rx_ring(rx_ring);
3084 
3085         vfree(rx_ring->rx_buffer_info);
3086         rx_ring->rx_buffer_info = NULL;
3087 
3088         dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3089                           rx_ring->dma);
3090 
3091         rx_ring->desc = NULL;
3092 }
3093 
3094 /**
3095  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3096  * @adapter: board private structure
3097  *
3098  * Free all receive software resources
3099  **/
3100 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3101 {
3102         int i;
3103 
3104         for (i = 0; i < adapter->num_rx_queues; i++)
3105                 if (adapter->rx_ring[i]->desc)
3106                         ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3107 }
3108 
3109 /**
3110  * ixgbevf_open - Called when a network interface is made active
3111  * @netdev: network interface device structure
3112  *
3113  * Returns 0 on success, negative value on failure
3114  *
3115  * The open entry point is called when a network interface is made
3116  * active by the system (IFF_UP).  At this point all resources needed
3117  * for transmit and receive operations are allocated, the interrupt
3118  * handler is registered with the OS, the watchdog timer is started,
3119  * and the stack is notified that the interface is ready.
3120  **/
3121 static int ixgbevf_open(struct net_device *netdev)
3122 {
3123         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3124         struct ixgbe_hw *hw = &adapter->hw;
3125         int err;
3126 
3127         /* A previous failure to open the device because of a lack of
3128          * available MSIX vector resources may have reset the number
3129          * of msix vectors variable to zero.  The only way to recover
3130          * is to unload/reload the driver and hope that the system has
3131          * been able to recover some MSIX vector resources.
3132          */
3133         if (!adapter->num_msix_vectors)
3134                 return -ENOMEM;
3135 
3136         if (hw->adapter_stopped) {
3137                 ixgbevf_reset(adapter);
3138                 /* if adapter is still stopped then PF isn't up and
3139                  * the VF can't start.
3140                  */
3141                 if (hw->adapter_stopped) {
3142                         err = IXGBE_ERR_MBX;
3143                         pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3144                         goto err_setup_reset;
3145                 }
3146         }
3147 
3148         /* disallow open during test */
3149         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3150                 return -EBUSY;
3151 
3152         netif_carrier_off(netdev);
3153 
3154         /* allocate transmit descriptors */
3155         err = ixgbevf_setup_all_tx_resources(adapter);
3156         if (err)
3157                 goto err_setup_tx;
3158 
3159         /* allocate receive descriptors */
3160         err = ixgbevf_setup_all_rx_resources(adapter);
3161         if (err)
3162                 goto err_setup_rx;
3163 
3164         ixgbevf_configure(adapter);
3165 
3166         /* Map the Tx/Rx rings to the vectors we were allotted.
3167          * if request_irq will be called in this function map_rings
3168          * must be called *before* up_complete
3169          */
3170         ixgbevf_map_rings_to_vectors(adapter);
3171 
3172         err = ixgbevf_request_irq(adapter);
3173         if (err)
3174                 goto err_req_irq;
3175 
3176         ixgbevf_up_complete(adapter);
3177 
3178         return 0;
3179 
3180 err_req_irq:
3181         ixgbevf_down(adapter);
3182 err_setup_rx:
3183         ixgbevf_free_all_rx_resources(adapter);
3184 err_setup_tx:
3185         ixgbevf_free_all_tx_resources(adapter);
3186         ixgbevf_reset(adapter);
3187 
3188 err_setup_reset:
3189 
3190         return err;
3191 }
3192 
3193 /**
3194  * ixgbevf_close - Disables a network interface
3195  * @netdev: network interface device structure
3196  *
3197  * Returns 0, this is not allowed to fail
3198  *
3199  * The close entry point is called when an interface is de-activated
3200  * by the OS.  The hardware is still under the drivers control, but
3201  * needs to be disabled.  A global MAC reset is issued to stop the
3202  * hardware, and all transmit and receive resources are freed.
3203  **/
3204 static int ixgbevf_close(struct net_device *netdev)
3205 {
3206         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3207 
3208         ixgbevf_down(adapter);
3209         ixgbevf_free_irq(adapter);
3210 
3211         ixgbevf_free_all_tx_resources(adapter);
3212         ixgbevf_free_all_rx_resources(adapter);
3213 
3214         return 0;
3215 }
3216 
3217 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3218 {
3219         struct net_device *dev = adapter->netdev;
3220 
3221         if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3222                 return;
3223 
3224         adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3225 
3226         /* if interface is down do nothing */
3227         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3228             test_bit(__IXGBEVF_RESETTING, &adapter->state))
3229                 return;
3230 
3231         /* Hardware has to reinitialize queues and interrupts to
3232          * match packet buffer alignment. Unfortunately, the
3233          * hardware is not flexible enough to do this dynamically.
3234          */
3235         if (netif_running(dev))
3236                 ixgbevf_close(dev);
3237 
3238         ixgbevf_clear_interrupt_scheme(adapter);
3239         ixgbevf_init_interrupt_scheme(adapter);
3240 
3241         if (netif_running(dev))
3242                 ixgbevf_open(dev);
3243 }
3244 
3245 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3246                                 u32 vlan_macip_lens, u32 type_tucmd,
3247                                 u32 mss_l4len_idx)
3248 {
3249         struct ixgbe_adv_tx_context_desc *context_desc;
3250         u16 i = tx_ring->next_to_use;
3251 
3252         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3253 
3254         i++;
3255         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3256 
3257         /* set bits to identify this as an advanced context descriptor */
3258         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3259 
3260         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
3261         context_desc->seqnum_seed       = 0;
3262         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
3263         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
3264 }
3265 
3266 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3267                        struct ixgbevf_tx_buffer *first,
3268                        u8 *hdr_len)
3269 {
3270         struct sk_buff *skb = first->skb;
3271         u32 vlan_macip_lens, type_tucmd;
3272         u32 mss_l4len_idx, l4len;
3273         int err;
3274 
3275         if (skb->ip_summed != CHECKSUM_PARTIAL)
3276                 return 0;
3277 
3278         if (!skb_is_gso(skb))
3279                 return 0;
3280 
3281         err = skb_cow_head(skb, 0);
3282         if (err < 0)
3283                 return err;
3284 
3285         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3286         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3287 
3288         if (first->protocol == htons(ETH_P_IP)) {
3289                 struct iphdr *iph = ip_hdr(skb);
3290 
3291                 iph->tot_len = 0;
3292                 iph->check = 0;
3293                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3294                                                          iph->daddr, 0,
3295                                                          IPPROTO_TCP,
3296                                                          0);
3297                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3298                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3299                                    IXGBE_TX_FLAGS_CSUM |
3300                                    IXGBE_TX_FLAGS_IPV4;
3301         } else if (skb_is_gso_v6(skb)) {
3302                 ipv6_hdr(skb)->payload_len = 0;
3303                 tcp_hdr(skb)->check =
3304                     ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3305                                      &ipv6_hdr(skb)->daddr,
3306                                      0, IPPROTO_TCP, 0);
3307                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3308                                    IXGBE_TX_FLAGS_CSUM;
3309         }
3310 
3311         /* compute header lengths */
3312         l4len = tcp_hdrlen(skb);
3313         *hdr_len += l4len;
3314         *hdr_len = skb_transport_offset(skb) + l4len;
3315 
3316         /* update GSO size and bytecount with header size */
3317         first->gso_segs = skb_shinfo(skb)->gso_segs;
3318         first->bytecount += (first->gso_segs - 1) * *hdr_len;
3319 
3320         /* mss_l4len_id: use 1 as index for TSO */
3321         mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3322         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3323         mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3324 
3325         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3326         vlan_macip_lens = skb_network_header_len(skb);
3327         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3328         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3329 
3330         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3331                             type_tucmd, mss_l4len_idx);
3332 
3333         return 1;
3334 }
3335 
3336 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3337                             struct ixgbevf_tx_buffer *first)
3338 {
3339         struct sk_buff *skb = first->skb;
3340         u32 vlan_macip_lens = 0;
3341         u32 mss_l4len_idx = 0;
3342         u32 type_tucmd = 0;
3343 
3344         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3345                 u8 l4_hdr = 0;
3346 
3347                 switch (first->protocol) {
3348                 case htons(ETH_P_IP):
3349                         vlan_macip_lens |= skb_network_header_len(skb);
3350                         type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3351                         l4_hdr = ip_hdr(skb)->protocol;
3352                         break;
3353                 case htons(ETH_P_IPV6):
3354                         vlan_macip_lens |= skb_network_header_len(skb);
3355                         l4_hdr = ipv6_hdr(skb)->nexthdr;
3356                         break;
3357                 default:
3358                         if (unlikely(net_ratelimit())) {
3359                                 dev_warn(tx_ring->dev,
3360                                          "partial checksum but proto=%x!\n",
3361                                          first->protocol);
3362                         }
3363                         break;
3364                 }
3365 
3366                 switch (l4_hdr) {
3367                 case IPPROTO_TCP:
3368                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3369                         mss_l4len_idx = tcp_hdrlen(skb) <<
3370                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3371                         break;
3372                 case IPPROTO_SCTP:
3373                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3374                         mss_l4len_idx = sizeof(struct sctphdr) <<
3375                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3376                         break;
3377                 case IPPROTO_UDP:
3378                         mss_l4len_idx = sizeof(struct udphdr) <<
3379                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3380                         break;
3381                 default:
3382                         if (unlikely(net_ratelimit())) {
3383                                 dev_warn(tx_ring->dev,
3384                                          "partial checksum but l4 proto=%x!\n",
3385                                          l4_hdr);
3386                         }
3387                         break;
3388                 }
3389 
3390                 /* update TX checksum flag */
3391                 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3392         }
3393 
3394         /* vlan_macip_lens: MACLEN, VLAN tag */
3395         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3396         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3397 
3398         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3399                             type_tucmd, mss_l4len_idx);
3400 }
3401 
3402 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3403 {
3404         /* set type for advanced descriptor with frame checksum insertion */
3405         __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3406                                       IXGBE_ADVTXD_DCMD_IFCS |
3407                                       IXGBE_ADVTXD_DCMD_DEXT);
3408 
3409         /* set HW VLAN bit if VLAN is present */
3410         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3411                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3412 
3413         /* set segmentation enable bits for TSO/FSO */
3414         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3415                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3416 
3417         return cmd_type;
3418 }
3419 
3420 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3421                                      u32 tx_flags, unsigned int paylen)
3422 {
3423         __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3424 
3425         /* enable L4 checksum for TSO and TX checksum offload */
3426         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3427                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3428 
3429         /* enble IPv4 checksum for TSO */
3430         if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3431                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3432 
3433         /* use index 1 context for TSO/FSO/FCOE */
3434         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3435                 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3436 
3437         /* Check Context must be set if Tx switch is enabled, which it
3438          * always is for case where virtual functions are running
3439          */
3440         olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3441 
3442         tx_desc->read.olinfo_status = olinfo_status;
3443 }
3444 
3445 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3446                            struct ixgbevf_tx_buffer *first,
3447                            const u8 hdr_len)
3448 {
3449         dma_addr_t dma;
3450         struct sk_buff *skb = first->skb;
3451         struct ixgbevf_tx_buffer *tx_buffer;
3452         union ixgbe_adv_tx_desc *tx_desc;
3453         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3454         unsigned int data_len = skb->data_len;
3455         unsigned int size = skb_headlen(skb);
3456         unsigned int paylen = skb->len - hdr_len;
3457         u32 tx_flags = first->tx_flags;
3458         __le32 cmd_type;
3459         u16 i = tx_ring->next_to_use;
3460 
3461         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3462 
3463         ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3464         cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3465 
3466         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3467         if (dma_mapping_error(tx_ring->dev, dma))
3468                 goto dma_error;
3469 
3470         /* record length, and DMA address */
3471         dma_unmap_len_set(first, len, size);
3472         dma_unmap_addr_set(first, dma, dma);
3473 
3474         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3475 
3476         for (;;) {
3477                 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3478                         tx_desc->read.cmd_type_len =
3479                                 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3480 
3481                         i++;
3482                         tx_desc++;
3483                         if (i == tx_ring->count) {
3484                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3485                                 i = 0;
3486                         }
3487 
3488                         dma += IXGBE_MAX_DATA_PER_TXD;
3489                         size -= IXGBE_MAX_DATA_PER_TXD;
3490 
3491                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3492                         tx_desc->read.olinfo_status = 0;
3493                 }
3494 
3495                 if (likely(!data_len))
3496                         break;
3497 
3498                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3499 
3500                 i++;
3501                 tx_desc++;
3502                 if (i == tx_ring->count) {
3503                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3504                         i = 0;
3505                 }
3506 
3507                 size = skb_frag_size(frag);
3508                 data_len -= size;
3509 
3510                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3511                                        DMA_TO_DEVICE);
3512                 if (dma_mapping_error(tx_ring->dev, dma))
3513                         goto dma_error;
3514 
3515                 tx_buffer = &tx_ring->tx_buffer_info[i];
3516                 dma_unmap_len_set(tx_buffer, len, size);
3517                 dma_unmap_addr_set(tx_buffer, dma, dma);
3518 
3519                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3520                 tx_desc->read.olinfo_status = 0;
3521 
3522                 frag++;
3523         }
3524 
3525         /* write last descriptor with RS and EOP bits */
3526         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3527         tx_desc->read.cmd_type_len = cmd_type;
3528 
3529         /* set the timestamp */
3530         first->time_stamp = jiffies;
3531 
3532         /* Force memory writes to complete before letting h/w know there
3533          * are new descriptors to fetch.  (Only applicable for weak-ordered
3534          * memory model archs, such as IA-64).
3535          *
3536          * We also need this memory barrier (wmb) to make certain all of the
3537          * status bits have been updated before next_to_watch is written.
3538          */
3539         wmb();
3540 
3541         /* set next_to_watch value indicating a packet is present */
3542         first->next_to_watch = tx_desc;
3543 
3544         i++;
3545         if (i == tx_ring->count)
3546                 i = 0;
3547 
3548         tx_ring->next_to_use = i;
3549 
3550         /* notify HW of packet */
3551         ixgbevf_write_tail(tx_ring, i);
3552 
3553         return;
3554 dma_error:
3555         dev_err(tx_ring->dev, "TX DMA map failed\n");
3556 
3557         /* clear dma mappings for failed tx_buffer_info map */
3558         for (;;) {
3559                 tx_buffer = &tx_ring->tx_buffer_info[i];
3560                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3561                 if (tx_buffer == first)
3562                         break;
3563                 if (i == 0)
3564                         i = tx_ring->count;
3565                 i--;
3566         }
3567 
3568         tx_ring->next_to_use = i;
3569 }
3570 
3571 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3572 {
3573         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3574         /* Herbert's original patch had:
3575          *  smp_mb__after_netif_stop_queue();
3576          * but since that doesn't exist yet, just open code it.
3577          */
3578         smp_mb();
3579 
3580         /* We need to check again in a case another CPU has just
3581          * made room available.
3582          */
3583         if (likely(ixgbevf_desc_unused(tx_ring) < size))
3584                 return -EBUSY;
3585 
3586         /* A reprieve! - use start_queue because it doesn't call schedule */
3587         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3588         ++tx_ring->tx_stats.restart_queue;
3589 
3590         return 0;
3591 }
3592 
3593 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3594 {
3595         if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3596                 return 0;
3597         return __ixgbevf_maybe_stop_tx(tx_ring, size);
3598 }
3599 
3600 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3601 {
3602         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3603         struct ixgbevf_tx_buffer *first;
3604         struct ixgbevf_ring *tx_ring;
3605         int tso;
3606         u32 tx_flags = 0;
3607         u16 count = TXD_USE_COUNT(skb_headlen(skb));
3608 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3609         unsigned short f;
3610 #endif
3611         u8 hdr_len = 0;
3612         u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3613 
3614         if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3615                 dev_kfree_skb_any(skb);
3616                 return NETDEV_TX_OK;
3617         }
3618 
3619         tx_ring = adapter->tx_ring[skb->queue_mapping];
3620 
3621         /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3622          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3623          *       + 2 desc gap to keep tail from touching head,
3624          *       + 1 desc for context descriptor,
3625          * otherwise try next time
3626          */
3627 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3628         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3629                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3630 #else
3631         count += skb_shinfo(skb)->nr_frags;
3632 #endif
3633         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3634                 tx_ring->tx_stats.tx_busy++;
3635                 return NETDEV_TX_BUSY;
3636         }
3637 
3638         /* record the location of the first descriptor for this packet */
3639         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3640         first->skb = skb;
3641         first->bytecount = skb->len;
3642         first->gso_segs = 1;
3643 
3644         if (skb_vlan_tag_present(skb)) {
3645                 tx_flags |= skb_vlan_tag_get(skb);
3646                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3647                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3648         }
3649 
3650         /* record initial flags and protocol */
3651         first->tx_flags = tx_flags;
3652         first->protocol = vlan_get_protocol(skb);
3653 
3654         tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3655         if (tso < 0)
3656                 goto out_drop;
3657         else if (!tso)
3658                 ixgbevf_tx_csum(tx_ring, first);
3659 
3660         ixgbevf_tx_map(tx_ring, first, hdr_len);
3661 
3662         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3663 
3664         return NETDEV_TX_OK;
3665 
3666 out_drop:
3667         dev_kfree_skb_any(first->skb);
3668         first->skb = NULL;
3669 
3670         return NETDEV_TX_OK;
3671 }
3672 
3673 /**
3674  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3675  * @netdev: network interface device structure
3676  * @p: pointer to an address structure
3677  *
3678  * Returns 0 on success, negative on failure
3679  **/
3680 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3681 {
3682         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3683         struct ixgbe_hw *hw = &adapter->hw;
3684         struct sockaddr *addr = p;
3685 
3686         if (!is_valid_ether_addr(addr->sa_data))
3687                 return -EADDRNOTAVAIL;
3688 
3689         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3690         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3691 
3692         spin_lock_bh(&adapter->mbx_lock);
3693 
3694         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3695 
3696         spin_unlock_bh(&adapter->mbx_lock);
3697 
3698         return 0;
3699 }
3700 
3701 /**
3702  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3703  * @netdev: network interface device structure
3704  * @new_mtu: new value for maximum frame size
3705  *
3706  * Returns 0 on success, negative on failure
3707  **/
3708 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3709 {
3710         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3711         struct ixgbe_hw *hw = &adapter->hw;
3712         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3713         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3714 
3715         switch (adapter->hw.api_version) {
3716         case ixgbe_mbox_api_11:
3717         case ixgbe_mbox_api_12:
3718                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3719                 break;
3720         default:
3721                 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3722                         max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3723                 break;
3724         }
3725 
3726         /* MTU < 68 is an error and causes problems on some kernels */
3727         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3728                 return -EINVAL;
3729 
3730         hw_dbg(hw, "changing MTU from %d to %d\n",
3731                netdev->mtu, new_mtu);
3732         /* must set new MTU before calling down or up */
3733         netdev->mtu = new_mtu;
3734 
3735         /* notify the PF of our intent to use this size of frame */
3736         ixgbevf_rlpml_set_vf(hw, max_frame);
3737 
3738         return 0;
3739 }
3740 
3741 #ifdef CONFIG_NET_POLL_CONTROLLER
3742 /* Polling 'interrupt' - used by things like netconsole to send skbs
3743  * without having to re-enable interrupts. It's not called while
3744  * the interrupt routine is executing.
3745  */
3746 static void ixgbevf_netpoll(struct net_device *netdev)
3747 {
3748         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3749         int i;
3750 
3751         /* if interface is down do nothing */
3752         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3753                 return;
3754         for (i = 0; i < adapter->num_rx_queues; i++)
3755                 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3756 }
3757 #endif /* CONFIG_NET_POLL_CONTROLLER */
3758 
3759 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3760 {
3761         struct net_device *netdev = pci_get_drvdata(pdev);
3762         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3763 #ifdef CONFIG_PM
3764         int retval = 0;
3765 #endif
3766 
3767         netif_device_detach(netdev);
3768 
3769         if (netif_running(netdev)) {
3770                 rtnl_lock();
3771                 ixgbevf_down(adapter);
3772                 ixgbevf_free_irq(adapter);
3773                 ixgbevf_free_all_tx_resources(adapter);
3774                 ixgbevf_free_all_rx_resources(adapter);
3775                 rtnl_unlock();
3776         }
3777 
3778         ixgbevf_clear_interrupt_scheme(adapter);
3779 
3780 #ifdef CONFIG_PM
3781         retval = pci_save_state(pdev);
3782         if (retval)
3783                 return retval;
3784 
3785 #endif
3786         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3787                 pci_disable_device(pdev);
3788 
3789         return 0;
3790 }
3791 
3792 #ifdef CONFIG_PM
3793 static int ixgbevf_resume(struct pci_dev *pdev)
3794 {
3795         struct net_device *netdev = pci_get_drvdata(pdev);
3796         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3797         u32 err;
3798 
3799         pci_restore_state(pdev);
3800         /* pci_restore_state clears dev->state_saved so call
3801          * pci_save_state to restore it.
3802          */
3803         pci_save_state(pdev);
3804 
3805         err = pci_enable_device_mem(pdev);
3806         if (err) {
3807                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3808                 return err;
3809         }
3810         smp_mb__before_atomic();
3811         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3812         pci_set_master(pdev);
3813 
3814         ixgbevf_reset(adapter);
3815 
3816         rtnl_lock();
3817         err = ixgbevf_init_interrupt_scheme(adapter);
3818         rtnl_unlock();
3819         if (err) {
3820                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3821                 return err;
3822         }
3823 
3824         if (netif_running(netdev)) {
3825                 err = ixgbevf_open(netdev);
3826                 if (err)
3827                         return err;
3828         }
3829 
3830         netif_device_attach(netdev);
3831 
3832         return err;
3833 }
3834 
3835 #endif /* CONFIG_PM */
3836 static void ixgbevf_shutdown(struct pci_dev *pdev)
3837 {
3838         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3839 }
3840 
3841 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3842                                                 struct rtnl_link_stats64 *stats)
3843 {
3844         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3845         unsigned int start;
3846         u64 bytes, packets;
3847         const struct ixgbevf_ring *ring;
3848         int i;
3849 
3850         ixgbevf_update_stats(adapter);
3851 
3852         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3853 
3854         for (i = 0; i < adapter->num_rx_queues; i++) {
3855                 ring = adapter->rx_ring[i];
3856                 do {
3857                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3858                         bytes = ring->stats.bytes;
3859                         packets = ring->stats.packets;
3860                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3861                 stats->rx_bytes += bytes;
3862                 stats->rx_packets += packets;
3863         }
3864 
3865         for (i = 0; i < adapter->num_tx_queues; i++) {
3866                 ring = adapter->tx_ring[i];
3867                 do {
3868                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3869                         bytes = ring->stats.bytes;
3870                         packets = ring->stats.packets;
3871                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3872                 stats->tx_bytes += bytes;
3873                 stats->tx_packets += packets;
3874         }
3875 
3876         return stats;
3877 }
3878 
3879 static const struct net_device_ops ixgbevf_netdev_ops = {
3880         .ndo_open               = ixgbevf_open,
3881         .ndo_stop               = ixgbevf_close,
3882         .ndo_start_xmit         = ixgbevf_xmit_frame,
3883         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3884         .ndo_get_stats64        = ixgbevf_get_stats,
3885         .ndo_validate_addr      = eth_validate_addr,
3886         .ndo_set_mac_address    = ixgbevf_set_mac,
3887         .ndo_change_mtu         = ixgbevf_change_mtu,
3888         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3889         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3890         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3891 #ifdef CONFIG_NET_RX_BUSY_POLL
3892         .ndo_busy_poll          = ixgbevf_busy_poll_recv,
3893 #endif
3894 #ifdef CONFIG_NET_POLL_CONTROLLER
3895         .ndo_poll_controller    = ixgbevf_netpoll,
3896 #endif
3897 };
3898 
3899 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3900 {
3901         dev->netdev_ops = &ixgbevf_netdev_ops;
3902         ixgbevf_set_ethtool_ops(dev);
3903         dev->watchdog_timeo = 5 * HZ;
3904 }
3905 
3906 /**
3907  * ixgbevf_probe - Device Initialization Routine
3908  * @pdev: PCI device information struct
3909  * @ent: entry in ixgbevf_pci_tbl
3910  *
3911  * Returns 0 on success, negative on failure
3912  *
3913  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3914  * The OS initialization, configuring of the adapter private structure,
3915  * and a hardware reset occur.
3916  **/
3917 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3918 {
3919         struct net_device *netdev;
3920         struct ixgbevf_adapter *adapter = NULL;
3921         struct ixgbe_hw *hw = NULL;
3922         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3923         int err, pci_using_dac;
3924         bool disable_dev = false;
3925 
3926         err = pci_enable_device(pdev);
3927         if (err)
3928                 return err;
3929 
3930         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3931                 pci_using_dac = 1;
3932         } else {
3933                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3934                 if (err) {
3935                         dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3936                         goto err_dma;
3937                 }
3938                 pci_using_dac = 0;
3939         }
3940 
3941         err = pci_request_regions(pdev, ixgbevf_driver_name);
3942         if (err) {
3943                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3944                 goto err_pci_reg;
3945         }
3946 
3947         pci_set_master(pdev);
3948 
3949         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3950                                    MAX_TX_QUEUES);
3951         if (!netdev) {
3952                 err = -ENOMEM;
3953                 goto err_alloc_etherdev;
3954         }
3955 
3956         SET_NETDEV_DEV(netdev, &pdev->dev);
3957 
3958         adapter = netdev_priv(netdev);
3959 
3960         adapter->netdev = netdev;
3961         adapter->pdev = pdev;
3962         hw = &adapter->hw;
3963         hw->back = adapter;
3964         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3965 
3966         /* call save state here in standalone driver because it relies on
3967          * adapter struct to exist, and needs to call netdev_priv
3968          */
3969         pci_save_state(pdev);
3970 
3971         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3972                               pci_resource_len(pdev, 0));
3973         adapter->io_addr = hw->hw_addr;
3974         if (!hw->hw_addr) {
3975                 err = -EIO;
3976                 goto err_ioremap;
3977         }
3978 
3979         ixgbevf_assign_netdev_ops(netdev);
3980 
3981         /* Setup HW API */
3982         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3983         hw->mac.type  = ii->mac;
3984 
3985         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3986                sizeof(struct ixgbe_mbx_operations));
3987 
3988         /* setup the private structure */
3989         err = ixgbevf_sw_init(adapter);
3990         if (err)
3991                 goto err_sw_init;
3992 
3993         /* The HW MAC address was set and/or determined in sw_init */
3994         if (!is_valid_ether_addr(netdev->dev_addr)) {
3995                 pr_err("invalid MAC address\n");
3996                 err = -EIO;
3997                 goto err_sw_init;
3998         }
3999 
4000         netdev->hw_features = NETIF_F_SG |
4001                               NETIF_F_IP_CSUM |
4002                               NETIF_F_IPV6_CSUM |
4003                               NETIF_F_TSO |
4004                               NETIF_F_TSO6 |
4005                               NETIF_F_RXCSUM;
4006 
4007         netdev->features = netdev->hw_features |
4008                            NETIF_F_HW_VLAN_CTAG_TX |
4009                            NETIF_F_HW_VLAN_CTAG_RX |
4010                            NETIF_F_HW_VLAN_CTAG_FILTER;
4011 
4012         netdev->vlan_features |= NETIF_F_TSO |
4013                                  NETIF_F_TSO6 |
4014                                  NETIF_F_IP_CSUM |
4015                                  NETIF_F_IPV6_CSUM |
4016                                  NETIF_F_SG;
4017 
4018         if (pci_using_dac)
4019                 netdev->features |= NETIF_F_HIGHDMA;
4020 
4021         netdev->priv_flags |= IFF_UNICAST_FLT;
4022 
4023         if (IXGBE_REMOVED(hw->hw_addr)) {
4024                 err = -EIO;
4025                 goto err_sw_init;
4026         }
4027 
4028         setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4029                     (unsigned long)adapter);
4030 
4031         INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4032         set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4033         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4034 
4035         err = ixgbevf_init_interrupt_scheme(adapter);
4036         if (err)
4037                 goto err_sw_init;
4038 
4039         strcpy(netdev->name, "eth%d");
4040 
4041         err = register_netdev(netdev);
4042         if (err)
4043                 goto err_register;
4044 
4045         pci_set_drvdata(pdev, netdev);
4046         netif_carrier_off(netdev);
4047 
4048         ixgbevf_init_last_counter_stats(adapter);
4049 
4050         /* print the VF info */
4051         dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4052         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4053 
4054         switch (hw->mac.type) {
4055         case ixgbe_mac_X550_vf:
4056                 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4057                 break;
4058         case ixgbe_mac_X540_vf:
4059                 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4060                 break;
4061         case ixgbe_mac_82599_vf:
4062         default:
4063                 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4064                 break;
4065         }
4066 
4067         return 0;
4068 
4069 err_register:
4070         ixgbevf_clear_interrupt_scheme(adapter);
4071 err_sw_init:
4072         ixgbevf_reset_interrupt_capability(adapter);
4073         iounmap(adapter->io_addr);
4074 err_ioremap:
4075         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4076         free_netdev(netdev);
4077 err_alloc_etherdev:
4078         pci_release_regions(pdev);
4079 err_pci_reg:
4080 err_dma:
4081         if (!adapter || disable_dev)
4082                 pci_disable_device(pdev);
4083         return err;
4084 }
4085 
4086 /**
4087  * ixgbevf_remove - Device Removal Routine
4088  * @pdev: PCI device information struct
4089  *
4090  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4091  * that it should release a PCI device.  The could be caused by a
4092  * Hot-Plug event, or because the driver is going to be removed from
4093  * memory.
4094  **/
4095 static void ixgbevf_remove(struct pci_dev *pdev)
4096 {
4097         struct net_device *netdev = pci_get_drvdata(pdev);
4098         struct ixgbevf_adapter *adapter;
4099         bool disable_dev;
4100 
4101         if (!netdev)
4102                 return;
4103 
4104         adapter = netdev_priv(netdev);
4105 
4106         set_bit(__IXGBEVF_REMOVING, &adapter->state);
4107         cancel_work_sync(&adapter->service_task);
4108 
4109         if (netdev->reg_state == NETREG_REGISTERED)
4110                 unregister_netdev(netdev);
4111 
4112         ixgbevf_clear_interrupt_scheme(adapter);
4113         ixgbevf_reset_interrupt_capability(adapter);
4114 
4115         iounmap(adapter->io_addr);
4116         pci_release_regions(pdev);
4117 
4118         hw_dbg(&adapter->hw, "Remove complete\n");
4119 
4120         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4121         free_netdev(netdev);
4122 
4123         if (disable_dev)
4124                 pci_disable_device(pdev);
4125 }
4126 
4127 /**
4128  * ixgbevf_io_error_detected - called when PCI error is detected
4129  * @pdev: Pointer to PCI device
4130  * @state: The current pci connection state
4131  *
4132  * This function is called after a PCI bus error affecting
4133  * this device has been detected.
4134  **/
4135 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4136                                                   pci_channel_state_t state)
4137 {
4138         struct net_device *netdev = pci_get_drvdata(pdev);
4139         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4140 
4141         if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4142                 return PCI_ERS_RESULT_DISCONNECT;
4143 
4144         rtnl_lock();
4145         netif_device_detach(netdev);
4146 
4147         if (state == pci_channel_io_perm_failure) {
4148                 rtnl_unlock();
4149                 return PCI_ERS_RESULT_DISCONNECT;
4150         }
4151 
4152         if (netif_running(netdev))
4153                 ixgbevf_down(adapter);
4154 
4155         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4156                 pci_disable_device(pdev);
4157         rtnl_unlock();
4158 
4159         /* Request a slot slot reset. */
4160         return PCI_ERS_RESULT_NEED_RESET;
4161 }
4162 
4163 /**
4164  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4165  * @pdev: Pointer to PCI device
4166  *
4167  * Restart the card from scratch, as if from a cold-boot. Implementation
4168  * resembles the first-half of the ixgbevf_resume routine.
4169  **/
4170 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4171 {
4172         struct net_device *netdev = pci_get_drvdata(pdev);
4173         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4174 
4175         if (pci_enable_device_mem(pdev)) {
4176                 dev_err(&pdev->dev,
4177                         "Cannot re-enable PCI device after reset.\n");
4178                 return PCI_ERS_RESULT_DISCONNECT;
4179         }
4180 
4181         smp_mb__before_atomic();
4182         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4183         pci_set_master(pdev);
4184 
4185         ixgbevf_reset(adapter);
4186 
4187         return PCI_ERS_RESULT_RECOVERED;
4188 }
4189 
4190 /**
4191  * ixgbevf_io_resume - called when traffic can start flowing again.
4192  * @pdev: Pointer to PCI device
4193  *
4194  * This callback is called when the error recovery driver tells us that
4195  * its OK to resume normal operation. Implementation resembles the
4196  * second-half of the ixgbevf_resume routine.
4197  **/
4198 static void ixgbevf_io_resume(struct pci_dev *pdev)
4199 {
4200         struct net_device *netdev = pci_get_drvdata(pdev);
4201         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4202 
4203         if (netif_running(netdev))
4204                 ixgbevf_up(adapter);
4205 
4206         netif_device_attach(netdev);
4207 }
4208 
4209 /* PCI Error Recovery (ERS) */
4210 static const struct pci_error_handlers ixgbevf_err_handler = {
4211         .error_detected = ixgbevf_io_error_detected,
4212         .slot_reset = ixgbevf_io_slot_reset,
4213         .resume = ixgbevf_io_resume,
4214 };
4215 
4216 static struct pci_driver ixgbevf_driver = {
4217         .name           = ixgbevf_driver_name,
4218         .id_table       = ixgbevf_pci_tbl,
4219         .probe          = ixgbevf_probe,
4220         .remove         = ixgbevf_remove,
4221 #ifdef CONFIG_PM
4222         /* Power Management Hooks */
4223         .suspend        = ixgbevf_suspend,
4224         .resume         = ixgbevf_resume,
4225 #endif
4226         .shutdown       = ixgbevf_shutdown,
4227         .err_handler    = &ixgbevf_err_handler
4228 };
4229 
4230 /**
4231  * ixgbevf_init_module - Driver Registration Routine
4232  *
4233  * ixgbevf_init_module is the first routine called when the driver is
4234  * loaded. All it does is register with the PCI subsystem.
4235  **/
4236 static int __init ixgbevf_init_module(void)
4237 {
4238         int ret;
4239 
4240         pr_info("%s - version %s\n", ixgbevf_driver_string,
4241                 ixgbevf_driver_version);
4242 
4243         pr_info("%s\n", ixgbevf_copyright);
4244 
4245         ret = pci_register_driver(&ixgbevf_driver);
4246         return ret;
4247 }
4248 
4249 module_init(ixgbevf_init_module);
4250 
4251 /**
4252  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4253  *
4254  * ixgbevf_exit_module is called just before the driver is removed
4255  * from memory.
4256  **/
4257 static void __exit ixgbevf_exit_module(void)
4258 {
4259         pci_unregister_driver(&ixgbevf_driver);
4260 }
4261 
4262 #ifdef DEBUG
4263 /**
4264  * ixgbevf_get_hw_dev_name - return device name string
4265  * used by hardware layer to print debugging information
4266  **/
4267 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4268 {
4269         struct ixgbevf_adapter *adapter = hw->back;
4270 
4271         return adapter->netdev->name;
4272 }
4273 
4274 #endif
4275 module_exit(ixgbevf_exit_module);
4276 
4277 /* ixgbevf_main.c */
4278 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us