Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c

  1 /*******************************************************************************
  2 
  3   Intel 82599 Virtual Function driver
  4   Copyright(c) 1999 - 2015 Intel Corporation.
  5 
  6   This program is free software; you can redistribute it and/or modify it
  7   under the terms and conditions of the GNU General Public License,
  8   version 2, as published by the Free Software Foundation.
  9 
 10   This program is distributed in the hope it will be useful, but WITHOUT
 11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13   more details.
 14 
 15   You should have received a copy of the GNU General Public License along with
 16   this program; if not, see <http://www.gnu.org/licenses/>.
 17 
 18   The full GNU General Public License is included in this distribution in
 19   the file called "COPYING".
 20 
 21   Contact Information:
 22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 24 
 25 *******************************************************************************/
 26 
 27 /******************************************************************************
 28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
 29 ******************************************************************************/
 30 
 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 32 
 33 #include <linux/types.h>
 34 #include <linux/bitops.h>
 35 #include <linux/module.h>
 36 #include <linux/pci.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/vmalloc.h>
 39 #include <linux/string.h>
 40 #include <linux/in.h>
 41 #include <linux/ip.h>
 42 #include <linux/tcp.h>
 43 #include <linux/sctp.h>
 44 #include <linux/ipv6.h>
 45 #include <linux/slab.h>
 46 #include <net/checksum.h>
 47 #include <net/ip6_checksum.h>
 48 #include <linux/ethtool.h>
 49 #include <linux/if.h>
 50 #include <linux/if_vlan.h>
 51 #include <linux/prefetch.h>
 52 
 53 #include "ixgbevf.h"
 54 
 55 const char ixgbevf_driver_name[] = "ixgbevf";
 56 static const char ixgbevf_driver_string[] =
 57         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
 58 
 59 #define DRV_VERSION "3.2.2-k"
 60 const char ixgbevf_driver_version[] = DRV_VERSION;
 61 static char ixgbevf_copyright[] =
 62         "Copyright (c) 2009 - 2015 Intel Corporation.";
 63 
 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
 65         [board_82599_vf]        = &ixgbevf_82599_vf_info,
 66         [board_82599_vf_hv]     = &ixgbevf_82599_vf_hv_info,
 67         [board_X540_vf]         = &ixgbevf_X540_vf_info,
 68         [board_X540_vf_hv]      = &ixgbevf_X540_vf_hv_info,
 69         [board_X550_vf]         = &ixgbevf_X550_vf_info,
 70         [board_X550_vf_hv]      = &ixgbevf_X550_vf_hv_info,
 71         [board_X550EM_x_vf]     = &ixgbevf_X550EM_x_vf_info,
 72         [board_X550EM_x_vf_hv]  = &ixgbevf_X550EM_x_vf_hv_info,
 73         [board_x550em_a_vf]     = &ixgbevf_x550em_a_vf_info,
 74 };
 75 
 76 /* ixgbevf_pci_tbl - PCI Device ID Table
 77  *
 78  * Wildcard entries (PCI_ANY_ID) should come last
 79  * Last entry must be all 0s
 80  *
 81  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 82  *   Class, Class Mask, private data (not used) }
 83  */
 84 static const struct pci_device_id ixgbevf_pci_tbl[] = {
 85         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
 86         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
 87         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
 88         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
 89         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
 90         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
 91         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
 92         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
 93         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
 94         /* required last entry */
 95         {0, }
 96 };
 97 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
 98 
 99 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
100 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
101 MODULE_LICENSE("GPL");
102 MODULE_VERSION(DRV_VERSION);
103 
104 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
105 static int debug = -1;
106 module_param(debug, int, 0);
107 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
108 
109 static struct workqueue_struct *ixgbevf_wq;
110 
111 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
112 {
113         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
114             !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
115             !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
116                 queue_work(ixgbevf_wq, &adapter->service_task);
117 }
118 
119 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
120 {
121         BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
122 
123         /* flush memory to make sure state is correct before next watchdog */
124         smp_mb__before_atomic();
125         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
126 }
127 
128 /* forward decls */
129 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
130 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
131 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
132 
133 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
134 {
135         struct ixgbevf_adapter *adapter = hw->back;
136 
137         if (!hw->hw_addr)
138                 return;
139         hw->hw_addr = NULL;
140         dev_err(&adapter->pdev->dev, "Adapter removed\n");
141         if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
142                 ixgbevf_service_event_schedule(adapter);
143 }
144 
145 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
146 {
147         u32 value;
148 
149         /* The following check not only optimizes a bit by not
150          * performing a read on the status register when the
151          * register just read was a status register read that
152          * returned IXGBE_FAILED_READ_REG. It also blocks any
153          * potential recursion.
154          */
155         if (reg == IXGBE_VFSTATUS) {
156                 ixgbevf_remove_adapter(hw);
157                 return;
158         }
159         value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
160         if (value == IXGBE_FAILED_READ_REG)
161                 ixgbevf_remove_adapter(hw);
162 }
163 
164 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
165 {
166         u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
167         u32 value;
168 
169         if (IXGBE_REMOVED(reg_addr))
170                 return IXGBE_FAILED_READ_REG;
171         value = readl(reg_addr + reg);
172         if (unlikely(value == IXGBE_FAILED_READ_REG))
173                 ixgbevf_check_remove(hw, reg);
174         return value;
175 }
176 
177 /**
178  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
179  * @adapter: pointer to adapter struct
180  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
181  * @queue: queue to map the corresponding interrupt to
182  * @msix_vector: the vector to map to the corresponding queue
183  **/
184 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
185                              u8 queue, u8 msix_vector)
186 {
187         u32 ivar, index;
188         struct ixgbe_hw *hw = &adapter->hw;
189 
190         if (direction == -1) {
191                 /* other causes */
192                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
193                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
194                 ivar &= ~0xFF;
195                 ivar |= msix_vector;
196                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
197         } else {
198                 /* Tx or Rx causes */
199                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
200                 index = ((16 * (queue & 1)) + (8 * direction));
201                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
202                 ivar &= ~(0xFF << index);
203                 ivar |= (msix_vector << index);
204                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
205         }
206 }
207 
208 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
209                                         struct ixgbevf_tx_buffer *tx_buffer)
210 {
211         if (tx_buffer->skb) {
212                 dev_kfree_skb_any(tx_buffer->skb);
213                 if (dma_unmap_len(tx_buffer, len))
214                         dma_unmap_single(tx_ring->dev,
215                                          dma_unmap_addr(tx_buffer, dma),
216                                          dma_unmap_len(tx_buffer, len),
217                                          DMA_TO_DEVICE);
218         } else if (dma_unmap_len(tx_buffer, len)) {
219                 dma_unmap_page(tx_ring->dev,
220                                dma_unmap_addr(tx_buffer, dma),
221                                dma_unmap_len(tx_buffer, len),
222                                DMA_TO_DEVICE);
223         }
224         tx_buffer->next_to_watch = NULL;
225         tx_buffer->skb = NULL;
226         dma_unmap_len_set(tx_buffer, len, 0);
227         /* tx_buffer must be completely set up in the transmit path */
228 }
229 
230 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
231 {
232         return ring->stats.packets;
233 }
234 
235 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
236 {
237         struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
238         struct ixgbe_hw *hw = &adapter->hw;
239 
240         u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
241         u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
242 
243         if (head != tail)
244                 return (head < tail) ?
245                         tail - head : (tail + ring->count - head);
246 
247         return 0;
248 }
249 
250 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
251 {
252         u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
253         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
254         u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
255 
256         clear_check_for_tx_hang(tx_ring);
257 
258         /* Check for a hung queue, but be thorough. This verifies
259          * that a transmit has been completed since the previous
260          * check AND there is at least one packet pending. The
261          * ARMED bit is set to indicate a potential hang.
262          */
263         if ((tx_done_old == tx_done) && tx_pending) {
264                 /* make sure it is true for two checks in a row */
265                 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
266                                         &tx_ring->state);
267         }
268         /* reset the countdown */
269         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
270 
271         /* update completed stats and continue */
272         tx_ring->tx_stats.tx_done_old = tx_done;
273 
274         return false;
275 }
276 
277 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
278 {
279         /* Do the reset outside of interrupt context */
280         if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
281                 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
282                 ixgbevf_service_event_schedule(adapter);
283         }
284 }
285 
286 /**
287  * ixgbevf_tx_timeout - Respond to a Tx Hang
288  * @netdev: network interface device structure
289  **/
290 static void ixgbevf_tx_timeout(struct net_device *netdev)
291 {
292         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
293 
294         ixgbevf_tx_timeout_reset(adapter);
295 }
296 
297 /**
298  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
299  * @q_vector: board private structure
300  * @tx_ring: tx ring to clean
301  * @napi_budget: Used to determine if we are in netpoll
302  **/
303 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
304                                  struct ixgbevf_ring *tx_ring, int napi_budget)
305 {
306         struct ixgbevf_adapter *adapter = q_vector->adapter;
307         struct ixgbevf_tx_buffer *tx_buffer;
308         union ixgbe_adv_tx_desc *tx_desc;
309         unsigned int total_bytes = 0, total_packets = 0;
310         unsigned int budget = tx_ring->count / 2;
311         unsigned int i = tx_ring->next_to_clean;
312 
313         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
314                 return true;
315 
316         tx_buffer = &tx_ring->tx_buffer_info[i];
317         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
318         i -= tx_ring->count;
319 
320         do {
321                 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
322 
323                 /* if next_to_watch is not set then there is no work pending */
324                 if (!eop_desc)
325                         break;
326 
327                 /* prevent any other reads prior to eop_desc */
328                 read_barrier_depends();
329 
330                 /* if DD is not set pending work has not been completed */
331                 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
332                         break;
333 
334                 /* clear next_to_watch to prevent false hangs */
335                 tx_buffer->next_to_watch = NULL;
336 
337                 /* update the statistics for this packet */
338                 total_bytes += tx_buffer->bytecount;
339                 total_packets += tx_buffer->gso_segs;
340 
341                 /* free the skb */
342                 napi_consume_skb(tx_buffer->skb, napi_budget);
343 
344                 /* unmap skb header data */
345                 dma_unmap_single(tx_ring->dev,
346                                  dma_unmap_addr(tx_buffer, dma),
347                                  dma_unmap_len(tx_buffer, len),
348                                  DMA_TO_DEVICE);
349 
350                 /* clear tx_buffer data */
351                 tx_buffer->skb = NULL;
352                 dma_unmap_len_set(tx_buffer, len, 0);
353 
354                 /* unmap remaining buffers */
355                 while (tx_desc != eop_desc) {
356                         tx_buffer++;
357                         tx_desc++;
358                         i++;
359                         if (unlikely(!i)) {
360                                 i -= tx_ring->count;
361                                 tx_buffer = tx_ring->tx_buffer_info;
362                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
363                         }
364 
365                         /* unmap any remaining paged data */
366                         if (dma_unmap_len(tx_buffer, len)) {
367                                 dma_unmap_page(tx_ring->dev,
368                                                dma_unmap_addr(tx_buffer, dma),
369                                                dma_unmap_len(tx_buffer, len),
370                                                DMA_TO_DEVICE);
371                                 dma_unmap_len_set(tx_buffer, len, 0);
372                         }
373                 }
374 
375                 /* move us one more past the eop_desc for start of next pkt */
376                 tx_buffer++;
377                 tx_desc++;
378                 i++;
379                 if (unlikely(!i)) {
380                         i -= tx_ring->count;
381                         tx_buffer = tx_ring->tx_buffer_info;
382                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
383                 }
384 
385                 /* issue prefetch for next Tx descriptor */
386                 prefetch(tx_desc);
387 
388                 /* update budget accounting */
389                 budget--;
390         } while (likely(budget));
391 
392         i += tx_ring->count;
393         tx_ring->next_to_clean = i;
394         u64_stats_update_begin(&tx_ring->syncp);
395         tx_ring->stats.bytes += total_bytes;
396         tx_ring->stats.packets += total_packets;
397         u64_stats_update_end(&tx_ring->syncp);
398         q_vector->tx.total_bytes += total_bytes;
399         q_vector->tx.total_packets += total_packets;
400 
401         if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
402                 struct ixgbe_hw *hw = &adapter->hw;
403                 union ixgbe_adv_tx_desc *eop_desc;
404 
405                 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
406 
407                 pr_err("Detected Tx Unit Hang\n"
408                        "  Tx Queue             <%d>\n"
409                        "  TDH, TDT             <%x>, <%x>\n"
410                        "  next_to_use          <%x>\n"
411                        "  next_to_clean        <%x>\n"
412                        "tx_buffer_info[next_to_clean]\n"
413                        "  next_to_watch        <%p>\n"
414                        "  eop_desc->wb.status  <%x>\n"
415                        "  time_stamp           <%lx>\n"
416                        "  jiffies              <%lx>\n",
417                        tx_ring->queue_index,
418                        IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
419                        IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
420                        tx_ring->next_to_use, i,
421                        eop_desc, (eop_desc ? eop_desc->wb.status : 0),
422                        tx_ring->tx_buffer_info[i].time_stamp, jiffies);
423 
424                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
425 
426                 /* schedule immediate reset if we believe we hung */
427                 ixgbevf_tx_timeout_reset(adapter);
428 
429                 return true;
430         }
431 
432 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
433         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
434                      (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
435                 /* Make sure that anybody stopping the queue after this
436                  * sees the new next_to_clean.
437                  */
438                 smp_mb();
439 
440                 if (__netif_subqueue_stopped(tx_ring->netdev,
441                                              tx_ring->queue_index) &&
442                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
443                         netif_wake_subqueue(tx_ring->netdev,
444                                             tx_ring->queue_index);
445                         ++tx_ring->tx_stats.restart_queue;
446                 }
447         }
448 
449         return !!budget;
450 }
451 
452 /**
453  * ixgbevf_rx_skb - Helper function to determine proper Rx method
454  * @q_vector: structure containing interrupt and ring information
455  * @skb: packet to send up
456  **/
457 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
458                            struct sk_buff *skb)
459 {
460 #ifdef CONFIG_NET_RX_BUSY_POLL
461         skb_mark_napi_id(skb, &q_vector->napi);
462 
463         if (ixgbevf_qv_busy_polling(q_vector)) {
464                 netif_receive_skb(skb);
465                 /* exit early if we busy polled */
466                 return;
467         }
468 #endif /* CONFIG_NET_RX_BUSY_POLL */
469 
470         napi_gro_receive(&q_vector->napi, skb);
471 }
472 
473 #define IXGBE_RSS_L4_TYPES_MASK \
474         ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
475          (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
476          (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
477          (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
478 
479 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
480                                    union ixgbe_adv_rx_desc *rx_desc,
481                                    struct sk_buff *skb)
482 {
483         u16 rss_type;
484 
485         if (!(ring->netdev->features & NETIF_F_RXHASH))
486                 return;
487 
488         rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
489                    IXGBE_RXDADV_RSSTYPE_MASK;
490 
491         if (!rss_type)
492                 return;
493 
494         skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
495                      (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
496                      PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
497 }
498 
499 /**
500  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
501  * @ring: structure containig ring specific data
502  * @rx_desc: current Rx descriptor being processed
503  * @skb: skb currently being received and modified
504  **/
505 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
506                                        union ixgbe_adv_rx_desc *rx_desc,
507                                        struct sk_buff *skb)
508 {
509         skb_checksum_none_assert(skb);
510 
511         /* Rx csum disabled */
512         if (!(ring->netdev->features & NETIF_F_RXCSUM))
513                 return;
514 
515         /* if IP and error */
516         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
517             ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
518                 ring->rx_stats.csum_err++;
519                 return;
520         }
521 
522         if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
523                 return;
524 
525         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
526                 ring->rx_stats.csum_err++;
527                 return;
528         }
529 
530         /* It must be a TCP or UDP packet with a valid checksum */
531         skb->ip_summed = CHECKSUM_UNNECESSARY;
532 }
533 
534 /**
535  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
536  * @rx_ring: rx descriptor ring packet is being transacted on
537  * @rx_desc: pointer to the EOP Rx descriptor
538  * @skb: pointer to current skb being populated
539  *
540  * This function checks the ring, descriptor, and packet information in
541  * order to populate the checksum, VLAN, protocol, and other fields within
542  * the skb.
543  **/
544 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
545                                        union ixgbe_adv_rx_desc *rx_desc,
546                                        struct sk_buff *skb)
547 {
548         ixgbevf_rx_hash(rx_ring, rx_desc, skb);
549         ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
550 
551         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
552                 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
553                 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
554 
555                 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
556                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
557         }
558 
559         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
560 }
561 
562 /**
563  * ixgbevf_is_non_eop - process handling of non-EOP buffers
564  * @rx_ring: Rx ring being processed
565  * @rx_desc: Rx descriptor for current buffer
566  * @skb: current socket buffer containing buffer in progress
567  *
568  * This function updates next to clean.  If the buffer is an EOP buffer
569  * this function exits returning false, otherwise it will place the
570  * sk_buff in the next buffer to be chained and return true indicating
571  * that this is in fact a non-EOP buffer.
572  **/
573 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
574                                union ixgbe_adv_rx_desc *rx_desc)
575 {
576         u32 ntc = rx_ring->next_to_clean + 1;
577 
578         /* fetch, update, and store next to clean */
579         ntc = (ntc < rx_ring->count) ? ntc : 0;
580         rx_ring->next_to_clean = ntc;
581 
582         prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
583 
584         if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
585                 return false;
586 
587         return true;
588 }
589 
590 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
591                                       struct ixgbevf_rx_buffer *bi)
592 {
593         struct page *page = bi->page;
594         dma_addr_t dma = bi->dma;
595 
596         /* since we are recycling buffers we should seldom need to alloc */
597         if (likely(page))
598                 return true;
599 
600         /* alloc new page for storage */
601         page = dev_alloc_page();
602         if (unlikely(!page)) {
603                 rx_ring->rx_stats.alloc_rx_page_failed++;
604                 return false;
605         }
606 
607         /* map page for use */
608         dma = dma_map_page(rx_ring->dev, page, 0,
609                            PAGE_SIZE, DMA_FROM_DEVICE);
610 
611         /* if mapping failed free memory back to system since
612          * there isn't much point in holding memory we can't use
613          */
614         if (dma_mapping_error(rx_ring->dev, dma)) {
615                 __free_page(page);
616 
617                 rx_ring->rx_stats.alloc_rx_buff_failed++;
618                 return false;
619         }
620 
621         bi->dma = dma;
622         bi->page = page;
623         bi->page_offset = 0;
624 
625         return true;
626 }
627 
628 /**
629  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
630  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
631  * @cleaned_count: number of buffers to replace
632  **/
633 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
634                                      u16 cleaned_count)
635 {
636         union ixgbe_adv_rx_desc *rx_desc;
637         struct ixgbevf_rx_buffer *bi;
638         unsigned int i = rx_ring->next_to_use;
639 
640         /* nothing to do or no valid netdev defined */
641         if (!cleaned_count || !rx_ring->netdev)
642                 return;
643 
644         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
645         bi = &rx_ring->rx_buffer_info[i];
646         i -= rx_ring->count;
647 
648         do {
649                 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
650                         break;
651 
652                 /* Refresh the desc even if pkt_addr didn't change
653                  * because each write-back erases this info.
654                  */
655                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
656 
657                 rx_desc++;
658                 bi++;
659                 i++;
660                 if (unlikely(!i)) {
661                         rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
662                         bi = rx_ring->rx_buffer_info;
663                         i -= rx_ring->count;
664                 }
665 
666                 /* clear the hdr_addr for the next_to_use descriptor */
667                 rx_desc->read.hdr_addr = 0;
668 
669                 cleaned_count--;
670         } while (cleaned_count);
671 
672         i += rx_ring->count;
673 
674         if (rx_ring->next_to_use != i) {
675                 /* record the next descriptor to use */
676                 rx_ring->next_to_use = i;
677 
678                 /* update next to alloc since we have filled the ring */
679                 rx_ring->next_to_alloc = i;
680 
681                 /* Force memory writes to complete before letting h/w
682                  * know there are new descriptors to fetch.  (Only
683                  * applicable for weak-ordered memory model archs,
684                  * such as IA-64).
685                  */
686                 wmb();
687                 ixgbevf_write_tail(rx_ring, i);
688         }
689 }
690 
691 /**
692  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
693  * @rx_ring: rx descriptor ring packet is being transacted on
694  * @rx_desc: pointer to the EOP Rx descriptor
695  * @skb: pointer to current skb being fixed
696  *
697  * Check for corrupted packet headers caused by senders on the local L2
698  * embedded NIC switch not setting up their Tx Descriptors right.  These
699  * should be very rare.
700  *
701  * Also address the case where we are pulling data in on pages only
702  * and as such no data is present in the skb header.
703  *
704  * In addition if skb is not at least 60 bytes we need to pad it so that
705  * it is large enough to qualify as a valid Ethernet frame.
706  *
707  * Returns true if an error was encountered and skb was freed.
708  **/
709 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
710                                     union ixgbe_adv_rx_desc *rx_desc,
711                                     struct sk_buff *skb)
712 {
713         /* verify that the packet does not have any known errors */
714         if (unlikely(ixgbevf_test_staterr(rx_desc,
715                                           IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
716                 struct net_device *netdev = rx_ring->netdev;
717 
718                 if (!(netdev->features & NETIF_F_RXALL)) {
719                         dev_kfree_skb_any(skb);
720                         return true;
721                 }
722         }
723 
724         /* if eth_skb_pad returns an error the skb was freed */
725         if (eth_skb_pad(skb))
726                 return true;
727 
728         return false;
729 }
730 
731 /**
732  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
733  * @rx_ring: rx descriptor ring to store buffers on
734  * @old_buff: donor buffer to have page reused
735  *
736  * Synchronizes page for reuse by the adapter
737  **/
738 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
739                                   struct ixgbevf_rx_buffer *old_buff)
740 {
741         struct ixgbevf_rx_buffer *new_buff;
742         u16 nta = rx_ring->next_to_alloc;
743 
744         new_buff = &rx_ring->rx_buffer_info[nta];
745 
746         /* update, and store next to alloc */
747         nta++;
748         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
749 
750         /* transfer page from old buffer to new buffer */
751         new_buff->page = old_buff->page;
752         new_buff->dma = old_buff->dma;
753         new_buff->page_offset = old_buff->page_offset;
754 
755         /* sync the buffer for use by the device */
756         dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
757                                          new_buff->page_offset,
758                                          IXGBEVF_RX_BUFSZ,
759                                          DMA_FROM_DEVICE);
760 }
761 
762 static inline bool ixgbevf_page_is_reserved(struct page *page)
763 {
764         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
765 }
766 
767 /**
768  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
769  * @rx_ring: rx descriptor ring to transact packets on
770  * @rx_buffer: buffer containing page to add
771  * @rx_desc: descriptor containing length of buffer written by hardware
772  * @skb: sk_buff to place the data into
773  *
774  * This function will add the data contained in rx_buffer->page to the skb.
775  * This is done either through a direct copy if the data in the buffer is
776  * less than the skb header size, otherwise it will just attach the page as
777  * a frag to the skb.
778  *
779  * The function will then update the page offset if necessary and return
780  * true if the buffer can be reused by the adapter.
781  **/
782 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
783                                 struct ixgbevf_rx_buffer *rx_buffer,
784                                 union ixgbe_adv_rx_desc *rx_desc,
785                                 struct sk_buff *skb)
786 {
787         struct page *page = rx_buffer->page;
788         unsigned char *va = page_address(page) + rx_buffer->page_offset;
789         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
790 #if (PAGE_SIZE < 8192)
791         unsigned int truesize = IXGBEVF_RX_BUFSZ;
792 #else
793         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
794 #endif
795         unsigned int pull_len;
796 
797         if (unlikely(skb_is_nonlinear(skb)))
798                 goto add_tail_frag;
799 
800         if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
801                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
802 
803                 /* page is not reserved, we can reuse buffer as is */
804                 if (likely(!ixgbevf_page_is_reserved(page)))
805                         return true;
806 
807                 /* this page cannot be reused so discard it */
808                 put_page(page);
809                 return false;
810         }
811 
812         /* we need the header to contain the greater of either ETH_HLEN or
813          * 60 bytes if the skb->len is less than 60 for skb_pad.
814          */
815         pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
816 
817         /* align pull length to size of long to optimize memcpy performance */
818         memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
819 
820         /* update all of the pointers */
821         va += pull_len;
822         size -= pull_len;
823 
824 add_tail_frag:
825         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
826                         (unsigned long)va & ~PAGE_MASK, size, truesize);
827 
828         /* avoid re-using remote pages */
829         if (unlikely(ixgbevf_page_is_reserved(page)))
830                 return false;
831 
832 #if (PAGE_SIZE < 8192)
833         /* if we are only owner of page we can reuse it */
834         if (unlikely(page_count(page) != 1))
835                 return false;
836 
837         /* flip page offset to other buffer */
838         rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
839 
840 #else
841         /* move offset up to the next cache line */
842         rx_buffer->page_offset += truesize;
843 
844         if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
845                 return false;
846 
847 #endif
848         /* Even if we own the page, we are not allowed to use atomic_set()
849          * This would break get_page_unless_zero() users.
850          */
851         page_ref_inc(page);
852 
853         return true;
854 }
855 
856 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
857                                                union ixgbe_adv_rx_desc *rx_desc,
858                                                struct sk_buff *skb)
859 {
860         struct ixgbevf_rx_buffer *rx_buffer;
861         struct page *page;
862 
863         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
864         page = rx_buffer->page;
865         prefetchw(page);
866 
867         if (likely(!skb)) {
868                 void *page_addr = page_address(page) +
869                                   rx_buffer->page_offset;
870 
871                 /* prefetch first cache line of first page */
872                 prefetch(page_addr);
873 #if L1_CACHE_BYTES < 128
874                 prefetch(page_addr + L1_CACHE_BYTES);
875 #endif
876 
877                 /* allocate a skb to store the frags */
878                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
879                                                 IXGBEVF_RX_HDR_SIZE);
880                 if (unlikely(!skb)) {
881                         rx_ring->rx_stats.alloc_rx_buff_failed++;
882                         return NULL;
883                 }
884 
885                 /* we will be copying header into skb->data in
886                  * pskb_may_pull so it is in our interest to prefetch
887                  * it now to avoid a possible cache miss
888                  */
889                 prefetchw(skb->data);
890         }
891 
892         /* we are reusing so sync this buffer for CPU use */
893         dma_sync_single_range_for_cpu(rx_ring->dev,
894                                       rx_buffer->dma,
895                                       rx_buffer->page_offset,
896                                       IXGBEVF_RX_BUFSZ,
897                                       DMA_FROM_DEVICE);
898 
899         /* pull page into skb */
900         if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
901                 /* hand second half of page back to the ring */
902                 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
903         } else {
904                 /* we are not reusing the buffer so unmap it */
905                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
906                                PAGE_SIZE, DMA_FROM_DEVICE);
907         }
908 
909         /* clear contents of buffer_info */
910         rx_buffer->dma = 0;
911         rx_buffer->page = NULL;
912 
913         return skb;
914 }
915 
916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
917                                              u32 qmask)
918 {
919         struct ixgbe_hw *hw = &adapter->hw;
920 
921         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
922 }
923 
924 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
925                                 struct ixgbevf_ring *rx_ring,
926                                 int budget)
927 {
928         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
929         u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
930         struct sk_buff *skb = rx_ring->skb;
931 
932         while (likely(total_rx_packets < budget)) {
933                 union ixgbe_adv_rx_desc *rx_desc;
934 
935                 /* return some buffers to hardware, one at a time is too slow */
936                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
937                         ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
938                         cleaned_count = 0;
939                 }
940 
941                 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
942 
943                 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
944                         break;
945 
946                 /* This memory barrier is needed to keep us from reading
947                  * any other fields out of the rx_desc until we know the
948                  * RXD_STAT_DD bit is set
949                  */
950                 rmb();
951 
952                 /* retrieve a buffer from the ring */
953                 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
954 
955                 /* exit if we failed to retrieve a buffer */
956                 if (!skb)
957                         break;
958 
959                 cleaned_count++;
960 
961                 /* fetch next buffer in frame if non-eop */
962                 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
963                         continue;
964 
965                 /* verify the packet layout is correct */
966                 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
967                         skb = NULL;
968                         continue;
969                 }
970 
971                 /* probably a little skewed due to removing CRC */
972                 total_rx_bytes += skb->len;
973 
974                 /* Workaround hardware that can't do proper VEPA multicast
975                  * source pruning.
976                  */
977                 if ((skb->pkt_type == PACKET_BROADCAST ||
978                      skb->pkt_type == PACKET_MULTICAST) &&
979                     ether_addr_equal(rx_ring->netdev->dev_addr,
980                                      eth_hdr(skb)->h_source)) {
981                         dev_kfree_skb_irq(skb);
982                         continue;
983                 }
984 
985                 /* populate checksum, VLAN, and protocol */
986                 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
987 
988                 ixgbevf_rx_skb(q_vector, skb);
989 
990                 /* reset skb pointer */
991                 skb = NULL;
992 
993                 /* update budget accounting */
994                 total_rx_packets++;
995         }
996 
997         /* place incomplete frames back on ring for completion */
998         rx_ring->skb = skb;
999 
1000         u64_stats_update_begin(&rx_ring->syncp);
1001         rx_ring->stats.packets += total_rx_packets;
1002         rx_ring->stats.bytes += total_rx_bytes;
1003         u64_stats_update_end(&rx_ring->syncp);
1004         q_vector->rx.total_packets += total_rx_packets;
1005         q_vector->rx.total_bytes += total_rx_bytes;
1006 
1007         return total_rx_packets;
1008 }
1009 
1010 /**
1011  * ixgbevf_poll - NAPI polling calback
1012  * @napi: napi struct with our devices info in it
1013  * @budget: amount of work driver is allowed to do this pass, in packets
1014  *
1015  * This function will clean more than one or more rings associated with a
1016  * q_vector.
1017  **/
1018 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1019 {
1020         struct ixgbevf_q_vector *q_vector =
1021                 container_of(napi, struct ixgbevf_q_vector, napi);
1022         struct ixgbevf_adapter *adapter = q_vector->adapter;
1023         struct ixgbevf_ring *ring;
1024         int per_ring_budget, work_done = 0;
1025         bool clean_complete = true;
1026 
1027         ixgbevf_for_each_ring(ring, q_vector->tx) {
1028                 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1029                         clean_complete = false;
1030         }
1031 
1032         if (budget <= 0)
1033                 return budget;
1034 #ifdef CONFIG_NET_RX_BUSY_POLL
1035         if (!ixgbevf_qv_lock_napi(q_vector))
1036                 return budget;
1037 #endif
1038 
1039         /* attempt to distribute budget to each queue fairly, but don't allow
1040          * the budget to go below 1 because we'll exit polling
1041          */
1042         if (q_vector->rx.count > 1)
1043                 per_ring_budget = max(budget/q_vector->rx.count, 1);
1044         else
1045                 per_ring_budget = budget;
1046 
1047         ixgbevf_for_each_ring(ring, q_vector->rx) {
1048                 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1049                                                    per_ring_budget);
1050                 work_done += cleaned;
1051                 if (cleaned >= per_ring_budget)
1052                         clean_complete = false;
1053         }
1054 
1055 #ifdef CONFIG_NET_RX_BUSY_POLL
1056         ixgbevf_qv_unlock_napi(q_vector);
1057 #endif
1058 
1059         /* If all work not completed, return budget and keep polling */
1060         if (!clean_complete)
1061                 return budget;
1062         /* all work done, exit the polling mode */
1063         napi_complete_done(napi, work_done);
1064         if (adapter->rx_itr_setting == 1)
1065                 ixgbevf_set_itr(q_vector);
1066         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1067             !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1068                 ixgbevf_irq_enable_queues(adapter,
1069                                           BIT(q_vector->v_idx));
1070 
1071         return 0;
1072 }
1073 
1074 /**
1075  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1076  * @q_vector: structure containing interrupt and ring information
1077  **/
1078 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1079 {
1080         struct ixgbevf_adapter *adapter = q_vector->adapter;
1081         struct ixgbe_hw *hw = &adapter->hw;
1082         int v_idx = q_vector->v_idx;
1083         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1084 
1085         /* set the WDIS bit to not clear the timer bits and cause an
1086          * immediate assertion of the interrupt
1087          */
1088         itr_reg |= IXGBE_EITR_CNT_WDIS;
1089 
1090         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1091 }
1092 
1093 #ifdef CONFIG_NET_RX_BUSY_POLL
1094 /* must be called with local_bh_disable()d */
1095 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1096 {
1097         struct ixgbevf_q_vector *q_vector =
1098                         container_of(napi, struct ixgbevf_q_vector, napi);
1099         struct ixgbevf_adapter *adapter = q_vector->adapter;
1100         struct ixgbevf_ring  *ring;
1101         int found = 0;
1102 
1103         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1104                 return LL_FLUSH_FAILED;
1105 
1106         if (!ixgbevf_qv_lock_poll(q_vector))
1107                 return LL_FLUSH_BUSY;
1108 
1109         ixgbevf_for_each_ring(ring, q_vector->rx) {
1110                 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1111 #ifdef BP_EXTENDED_STATS
1112                 if (found)
1113                         ring->stats.cleaned += found;
1114                 else
1115                         ring->stats.misses++;
1116 #endif
1117                 if (found)
1118                         break;
1119         }
1120 
1121         ixgbevf_qv_unlock_poll(q_vector);
1122 
1123         return found;
1124 }
1125 #endif /* CONFIG_NET_RX_BUSY_POLL */
1126 
1127 /**
1128  * ixgbevf_configure_msix - Configure MSI-X hardware
1129  * @adapter: board private structure
1130  *
1131  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1132  * interrupts.
1133  **/
1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1135 {
1136         struct ixgbevf_q_vector *q_vector;
1137         int q_vectors, v_idx;
1138 
1139         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1140         adapter->eims_enable_mask = 0;
1141 
1142         /* Populate the IVAR table and set the ITR values to the
1143          * corresponding register.
1144          */
1145         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1146                 struct ixgbevf_ring *ring;
1147 
1148                 q_vector = adapter->q_vector[v_idx];
1149 
1150                 ixgbevf_for_each_ring(ring, q_vector->rx)
1151                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1152 
1153                 ixgbevf_for_each_ring(ring, q_vector->tx)
1154                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1155 
1156                 if (q_vector->tx.ring && !q_vector->rx.ring) {
1157                         /* Tx only vector */
1158                         if (adapter->tx_itr_setting == 1)
1159                                 q_vector->itr = IXGBE_12K_ITR;
1160                         else
1161                                 q_vector->itr = adapter->tx_itr_setting;
1162                 } else {
1163                         /* Rx or Rx/Tx vector */
1164                         if (adapter->rx_itr_setting == 1)
1165                                 q_vector->itr = IXGBE_20K_ITR;
1166                         else
1167                                 q_vector->itr = adapter->rx_itr_setting;
1168                 }
1169 
1170                 /* add q_vector eims value to global eims_enable_mask */
1171                 adapter->eims_enable_mask |= BIT(v_idx);
1172 
1173                 ixgbevf_write_eitr(q_vector);
1174         }
1175 
1176         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1177         /* setup eims_other and add value to global eims_enable_mask */
1178         adapter->eims_other = BIT(v_idx);
1179         adapter->eims_enable_mask |= adapter->eims_other;
1180 }
1181 
1182 enum latency_range {
1183         lowest_latency = 0,
1184         low_latency = 1,
1185         bulk_latency = 2,
1186         latency_invalid = 255
1187 };
1188 
1189 /**
1190  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1191  * @q_vector: structure containing interrupt and ring information
1192  * @ring_container: structure containing ring performance data
1193  *
1194  * Stores a new ITR value based on packets and byte
1195  * counts during the last interrupt.  The advantage of per interrupt
1196  * computation is faster updates and more accurate ITR for the current
1197  * traffic pattern.  Constants in this function were computed
1198  * based on theoretical maximum wire speed and thresholds were set based
1199  * on testing data as well as attempting to minimize response time
1200  * while increasing bulk throughput.
1201  **/
1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1203                                struct ixgbevf_ring_container *ring_container)
1204 {
1205         int bytes = ring_container->total_bytes;
1206         int packets = ring_container->total_packets;
1207         u32 timepassed_us;
1208         u64 bytes_perint;
1209         u8 itr_setting = ring_container->itr;
1210 
1211         if (packets == 0)
1212                 return;
1213 
1214         /* simple throttle rate management
1215          *    0-20MB/s lowest (100000 ints/s)
1216          *   20-100MB/s low   (20000 ints/s)
1217          *  100-1249MB/s bulk (12000 ints/s)
1218          */
1219         /* what was last interrupt timeslice? */
1220         timepassed_us = q_vector->itr >> 2;
1221         bytes_perint = bytes / timepassed_us; /* bytes/usec */
1222 
1223         switch (itr_setting) {
1224         case lowest_latency:
1225                 if (bytes_perint > 10)
1226                         itr_setting = low_latency;
1227                 break;
1228         case low_latency:
1229                 if (bytes_perint > 20)
1230                         itr_setting = bulk_latency;
1231                 else if (bytes_perint <= 10)
1232                         itr_setting = lowest_latency;
1233                 break;
1234         case bulk_latency:
1235                 if (bytes_perint <= 20)
1236                         itr_setting = low_latency;
1237                 break;
1238         }
1239 
1240         /* clear work counters since we have the values we need */
1241         ring_container->total_bytes = 0;
1242         ring_container->total_packets = 0;
1243 
1244         /* write updated itr to ring container */
1245         ring_container->itr = itr_setting;
1246 }
1247 
1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1249 {
1250         u32 new_itr = q_vector->itr;
1251         u8 current_itr;
1252 
1253         ixgbevf_update_itr(q_vector, &q_vector->tx);
1254         ixgbevf_update_itr(q_vector, &q_vector->rx);
1255 
1256         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1257 
1258         switch (current_itr) {
1259         /* counts and packets in update_itr are dependent on these numbers */
1260         case lowest_latency:
1261                 new_itr = IXGBE_100K_ITR;
1262                 break;
1263         case low_latency:
1264                 new_itr = IXGBE_20K_ITR;
1265                 break;
1266         case bulk_latency:
1267                 new_itr = IXGBE_12K_ITR;
1268                 break;
1269         default:
1270                 break;
1271         }
1272 
1273         if (new_itr != q_vector->itr) {
1274                 /* do an exponential smoothing */
1275                 new_itr = (10 * new_itr * q_vector->itr) /
1276                           ((9 * new_itr) + q_vector->itr);
1277 
1278                 /* save the algorithm value here */
1279                 q_vector->itr = new_itr;
1280 
1281                 ixgbevf_write_eitr(q_vector);
1282         }
1283 }
1284 
1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1286 {
1287         struct ixgbevf_adapter *adapter = data;
1288         struct ixgbe_hw *hw = &adapter->hw;
1289 
1290         hw->mac.get_link_status = 1;
1291 
1292         ixgbevf_service_event_schedule(adapter);
1293 
1294         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1295 
1296         return IRQ_HANDLED;
1297 }
1298 
1299 /**
1300  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1301  * @irq: unused
1302  * @data: pointer to our q_vector struct for this interrupt vector
1303  **/
1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1305 {
1306         struct ixgbevf_q_vector *q_vector = data;
1307 
1308         /* EIAM disabled interrupts (on this vector) for us */
1309         if (q_vector->rx.ring || q_vector->tx.ring)
1310                 napi_schedule_irqoff(&q_vector->napi);
1311 
1312         return IRQ_HANDLED;
1313 }
1314 
1315 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1316                                      int r_idx)
1317 {
1318         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1319 
1320         a->rx_ring[r_idx]->next = q_vector->rx.ring;
1321         q_vector->rx.ring = a->rx_ring[r_idx];
1322         q_vector->rx.count++;
1323 }
1324 
1325 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1326                                      int t_idx)
1327 {
1328         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1329 
1330         a->tx_ring[t_idx]->next = q_vector->tx.ring;
1331         q_vector->tx.ring = a->tx_ring[t_idx];
1332         q_vector->tx.count++;
1333 }
1334 
1335 /**
1336  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1337  * @adapter: board private structure to initialize
1338  *
1339  * This function maps descriptor rings to the queue-specific vectors
1340  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1341  * one vector per ring/queue, but on a constrained vector budget, we
1342  * group the rings as "efficiently" as possible.  You would add new
1343  * mapping configurations in here.
1344  **/
1345 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1346 {
1347         int q_vectors;
1348         int v_start = 0;
1349         int rxr_idx = 0, txr_idx = 0;
1350         int rxr_remaining = adapter->num_rx_queues;
1351         int txr_remaining = adapter->num_tx_queues;
1352         int i, j;
1353         int rqpv, tqpv;
1354 
1355         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1356 
1357         /* The ideal configuration...
1358          * We have enough vectors to map one per queue.
1359          */
1360         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1361                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1362                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1363 
1364                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1365                         map_vector_to_txq(adapter, v_start, txr_idx);
1366                 return 0;
1367         }
1368 
1369         /* If we don't have enough vectors for a 1-to-1
1370          * mapping, we'll have to group them so there are
1371          * multiple queues per vector.
1372          */
1373         /* Re-adjusting *qpv takes care of the remainder. */
1374         for (i = v_start; i < q_vectors; i++) {
1375                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1376                 for (j = 0; j < rqpv; j++) {
1377                         map_vector_to_rxq(adapter, i, rxr_idx);
1378                         rxr_idx++;
1379                         rxr_remaining--;
1380                 }
1381         }
1382         for (i = v_start; i < q_vectors; i++) {
1383                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1384                 for (j = 0; j < tqpv; j++) {
1385                         map_vector_to_txq(adapter, i, txr_idx);
1386                         txr_idx++;
1387                         txr_remaining--;
1388                 }
1389         }
1390 
1391         return 0;
1392 }
1393 
1394 /**
1395  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1396  * @adapter: board private structure
1397  *
1398  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1399  * interrupts from the kernel.
1400  **/
1401 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1402 {
1403         struct net_device *netdev = adapter->netdev;
1404         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1405         int vector, err;
1406         int ri = 0, ti = 0;
1407 
1408         for (vector = 0; vector < q_vectors; vector++) {
1409                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1410                 struct msix_entry *entry = &adapter->msix_entries[vector];
1411 
1412                 if (q_vector->tx.ring && q_vector->rx.ring) {
1413                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1414                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
1415                         ti++;
1416                 } else if (q_vector->rx.ring) {
1417                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1418                                  "%s-%s-%d", netdev->name, "rx", ri++);
1419                 } else if (q_vector->tx.ring) {
1420                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1421                                  "%s-%s-%d", netdev->name, "tx", ti++);
1422                 } else {
1423                         /* skip this unused q_vector */
1424                         continue;
1425                 }
1426                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1427                                   q_vector->name, q_vector);
1428                 if (err) {
1429                         hw_dbg(&adapter->hw,
1430                                "request_irq failed for MSIX interrupt Error: %d\n",
1431                                err);
1432                         goto free_queue_irqs;
1433                 }
1434         }
1435 
1436         err = request_irq(adapter->msix_entries[vector].vector,
1437                           &ixgbevf_msix_other, 0, netdev->name, adapter);
1438         if (err) {
1439                 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1440                        err);
1441                 goto free_queue_irqs;
1442         }
1443 
1444         return 0;
1445 
1446 free_queue_irqs:
1447         while (vector) {
1448                 vector--;
1449                 free_irq(adapter->msix_entries[vector].vector,
1450                          adapter->q_vector[vector]);
1451         }
1452         /* This failure is non-recoverable - it indicates the system is
1453          * out of MSIX vector resources and the VF driver cannot run
1454          * without them.  Set the number of msix vectors to zero
1455          * indicating that not enough can be allocated.  The error
1456          * will be returned to the user indicating device open failed.
1457          * Any further attempts to force the driver to open will also
1458          * fail.  The only way to recover is to unload the driver and
1459          * reload it again.  If the system has recovered some MSIX
1460          * vectors then it may succeed.
1461          */
1462         adapter->num_msix_vectors = 0;
1463         return err;
1464 }
1465 
1466 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1467 {
1468         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1469 
1470         for (i = 0; i < q_vectors; i++) {
1471                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1472 
1473                 q_vector->rx.ring = NULL;
1474                 q_vector->tx.ring = NULL;
1475                 q_vector->rx.count = 0;
1476                 q_vector->tx.count = 0;
1477         }
1478 }
1479 
1480 /**
1481  * ixgbevf_request_irq - initialize interrupts
1482  * @adapter: board private structure
1483  *
1484  * Attempts to configure interrupts using the best available
1485  * capabilities of the hardware and kernel.
1486  **/
1487 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1488 {
1489         int err = ixgbevf_request_msix_irqs(adapter);
1490 
1491         if (err)
1492                 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1493 
1494         return err;
1495 }
1496 
1497 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1498 {
1499         int i, q_vectors;
1500 
1501         if (!adapter->msix_entries)
1502                 return;
1503 
1504         q_vectors = adapter->num_msix_vectors;
1505         i = q_vectors - 1;
1506 
1507         free_irq(adapter->msix_entries[i].vector, adapter);
1508         i--;
1509 
1510         for (; i >= 0; i--) {
1511                 /* free only the irqs that were actually requested */
1512                 if (!adapter->q_vector[i]->rx.ring &&
1513                     !adapter->q_vector[i]->tx.ring)
1514                         continue;
1515 
1516                 free_irq(adapter->msix_entries[i].vector,
1517                          adapter->q_vector[i]);
1518         }
1519 
1520         ixgbevf_reset_q_vectors(adapter);
1521 }
1522 
1523 /**
1524  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1525  * @adapter: board private structure
1526  **/
1527 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1528 {
1529         struct ixgbe_hw *hw = &adapter->hw;
1530         int i;
1531 
1532         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1533         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1534         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1535 
1536         IXGBE_WRITE_FLUSH(hw);
1537 
1538         for (i = 0; i < adapter->num_msix_vectors; i++)
1539                 synchronize_irq(adapter->msix_entries[i].vector);
1540 }
1541 
1542 /**
1543  * ixgbevf_irq_enable - Enable default interrupt generation settings
1544  * @adapter: board private structure
1545  **/
1546 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1547 {
1548         struct ixgbe_hw *hw = &adapter->hw;
1549 
1550         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1551         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1552         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1553 }
1554 
1555 /**
1556  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1557  * @adapter: board private structure
1558  * @ring: structure containing ring specific data
1559  *
1560  * Configure the Tx descriptor ring after a reset.
1561  **/
1562 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1563                                       struct ixgbevf_ring *ring)
1564 {
1565         struct ixgbe_hw *hw = &adapter->hw;
1566         u64 tdba = ring->dma;
1567         int wait_loop = 10;
1568         u32 txdctl = IXGBE_TXDCTL_ENABLE;
1569         u8 reg_idx = ring->reg_idx;
1570 
1571         /* disable queue to avoid issues while updating state */
1572         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1573         IXGBE_WRITE_FLUSH(hw);
1574 
1575         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1576         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1577         IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1578                         ring->count * sizeof(union ixgbe_adv_tx_desc));
1579 
1580         /* disable head writeback */
1581         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1582         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1583 
1584         /* enable relaxed ordering */
1585         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1586                         (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1587                          IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1588 
1589         /* reset head and tail pointers */
1590         IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1591         IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1592         ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1593 
1594         /* reset ntu and ntc to place SW in sync with hardwdare */
1595         ring->next_to_clean = 0;
1596         ring->next_to_use = 0;
1597 
1598         /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1599          * to or less than the number of on chip descriptors, which is
1600          * currently 40.
1601          */
1602         txdctl |= (8 << 16);    /* WTHRESH = 8 */
1603 
1604         /* Setting PTHRESH to 32 both improves performance */
1605         txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1606                    32;           /* PTHRESH = 32 */
1607 
1608         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1609 
1610         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1611 
1612         /* poll to verify queue is enabled */
1613         do {
1614                 usleep_range(1000, 2000);
1615                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1616         }  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1617         if (!wait_loop)
1618                 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1619 }
1620 
1621 /**
1622  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1623  * @adapter: board private structure
1624  *
1625  * Configure the Tx unit of the MAC after a reset.
1626  **/
1627 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1628 {
1629         u32 i;
1630 
1631         /* Setup the HW Tx Head and Tail descriptor pointers */
1632         for (i = 0; i < adapter->num_tx_queues; i++)
1633                 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1634 }
1635 
1636 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1637 
1638 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1639 {
1640         struct ixgbe_hw *hw = &adapter->hw;
1641         u32 srrctl;
1642 
1643         srrctl = IXGBE_SRRCTL_DROP_EN;
1644 
1645         srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1646         srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1647         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1648 
1649         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1650 }
1651 
1652 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1653 {
1654         struct ixgbe_hw *hw = &adapter->hw;
1655 
1656         /* PSRTYPE must be initialized in 82599 */
1657         u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1658                       IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1659                       IXGBE_PSRTYPE_L2HDR;
1660 
1661         if (adapter->num_rx_queues > 1)
1662                 psrtype |= BIT(29);
1663 
1664         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1665 }
1666 
1667 #define IXGBEVF_MAX_RX_DESC_POLL 10
1668 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1669                                      struct ixgbevf_ring *ring)
1670 {
1671         struct ixgbe_hw *hw = &adapter->hw;
1672         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1673         u32 rxdctl;
1674         u8 reg_idx = ring->reg_idx;
1675 
1676         if (IXGBE_REMOVED(hw->hw_addr))
1677                 return;
1678         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1679         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1680 
1681         /* write value back with RXDCTL.ENABLE bit cleared */
1682         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1683 
1684         /* the hardware may take up to 100us to really disable the Rx queue */
1685         do {
1686                 udelay(10);
1687                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1688         } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1689 
1690         if (!wait_loop)
1691                 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1692                        reg_idx);
1693 }
1694 
1695 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1696                                          struct ixgbevf_ring *ring)
1697 {
1698         struct ixgbe_hw *hw = &adapter->hw;
1699         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1700         u32 rxdctl;
1701         u8 reg_idx = ring->reg_idx;
1702 
1703         if (IXGBE_REMOVED(hw->hw_addr))
1704                 return;
1705         do {
1706                 usleep_range(1000, 2000);
1707                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1708         } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1709 
1710         if (!wait_loop)
1711                 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1712                        reg_idx);
1713 }
1714 
1715 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1716 {
1717         struct ixgbe_hw *hw = &adapter->hw;
1718         u32 vfmrqc = 0, vfreta = 0;
1719         u16 rss_i = adapter->num_rx_queues;
1720         u8 i, j;
1721 
1722         /* Fill out hash function seeds */
1723         netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1724         for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1725                 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1726 
1727         for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1728                 if (j == rss_i)
1729                         j = 0;
1730 
1731                 adapter->rss_indir_tbl[i] = j;
1732 
1733                 vfreta |= j << (i & 0x3) * 8;
1734                 if ((i & 3) == 3) {
1735                         IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1736                         vfreta = 0;
1737                 }
1738         }
1739 
1740         /* Perform hash on these packet types */
1741         vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1742                 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1743                 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1744                 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1745 
1746         vfmrqc |= IXGBE_VFMRQC_RSSEN;
1747 
1748         IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1749 }
1750 
1751 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1752                                       struct ixgbevf_ring *ring)
1753 {
1754         struct ixgbe_hw *hw = &adapter->hw;
1755         u64 rdba = ring->dma;
1756         u32 rxdctl;
1757         u8 reg_idx = ring->reg_idx;
1758 
1759         /* disable queue to avoid issues while updating state */
1760         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1761         ixgbevf_disable_rx_queue(adapter, ring);
1762 
1763         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1764         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1765         IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1766                         ring->count * sizeof(union ixgbe_adv_rx_desc));
1767 
1768 #ifndef CONFIG_SPARC
1769         /* enable relaxed ordering */
1770         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1771                         IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1772 #else
1773         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1774                         IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1775                         IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1776 #endif
1777 
1778         /* reset head and tail pointers */
1779         IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1780         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1781         ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1782 
1783         /* reset ntu and ntc to place SW in sync with hardwdare */
1784         ring->next_to_clean = 0;
1785         ring->next_to_use = 0;
1786         ring->next_to_alloc = 0;
1787 
1788         ixgbevf_configure_srrctl(adapter, reg_idx);
1789 
1790         /* allow any size packet since we can handle overflow */
1791         rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1792 
1793         rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1794         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1795 
1796         ixgbevf_rx_desc_queue_enable(adapter, ring);
1797         ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1798 }
1799 
1800 /**
1801  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1802  * @adapter: board private structure
1803  *
1804  * Configure the Rx unit of the MAC after a reset.
1805  **/
1806 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1807 {
1808         struct ixgbe_hw *hw = &adapter->hw;
1809         struct net_device *netdev = adapter->netdev;
1810         int i, ret;
1811 
1812         ixgbevf_setup_psrtype(adapter);
1813         if (hw->mac.type >= ixgbe_mac_X550_vf)
1814                 ixgbevf_setup_vfmrqc(adapter);
1815 
1816         spin_lock_bh(&adapter->mbx_lock);
1817         /* notify the PF of our intent to use this size of frame */
1818         ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1819         spin_unlock_bh(&adapter->mbx_lock);
1820         if (ret)
1821                 dev_err(&adapter->pdev->dev,
1822                         "Failed to set MTU at %d\n", netdev->mtu);
1823 
1824         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1825          * the Base and Length of the Rx Descriptor Ring
1826          */
1827         for (i = 0; i < adapter->num_rx_queues; i++)
1828                 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1829 }
1830 
1831 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1832                                    __be16 proto, u16 vid)
1833 {
1834         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1835         struct ixgbe_hw *hw = &adapter->hw;
1836         int err;
1837 
1838         spin_lock_bh(&adapter->mbx_lock);
1839 
1840         /* add VID to filter table */
1841         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1842 
1843         spin_unlock_bh(&adapter->mbx_lock);
1844 
1845         /* translate error return types so error makes sense */
1846         if (err == IXGBE_ERR_MBX)
1847                 return -EIO;
1848 
1849         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1850                 return -EACCES;
1851 
1852         set_bit(vid, adapter->active_vlans);
1853 
1854         return err;
1855 }
1856 
1857 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1858                                     __be16 proto, u16 vid)
1859 {
1860         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1861         struct ixgbe_hw *hw = &adapter->hw;
1862         int err;
1863 
1864         spin_lock_bh(&adapter->mbx_lock);
1865 
1866         /* remove VID from filter table */
1867         err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1868 
1869         spin_unlock_bh(&adapter->mbx_lock);
1870 
1871         clear_bit(vid, adapter->active_vlans);
1872 
1873         return err;
1874 }
1875 
1876 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1877 {
1878         u16 vid;
1879 
1880         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1881                 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1882                                         htons(ETH_P_8021Q), vid);
1883 }
1884 
1885 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1886 {
1887         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1888         struct ixgbe_hw *hw = &adapter->hw;
1889         int count = 0;
1890 
1891         if ((netdev_uc_count(netdev)) > 10) {
1892                 pr_err("Too many unicast filters - No Space\n");
1893                 return -ENOSPC;
1894         }
1895 
1896         if (!netdev_uc_empty(netdev)) {
1897                 struct netdev_hw_addr *ha;
1898 
1899                 netdev_for_each_uc_addr(ha, netdev) {
1900                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1901                         udelay(200);
1902                 }
1903         } else {
1904                 /* If the list is empty then send message to PF driver to
1905                  * clear all MAC VLANs on this VF.
1906                  */
1907                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1908         }
1909 
1910         return count;
1911 }
1912 
1913 /**
1914  * ixgbevf_set_rx_mode - Multicast and unicast set
1915  * @netdev: network interface device structure
1916  *
1917  * The set_rx_method entry point is called whenever the multicast address
1918  * list, unicast address list or the network interface flags are updated.
1919  * This routine is responsible for configuring the hardware for proper
1920  * multicast mode and configuring requested unicast filters.
1921  **/
1922 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1923 {
1924         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1925         struct ixgbe_hw *hw = &adapter->hw;
1926         unsigned int flags = netdev->flags;
1927         int xcast_mode;
1928 
1929         xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1930                      (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1931                      IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1932 
1933         spin_lock_bh(&adapter->mbx_lock);
1934 
1935         hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1936 
1937         /* reprogram multicast list */
1938         hw->mac.ops.update_mc_addr_list(hw, netdev);
1939 
1940         ixgbevf_write_uc_addr_list(netdev);
1941 
1942         spin_unlock_bh(&adapter->mbx_lock);
1943 }
1944 
1945 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1946 {
1947         int q_idx;
1948         struct ixgbevf_q_vector *q_vector;
1949         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1950 
1951         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1952                 q_vector = adapter->q_vector[q_idx];
1953 #ifdef CONFIG_NET_RX_BUSY_POLL
1954                 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1955 #endif
1956                 napi_enable(&q_vector->napi);
1957         }
1958 }
1959 
1960 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1961 {
1962         int q_idx;
1963         struct ixgbevf_q_vector *q_vector;
1964         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1965 
1966         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1967                 q_vector = adapter->q_vector[q_idx];
1968                 napi_disable(&q_vector->napi);
1969 #ifdef CONFIG_NET_RX_BUSY_POLL
1970                 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1971                         pr_info("QV %d locked\n", q_idx);
1972                         usleep_range(1000, 20000);
1973                 }
1974 #endif /* CONFIG_NET_RX_BUSY_POLL */
1975         }
1976 }
1977 
1978 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1979 {
1980         struct ixgbe_hw *hw = &adapter->hw;
1981         unsigned int def_q = 0;
1982         unsigned int num_tcs = 0;
1983         unsigned int num_rx_queues = adapter->num_rx_queues;
1984         unsigned int num_tx_queues = adapter->num_tx_queues;
1985         int err;
1986 
1987         spin_lock_bh(&adapter->mbx_lock);
1988 
1989         /* fetch queue configuration from the PF */
1990         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1991 
1992         spin_unlock_bh(&adapter->mbx_lock);
1993 
1994         if (err)
1995                 return err;
1996 
1997         if (num_tcs > 1) {
1998                 /* we need only one Tx queue */
1999                 num_tx_queues = 1;
2000 
2001                 /* update default Tx ring register index */
2002                 adapter->tx_ring[0]->reg_idx = def_q;
2003 
2004                 /* we need as many queues as traffic classes */
2005                 num_rx_queues = num_tcs;
2006         }
2007 
2008         /* if we have a bad config abort request queue reset */
2009         if ((adapter->num_rx_queues != num_rx_queues) ||
2010             (adapter->num_tx_queues != num_tx_queues)) {
2011                 /* force mailbox timeout to prevent further messages */
2012                 hw->mbx.timeout = 0;
2013 
2014                 /* wait for watchdog to come around and bail us out */
2015                 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2016         }
2017 
2018         return 0;
2019 }
2020 
2021 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2022 {
2023         ixgbevf_configure_dcb(adapter);
2024 
2025         ixgbevf_set_rx_mode(adapter->netdev);
2026 
2027         ixgbevf_restore_vlan(adapter);
2028 
2029         ixgbevf_configure_tx(adapter);
2030         ixgbevf_configure_rx(adapter);
2031 }
2032 
2033 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2034 {
2035         /* Only save pre-reset stats if there are some */
2036         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2037                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2038                         adapter->stats.base_vfgprc;
2039                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2040                         adapter->stats.base_vfgptc;
2041                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2042                         adapter->stats.base_vfgorc;
2043                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2044                         adapter->stats.base_vfgotc;
2045                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2046                         adapter->stats.base_vfmprc;
2047         }
2048 }
2049 
2050 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2051 {
2052         struct ixgbe_hw *hw = &adapter->hw;
2053 
2054         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2055         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2056         adapter->stats.last_vfgorc |=
2057                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2058         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2059         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2060         adapter->stats.last_vfgotc |=
2061                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2062         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2063 
2064         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2065         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2066         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2067         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2068         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2069 }
2070 
2071 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2072 {
2073         struct ixgbe_hw *hw = &adapter->hw;
2074         int api[] = { ixgbe_mbox_api_12,
2075                       ixgbe_mbox_api_11,
2076                       ixgbe_mbox_api_10,
2077                       ixgbe_mbox_api_unknown };
2078         int err, idx = 0;
2079 
2080         spin_lock_bh(&adapter->mbx_lock);
2081 
2082         while (api[idx] != ixgbe_mbox_api_unknown) {
2083                 err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2084                 if (!err)
2085                         break;
2086                 idx++;
2087         }
2088 
2089         spin_unlock_bh(&adapter->mbx_lock);
2090 }
2091 
2092 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2093 {
2094         struct net_device *netdev = adapter->netdev;
2095         struct ixgbe_hw *hw = &adapter->hw;
2096 
2097         ixgbevf_configure_msix(adapter);
2098 
2099         spin_lock_bh(&adapter->mbx_lock);
2100 
2101         if (is_valid_ether_addr(hw->mac.addr))
2102                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2103         else
2104                 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2105 
2106         spin_unlock_bh(&adapter->mbx_lock);
2107 
2108         smp_mb__before_atomic();
2109         clear_bit(__IXGBEVF_DOWN, &adapter->state);
2110         ixgbevf_napi_enable_all(adapter);
2111 
2112         /* clear any pending interrupts, may auto mask */
2113         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2114         ixgbevf_irq_enable(adapter);
2115 
2116         /* enable transmits */
2117         netif_tx_start_all_queues(netdev);
2118 
2119         ixgbevf_save_reset_stats(adapter);
2120         ixgbevf_init_last_counter_stats(adapter);
2121 
2122         hw->mac.get_link_status = 1;
2123         mod_timer(&adapter->service_timer, jiffies);
2124 }
2125 
2126 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2127 {
2128         ixgbevf_configure(adapter);
2129 
2130         ixgbevf_up_complete(adapter);
2131 }
2132 
2133 /**
2134  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2135  * @rx_ring: ring to free buffers from
2136  **/
2137 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2138 {
2139         struct device *dev = rx_ring->dev;
2140         unsigned long size;
2141         unsigned int i;
2142 
2143         /* Free Rx ring sk_buff */
2144         if (rx_ring->skb) {
2145                 dev_kfree_skb(rx_ring->skb);
2146                 rx_ring->skb = NULL;
2147         }
2148 
2149         /* ring already cleared, nothing to do */
2150         if (!rx_ring->rx_buffer_info)
2151                 return;
2152 
2153         /* Free all the Rx ring pages */
2154         for (i = 0; i < rx_ring->count; i++) {
2155                 struct ixgbevf_rx_buffer *rx_buffer;
2156 
2157                 rx_buffer = &rx_ring->rx_buffer_info[i];
2158                 if (rx_buffer->dma)
2159                         dma_unmap_page(dev, rx_buffer->dma,
2160                                        PAGE_SIZE, DMA_FROM_DEVICE);
2161                 rx_buffer->dma = 0;
2162                 if (rx_buffer->page)
2163                         __free_page(rx_buffer->page);
2164                 rx_buffer->page = NULL;
2165         }
2166 
2167         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2168         memset(rx_ring->rx_buffer_info, 0, size);
2169 
2170         /* Zero out the descriptor ring */
2171         memset(rx_ring->desc, 0, rx_ring->size);
2172 }
2173 
2174 /**
2175  * ixgbevf_clean_tx_ring - Free Tx Buffers
2176  * @tx_ring: ring to be cleaned
2177  **/
2178 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2179 {
2180         struct ixgbevf_tx_buffer *tx_buffer_info;
2181         unsigned long size;
2182         unsigned int i;
2183 
2184         if (!tx_ring->tx_buffer_info)
2185                 return;
2186 
2187         /* Free all the Tx ring sk_buffs */
2188         for (i = 0; i < tx_ring->count; i++) {
2189                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2190                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2191         }
2192 
2193         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2194         memset(tx_ring->tx_buffer_info, 0, size);
2195 
2196         memset(tx_ring->desc, 0, tx_ring->size);
2197 }
2198 
2199 /**
2200  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2201  * @adapter: board private structure
2202  **/
2203 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2204 {
2205         int i;
2206 
2207         for (i = 0; i < adapter->num_rx_queues; i++)
2208                 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2209 }
2210 
2211 /**
2212  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2213  * @adapter: board private structure
2214  **/
2215 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2216 {
2217         int i;
2218 
2219         for (i = 0; i < adapter->num_tx_queues; i++)
2220                 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2221 }
2222 
2223 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2224 {
2225         struct net_device *netdev = adapter->netdev;
2226         struct ixgbe_hw *hw = &adapter->hw;
2227         int i;
2228 
2229         /* signal that we are down to the interrupt handler */
2230         if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2231                 return; /* do nothing if already down */
2232 
2233         /* disable all enabled Rx queues */
2234         for (i = 0; i < adapter->num_rx_queues; i++)
2235                 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2236 
2237         usleep_range(10000, 20000);
2238 
2239         netif_tx_stop_all_queues(netdev);
2240 
2241         /* call carrier off first to avoid false dev_watchdog timeouts */
2242         netif_carrier_off(netdev);
2243         netif_tx_disable(netdev);
2244 
2245         ixgbevf_irq_disable(adapter);
2246 
2247         ixgbevf_napi_disable_all(adapter);
2248 
2249         del_timer_sync(&adapter->service_timer);
2250 
2251         /* disable transmits in the hardware now that interrupts are off */
2252         for (i = 0; i < adapter->num_tx_queues; i++) {
2253                 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2254 
2255                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2256                                 IXGBE_TXDCTL_SWFLSH);
2257         }
2258 
2259         if (!pci_channel_offline(adapter->pdev))
2260                 ixgbevf_reset(adapter);
2261 
2262         ixgbevf_clean_all_tx_rings(adapter);
2263         ixgbevf_clean_all_rx_rings(adapter);
2264 }
2265 
2266 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2267 {
2268         WARN_ON(in_interrupt());
2269 
2270         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2271                 msleep(1);
2272 
2273         ixgbevf_down(adapter);
2274         ixgbevf_up(adapter);
2275 
2276         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2277 }
2278 
2279 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2280 {
2281         struct ixgbe_hw *hw = &adapter->hw;
2282         struct net_device *netdev = adapter->netdev;
2283 
2284         if (hw->mac.ops.reset_hw(hw)) {
2285                 hw_dbg(hw, "PF still resetting\n");
2286         } else {
2287                 hw->mac.ops.init_hw(hw);
2288                 ixgbevf_negotiate_api(adapter);
2289         }
2290 
2291         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2292                 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2293                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2294         }
2295 
2296         adapter->last_reset = jiffies;
2297 }
2298 
2299 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2300                                         int vectors)
2301 {
2302         int vector_threshold;
2303 
2304         /* We'll want at least 2 (vector_threshold):
2305          * 1) TxQ[0] + RxQ[0] handler
2306          * 2) Other (Link Status Change, etc.)
2307          */
2308         vector_threshold = MIN_MSIX_COUNT;
2309 
2310         /* The more we get, the more we will assign to Tx/Rx Cleanup
2311          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2312          * Right now, we simply care about how many we'll get; we'll
2313          * set them up later while requesting irq's.
2314          */
2315         vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2316                                         vector_threshold, vectors);
2317 
2318         if (vectors < 0) {
2319                 dev_err(&adapter->pdev->dev,
2320                         "Unable to allocate MSI-X interrupts\n");
2321                 kfree(adapter->msix_entries);
2322                 adapter->msix_entries = NULL;
2323                 return vectors;
2324         }
2325 
2326         /* Adjust for only the vectors we'll use, which is minimum
2327          * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2328          * vectors we were allocated.
2329          */
2330         adapter->num_msix_vectors = vectors;
2331 
2332         return 0;
2333 }
2334 
2335 /**
2336  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2337  * @adapter: board private structure to initialize
2338  *
2339  * This is the top level queue allocation routine.  The order here is very
2340  * important, starting with the "most" number of features turned on at once,
2341  * and ending with the smallest set of features.  This way large combinations
2342  * can be allocated if they're turned on, and smaller combinations are the
2343  * fallthrough conditions.
2344  *
2345  **/
2346 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2347 {
2348         struct ixgbe_hw *hw = &adapter->hw;
2349         unsigned int def_q = 0;
2350         unsigned int num_tcs = 0;
2351         int err;
2352 
2353         /* Start with base case */
2354         adapter->num_rx_queues = 1;
2355         adapter->num_tx_queues = 1;
2356 
2357         spin_lock_bh(&adapter->mbx_lock);
2358 
2359         /* fetch queue configuration from the PF */
2360         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2361 
2362         spin_unlock_bh(&adapter->mbx_lock);
2363 
2364         if (err)
2365                 return;
2366 
2367         /* we need as many queues as traffic classes */
2368         if (num_tcs > 1) {
2369                 adapter->num_rx_queues = num_tcs;
2370         } else {
2371                 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2372 
2373                 switch (hw->api_version) {
2374                 case ixgbe_mbox_api_11:
2375                 case ixgbe_mbox_api_12:
2376                         adapter->num_rx_queues = rss;
2377                         adapter->num_tx_queues = rss;
2378                 default:
2379                         break;
2380                 }
2381         }
2382 }
2383 
2384 /**
2385  * ixgbevf_alloc_queues - Allocate memory for all rings
2386  * @adapter: board private structure to initialize
2387  *
2388  * We allocate one ring per queue at run-time since we don't know the
2389  * number of queues at compile-time.  The polling_netdev array is
2390  * intended for Multiqueue, but should work fine with a single queue.
2391  **/
2392 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2393 {
2394         struct ixgbevf_ring *ring;
2395         int rx = 0, tx = 0;
2396 
2397         for (; tx < adapter->num_tx_queues; tx++) {
2398                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2399                 if (!ring)
2400                         goto err_allocation;
2401 
2402                 ring->dev = &adapter->pdev->dev;
2403                 ring->netdev = adapter->netdev;
2404                 ring->count = adapter->tx_ring_count;
2405                 ring->queue_index = tx;
2406                 ring->reg_idx = tx;
2407 
2408                 adapter->tx_ring[tx] = ring;
2409         }
2410 
2411         for (; rx < adapter->num_rx_queues; rx++) {
2412                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2413                 if (!ring)
2414                         goto err_allocation;
2415 
2416                 ring->dev = &adapter->pdev->dev;
2417                 ring->netdev = adapter->netdev;
2418 
2419                 ring->count = adapter->rx_ring_count;
2420                 ring->queue_index = rx;
2421                 ring->reg_idx = rx;
2422 
2423                 adapter->rx_ring[rx] = ring;
2424         }
2425 
2426         return 0;
2427 
2428 err_allocation:
2429         while (tx) {
2430                 kfree(adapter->tx_ring[--tx]);
2431                 adapter->tx_ring[tx] = NULL;
2432         }
2433 
2434         while (rx) {
2435                 kfree(adapter->rx_ring[--rx]);
2436                 adapter->rx_ring[rx] = NULL;
2437         }
2438         return -ENOMEM;
2439 }
2440 
2441 /**
2442  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2443  * @adapter: board private structure to initialize
2444  *
2445  * Attempt to configure the interrupts using the best available
2446  * capabilities of the hardware and the kernel.
2447  **/
2448 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2449 {
2450         struct net_device *netdev = adapter->netdev;
2451         int err;
2452         int vector, v_budget;
2453 
2454         /* It's easy to be greedy for MSI-X vectors, but it really
2455          * doesn't do us much good if we have a lot more vectors
2456          * than CPU's.  So let's be conservative and only ask for
2457          * (roughly) the same number of vectors as there are CPU's.
2458          * The default is to use pairs of vectors.
2459          */
2460         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2461         v_budget = min_t(int, v_budget, num_online_cpus());
2462         v_budget += NON_Q_VECTORS;
2463 
2464         /* A failure in MSI-X entry allocation isn't fatal, but it does
2465          * mean we disable MSI-X capabilities of the adapter.
2466          */
2467         adapter->msix_entries = kcalloc(v_budget,
2468                                         sizeof(struct msix_entry), GFP_KERNEL);
2469         if (!adapter->msix_entries)
2470                 return -ENOMEM;
2471 
2472         for (vector = 0; vector < v_budget; vector++)
2473                 adapter->msix_entries[vector].entry = vector;
2474 
2475         err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2476         if (err)
2477                 return err;
2478 
2479         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2480         if (err)
2481                 return err;
2482 
2483         return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2484 }
2485 
2486 /**
2487  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2488  * @adapter: board private structure to initialize
2489  *
2490  * We allocate one q_vector per queue interrupt.  If allocation fails we
2491  * return -ENOMEM.
2492  **/
2493 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2494 {
2495         int q_idx, num_q_vectors;
2496         struct ixgbevf_q_vector *q_vector;
2497 
2498         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2499 
2500         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2501                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2502                 if (!q_vector)
2503                         goto err_out;
2504                 q_vector->adapter = adapter;
2505                 q_vector->v_idx = q_idx;
2506                 netif_napi_add(adapter->netdev, &q_vector->napi,
2507                                ixgbevf_poll, 64);
2508                 adapter->q_vector[q_idx] = q_vector;
2509         }
2510 
2511         return 0;
2512 
2513 err_out:
2514         while (q_idx) {
2515                 q_idx--;
2516                 q_vector = adapter->q_vector[q_idx];
2517 #ifdef CONFIG_NET_RX_BUSY_POLL
2518                 napi_hash_del(&q_vector->napi);
2519 #endif
2520                 netif_napi_del(&q_vector->napi);
2521                 kfree(q_vector);
2522                 adapter->q_vector[q_idx] = NULL;
2523         }
2524         return -ENOMEM;
2525 }
2526 
2527 /**
2528  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2529  * @adapter: board private structure to initialize
2530  *
2531  * This function frees the memory allocated to the q_vectors.  In addition if
2532  * NAPI is enabled it will delete any references to the NAPI struct prior
2533  * to freeing the q_vector.
2534  **/
2535 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2536 {
2537         int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2538 
2539         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2540                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2541 
2542                 adapter->q_vector[q_idx] = NULL;
2543 #ifdef CONFIG_NET_RX_BUSY_POLL
2544                 napi_hash_del(&q_vector->napi);
2545 #endif
2546                 netif_napi_del(&q_vector->napi);
2547                 kfree(q_vector);
2548         }
2549 }
2550 
2551 /**
2552  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2553  * @adapter: board private structure
2554  *
2555  **/
2556 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2557 {
2558         if (!adapter->msix_entries)
2559                 return;
2560 
2561         pci_disable_msix(adapter->pdev);
2562         kfree(adapter->msix_entries);
2563         adapter->msix_entries = NULL;
2564 }
2565 
2566 /**
2567  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2568  * @adapter: board private structure to initialize
2569  *
2570  **/
2571 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2572 {
2573         int err;
2574 
2575         /* Number of supported queues */
2576         ixgbevf_set_num_queues(adapter);
2577 
2578         err = ixgbevf_set_interrupt_capability(adapter);
2579         if (err) {
2580                 hw_dbg(&adapter->hw,
2581                        "Unable to setup interrupt capabilities\n");
2582                 goto err_set_interrupt;
2583         }
2584 
2585         err = ixgbevf_alloc_q_vectors(adapter);
2586         if (err) {
2587                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2588                 goto err_alloc_q_vectors;
2589         }
2590 
2591         err = ixgbevf_alloc_queues(adapter);
2592         if (err) {
2593                 pr_err("Unable to allocate memory for queues\n");
2594                 goto err_alloc_queues;
2595         }
2596 
2597         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2598                (adapter->num_rx_queues > 1) ? "Enabled" :
2599                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2600 
2601         set_bit(__IXGBEVF_DOWN, &adapter->state);
2602 
2603         return 0;
2604 err_alloc_queues:
2605         ixgbevf_free_q_vectors(adapter);
2606 err_alloc_q_vectors:
2607         ixgbevf_reset_interrupt_capability(adapter);
2608 err_set_interrupt:
2609         return err;
2610 }
2611 
2612 /**
2613  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2614  * @adapter: board private structure to clear interrupt scheme on
2615  *
2616  * We go through and clear interrupt specific resources and reset the structure
2617  * to pre-load conditions
2618  **/
2619 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2620 {
2621         int i;
2622 
2623         for (i = 0; i < adapter->num_tx_queues; i++) {
2624                 kfree(adapter->tx_ring[i]);
2625                 adapter->tx_ring[i] = NULL;
2626         }
2627         for (i = 0; i < adapter->num_rx_queues; i++) {
2628                 kfree(adapter->rx_ring[i]);
2629                 adapter->rx_ring[i] = NULL;
2630         }
2631 
2632         adapter->num_tx_queues = 0;
2633         adapter->num_rx_queues = 0;
2634 
2635         ixgbevf_free_q_vectors(adapter);
2636         ixgbevf_reset_interrupt_capability(adapter);
2637 }
2638 
2639 /**
2640  * ixgbevf_sw_init - Initialize general software structures
2641  * @adapter: board private structure to initialize
2642  *
2643  * ixgbevf_sw_init initializes the Adapter private data structure.
2644  * Fields are initialized based on PCI device information and
2645  * OS network device settings (MTU size).
2646  **/
2647 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2648 {
2649         struct ixgbe_hw *hw = &adapter->hw;
2650         struct pci_dev *pdev = adapter->pdev;
2651         struct net_device *netdev = adapter->netdev;
2652         int err;
2653 
2654         /* PCI config space info */
2655         hw->vendor_id = pdev->vendor;
2656         hw->device_id = pdev->device;
2657         hw->revision_id = pdev->revision;
2658         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2659         hw->subsystem_device_id = pdev->subsystem_device;
2660 
2661         hw->mbx.ops.init_params(hw);
2662 
2663         /* assume legacy case in which PF would only give VF 2 queues */
2664         hw->mac.max_tx_queues = 2;
2665         hw->mac.max_rx_queues = 2;
2666 
2667         /* lock to protect mailbox accesses */
2668         spin_lock_init(&adapter->mbx_lock);
2669 
2670         err = hw->mac.ops.reset_hw(hw);
2671         if (err) {
2672                 dev_info(&pdev->dev,
2673                          "PF still in reset state.  Is the PF interface up?\n");
2674         } else {
2675                 err = hw->mac.ops.init_hw(hw);
2676                 if (err) {
2677                         pr_err("init_shared_code failed: %d\n", err);
2678                         goto out;
2679                 }
2680                 ixgbevf_negotiate_api(adapter);
2681                 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2682                 if (err)
2683                         dev_info(&pdev->dev, "Error reading MAC address\n");
2684                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2685                         dev_info(&pdev->dev,
2686                                  "MAC address not assigned by administrator.\n");
2687                 ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2688         }
2689 
2690         if (!is_valid_ether_addr(netdev->dev_addr)) {
2691                 dev_info(&pdev->dev, "Assigning random MAC address\n");
2692                 eth_hw_addr_random(netdev);
2693                 ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2694                 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2695         }
2696 
2697         /* Enable dynamic interrupt throttling rates */
2698         adapter->rx_itr_setting = 1;
2699         adapter->tx_itr_setting = 1;
2700 
2701         /* set default ring sizes */
2702         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2703         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2704 
2705         set_bit(__IXGBEVF_DOWN, &adapter->state);
2706         return 0;
2707 
2708 out:
2709         return err;
2710 }
2711 
2712 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2713         {                                                       \
2714                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2715                 if (current_counter < last_counter)             \
2716                         counter += 0x100000000LL;               \
2717                 last_counter = current_counter;                 \
2718                 counter &= 0xFFFFFFFF00000000LL;                \
2719                 counter |= current_counter;                     \
2720         }
2721 
2722 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2723         {                                                                \
2724                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2725                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2726                 u64 current_counter = (current_counter_msb << 32) |      \
2727                         current_counter_lsb;                             \
2728                 if (current_counter < last_counter)                      \
2729                         counter += 0x1000000000LL;                       \
2730                 last_counter = current_counter;                          \
2731                 counter &= 0xFFFFFFF000000000LL;                         \
2732                 counter |= current_counter;                              \
2733         }
2734 /**
2735  * ixgbevf_update_stats - Update the board statistics counters.
2736  * @adapter: board private structure
2737  **/
2738 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2739 {
2740         struct ixgbe_hw *hw = &adapter->hw;
2741         int i;
2742 
2743         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2744             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2745                 return;
2746 
2747         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2748                                 adapter->stats.vfgprc);
2749         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2750                                 adapter->stats.vfgptc);
2751         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2752                                 adapter->stats.last_vfgorc,
2753                                 adapter->stats.vfgorc);
2754         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2755                                 adapter->stats.last_vfgotc,
2756                                 adapter->stats.vfgotc);
2757         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2758                                 adapter->stats.vfmprc);
2759 
2760         for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2761                 adapter->hw_csum_rx_error +=
2762                         adapter->rx_ring[i]->hw_csum_rx_error;
2763                 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2764         }
2765 }
2766 
2767 /**
2768  * ixgbevf_service_timer - Timer Call-back
2769  * @data: pointer to adapter cast into an unsigned long
2770  **/
2771 static void ixgbevf_service_timer(unsigned long data)
2772 {
2773         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2774 
2775         /* Reset the timer */
2776         mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2777 
2778         ixgbevf_service_event_schedule(adapter);
2779 }
2780 
2781 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2782 {
2783         if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2784                 return;
2785 
2786         /* If we're already down or resetting, just bail */
2787         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2788             test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2789             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2790                 return;
2791 
2792         adapter->tx_timeout_count++;
2793 
2794         rtnl_lock();
2795         ixgbevf_reinit_locked(adapter);
2796         rtnl_unlock();
2797 }
2798 
2799 /**
2800  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2801  * @adapter: pointer to the device adapter structure
2802  *
2803  * This function serves two purposes.  First it strobes the interrupt lines
2804  * in order to make certain interrupts are occurring.  Secondly it sets the
2805  * bits needed to check for TX hangs.  As a result we should immediately
2806  * determine if a hang has occurred.
2807  **/
2808 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2809 {
2810         struct ixgbe_hw *hw = &adapter->hw;
2811         u32 eics = 0;
2812         int i;
2813 
2814         /* If we're down or resetting, just bail */
2815         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2816             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2817                 return;
2818 
2819         /* Force detection of hung controller */
2820         if (netif_carrier_ok(adapter->netdev)) {
2821                 for (i = 0; i < adapter->num_tx_queues; i++)
2822                         set_check_for_tx_hang(adapter->tx_ring[i]);
2823         }
2824 
2825         /* get one bit for every active Tx/Rx interrupt vector */
2826         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2827                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2828 
2829                 if (qv->rx.ring || qv->tx.ring)
2830                         eics |= BIT(i);
2831         }
2832 
2833         /* Cause software interrupt to ensure rings are cleaned */
2834         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2835 }
2836 
2837 /**
2838  * ixgbevf_watchdog_update_link - update the link status
2839  * @adapter: pointer to the device adapter structure
2840  **/
2841 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2842 {
2843         struct ixgbe_hw *hw = &adapter->hw;
2844         u32 link_speed = adapter->link_speed;
2845         bool link_up = adapter->link_up;
2846         s32 err;
2847 
2848         spin_lock_bh(&adapter->mbx_lock);
2849 
2850         err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2851 
2852         spin_unlock_bh(&adapter->mbx_lock);
2853 
2854         /* if check for link returns error we will need to reset */
2855         if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2856                 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2857                 link_up = false;
2858         }
2859 
2860         adapter->link_up = link_up;
2861         adapter->link_speed = link_speed;
2862 }
2863 
2864 /**
2865  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2866  *                               print link up message
2867  * @adapter: pointer to the device adapter structure
2868  **/
2869 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2870 {
2871         struct net_device *netdev = adapter->netdev;
2872 
2873         /* only continue if link was previously down */
2874         if (netif_carrier_ok(netdev))
2875                 return;
2876 
2877         dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2878                  (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2879                  "10 Gbps" :
2880                  (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2881                  "1 Gbps" :
2882                  (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2883                  "100 Mbps" :
2884                  "unknown speed");
2885 
2886         netif_carrier_on(netdev);
2887 }
2888 
2889 /**
2890  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2891  *                                 print link down message
2892  * @adapter: pointer to the adapter structure
2893  **/
2894 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2895 {
2896         struct net_device *netdev = adapter->netdev;
2897 
2898         adapter->link_speed = 0;
2899 
2900         /* only continue if link was up previously */
2901         if (!netif_carrier_ok(netdev))
2902                 return;
2903 
2904         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2905 
2906         netif_carrier_off(netdev);
2907 }
2908 
2909 /**
2910  * ixgbevf_watchdog_subtask - worker thread to bring link up
2911  * @work: pointer to work_struct containing our data
2912  **/
2913 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2914 {
2915         /* if interface is down do nothing */
2916         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2917             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2918                 return;
2919 
2920         ixgbevf_watchdog_update_link(adapter);
2921 
2922         if (adapter->link_up)
2923                 ixgbevf_watchdog_link_is_up(adapter);
2924         else
2925                 ixgbevf_watchdog_link_is_down(adapter);
2926 
2927         ixgbevf_update_stats(adapter);
2928 }
2929 
2930 /**
2931  * ixgbevf_service_task - manages and runs subtasks
2932  * @work: pointer to work_struct containing our data
2933  **/
2934 static void ixgbevf_service_task(struct work_struct *work)
2935 {
2936         struct ixgbevf_adapter *adapter = container_of(work,
2937                                                        struct ixgbevf_adapter,
2938                                                        service_task);
2939         struct ixgbe_hw *hw = &adapter->hw;
2940 
2941         if (IXGBE_REMOVED(hw->hw_addr)) {
2942                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2943                         rtnl_lock();
2944                         ixgbevf_down(adapter);
2945                         rtnl_unlock();
2946                 }
2947                 return;
2948         }
2949 
2950         ixgbevf_queue_reset_subtask(adapter);
2951         ixgbevf_reset_subtask(adapter);
2952         ixgbevf_watchdog_subtask(adapter);
2953         ixgbevf_check_hang_subtask(adapter);
2954 
2955         ixgbevf_service_event_complete(adapter);
2956 }
2957 
2958 /**
2959  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2960  * @tx_ring: Tx descriptor ring for a specific queue
2961  *
2962  * Free all transmit software resources
2963  **/
2964 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2965 {
2966         ixgbevf_clean_tx_ring(tx_ring);
2967 
2968         vfree(tx_ring->tx_buffer_info);
2969         tx_ring->tx_buffer_info = NULL;
2970 
2971         /* if not set, then don't free */
2972         if (!tx_ring->desc)
2973                 return;
2974 
2975         dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2976                           tx_ring->dma);
2977 
2978         tx_ring->desc = NULL;
2979 }
2980 
2981 /**
2982  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2983  * @adapter: board private structure
2984  *
2985  * Free all transmit software resources
2986  **/
2987 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2988 {
2989         int i;
2990 
2991         for (i = 0; i < adapter->num_tx_queues; i++)
2992                 if (adapter->tx_ring[i]->desc)
2993                         ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2994 }
2995 
2996 /**
2997  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2998  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2999  *
3000  * Return 0 on success, negative on failure
3001  **/
3002 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3003 {
3004         struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3005         int size;
3006 
3007         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3008         tx_ring->tx_buffer_info = vzalloc(size);
3009         if (!tx_ring->tx_buffer_info)
3010                 goto err;
3011 
3012         /* round up to nearest 4K */
3013         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3014         tx_ring->size = ALIGN(tx_ring->size, 4096);
3015 
3016         tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3017                                            &tx_ring->dma, GFP_KERNEL);
3018         if (!tx_ring->desc)
3019                 goto err;
3020 
3021         return 0;
3022 
3023 err:
3024         vfree(tx_ring->tx_buffer_info);
3025         tx_ring->tx_buffer_info = NULL;
3026         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3027         return -ENOMEM;
3028 }
3029 
3030 /**
3031  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3032  * @adapter: board private structure
3033  *
3034  * If this function returns with an error, then it's possible one or
3035  * more of the rings is populated (while the rest are not).  It is the
3036  * callers duty to clean those orphaned rings.
3037  *
3038  * Return 0 on success, negative on failure
3039  **/
3040 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3041 {
3042         int i, err = 0;
3043 
3044         for (i = 0; i < adapter->num_tx_queues; i++) {
3045                 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3046                 if (!err)
3047                         continue;
3048                 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3049                 break;
3050         }
3051 
3052         return err;
3053 }
3054 
3055 /**
3056  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3057  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3058  *
3059  * Returns 0 on success, negative on failure
3060  **/
3061 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3062 {
3063         int size;
3064 
3065         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3066         rx_ring->rx_buffer_info = vzalloc(size);
3067         if (!rx_ring->rx_buffer_info)
3068                 goto err;
3069 
3070         /* Round up to nearest 4K */
3071         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3072         rx_ring->size = ALIGN(rx_ring->size, 4096);
3073 
3074         rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3075                                            &rx_ring->dma, GFP_KERNEL);
3076 
3077         if (!rx_ring->desc)
3078                 goto err;
3079 
3080         return 0;
3081 err:
3082         vfree(rx_ring->rx_buffer_info);
3083         rx_ring->rx_buffer_info = NULL;
3084         dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3085         return -ENOMEM;
3086 }
3087 
3088 /**
3089  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3090  * @adapter: board private structure
3091  *
3092  * If this function returns with an error, then it's possible one or
3093  * more of the rings is populated (while the rest are not).  It is the
3094  * callers duty to clean those orphaned rings.
3095  *
3096  * Return 0 on success, negative on failure
3097  **/
3098 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3099 {
3100         int i, err = 0;
3101 
3102         for (i = 0; i < adapter->num_rx_queues; i++) {
3103                 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3104                 if (!err)
3105                         continue;
3106                 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3107                 break;
3108         }
3109         return err;
3110 }
3111 
3112 /**
3113  * ixgbevf_free_rx_resources - Free Rx Resources
3114  * @rx_ring: ring to clean the resources from
3115  *
3116  * Free all receive software resources
3117  **/
3118 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3119 {
3120         ixgbevf_clean_rx_ring(rx_ring);
3121 
3122         vfree(rx_ring->rx_buffer_info);
3123         rx_ring->rx_buffer_info = NULL;
3124 
3125         dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3126                           rx_ring->dma);
3127 
3128         rx_ring->desc = NULL;
3129 }
3130 
3131 /**
3132  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3133  * @adapter: board private structure
3134  *
3135  * Free all receive software resources
3136  **/
3137 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3138 {
3139         int i;
3140 
3141         for (i = 0; i < adapter->num_rx_queues; i++)
3142                 if (adapter->rx_ring[i]->desc)
3143                         ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3144 }
3145 
3146 /**
3147  * ixgbevf_open - Called when a network interface is made active
3148  * @netdev: network interface device structure
3149  *
3150  * Returns 0 on success, negative value on failure
3151  *
3152  * The open entry point is called when a network interface is made
3153  * active by the system (IFF_UP).  At this point all resources needed
3154  * for transmit and receive operations are allocated, the interrupt
3155  * handler is registered with the OS, the watchdog timer is started,
3156  * and the stack is notified that the interface is ready.
3157  **/
3158 int ixgbevf_open(struct net_device *netdev)
3159 {
3160         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3161         struct ixgbe_hw *hw = &adapter->hw;
3162         int err;
3163 
3164         /* A previous failure to open the device because of a lack of
3165          * available MSIX vector resources may have reset the number
3166          * of msix vectors variable to zero.  The only way to recover
3167          * is to unload/reload the driver and hope that the system has
3168          * been able to recover some MSIX vector resources.
3169          */
3170         if (!adapter->num_msix_vectors)
3171                 return -ENOMEM;
3172 
3173         if (hw->adapter_stopped) {
3174                 ixgbevf_reset(adapter);
3175                 /* if adapter is still stopped then PF isn't up and
3176                  * the VF can't start.
3177                  */
3178                 if (hw->adapter_stopped) {
3179                         err = IXGBE_ERR_MBX;
3180                         pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3181                         goto err_setup_reset;
3182                 }
3183         }
3184 
3185         /* disallow open during test */
3186         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3187                 return -EBUSY;
3188 
3189         netif_carrier_off(netdev);
3190 
3191         /* allocate transmit descriptors */
3192         err = ixgbevf_setup_all_tx_resources(adapter);
3193         if (err)
3194                 goto err_setup_tx;
3195 
3196         /* allocate receive descriptors */
3197         err = ixgbevf_setup_all_rx_resources(adapter);
3198         if (err)
3199                 goto err_setup_rx;
3200 
3201         ixgbevf_configure(adapter);
3202 
3203         /* Map the Tx/Rx rings to the vectors we were allotted.
3204          * if request_irq will be called in this function map_rings
3205          * must be called *before* up_complete
3206          */
3207         ixgbevf_map_rings_to_vectors(adapter);
3208 
3209         err = ixgbevf_request_irq(adapter);
3210         if (err)
3211                 goto err_req_irq;
3212 
3213         ixgbevf_up_complete(adapter);
3214 
3215         return 0;
3216 
3217 err_req_irq:
3218         ixgbevf_down(adapter);
3219 err_setup_rx:
3220         ixgbevf_free_all_rx_resources(adapter);
3221 err_setup_tx:
3222         ixgbevf_free_all_tx_resources(adapter);
3223         ixgbevf_reset(adapter);
3224 
3225 err_setup_reset:
3226 
3227         return err;
3228 }
3229 
3230 /**
3231  * ixgbevf_close - Disables a network interface
3232  * @netdev: network interface device structure
3233  *
3234  * Returns 0, this is not allowed to fail
3235  *
3236  * The close entry point is called when an interface is de-activated
3237  * by the OS.  The hardware is still under the drivers control, but
3238  * needs to be disabled.  A global MAC reset is issued to stop the
3239  * hardware, and all transmit and receive resources are freed.
3240  **/
3241 int ixgbevf_close(struct net_device *netdev)
3242 {
3243         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3244 
3245         ixgbevf_down(adapter);
3246         ixgbevf_free_irq(adapter);
3247 
3248         ixgbevf_free_all_tx_resources(adapter);
3249         ixgbevf_free_all_rx_resources(adapter);
3250 
3251         return 0;
3252 }
3253 
3254 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3255 {
3256         struct net_device *dev = adapter->netdev;
3257 
3258         if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3259                                 &adapter->state))
3260                 return;
3261 
3262         /* if interface is down do nothing */
3263         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3264             test_bit(__IXGBEVF_RESETTING, &adapter->state))
3265                 return;
3266 
3267         /* Hardware has to reinitialize queues and interrupts to
3268          * match packet buffer alignment. Unfortunately, the
3269          * hardware is not flexible enough to do this dynamically.
3270          */
3271         if (netif_running(dev))
3272                 ixgbevf_close(dev);
3273 
3274         ixgbevf_clear_interrupt_scheme(adapter);
3275         ixgbevf_init_interrupt_scheme(adapter);
3276 
3277         if (netif_running(dev))
3278                 ixgbevf_open(dev);
3279 }
3280 
3281 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3282                                 u32 vlan_macip_lens, u32 type_tucmd,
3283                                 u32 mss_l4len_idx)
3284 {
3285         struct ixgbe_adv_tx_context_desc *context_desc;
3286         u16 i = tx_ring->next_to_use;
3287 
3288         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3289 
3290         i++;
3291         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3292 
3293         /* set bits to identify this as an advanced context descriptor */
3294         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3295 
3296         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
3297         context_desc->seqnum_seed       = 0;
3298         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
3299         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
3300 }
3301 
3302 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3303                        struct ixgbevf_tx_buffer *first,
3304                        u8 *hdr_len)
3305 {
3306         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3307         struct sk_buff *skb = first->skb;
3308         union {
3309                 struct iphdr *v4;
3310                 struct ipv6hdr *v6;
3311                 unsigned char *hdr;
3312         } ip;
3313         union {
3314                 struct tcphdr *tcp;
3315                 unsigned char *hdr;
3316         } l4;
3317         u32 paylen, l4_offset;
3318         int err;
3319 
3320         if (skb->ip_summed != CHECKSUM_PARTIAL)
3321                 return 0;
3322 
3323         if (!skb_is_gso(skb))
3324                 return 0;
3325 
3326         err = skb_cow_head(skb, 0);
3327         if (err < 0)
3328                 return err;
3329 
3330         ip.hdr = skb_network_header(skb);
3331         l4.hdr = skb_checksum_start(skb);
3332 
3333         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3334         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3335 
3336         /* initialize outer IP header fields */
3337         if (ip.v4->version == 4) {
3338                 unsigned char *csum_start = skb_checksum_start(skb);
3339                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3340 
3341                 /* IP header will have to cancel out any data that
3342                  * is not a part of the outer IP header
3343                  */
3344                 ip.v4->check = csum_fold(csum_partial(trans_start,
3345                                                       csum_start - trans_start,
3346                                                       0));
3347                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3348 
3349                 ip.v4->tot_len = 0;
3350                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3351                                    IXGBE_TX_FLAGS_CSUM |
3352                                    IXGBE_TX_FLAGS_IPV4;
3353         } else {
3354                 ip.v6->payload_len = 0;
3355                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3356                                    IXGBE_TX_FLAGS_CSUM;
3357         }
3358 
3359         /* determine offset of inner transport header */
3360         l4_offset = l4.hdr - skb->data;
3361 
3362         /* compute length of segmentation header */
3363         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3364 
3365         /* remove payload length from inner checksum */
3366         paylen = skb->len - l4_offset;
3367         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3368 
3369         /* update gso size and bytecount with header size */
3370         first->gso_segs = skb_shinfo(skb)->gso_segs;
3371         first->bytecount += (first->gso_segs - 1) * *hdr_len;
3372 
3373         /* mss_l4len_id: use 1 as index for TSO */
3374         mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3375         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3376         mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3377 
3378         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3379         vlan_macip_lens = l4.hdr - ip.hdr;
3380         vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3381         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3382 
3383         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3384                             type_tucmd, mss_l4len_idx);
3385 
3386         return 1;
3387 }
3388 
3389 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3390 {
3391         unsigned int offset = 0;
3392 
3393         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3394 
3395         return offset == skb_checksum_start_offset(skb);
3396 }
3397 
3398 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3399                             struct ixgbevf_tx_buffer *first)
3400 {
3401         struct sk_buff *skb = first->skb;
3402         u32 vlan_macip_lens = 0;
3403         u32 type_tucmd = 0;
3404 
3405         if (skb->ip_summed != CHECKSUM_PARTIAL)
3406                 goto no_csum;
3407 
3408         switch (skb->csum_offset) {
3409         case offsetof(struct tcphdr, check):
3410                 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3411                 /* fall through */
3412         case offsetof(struct udphdr, check):
3413                 break;
3414         case offsetof(struct sctphdr, checksum):
3415                 /* validate that this is actually an SCTP request */
3416                 if (((first->protocol == htons(ETH_P_IP)) &&
3417                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3418                     ((first->protocol == htons(ETH_P_IPV6)) &&
3419                      ixgbevf_ipv6_csum_is_sctp(skb))) {
3420                         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3421                         break;
3422                 }
3423                 /* fall through */
3424         default:
3425                 skb_checksum_help(skb);
3426                 goto no_csum;
3427         }
3428         /* update TX checksum flag */
3429         first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3430         vlan_macip_lens = skb_checksum_start_offset(skb) -
3431                           skb_network_offset(skb);
3432 no_csum:
3433         /* vlan_macip_lens: MACLEN, VLAN tag */
3434         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3435         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3436 
3437         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3438 }
3439 
3440 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3441 {
3442         /* set type for advanced descriptor with frame checksum insertion */
3443         __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3444                                       IXGBE_ADVTXD_DCMD_IFCS |
3445                                       IXGBE_ADVTXD_DCMD_DEXT);
3446 
3447         /* set HW VLAN bit if VLAN is present */
3448         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3449                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3450 
3451         /* set segmentation enable bits for TSO/FSO */
3452         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3453                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3454 
3455         return cmd_type;
3456 }
3457 
3458 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3459                                      u32 tx_flags, unsigned int paylen)
3460 {
3461         __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3462 
3463         /* enable L4 checksum for TSO and TX checksum offload */
3464         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3465                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3466 
3467         /* enble IPv4 checksum for TSO */
3468         if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3469                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3470 
3471         /* use index 1 context for TSO/FSO/FCOE */
3472         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3473                 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3474 
3475         /* Check Context must be set if Tx switch is enabled, which it
3476          * always is for case where virtual functions are running
3477          */
3478         olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3479 
3480         tx_desc->read.olinfo_status = olinfo_status;
3481 }
3482 
3483 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3484                            struct ixgbevf_tx_buffer *first,
3485                            const u8 hdr_len)
3486 {
3487         dma_addr_t dma;
3488         struct sk_buff *skb = first->skb;
3489         struct ixgbevf_tx_buffer *tx_buffer;
3490         union ixgbe_adv_tx_desc *tx_desc;
3491         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3492         unsigned int data_len = skb->data_len;
3493         unsigned int size = skb_headlen(skb);
3494         unsigned int paylen = skb->len - hdr_len;
3495         u32 tx_flags = first->tx_flags;
3496         __le32 cmd_type;
3497         u16 i = tx_ring->next_to_use;
3498 
3499         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3500 
3501         ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3502         cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3503 
3504         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3505         if (dma_mapping_error(tx_ring->dev, dma))
3506                 goto dma_error;
3507 
3508         /* record length, and DMA address */
3509         dma_unmap_len_set(first, len, size);
3510         dma_unmap_addr_set(first, dma, dma);
3511 
3512         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3513 
3514         for (;;) {
3515                 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3516                         tx_desc->read.cmd_type_len =
3517                                 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3518 
3519                         i++;
3520                         tx_desc++;
3521                         if (i == tx_ring->count) {
3522                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3523                                 i = 0;
3524                         }
3525 
3526                         dma += IXGBE_MAX_DATA_PER_TXD;
3527                         size -= IXGBE_MAX_DATA_PER_TXD;
3528 
3529                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3530                         tx_desc->read.olinfo_status = 0;
3531                 }
3532 
3533                 if (likely(!data_len))
3534                         break;
3535 
3536                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3537 
3538                 i++;
3539                 tx_desc++;
3540                 if (i == tx_ring->count) {
3541                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3542                         i = 0;
3543                 }
3544 
3545                 size = skb_frag_size(frag);
3546                 data_len -= size;
3547 
3548                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3549                                        DMA_TO_DEVICE);
3550                 if (dma_mapping_error(tx_ring->dev, dma))
3551                         goto dma_error;
3552 
3553                 tx_buffer = &tx_ring->tx_buffer_info[i];
3554                 dma_unmap_len_set(tx_buffer, len, size);
3555                 dma_unmap_addr_set(tx_buffer, dma, dma);
3556 
3557                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3558                 tx_desc->read.olinfo_status = 0;
3559 
3560                 frag++;
3561         }
3562 
3563         /* write last descriptor with RS and EOP bits */
3564         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3565         tx_desc->read.cmd_type_len = cmd_type;
3566 
3567         /* set the timestamp */
3568         first->time_stamp = jiffies;
3569 
3570         /* Force memory writes to complete before letting h/w know there
3571          * are new descriptors to fetch.  (Only applicable for weak-ordered
3572          * memory model archs, such as IA-64).
3573          *
3574          * We also need this memory barrier (wmb) to make certain all of the
3575          * status bits have been updated before next_to_watch is written.
3576          */
3577         wmb();
3578 
3579         /* set next_to_watch value indicating a packet is present */
3580         first->next_to_watch = tx_desc;
3581 
3582         i++;
3583         if (i == tx_ring->count)
3584                 i = 0;
3585 
3586         tx_ring->next_to_use = i;
3587 
3588         /* notify HW of packet */
3589         ixgbevf_write_tail(tx_ring, i);
3590 
3591         return;
3592 dma_error:
3593         dev_err(tx_ring->dev, "TX DMA map failed\n");
3594 
3595         /* clear dma mappings for failed tx_buffer_info map */
3596         for (;;) {
3597                 tx_buffer = &tx_ring->tx_buffer_info[i];
3598                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3599                 if (tx_buffer == first)
3600                         break;
3601                 if (i == 0)
3602                         i = tx_ring->count;
3603                 i--;
3604         }
3605 
3606         tx_ring->next_to_use = i;
3607 }
3608 
3609 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3610 {
3611         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3612         /* Herbert's original patch had:
3613          *  smp_mb__after_netif_stop_queue();
3614          * but since that doesn't exist yet, just open code it.
3615          */
3616         smp_mb();
3617 
3618         /* We need to check again in a case another CPU has just
3619          * made room available.
3620          */
3621         if (likely(ixgbevf_desc_unused(tx_ring) < size))
3622                 return -EBUSY;
3623 
3624         /* A reprieve! - use start_queue because it doesn't call schedule */
3625         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3626         ++tx_ring->tx_stats.restart_queue;
3627 
3628         return 0;
3629 }
3630 
3631 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3632 {
3633         if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3634                 return 0;
3635         return __ixgbevf_maybe_stop_tx(tx_ring, size);
3636 }
3637 
3638 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3639 {
3640         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3641         struct ixgbevf_tx_buffer *first;
3642         struct ixgbevf_ring *tx_ring;
3643         int tso;
3644         u32 tx_flags = 0;
3645         u16 count = TXD_USE_COUNT(skb_headlen(skb));
3646 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3647         unsigned short f;
3648 #endif
3649         u8 hdr_len = 0;
3650         u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3651 
3652         if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3653                 dev_kfree_skb_any(skb);
3654                 return NETDEV_TX_OK;
3655         }
3656 
3657         tx_ring = adapter->tx_ring[skb->queue_mapping];
3658 
3659         /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3660          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3661          *       + 2 desc gap to keep tail from touching head,
3662          *       + 1 desc for context descriptor,
3663          * otherwise try next time
3664          */
3665 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3666         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3667                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3668 #else
3669         count += skb_shinfo(skb)->nr_frags;
3670 #endif
3671         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3672                 tx_ring->tx_stats.tx_busy++;
3673                 return NETDEV_TX_BUSY;
3674         }
3675 
3676         /* record the location of the first descriptor for this packet */
3677         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3678         first->skb = skb;
3679         first->bytecount = skb->len;
3680         first->gso_segs = 1;
3681 
3682         if (skb_vlan_tag_present(skb)) {
3683                 tx_flags |= skb_vlan_tag_get(skb);
3684                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3685                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3686         }
3687 
3688         /* record initial flags and protocol */
3689         first->tx_flags = tx_flags;
3690         first->protocol = vlan_get_protocol(skb);
3691 
3692         tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3693         if (tso < 0)
3694                 goto out_drop;
3695         else if (!tso)
3696                 ixgbevf_tx_csum(tx_ring, first);
3697 
3698         ixgbevf_tx_map(tx_ring, first, hdr_len);
3699 
3700         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3701 
3702         return NETDEV_TX_OK;
3703 
3704 out_drop:
3705         dev_kfree_skb_any(first->skb);
3706         first->skb = NULL;
3707 
3708         return NETDEV_TX_OK;
3709 }
3710 
3711 /**
3712  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3713  * @netdev: network interface device structure
3714  * @p: pointer to an address structure
3715  *
3716  * Returns 0 on success, negative on failure
3717  **/
3718 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3719 {
3720         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3721         struct ixgbe_hw *hw = &adapter->hw;
3722         struct sockaddr *addr = p;
3723         int err;
3724 
3725         if (!is_valid_ether_addr(addr->sa_data))
3726                 return -EADDRNOTAVAIL;
3727 
3728         spin_lock_bh(&adapter->mbx_lock);
3729 
3730         err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3731 
3732         spin_unlock_bh(&adapter->mbx_lock);
3733 
3734         if (err)
3735                 return -EPERM;
3736 
3737         ether_addr_copy(hw->mac.addr, addr->sa_data);
3738         ether_addr_copy(netdev->dev_addr, addr->sa_data);
3739 
3740         return 0;
3741 }
3742 
3743 /**
3744  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3745  * @netdev: network interface device structure
3746  * @new_mtu: new value for maximum frame size
3747  *
3748  * Returns 0 on success, negative on failure
3749  **/
3750 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3751 {
3752         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3753         struct ixgbe_hw *hw = &adapter->hw;
3754         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3755         int ret;
3756 
3757         spin_lock_bh(&adapter->mbx_lock);
3758         /* notify the PF of our intent to use this size of frame */
3759         ret = hw->mac.ops.set_rlpml(hw, max_frame);
3760         spin_unlock_bh(&adapter->mbx_lock);
3761         if (ret)
3762                 return -EINVAL;
3763 
3764         hw_dbg(hw, "changing MTU from %d to %d\n",
3765                netdev->mtu, new_mtu);
3766 
3767         /* must set new MTU before calling down or up */
3768         netdev->mtu = new_mtu;
3769 
3770         return 0;
3771 }
3772 
3773 #ifdef CONFIG_NET_POLL_CONTROLLER
3774 /* Polling 'interrupt' - used by things like netconsole to send skbs
3775  * without having to re-enable interrupts. It's not called while
3776  * the interrupt routine is executing.
3777  */
3778 static void ixgbevf_netpoll(struct net_device *netdev)
3779 {
3780         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3781         int i;
3782 
3783         /* if interface is down do nothing */
3784         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3785                 return;
3786         for (i = 0; i < adapter->num_rx_queues; i++)
3787                 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3788 }
3789 #endif /* CONFIG_NET_POLL_CONTROLLER */
3790 
3791 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3792 {
3793         struct net_device *netdev = pci_get_drvdata(pdev);
3794         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3795 #ifdef CONFIG_PM
3796         int retval = 0;
3797 #endif
3798 
3799         netif_device_detach(netdev);
3800 
3801         if (netif_running(netdev)) {
3802                 rtnl_lock();
3803                 ixgbevf_down(adapter);
3804                 ixgbevf_free_irq(adapter);
3805                 ixgbevf_free_all_tx_resources(adapter);
3806                 ixgbevf_free_all_rx_resources(adapter);
3807                 ixgbevf_clear_interrupt_scheme(adapter);
3808                 rtnl_unlock();
3809         }
3810 
3811 #ifdef CONFIG_PM
3812         retval = pci_save_state(pdev);
3813         if (retval)
3814                 return retval;
3815 
3816 #endif
3817         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3818                 pci_disable_device(pdev);
3819 
3820         return 0;
3821 }
3822 
3823 #ifdef CONFIG_PM
3824 static int ixgbevf_resume(struct pci_dev *pdev)
3825 {
3826         struct net_device *netdev = pci_get_drvdata(pdev);
3827         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3828         u32 err;
3829 
3830         pci_restore_state(pdev);
3831         /* pci_restore_state clears dev->state_saved so call
3832          * pci_save_state to restore it.
3833          */
3834         pci_save_state(pdev);
3835 
3836         err = pci_enable_device_mem(pdev);
3837         if (err) {
3838                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3839                 return err;
3840         }
3841         smp_mb__before_atomic();
3842         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3843         pci_set_master(pdev);
3844 
3845         ixgbevf_reset(adapter);
3846 
3847         rtnl_lock();
3848         err = ixgbevf_init_interrupt_scheme(adapter);
3849         rtnl_unlock();
3850         if (err) {
3851                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3852                 return err;
3853         }
3854 
3855         if (netif_running(netdev)) {
3856                 err = ixgbevf_open(netdev);
3857                 if (err)
3858                         return err;
3859         }
3860 
3861         netif_device_attach(netdev);
3862 
3863         return err;
3864 }
3865 
3866 #endif /* CONFIG_PM */
3867 static void ixgbevf_shutdown(struct pci_dev *pdev)
3868 {
3869         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3870 }
3871 
3872 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3873                                                 struct rtnl_link_stats64 *stats)
3874 {
3875         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3876         unsigned int start;
3877         u64 bytes, packets;
3878         const struct ixgbevf_ring *ring;
3879         int i;
3880 
3881         ixgbevf_update_stats(adapter);
3882 
3883         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3884 
3885         for (i = 0; i < adapter->num_rx_queues; i++) {
3886                 ring = adapter->rx_ring[i];
3887                 do {
3888                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3889                         bytes = ring->stats.bytes;
3890                         packets = ring->stats.packets;
3891                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3892                 stats->rx_bytes += bytes;
3893                 stats->rx_packets += packets;
3894         }
3895 
3896         for (i = 0; i < adapter->num_tx_queues; i++) {
3897                 ring = adapter->tx_ring[i];
3898                 do {
3899                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3900                         bytes = ring->stats.bytes;
3901                         packets = ring->stats.packets;
3902                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3903                 stats->tx_bytes += bytes;
3904                 stats->tx_packets += packets;
3905         }
3906 
3907         return stats;
3908 }
3909 
3910 #define IXGBEVF_MAX_MAC_HDR_LEN         127
3911 #define IXGBEVF_MAX_NETWORK_HDR_LEN     511
3912 
3913 static netdev_features_t
3914 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3915                        netdev_features_t features)
3916 {
3917         unsigned int network_hdr_len, mac_hdr_len;
3918 
3919         /* Make certain the headers can be described by a context descriptor */
3920         mac_hdr_len = skb_network_header(skb) - skb->data;
3921         if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3922                 return features & ~(NETIF_F_HW_CSUM |
3923                                     NETIF_F_SCTP_CRC |
3924                                     NETIF_F_HW_VLAN_CTAG_TX |
3925                                     NETIF_F_TSO |
3926                                     NETIF_F_TSO6);
3927 
3928         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3929         if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
3930                 return features & ~(NETIF_F_HW_CSUM |
3931                                     NETIF_F_SCTP_CRC |
3932                                     NETIF_F_TSO |
3933                                     NETIF_F_TSO6);
3934 
3935         /* We can only support IPV4 TSO in tunnels if we can mangle the
3936          * inner IP ID field, so strip TSO if MANGLEID is not supported.
3937          */
3938         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3939                 features &= ~NETIF_F_TSO;
3940 
3941         return features;
3942 }
3943 
3944 static const struct net_device_ops ixgbevf_netdev_ops = {
3945         .ndo_open               = ixgbevf_open,
3946         .ndo_stop               = ixgbevf_close,
3947         .ndo_start_xmit         = ixgbevf_xmit_frame,
3948         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3949         .ndo_get_stats64        = ixgbevf_get_stats,
3950         .ndo_validate_addr      = eth_validate_addr,
3951         .ndo_set_mac_address    = ixgbevf_set_mac,
3952         .ndo_change_mtu         = ixgbevf_change_mtu,
3953         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3954         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3955         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3956 #ifdef CONFIG_NET_RX_BUSY_POLL
3957         .ndo_busy_poll          = ixgbevf_busy_poll_recv,
3958 #endif
3959 #ifdef CONFIG_NET_POLL_CONTROLLER
3960         .ndo_poll_controller    = ixgbevf_netpoll,
3961 #endif
3962         .ndo_features_check     = ixgbevf_features_check,
3963 };
3964 
3965 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3966 {
3967         dev->netdev_ops = &ixgbevf_netdev_ops;
3968         ixgbevf_set_ethtool_ops(dev);
3969         dev->watchdog_timeo = 5 * HZ;
3970 }
3971 
3972 /**
3973  * ixgbevf_probe - Device Initialization Routine
3974  * @pdev: PCI device information struct
3975  * @ent: entry in ixgbevf_pci_tbl
3976  *
3977  * Returns 0 on success, negative on failure
3978  *
3979  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3980  * The OS initialization, configuring of the adapter private structure,
3981  * and a hardware reset occur.
3982  **/
3983 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3984 {
3985         struct net_device *netdev;
3986         struct ixgbevf_adapter *adapter = NULL;
3987         struct ixgbe_hw *hw = NULL;
3988         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3989         int err, pci_using_dac;
3990         bool disable_dev = false;
3991 
3992         err = pci_enable_device(pdev);
3993         if (err)
3994                 return err;
3995 
3996         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3997                 pci_using_dac = 1;
3998         } else {
3999                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4000                 if (err) {
4001                         dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4002                         goto err_dma;
4003                 }
4004                 pci_using_dac = 0;
4005         }
4006 
4007         err = pci_request_regions(pdev, ixgbevf_driver_name);
4008         if (err) {
4009                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4010                 goto err_pci_reg;
4011         }
4012 
4013         pci_set_master(pdev);
4014 
4015         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4016                                    MAX_TX_QUEUES);
4017         if (!netdev) {
4018                 err = -ENOMEM;
4019                 goto err_alloc_etherdev;
4020         }
4021 
4022         SET_NETDEV_DEV(netdev, &pdev->dev);
4023 
4024         adapter = netdev_priv(netdev);
4025 
4026         adapter->netdev = netdev;
4027         adapter->pdev = pdev;
4028         hw = &adapter->hw;
4029         hw->back = adapter;
4030         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4031 
4032         /* call save state here in standalone driver because it relies on
4033          * adapter struct to exist, and needs to call netdev_priv
4034          */
4035         pci_save_state(pdev);
4036 
4037         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4038                               pci_resource_len(pdev, 0));
4039         adapter->io_addr = hw->hw_addr;
4040         if (!hw->hw_addr) {
4041                 err = -EIO;
4042                 goto err_ioremap;
4043         }
4044 
4045         ixgbevf_assign_netdev_ops(netdev);
4046 
4047         /* Setup HW API */
4048         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4049         hw->mac.type  = ii->mac;
4050 
4051         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4052                sizeof(struct ixgbe_mbx_operations));
4053 
4054         /* setup the private structure */
4055         err = ixgbevf_sw_init(adapter);
4056         if (err)
4057                 goto err_sw_init;
4058 
4059         /* The HW MAC address was set and/or determined in sw_init */
4060         if (!is_valid_ether_addr(netdev->dev_addr)) {
4061                 pr_err("invalid MAC address\n");
4062                 err = -EIO;
4063                 goto err_sw_init;
4064         }
4065 
4066         netdev->hw_features = NETIF_F_SG |
4067                               NETIF_F_TSO |
4068                               NETIF_F_TSO6 |
4069                               NETIF_F_RXCSUM |
4070                               NETIF_F_HW_CSUM |
4071                               NETIF_F_SCTP_CRC;
4072 
4073 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4074                                       NETIF_F_GSO_GRE_CSUM | \
4075                                       NETIF_F_GSO_IPXIP4 | \
4076                                       NETIF_F_GSO_IPXIP6 | \
4077                                       NETIF_F_GSO_UDP_TUNNEL | \
4078                                       NETIF_F_GSO_UDP_TUNNEL_CSUM)
4079 
4080         netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4081         netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4082                                IXGBEVF_GSO_PARTIAL_FEATURES;
4083 
4084         netdev->features = netdev->hw_features;
4085 
4086         if (pci_using_dac)
4087                 netdev->features |= NETIF_F_HIGHDMA;
4088 
4089         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4090         netdev->mpls_features |= NETIF_F_HW_CSUM;
4091         netdev->hw_enc_features |= netdev->vlan_features;
4092 
4093         /* set this bit last since it cannot be part of vlan_features */
4094         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4095                             NETIF_F_HW_VLAN_CTAG_RX |
4096                             NETIF_F_HW_VLAN_CTAG_TX;
4097 
4098         netdev->priv_flags |= IFF_UNICAST_FLT;
4099 
4100         /* MTU range: 68 - 1504 or 9710 */
4101         netdev->min_mtu = ETH_MIN_MTU;
4102         switch (adapter->hw.api_version) {
4103         case ixgbe_mbox_api_11:
4104         case ixgbe_mbox_api_12:
4105                 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4106                                   (ETH_HLEN + ETH_FCS_LEN);
4107                 break;
4108         default:
4109                 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4110                         netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4111                                           (ETH_HLEN + ETH_FCS_LEN);
4112                 else
4113                         netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4114                 break;
4115         }
4116 
4117         if (IXGBE_REMOVED(hw->hw_addr)) {
4118                 err = -EIO;
4119                 goto err_sw_init;
4120         }
4121 
4122         setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4123                     (unsigned long)adapter);
4124 
4125         INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4126         set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4127         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4128 
4129         err = ixgbevf_init_interrupt_scheme(adapter);
4130         if (err)
4131                 goto err_sw_init;
4132 
4133         strcpy(netdev->name, "eth%d");
4134 
4135         err = register_netdev(netdev);
4136         if (err)
4137                 goto err_register;
4138 
4139         pci_set_drvdata(pdev, netdev);
4140         netif_carrier_off(netdev);
4141 
4142         ixgbevf_init_last_counter_stats(adapter);
4143 
4144         /* print the VF info */
4145         dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4146         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4147 
4148         switch (hw->mac.type) {
4149         case ixgbe_mac_X550_vf:
4150                 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4151                 break;
4152         case ixgbe_mac_X540_vf:
4153                 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4154                 break;
4155         case ixgbe_mac_82599_vf:
4156         default:
4157                 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4158                 break;
4159         }
4160 
4161         return 0;
4162 
4163 err_register:
4164         ixgbevf_clear_interrupt_scheme(adapter);
4165 err_sw_init:
4166         ixgbevf_reset_interrupt_capability(adapter);
4167         iounmap(adapter->io_addr);
4168 err_ioremap:
4169         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4170         free_netdev(netdev);
4171 err_alloc_etherdev:
4172         pci_release_regions(pdev);
4173 err_pci_reg:
4174 err_dma:
4175         if (!adapter || disable_dev)
4176                 pci_disable_device(pdev);
4177         return err;
4178 }
4179 
4180 /**
4181  * ixgbevf_remove - Device Removal Routine
4182  * @pdev: PCI device information struct
4183  *
4184  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4185  * that it should release a PCI device.  The could be caused by a
4186  * Hot-Plug event, or because the driver is going to be removed from
4187  * memory.
4188  **/
4189 static void ixgbevf_remove(struct pci_dev *pdev)
4190 {
4191         struct net_device *netdev = pci_get_drvdata(pdev);
4192         struct ixgbevf_adapter *adapter;
4193         bool disable_dev;
4194 
4195         if (!netdev)
4196                 return;
4197 
4198         adapter = netdev_priv(netdev);
4199 
4200         set_bit(__IXGBEVF_REMOVING, &adapter->state);
4201         cancel_work_sync(&adapter->service_task);
4202 
4203         if (netdev->reg_state == NETREG_REGISTERED)
4204                 unregister_netdev(netdev);
4205 
4206         ixgbevf_clear_interrupt_scheme(adapter);
4207         ixgbevf_reset_interrupt_capability(adapter);
4208 
4209         iounmap(adapter->io_addr);
4210         pci_release_regions(pdev);
4211 
4212         hw_dbg(&adapter->hw, "Remove complete\n");
4213 
4214         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4215         free_netdev(netdev);
4216 
4217         if (disable_dev)
4218                 pci_disable_device(pdev);
4219 }
4220 
4221 /**
4222  * ixgbevf_io_error_detected - called when PCI error is detected
4223  * @pdev: Pointer to PCI device
4224  * @state: The current pci connection state
4225  *
4226  * This function is called after a PCI bus error affecting
4227  * this device has been detected.
4228  **/
4229 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4230                                                   pci_channel_state_t state)
4231 {
4232         struct net_device *netdev = pci_get_drvdata(pdev);
4233         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4234 
4235         if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4236                 return PCI_ERS_RESULT_DISCONNECT;
4237 
4238         rtnl_lock();
4239         netif_device_detach(netdev);
4240 
4241         if (state == pci_channel_io_perm_failure) {
4242                 rtnl_unlock();
4243                 return PCI_ERS_RESULT_DISCONNECT;
4244         }
4245 
4246         if (netif_running(netdev))
4247                 ixgbevf_down(adapter);
4248 
4249         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4250                 pci_disable_device(pdev);
4251         rtnl_unlock();
4252 
4253         /* Request a slot slot reset. */
4254         return PCI_ERS_RESULT_NEED_RESET;
4255 }
4256 
4257 /**
4258  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4259  * @pdev: Pointer to PCI device
4260  *
4261  * Restart the card from scratch, as if from a cold-boot. Implementation
4262  * resembles the first-half of the ixgbevf_resume routine.
4263  **/
4264 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4265 {
4266         struct net_device *netdev = pci_get_drvdata(pdev);
4267         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4268 
4269         if (pci_enable_device_mem(pdev)) {
4270                 dev_err(&pdev->dev,
4271                         "Cannot re-enable PCI device after reset.\n");
4272                 return PCI_ERS_RESULT_DISCONNECT;
4273         }
4274 
4275         smp_mb__before_atomic();
4276         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4277         pci_set_master(pdev);
4278 
4279         ixgbevf_reset(adapter);
4280 
4281         return PCI_ERS_RESULT_RECOVERED;
4282 }
4283 
4284 /**
4285  * ixgbevf_io_resume - called when traffic can start flowing again.
4286  * @pdev: Pointer to PCI device
4287  *
4288  * This callback is called when the error recovery driver tells us that
4289  * its OK to resume normal operation. Implementation resembles the
4290  * second-half of the ixgbevf_resume routine.
4291  **/
4292 static void ixgbevf_io_resume(struct pci_dev *pdev)
4293 {
4294         struct net_device *netdev = pci_get_drvdata(pdev);
4295         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4296 
4297         if (netif_running(netdev))
4298                 ixgbevf_up(adapter);
4299 
4300         netif_device_attach(netdev);
4301 }
4302 
4303 /* PCI Error Recovery (ERS) */
4304 static const struct pci_error_handlers ixgbevf_err_handler = {
4305         .error_detected = ixgbevf_io_error_detected,
4306         .slot_reset = ixgbevf_io_slot_reset,
4307         .resume = ixgbevf_io_resume,
4308 };
4309 
4310 static struct pci_driver ixgbevf_driver = {
4311         .name           = ixgbevf_driver_name,
4312         .id_table       = ixgbevf_pci_tbl,
4313         .probe          = ixgbevf_probe,
4314         .remove         = ixgbevf_remove,
4315 #ifdef CONFIG_PM
4316         /* Power Management Hooks */
4317         .suspend        = ixgbevf_suspend,
4318         .resume         = ixgbevf_resume,
4319 #endif
4320         .shutdown       = ixgbevf_shutdown,
4321         .err_handler    = &ixgbevf_err_handler
4322 };
4323 
4324 /**
4325  * ixgbevf_init_module - Driver Registration Routine
4326  *
4327  * ixgbevf_init_module is the first routine called when the driver is
4328  * loaded. All it does is register with the PCI subsystem.
4329  **/
4330 static int __init ixgbevf_init_module(void)
4331 {
4332         pr_info("%s - version %s\n", ixgbevf_driver_string,
4333                 ixgbevf_driver_version);
4334 
4335         pr_info("%s\n", ixgbevf_copyright);
4336         ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4337         if (!ixgbevf_wq) {
4338                 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4339                 return -ENOMEM;
4340         }
4341 
4342         return pci_register_driver(&ixgbevf_driver);
4343 }
4344 
4345 module_init(ixgbevf_init_module);
4346 
4347 /**
4348  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4349  *
4350  * ixgbevf_exit_module is called just before the driver is removed
4351  * from memory.
4352  **/
4353 static void __exit ixgbevf_exit_module(void)
4354 {
4355         pci_unregister_driver(&ixgbevf_driver);
4356         if (ixgbevf_wq) {
4357                 destroy_workqueue(ixgbevf_wq);
4358                 ixgbevf_wq = NULL;
4359         }
4360 }
4361 
4362 #ifdef DEBUG
4363 /**
4364  * ixgbevf_get_hw_dev_name - return device name string
4365  * used by hardware layer to print debugging information
4366  **/
4367 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4368 {
4369         struct ixgbevf_adapter *adapter = hw->back;
4370 
4371         return adapter->netdev->name;
4372 }
4373 
4374 #endif
4375 module_exit(ixgbevf_exit_module);
4376 
4377 /* ixgbevf_main.c */
4378 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us