Version:  2.0.40 2.2.26 2.4.37 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0

Linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c

  1 /*******************************************************************************
  2 
  3   Intel 82599 Virtual Function driver
  4   Copyright(c) 1999 - 2014 Intel Corporation.
  5 
  6   This program is free software; you can redistribute it and/or modify it
  7   under the terms and conditions of the GNU General Public License,
  8   version 2, as published by the Free Software Foundation.
  9 
 10   This program is distributed in the hope it will be useful, but WITHOUT
 11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13   more details.
 14 
 15   You should have received a copy of the GNU General Public License along with
 16   this program; if not, write to the Free Software Foundation, Inc.,
 17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 18 
 19   The full GNU General Public License is included in this distribution in
 20   the file called "COPYING".
 21 
 22   Contact Information:
 23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 25 
 26 *******************************************************************************/
 27 
 28 
 29 /******************************************************************************
 30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
 31 ******************************************************************************/
 32 
 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 34 
 35 #include <linux/types.h>
 36 #include <linux/bitops.h>
 37 #include <linux/module.h>
 38 #include <linux/pci.h>
 39 #include <linux/netdevice.h>
 40 #include <linux/vmalloc.h>
 41 #include <linux/string.h>
 42 #include <linux/in.h>
 43 #include <linux/ip.h>
 44 #include <linux/tcp.h>
 45 #include <linux/sctp.h>
 46 #include <linux/ipv6.h>
 47 #include <linux/slab.h>
 48 #include <net/checksum.h>
 49 #include <net/ip6_checksum.h>
 50 #include <linux/ethtool.h>
 51 #include <linux/if.h>
 52 #include <linux/if_vlan.h>
 53 #include <linux/prefetch.h>
 54 
 55 #include "ixgbevf.h"
 56 
 57 const char ixgbevf_driver_name[] = "ixgbevf";
 58 static const char ixgbevf_driver_string[] =
 59         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
 60 
 61 #define DRV_VERSION "2.12.1-k"
 62 const char ixgbevf_driver_version[] = DRV_VERSION;
 63 static char ixgbevf_copyright[] =
 64         "Copyright (c) 2009 - 2012 Intel Corporation.";
 65 
 66 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
 67         [board_82599_vf] = &ixgbevf_82599_vf_info,
 68         [board_X540_vf]  = &ixgbevf_X540_vf_info,
 69         [board_X550_vf]  = &ixgbevf_X550_vf_info,
 70         [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
 71 };
 72 
 73 /* ixgbevf_pci_tbl - PCI Device ID Table
 74  *
 75  * Wildcard entries (PCI_ANY_ID) should come last
 76  * Last entry must be all 0s
 77  *
 78  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
 79  *   Class, Class Mask, private data (not used) }
 80  */
 81 static const struct pci_device_id ixgbevf_pci_tbl[] = {
 82         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
 83         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
 84         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
 85         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
 86         /* required last entry */
 87         {0, }
 88 };
 89 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
 90 
 91 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 92 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
 93 MODULE_LICENSE("GPL");
 94 MODULE_VERSION(DRV_VERSION);
 95 
 96 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 97 static int debug = -1;
 98 module_param(debug, int, 0);
 99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
100 
101 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
102 {
103         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
104             !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
105             !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
106                 schedule_work(&adapter->service_task);
107 }
108 
109 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
110 {
111         BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
112 
113         /* flush memory to make sure state is correct before next watchdog */
114         smp_mb__before_atomic();
115         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
116 }
117 
118 /* forward decls */
119 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
120 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
121 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
122 
123 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
124 {
125         struct ixgbevf_adapter *adapter = hw->back;
126 
127         if (!hw->hw_addr)
128                 return;
129         hw->hw_addr = NULL;
130         dev_err(&adapter->pdev->dev, "Adapter removed\n");
131         if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
132                 ixgbevf_service_event_schedule(adapter);
133 }
134 
135 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
136 {
137         u32 value;
138 
139         /* The following check not only optimizes a bit by not
140          * performing a read on the status register when the
141          * register just read was a status register read that
142          * returned IXGBE_FAILED_READ_REG. It also blocks any
143          * potential recursion.
144          */
145         if (reg == IXGBE_VFSTATUS) {
146                 ixgbevf_remove_adapter(hw);
147                 return;
148         }
149         value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
150         if (value == IXGBE_FAILED_READ_REG)
151                 ixgbevf_remove_adapter(hw);
152 }
153 
154 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
155 {
156         u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
157         u32 value;
158 
159         if (IXGBE_REMOVED(reg_addr))
160                 return IXGBE_FAILED_READ_REG;
161         value = readl(reg_addr + reg);
162         if (unlikely(value == IXGBE_FAILED_READ_REG))
163                 ixgbevf_check_remove(hw, reg);
164         return value;
165 }
166 
167 /**
168  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
169  * @adapter: pointer to adapter struct
170  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
171  * @queue: queue to map the corresponding interrupt to
172  * @msix_vector: the vector to map to the corresponding queue
173  */
174 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
175                              u8 queue, u8 msix_vector)
176 {
177         u32 ivar, index;
178         struct ixgbe_hw *hw = &adapter->hw;
179         if (direction == -1) {
180                 /* other causes */
181                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
182                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
183                 ivar &= ~0xFF;
184                 ivar |= msix_vector;
185                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
186         } else {
187                 /* tx or rx causes */
188                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
189                 index = ((16 * (queue & 1)) + (8 * direction));
190                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
191                 ivar &= ~(0xFF << index);
192                 ivar |= (msix_vector << index);
193                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
194         }
195 }
196 
197 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
198                                         struct ixgbevf_tx_buffer *tx_buffer)
199 {
200         if (tx_buffer->skb) {
201                 dev_kfree_skb_any(tx_buffer->skb);
202                 if (dma_unmap_len(tx_buffer, len))
203                         dma_unmap_single(tx_ring->dev,
204                                          dma_unmap_addr(tx_buffer, dma),
205                                          dma_unmap_len(tx_buffer, len),
206                                          DMA_TO_DEVICE);
207         } else if (dma_unmap_len(tx_buffer, len)) {
208                 dma_unmap_page(tx_ring->dev,
209                                dma_unmap_addr(tx_buffer, dma),
210                                dma_unmap_len(tx_buffer, len),
211                                DMA_TO_DEVICE);
212         }
213         tx_buffer->next_to_watch = NULL;
214         tx_buffer->skb = NULL;
215         dma_unmap_len_set(tx_buffer, len, 0);
216         /* tx_buffer must be completely set up in the transmit path */
217 }
218 
219 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
220 {
221         return ring->stats.packets;
222 }
223 
224 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
225 {
226         struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
227         struct ixgbe_hw *hw = &adapter->hw;
228 
229         u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
230         u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
231 
232         if (head != tail)
233                 return (head < tail) ?
234                         tail - head : (tail + ring->count - head);
235 
236         return 0;
237 }
238 
239 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
240 {
241         u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
242         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
243         u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
244 
245         clear_check_for_tx_hang(tx_ring);
246 
247         /* Check for a hung queue, but be thorough. This verifies
248          * that a transmit has been completed since the previous
249          * check AND there is at least one packet pending. The
250          * ARMED bit is set to indicate a potential hang.
251          */
252         if ((tx_done_old == tx_done) && tx_pending) {
253                 /* make sure it is true for two checks in a row */
254                 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
255                                         &tx_ring->state);
256         }
257         /* reset the countdown */
258         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
259 
260         /* update completed stats and continue */
261         tx_ring->tx_stats.tx_done_old = tx_done;
262 
263         return false;
264 }
265 
266 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
267 {
268         /* Do the reset outside of interrupt context */
269         if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
270                 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
271                 ixgbevf_service_event_schedule(adapter);
272         }
273 }
274 
275 /**
276  * ixgbevf_tx_timeout - Respond to a Tx Hang
277  * @netdev: network interface device structure
278  **/
279 static void ixgbevf_tx_timeout(struct net_device *netdev)
280 {
281         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
282 
283         ixgbevf_tx_timeout_reset(adapter);
284 }
285 
286 /**
287  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
288  * @q_vector: board private structure
289  * @tx_ring: tx ring to clean
290  **/
291 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
292                                  struct ixgbevf_ring *tx_ring)
293 {
294         struct ixgbevf_adapter *adapter = q_vector->adapter;
295         struct ixgbevf_tx_buffer *tx_buffer;
296         union ixgbe_adv_tx_desc *tx_desc;
297         unsigned int total_bytes = 0, total_packets = 0;
298         unsigned int budget = tx_ring->count / 2;
299         unsigned int i = tx_ring->next_to_clean;
300 
301         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
302                 return true;
303 
304         tx_buffer = &tx_ring->tx_buffer_info[i];
305         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
306         i -= tx_ring->count;
307 
308         do {
309                 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
310 
311                 /* if next_to_watch is not set then there is no work pending */
312                 if (!eop_desc)
313                         break;
314 
315                 /* prevent any other reads prior to eop_desc */
316                 read_barrier_depends();
317 
318                 /* if DD is not set pending work has not been completed */
319                 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
320                         break;
321 
322                 /* clear next_to_watch to prevent false hangs */
323                 tx_buffer->next_to_watch = NULL;
324 
325                 /* update the statistics for this packet */
326                 total_bytes += tx_buffer->bytecount;
327                 total_packets += tx_buffer->gso_segs;
328 
329                 /* free the skb */
330                 dev_kfree_skb_any(tx_buffer->skb);
331 
332                 /* unmap skb header data */
333                 dma_unmap_single(tx_ring->dev,
334                                  dma_unmap_addr(tx_buffer, dma),
335                                  dma_unmap_len(tx_buffer, len),
336                                  DMA_TO_DEVICE);
337 
338                 /* clear tx_buffer data */
339                 tx_buffer->skb = NULL;
340                 dma_unmap_len_set(tx_buffer, len, 0);
341 
342                 /* unmap remaining buffers */
343                 while (tx_desc != eop_desc) {
344                         tx_buffer++;
345                         tx_desc++;
346                         i++;
347                         if (unlikely(!i)) {
348                                 i -= tx_ring->count;
349                                 tx_buffer = tx_ring->tx_buffer_info;
350                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
351                         }
352 
353                         /* unmap any remaining paged data */
354                         if (dma_unmap_len(tx_buffer, len)) {
355                                 dma_unmap_page(tx_ring->dev,
356                                                dma_unmap_addr(tx_buffer, dma),
357                                                dma_unmap_len(tx_buffer, len),
358                                                DMA_TO_DEVICE);
359                                 dma_unmap_len_set(tx_buffer, len, 0);
360                         }
361                 }
362 
363                 /* move us one more past the eop_desc for start of next pkt */
364                 tx_buffer++;
365                 tx_desc++;
366                 i++;
367                 if (unlikely(!i)) {
368                         i -= tx_ring->count;
369                         tx_buffer = tx_ring->tx_buffer_info;
370                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
371                 }
372 
373                 /* issue prefetch for next Tx descriptor */
374                 prefetch(tx_desc);
375 
376                 /* update budget accounting */
377                 budget--;
378         } while (likely(budget));
379 
380         i += tx_ring->count;
381         tx_ring->next_to_clean = i;
382         u64_stats_update_begin(&tx_ring->syncp);
383         tx_ring->stats.bytes += total_bytes;
384         tx_ring->stats.packets += total_packets;
385         u64_stats_update_end(&tx_ring->syncp);
386         q_vector->tx.total_bytes += total_bytes;
387         q_vector->tx.total_packets += total_packets;
388 
389         if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
390                 struct ixgbe_hw *hw = &adapter->hw;
391                 union ixgbe_adv_tx_desc *eop_desc;
392 
393                 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
394 
395                 pr_err("Detected Tx Unit Hang\n"
396                        "  Tx Queue             <%d>\n"
397                        "  TDH, TDT             <%x>, <%x>\n"
398                        "  next_to_use          <%x>\n"
399                        "  next_to_clean        <%x>\n"
400                        "tx_buffer_info[next_to_clean]\n"
401                        "  next_to_watch        <%p>\n"
402                        "  eop_desc->wb.status  <%x>\n"
403                        "  time_stamp           <%lx>\n"
404                        "  jiffies              <%lx>\n",
405                        tx_ring->queue_index,
406                        IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
407                        IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
408                        tx_ring->next_to_use, i,
409                        eop_desc, (eop_desc ? eop_desc->wb.status : 0),
410                        tx_ring->tx_buffer_info[i].time_stamp, jiffies);
411 
412                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
413 
414                 /* schedule immediate reset if we believe we hung */
415                 ixgbevf_tx_timeout_reset(adapter);
416 
417                 return true;
418         }
419 
420 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
421         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
422                      (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
423                 /* Make sure that anybody stopping the queue after this
424                  * sees the new next_to_clean.
425                  */
426                 smp_mb();
427 
428                 if (__netif_subqueue_stopped(tx_ring->netdev,
429                                              tx_ring->queue_index) &&
430                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
431                         netif_wake_subqueue(tx_ring->netdev,
432                                             tx_ring->queue_index);
433                         ++tx_ring->tx_stats.restart_queue;
434                 }
435         }
436 
437         return !!budget;
438 }
439 
440 /**
441  * ixgbevf_rx_skb - Helper function to determine proper Rx method
442  * @q_vector: structure containing interrupt and ring information
443  * @skb: packet to send up
444  **/
445 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
446                            struct sk_buff *skb)
447 {
448 #ifdef CONFIG_NET_RX_BUSY_POLL
449         skb_mark_napi_id(skb, &q_vector->napi);
450 
451         if (ixgbevf_qv_busy_polling(q_vector)) {
452                 netif_receive_skb(skb);
453                 /* exit early if we busy polled */
454                 return;
455         }
456 #endif /* CONFIG_NET_RX_BUSY_POLL */
457 
458         napi_gro_receive(&q_vector->napi, skb);
459 }
460 
461 /* ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
462  * @ring: structure containig ring specific data
463  * @rx_desc: current Rx descriptor being processed
464  * @skb: skb currently being received and modified
465  */
466 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
467                                        union ixgbe_adv_rx_desc *rx_desc,
468                                        struct sk_buff *skb)
469 {
470         skb_checksum_none_assert(skb);
471 
472         /* Rx csum disabled */
473         if (!(ring->netdev->features & NETIF_F_RXCSUM))
474                 return;
475 
476         /* if IP and error */
477         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
478             ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
479                 ring->rx_stats.csum_err++;
480                 return;
481         }
482 
483         if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
484                 return;
485 
486         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
487                 ring->rx_stats.csum_err++;
488                 return;
489         }
490 
491         /* It must be a TCP or UDP packet with a valid checksum */
492         skb->ip_summed = CHECKSUM_UNNECESSARY;
493 }
494 
495 /* ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
496  * @rx_ring: rx descriptor ring packet is being transacted on
497  * @rx_desc: pointer to the EOP Rx descriptor
498  * @skb: pointer to current skb being populated
499  *
500  * This function checks the ring, descriptor, and packet information in
501  * order to populate the checksum, VLAN, protocol, and other fields within
502  * the skb.
503  */
504 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
505                                        union ixgbe_adv_rx_desc *rx_desc,
506                                        struct sk_buff *skb)
507 {
508         ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
509 
510         if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
511                 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
512                 unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
513 
514                 if (test_bit(vid & VLAN_VID_MASK, active_vlans))
515                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
516         }
517 
518         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
519 }
520 
521 /**
522  * ixgbevf_is_non_eop - process handling of non-EOP buffers
523  * @rx_ring: Rx ring being processed
524  * @rx_desc: Rx descriptor for current buffer
525  * @skb: current socket buffer containing buffer in progress
526  *
527  * This function updates next to clean.  If the buffer is an EOP buffer
528  * this function exits returning false, otherwise it will place the
529  * sk_buff in the next buffer to be chained and return true indicating
530  * that this is in fact a non-EOP buffer.
531  **/
532 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
533                                union ixgbe_adv_rx_desc *rx_desc)
534 {
535         u32 ntc = rx_ring->next_to_clean + 1;
536 
537         /* fetch, update, and store next to clean */
538         ntc = (ntc < rx_ring->count) ? ntc : 0;
539         rx_ring->next_to_clean = ntc;
540 
541         prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
542 
543         if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
544                 return false;
545 
546         return true;
547 }
548 
549 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
550                                       struct ixgbevf_rx_buffer *bi)
551 {
552         struct page *page = bi->page;
553         dma_addr_t dma = bi->dma;
554 
555         /* since we are recycling buffers we should seldom need to alloc */
556         if (likely(page))
557                 return true;
558 
559         /* alloc new page for storage */
560         page = dev_alloc_page();
561         if (unlikely(!page)) {
562                 rx_ring->rx_stats.alloc_rx_page_failed++;
563                 return false;
564         }
565 
566         /* map page for use */
567         dma = dma_map_page(rx_ring->dev, page, 0,
568                            PAGE_SIZE, DMA_FROM_DEVICE);
569 
570         /* if mapping failed free memory back to system since
571          * there isn't much point in holding memory we can't use
572          */
573         if (dma_mapping_error(rx_ring->dev, dma)) {
574                 __free_page(page);
575 
576                 rx_ring->rx_stats.alloc_rx_buff_failed++;
577                 return false;
578         }
579 
580         bi->dma = dma;
581         bi->page = page;
582         bi->page_offset = 0;
583 
584         return true;
585 }
586 
587 /**
588  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
589  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
590  * @cleaned_count: number of buffers to replace
591  **/
592 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
593                                      u16 cleaned_count)
594 {
595         union ixgbe_adv_rx_desc *rx_desc;
596         struct ixgbevf_rx_buffer *bi;
597         unsigned int i = rx_ring->next_to_use;
598 
599         /* nothing to do or no valid netdev defined */
600         if (!cleaned_count || !rx_ring->netdev)
601                 return;
602 
603         rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
604         bi = &rx_ring->rx_buffer_info[i];
605         i -= rx_ring->count;
606 
607         do {
608                 if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
609                         break;
610 
611                 /* Refresh the desc even if pkt_addr didn't change
612                  * because each write-back erases this info.
613                  */
614                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
615 
616                 rx_desc++;
617                 bi++;
618                 i++;
619                 if (unlikely(!i)) {
620                         rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
621                         bi = rx_ring->rx_buffer_info;
622                         i -= rx_ring->count;
623                 }
624 
625                 /* clear the hdr_addr for the next_to_use descriptor */
626                 rx_desc->read.hdr_addr = 0;
627 
628                 cleaned_count--;
629         } while (cleaned_count);
630 
631         i += rx_ring->count;
632 
633         if (rx_ring->next_to_use != i) {
634                 /* record the next descriptor to use */
635                 rx_ring->next_to_use = i;
636 
637                 /* update next to alloc since we have filled the ring */
638                 rx_ring->next_to_alloc = i;
639 
640                 /* Force memory writes to complete before letting h/w
641                  * know there are new descriptors to fetch.  (Only
642                  * applicable for weak-ordered memory model archs,
643                  * such as IA-64).
644                  */
645                 wmb();
646                 ixgbevf_write_tail(rx_ring, i);
647         }
648 }
649 
650 /* ixgbevf_pull_tail - ixgbevf specific version of skb_pull_tail
651  * @rx_ring: rx descriptor ring packet is being transacted on
652  * @skb: pointer to current skb being adjusted
653  *
654  * This function is an ixgbevf specific version of __pskb_pull_tail.  The
655  * main difference between this version and the original function is that
656  * this function can make several assumptions about the state of things
657  * that allow for significant optimizations versus the standard function.
658  * As a result we can do things like drop a frag and maintain an accurate
659  * truesize for the skb.
660  */
661 static void ixgbevf_pull_tail(struct ixgbevf_ring *rx_ring,
662                               struct sk_buff *skb)
663 {
664         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
665         unsigned char *va;
666         unsigned int pull_len;
667 
668         /* it is valid to use page_address instead of kmap since we are
669          * working with pages allocated out of the lomem pool per
670          * alloc_page(GFP_ATOMIC)
671          */
672         va = skb_frag_address(frag);
673 
674         /* we need the header to contain the greater of either ETH_HLEN or
675          * 60 bytes if the skb->len is less than 60 for skb_pad.
676          */
677         pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
678 
679         /* align pull length to size of long to optimize memcpy performance */
680         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
681 
682         /* update all of the pointers */
683         skb_frag_size_sub(frag, pull_len);
684         frag->page_offset += pull_len;
685         skb->data_len -= pull_len;
686         skb->tail += pull_len;
687 }
688 
689 /* ixgbevf_cleanup_headers - Correct corrupted or empty headers
690  * @rx_ring: rx descriptor ring packet is being transacted on
691  * @rx_desc: pointer to the EOP Rx descriptor
692  * @skb: pointer to current skb being fixed
693  *
694  * Check for corrupted packet headers caused by senders on the local L2
695  * embedded NIC switch not setting up their Tx Descriptors right.  These
696  * should be very rare.
697  *
698  * Also address the case where we are pulling data in on pages only
699  * and as such no data is present in the skb header.
700  *
701  * In addition if skb is not at least 60 bytes we need to pad it so that
702  * it is large enough to qualify as a valid Ethernet frame.
703  *
704  * Returns true if an error was encountered and skb was freed.
705  */
706 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
707                                     union ixgbe_adv_rx_desc *rx_desc,
708                                     struct sk_buff *skb)
709 {
710         /* verify that the packet does not have any known errors */
711         if (unlikely(ixgbevf_test_staterr(rx_desc,
712                                           IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
713                 struct net_device *netdev = rx_ring->netdev;
714 
715                 if (!(netdev->features & NETIF_F_RXALL)) {
716                         dev_kfree_skb_any(skb);
717                         return true;
718                 }
719         }
720 
721         /* place header in linear portion of buffer */
722         if (skb_is_nonlinear(skb))
723                 ixgbevf_pull_tail(rx_ring, skb);
724 
725         /* if eth_skb_pad returns an error the skb was freed */
726         if (eth_skb_pad(skb))
727                 return true;
728 
729         return false;
730 }
731 
732 /* ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
733  * @rx_ring: rx descriptor ring to store buffers on
734  * @old_buff: donor buffer to have page reused
735  *
736  * Synchronizes page for reuse by the adapter
737  */
738 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
739                                   struct ixgbevf_rx_buffer *old_buff)
740 {
741         struct ixgbevf_rx_buffer *new_buff;
742         u16 nta = rx_ring->next_to_alloc;
743 
744         new_buff = &rx_ring->rx_buffer_info[nta];
745 
746         /* update, and store next to alloc */
747         nta++;
748         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
749 
750         /* transfer page from old buffer to new buffer */
751         new_buff->page = old_buff->page;
752         new_buff->dma = old_buff->dma;
753         new_buff->page_offset = old_buff->page_offset;
754 
755         /* sync the buffer for use by the device */
756         dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
757                                          new_buff->page_offset,
758                                          IXGBEVF_RX_BUFSZ,
759                                          DMA_FROM_DEVICE);
760 }
761 
762 static inline bool ixgbevf_page_is_reserved(struct page *page)
763 {
764         return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
765 }
766 
767 /* ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
768  * @rx_ring: rx descriptor ring to transact packets on
769  * @rx_buffer: buffer containing page to add
770  * @rx_desc: descriptor containing length of buffer written by hardware
771  * @skb: sk_buff to place the data into
772  *
773  * This function will add the data contained in rx_buffer->page to the skb.
774  * This is done either through a direct copy if the data in the buffer is
775  * less than the skb header size, otherwise it will just attach the page as
776  * a frag to the skb.
777  *
778  * The function will then update the page offset if necessary and return
779  * true if the buffer can be reused by the adapter.
780  */
781 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
782                                 struct ixgbevf_rx_buffer *rx_buffer,
783                                 union ixgbe_adv_rx_desc *rx_desc,
784                                 struct sk_buff *skb)
785 {
786         struct page *page = rx_buffer->page;
787         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
788 #if (PAGE_SIZE < 8192)
789         unsigned int truesize = IXGBEVF_RX_BUFSZ;
790 #else
791         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
792 #endif
793 
794         if ((size <= IXGBEVF_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
795                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
796 
797                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
798 
799                 /* page is not reserved, we can reuse buffer as is */
800                 if (likely(!ixgbevf_page_is_reserved(page)))
801                         return true;
802 
803                 /* this page cannot be reused so discard it */
804                 put_page(page);
805                 return false;
806         }
807 
808         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
809                         rx_buffer->page_offset, size, truesize);
810 
811         /* avoid re-using remote pages */
812         if (unlikely(ixgbevf_page_is_reserved(page)))
813                 return false;
814 
815 #if (PAGE_SIZE < 8192)
816         /* if we are only owner of page we can reuse it */
817         if (unlikely(page_count(page) != 1))
818                 return false;
819 
820         /* flip page offset to other buffer */
821         rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
822 
823 #else
824         /* move offset up to the next cache line */
825         rx_buffer->page_offset += truesize;
826 
827         if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
828                 return false;
829 
830 #endif
831         /* Even if we own the page, we are not allowed to use atomic_set()
832          * This would break get_page_unless_zero() users.
833          */
834         atomic_inc(&page->_count);
835 
836         return true;
837 }
838 
839 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
840                                                union ixgbe_adv_rx_desc *rx_desc,
841                                                struct sk_buff *skb)
842 {
843         struct ixgbevf_rx_buffer *rx_buffer;
844         struct page *page;
845 
846         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
847         page = rx_buffer->page;
848         prefetchw(page);
849 
850         if (likely(!skb)) {
851                 void *page_addr = page_address(page) +
852                                   rx_buffer->page_offset;
853 
854                 /* prefetch first cache line of first page */
855                 prefetch(page_addr);
856 #if L1_CACHE_BYTES < 128
857                 prefetch(page_addr + L1_CACHE_BYTES);
858 #endif
859 
860                 /* allocate a skb to store the frags */
861                 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
862                                                 IXGBEVF_RX_HDR_SIZE);
863                 if (unlikely(!skb)) {
864                         rx_ring->rx_stats.alloc_rx_buff_failed++;
865                         return NULL;
866                 }
867 
868                 /* we will be copying header into skb->data in
869                  * pskb_may_pull so it is in our interest to prefetch
870                  * it now to avoid a possible cache miss
871                  */
872                 prefetchw(skb->data);
873         }
874 
875         /* we are reusing so sync this buffer for CPU use */
876         dma_sync_single_range_for_cpu(rx_ring->dev,
877                                       rx_buffer->dma,
878                                       rx_buffer->page_offset,
879                                       IXGBEVF_RX_BUFSZ,
880                                       DMA_FROM_DEVICE);
881 
882         /* pull page into skb */
883         if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
884                 /* hand second half of page back to the ring */
885                 ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
886         } else {
887                 /* we are not reusing the buffer so unmap it */
888                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
889                                PAGE_SIZE, DMA_FROM_DEVICE);
890         }
891 
892         /* clear contents of buffer_info */
893         rx_buffer->dma = 0;
894         rx_buffer->page = NULL;
895 
896         return skb;
897 }
898 
899 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
900                                              u32 qmask)
901 {
902         struct ixgbe_hw *hw = &adapter->hw;
903 
904         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
905 }
906 
907 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
908                                 struct ixgbevf_ring *rx_ring,
909                                 int budget)
910 {
911         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
912         u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
913         struct sk_buff *skb = rx_ring->skb;
914 
915         while (likely(total_rx_packets < budget)) {
916                 union ixgbe_adv_rx_desc *rx_desc;
917 
918                 /* return some buffers to hardware, one at a time is too slow */
919                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
920                         ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
921                         cleaned_count = 0;
922                 }
923 
924                 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
925 
926                 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
927                         break;
928 
929                 /* This memory barrier is needed to keep us from reading
930                  * any other fields out of the rx_desc until we know the
931                  * RXD_STAT_DD bit is set
932                  */
933                 rmb();
934 
935                 /* retrieve a buffer from the ring */
936                 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
937 
938                 /* exit if we failed to retrieve a buffer */
939                 if (!skb)
940                         break;
941 
942                 cleaned_count++;
943 
944                 /* fetch next buffer in frame if non-eop */
945                 if (ixgbevf_is_non_eop(rx_ring, rx_desc))
946                         continue;
947 
948                 /* verify the packet layout is correct */
949                 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
950                         skb = NULL;
951                         continue;
952                 }
953 
954                 /* probably a little skewed due to removing CRC */
955                 total_rx_bytes += skb->len;
956 
957                 /* Workaround hardware that can't do proper VEPA multicast
958                  * source pruning.
959                  */
960                 if ((skb->pkt_type == PACKET_BROADCAST ||
961                     skb->pkt_type == PACKET_MULTICAST) &&
962                     ether_addr_equal(rx_ring->netdev->dev_addr,
963                                      eth_hdr(skb)->h_source)) {
964                         dev_kfree_skb_irq(skb);
965                         continue;
966                 }
967 
968                 /* populate checksum, VLAN, and protocol */
969                 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
970 
971                 ixgbevf_rx_skb(q_vector, skb);
972 
973                 /* reset skb pointer */
974                 skb = NULL;
975 
976                 /* update budget accounting */
977                 total_rx_packets++;
978         }
979 
980         /* place incomplete frames back on ring for completion */
981         rx_ring->skb = skb;
982 
983         u64_stats_update_begin(&rx_ring->syncp);
984         rx_ring->stats.packets += total_rx_packets;
985         rx_ring->stats.bytes += total_rx_bytes;
986         u64_stats_update_end(&rx_ring->syncp);
987         q_vector->rx.total_packets += total_rx_packets;
988         q_vector->rx.total_bytes += total_rx_bytes;
989 
990         return total_rx_packets;
991 }
992 
993 /**
994  * ixgbevf_poll - NAPI polling calback
995  * @napi: napi struct with our devices info in it
996  * @budget: amount of work driver is allowed to do this pass, in packets
997  *
998  * This function will clean more than one or more rings associated with a
999  * q_vector.
1000  **/
1001 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1002 {
1003         struct ixgbevf_q_vector *q_vector =
1004                 container_of(napi, struct ixgbevf_q_vector, napi);
1005         struct ixgbevf_adapter *adapter = q_vector->adapter;
1006         struct ixgbevf_ring *ring;
1007         int per_ring_budget;
1008         bool clean_complete = true;
1009 
1010         ixgbevf_for_each_ring(ring, q_vector->tx)
1011                 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1012 
1013 #ifdef CONFIG_NET_RX_BUSY_POLL
1014         if (!ixgbevf_qv_lock_napi(q_vector))
1015                 return budget;
1016 #endif
1017 
1018         /* attempt to distribute budget to each queue fairly, but don't allow
1019          * the budget to go below 1 because we'll exit polling */
1020         if (q_vector->rx.count > 1)
1021                 per_ring_budget = max(budget/q_vector->rx.count, 1);
1022         else
1023                 per_ring_budget = budget;
1024 
1025         ixgbevf_for_each_ring(ring, q_vector->rx)
1026                 clean_complete &= (ixgbevf_clean_rx_irq(q_vector, ring,
1027                                                         per_ring_budget)
1028                                    < per_ring_budget);
1029 
1030 #ifdef CONFIG_NET_RX_BUSY_POLL
1031         ixgbevf_qv_unlock_napi(q_vector);
1032 #endif
1033 
1034         /* If all work not completed, return budget and keep polling */
1035         if (!clean_complete)
1036                 return budget;
1037         /* all work done, exit the polling mode */
1038         napi_complete(napi);
1039         if (adapter->rx_itr_setting & 1)
1040                 ixgbevf_set_itr(q_vector);
1041         if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1042             !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1043                 ixgbevf_irq_enable_queues(adapter,
1044                                           1 << q_vector->v_idx);
1045 
1046         return 0;
1047 }
1048 
1049 /**
1050  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1051  * @q_vector: structure containing interrupt and ring information
1052  */
1053 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1054 {
1055         struct ixgbevf_adapter *adapter = q_vector->adapter;
1056         struct ixgbe_hw *hw = &adapter->hw;
1057         int v_idx = q_vector->v_idx;
1058         u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1059 
1060         /*
1061          * set the WDIS bit to not clear the timer bits and cause an
1062          * immediate assertion of the interrupt
1063          */
1064         itr_reg |= IXGBE_EITR_CNT_WDIS;
1065 
1066         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1067 }
1068 
1069 #ifdef CONFIG_NET_RX_BUSY_POLL
1070 /* must be called with local_bh_disable()d */
1071 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1072 {
1073         struct ixgbevf_q_vector *q_vector =
1074                         container_of(napi, struct ixgbevf_q_vector, napi);
1075         struct ixgbevf_adapter *adapter = q_vector->adapter;
1076         struct ixgbevf_ring  *ring;
1077         int found = 0;
1078 
1079         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1080                 return LL_FLUSH_FAILED;
1081 
1082         if (!ixgbevf_qv_lock_poll(q_vector))
1083                 return LL_FLUSH_BUSY;
1084 
1085         ixgbevf_for_each_ring(ring, q_vector->rx) {
1086                 found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1087 #ifdef BP_EXTENDED_STATS
1088                 if (found)
1089                         ring->stats.cleaned += found;
1090                 else
1091                         ring->stats.misses++;
1092 #endif
1093                 if (found)
1094                         break;
1095         }
1096 
1097         ixgbevf_qv_unlock_poll(q_vector);
1098 
1099         return found;
1100 }
1101 #endif /* CONFIG_NET_RX_BUSY_POLL */
1102 
1103 /**
1104  * ixgbevf_configure_msix - Configure MSI-X hardware
1105  * @adapter: board private structure
1106  *
1107  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1108  * interrupts.
1109  **/
1110 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1111 {
1112         struct ixgbevf_q_vector *q_vector;
1113         int q_vectors, v_idx;
1114 
1115         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1116         adapter->eims_enable_mask = 0;
1117 
1118         /*
1119          * Populate the IVAR table and set the ITR values to the
1120          * corresponding register.
1121          */
1122         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1123                 struct ixgbevf_ring *ring;
1124                 q_vector = adapter->q_vector[v_idx];
1125 
1126                 ixgbevf_for_each_ring(ring, q_vector->rx)
1127                         ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1128 
1129                 ixgbevf_for_each_ring(ring, q_vector->tx)
1130                         ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1131 
1132                 if (q_vector->tx.ring && !q_vector->rx.ring) {
1133                         /* tx only vector */
1134                         if (adapter->tx_itr_setting == 1)
1135                                 q_vector->itr = IXGBE_10K_ITR;
1136                         else
1137                                 q_vector->itr = adapter->tx_itr_setting;
1138                 } else {
1139                         /* rx or rx/tx vector */
1140                         if (adapter->rx_itr_setting == 1)
1141                                 q_vector->itr = IXGBE_20K_ITR;
1142                         else
1143                                 q_vector->itr = adapter->rx_itr_setting;
1144                 }
1145 
1146                 /* add q_vector eims value to global eims_enable_mask */
1147                 adapter->eims_enable_mask |= 1 << v_idx;
1148 
1149                 ixgbevf_write_eitr(q_vector);
1150         }
1151 
1152         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1153         /* setup eims_other and add value to global eims_enable_mask */
1154         adapter->eims_other = 1 << v_idx;
1155         adapter->eims_enable_mask |= adapter->eims_other;
1156 }
1157 
1158 enum latency_range {
1159         lowest_latency = 0,
1160         low_latency = 1,
1161         bulk_latency = 2,
1162         latency_invalid = 255
1163 };
1164 
1165 /**
1166  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1167  * @q_vector: structure containing interrupt and ring information
1168  * @ring_container: structure containing ring performance data
1169  *
1170  *      Stores a new ITR value based on packets and byte
1171  *      counts during the last interrupt.  The advantage of per interrupt
1172  *      computation is faster updates and more accurate ITR for the current
1173  *      traffic pattern.  Constants in this function were computed
1174  *      based on theoretical maximum wire speed and thresholds were set based
1175  *      on testing data as well as attempting to minimize response time
1176  *      while increasing bulk throughput.
1177  **/
1178 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1179                                struct ixgbevf_ring_container *ring_container)
1180 {
1181         int bytes = ring_container->total_bytes;
1182         int packets = ring_container->total_packets;
1183         u32 timepassed_us;
1184         u64 bytes_perint;
1185         u8 itr_setting = ring_container->itr;
1186 
1187         if (packets == 0)
1188                 return;
1189 
1190         /* simple throttlerate management
1191          *    0-20MB/s lowest (100000 ints/s)
1192          *   20-100MB/s low   (20000 ints/s)
1193          *  100-1249MB/s bulk (8000 ints/s)
1194          */
1195         /* what was last interrupt timeslice? */
1196         timepassed_us = q_vector->itr >> 2;
1197         bytes_perint = bytes / timepassed_us; /* bytes/usec */
1198 
1199         switch (itr_setting) {
1200         case lowest_latency:
1201                 if (bytes_perint > 10)
1202                         itr_setting = low_latency;
1203                 break;
1204         case low_latency:
1205                 if (bytes_perint > 20)
1206                         itr_setting = bulk_latency;
1207                 else if (bytes_perint <= 10)
1208                         itr_setting = lowest_latency;
1209                 break;
1210         case bulk_latency:
1211                 if (bytes_perint <= 20)
1212                         itr_setting = low_latency;
1213                 break;
1214         }
1215 
1216         /* clear work counters since we have the values we need */
1217         ring_container->total_bytes = 0;
1218         ring_container->total_packets = 0;
1219 
1220         /* write updated itr to ring container */
1221         ring_container->itr = itr_setting;
1222 }
1223 
1224 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1225 {
1226         u32 new_itr = q_vector->itr;
1227         u8 current_itr;
1228 
1229         ixgbevf_update_itr(q_vector, &q_vector->tx);
1230         ixgbevf_update_itr(q_vector, &q_vector->rx);
1231 
1232         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1233 
1234         switch (current_itr) {
1235         /* counts and packets in update_itr are dependent on these numbers */
1236         case lowest_latency:
1237                 new_itr = IXGBE_100K_ITR;
1238                 break;
1239         case low_latency:
1240                 new_itr = IXGBE_20K_ITR;
1241                 break;
1242         case bulk_latency:
1243         default:
1244                 new_itr = IXGBE_8K_ITR;
1245                 break;
1246         }
1247 
1248         if (new_itr != q_vector->itr) {
1249                 /* do an exponential smoothing */
1250                 new_itr = (10 * new_itr * q_vector->itr) /
1251                           ((9 * new_itr) + q_vector->itr);
1252 
1253                 /* save the algorithm value here */
1254                 q_vector->itr = new_itr;
1255 
1256                 ixgbevf_write_eitr(q_vector);
1257         }
1258 }
1259 
1260 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1261 {
1262         struct ixgbevf_adapter *adapter = data;
1263         struct ixgbe_hw *hw = &adapter->hw;
1264 
1265         hw->mac.get_link_status = 1;
1266 
1267         ixgbevf_service_event_schedule(adapter);
1268 
1269         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1270 
1271         return IRQ_HANDLED;
1272 }
1273 
1274 /**
1275  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1276  * @irq: unused
1277  * @data: pointer to our q_vector struct for this interrupt vector
1278  **/
1279 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1280 {
1281         struct ixgbevf_q_vector *q_vector = data;
1282 
1283         /* EIAM disabled interrupts (on this vector) for us */
1284         if (q_vector->rx.ring || q_vector->tx.ring)
1285                 napi_schedule(&q_vector->napi);
1286 
1287         return IRQ_HANDLED;
1288 }
1289 
1290 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1291                                      int r_idx)
1292 {
1293         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1294 
1295         a->rx_ring[r_idx]->next = q_vector->rx.ring;
1296         q_vector->rx.ring = a->rx_ring[r_idx];
1297         q_vector->rx.count++;
1298 }
1299 
1300 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1301                                      int t_idx)
1302 {
1303         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1304 
1305         a->tx_ring[t_idx]->next = q_vector->tx.ring;
1306         q_vector->tx.ring = a->tx_ring[t_idx];
1307         q_vector->tx.count++;
1308 }
1309 
1310 /**
1311  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1312  * @adapter: board private structure to initialize
1313  *
1314  * This function maps descriptor rings to the queue-specific vectors
1315  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1316  * one vector per ring/queue, but on a constrained vector budget, we
1317  * group the rings as "efficiently" as possible.  You would add new
1318  * mapping configurations in here.
1319  **/
1320 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1321 {
1322         int q_vectors;
1323         int v_start = 0;
1324         int rxr_idx = 0, txr_idx = 0;
1325         int rxr_remaining = adapter->num_rx_queues;
1326         int txr_remaining = adapter->num_tx_queues;
1327         int i, j;
1328         int rqpv, tqpv;
1329         int err = 0;
1330 
1331         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1332 
1333         /*
1334          * The ideal configuration...
1335          * We have enough vectors to map one per queue.
1336          */
1337         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1338                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1339                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1340 
1341                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1342                         map_vector_to_txq(adapter, v_start, txr_idx);
1343                 goto out;
1344         }
1345 
1346         /*
1347          * If we don't have enough vectors for a 1-to-1
1348          * mapping, we'll have to group them so there are
1349          * multiple queues per vector.
1350          */
1351         /* Re-adjusting *qpv takes care of the remainder. */
1352         for (i = v_start; i < q_vectors; i++) {
1353                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1354                 for (j = 0; j < rqpv; j++) {
1355                         map_vector_to_rxq(adapter, i, rxr_idx);
1356                         rxr_idx++;
1357                         rxr_remaining--;
1358                 }
1359         }
1360         for (i = v_start; i < q_vectors; i++) {
1361                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1362                 for (j = 0; j < tqpv; j++) {
1363                         map_vector_to_txq(adapter, i, txr_idx);
1364                         txr_idx++;
1365                         txr_remaining--;
1366                 }
1367         }
1368 
1369 out:
1370         return err;
1371 }
1372 
1373 /**
1374  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1375  * @adapter: board private structure
1376  *
1377  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1378  * interrupts from the kernel.
1379  **/
1380 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1381 {
1382         struct net_device *netdev = adapter->netdev;
1383         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1384         int vector, err;
1385         int ri = 0, ti = 0;
1386 
1387         for (vector = 0; vector < q_vectors; vector++) {
1388                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1389                 struct msix_entry *entry = &adapter->msix_entries[vector];
1390 
1391                 if (q_vector->tx.ring && q_vector->rx.ring) {
1392                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1393                                  "%s-%s-%d", netdev->name, "TxRx", ri++);
1394                         ti++;
1395                 } else if (q_vector->rx.ring) {
1396                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1397                                  "%s-%s-%d", netdev->name, "rx", ri++);
1398                 } else if (q_vector->tx.ring) {
1399                         snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1400                                  "%s-%s-%d", netdev->name, "tx", ti++);
1401                 } else {
1402                         /* skip this unused q_vector */
1403                         continue;
1404                 }
1405                 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1406                                   q_vector->name, q_vector);
1407                 if (err) {
1408                         hw_dbg(&adapter->hw,
1409                                "request_irq failed for MSIX interrupt "
1410                                "Error: %d\n", err);
1411                         goto free_queue_irqs;
1412                 }
1413         }
1414 
1415         err = request_irq(adapter->msix_entries[vector].vector,
1416                           &ixgbevf_msix_other, 0, netdev->name, adapter);
1417         if (err) {
1418                 hw_dbg(&adapter->hw,
1419                        "request_irq for msix_other failed: %d\n", err);
1420                 goto free_queue_irqs;
1421         }
1422 
1423         return 0;
1424 
1425 free_queue_irqs:
1426         while (vector) {
1427                 vector--;
1428                 free_irq(adapter->msix_entries[vector].vector,
1429                          adapter->q_vector[vector]);
1430         }
1431         /* This failure is non-recoverable - it indicates the system is
1432          * out of MSIX vector resources and the VF driver cannot run
1433          * without them.  Set the number of msix vectors to zero
1434          * indicating that not enough can be allocated.  The error
1435          * will be returned to the user indicating device open failed.
1436          * Any further attempts to force the driver to open will also
1437          * fail.  The only way to recover is to unload the driver and
1438          * reload it again.  If the system has recovered some MSIX
1439          * vectors then it may succeed.
1440          */
1441         adapter->num_msix_vectors = 0;
1442         return err;
1443 }
1444 
1445 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1446 {
1447         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1448 
1449         for (i = 0; i < q_vectors; i++) {
1450                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1451                 q_vector->rx.ring = NULL;
1452                 q_vector->tx.ring = NULL;
1453                 q_vector->rx.count = 0;
1454                 q_vector->tx.count = 0;
1455         }
1456 }
1457 
1458 /**
1459  * ixgbevf_request_irq - initialize interrupts
1460  * @adapter: board private structure
1461  *
1462  * Attempts to configure interrupts using the best available
1463  * capabilities of the hardware and kernel.
1464  **/
1465 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1466 {
1467         int err = 0;
1468 
1469         err = ixgbevf_request_msix_irqs(adapter);
1470 
1471         if (err)
1472                 hw_dbg(&adapter->hw,
1473                        "request_irq failed, Error %d\n", err);
1474 
1475         return err;
1476 }
1477 
1478 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1479 {
1480         int i, q_vectors;
1481 
1482         q_vectors = adapter->num_msix_vectors;
1483         i = q_vectors - 1;
1484 
1485         free_irq(adapter->msix_entries[i].vector, adapter);
1486         i--;
1487 
1488         for (; i >= 0; i--) {
1489                 /* free only the irqs that were actually requested */
1490                 if (!adapter->q_vector[i]->rx.ring &&
1491                     !adapter->q_vector[i]->tx.ring)
1492                         continue;
1493 
1494                 free_irq(adapter->msix_entries[i].vector,
1495                          adapter->q_vector[i]);
1496         }
1497 
1498         ixgbevf_reset_q_vectors(adapter);
1499 }
1500 
1501 /**
1502  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1503  * @adapter: board private structure
1504  **/
1505 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1506 {
1507         struct ixgbe_hw *hw = &adapter->hw;
1508         int i;
1509 
1510         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1511         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1512         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1513 
1514         IXGBE_WRITE_FLUSH(hw);
1515 
1516         for (i = 0; i < adapter->num_msix_vectors; i++)
1517                 synchronize_irq(adapter->msix_entries[i].vector);
1518 }
1519 
1520 /**
1521  * ixgbevf_irq_enable - Enable default interrupt generation settings
1522  * @adapter: board private structure
1523  **/
1524 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1525 {
1526         struct ixgbe_hw *hw = &adapter->hw;
1527 
1528         IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1529         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1530         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1531 }
1532 
1533 /**
1534  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1535  * @adapter: board private structure
1536  * @ring: structure containing ring specific data
1537  *
1538  * Configure the Tx descriptor ring after a reset.
1539  **/
1540 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1541                                       struct ixgbevf_ring *ring)
1542 {
1543         struct ixgbe_hw *hw = &adapter->hw;
1544         u64 tdba = ring->dma;
1545         int wait_loop = 10;
1546         u32 txdctl = IXGBE_TXDCTL_ENABLE;
1547         u8 reg_idx = ring->reg_idx;
1548 
1549         /* disable queue to avoid issues while updating state */
1550         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1551         IXGBE_WRITE_FLUSH(hw);
1552 
1553         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1554         IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1555         IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1556                         ring->count * sizeof(union ixgbe_adv_tx_desc));
1557 
1558         /* disable head writeback */
1559         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1560         IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1561 
1562         /* enable relaxed ordering */
1563         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1564                         (IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1565                          IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1566 
1567         /* reset head and tail pointers */
1568         IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1569         IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1570         ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1571 
1572         /* reset ntu and ntc to place SW in sync with hardwdare */
1573         ring->next_to_clean = 0;
1574         ring->next_to_use = 0;
1575 
1576         /* In order to avoid issues WTHRESH + PTHRESH should always be equal
1577          * to or less than the number of on chip descriptors, which is
1578          * currently 40.
1579          */
1580         txdctl |= (8 << 16);    /* WTHRESH = 8 */
1581 
1582         /* Setting PTHRESH to 32 both improves performance */
1583         txdctl |= (1 << 8) |    /* HTHRESH = 1 */
1584                   32;          /* PTHRESH = 32 */
1585 
1586         clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1587 
1588         IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1589 
1590         /* poll to verify queue is enabled */
1591         do {
1592                 usleep_range(1000, 2000);
1593                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1594         }  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1595         if (!wait_loop)
1596                 pr_err("Could not enable Tx Queue %d\n", reg_idx);
1597 }
1598 
1599 /**
1600  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1601  * @adapter: board private structure
1602  *
1603  * Configure the Tx unit of the MAC after a reset.
1604  **/
1605 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1606 {
1607         u32 i;
1608 
1609         /* Setup the HW Tx Head and Tail descriptor pointers */
1610         for (i = 0; i < adapter->num_tx_queues; i++)
1611                 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1612 }
1613 
1614 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1615 
1616 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1617 {
1618         struct ixgbe_hw *hw = &adapter->hw;
1619         u32 srrctl;
1620 
1621         srrctl = IXGBE_SRRCTL_DROP_EN;
1622 
1623         srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1624         srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1625         srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1626 
1627         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1628 }
1629 
1630 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1631 {
1632         struct ixgbe_hw *hw = &adapter->hw;
1633 
1634         /* PSRTYPE must be initialized in 82599 */
1635         u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1636                       IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1637                       IXGBE_PSRTYPE_L2HDR;
1638 
1639         if (adapter->num_rx_queues > 1)
1640                 psrtype |= 1 << 29;
1641 
1642         IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1643 }
1644 
1645 #define IXGBEVF_MAX_RX_DESC_POLL 10
1646 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1647                                      struct ixgbevf_ring *ring)
1648 {
1649         struct ixgbe_hw *hw = &adapter->hw;
1650         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1651         u32 rxdctl;
1652         u8 reg_idx = ring->reg_idx;
1653 
1654         if (IXGBE_REMOVED(hw->hw_addr))
1655                 return;
1656         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1657         rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1658 
1659         /* write value back with RXDCTL.ENABLE bit cleared */
1660         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1661 
1662         /* the hardware may take up to 100us to really disable the rx queue */
1663         do {
1664                 udelay(10);
1665                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1666         } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1667 
1668         if (!wait_loop)
1669                 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1670                        reg_idx);
1671 }
1672 
1673 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1674                                          struct ixgbevf_ring *ring)
1675 {
1676         struct ixgbe_hw *hw = &adapter->hw;
1677         int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1678         u32 rxdctl;
1679         u8 reg_idx = ring->reg_idx;
1680 
1681         if (IXGBE_REMOVED(hw->hw_addr))
1682                 return;
1683         do {
1684                 usleep_range(1000, 2000);
1685                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1686         } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1687 
1688         if (!wait_loop)
1689                 pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1690                        reg_idx);
1691 }
1692 
1693 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1694 {
1695         struct ixgbe_hw *hw = &adapter->hw;
1696         u32 vfmrqc = 0, vfreta = 0;
1697         u32 rss_key[10];
1698         u16 rss_i = adapter->num_rx_queues;
1699         int i, j;
1700 
1701         /* Fill out hash function seeds */
1702         netdev_rss_key_fill(rss_key, sizeof(rss_key));
1703         for (i = 0; i < 10; i++)
1704                 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), rss_key[i]);
1705 
1706         /* Fill out redirection table */
1707         for (i = 0, j = 0; i < 64; i++, j++) {
1708                 if (j == rss_i)
1709                         j = 0;
1710                 vfreta = (vfreta << 8) | (j * 0x1);
1711                 if ((i & 3) == 3)
1712                         IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1713         }
1714 
1715         /* Perform hash on these packet types */
1716         vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1717                 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1718                 IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1719                 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1720 
1721         vfmrqc |= IXGBE_VFMRQC_RSSEN;
1722 
1723         IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1724 }
1725 
1726 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1727                                       struct ixgbevf_ring *ring)
1728 {
1729         struct ixgbe_hw *hw = &adapter->hw;
1730         u64 rdba = ring->dma;
1731         u32 rxdctl;
1732         u8 reg_idx = ring->reg_idx;
1733 
1734         /* disable queue to avoid issues while updating state */
1735         rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1736         ixgbevf_disable_rx_queue(adapter, ring);
1737 
1738         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1739         IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1740         IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1741                         ring->count * sizeof(union ixgbe_adv_rx_desc));
1742 
1743         /* enable relaxed ordering */
1744         IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1745                         IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1746 
1747         /* reset head and tail pointers */
1748         IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1749         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1750         ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1751 
1752         /* reset ntu and ntc to place SW in sync with hardwdare */
1753         ring->next_to_clean = 0;
1754         ring->next_to_use = 0;
1755         ring->next_to_alloc = 0;
1756 
1757         ixgbevf_configure_srrctl(adapter, reg_idx);
1758 
1759         /* allow any size packet since we can handle overflow */
1760         rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1761 
1762         rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1763         IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1764 
1765         ixgbevf_rx_desc_queue_enable(adapter, ring);
1766         ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1767 }
1768 
1769 /**
1770  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1771  * @adapter: board private structure
1772  *
1773  * Configure the Rx unit of the MAC after a reset.
1774  **/
1775 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1776 {
1777         int i;
1778         struct ixgbe_hw *hw = &adapter->hw;
1779         struct net_device *netdev = adapter->netdev;
1780 
1781         ixgbevf_setup_psrtype(adapter);
1782         if (hw->mac.type >= ixgbe_mac_X550_vf)
1783                 ixgbevf_setup_vfmrqc(adapter);
1784 
1785         /* notify the PF of our intent to use this size of frame */
1786         ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1787 
1788         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1789          * the Base and Length of the Rx Descriptor Ring */
1790         for (i = 0; i < adapter->num_rx_queues; i++)
1791                 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1792 }
1793 
1794 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1795                                    __be16 proto, u16 vid)
1796 {
1797         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1798         struct ixgbe_hw *hw = &adapter->hw;
1799         int err;
1800 
1801         spin_lock_bh(&adapter->mbx_lock);
1802 
1803         /* add VID to filter table */
1804         err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1805 
1806         spin_unlock_bh(&adapter->mbx_lock);
1807 
1808         /* translate error return types so error makes sense */
1809         if (err == IXGBE_ERR_MBX)
1810                 return -EIO;
1811 
1812         if (err == IXGBE_ERR_INVALID_ARGUMENT)
1813                 return -EACCES;
1814 
1815         set_bit(vid, adapter->active_vlans);
1816 
1817         return err;
1818 }
1819 
1820 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1821                                     __be16 proto, u16 vid)
1822 {
1823         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1824         struct ixgbe_hw *hw = &adapter->hw;
1825         int err = -EOPNOTSUPP;
1826 
1827         spin_lock_bh(&adapter->mbx_lock);
1828 
1829         /* remove VID from filter table */
1830         err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1831 
1832         spin_unlock_bh(&adapter->mbx_lock);
1833 
1834         clear_bit(vid, adapter->active_vlans);
1835 
1836         return err;
1837 }
1838 
1839 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1840 {
1841         u16 vid;
1842 
1843         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1844                 ixgbevf_vlan_rx_add_vid(adapter->netdev,
1845                                         htons(ETH_P_8021Q), vid);
1846 }
1847 
1848 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1849 {
1850         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1851         struct ixgbe_hw *hw = &adapter->hw;
1852         int count = 0;
1853 
1854         if ((netdev_uc_count(netdev)) > 10) {
1855                 pr_err("Too many unicast filters - No Space\n");
1856                 return -ENOSPC;
1857         }
1858 
1859         if (!netdev_uc_empty(netdev)) {
1860                 struct netdev_hw_addr *ha;
1861                 netdev_for_each_uc_addr(ha, netdev) {
1862                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1863                         udelay(200);
1864                 }
1865         } else {
1866                 /*
1867                  * If the list is empty then send message to PF driver to
1868                  * clear all macvlans on this VF.
1869                  */
1870                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1871         }
1872 
1873         return count;
1874 }
1875 
1876 /**
1877  * ixgbevf_set_rx_mode - Multicast and unicast set
1878  * @netdev: network interface device structure
1879  *
1880  * The set_rx_method entry point is called whenever the multicast address
1881  * list, unicast address list or the network interface flags are updated.
1882  * This routine is responsible for configuring the hardware for proper
1883  * multicast mode and configuring requested unicast filters.
1884  **/
1885 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1886 {
1887         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1888         struct ixgbe_hw *hw = &adapter->hw;
1889 
1890         spin_lock_bh(&adapter->mbx_lock);
1891 
1892         /* reprogram multicast list */
1893         hw->mac.ops.update_mc_addr_list(hw, netdev);
1894 
1895         ixgbevf_write_uc_addr_list(netdev);
1896 
1897         spin_unlock_bh(&adapter->mbx_lock);
1898 }
1899 
1900 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1901 {
1902         int q_idx;
1903         struct ixgbevf_q_vector *q_vector;
1904         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1905 
1906         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1907                 q_vector = adapter->q_vector[q_idx];
1908 #ifdef CONFIG_NET_RX_BUSY_POLL
1909                 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1910 #endif
1911                 napi_enable(&q_vector->napi);
1912         }
1913 }
1914 
1915 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1916 {
1917         int q_idx;
1918         struct ixgbevf_q_vector *q_vector;
1919         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1920 
1921         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1922                 q_vector = adapter->q_vector[q_idx];
1923                 napi_disable(&q_vector->napi);
1924 #ifdef CONFIG_NET_RX_BUSY_POLL
1925                 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1926                         pr_info("QV %d locked\n", q_idx);
1927                         usleep_range(1000, 20000);
1928                 }
1929 #endif /* CONFIG_NET_RX_BUSY_POLL */
1930         }
1931 }
1932 
1933 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1934 {
1935         struct ixgbe_hw *hw = &adapter->hw;
1936         unsigned int def_q = 0;
1937         unsigned int num_tcs = 0;
1938         unsigned int num_rx_queues = adapter->num_rx_queues;
1939         unsigned int num_tx_queues = adapter->num_tx_queues;
1940         int err;
1941 
1942         spin_lock_bh(&adapter->mbx_lock);
1943 
1944         /* fetch queue configuration from the PF */
1945         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1946 
1947         spin_unlock_bh(&adapter->mbx_lock);
1948 
1949         if (err)
1950                 return err;
1951 
1952         if (num_tcs > 1) {
1953                 /* we need only one Tx queue */
1954                 num_tx_queues = 1;
1955 
1956                 /* update default Tx ring register index */
1957                 adapter->tx_ring[0]->reg_idx = def_q;
1958 
1959                 /* we need as many queues as traffic classes */
1960                 num_rx_queues = num_tcs;
1961         }
1962 
1963         /* if we have a bad config abort request queue reset */
1964         if ((adapter->num_rx_queues != num_rx_queues) ||
1965             (adapter->num_tx_queues != num_tx_queues)) {
1966                 /* force mailbox timeout to prevent further messages */
1967                 hw->mbx.timeout = 0;
1968 
1969                 /* wait for watchdog to come around and bail us out */
1970                 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1971         }
1972 
1973         return 0;
1974 }
1975 
1976 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1977 {
1978         ixgbevf_configure_dcb(adapter);
1979 
1980         ixgbevf_set_rx_mode(adapter->netdev);
1981 
1982         ixgbevf_restore_vlan(adapter);
1983 
1984         ixgbevf_configure_tx(adapter);
1985         ixgbevf_configure_rx(adapter);
1986 }
1987 
1988 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1989 {
1990         /* Only save pre-reset stats if there are some */
1991         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1992                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1993                         adapter->stats.base_vfgprc;
1994                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1995                         adapter->stats.base_vfgptc;
1996                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1997                         adapter->stats.base_vfgorc;
1998                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1999                         adapter->stats.base_vfgotc;
2000                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2001                         adapter->stats.base_vfmprc;
2002         }
2003 }
2004 
2005 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2006 {
2007         struct ixgbe_hw *hw = &adapter->hw;
2008 
2009         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2010         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2011         adapter->stats.last_vfgorc |=
2012                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2013         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2014         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2015         adapter->stats.last_vfgotc |=
2016                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2017         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2018 
2019         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2020         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2021         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2022         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2023         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2024 }
2025 
2026 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2027 {
2028         struct ixgbe_hw *hw = &adapter->hw;
2029         int api[] = { ixgbe_mbox_api_11,
2030                       ixgbe_mbox_api_10,
2031                       ixgbe_mbox_api_unknown };
2032         int err = 0, idx = 0;
2033 
2034         spin_lock_bh(&adapter->mbx_lock);
2035 
2036         while (api[idx] != ixgbe_mbox_api_unknown) {
2037                 err = ixgbevf_negotiate_api_version(hw, api[idx]);
2038                 if (!err)
2039                         break;
2040                 idx++;
2041         }
2042 
2043         spin_unlock_bh(&adapter->mbx_lock);
2044 }
2045 
2046 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2047 {
2048         struct net_device *netdev = adapter->netdev;
2049         struct ixgbe_hw *hw = &adapter->hw;
2050 
2051         ixgbevf_configure_msix(adapter);
2052 
2053         spin_lock_bh(&adapter->mbx_lock);
2054 
2055         if (is_valid_ether_addr(hw->mac.addr))
2056                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2057         else
2058                 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2059 
2060         spin_unlock_bh(&adapter->mbx_lock);
2061 
2062         smp_mb__before_atomic();
2063         clear_bit(__IXGBEVF_DOWN, &adapter->state);
2064         ixgbevf_napi_enable_all(adapter);
2065 
2066         /* clear any pending interrupts, may auto mask */
2067         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2068         ixgbevf_irq_enable(adapter);
2069 
2070         /* enable transmits */
2071         netif_tx_start_all_queues(netdev);
2072 
2073         ixgbevf_save_reset_stats(adapter);
2074         ixgbevf_init_last_counter_stats(adapter);
2075 
2076         hw->mac.get_link_status = 1;
2077         mod_timer(&adapter->service_timer, jiffies);
2078 }
2079 
2080 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2081 {
2082         ixgbevf_configure(adapter);
2083 
2084         ixgbevf_up_complete(adapter);
2085 }
2086 
2087 /**
2088  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2089  * @rx_ring: ring to free buffers from
2090  **/
2091 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2092 {
2093         struct device *dev = rx_ring->dev;
2094         unsigned long size;
2095         unsigned int i;
2096 
2097         /* Free Rx ring sk_buff */
2098         if (rx_ring->skb) {
2099                 dev_kfree_skb(rx_ring->skb);
2100                 rx_ring->skb = NULL;
2101         }
2102 
2103         /* ring already cleared, nothing to do */
2104         if (!rx_ring->rx_buffer_info)
2105                 return;
2106 
2107         /* Free all the Rx ring pages */
2108         for (i = 0; i < rx_ring->count; i++) {
2109                 struct ixgbevf_rx_buffer *rx_buffer;
2110 
2111                 rx_buffer = &rx_ring->rx_buffer_info[i];
2112                 if (rx_buffer->dma)
2113                         dma_unmap_page(dev, rx_buffer->dma,
2114                                        PAGE_SIZE, DMA_FROM_DEVICE);
2115                 rx_buffer->dma = 0;
2116                 if (rx_buffer->page)
2117                         __free_page(rx_buffer->page);
2118                 rx_buffer->page = NULL;
2119         }
2120 
2121         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2122         memset(rx_ring->rx_buffer_info, 0, size);
2123 
2124         /* Zero out the descriptor ring */
2125         memset(rx_ring->desc, 0, rx_ring->size);
2126 }
2127 
2128 /**
2129  * ixgbevf_clean_tx_ring - Free Tx Buffers
2130  * @tx_ring: ring to be cleaned
2131  **/
2132 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2133 {
2134         struct ixgbevf_tx_buffer *tx_buffer_info;
2135         unsigned long size;
2136         unsigned int i;
2137 
2138         if (!tx_ring->tx_buffer_info)
2139                 return;
2140 
2141         /* Free all the Tx ring sk_buffs */
2142         for (i = 0; i < tx_ring->count; i++) {
2143                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2144                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2145         }
2146 
2147         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2148         memset(tx_ring->tx_buffer_info, 0, size);
2149 
2150         memset(tx_ring->desc, 0, tx_ring->size);
2151 }
2152 
2153 /**
2154  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2155  * @adapter: board private structure
2156  **/
2157 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2158 {
2159         int i;
2160 
2161         for (i = 0; i < adapter->num_rx_queues; i++)
2162                 ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2163 }
2164 
2165 /**
2166  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2167  * @adapter: board private structure
2168  **/
2169 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2170 {
2171         int i;
2172 
2173         for (i = 0; i < adapter->num_tx_queues; i++)
2174                 ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2175 }
2176 
2177 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2178 {
2179         struct net_device *netdev = adapter->netdev;
2180         struct ixgbe_hw *hw = &adapter->hw;
2181         int i;
2182 
2183         /* signal that we are down to the interrupt handler */
2184         if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2185                 return; /* do nothing if already down */
2186 
2187         /* disable all enabled rx queues */
2188         for (i = 0; i < adapter->num_rx_queues; i++)
2189                 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2190 
2191         usleep_range(10000, 20000);
2192 
2193         netif_tx_stop_all_queues(netdev);
2194 
2195         /* call carrier off first to avoid false dev_watchdog timeouts */
2196         netif_carrier_off(netdev);
2197         netif_tx_disable(netdev);
2198 
2199         ixgbevf_irq_disable(adapter);
2200 
2201         ixgbevf_napi_disable_all(adapter);
2202 
2203         del_timer_sync(&adapter->service_timer);
2204 
2205         /* disable transmits in the hardware now that interrupts are off */
2206         for (i = 0; i < adapter->num_tx_queues; i++) {
2207                 u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2208 
2209                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2210                                 IXGBE_TXDCTL_SWFLSH);
2211         }
2212 
2213         if (!pci_channel_offline(adapter->pdev))
2214                 ixgbevf_reset(adapter);
2215 
2216         ixgbevf_clean_all_tx_rings(adapter);
2217         ixgbevf_clean_all_rx_rings(adapter);
2218 }
2219 
2220 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2221 {
2222         WARN_ON(in_interrupt());
2223 
2224         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2225                 msleep(1);
2226 
2227         ixgbevf_down(adapter);
2228         ixgbevf_up(adapter);
2229 
2230         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2231 }
2232 
2233 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2234 {
2235         struct ixgbe_hw *hw = &adapter->hw;
2236         struct net_device *netdev = adapter->netdev;
2237 
2238         if (hw->mac.ops.reset_hw(hw)) {
2239                 hw_dbg(hw, "PF still resetting\n");
2240         } else {
2241                 hw->mac.ops.init_hw(hw);
2242                 ixgbevf_negotiate_api(adapter);
2243         }
2244 
2245         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2246                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2247                        netdev->addr_len);
2248                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
2249                        netdev->addr_len);
2250         }
2251 
2252         adapter->last_reset = jiffies;
2253 }
2254 
2255 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2256                                         int vectors)
2257 {
2258         int vector_threshold;
2259 
2260         /* We'll want at least 2 (vector_threshold):
2261          * 1) TxQ[0] + RxQ[0] handler
2262          * 2) Other (Link Status Change, etc.)
2263          */
2264         vector_threshold = MIN_MSIX_COUNT;
2265 
2266         /* The more we get, the more we will assign to Tx/Rx Cleanup
2267          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2268          * Right now, we simply care about how many we'll get; we'll
2269          * set them up later while requesting irq's.
2270          */
2271         vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2272                                         vector_threshold, vectors);
2273 
2274         if (vectors < 0) {
2275                 dev_err(&adapter->pdev->dev,
2276                         "Unable to allocate MSI-X interrupts\n");
2277                 kfree(adapter->msix_entries);
2278                 adapter->msix_entries = NULL;
2279                 return vectors;
2280         }
2281 
2282         /* Adjust for only the vectors we'll use, which is minimum
2283          * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2284          * vectors we were allocated.
2285          */
2286         adapter->num_msix_vectors = vectors;
2287 
2288         return 0;
2289 }
2290 
2291 /**
2292  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2293  * @adapter: board private structure to initialize
2294  *
2295  * This is the top level queue allocation routine.  The order here is very
2296  * important, starting with the "most" number of features turned on at once,
2297  * and ending with the smallest set of features.  This way large combinations
2298  * can be allocated if they're turned on, and smaller combinations are the
2299  * fallthrough conditions.
2300  *
2301  **/
2302 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2303 {
2304         struct ixgbe_hw *hw = &adapter->hw;
2305         unsigned int def_q = 0;
2306         unsigned int num_tcs = 0;
2307         int err;
2308 
2309         /* Start with base case */
2310         adapter->num_rx_queues = 1;
2311         adapter->num_tx_queues = 1;
2312 
2313         spin_lock_bh(&adapter->mbx_lock);
2314 
2315         /* fetch queue configuration from the PF */
2316         err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2317 
2318         spin_unlock_bh(&adapter->mbx_lock);
2319 
2320         if (err)
2321                 return;
2322 
2323         /* we need as many queues as traffic classes */
2324         if (num_tcs > 1) {
2325                 adapter->num_rx_queues = num_tcs;
2326         } else {
2327                 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2328 
2329                 switch (hw->api_version) {
2330                 case ixgbe_mbox_api_11:
2331                         adapter->num_rx_queues = rss;
2332                         adapter->num_tx_queues = rss;
2333                 default:
2334                         break;
2335                 }
2336         }
2337 }
2338 
2339 /**
2340  * ixgbevf_alloc_queues - Allocate memory for all rings
2341  * @adapter: board private structure to initialize
2342  *
2343  * We allocate one ring per queue at run-time since we don't know the
2344  * number of queues at compile-time.  The polling_netdev array is
2345  * intended for Multiqueue, but should work fine with a single queue.
2346  **/
2347 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2348 {
2349         struct ixgbevf_ring *ring;
2350         int rx = 0, tx = 0;
2351 
2352         for (; tx < adapter->num_tx_queues; tx++) {
2353                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2354                 if (!ring)
2355                         goto err_allocation;
2356 
2357                 ring->dev = &adapter->pdev->dev;
2358                 ring->netdev = adapter->netdev;
2359                 ring->count = adapter->tx_ring_count;
2360                 ring->queue_index = tx;
2361                 ring->reg_idx = tx;
2362 
2363                 adapter->tx_ring[tx] = ring;
2364         }
2365 
2366         for (; rx < adapter->num_rx_queues; rx++) {
2367                 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2368                 if (!ring)
2369                         goto err_allocation;
2370 
2371                 ring->dev = &adapter->pdev->dev;
2372                 ring->netdev = adapter->netdev;
2373 
2374                 ring->count = adapter->rx_ring_count;
2375                 ring->queue_index = rx;
2376                 ring->reg_idx = rx;
2377 
2378                 adapter->rx_ring[rx] = ring;
2379         }
2380 
2381         return 0;
2382 
2383 err_allocation:
2384         while (tx) {
2385                 kfree(adapter->tx_ring[--tx]);
2386                 adapter->tx_ring[tx] = NULL;
2387         }
2388 
2389         while (rx) {
2390                 kfree(adapter->rx_ring[--rx]);
2391                 adapter->rx_ring[rx] = NULL;
2392         }
2393         return -ENOMEM;
2394 }
2395 
2396 /**
2397  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2398  * @adapter: board private structure to initialize
2399  *
2400  * Attempt to configure the interrupts using the best available
2401  * capabilities of the hardware and the kernel.
2402  **/
2403 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2404 {
2405         struct net_device *netdev = adapter->netdev;
2406         int err = 0;
2407         int vector, v_budget;
2408 
2409         /*
2410          * It's easy to be greedy for MSI-X vectors, but it really
2411          * doesn't do us much good if we have a lot more vectors
2412          * than CPU's.  So let's be conservative and only ask for
2413          * (roughly) the same number of vectors as there are CPU's.
2414          * The default is to use pairs of vectors.
2415          */
2416         v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2417         v_budget = min_t(int, v_budget, num_online_cpus());
2418         v_budget += NON_Q_VECTORS;
2419 
2420         /* A failure in MSI-X entry allocation isn't fatal, but it does
2421          * mean we disable MSI-X capabilities of the adapter. */
2422         adapter->msix_entries = kcalloc(v_budget,
2423                                         sizeof(struct msix_entry), GFP_KERNEL);
2424         if (!adapter->msix_entries) {
2425                 err = -ENOMEM;
2426                 goto out;
2427         }
2428 
2429         for (vector = 0; vector < v_budget; vector++)
2430                 adapter->msix_entries[vector].entry = vector;
2431 
2432         err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2433         if (err)
2434                 goto out;
2435 
2436         err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2437         if (err)
2438                 goto out;
2439 
2440         err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2441 
2442 out:
2443         return err;
2444 }
2445 
2446 /**
2447  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2448  * @adapter: board private structure to initialize
2449  *
2450  * We allocate one q_vector per queue interrupt.  If allocation fails we
2451  * return -ENOMEM.
2452  **/
2453 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2454 {
2455         int q_idx, num_q_vectors;
2456         struct ixgbevf_q_vector *q_vector;
2457 
2458         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2459 
2460         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2461                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2462                 if (!q_vector)
2463                         goto err_out;
2464                 q_vector->adapter = adapter;
2465                 q_vector->v_idx = q_idx;
2466                 netif_napi_add(adapter->netdev, &q_vector->napi,
2467                                ixgbevf_poll, 64);
2468 #ifdef CONFIG_NET_RX_BUSY_POLL
2469                 napi_hash_add(&q_vector->napi);
2470 #endif
2471                 adapter->q_vector[q_idx] = q_vector;
2472         }
2473 
2474         return 0;
2475 
2476 err_out:
2477         while (q_idx) {
2478                 q_idx--;
2479                 q_vector = adapter->q_vector[q_idx];
2480 #ifdef CONFIG_NET_RX_BUSY_POLL
2481                 napi_hash_del(&q_vector->napi);
2482 #endif
2483                 netif_napi_del(&q_vector->napi);
2484                 kfree(q_vector);
2485                 adapter->q_vector[q_idx] = NULL;
2486         }
2487         return -ENOMEM;
2488 }
2489 
2490 /**
2491  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2492  * @adapter: board private structure to initialize
2493  *
2494  * This function frees the memory allocated to the q_vectors.  In addition if
2495  * NAPI is enabled it will delete any references to the NAPI struct prior
2496  * to freeing the q_vector.
2497  **/
2498 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2499 {
2500         int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2501 
2502         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2503                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2504 
2505                 adapter->q_vector[q_idx] = NULL;
2506 #ifdef CONFIG_NET_RX_BUSY_POLL
2507                 napi_hash_del(&q_vector->napi);
2508 #endif
2509                 netif_napi_del(&q_vector->napi);
2510                 kfree(q_vector);
2511         }
2512 }
2513 
2514 /**
2515  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2516  * @adapter: board private structure
2517  *
2518  **/
2519 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2520 {
2521         pci_disable_msix(adapter->pdev);
2522         kfree(adapter->msix_entries);
2523         adapter->msix_entries = NULL;
2524 }
2525 
2526 /**
2527  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2528  * @adapter: board private structure to initialize
2529  *
2530  **/
2531 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2532 {
2533         int err;
2534 
2535         /* Number of supported queues */
2536         ixgbevf_set_num_queues(adapter);
2537 
2538         err = ixgbevf_set_interrupt_capability(adapter);
2539         if (err) {
2540                 hw_dbg(&adapter->hw,
2541                        "Unable to setup interrupt capabilities\n");
2542                 goto err_set_interrupt;
2543         }
2544 
2545         err = ixgbevf_alloc_q_vectors(adapter);
2546         if (err) {
2547                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2548                        "vectors\n");
2549                 goto err_alloc_q_vectors;
2550         }
2551 
2552         err = ixgbevf_alloc_queues(adapter);
2553         if (err) {
2554                 pr_err("Unable to allocate memory for queues\n");
2555                 goto err_alloc_queues;
2556         }
2557 
2558         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2559                "Tx Queue count = %u\n",
2560                (adapter->num_rx_queues > 1) ? "Enabled" :
2561                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2562 
2563         set_bit(__IXGBEVF_DOWN, &adapter->state);
2564 
2565         return 0;
2566 err_alloc_queues:
2567         ixgbevf_free_q_vectors(adapter);
2568 err_alloc_q_vectors:
2569         ixgbevf_reset_interrupt_capability(adapter);
2570 err_set_interrupt:
2571         return err;
2572 }
2573 
2574 /**
2575  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2576  * @adapter: board private structure to clear interrupt scheme on
2577  *
2578  * We go through and clear interrupt specific resources and reset the structure
2579  * to pre-load conditions
2580  **/
2581 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2582 {
2583         int i;
2584 
2585         for (i = 0; i < adapter->num_tx_queues; i++) {
2586                 kfree(adapter->tx_ring[i]);
2587                 adapter->tx_ring[i] = NULL;
2588         }
2589         for (i = 0; i < adapter->num_rx_queues; i++) {
2590                 kfree(adapter->rx_ring[i]);
2591                 adapter->rx_ring[i] = NULL;
2592         }
2593 
2594         adapter->num_tx_queues = 0;
2595         adapter->num_rx_queues = 0;
2596 
2597         ixgbevf_free_q_vectors(adapter);
2598         ixgbevf_reset_interrupt_capability(adapter);
2599 }
2600 
2601 /**
2602  * ixgbevf_sw_init - Initialize general software structures
2603  * (struct ixgbevf_adapter)
2604  * @adapter: board private structure to initialize
2605  *
2606  * ixgbevf_sw_init initializes the Adapter private data structure.
2607  * Fields are initialized based on PCI device information and
2608  * OS network device settings (MTU size).
2609  **/
2610 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2611 {
2612         struct ixgbe_hw *hw = &adapter->hw;
2613         struct pci_dev *pdev = adapter->pdev;
2614         struct net_device *netdev = adapter->netdev;
2615         int err;
2616 
2617         /* PCI config space info */
2618 
2619         hw->vendor_id = pdev->vendor;
2620         hw->device_id = pdev->device;
2621         hw->revision_id = pdev->revision;
2622         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2623         hw->subsystem_device_id = pdev->subsystem_device;
2624 
2625         hw->mbx.ops.init_params(hw);
2626 
2627         /* assume legacy case in which PF would only give VF 2 queues */
2628         hw->mac.max_tx_queues = 2;
2629         hw->mac.max_rx_queues = 2;
2630 
2631         /* lock to protect mailbox accesses */
2632         spin_lock_init(&adapter->mbx_lock);
2633 
2634         err = hw->mac.ops.reset_hw(hw);
2635         if (err) {
2636                 dev_info(&pdev->dev,
2637                          "PF still in reset state.  Is the PF interface up?\n");
2638         } else {
2639                 err = hw->mac.ops.init_hw(hw);
2640                 if (err) {
2641                         pr_err("init_shared_code failed: %d\n", err);
2642                         goto out;
2643                 }
2644                 ixgbevf_negotiate_api(adapter);
2645                 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2646                 if (err)
2647                         dev_info(&pdev->dev, "Error reading MAC address\n");
2648                 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2649                         dev_info(&pdev->dev,
2650                                  "MAC address not assigned by administrator.\n");
2651                 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2652         }
2653 
2654         if (!is_valid_ether_addr(netdev->dev_addr)) {
2655                 dev_info(&pdev->dev, "Assigning random MAC address\n");
2656                 eth_hw_addr_random(netdev);
2657                 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2658         }
2659 
2660         /* Enable dynamic interrupt throttling rates */
2661         adapter->rx_itr_setting = 1;
2662         adapter->tx_itr_setting = 1;
2663 
2664         /* set default ring sizes */
2665         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2666         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2667 
2668         set_bit(__IXGBEVF_DOWN, &adapter->state);
2669         return 0;
2670 
2671 out:
2672         return err;
2673 }
2674 
2675 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2676         {                                                       \
2677                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2678                 if (current_counter < last_counter)             \
2679                         counter += 0x100000000LL;               \
2680                 last_counter = current_counter;                 \
2681                 counter &= 0xFFFFFFFF00000000LL;                \
2682                 counter |= current_counter;                     \
2683         }
2684 
2685 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2686         {                                                                \
2687                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2688                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2689                 u64 current_counter = (current_counter_msb << 32) |      \
2690                         current_counter_lsb;                             \
2691                 if (current_counter < last_counter)                      \
2692                         counter += 0x1000000000LL;                       \
2693                 last_counter = current_counter;                          \
2694                 counter &= 0xFFFFFFF000000000LL;                         \
2695                 counter |= current_counter;                              \
2696         }
2697 /**
2698  * ixgbevf_update_stats - Update the board statistics counters.
2699  * @adapter: board private structure
2700  **/
2701 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2702 {
2703         struct ixgbe_hw *hw = &adapter->hw;
2704         int i;
2705 
2706         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2707             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2708                 return;
2709 
2710         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2711                                 adapter->stats.vfgprc);
2712         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2713                                 adapter->stats.vfgptc);
2714         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2715                                 adapter->stats.last_vfgorc,
2716                                 adapter->stats.vfgorc);
2717         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2718                                 adapter->stats.last_vfgotc,
2719                                 adapter->stats.vfgotc);
2720         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2721                                 adapter->stats.vfmprc);
2722 
2723         for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2724                 adapter->hw_csum_rx_error +=
2725                         adapter->rx_ring[i]->hw_csum_rx_error;
2726                 adapter->rx_ring[i]->hw_csum_rx_error = 0;
2727         }
2728 }
2729 
2730 /**
2731  * ixgbevf_service_timer - Timer Call-back
2732  * @data: pointer to adapter cast into an unsigned long
2733  **/
2734 static void ixgbevf_service_timer(unsigned long data)
2735 {
2736         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2737 
2738         /* Reset the timer */
2739         mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2740 
2741         ixgbevf_service_event_schedule(adapter);
2742 }
2743 
2744 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2745 {
2746         if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2747                 return;
2748 
2749         adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2750 
2751         /* If we're already down or resetting, just bail */
2752         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2753             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2754                 return;
2755 
2756         adapter->tx_timeout_count++;
2757 
2758         ixgbevf_reinit_locked(adapter);
2759 }
2760 
2761 /* ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2762  * @adapter - pointer to the device adapter structure
2763  *
2764  * This function serves two purposes.  First it strobes the interrupt lines
2765  * in order to make certain interrupts are occurring.  Secondly it sets the
2766  * bits needed to check for TX hangs.  As a result we should immediately
2767  * determine if a hang has occurred.
2768  */
2769 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2770 {
2771         struct ixgbe_hw *hw = &adapter->hw;
2772         u32 eics = 0;
2773         int i;
2774 
2775         /* If we're down or resetting, just bail */
2776         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2777             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2778                 return;
2779 
2780         /* Force detection of hung controller */
2781         if (netif_carrier_ok(adapter->netdev)) {
2782                 for (i = 0; i < adapter->num_tx_queues; i++)
2783                         set_check_for_tx_hang(adapter->tx_ring[i]);
2784         }
2785 
2786         /* get one bit for every active tx/rx interrupt vector */
2787         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2788                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2789 
2790                 if (qv->rx.ring || qv->tx.ring)
2791                         eics |= 1 << i;
2792         }
2793 
2794         /* Cause software interrupt to ensure rings are cleaned */
2795         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2796 }
2797 
2798 /**
2799  * ixgbevf_watchdog_update_link - update the link status
2800  * @adapter - pointer to the device adapter structure
2801  **/
2802 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2803 {
2804         struct ixgbe_hw *hw = &adapter->hw;
2805         u32 link_speed = adapter->link_speed;
2806         bool link_up = adapter->link_up;
2807         s32 err;
2808 
2809         spin_lock_bh(&adapter->mbx_lock);
2810 
2811         err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2812 
2813         spin_unlock_bh(&adapter->mbx_lock);
2814 
2815         /* if check for link returns error we will need to reset */
2816         if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2817                 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2818                 link_up = false;
2819         }
2820 
2821         adapter->link_up = link_up;
2822         adapter->link_speed = link_speed;
2823 }
2824 
2825 /**
2826  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2827  *                               print link up message
2828  * @adapter - pointer to the device adapter structure
2829  **/
2830 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2831 {
2832         struct net_device *netdev = adapter->netdev;
2833 
2834         /* only continue if link was previously down */
2835         if (netif_carrier_ok(netdev))
2836                 return;
2837 
2838         dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2839                  (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2840                  "10 Gbps" :
2841                  (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2842                  "1 Gbps" :
2843                  (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2844                  "100 Mbps" :
2845                  "unknown speed");
2846 
2847         netif_carrier_on(netdev);
2848 }
2849 
2850 /**
2851  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2852  *                                 print link down message
2853  * @adapter - pointer to the adapter structure
2854  **/
2855 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2856 {
2857         struct net_device *netdev = adapter->netdev;
2858 
2859         adapter->link_speed = 0;
2860 
2861         /* only continue if link was up previously */
2862         if (!netif_carrier_ok(netdev))
2863                 return;
2864 
2865         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2866 
2867         netif_carrier_off(netdev);
2868 }
2869 
2870 /**
2871  * ixgbevf_watchdog_subtask - worker thread to bring link up
2872  * @work: pointer to work_struct containing our data
2873  **/
2874 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2875 {
2876         /* if interface is down do nothing */
2877         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2878             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2879                 return;
2880 
2881         ixgbevf_watchdog_update_link(adapter);
2882 
2883         if (adapter->link_up)
2884                 ixgbevf_watchdog_link_is_up(adapter);
2885         else
2886                 ixgbevf_watchdog_link_is_down(adapter);
2887 
2888         ixgbevf_update_stats(adapter);
2889 }
2890 
2891 /**
2892  * ixgbevf_service_task - manages and runs subtasks
2893  * @work: pointer to work_struct containing our data
2894  **/
2895 static void ixgbevf_service_task(struct work_struct *work)
2896 {
2897         struct ixgbevf_adapter *adapter = container_of(work,
2898                                                        struct ixgbevf_adapter,
2899                                                        service_task);
2900         struct ixgbe_hw *hw = &adapter->hw;
2901 
2902         if (IXGBE_REMOVED(hw->hw_addr)) {
2903                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2904                         rtnl_lock();
2905                         ixgbevf_down(adapter);
2906                         rtnl_unlock();
2907                 }
2908                 return;
2909         }
2910 
2911         ixgbevf_queue_reset_subtask(adapter);
2912         ixgbevf_reset_subtask(adapter);
2913         ixgbevf_watchdog_subtask(adapter);
2914         ixgbevf_check_hang_subtask(adapter);
2915 
2916         ixgbevf_service_event_complete(adapter);
2917 }
2918 
2919 /**
2920  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2921  * @tx_ring: Tx descriptor ring for a specific queue
2922  *
2923  * Free all transmit software resources
2924  **/
2925 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2926 {
2927         ixgbevf_clean_tx_ring(tx_ring);
2928 
2929         vfree(tx_ring->tx_buffer_info);
2930         tx_ring->tx_buffer_info = NULL;
2931 
2932         /* if not set, then don't free */
2933         if (!tx_ring->desc)
2934                 return;
2935 
2936         dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2937                           tx_ring->dma);
2938 
2939         tx_ring->desc = NULL;
2940 }
2941 
2942 /**
2943  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2944  * @adapter: board private structure
2945  *
2946  * Free all transmit software resources
2947  **/
2948 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2949 {
2950         int i;
2951 
2952         for (i = 0; i < adapter->num_tx_queues; i++)
2953                 if (adapter->tx_ring[i]->desc)
2954                         ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2955 }
2956 
2957 /**
2958  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2959  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2960  *
2961  * Return 0 on success, negative on failure
2962  **/
2963 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2964 {
2965         int size;
2966 
2967         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2968         tx_ring->tx_buffer_info = vzalloc(size);
2969         if (!tx_ring->tx_buffer_info)
2970                 goto err;
2971 
2972         /* round up to nearest 4K */
2973         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2974         tx_ring->size = ALIGN(tx_ring->size, 4096);
2975 
2976         tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2977                                            &tx_ring->dma, GFP_KERNEL);
2978         if (!tx_ring->desc)
2979                 goto err;
2980 
2981         return 0;
2982 
2983 err:
2984         vfree(tx_ring->tx_buffer_info);
2985         tx_ring->tx_buffer_info = NULL;
2986         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2987                "descriptor ring\n");
2988         return -ENOMEM;
2989 }
2990 
2991 /**
2992  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2993  * @adapter: board private structure
2994  *
2995  * If this function returns with an error, then it's possible one or
2996  * more of the rings is populated (while the rest are not).  It is the
2997  * callers duty to clean those orphaned rings.
2998  *
2999  * Return 0 on success, negative on failure
3000  **/
3001 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3002 {
3003         int i, err = 0;
3004 
3005         for (i = 0; i < adapter->num_tx_queues; i++) {
3006                 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3007                 if (!err)
3008                         continue;
3009                 hw_dbg(&adapter->hw,
3010                        "Allocation for Tx Queue %u failed\n", i);
3011                 break;
3012         }
3013 
3014         return err;
3015 }
3016 
3017 /**
3018  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3019  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
3020  *
3021  * Returns 0 on success, negative on failure
3022  **/
3023 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3024 {
3025         int size;
3026 
3027         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3028         rx_ring->rx_buffer_info = vzalloc(size);
3029         if (!rx_ring->rx_buffer_info)
3030                 goto err;
3031 
3032         /* Round up to nearest 4K */
3033         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3034         rx_ring->size = ALIGN(rx_ring->size, 4096);
3035 
3036         rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3037                                            &rx_ring->dma, GFP_KERNEL);
3038 
3039         if (!rx_ring->desc)
3040                 goto err;
3041 
3042         return 0;
3043 err:
3044         vfree(rx_ring->rx_buffer_info);
3045         rx_ring->rx_buffer_info = NULL;
3046         dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3047         return -ENOMEM;
3048 }
3049 
3050 /**
3051  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3052  * @adapter: board private structure
3053  *
3054  * If this function returns with an error, then it's possible one or
3055  * more of the rings is populated (while the rest are not).  It is the
3056  * callers duty to clean those orphaned rings.
3057  *
3058  * Return 0 on success, negative on failure
3059  **/
3060 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3061 {
3062         int i, err = 0;
3063 
3064         for (i = 0; i < adapter->num_rx_queues; i++) {
3065                 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3066                 if (!err)
3067                         continue;
3068                 hw_dbg(&adapter->hw,
3069                        "Allocation for Rx Queue %u failed\n", i);
3070                 break;
3071         }
3072         return err;
3073 }
3074 
3075 /**
3076  * ixgbevf_free_rx_resources - Free Rx Resources
3077  * @rx_ring: ring to clean the resources from
3078  *
3079  * Free all receive software resources
3080  **/
3081 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3082 {
3083         ixgbevf_clean_rx_ring(rx_ring);
3084 
3085         vfree(rx_ring->rx_buffer_info);
3086         rx_ring->rx_buffer_info = NULL;
3087 
3088         dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3089                           rx_ring->dma);
3090 
3091         rx_ring->desc = NULL;
3092 }
3093 
3094 /**
3095  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3096  * @adapter: board private structure
3097  *
3098  * Free all receive software resources
3099  **/
3100 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3101 {
3102         int i;
3103 
3104         for (i = 0; i < adapter->num_rx_queues; i++)
3105                 if (adapter->rx_ring[i]->desc)
3106                         ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3107 }
3108 
3109 /**
3110  * ixgbevf_open - Called when a network interface is made active
3111  * @netdev: network interface device structure
3112  *
3113  * Returns 0 on success, negative value on failure
3114  *
3115  * The open entry point is called when a network interface is made
3116  * active by the system (IFF_UP).  At this point all resources needed
3117  * for transmit and receive operations are allocated, the interrupt
3118  * handler is registered with the OS, the watchdog timer is started,
3119  * and the stack is notified that the interface is ready.
3120  **/
3121 static int ixgbevf_open(struct net_device *netdev)
3122 {
3123         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3124         struct ixgbe_hw *hw = &adapter->hw;
3125         int err;
3126 
3127         /* A previous failure to open the device because of a lack of
3128          * available MSIX vector resources may have reset the number
3129          * of msix vectors variable to zero.  The only way to recover
3130          * is to unload/reload the driver and hope that the system has
3131          * been able to recover some MSIX vector resources.
3132          */
3133         if (!adapter->num_msix_vectors)
3134                 return -ENOMEM;
3135 
3136         if (hw->adapter_stopped) {
3137                 ixgbevf_reset(adapter);
3138                 /* if adapter is still stopped then PF isn't up and
3139                  * the vf can't start. */
3140                 if (hw->adapter_stopped) {
3141                         err = IXGBE_ERR_MBX;
3142                         pr_err("Unable to start - perhaps the PF Driver isn't "
3143                                "up yet\n");
3144                         goto err_setup_reset;
3145                 }
3146         }
3147 
3148         /* disallow open during test */
3149         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3150                 return -EBUSY;
3151 
3152         netif_carrier_off(netdev);
3153 
3154         /* allocate transmit descriptors */
3155         err = ixgbevf_setup_all_tx_resources(adapter);
3156         if (err)
3157                 goto err_setup_tx;
3158 
3159         /* allocate receive descriptors */
3160         err = ixgbevf_setup_all_rx_resources(adapter);
3161         if (err)
3162                 goto err_setup_rx;
3163 
3164         ixgbevf_configure(adapter);
3165 
3166         /*
3167          * Map the Tx/Rx rings to the vectors we were allotted.
3168          * if request_irq will be called in this function map_rings
3169          * must be called *before* up_complete
3170          */
3171         ixgbevf_map_rings_to_vectors(adapter);
3172 
3173         err = ixgbevf_request_irq(adapter);
3174         if (err)
3175                 goto err_req_irq;
3176 
3177         ixgbevf_up_complete(adapter);
3178 
3179         return 0;
3180 
3181 err_req_irq:
3182         ixgbevf_down(adapter);
3183 err_setup_rx:
3184         ixgbevf_free_all_rx_resources(adapter);
3185 err_setup_tx:
3186         ixgbevf_free_all_tx_resources(adapter);
3187         ixgbevf_reset(adapter);
3188 
3189 err_setup_reset:
3190 
3191         return err;
3192 }
3193 
3194 /**
3195  * ixgbevf_close - Disables a network interface
3196  * @netdev: network interface device structure
3197  *
3198  * Returns 0, this is not allowed to fail
3199  *
3200  * The close entry point is called when an interface is de-activated
3201  * by the OS.  The hardware is still under the drivers control, but
3202  * needs to be disabled.  A global MAC reset is issued to stop the
3203  * hardware, and all transmit and receive resources are freed.
3204  **/
3205 static int ixgbevf_close(struct net_device *netdev)
3206 {
3207         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3208 
3209         ixgbevf_down(adapter);
3210         ixgbevf_free_irq(adapter);
3211 
3212         ixgbevf_free_all_tx_resources(adapter);
3213         ixgbevf_free_all_rx_resources(adapter);
3214 
3215         return 0;
3216 }
3217 
3218 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3219 {
3220         struct net_device *dev = adapter->netdev;
3221 
3222         if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3223                 return;
3224 
3225         adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3226 
3227         /* if interface is down do nothing */
3228         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3229             test_bit(__IXGBEVF_RESETTING, &adapter->state))
3230                 return;
3231 
3232         /* Hardware has to reinitialize queues and interrupts to
3233          * match packet buffer alignment. Unfortunately, the
3234          * hardware is not flexible enough to do this dynamically.
3235          */
3236         if (netif_running(dev))
3237                 ixgbevf_close(dev);
3238 
3239         ixgbevf_clear_interrupt_scheme(adapter);
3240         ixgbevf_init_interrupt_scheme(adapter);
3241 
3242         if (netif_running(dev))
3243                 ixgbevf_open(dev);
3244 }
3245 
3246 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3247                                 u32 vlan_macip_lens, u32 type_tucmd,
3248                                 u32 mss_l4len_idx)
3249 {
3250         struct ixgbe_adv_tx_context_desc *context_desc;
3251         u16 i = tx_ring->next_to_use;
3252 
3253         context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3254 
3255         i++;
3256         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3257 
3258         /* set bits to identify this as an advanced context descriptor */
3259         type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3260 
3261         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
3262         context_desc->seqnum_seed       = 0;
3263         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
3264         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
3265 }
3266 
3267 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3268                        struct ixgbevf_tx_buffer *first,
3269                        u8 *hdr_len)
3270 {
3271         struct sk_buff *skb = first->skb;
3272         u32 vlan_macip_lens, type_tucmd;
3273         u32 mss_l4len_idx, l4len;
3274         int err;
3275 
3276         if (skb->ip_summed != CHECKSUM_PARTIAL)
3277                 return 0;
3278 
3279         if (!skb_is_gso(skb))
3280                 return 0;
3281 
3282         err = skb_cow_head(skb, 0);
3283         if (err < 0)
3284                 return err;
3285 
3286         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3287         type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3288 
3289         if (first->protocol == htons(ETH_P_IP)) {
3290                 struct iphdr *iph = ip_hdr(skb);
3291                 iph->tot_len = 0;
3292                 iph->check = 0;
3293                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3294                                                          iph->daddr, 0,
3295                                                          IPPROTO_TCP,
3296                                                          0);
3297                 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3298                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3299                                    IXGBE_TX_FLAGS_CSUM |
3300                                    IXGBE_TX_FLAGS_IPV4;
3301         } else if (skb_is_gso_v6(skb)) {
3302                 ipv6_hdr(skb)->payload_len = 0;
3303                 tcp_hdr(skb)->check =
3304                     ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3305                                      &ipv6_hdr(skb)->daddr,
3306                                      0, IPPROTO_TCP, 0);
3307                 first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3308                                    IXGBE_TX_FLAGS_CSUM;
3309         }
3310 
3311         /* compute header lengths */
3312         l4len = tcp_hdrlen(skb);
3313         *hdr_len += l4len;
3314         *hdr_len = skb_transport_offset(skb) + l4len;
3315 
3316         /* update gso size and bytecount with header size */
3317         first->gso_segs = skb_shinfo(skb)->gso_segs;
3318         first->bytecount += (first->gso_segs - 1) * *hdr_len;
3319 
3320         /* mss_l4len_id: use 1 as index for TSO */
3321         mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3322         mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3323         mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3324 
3325         /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3326         vlan_macip_lens = skb_network_header_len(skb);
3327         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3328         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3329 
3330         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3331                             type_tucmd, mss_l4len_idx);
3332 
3333         return 1;
3334 }
3335 
3336 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3337                             struct ixgbevf_tx_buffer *first)
3338 {
3339         struct sk_buff *skb = first->skb;
3340         u32 vlan_macip_lens = 0;
3341         u32 mss_l4len_idx = 0;
3342         u32 type_tucmd = 0;
3343 
3344         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3345                 u8 l4_hdr = 0;
3346                 switch (first->protocol) {
3347                 case htons(ETH_P_IP):
3348                         vlan_macip_lens |= skb_network_header_len(skb);
3349                         type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3350                         l4_hdr = ip_hdr(skb)->protocol;
3351                         break;
3352                 case htons(ETH_P_IPV6):
3353                         vlan_macip_lens |= skb_network_header_len(skb);
3354                         l4_hdr = ipv6_hdr(skb)->nexthdr;
3355                         break;
3356                 default:
3357                         if (unlikely(net_ratelimit())) {
3358                                 dev_warn(tx_ring->dev,
3359                                  "partial checksum but proto=%x!\n",
3360                                  first->protocol);
3361                         }
3362                         break;
3363                 }
3364 
3365                 switch (l4_hdr) {
3366                 case IPPROTO_TCP:
3367                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3368                         mss_l4len_idx = tcp_hdrlen(skb) <<
3369                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3370                         break;
3371                 case IPPROTO_SCTP:
3372                         type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3373                         mss_l4len_idx = sizeof(struct sctphdr) <<
3374                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3375                         break;
3376                 case IPPROTO_UDP:
3377                         mss_l4len_idx = sizeof(struct udphdr) <<
3378                                         IXGBE_ADVTXD_L4LEN_SHIFT;
3379                         break;
3380                 default:
3381                         if (unlikely(net_ratelimit())) {
3382                                 dev_warn(tx_ring->dev,
3383                                  "partial checksum but l4 proto=%x!\n",
3384                                  l4_hdr);
3385                         }
3386                         break;
3387                 }
3388 
3389                 /* update TX checksum flag */
3390                 first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3391         }
3392 
3393         /* vlan_macip_lens: MACLEN, VLAN tag */
3394         vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3395         vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3396 
3397         ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3398                             type_tucmd, mss_l4len_idx);
3399 }
3400 
3401 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3402 {
3403         /* set type for advanced descriptor with frame checksum insertion */
3404         __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3405                                       IXGBE_ADVTXD_DCMD_IFCS |
3406                                       IXGBE_ADVTXD_DCMD_DEXT);
3407 
3408         /* set HW vlan bit if vlan is present */
3409         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3410                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3411 
3412         /* set segmentation enable bits for TSO/FSO */
3413         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3414                 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3415 
3416         return cmd_type;
3417 }
3418 
3419 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3420                                      u32 tx_flags, unsigned int paylen)
3421 {
3422         __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3423 
3424         /* enable L4 checksum for TSO and TX checksum offload */
3425         if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3426                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3427 
3428         /* enble IPv4 checksum for TSO */
3429         if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3430                 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3431 
3432         /* use index 1 context for TSO/FSO/FCOE */
3433         if (tx_flags & IXGBE_TX_FLAGS_TSO)
3434                 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3435 
3436         /* Check Context must be set if Tx switch is enabled, which it
3437          * always is for case where virtual functions are running
3438          */
3439         olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3440 
3441         tx_desc->read.olinfo_status = olinfo_status;
3442 }
3443 
3444 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3445                            struct ixgbevf_tx_buffer *first,
3446                            const u8 hdr_len)
3447 {
3448         dma_addr_t dma;
3449         struct sk_buff *skb = first->skb;
3450         struct ixgbevf_tx_buffer *tx_buffer;
3451         union ixgbe_adv_tx_desc *tx_desc;
3452         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3453         unsigned int data_len = skb->data_len;
3454         unsigned int size = skb_headlen(skb);
3455         unsigned int paylen = skb->len - hdr_len;
3456         u32 tx_flags = first->tx_flags;
3457         __le32 cmd_type;
3458         u16 i = tx_ring->next_to_use;
3459 
3460         tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3461 
3462         ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3463         cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3464 
3465         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3466         if (dma_mapping_error(tx_ring->dev, dma))
3467                 goto dma_error;
3468 
3469         /* record length, and DMA address */
3470         dma_unmap_len_set(first, len, size);
3471         dma_unmap_addr_set(first, dma, dma);
3472 
3473         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3474 
3475         for (;;) {
3476                 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3477                         tx_desc->read.cmd_type_len =
3478                                 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3479 
3480                         i++;
3481                         tx_desc++;
3482                         if (i == tx_ring->count) {
3483                                 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3484                                 i = 0;
3485                         }
3486 
3487                         dma += IXGBE_MAX_DATA_PER_TXD;
3488                         size -= IXGBE_MAX_DATA_PER_TXD;
3489 
3490                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
3491                         tx_desc->read.olinfo_status = 0;
3492                 }
3493 
3494                 if (likely(!data_len))
3495                         break;
3496 
3497                 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3498 
3499                 i++;
3500                 tx_desc++;
3501                 if (i == tx_ring->count) {
3502                         tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3503                         i = 0;
3504                 }
3505 
3506                 size = skb_frag_size(frag);
3507                 data_len -= size;
3508 
3509                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3510                                        DMA_TO_DEVICE);
3511                 if (dma_mapping_error(tx_ring->dev, dma))
3512                         goto dma_error;
3513 
3514                 tx_buffer = &tx_ring->tx_buffer_info[i];
3515                 dma_unmap_len_set(tx_buffer, len, size);
3516                 dma_unmap_addr_set(tx_buffer, dma, dma);
3517 
3518                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
3519                 tx_desc->read.olinfo_status = 0;
3520 
3521                 frag++;
3522         }
3523 
3524         /* write last descriptor with RS and EOP bits */
3525         cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3526         tx_desc->read.cmd_type_len = cmd_type;
3527 
3528         /* set the timestamp */
3529         first->time_stamp = jiffies;
3530 
3531         /* Force memory writes to complete before letting h/w know there
3532          * are new descriptors to fetch.  (Only applicable for weak-ordered
3533          * memory model archs, such as IA-64).
3534          *
3535          * We also need this memory barrier (wmb) to make certain all of the
3536          * status bits have been updated before next_to_watch is written.
3537          */
3538         wmb();
3539 
3540         /* set next_to_watch value indicating a packet is present */
3541         first->next_to_watch = tx_desc;
3542 
3543         i++;
3544         if (i == tx_ring->count)
3545                 i = 0;
3546 
3547         tx_ring->next_to_use = i;
3548 
3549         /* notify HW of packet */
3550         ixgbevf_write_tail(tx_ring, i);
3551 
3552         return;
3553 dma_error:
3554         dev_err(tx_ring->dev, "TX DMA map failed\n");
3555 
3556         /* clear dma mappings for failed tx_buffer_info map */
3557         for (;;) {
3558                 tx_buffer = &tx_ring->tx_buffer_info[i];
3559                 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3560                 if (tx_buffer == first)
3561                         break;
3562                 if (i == 0)
3563                         i = tx_ring->count;
3564                 i--;
3565         }
3566 
3567         tx_ring->next_to_use = i;
3568 }
3569 
3570 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3571 {
3572         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3573         /* Herbert's original patch had:
3574          *  smp_mb__after_netif_stop_queue();
3575          * but since that doesn't exist yet, just open code it. */
3576         smp_mb();
3577 
3578         /* We need to check again in a case another CPU has just
3579          * made room available. */
3580         if (likely(ixgbevf_desc_unused(tx_ring) < size))
3581                 return -EBUSY;
3582 
3583         /* A reprieve! - use start_queue because it doesn't call schedule */
3584         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3585         ++tx_ring->tx_stats.restart_queue;
3586 
3587         return 0;
3588 }
3589 
3590 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3591 {
3592         if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3593                 return 0;
3594         return __ixgbevf_maybe_stop_tx(tx_ring, size);
3595 }
3596 
3597 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3598 {
3599         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3600         struct ixgbevf_tx_buffer *first;
3601         struct ixgbevf_ring *tx_ring;
3602         int tso;
3603         u32 tx_flags = 0;
3604         u16 count = TXD_USE_COUNT(skb_headlen(skb));
3605 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3606         unsigned short f;
3607 #endif
3608         u8 hdr_len = 0;
3609         u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3610 
3611         if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3612                 dev_kfree_skb(skb);
3613                 return NETDEV_TX_OK;
3614         }
3615 
3616         tx_ring = adapter->tx_ring[skb->queue_mapping];
3617 
3618         /*
3619          * need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3620          *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3621          *       + 2 desc gap to keep tail from touching head,
3622          *       + 1 desc for context descriptor,
3623          * otherwise try next time
3624          */
3625 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3626         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3627                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3628 #else
3629         count += skb_shinfo(skb)->nr_frags;
3630 #endif
3631         if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3632                 tx_ring->tx_stats.tx_busy++;
3633                 return NETDEV_TX_BUSY;
3634         }
3635 
3636         /* record the location of the first descriptor for this packet */
3637         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3638         first->skb = skb;
3639         first->bytecount = skb->len;
3640         first->gso_segs = 1;
3641 
3642         if (skb_vlan_tag_present(skb)) {
3643                 tx_flags |= skb_vlan_tag_get(skb);
3644                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3645                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3646         }
3647 
3648         /* record initial flags and protocol */
3649         first->tx_flags = tx_flags;
3650         first->protocol = vlan_get_protocol(skb);
3651 
3652         tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3653         if (tso < 0)
3654                 goto out_drop;
3655         else if (!tso)
3656                 ixgbevf_tx_csum(tx_ring, first);
3657 
3658         ixgbevf_tx_map(tx_ring, first, hdr_len);
3659 
3660         ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3661 
3662         return NETDEV_TX_OK;
3663 
3664 out_drop:
3665         dev_kfree_skb_any(first->skb);
3666         first->skb = NULL;
3667 
3668         return NETDEV_TX_OK;
3669 }
3670 
3671 /**
3672  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3673  * @netdev: network interface device structure
3674  * @p: pointer to an address structure
3675  *
3676  * Returns 0 on success, negative on failure
3677  **/
3678 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3679 {
3680         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3681         struct ixgbe_hw *hw = &adapter->hw;
3682         struct sockaddr *addr = p;
3683 
3684         if (!is_valid_ether_addr(addr->sa_data))
3685                 return -EADDRNOTAVAIL;
3686 
3687         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3688         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3689 
3690         spin_lock_bh(&adapter->mbx_lock);
3691 
3692         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3693 
3694         spin_unlock_bh(&adapter->mbx_lock);
3695 
3696         return 0;
3697 }
3698 
3699 /**
3700  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3701  * @netdev: network interface device structure
3702  * @new_mtu: new value for maximum frame size
3703  *
3704  * Returns 0 on success, negative on failure
3705  **/
3706 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3707 {
3708         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3709         struct ixgbe_hw *hw = &adapter->hw;
3710         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3711         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3712 
3713         switch (adapter->hw.api_version) {
3714         case ixgbe_mbox_api_11:
3715                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3716                 break;
3717         default:
3718                 if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3719                         max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3720                 break;
3721         }
3722 
3723         /* MTU < 68 is an error and causes problems on some kernels */
3724         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3725                 return -EINVAL;
3726 
3727         hw_dbg(hw, "changing MTU from %d to %d\n",
3728                netdev->mtu, new_mtu);
3729         /* must set new MTU before calling down or up */
3730         netdev->mtu = new_mtu;
3731 
3732         /* notify the PF of our intent to use this size of frame */
3733         ixgbevf_rlpml_set_vf(hw, max_frame);
3734 
3735         return 0;
3736 }
3737 
3738 #ifdef CONFIG_NET_POLL_CONTROLLER
3739 /* Polling 'interrupt' - used by things like netconsole to send skbs
3740  * without having to re-enable interrupts. It's not called while
3741  * the interrupt routine is executing.
3742  */
3743 static void ixgbevf_netpoll(struct net_device *netdev)
3744 {
3745         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3746         int i;
3747 
3748         /* if interface is down do nothing */
3749         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3750                 return;
3751         for (i = 0; i < adapter->num_rx_queues; i++)
3752                 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3753 }
3754 #endif /* CONFIG_NET_POLL_CONTROLLER */
3755 
3756 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3757 {
3758         struct net_device *netdev = pci_get_drvdata(pdev);
3759         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3760 #ifdef CONFIG_PM
3761         int retval = 0;
3762 #endif
3763 
3764         netif_device_detach(netdev);
3765 
3766         if (netif_running(netdev)) {
3767                 rtnl_lock();
3768                 ixgbevf_down(adapter);
3769                 ixgbevf_free_irq(adapter);
3770                 ixgbevf_free_all_tx_resources(adapter);
3771                 ixgbevf_free_all_rx_resources(adapter);
3772                 rtnl_unlock();
3773         }
3774 
3775         ixgbevf_clear_interrupt_scheme(adapter);
3776 
3777 #ifdef CONFIG_PM
3778         retval = pci_save_state(pdev);
3779         if (retval)
3780                 return retval;
3781 
3782 #endif
3783         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3784                 pci_disable_device(pdev);
3785 
3786         return 0;
3787 }
3788 
3789 #ifdef CONFIG_PM
3790 static int ixgbevf_resume(struct pci_dev *pdev)
3791 {
3792         struct net_device *netdev = pci_get_drvdata(pdev);
3793         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3794         u32 err;
3795 
3796         pci_restore_state(pdev);
3797         /*
3798          * pci_restore_state clears dev->state_saved so call
3799          * pci_save_state to restore it.
3800          */
3801         pci_save_state(pdev);
3802 
3803         err = pci_enable_device_mem(pdev);
3804         if (err) {
3805                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3806                 return err;
3807         }
3808         smp_mb__before_atomic();
3809         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3810         pci_set_master(pdev);
3811 
3812         ixgbevf_reset(adapter);
3813 
3814         rtnl_lock();
3815         err = ixgbevf_init_interrupt_scheme(adapter);
3816         rtnl_unlock();
3817         if (err) {
3818                 dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3819                 return err;
3820         }
3821 
3822         if (netif_running(netdev)) {
3823                 err = ixgbevf_open(netdev);
3824                 if (err)
3825                         return err;
3826         }
3827 
3828         netif_device_attach(netdev);
3829 
3830         return err;
3831 }
3832 
3833 #endif /* CONFIG_PM */
3834 static void ixgbevf_shutdown(struct pci_dev *pdev)
3835 {
3836         ixgbevf_suspend(pdev, PMSG_SUSPEND);
3837 }
3838 
3839 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3840                                                 struct rtnl_link_stats64 *stats)
3841 {
3842         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3843         unsigned int start;
3844         u64 bytes, packets;
3845         const struct ixgbevf_ring *ring;
3846         int i;
3847 
3848         ixgbevf_update_stats(adapter);
3849 
3850         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3851 
3852         for (i = 0; i < adapter->num_rx_queues; i++) {
3853                 ring = adapter->rx_ring[i];
3854                 do {
3855                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3856                         bytes = ring->stats.bytes;
3857                         packets = ring->stats.packets;
3858                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3859                 stats->rx_bytes += bytes;
3860                 stats->rx_packets += packets;
3861         }
3862 
3863         for (i = 0; i < adapter->num_tx_queues; i++) {
3864                 ring = adapter->tx_ring[i];
3865                 do {
3866                         start = u64_stats_fetch_begin_irq(&ring->syncp);
3867                         bytes = ring->stats.bytes;
3868                         packets = ring->stats.packets;
3869                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3870                 stats->tx_bytes += bytes;
3871                 stats->tx_packets += packets;
3872         }
3873 
3874         return stats;
3875 }
3876 
3877 static const struct net_device_ops ixgbevf_netdev_ops = {
3878         .ndo_open               = ixgbevf_open,
3879         .ndo_stop               = ixgbevf_close,
3880         .ndo_start_xmit         = ixgbevf_xmit_frame,
3881         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3882         .ndo_get_stats64        = ixgbevf_get_stats,
3883         .ndo_validate_addr      = eth_validate_addr,
3884         .ndo_set_mac_address    = ixgbevf_set_mac,
3885         .ndo_change_mtu         = ixgbevf_change_mtu,
3886         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3887         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3888         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3889 #ifdef CONFIG_NET_RX_BUSY_POLL
3890         .ndo_busy_poll          = ixgbevf_busy_poll_recv,
3891 #endif
3892 #ifdef CONFIG_NET_POLL_CONTROLLER
3893         .ndo_poll_controller    = ixgbevf_netpoll,
3894 #endif
3895 };
3896 
3897 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3898 {
3899         dev->netdev_ops = &ixgbevf_netdev_ops;
3900         ixgbevf_set_ethtool_ops(dev);
3901         dev->watchdog_timeo = 5 * HZ;
3902 }
3903 
3904 /**
3905  * ixgbevf_probe - Device Initialization Routine
3906  * @pdev: PCI device information struct
3907  * @ent: entry in ixgbevf_pci_tbl
3908  *
3909  * Returns 0 on success, negative on failure
3910  *
3911  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3912  * The OS initialization, configuring of the adapter private structure,
3913  * and a hardware reset occur.
3914  **/
3915 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3916 {
3917         struct net_device *netdev;
3918         struct ixgbevf_adapter *adapter = NULL;
3919         struct ixgbe_hw *hw = NULL;
3920         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3921         int err, pci_using_dac;
3922         bool disable_dev = false;
3923 
3924         err = pci_enable_device(pdev);
3925         if (err)
3926                 return err;
3927 
3928         if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3929                 pci_using_dac = 1;
3930         } else {
3931                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3932                 if (err) {
3933                         dev_err(&pdev->dev, "No usable DMA "
3934                                 "configuration, aborting\n");
3935                         goto err_dma;
3936                 }
3937                 pci_using_dac = 0;
3938         }
3939 
3940         err = pci_request_regions(pdev, ixgbevf_driver_name);
3941         if (err) {
3942                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3943                 goto err_pci_reg;
3944         }
3945 
3946         pci_set_master(pdev);
3947 
3948         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3949                                    MAX_TX_QUEUES);
3950         if (!netdev) {
3951                 err = -ENOMEM;
3952                 goto err_alloc_etherdev;
3953         }
3954 
3955         SET_NETDEV_DEV(netdev, &pdev->dev);
3956 
3957         adapter = netdev_priv(netdev);
3958 
3959         adapter->netdev = netdev;
3960         adapter->pdev = pdev;
3961         hw = &adapter->hw;
3962         hw->back = adapter;
3963         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3964 
3965         /*
3966          * call save state here in standalone driver because it relies on
3967          * adapter struct to exist, and needs to call netdev_priv
3968          */
3969         pci_save_state(pdev);
3970 
3971         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3972                               pci_resource_len(pdev, 0));
3973         adapter->io_addr = hw->hw_addr;
3974         if (!hw->hw_addr) {
3975                 err = -EIO;
3976                 goto err_ioremap;
3977         }
3978 
3979         ixgbevf_assign_netdev_ops(netdev);
3980 
3981         /* Setup hw api */
3982         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3983         hw->mac.type  = ii->mac;
3984 
3985         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3986                sizeof(struct ixgbe_mbx_operations));
3987 
3988         /* setup the private structure */
3989         err = ixgbevf_sw_init(adapter);
3990         if (err)
3991                 goto err_sw_init;
3992 
3993         /* The HW MAC address was set and/or determined in sw_init */
3994         if (!is_valid_ether_addr(netdev->dev_addr)) {
3995                 pr_err("invalid MAC address\n");
3996                 err = -EIO;
3997                 goto err_sw_init;
3998         }
3999 
4000         netdev->hw_features = NETIF_F_SG |
4001                            NETIF_F_IP_CSUM |
4002                            NETIF_F_IPV6_CSUM |
4003                            NETIF_F_TSO |
4004                            NETIF_F_TSO6 |
4005                            NETIF_F_RXCSUM;
4006 
4007         netdev->features = netdev->hw_features |
4008                            NETIF_F_HW_VLAN_CTAG_TX |
4009                            NETIF_F_HW_VLAN_CTAG_RX |
4010                            NETIF_F_HW_VLAN_CTAG_FILTER;
4011 
4012         netdev->vlan_features |= NETIF_F_TSO |
4013                                  NETIF_F_TSO6 |
4014                                  NETIF_F_IP_CSUM |
4015                                  NETIF_F_IPV6_CSUM |
4016                                  NETIF_F_SG;
4017 
4018         if (pci_using_dac)
4019                 netdev->features |= NETIF_F_HIGHDMA;
4020 
4021         netdev->priv_flags |= IFF_UNICAST_FLT;
4022 
4023         if (IXGBE_REMOVED(hw->hw_addr)) {
4024                 err = -EIO;
4025                 goto err_sw_init;
4026         }
4027 
4028         setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4029                     (unsigned long)adapter);
4030 
4031         INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4032         set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4033         clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4034 
4035         err = ixgbevf_init_interrupt_scheme(adapter);
4036         if (err)
4037                 goto err_sw_init;
4038 
4039         strcpy(netdev->name, "eth%d");
4040 
4041         err = register_netdev(netdev);
4042         if (err)
4043                 goto err_register;
4044 
4045         pci_set_drvdata(pdev, netdev);
4046         netif_carrier_off(netdev);
4047 
4048         ixgbevf_init_last_counter_stats(adapter);
4049 
4050         /* print the VF info */
4051         dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4052         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4053 
4054         switch (hw->mac.type) {
4055         case ixgbe_mac_X550_vf:
4056                 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4057                 break;
4058         case ixgbe_mac_X540_vf:
4059                 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4060                 break;
4061         case ixgbe_mac_82599_vf:
4062         default:
4063                 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4064                 break;
4065         }
4066 
4067         return 0;
4068 
4069 err_register:
4070         ixgbevf_clear_interrupt_scheme(adapter);
4071 err_sw_init:
4072         ixgbevf_reset_interrupt_capability(adapter);
4073         iounmap(adapter->io_addr);
4074 err_ioremap:
4075         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4076         free_netdev(netdev);
4077 err_alloc_etherdev:
4078         pci_release_regions(pdev);
4079 err_pci_reg:
4080 err_dma:
4081         if (!adapter || disable_dev)
4082                 pci_disable_device(pdev);
4083         return err;
4084 }
4085 
4086 /**
4087  * ixgbevf_remove - Device Removal Routine
4088  * @pdev: PCI device information struct
4089  *
4090  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4091  * that it should release a PCI device.  The could be caused by a
4092  * Hot-Plug event, or because the driver is going to be removed from
4093  * memory.
4094  **/
4095 static void ixgbevf_remove(struct pci_dev *pdev)
4096 {
4097         struct net_device *netdev = pci_get_drvdata(pdev);
4098         struct ixgbevf_adapter *adapter;
4099         bool disable_dev;
4100 
4101         if (!netdev)
4102                 return;
4103 
4104         adapter = netdev_priv(netdev);
4105 
4106         set_bit(__IXGBEVF_REMOVING, &adapter->state);
4107         cancel_work_sync(&adapter->service_task);
4108 
4109         if (netdev->reg_state == NETREG_REGISTERED)
4110                 unregister_netdev(netdev);
4111 
4112         ixgbevf_clear_interrupt_scheme(adapter);
4113         ixgbevf_reset_interrupt_capability(adapter);
4114 
4115         iounmap(adapter->io_addr);
4116         pci_release_regions(pdev);
4117 
4118         hw_dbg(&adapter->hw, "Remove complete\n");
4119 
4120         disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4121         free_netdev(netdev);
4122 
4123         if (disable_dev)
4124                 pci_disable_device(pdev);
4125 }
4126 
4127 /**
4128  * ixgbevf_io_error_detected - called when PCI error is detected
4129  * @pdev: Pointer to PCI device
4130  * @state: The current pci connection state
4131  *
4132  * This function is called after a PCI bus error affecting
4133  * this device has been detected.
4134  */
4135 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4136                                                   pci_channel_state_t state)
4137 {
4138         struct net_device *netdev = pci_get_drvdata(pdev);
4139         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4140 
4141         if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4142                 return PCI_ERS_RESULT_DISCONNECT;
4143 
4144         rtnl_lock();
4145         netif_device_detach(netdev);
4146 
4147         if (state == pci_channel_io_perm_failure) {
4148                 rtnl_unlock();
4149                 return PCI_ERS_RESULT_DISCONNECT;
4150         }
4151 
4152         if (netif_running(netdev))
4153                 ixgbevf_down(adapter);
4154 
4155         if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4156                 pci_disable_device(pdev);
4157         rtnl_unlock();
4158 
4159         /* Request a slot slot reset. */
4160         return PCI_ERS_RESULT_NEED_RESET;
4161 }
4162 
4163 /**
4164  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4165  * @pdev: Pointer to PCI device
4166  *
4167  * Restart the card from scratch, as if from a cold-boot. Implementation
4168  * resembles the first-half of the ixgbevf_resume routine.
4169  */
4170 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4171 {
4172         struct net_device *netdev = pci_get_drvdata(pdev);
4173         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4174 
4175         if (pci_enable_device_mem(pdev)) {
4176                 dev_err(&pdev->dev,
4177                         "Cannot re-enable PCI device after reset.\n");
4178                 return PCI_ERS_RESULT_DISCONNECT;
4179         }
4180 
4181         smp_mb__before_atomic();
4182         clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4183         pci_set_master(pdev);
4184 
4185         ixgbevf_reset(adapter);
4186 
4187         return PCI_ERS_RESULT_RECOVERED;
4188 }
4189 
4190 /**
4191  * ixgbevf_io_resume - called when traffic can start flowing again.
4192  * @pdev: Pointer to PCI device
4193  *
4194  * This callback is called when the error recovery driver tells us that
4195  * its OK to resume normal operation. Implementation resembles the
4196  * second-half of the ixgbevf_resume routine.
4197  */
4198 static void ixgbevf_io_resume(struct pci_dev *pdev)
4199 {
4200         struct net_device *netdev = pci_get_drvdata(pdev);
4201         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4202 
4203         if (netif_running(netdev))
4204                 ixgbevf_up(adapter);
4205 
4206         netif_device_attach(netdev);
4207 }
4208 
4209 /* PCI Error Recovery (ERS) */
4210 static const struct pci_error_handlers ixgbevf_err_handler = {
4211         .error_detected = ixgbevf_io_error_detected,
4212         .slot_reset = ixgbevf_io_slot_reset,
4213         .resume = ixgbevf_io_resume,
4214 };
4215 
4216 static struct pci_driver ixgbevf_driver = {
4217         .name     = ixgbevf_driver_name,
4218         .id_table = ixgbevf_pci_tbl,
4219         .probe    = ixgbevf_probe,
4220         .remove   = ixgbevf_remove,
4221 #ifdef CONFIG_PM
4222         /* Power Management Hooks */
4223         .suspend  = ixgbevf_suspend,
4224         .resume   = ixgbevf_resume,
4225 #endif
4226         .shutdown = ixgbevf_shutdown,
4227         .err_handler = &ixgbevf_err_handler
4228 };
4229 
4230 /**
4231  * ixgbevf_init_module - Driver Registration Routine
4232  *
4233  * ixgbevf_init_module is the first routine called when the driver is
4234  * loaded. All it does is register with the PCI subsystem.
4235  **/
4236 static int __init ixgbevf_init_module(void)
4237 {
4238         int ret;
4239         pr_info("%s - version %s\n", ixgbevf_driver_string,
4240                 ixgbevf_driver_version);
4241 
4242         pr_info("%s\n", ixgbevf_copyright);
4243 
4244         ret = pci_register_driver(&ixgbevf_driver);
4245         return ret;
4246 }
4247 
4248 module_init(ixgbevf_init_module);
4249 
4250 /**
4251  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4252  *
4253  * ixgbevf_exit_module is called just before the driver is removed
4254  * from memory.
4255  **/
4256 static void __exit ixgbevf_exit_module(void)
4257 {
4258         pci_unregister_driver(&ixgbevf_driver);
4259 }
4260 
4261 #ifdef DEBUG
4262 /**
4263  * ixgbevf_get_hw_dev_name - return device name string
4264  * used by hardware layer to print debugging information
4265  **/
4266 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4267 {
4268         struct ixgbevf_adapter *adapter = hw->back;
4269         return adapter->netdev->name;
4270 }
4271 
4272 #endif
4273 module_exit(ixgbevf_exit_module);
4274 
4275 /* ixgbevf_main.c */
4276 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us