Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/drivers/net/ethernet/freescale/gianfar.c

  1 /* drivers/net/ethernet/freescale/gianfar.c
  2  *
  3  * Gianfar Ethernet Driver
  4  * This driver is designed for the non-CPM ethernet controllers
  5  * on the 85xx and 83xx family of integrated processors
  6  * Based on 8260_io/fcc_enet.c
  7  *
  8  * Author: Andy Fleming
  9  * Maintainer: Kumar Gala
 10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
 11  *
 12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
 13  * Copyright 2007 MontaVista Software, Inc.
 14  *
 15  * This program is free software; you can redistribute  it and/or modify it
 16  * under  the terms of  the GNU General  Public License as published by the
 17  * Free Software Foundation;  either version 2 of the  License, or (at your
 18  * option) any later version.
 19  *
 20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
 21  *  RA 11 31 24.2
 22  *  Dec +69 19 52
 23  *  V 3.84
 24  *  B-V +1.62
 25  *
 26  *  Theory of operation
 27  *
 28  *  The driver is initialized through of_device. Configuration information
 29  *  is therefore conveyed through an OF-style device tree.
 30  *
 31  *  The Gianfar Ethernet Controller uses a ring of buffer
 32  *  descriptors.  The beginning is indicated by a register
 33  *  pointing to the physical address of the start of the ring.
 34  *  The end is determined by a "wrap" bit being set in the
 35  *  last descriptor of the ring.
 36  *
 37  *  When a packet is received, the RXF bit in the
 38  *  IEVENT register is set, triggering an interrupt when the
 39  *  corresponding bit in the IMASK register is also set (if
 40  *  interrupt coalescing is active, then the interrupt may not
 41  *  happen immediately, but will wait until either a set number
 42  *  of frames or amount of time have passed).  In NAPI, the
 43  *  interrupt handler will signal there is work to be done, and
 44  *  exit. This method will start at the last known empty
 45  *  descriptor, and process every subsequent descriptor until there
 46  *  are none left with data (NAPI will stop after a set number of
 47  *  packets to give time to other tasks, but will eventually
 48  *  process all the packets).  The data arrives inside a
 49  *  pre-allocated skb, and so after the skb is passed up to the
 50  *  stack, a new skb must be allocated, and the address field in
 51  *  the buffer descriptor must be updated to indicate this new
 52  *  skb.
 53  *
 54  *  When the kernel requests that a packet be transmitted, the
 55  *  driver starts where it left off last time, and points the
 56  *  descriptor at the buffer which was passed in.  The driver
 57  *  then informs the DMA engine that there are packets ready to
 58  *  be transmitted.  Once the controller is finished transmitting
 59  *  the packet, an interrupt may be triggered (under the same
 60  *  conditions as for reception, but depending on the TXF bit).
 61  *  The driver then cleans up the buffer.
 62  */
 63 
 64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 65 #define DEBUG
 66 
 67 #include <linux/kernel.h>
 68 #include <linux/string.h>
 69 #include <linux/errno.h>
 70 #include <linux/unistd.h>
 71 #include <linux/slab.h>
 72 #include <linux/interrupt.h>
 73 #include <linux/delay.h>
 74 #include <linux/netdevice.h>
 75 #include <linux/etherdevice.h>
 76 #include <linux/skbuff.h>
 77 #include <linux/if_vlan.h>
 78 #include <linux/spinlock.h>
 79 #include <linux/mm.h>
 80 #include <linux/of_address.h>
 81 #include <linux/of_irq.h>
 82 #include <linux/of_mdio.h>
 83 #include <linux/of_platform.h>
 84 #include <linux/ip.h>
 85 #include <linux/tcp.h>
 86 #include <linux/udp.h>
 87 #include <linux/in.h>
 88 #include <linux/net_tstamp.h>
 89 
 90 #include <asm/io.h>
 91 #ifdef CONFIG_PPC
 92 #include <asm/reg.h>
 93 #include <asm/mpc85xx.h>
 94 #endif
 95 #include <asm/irq.h>
 96 #include <linux/uaccess.h>
 97 #include <linux/module.h>
 98 #include <linux/dma-mapping.h>
 99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120                                 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148                                   const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156                             dma_addr_t buf)
157 {
158         u32 lstatus;
159 
160         bdp->bufPtr = cpu_to_be32(buf);
161 
162         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164                 lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166         gfar_wmb();
167 
168         bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173         struct gfar_private *priv = netdev_priv(ndev);
174         struct gfar __iomem *regs = priv->gfargrp[0].regs;
175         struct gfar_priv_tx_q *tx_queue = NULL;
176         struct gfar_priv_rx_q *rx_queue = NULL;
177         struct txbd8 *txbdp;
178         u32 __iomem *rfbptr;
179         int i, j;
180 
181         for (i = 0; i < priv->num_tx_queues; i++) {
182                 tx_queue = priv->tx_queue[i];
183                 /* Initialize some variables in our dev structure */
184                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186                 tx_queue->cur_tx = tx_queue->tx_bd_base;
187                 tx_queue->skb_curtx = 0;
188                 tx_queue->skb_dirtytx = 0;
189 
190                 /* Initialize Transmit Descriptor Ring */
191                 txbdp = tx_queue->tx_bd_base;
192                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193                         txbdp->lstatus = 0;
194                         txbdp->bufPtr = 0;
195                         txbdp++;
196                 }
197 
198                 /* Set the last descriptor in the ring to indicate wrap */
199                 txbdp--;
200                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201                                             TXBD_WRAP);
202         }
203 
204         rfbptr = &regs->rfbptr0;
205         for (i = 0; i < priv->num_rx_queues; i++) {
206                 rx_queue = priv->rx_queue[i];
207 
208                 rx_queue->next_to_clean = 0;
209                 rx_queue->next_to_use = 0;
210                 rx_queue->next_to_alloc = 0;
211 
212                 /* make sure next_to_clean != next_to_use after this
213                  * by leaving at least 1 unused descriptor
214                  */
215                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217                 rx_queue->rfbptr = rfbptr;
218                 rfbptr += 2;
219         }
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224         void *vaddr;
225         dma_addr_t addr;
226         int i, j;
227         struct gfar_private *priv = netdev_priv(ndev);
228         struct device *dev = priv->dev;
229         struct gfar_priv_tx_q *tx_queue = NULL;
230         struct gfar_priv_rx_q *rx_queue = NULL;
231 
232         priv->total_tx_ring_size = 0;
233         for (i = 0; i < priv->num_tx_queues; i++)
234                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236         priv->total_rx_ring_size = 0;
237         for (i = 0; i < priv->num_rx_queues; i++)
238                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240         /* Allocate memory for the buffer descriptors */
241         vaddr = dma_alloc_coherent(dev,
242                                    (priv->total_tx_ring_size *
243                                     sizeof(struct txbd8)) +
244                                    (priv->total_rx_ring_size *
245                                     sizeof(struct rxbd8)),
246                                    &addr, GFP_KERNEL);
247         if (!vaddr)
248                 return -ENOMEM;
249 
250         for (i = 0; i < priv->num_tx_queues; i++) {
251                 tx_queue = priv->tx_queue[i];
252                 tx_queue->tx_bd_base = vaddr;
253                 tx_queue->tx_bd_dma_base = addr;
254                 tx_queue->dev = ndev;
255                 /* enet DMA only understands physical addresses */
256                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258         }
259 
260         /* Start the rx descriptor ring where the tx ring leaves off */
261         for (i = 0; i < priv->num_rx_queues; i++) {
262                 rx_queue = priv->rx_queue[i];
263                 rx_queue->rx_bd_base = vaddr;
264                 rx_queue->rx_bd_dma_base = addr;
265                 rx_queue->ndev = ndev;
266                 rx_queue->dev = dev;
267                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269         }
270 
271         /* Setup the skbuff rings */
272         for (i = 0; i < priv->num_tx_queues; i++) {
273                 tx_queue = priv->tx_queue[i];
274                 tx_queue->tx_skbuff =
275                         kmalloc_array(tx_queue->tx_ring_size,
276                                       sizeof(*tx_queue->tx_skbuff),
277                                       GFP_KERNEL);
278                 if (!tx_queue->tx_skbuff)
279                         goto cleanup;
280 
281                 for (j = 0; j < tx_queue->tx_ring_size; j++)
282                         tx_queue->tx_skbuff[j] = NULL;
283         }
284 
285         for (i = 0; i < priv->num_rx_queues; i++) {
286                 rx_queue = priv->rx_queue[i];
287                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288                                             sizeof(*rx_queue->rx_buff),
289                                             GFP_KERNEL);
290                 if (!rx_queue->rx_buff)
291                         goto cleanup;
292         }
293 
294         gfar_init_bds(ndev);
295 
296         return 0;
297 
298 cleanup:
299         free_skb_resources(priv);
300         return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305         struct gfar __iomem *regs = priv->gfargrp[0].regs;
306         u32 __iomem *baddr;
307         int i;
308 
309         baddr = &regs->tbase0;
310         for (i = 0; i < priv->num_tx_queues; i++) {
311                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312                 baddr += 2;
313         }
314 
315         baddr = &regs->rbase0;
316         for (i = 0; i < priv->num_rx_queues; i++) {
317                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318                 baddr += 2;
319         }
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324         struct gfar __iomem *regs = priv->gfargrp[0].regs;
325         u32 __iomem *baddr;
326         int i;
327 
328         baddr = &regs->rqprm0;
329         for (i = 0; i < priv->num_rx_queues; i++) {
330                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332                 baddr++;
333         }
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338         /* set this when rx hw offload (TOE) functions are being used */
339         priv->uses_rxfcb = 0;
340 
341         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342                 priv->uses_rxfcb = 1;
343 
344         if (priv->hwts_rx_en || priv->rx_filer_enable)
345                 priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350         struct gfar __iomem *regs = priv->gfargrp[0].regs;
351         u32 rctrl = 0;
352 
353         if (priv->rx_filer_enable) {
354                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355                 /* Program the RIR0 reg with the required distribution */
356                 if (priv->poll_mode == GFAR_SQ_POLLING)
357                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358                 else /* GFAR_MQ_POLLING */
359                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360         }
361 
362         /* Restore PROMISC mode */
363         if (priv->ndev->flags & IFF_PROMISC)
364                 rctrl |= RCTRL_PROM;
365 
366         if (priv->ndev->features & NETIF_F_RXCSUM)
367                 rctrl |= RCTRL_CHECKSUMMING;
368 
369         if (priv->extended_hash)
370                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376 
377         /* Enable HW time stamping if requested from user space */
378         if (priv->hwts_rx_en)
379                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384         /* Clear the LFC bit */
385         gfar_write(&regs->rctrl, rctrl);
386         /* Init flow control threshold values */
387         gfar_init_rqprm(priv);
388         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389         rctrl |= RCTRL_LFC;
390 
391         /* Init rctrl based on our settings */
392         gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397         struct gfar __iomem *regs = priv->gfargrp[0].regs;
398         u32 tctrl = 0;
399 
400         if (priv->ndev->features & NETIF_F_IP_CSUM)
401                 tctrl |= TCTRL_INIT_CSUM;
402 
403         if (priv->prio_sched_en)
404                 tctrl |= TCTRL_TXSCHED_PRIO;
405         else {
406                 tctrl |= TCTRL_TXSCHED_WRRS;
407                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409         }
410 
411         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412                 tctrl |= TCTRL_VLINS;
413 
414         gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418                                unsigned long tx_mask, unsigned long rx_mask)
419 {
420         struct gfar __iomem *regs = priv->gfargrp[0].regs;
421         u32 __iomem *baddr;
422 
423         if (priv->mode == MQ_MG_MODE) {
424                 int i = 0;
425 
426                 baddr = &regs->txic0;
427                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428                         gfar_write(baddr + i, 0);
429                         if (likely(priv->tx_queue[i]->txcoalescing))
430                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431                 }
432 
433                 baddr = &regs->rxic0;
434                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435                         gfar_write(baddr + i, 0);
436                         if (likely(priv->rx_queue[i]->rxcoalescing))
437                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438                 }
439         } else {
440                 /* Backward compatible case -- even if we enable
441                  * multiple queues, there's only single reg to program
442                  */
443                 gfar_write(&regs->txic, 0);
444                 if (likely(priv->tx_queue[0]->txcoalescing))
445                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447                 gfar_write(&regs->rxic, 0);
448                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450         }
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455         gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460         struct gfar_private *priv = netdev_priv(dev);
461         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462         unsigned long tx_packets = 0, tx_bytes = 0;
463         int i;
464 
465         for (i = 0; i < priv->num_rx_queues; i++) {
466                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469         }
470 
471         dev->stats.rx_packets = rx_packets;
472         dev->stats.rx_bytes   = rx_bytes;
473         dev->stats.rx_dropped = rx_dropped;
474 
475         for (i = 0; i < priv->num_tx_queues; i++) {
476                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478         }
479 
480         dev->stats.tx_bytes   = tx_bytes;
481         dev->stats.tx_packets = tx_packets;
482 
483         return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488         eth_mac_addr(dev, p);
489 
490         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492         return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496         .ndo_open = gfar_enet_open,
497         .ndo_start_xmit = gfar_start_xmit,
498         .ndo_stop = gfar_close,
499         .ndo_change_mtu = gfar_change_mtu,
500         .ndo_set_features = gfar_set_features,
501         .ndo_set_rx_mode = gfar_set_multi,
502         .ndo_tx_timeout = gfar_timeout,
503         .ndo_do_ioctl = gfar_ioctl,
504         .ndo_get_stats = gfar_get_stats,
505         .ndo_set_mac_address = gfar_set_mac_addr,
506         .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508         .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514         int i;
515         for (i = 0; i < priv->num_grps; i++) {
516                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517                 /* Clear IEVENT */
518                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520                 /* Initialize IMASK */
521                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522         }
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527         int i;
528         for (i = 0; i < priv->num_grps; i++) {
529                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530                 /* Unmask the interrupts we look for */
531                 gfar_write(&regs->imask, IMASK_DEFAULT);
532         }
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537         int i;
538 
539         for (i = 0; i < priv->num_tx_queues; i++) {
540                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541                                             GFP_KERNEL);
542                 if (!priv->tx_queue[i])
543                         return -ENOMEM;
544 
545                 priv->tx_queue[i]->tx_skbuff = NULL;
546                 priv->tx_queue[i]->qindex = i;
547                 priv->tx_queue[i]->dev = priv->ndev;
548                 spin_lock_init(&(priv->tx_queue[i]->txlock));
549         }
550         return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555         int i;
556 
557         for (i = 0; i < priv->num_rx_queues; i++) {
558                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559                                             GFP_KERNEL);
560                 if (!priv->rx_queue[i])
561                         return -ENOMEM;
562 
563                 priv->rx_queue[i]->qindex = i;
564                 priv->rx_queue[i]->ndev = priv->ndev;
565         }
566         return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571         int i;
572 
573         for (i = 0; i < priv->num_tx_queues; i++)
574                 kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579         int i;
580 
581         for (i = 0; i < priv->num_rx_queues; i++)
582                 kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587         int i;
588 
589         for (i = 0; i < MAXGROUPS; i++)
590                 if (priv->gfargrp[i].regs)
591                         iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596         int i, j;
597 
598         for (i = 0; i < priv->num_grps; i++)
599                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600                         kfree(priv->gfargrp[i].irqinfo[j]);
601                         priv->gfargrp[i].irqinfo[j] = NULL;
602                 }
603 
604         free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609         int i;
610 
611         for (i = 0; i < priv->num_grps; i++) {
612                 napi_disable(&priv->gfargrp[i].napi_rx);
613                 napi_disable(&priv->gfargrp[i].napi_tx);
614         }
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619         int i;
620 
621         for (i = 0; i < priv->num_grps; i++) {
622                 napi_enable(&priv->gfargrp[i].napi_rx);
623                 napi_enable(&priv->gfargrp[i].napi_tx);
624         }
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628                             struct gfar_private *priv, const char *model)
629 {
630         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631         int i;
632 
633         for (i = 0; i < GFAR_NUM_IRQS; i++) {
634                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635                                           GFP_KERNEL);
636                 if (!grp->irqinfo[i])
637                         return -ENOMEM;
638         }
639 
640         grp->regs = of_iomap(np, 0);
641         if (!grp->regs)
642                 return -ENOMEM;
643 
644         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646         /* If we aren't the FEC we have multiple interrupts */
647         if (model && strcasecmp(model, "FEC")) {
648                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650                 if (!gfar_irq(grp, TX)->irq ||
651                     !gfar_irq(grp, RX)->irq ||
652                     !gfar_irq(grp, ER)->irq)
653                         return -EINVAL;
654         }
655 
656         grp->priv = priv;
657         spin_lock_init(&grp->grplock);
658         if (priv->mode == MQ_MG_MODE) {
659                 u32 rxq_mask, txq_mask;
660                 int ret;
661 
662                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666                 if (!ret) {
667                         grp->rx_bit_map = rxq_mask ?
668                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669                 }
670 
671                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672                 if (!ret) {
673                         grp->tx_bit_map = txq_mask ?
674                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675                 }
676 
677                 if (priv->poll_mode == GFAR_SQ_POLLING) {
678                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681                 }
682         } else {
683                 grp->rx_bit_map = 0xFF;
684                 grp->tx_bit_map = 0xFF;
685         }
686 
687         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688          * right to left, so we need to revert the 8 bits to get the q index
689          */
690         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694          * also assign queues to groups
695          */
696         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697                 if (!grp->rx_queue)
698                         grp->rx_queue = priv->rx_queue[i];
699                 grp->num_rx_queues++;
700                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702                 priv->rx_queue[i]->grp = grp;
703         }
704 
705         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706                 if (!grp->tx_queue)
707                         grp->tx_queue = priv->tx_queue[i];
708                 grp->num_tx_queues++;
709                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710                 priv->tqueue |= (TQUEUE_EN0 >> i);
711                 priv->tx_queue[i]->grp = grp;
712         }
713 
714         priv->num_grps++;
715 
716         return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721         struct device_node *child;
722         int num = 0;
723 
724         for_each_available_child_of_node(np, child)
725                 if (!of_node_cmp(child->name, "queue-group"))
726                         num++;
727 
728         return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733         const char *model;
734         const char *ctype;
735         const void *mac_addr;
736         int err = 0, i;
737         struct net_device *dev = NULL;
738         struct gfar_private *priv = NULL;
739         struct device_node *np = ofdev->dev.of_node;
740         struct device_node *child = NULL;
741         u32 stash_len = 0;
742         u32 stash_idx = 0;
743         unsigned int num_tx_qs, num_rx_qs;
744         unsigned short mode, poll_mode;
745 
746         if (!np)
747                 return -ENODEV;
748 
749         if (of_device_is_compatible(np, "fsl,etsec2")) {
750                 mode = MQ_MG_MODE;
751                 poll_mode = GFAR_SQ_POLLING;
752         } else {
753                 mode = SQ_SG_MODE;
754                 poll_mode = GFAR_SQ_POLLING;
755         }
756 
757         if (mode == SQ_SG_MODE) {
758                 num_tx_qs = 1;
759                 num_rx_qs = 1;
760         } else { /* MQ_MG_MODE */
761                 /* get the actual number of supported groups */
762                 unsigned int num_grps = gfar_of_group_count(np);
763 
764                 if (num_grps == 0 || num_grps > MAXGROUPS) {
765                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766                                 num_grps);
767                         pr_err("Cannot do alloc_etherdev, aborting\n");
768                         return -EINVAL;
769                 }
770 
771                 if (poll_mode == GFAR_SQ_POLLING) {
772                         num_tx_qs = num_grps; /* one txq per int group */
773                         num_rx_qs = num_grps; /* one rxq per int group */
774                 } else { /* GFAR_MQ_POLLING */
775                         u32 tx_queues, rx_queues;
776                         int ret;
777 
778                         /* parse the num of HW tx and rx queues */
779                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
780                                                    &tx_queues);
781                         num_tx_qs = ret ? 1 : tx_queues;
782 
783                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
784                                                    &rx_queues);
785                         num_rx_qs = ret ? 1 : rx_queues;
786                 }
787         }
788 
789         if (num_tx_qs > MAX_TX_QS) {
790                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791                        num_tx_qs, MAX_TX_QS);
792                 pr_err("Cannot do alloc_etherdev, aborting\n");
793                 return -EINVAL;
794         }
795 
796         if (num_rx_qs > MAX_RX_QS) {
797                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798                        num_rx_qs, MAX_RX_QS);
799                 pr_err("Cannot do alloc_etherdev, aborting\n");
800                 return -EINVAL;
801         }
802 
803         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804         dev = *pdev;
805         if (NULL == dev)
806                 return -ENOMEM;
807 
808         priv = netdev_priv(dev);
809         priv->ndev = dev;
810 
811         priv->mode = mode;
812         priv->poll_mode = poll_mode;
813 
814         priv->num_tx_queues = num_tx_qs;
815         netif_set_real_num_rx_queues(dev, num_rx_qs);
816         priv->num_rx_queues = num_rx_qs;
817 
818         err = gfar_alloc_tx_queues(priv);
819         if (err)
820                 goto tx_alloc_failed;
821 
822         err = gfar_alloc_rx_queues(priv);
823         if (err)
824                 goto rx_alloc_failed;
825 
826         err = of_property_read_string(np, "model", &model);
827         if (err) {
828                 pr_err("Device model property missing, aborting\n");
829                 goto rx_alloc_failed;
830         }
831 
832         /* Init Rx queue filer rule set linked list */
833         INIT_LIST_HEAD(&priv->rx_list.list);
834         priv->rx_list.count = 0;
835         mutex_init(&priv->rx_queue_access);
836 
837         for (i = 0; i < MAXGROUPS; i++)
838                 priv->gfargrp[i].regs = NULL;
839 
840         /* Parse and initialize group specific information */
841         if (priv->mode == MQ_MG_MODE) {
842                 for_each_available_child_of_node(np, child) {
843                         if (of_node_cmp(child->name, "queue-group"))
844                                 continue;
845 
846                         err = gfar_parse_group(child, priv, model);
847                         if (err)
848                                 goto err_grp_init;
849                 }
850         } else { /* SQ_SG_MODE */
851                 err = gfar_parse_group(np, priv, model);
852                 if (err)
853                         goto err_grp_init;
854         }
855 
856         if (of_property_read_bool(np, "bd-stash")) {
857                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
858                 priv->bd_stash_en = 1;
859         }
860 
861         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
862 
863         if (err == 0)
864                 priv->rx_stash_size = stash_len;
865 
866         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
867 
868         if (err == 0)
869                 priv->rx_stash_index = stash_idx;
870 
871         if (stash_len || stash_idx)
872                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
873 
874         mac_addr = of_get_mac_address(np);
875 
876         if (mac_addr)
877                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
878 
879         if (model && !strcasecmp(model, "TSEC"))
880                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
881                                      FSL_GIANFAR_DEV_HAS_COALESCE |
882                                      FSL_GIANFAR_DEV_HAS_RMON |
883                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
884 
885         if (model && !strcasecmp(model, "eTSEC"))
886                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
887                                      FSL_GIANFAR_DEV_HAS_COALESCE |
888                                      FSL_GIANFAR_DEV_HAS_RMON |
889                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
890                                      FSL_GIANFAR_DEV_HAS_CSUM |
891                                      FSL_GIANFAR_DEV_HAS_VLAN |
892                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
893                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
894                                      FSL_GIANFAR_DEV_HAS_TIMER |
895                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
896 
897         err = of_property_read_string(np, "phy-connection-type", &ctype);
898 
899         /* We only care about rgmii-id.  The rest are autodetected */
900         if (err == 0 && !strcmp(ctype, "rgmii-id"))
901                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
902         else
903                 priv->interface = PHY_INTERFACE_MODE_MII;
904 
905         if (of_find_property(np, "fsl,magic-packet", NULL))
906                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
907 
908         if (of_get_property(np, "fsl,wake-on-filer", NULL))
909                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
910 
911         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
912 
913         /* In the case of a fixed PHY, the DT node associated
914          * to the PHY is the Ethernet MAC DT node.
915          */
916         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
917                 err = of_phy_register_fixed_link(np);
918                 if (err)
919                         goto err_grp_init;
920 
921                 priv->phy_node = of_node_get(np);
922         }
923 
924         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
925         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
926 
927         return 0;
928 
929 err_grp_init:
930         unmap_group_regs(priv);
931 rx_alloc_failed:
932         gfar_free_rx_queues(priv);
933 tx_alloc_failed:
934         gfar_free_tx_queues(priv);
935         free_gfar_dev(priv);
936         return err;
937 }
938 
939 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
940 {
941         struct hwtstamp_config config;
942         struct gfar_private *priv = netdev_priv(netdev);
943 
944         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
945                 return -EFAULT;
946 
947         /* reserved for future extensions */
948         if (config.flags)
949                 return -EINVAL;
950 
951         switch (config.tx_type) {
952         case HWTSTAMP_TX_OFF:
953                 priv->hwts_tx_en = 0;
954                 break;
955         case HWTSTAMP_TX_ON:
956                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
957                         return -ERANGE;
958                 priv->hwts_tx_en = 1;
959                 break;
960         default:
961                 return -ERANGE;
962         }
963 
964         switch (config.rx_filter) {
965         case HWTSTAMP_FILTER_NONE:
966                 if (priv->hwts_rx_en) {
967                         priv->hwts_rx_en = 0;
968                         reset_gfar(netdev);
969                 }
970                 break;
971         default:
972                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
973                         return -ERANGE;
974                 if (!priv->hwts_rx_en) {
975                         priv->hwts_rx_en = 1;
976                         reset_gfar(netdev);
977                 }
978                 config.rx_filter = HWTSTAMP_FILTER_ALL;
979                 break;
980         }
981 
982         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
983                 -EFAULT : 0;
984 }
985 
986 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
987 {
988         struct hwtstamp_config config;
989         struct gfar_private *priv = netdev_priv(netdev);
990 
991         config.flags = 0;
992         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
993         config.rx_filter = (priv->hwts_rx_en ?
994                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
995 
996         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
997                 -EFAULT : 0;
998 }
999 
1000 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001 {
1002         struct phy_device *phydev = dev->phydev;
1003 
1004         if (!netif_running(dev))
1005                 return -EINVAL;
1006 
1007         if (cmd == SIOCSHWTSTAMP)
1008                 return gfar_hwtstamp_set(dev, rq);
1009         if (cmd == SIOCGHWTSTAMP)
1010                 return gfar_hwtstamp_get(dev, rq);
1011 
1012         if (!phydev)
1013                 return -ENODEV;
1014 
1015         return phy_mii_ioctl(phydev, rq, cmd);
1016 }
1017 
1018 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019                                    u32 class)
1020 {
1021         u32 rqfpr = FPR_FILER_MASK;
1022         u32 rqfcr = 0x0;
1023 
1024         rqfar--;
1025         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026         priv->ftp_rqfpr[rqfar] = rqfpr;
1027         priv->ftp_rqfcr[rqfar] = rqfcr;
1028         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029 
1030         rqfar--;
1031         rqfcr = RQFCR_CMP_NOMATCH;
1032         priv->ftp_rqfpr[rqfar] = rqfpr;
1033         priv->ftp_rqfcr[rqfar] = rqfcr;
1034         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035 
1036         rqfar--;
1037         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038         rqfpr = class;
1039         priv->ftp_rqfcr[rqfar] = rqfcr;
1040         priv->ftp_rqfpr[rqfar] = rqfpr;
1041         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042 
1043         rqfar--;
1044         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045         rqfpr = class;
1046         priv->ftp_rqfcr[rqfar] = rqfcr;
1047         priv->ftp_rqfpr[rqfar] = rqfpr;
1048         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049 
1050         return rqfar;
1051 }
1052 
1053 static void gfar_init_filer_table(struct gfar_private *priv)
1054 {
1055         int i = 0x0;
1056         u32 rqfar = MAX_FILER_IDX;
1057         u32 rqfcr = 0x0;
1058         u32 rqfpr = FPR_FILER_MASK;
1059 
1060         /* Default rule */
1061         rqfcr = RQFCR_CMP_MATCH;
1062         priv->ftp_rqfcr[rqfar] = rqfcr;
1063         priv->ftp_rqfpr[rqfar] = rqfpr;
1064         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065 
1066         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072 
1073         /* cur_filer_idx indicated the first non-masked rule */
1074         priv->cur_filer_idx = rqfar;
1075 
1076         /* Rest are masked rules */
1077         rqfcr = RQFCR_CMP_NOMATCH;
1078         for (i = 0; i < rqfar; i++) {
1079                 priv->ftp_rqfcr[i] = rqfcr;
1080                 priv->ftp_rqfpr[i] = rqfpr;
1081                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1082         }
1083 }
1084 
1085 #ifdef CONFIG_PPC
1086 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087 {
1088         unsigned int pvr = mfspr(SPRN_PVR);
1089         unsigned int svr = mfspr(SPRN_SVR);
1090         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091         unsigned int rev = svr & 0xffff;
1092 
1093         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096                 priv->errata |= GFAR_ERRATA_74;
1097 
1098         /* MPC8313 and MPC837x all rev */
1099         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101                 priv->errata |= GFAR_ERRATA_76;
1102 
1103         /* MPC8313 Rev < 2.0 */
1104         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105                 priv->errata |= GFAR_ERRATA_12;
1106 }
1107 
1108 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109 {
1110         unsigned int svr = mfspr(SPRN_SVR);
1111 
1112         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113                 priv->errata |= GFAR_ERRATA_12;
1114         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119 }
1120 #endif
1121 
1122 static void gfar_detect_errata(struct gfar_private *priv)
1123 {
1124         struct device *dev = &priv->ofdev->dev;
1125 
1126         /* no plans to fix */
1127         priv->errata |= GFAR_ERRATA_A002;
1128 
1129 #ifdef CONFIG_PPC
1130         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131                 __gfar_detect_errata_85xx(priv);
1132         else /* non-mpc85xx parts, i.e. e300 core based */
1133                 __gfar_detect_errata_83xx(priv);
1134 #endif
1135 
1136         if (priv->errata)
1137                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138                          priv->errata);
1139 }
1140 
1141 void gfar_mac_reset(struct gfar_private *priv)
1142 {
1143         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144         u32 tempval;
1145 
1146         /* Reset MAC layer */
1147         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148 
1149         /* We need to delay at least 3 TX clocks */
1150         udelay(3);
1151 
1152         /* the soft reset bit is not self-resetting, so we need to
1153          * clear it before resuming normal operation
1154          */
1155         gfar_write(&regs->maccfg1, 0);
1156 
1157         udelay(3);
1158 
1159         gfar_rx_offload_en(priv);
1160 
1161         /* Initialize the max receive frame/buffer lengths */
1162         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164 
1165         /* Initialize the Minimum Frame Length Register */
1166         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167 
1168         /* Initialize MACCFG2. */
1169         tempval = MACCFG2_INIT_SETTINGS;
1170 
1171         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173          * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174          */
1175         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177 
1178         gfar_write(&regs->maccfg2, tempval);
1179 
1180         /* Clear mac addr hash registers */
1181         gfar_write(&regs->igaddr0, 0);
1182         gfar_write(&regs->igaddr1, 0);
1183         gfar_write(&regs->igaddr2, 0);
1184         gfar_write(&regs->igaddr3, 0);
1185         gfar_write(&regs->igaddr4, 0);
1186         gfar_write(&regs->igaddr5, 0);
1187         gfar_write(&regs->igaddr6, 0);
1188         gfar_write(&regs->igaddr7, 0);
1189 
1190         gfar_write(&regs->gaddr0, 0);
1191         gfar_write(&regs->gaddr1, 0);
1192         gfar_write(&regs->gaddr2, 0);
1193         gfar_write(&regs->gaddr3, 0);
1194         gfar_write(&regs->gaddr4, 0);
1195         gfar_write(&regs->gaddr5, 0);
1196         gfar_write(&regs->gaddr6, 0);
1197         gfar_write(&regs->gaddr7, 0);
1198 
1199         if (priv->extended_hash)
1200                 gfar_clear_exact_match(priv->ndev);
1201 
1202         gfar_mac_rx_config(priv);
1203 
1204         gfar_mac_tx_config(priv);
1205 
1206         gfar_set_mac_address(priv->ndev);
1207 
1208         gfar_set_multi(priv->ndev);
1209 
1210         /* clear ievent and imask before configuring coalescing */
1211         gfar_ints_disable(priv);
1212 
1213         /* Configure the coalescing support */
1214         gfar_configure_coalescing_all(priv);
1215 }
1216 
1217 static void gfar_hw_init(struct gfar_private *priv)
1218 {
1219         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220         u32 attrs;
1221 
1222         /* Stop the DMA engine now, in case it was running before
1223          * (The firmware could have used it, and left it running).
1224          */
1225         gfar_halt(priv);
1226 
1227         gfar_mac_reset(priv);
1228 
1229         /* Zero out the rmon mib registers if it has them */
1230         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232 
1233                 /* Mask off the CAM interrupts */
1234                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1235                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1236         }
1237 
1238         /* Initialize ECNTRL */
1239         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240 
1241         /* Set the extraction length and index */
1242         attrs = ATTRELI_EL(priv->rx_stash_size) |
1243                 ATTRELI_EI(priv->rx_stash_index);
1244 
1245         gfar_write(&regs->attreli, attrs);
1246 
1247         /* Start with defaults, and add stashing
1248          * depending on driver parameters
1249          */
1250         attrs = ATTR_INIT_SETTINGS;
1251 
1252         if (priv->bd_stash_en)
1253                 attrs |= ATTR_BDSTASH;
1254 
1255         if (priv->rx_stash_size != 0)
1256                 attrs |= ATTR_BUFSTASH;
1257 
1258         gfar_write(&regs->attr, attrs);
1259 
1260         /* FIFO configs */
1261         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264 
1265         /* Program the interrupt steering regs, only for MG devices */
1266         if (priv->num_grps > 1)
1267                 gfar_write_isrg(priv);
1268 }
1269 
1270 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271 {
1272         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273 
1274         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275                 priv->extended_hash = 1;
1276                 priv->hash_width = 9;
1277 
1278                 priv->hash_regs[0] = &regs->igaddr0;
1279                 priv->hash_regs[1] = &regs->igaddr1;
1280                 priv->hash_regs[2] = &regs->igaddr2;
1281                 priv->hash_regs[3] = &regs->igaddr3;
1282                 priv->hash_regs[4] = &regs->igaddr4;
1283                 priv->hash_regs[5] = &regs->igaddr5;
1284                 priv->hash_regs[6] = &regs->igaddr6;
1285                 priv->hash_regs[7] = &regs->igaddr7;
1286                 priv->hash_regs[8] = &regs->gaddr0;
1287                 priv->hash_regs[9] = &regs->gaddr1;
1288                 priv->hash_regs[10] = &regs->gaddr2;
1289                 priv->hash_regs[11] = &regs->gaddr3;
1290                 priv->hash_regs[12] = &regs->gaddr4;
1291                 priv->hash_regs[13] = &regs->gaddr5;
1292                 priv->hash_regs[14] = &regs->gaddr6;
1293                 priv->hash_regs[15] = &regs->gaddr7;
1294 
1295         } else {
1296                 priv->extended_hash = 0;
1297                 priv->hash_width = 8;
1298 
1299                 priv->hash_regs[0] = &regs->gaddr0;
1300                 priv->hash_regs[1] = &regs->gaddr1;
1301                 priv->hash_regs[2] = &regs->gaddr2;
1302                 priv->hash_regs[3] = &regs->gaddr3;
1303                 priv->hash_regs[4] = &regs->gaddr4;
1304                 priv->hash_regs[5] = &regs->gaddr5;
1305                 priv->hash_regs[6] = &regs->gaddr6;
1306                 priv->hash_regs[7] = &regs->gaddr7;
1307         }
1308 }
1309 
1310 /* Set up the ethernet device structure, private data,
1311  * and anything else we need before we start
1312  */
1313 static int gfar_probe(struct platform_device *ofdev)
1314 {
1315         struct device_node *np = ofdev->dev.of_node;
1316         struct net_device *dev = NULL;
1317         struct gfar_private *priv = NULL;
1318         int err = 0, i;
1319 
1320         err = gfar_of_init(ofdev, &dev);
1321 
1322         if (err)
1323                 return err;
1324 
1325         priv = netdev_priv(dev);
1326         priv->ndev = dev;
1327         priv->ofdev = ofdev;
1328         priv->dev = &ofdev->dev;
1329         SET_NETDEV_DEV(dev, &ofdev->dev);
1330 
1331         INIT_WORK(&priv->reset_task, gfar_reset_task);
1332 
1333         platform_set_drvdata(ofdev, priv);
1334 
1335         gfar_detect_errata(priv);
1336 
1337         /* Set the dev->base_addr to the gfar reg region */
1338         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339 
1340         /* Fill in the dev structure */
1341         dev->watchdog_timeo = TX_TIMEOUT;
1342         /* MTU range: 50 - 9586 */
1343         dev->mtu = 1500;
1344         dev->min_mtu = 50;
1345         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346         dev->netdev_ops = &gfar_netdev_ops;
1347         dev->ethtool_ops = &gfar_ethtool_ops;
1348 
1349         /* Register for napi ...We are registering NAPI for each grp */
1350         for (i = 0; i < priv->num_grps; i++) {
1351                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1352                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355                                        gfar_poll_tx_sq, 2);
1356                 } else {
1357                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1359                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360                                        gfar_poll_tx, 2);
1361                 }
1362         }
1363 
1364         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366                                    NETIF_F_RXCSUM;
1367                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369         }
1370 
1371         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373                                     NETIF_F_HW_VLAN_CTAG_RX;
1374                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375         }
1376 
1377         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378 
1379         gfar_init_addr_hash_table(priv);
1380 
1381         /* Insert receive time stamps into padding alignment bytes */
1382         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383                 priv->padding = 8;
1384 
1385         if (dev->features & NETIF_F_IP_CSUM ||
1386             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1387                 dev->needed_headroom = GMAC_FCB_LEN;
1388 
1389         /* Initializing some of the rx/tx queue level parameters */
1390         for (i = 0; i < priv->num_tx_queues; i++) {
1391                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1392                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1393                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1394                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1395         }
1396 
1397         for (i = 0; i < priv->num_rx_queues; i++) {
1398                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1399                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1400                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1401         }
1402 
1403         /* Always enable rx filer if available */
1404         priv->rx_filer_enable =
1405             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1406         /* Enable most messages by default */
1407         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1408         /* use pritority h/w tx queue scheduling for single queue devices */
1409         if (priv->num_tx_queues == 1)
1410                 priv->prio_sched_en = 1;
1411 
1412         set_bit(GFAR_DOWN, &priv->state);
1413 
1414         gfar_hw_init(priv);
1415 
1416         /* Carrier starts down, phylib will bring it up */
1417         netif_carrier_off(dev);
1418 
1419         err = register_netdev(dev);
1420 
1421         if (err) {
1422                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1423                 goto register_fail;
1424         }
1425 
1426         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1427                 priv->wol_supported |= GFAR_WOL_MAGIC;
1428 
1429         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1430             priv->rx_filer_enable)
1431                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1432 
1433         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1434 
1435         /* fill out IRQ number and name fields */
1436         for (i = 0; i < priv->num_grps; i++) {
1437                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1438                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1439                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1440                                 dev->name, "_g", '' + i, "_tx");
1441                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1442                                 dev->name, "_g", '' + i, "_rx");
1443                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1444                                 dev->name, "_g", '' + i, "_er");
1445                 } else
1446                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1447         }
1448 
1449         /* Initialize the filer table */
1450         gfar_init_filer_table(priv);
1451 
1452         /* Print out the device info */
1453         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1454 
1455         /* Even more device info helps when determining which kernel
1456          * provided which set of benchmarks.
1457          */
1458         netdev_info(dev, "Running with NAPI enabled\n");
1459         for (i = 0; i < priv->num_rx_queues; i++)
1460                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1461                             i, priv->rx_queue[i]->rx_ring_size);
1462         for (i = 0; i < priv->num_tx_queues; i++)
1463                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1464                             i, priv->tx_queue[i]->tx_ring_size);
1465 
1466         return 0;
1467 
1468 register_fail:
1469         if (of_phy_is_fixed_link(np))
1470                 of_phy_deregister_fixed_link(np);
1471         unmap_group_regs(priv);
1472         gfar_free_rx_queues(priv);
1473         gfar_free_tx_queues(priv);
1474         of_node_put(priv->phy_node);
1475         of_node_put(priv->tbi_node);
1476         free_gfar_dev(priv);
1477         return err;
1478 }
1479 
1480 static int gfar_remove(struct platform_device *ofdev)
1481 {
1482         struct gfar_private *priv = platform_get_drvdata(ofdev);
1483         struct device_node *np = ofdev->dev.of_node;
1484 
1485         of_node_put(priv->phy_node);
1486         of_node_put(priv->tbi_node);
1487 
1488         unregister_netdev(priv->ndev);
1489 
1490         if (of_phy_is_fixed_link(np))
1491                 of_phy_deregister_fixed_link(np);
1492 
1493         unmap_group_regs(priv);
1494         gfar_free_rx_queues(priv);
1495         gfar_free_tx_queues(priv);
1496         free_gfar_dev(priv);
1497 
1498         return 0;
1499 }
1500 
1501 #ifdef CONFIG_PM
1502 
1503 static void __gfar_filer_disable(struct gfar_private *priv)
1504 {
1505         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1506         u32 temp;
1507 
1508         temp = gfar_read(&regs->rctrl);
1509         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1510         gfar_write(&regs->rctrl, temp);
1511 }
1512 
1513 static void __gfar_filer_enable(struct gfar_private *priv)
1514 {
1515         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516         u32 temp;
1517 
1518         temp = gfar_read(&regs->rctrl);
1519         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1520         gfar_write(&regs->rctrl, temp);
1521 }
1522 
1523 /* Filer rules implementing wol capabilities */
1524 static void gfar_filer_config_wol(struct gfar_private *priv)
1525 {
1526         unsigned int i;
1527         u32 rqfcr;
1528 
1529         __gfar_filer_disable(priv);
1530 
1531         /* clear the filer table, reject any packet by default */
1532         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1533         for (i = 0; i <= MAX_FILER_IDX; i++)
1534                 gfar_write_filer(priv, i, rqfcr, 0);
1535 
1536         i = 0;
1537         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1538                 /* unicast packet, accept it */
1539                 struct net_device *ndev = priv->ndev;
1540                 /* get the default rx queue index */
1541                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1542                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1543                                     (ndev->dev_addr[1] << 8) |
1544                                      ndev->dev_addr[2];
1545 
1546                 rqfcr = (qindex << 10) | RQFCR_AND |
1547                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1548 
1549                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1550 
1551                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1552                                 (ndev->dev_addr[4] << 8) |
1553                                  ndev->dev_addr[5];
1554                 rqfcr = (qindex << 10) | RQFCR_GPI |
1555                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1556                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1557         }
1558 
1559         __gfar_filer_enable(priv);
1560 }
1561 
1562 static void gfar_filer_restore_table(struct gfar_private *priv)
1563 {
1564         u32 rqfcr, rqfpr;
1565         unsigned int i;
1566 
1567         __gfar_filer_disable(priv);
1568 
1569         for (i = 0; i <= MAX_FILER_IDX; i++) {
1570                 rqfcr = priv->ftp_rqfcr[i];
1571                 rqfpr = priv->ftp_rqfpr[i];
1572                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1573         }
1574 
1575         __gfar_filer_enable(priv);
1576 }
1577 
1578 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1579 static void gfar_start_wol_filer(struct gfar_private *priv)
1580 {
1581         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1582         u32 tempval;
1583         int i = 0;
1584 
1585         /* Enable Rx hw queues */
1586         gfar_write(&regs->rqueue, priv->rqueue);
1587 
1588         /* Initialize DMACTRL to have WWR and WOP */
1589         tempval = gfar_read(&regs->dmactrl);
1590         tempval |= DMACTRL_INIT_SETTINGS;
1591         gfar_write(&regs->dmactrl, tempval);
1592 
1593         /* Make sure we aren't stopped */
1594         tempval = gfar_read(&regs->dmactrl);
1595         tempval &= ~DMACTRL_GRS;
1596         gfar_write(&regs->dmactrl, tempval);
1597 
1598         for (i = 0; i < priv->num_grps; i++) {
1599                 regs = priv->gfargrp[i].regs;
1600                 /* Clear RHLT, so that the DMA starts polling now */
1601                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1602                 /* enable the Filer General Purpose Interrupt */
1603                 gfar_write(&regs->imask, IMASK_FGPI);
1604         }
1605 
1606         /* Enable Rx DMA */
1607         tempval = gfar_read(&regs->maccfg1);
1608         tempval |= MACCFG1_RX_EN;
1609         gfar_write(&regs->maccfg1, tempval);
1610 }
1611 
1612 static int gfar_suspend(struct device *dev)
1613 {
1614         struct gfar_private *priv = dev_get_drvdata(dev);
1615         struct net_device *ndev = priv->ndev;
1616         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1617         u32 tempval;
1618         u16 wol = priv->wol_opts;
1619 
1620         if (!netif_running(ndev))
1621                 return 0;
1622 
1623         disable_napi(priv);
1624         netif_tx_lock(ndev);
1625         netif_device_detach(ndev);
1626         netif_tx_unlock(ndev);
1627 
1628         gfar_halt(priv);
1629 
1630         if (wol & GFAR_WOL_MAGIC) {
1631                 /* Enable interrupt on Magic Packet */
1632                 gfar_write(&regs->imask, IMASK_MAG);
1633 
1634                 /* Enable Magic Packet mode */
1635                 tempval = gfar_read(&regs->maccfg2);
1636                 tempval |= MACCFG2_MPEN;
1637                 gfar_write(&regs->maccfg2, tempval);
1638 
1639                 /* re-enable the Rx block */
1640                 tempval = gfar_read(&regs->maccfg1);
1641                 tempval |= MACCFG1_RX_EN;
1642                 gfar_write(&regs->maccfg1, tempval);
1643 
1644         } else if (wol & GFAR_WOL_FILER_UCAST) {
1645                 gfar_filer_config_wol(priv);
1646                 gfar_start_wol_filer(priv);
1647 
1648         } else {
1649                 phy_stop(ndev->phydev);
1650         }
1651 
1652         return 0;
1653 }
1654 
1655 static int gfar_resume(struct device *dev)
1656 {
1657         struct gfar_private *priv = dev_get_drvdata(dev);
1658         struct net_device *ndev = priv->ndev;
1659         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1660         u32 tempval;
1661         u16 wol = priv->wol_opts;
1662 
1663         if (!netif_running(ndev))
1664                 return 0;
1665 
1666         if (wol & GFAR_WOL_MAGIC) {
1667                 /* Disable Magic Packet mode */
1668                 tempval = gfar_read(&regs->maccfg2);
1669                 tempval &= ~MACCFG2_MPEN;
1670                 gfar_write(&regs->maccfg2, tempval);
1671 
1672         } else if (wol & GFAR_WOL_FILER_UCAST) {
1673                 /* need to stop rx only, tx is already down */
1674                 gfar_halt(priv);
1675                 gfar_filer_restore_table(priv);
1676 
1677         } else {
1678                 phy_start(ndev->phydev);
1679         }
1680 
1681         gfar_start(priv);
1682 
1683         netif_device_attach(ndev);
1684         enable_napi(priv);
1685 
1686         return 0;
1687 }
1688 
1689 static int gfar_restore(struct device *dev)
1690 {
1691         struct gfar_private *priv = dev_get_drvdata(dev);
1692         struct net_device *ndev = priv->ndev;
1693 
1694         if (!netif_running(ndev)) {
1695                 netif_device_attach(ndev);
1696 
1697                 return 0;
1698         }
1699 
1700         gfar_init_bds(ndev);
1701 
1702         gfar_mac_reset(priv);
1703 
1704         gfar_init_tx_rx_base(priv);
1705 
1706         gfar_start(priv);
1707 
1708         priv->oldlink = 0;
1709         priv->oldspeed = 0;
1710         priv->oldduplex = -1;
1711 
1712         if (ndev->phydev)
1713                 phy_start(ndev->phydev);
1714 
1715         netif_device_attach(ndev);
1716         enable_napi(priv);
1717 
1718         return 0;
1719 }
1720 
1721 static struct dev_pm_ops gfar_pm_ops = {
1722         .suspend = gfar_suspend,
1723         .resume = gfar_resume,
1724         .freeze = gfar_suspend,
1725         .thaw = gfar_resume,
1726         .restore = gfar_restore,
1727 };
1728 
1729 #define GFAR_PM_OPS (&gfar_pm_ops)
1730 
1731 #else
1732 
1733 #define GFAR_PM_OPS NULL
1734 
1735 #endif
1736 
1737 /* Reads the controller's registers to determine what interface
1738  * connects it to the PHY.
1739  */
1740 static phy_interface_t gfar_get_interface(struct net_device *dev)
1741 {
1742         struct gfar_private *priv = netdev_priv(dev);
1743         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1744         u32 ecntrl;
1745 
1746         ecntrl = gfar_read(&regs->ecntrl);
1747 
1748         if (ecntrl & ECNTRL_SGMII_MODE)
1749                 return PHY_INTERFACE_MODE_SGMII;
1750 
1751         if (ecntrl & ECNTRL_TBI_MODE) {
1752                 if (ecntrl & ECNTRL_REDUCED_MODE)
1753                         return PHY_INTERFACE_MODE_RTBI;
1754                 else
1755                         return PHY_INTERFACE_MODE_TBI;
1756         }
1757 
1758         if (ecntrl & ECNTRL_REDUCED_MODE) {
1759                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1760                         return PHY_INTERFACE_MODE_RMII;
1761                 }
1762                 else {
1763                         phy_interface_t interface = priv->interface;
1764 
1765                         /* This isn't autodetected right now, so it must
1766                          * be set by the device tree or platform code.
1767                          */
1768                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1769                                 return PHY_INTERFACE_MODE_RGMII_ID;
1770 
1771                         return PHY_INTERFACE_MODE_RGMII;
1772                 }
1773         }
1774 
1775         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1776                 return PHY_INTERFACE_MODE_GMII;
1777 
1778         return PHY_INTERFACE_MODE_MII;
1779 }
1780 
1781 
1782 /* Initializes driver's PHY state, and attaches to the PHY.
1783  * Returns 0 on success.
1784  */
1785 static int init_phy(struct net_device *dev)
1786 {
1787         struct gfar_private *priv = netdev_priv(dev);
1788         uint gigabit_support =
1789                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1790                 GFAR_SUPPORTED_GBIT : 0;
1791         phy_interface_t interface;
1792         struct phy_device *phydev;
1793 
1794         priv->oldlink = 0;
1795         priv->oldspeed = 0;
1796         priv->oldduplex = -1;
1797 
1798         interface = gfar_get_interface(dev);
1799 
1800         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1801                                 interface);
1802         if (!phydev) {
1803                 dev_err(&dev->dev, "could not attach to PHY\n");
1804                 return -ENODEV;
1805         }
1806 
1807         if (interface == PHY_INTERFACE_MODE_SGMII)
1808                 gfar_configure_serdes(dev);
1809 
1810         /* Remove any features not supported by the controller */
1811         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1812         phydev->advertising = phydev->supported;
1813 
1814         /* Add support for flow control, but don't advertise it by default */
1815         phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1816 
1817         return 0;
1818 }
1819 
1820 /* Initialize TBI PHY interface for communicating with the
1821  * SERDES lynx PHY on the chip.  We communicate with this PHY
1822  * through the MDIO bus on each controller, treating it as a
1823  * "normal" PHY at the address found in the TBIPA register.  We assume
1824  * that the TBIPA register is valid.  Either the MDIO bus code will set
1825  * it to a value that doesn't conflict with other PHYs on the bus, or the
1826  * value doesn't matter, as there are no other PHYs on the bus.
1827  */
1828 static void gfar_configure_serdes(struct net_device *dev)
1829 {
1830         struct gfar_private *priv = netdev_priv(dev);
1831         struct phy_device *tbiphy;
1832 
1833         if (!priv->tbi_node) {
1834                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1835                                     "device tree specify a tbi-handle\n");
1836                 return;
1837         }
1838 
1839         tbiphy = of_phy_find_device(priv->tbi_node);
1840         if (!tbiphy) {
1841                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1842                 return;
1843         }
1844 
1845         /* If the link is already up, we must already be ok, and don't need to
1846          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1847          * everything for us?  Resetting it takes the link down and requires
1848          * several seconds for it to come back.
1849          */
1850         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1851                 put_device(&tbiphy->mdio.dev);
1852                 return;
1853         }
1854 
1855         /* Single clk mode, mii mode off(for serdes communication) */
1856         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1857 
1858         phy_write(tbiphy, MII_ADVERTISE,
1859                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1860                   ADVERTISE_1000XPSE_ASYM);
1861 
1862         phy_write(tbiphy, MII_BMCR,
1863                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1864                   BMCR_SPEED1000);
1865 
1866         put_device(&tbiphy->mdio.dev);
1867 }
1868 
1869 static int __gfar_is_rx_idle(struct gfar_private *priv)
1870 {
1871         u32 res;
1872 
1873         /* Normaly TSEC should not hang on GRS commands, so we should
1874          * actually wait for IEVENT_GRSC flag.
1875          */
1876         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1877                 return 0;
1878 
1879         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1880          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1881          * and the Rx can be safely reset.
1882          */
1883         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1884         res &= 0x7f807f80;
1885         if ((res & 0xffff) == (res >> 16))
1886                 return 1;
1887 
1888         return 0;
1889 }
1890 
1891 /* Halt the receive and transmit queues */
1892 static void gfar_halt_nodisable(struct gfar_private *priv)
1893 {
1894         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1895         u32 tempval;
1896         unsigned int timeout;
1897         int stopped;
1898 
1899         gfar_ints_disable(priv);
1900 
1901         if (gfar_is_dma_stopped(priv))
1902                 return;
1903 
1904         /* Stop the DMA, and wait for it to stop */
1905         tempval = gfar_read(&regs->dmactrl);
1906         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1907         gfar_write(&regs->dmactrl, tempval);
1908 
1909 retry:
1910         timeout = 1000;
1911         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1912                 cpu_relax();
1913                 timeout--;
1914         }
1915 
1916         if (!timeout)
1917                 stopped = gfar_is_dma_stopped(priv);
1918 
1919         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1920             !__gfar_is_rx_idle(priv))
1921                 goto retry;
1922 }
1923 
1924 /* Halt the receive and transmit queues */
1925 void gfar_halt(struct gfar_private *priv)
1926 {
1927         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1928         u32 tempval;
1929 
1930         /* Dissable the Rx/Tx hw queues */
1931         gfar_write(&regs->rqueue, 0);
1932         gfar_write(&regs->tqueue, 0);
1933 
1934         mdelay(10);
1935 
1936         gfar_halt_nodisable(priv);
1937 
1938         /* Disable Rx/Tx DMA */
1939         tempval = gfar_read(&regs->maccfg1);
1940         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1941         gfar_write(&regs->maccfg1, tempval);
1942 }
1943 
1944 void stop_gfar(struct net_device *dev)
1945 {
1946         struct gfar_private *priv = netdev_priv(dev);
1947 
1948         netif_tx_stop_all_queues(dev);
1949 
1950         smp_mb__before_atomic();
1951         set_bit(GFAR_DOWN, &priv->state);
1952         smp_mb__after_atomic();
1953 
1954         disable_napi(priv);
1955 
1956         /* disable ints and gracefully shut down Rx/Tx DMA */
1957         gfar_halt(priv);
1958 
1959         phy_stop(dev->phydev);
1960 
1961         free_skb_resources(priv);
1962 }
1963 
1964 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1965 {
1966         struct txbd8 *txbdp;
1967         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1968         int i, j;
1969 
1970         txbdp = tx_queue->tx_bd_base;
1971 
1972         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1973                 if (!tx_queue->tx_skbuff[i])
1974                         continue;
1975 
1976                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1977                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1978                 txbdp->lstatus = 0;
1979                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1980                      j++) {
1981                         txbdp++;
1982                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1983                                        be16_to_cpu(txbdp->length),
1984                                        DMA_TO_DEVICE);
1985                 }
1986                 txbdp++;
1987                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1988                 tx_queue->tx_skbuff[i] = NULL;
1989         }
1990         kfree(tx_queue->tx_skbuff);
1991         tx_queue->tx_skbuff = NULL;
1992 }
1993 
1994 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1995 {
1996         int i;
1997 
1998         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1999 
2000         if (rx_queue->skb)
2001                 dev_kfree_skb(rx_queue->skb);
2002 
2003         for (i = 0; i < rx_queue->rx_ring_size; i++) {
2004                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2005 
2006                 rxbdp->lstatus = 0;
2007                 rxbdp->bufPtr = 0;
2008                 rxbdp++;
2009 
2010                 if (!rxb->page)
2011                         continue;
2012 
2013                 dma_unmap_page(rx_queue->dev, rxb->dma,
2014                                PAGE_SIZE, DMA_FROM_DEVICE);
2015                 __free_page(rxb->page);
2016 
2017                 rxb->page = NULL;
2018         }
2019 
2020         kfree(rx_queue->rx_buff);
2021         rx_queue->rx_buff = NULL;
2022 }
2023 
2024 /* If there are any tx skbs or rx skbs still around, free them.
2025  * Then free tx_skbuff and rx_skbuff
2026  */
2027 static void free_skb_resources(struct gfar_private *priv)
2028 {
2029         struct gfar_priv_tx_q *tx_queue = NULL;
2030         struct gfar_priv_rx_q *rx_queue = NULL;
2031         int i;
2032 
2033         /* Go through all the buffer descriptors and free their data buffers */
2034         for (i = 0; i < priv->num_tx_queues; i++) {
2035                 struct netdev_queue *txq;
2036 
2037                 tx_queue = priv->tx_queue[i];
2038                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2039                 if (tx_queue->tx_skbuff)
2040                         free_skb_tx_queue(tx_queue);
2041                 netdev_tx_reset_queue(txq);
2042         }
2043 
2044         for (i = 0; i < priv->num_rx_queues; i++) {
2045                 rx_queue = priv->rx_queue[i];
2046                 if (rx_queue->rx_buff)
2047                         free_skb_rx_queue(rx_queue);
2048         }
2049 
2050         dma_free_coherent(priv->dev,
2051                           sizeof(struct txbd8) * priv->total_tx_ring_size +
2052                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
2053                           priv->tx_queue[0]->tx_bd_base,
2054                           priv->tx_queue[0]->tx_bd_dma_base);
2055 }
2056 
2057 void gfar_start(struct gfar_private *priv)
2058 {
2059         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2060         u32 tempval;
2061         int i = 0;
2062 
2063         /* Enable Rx/Tx hw queues */
2064         gfar_write(&regs->rqueue, priv->rqueue);
2065         gfar_write(&regs->tqueue, priv->tqueue);
2066 
2067         /* Initialize DMACTRL to have WWR and WOP */
2068         tempval = gfar_read(&regs->dmactrl);
2069         tempval |= DMACTRL_INIT_SETTINGS;
2070         gfar_write(&regs->dmactrl, tempval);
2071 
2072         /* Make sure we aren't stopped */
2073         tempval = gfar_read(&regs->dmactrl);
2074         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2075         gfar_write(&regs->dmactrl, tempval);
2076 
2077         for (i = 0; i < priv->num_grps; i++) {
2078                 regs = priv->gfargrp[i].regs;
2079                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2080                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2081                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2082         }
2083 
2084         /* Enable Rx/Tx DMA */
2085         tempval = gfar_read(&regs->maccfg1);
2086         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2087         gfar_write(&regs->maccfg1, tempval);
2088 
2089         gfar_ints_enable(priv);
2090 
2091         netif_trans_update(priv->ndev); /* prevent tx timeout */
2092 }
2093 
2094 static void free_grp_irqs(struct gfar_priv_grp *grp)
2095 {
2096         free_irq(gfar_irq(grp, TX)->irq, grp);
2097         free_irq(gfar_irq(grp, RX)->irq, grp);
2098         free_irq(gfar_irq(grp, ER)->irq, grp);
2099 }
2100 
2101 static int register_grp_irqs(struct gfar_priv_grp *grp)
2102 {
2103         struct gfar_private *priv = grp->priv;
2104         struct net_device *dev = priv->ndev;
2105         int err;
2106 
2107         /* If the device has multiple interrupts, register for
2108          * them.  Otherwise, only register for the one
2109          */
2110         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2111                 /* Install our interrupt handlers for Error,
2112                  * Transmit, and Receive
2113                  */
2114                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2115                                   gfar_irq(grp, ER)->name, grp);
2116                 if (err < 0) {
2117                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2118                                   gfar_irq(grp, ER)->irq);
2119 
2120                         goto err_irq_fail;
2121                 }
2122                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2123 
2124                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2125                                   gfar_irq(grp, TX)->name, grp);
2126                 if (err < 0) {
2127                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2128                                   gfar_irq(grp, TX)->irq);
2129                         goto tx_irq_fail;
2130                 }
2131                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2132                                   gfar_irq(grp, RX)->name, grp);
2133                 if (err < 0) {
2134                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135                                   gfar_irq(grp, RX)->irq);
2136                         goto rx_irq_fail;
2137                 }
2138                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2139 
2140         } else {
2141                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2142                                   gfar_irq(grp, TX)->name, grp);
2143                 if (err < 0) {
2144                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2145                                   gfar_irq(grp, TX)->irq);
2146                         goto err_irq_fail;
2147                 }
2148                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2149         }
2150 
2151         return 0;
2152 
2153 rx_irq_fail:
2154         free_irq(gfar_irq(grp, TX)->irq, grp);
2155 tx_irq_fail:
2156         free_irq(gfar_irq(grp, ER)->irq, grp);
2157 err_irq_fail:
2158         return err;
2159 
2160 }
2161 
2162 static void gfar_free_irq(struct gfar_private *priv)
2163 {
2164         int i;
2165 
2166         /* Free the IRQs */
2167         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2168                 for (i = 0; i < priv->num_grps; i++)
2169                         free_grp_irqs(&priv->gfargrp[i]);
2170         } else {
2171                 for (i = 0; i < priv->num_grps; i++)
2172                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2173                                  &priv->gfargrp[i]);
2174         }
2175 }
2176 
2177 static int gfar_request_irq(struct gfar_private *priv)
2178 {
2179         int err, i, j;
2180 
2181         for (i = 0; i < priv->num_grps; i++) {
2182                 err = register_grp_irqs(&priv->gfargrp[i]);
2183                 if (err) {
2184                         for (j = 0; j < i; j++)
2185                                 free_grp_irqs(&priv->gfargrp[j]);
2186                         return err;
2187                 }
2188         }
2189 
2190         return 0;
2191 }
2192 
2193 /* Bring the controller up and running */
2194 int startup_gfar(struct net_device *ndev)
2195 {
2196         struct gfar_private *priv = netdev_priv(ndev);
2197         int err;
2198 
2199         gfar_mac_reset(priv);
2200 
2201         err = gfar_alloc_skb_resources(ndev);
2202         if (err)
2203                 return err;
2204 
2205         gfar_init_tx_rx_base(priv);
2206 
2207         smp_mb__before_atomic();
2208         clear_bit(GFAR_DOWN, &priv->state);
2209         smp_mb__after_atomic();
2210 
2211         /* Start Rx/Tx DMA and enable the interrupts */
2212         gfar_start(priv);
2213 
2214         /* force link state update after mac reset */
2215         priv->oldlink = 0;
2216         priv->oldspeed = 0;
2217         priv->oldduplex = -1;
2218 
2219         phy_start(ndev->phydev);
2220 
2221         enable_napi(priv);
2222 
2223         netif_tx_wake_all_queues(ndev);
2224 
2225         return 0;
2226 }
2227 
2228 /* Called when something needs to use the ethernet device
2229  * Returns 0 for success.
2230  */
2231 static int gfar_enet_open(struct net_device *dev)
2232 {
2233         struct gfar_private *priv = netdev_priv(dev);
2234         int err;
2235 
2236         err = init_phy(dev);
2237         if (err)
2238                 return err;
2239 
2240         err = gfar_request_irq(priv);
2241         if (err)
2242                 return err;
2243 
2244         err = startup_gfar(dev);
2245         if (err)
2246                 return err;
2247 
2248         return err;
2249 }
2250 
2251 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2252 {
2253         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2254 
2255         memset(fcb, 0, GMAC_FCB_LEN);
2256 
2257         return fcb;
2258 }
2259 
2260 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2261                                     int fcb_length)
2262 {
2263         /* If we're here, it's a IP packet with a TCP or UDP
2264          * payload.  We set it to checksum, using a pseudo-header
2265          * we provide
2266          */
2267         u8 flags = TXFCB_DEFAULT;
2268 
2269         /* Tell the controller what the protocol is
2270          * And provide the already calculated phcs
2271          */
2272         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2273                 flags |= TXFCB_UDP;
2274                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2275         } else
2276                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2277 
2278         /* l3os is the distance between the start of the
2279          * frame (skb->data) and the start of the IP hdr.
2280          * l4os is the distance between the start of the
2281          * l3 hdr and the l4 hdr
2282          */
2283         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2284         fcb->l4os = skb_network_header_len(skb);
2285 
2286         fcb->flags = flags;
2287 }
2288 
2289 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2290 {
2291         fcb->flags |= TXFCB_VLN;
2292         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2293 }
2294 
2295 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2296                                       struct txbd8 *base, int ring_size)
2297 {
2298         struct txbd8 *new_bd = bdp + stride;
2299 
2300         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2301 }
2302 
2303 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2304                                       int ring_size)
2305 {
2306         return skip_txbd(bdp, 1, base, ring_size);
2307 }
2308 
2309 /* eTSEC12: csum generation not supported for some fcb offsets */
2310 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2311                                        unsigned long fcb_addr)
2312 {
2313         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2314                (fcb_addr % 0x20) > 0x18);
2315 }
2316 
2317 /* eTSEC76: csum generation for frames larger than 2500 may
2318  * cause excess delays before start of transmission
2319  */
2320 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2321                                        unsigned int len)
2322 {
2323         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2324                (len > 2500));
2325 }
2326 
2327 /* This is called by the kernel when a frame is ready for transmission.
2328  * It is pointed to by the dev->hard_start_xmit function pointer
2329  */
2330 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2331 {
2332         struct gfar_private *priv = netdev_priv(dev);
2333         struct gfar_priv_tx_q *tx_queue = NULL;
2334         struct netdev_queue *txq;
2335         struct gfar __iomem *regs = NULL;
2336         struct txfcb *fcb = NULL;
2337         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2338         u32 lstatus;
2339         skb_frag_t *frag;
2340         int i, rq = 0;
2341         int do_tstamp, do_csum, do_vlan;
2342         u32 bufaddr;
2343         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2344 
2345         rq = skb->queue_mapping;
2346         tx_queue = priv->tx_queue[rq];
2347         txq = netdev_get_tx_queue(dev, rq);
2348         base = tx_queue->tx_bd_base;
2349         regs = tx_queue->grp->regs;
2350 
2351         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2352         do_vlan = skb_vlan_tag_present(skb);
2353         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2354                     priv->hwts_tx_en;
2355 
2356         if (do_csum || do_vlan)
2357                 fcb_len = GMAC_FCB_LEN;
2358 
2359         /* check if time stamp should be generated */
2360         if (unlikely(do_tstamp))
2361                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2362 
2363         /* make space for additional header when fcb is needed */
2364         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2365                 struct sk_buff *skb_new;
2366 
2367                 skb_new = skb_realloc_headroom(skb, fcb_len);
2368                 if (!skb_new) {
2369                         dev->stats.tx_errors++;
2370                         dev_kfree_skb_any(skb);
2371                         return NETDEV_TX_OK;
2372                 }
2373 
2374                 if (skb->sk)
2375                         skb_set_owner_w(skb_new, skb->sk);
2376                 dev_consume_skb_any(skb);
2377                 skb = skb_new;
2378         }
2379 
2380         /* total number of fragments in the SKB */
2381         nr_frags = skb_shinfo(skb)->nr_frags;
2382 
2383         /* calculate the required number of TxBDs for this skb */
2384         if (unlikely(do_tstamp))
2385                 nr_txbds = nr_frags + 2;
2386         else
2387                 nr_txbds = nr_frags + 1;
2388 
2389         /* check if there is space to queue this packet */
2390         if (nr_txbds > tx_queue->num_txbdfree) {
2391                 /* no space, stop the queue */
2392                 netif_tx_stop_queue(txq);
2393                 dev->stats.tx_fifo_errors++;
2394                 return NETDEV_TX_BUSY;
2395         }
2396 
2397         /* Update transmit stats */
2398         bytes_sent = skb->len;
2399         tx_queue->stats.tx_bytes += bytes_sent;
2400         /* keep Tx bytes on wire for BQL accounting */
2401         GFAR_CB(skb)->bytes_sent = bytes_sent;
2402         tx_queue->stats.tx_packets++;
2403 
2404         txbdp = txbdp_start = tx_queue->cur_tx;
2405         lstatus = be32_to_cpu(txbdp->lstatus);
2406 
2407         /* Add TxPAL between FCB and frame if required */
2408         if (unlikely(do_tstamp)) {
2409                 skb_push(skb, GMAC_TXPAL_LEN);
2410                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2411         }
2412 
2413         /* Add TxFCB if required */
2414         if (fcb_len) {
2415                 fcb = gfar_add_fcb(skb);
2416                 lstatus |= BD_LFLAG(TXBD_TOE);
2417         }
2418 
2419         /* Set up checksumming */
2420         if (do_csum) {
2421                 gfar_tx_checksum(skb, fcb, fcb_len);
2422 
2423                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2424                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2425                         __skb_pull(skb, GMAC_FCB_LEN);
2426                         skb_checksum_help(skb);
2427                         if (do_vlan || do_tstamp) {
2428                                 /* put back a new fcb for vlan/tstamp TOE */
2429                                 fcb = gfar_add_fcb(skb);
2430                         } else {
2431                                 /* Tx TOE not used */
2432                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2433                                 fcb = NULL;
2434                         }
2435                 }
2436         }
2437 
2438         if (do_vlan)
2439                 gfar_tx_vlan(skb, fcb);
2440 
2441         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2442                                  DMA_TO_DEVICE);
2443         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2444                 goto dma_map_err;
2445 
2446         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2447 
2448         /* Time stamp insertion requires one additional TxBD */
2449         if (unlikely(do_tstamp))
2450                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2451                                                  tx_queue->tx_ring_size);
2452 
2453         if (likely(!nr_frags)) {
2454                 if (likely(!do_tstamp))
2455                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2456         } else {
2457                 u32 lstatus_start = lstatus;
2458 
2459                 /* Place the fragment addresses and lengths into the TxBDs */
2460                 frag = &skb_shinfo(skb)->frags[0];
2461                 for (i = 0; i < nr_frags; i++, frag++) {
2462                         unsigned int size;
2463 
2464                         /* Point at the next BD, wrapping as needed */
2465                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2466 
2467                         size = skb_frag_size(frag);
2468 
2469                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
2470                                   BD_LFLAG(TXBD_READY);
2471 
2472                         /* Handle the last BD specially */
2473                         if (i == nr_frags - 1)
2474                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2475 
2476                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2477                                                    size, DMA_TO_DEVICE);
2478                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2479                                 goto dma_map_err;
2480 
2481                         /* set the TxBD length and buffer pointer */
2482                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2483                         txbdp->lstatus = cpu_to_be32(lstatus);
2484                 }
2485 
2486                 lstatus = lstatus_start;
2487         }
2488 
2489         /* If time stamping is requested one additional TxBD must be set up. The
2490          * first TxBD points to the FCB and must have a data length of
2491          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2492          * the full frame length.
2493          */
2494         if (unlikely(do_tstamp)) {
2495                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2496 
2497                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2498                 bufaddr += fcb_len;
2499 
2500                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2501                               (skb_headlen(skb) - fcb_len);
2502                 if (!nr_frags)
2503                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2504 
2505                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2506                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2507                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2508 
2509                 /* Setup tx hardware time stamping */
2510                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2511                 fcb->ptp = 1;
2512         } else {
2513                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2514         }
2515 
2516         netdev_tx_sent_queue(txq, bytes_sent);
2517 
2518         gfar_wmb();
2519 
2520         txbdp_start->lstatus = cpu_to_be32(lstatus);
2521 
2522         gfar_wmb(); /* force lstatus write before tx_skbuff */
2523 
2524         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2525 
2526         /* Update the current skb pointer to the next entry we will use
2527          * (wrapping if necessary)
2528          */
2529         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2530                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2531 
2532         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2533 
2534         /* We can work in parallel with gfar_clean_tx_ring(), except
2535          * when modifying num_txbdfree. Note that we didn't grab the lock
2536          * when we were reading the num_txbdfree and checking for available
2537          * space, that's because outside of this function it can only grow.
2538          */
2539         spin_lock_bh(&tx_queue->txlock);
2540         /* reduce TxBD free count */
2541         tx_queue->num_txbdfree -= (nr_txbds);
2542         spin_unlock_bh(&tx_queue->txlock);
2543 
2544         /* If the next BD still needs to be cleaned up, then the bds
2545          * are full.  We need to tell the kernel to stop sending us stuff.
2546          */
2547         if (!tx_queue->num_txbdfree) {
2548                 netif_tx_stop_queue(txq);
2549 
2550                 dev->stats.tx_fifo_errors++;
2551         }
2552 
2553         /* Tell the DMA to go go go */
2554         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2555 
2556         return NETDEV_TX_OK;
2557 
2558 dma_map_err:
2559         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2560         if (do_tstamp)
2561                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562         for (i = 0; i < nr_frags; i++) {
2563                 lstatus = be32_to_cpu(txbdp->lstatus);
2564                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2565                         break;
2566 
2567                 lstatus &= ~BD_LFLAG(TXBD_READY);
2568                 txbdp->lstatus = cpu_to_be32(lstatus);
2569                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2570                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2571                                DMA_TO_DEVICE);
2572                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2573         }
2574         gfar_wmb();
2575         dev_kfree_skb_any(skb);
2576         return NETDEV_TX_OK;
2577 }
2578 
2579 /* Stops the kernel queue, and halts the controller */
2580 static int gfar_close(struct net_device *dev)
2581 {
2582         struct gfar_private *priv = netdev_priv(dev);
2583 
2584         cancel_work_sync(&priv->reset_task);
2585         stop_gfar(dev);
2586 
2587         /* Disconnect from the PHY */
2588         phy_disconnect(dev->phydev);
2589 
2590         gfar_free_irq(priv);
2591 
2592         return 0;
2593 }
2594 
2595 /* Changes the mac address if the controller is not running. */
2596 static int gfar_set_mac_address(struct net_device *dev)
2597 {
2598         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2599 
2600         return 0;
2601 }
2602 
2603 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2604 {
2605         struct gfar_private *priv = netdev_priv(dev);
2606 
2607         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2608                 cpu_relax();
2609 
2610         if (dev->flags & IFF_UP)
2611                 stop_gfar(dev);
2612 
2613         dev->mtu = new_mtu;
2614 
2615         if (dev->flags & IFF_UP)
2616                 startup_gfar(dev);
2617 
2618         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2619 
2620         return 0;
2621 }
2622 
2623 void reset_gfar(struct net_device *ndev)
2624 {
2625         struct gfar_private *priv = netdev_priv(ndev);
2626 
2627         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2628                 cpu_relax();
2629 
2630         stop_gfar(ndev);
2631         startup_gfar(ndev);
2632 
2633         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2634 }
2635 
2636 /* gfar_reset_task gets scheduled when a packet has not been
2637  * transmitted after a set amount of time.
2638  * For now, assume that clearing out all the structures, and
2639  * starting over will fix the problem.
2640  */
2641 static void gfar_reset_task(struct work_struct *work)
2642 {
2643         struct gfar_private *priv = container_of(work, struct gfar_private,
2644                                                  reset_task);
2645         reset_gfar(priv->ndev);
2646 }
2647 
2648 static void gfar_timeout(struct net_device *dev)
2649 {
2650         struct gfar_private *priv = netdev_priv(dev);
2651 
2652         dev->stats.tx_errors++;
2653         schedule_work(&priv->reset_task);
2654 }
2655 
2656 /* Interrupt Handler for Transmit complete */
2657 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2658 {
2659         struct net_device *dev = tx_queue->dev;
2660         struct netdev_queue *txq;
2661         struct gfar_private *priv = netdev_priv(dev);
2662         struct txbd8 *bdp, *next = NULL;
2663         struct txbd8 *lbdp = NULL;
2664         struct txbd8 *base = tx_queue->tx_bd_base;
2665         struct sk_buff *skb;
2666         int skb_dirtytx;
2667         int tx_ring_size = tx_queue->tx_ring_size;
2668         int frags = 0, nr_txbds = 0;
2669         int i;
2670         int howmany = 0;
2671         int tqi = tx_queue->qindex;
2672         unsigned int bytes_sent = 0;
2673         u32 lstatus;
2674         size_t buflen;
2675 
2676         txq = netdev_get_tx_queue(dev, tqi);
2677         bdp = tx_queue->dirty_tx;
2678         skb_dirtytx = tx_queue->skb_dirtytx;
2679 
2680         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2681 
2682                 frags = skb_shinfo(skb)->nr_frags;
2683 
2684                 /* When time stamping, one additional TxBD must be freed.
2685                  * Also, we need to dma_unmap_single() the TxPAL.
2686                  */
2687                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2688                         nr_txbds = frags + 2;
2689                 else
2690                         nr_txbds = frags + 1;
2691 
2692                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2693 
2694                 lstatus = be32_to_cpu(lbdp->lstatus);
2695 
2696                 /* Only clean completed frames */
2697                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2698                     (lstatus & BD_LENGTH_MASK))
2699                         break;
2700 
2701                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2702                         next = next_txbd(bdp, base, tx_ring_size);
2703                         buflen = be16_to_cpu(next->length) +
2704                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2705                 } else
2706                         buflen = be16_to_cpu(bdp->length);
2707 
2708                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2709                                  buflen, DMA_TO_DEVICE);
2710 
2711                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2712                         struct skb_shared_hwtstamps shhwtstamps;
2713                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2714                                           ~0x7UL);
2715 
2716                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2717                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2718                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2719                         skb_tstamp_tx(skb, &shhwtstamps);
2720                         gfar_clear_txbd_status(bdp);
2721                         bdp = next;
2722                 }
2723 
2724                 gfar_clear_txbd_status(bdp);
2725                 bdp = next_txbd(bdp, base, tx_ring_size);
2726 
2727                 for (i = 0; i < frags; i++) {
2728                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2729                                        be16_to_cpu(bdp->length),
2730                                        DMA_TO_DEVICE);
2731                         gfar_clear_txbd_status(bdp);
2732                         bdp = next_txbd(bdp, base, tx_ring_size);
2733                 }
2734 
2735                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2736 
2737                 dev_kfree_skb_any(skb);
2738 
2739                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2740 
2741                 skb_dirtytx = (skb_dirtytx + 1) &
2742                               TX_RING_MOD_MASK(tx_ring_size);
2743 
2744                 howmany++;
2745                 spin_lock(&tx_queue->txlock);
2746                 tx_queue->num_txbdfree += nr_txbds;
2747                 spin_unlock(&tx_queue->txlock);
2748         }
2749 
2750         /* If we freed a buffer, we can restart transmission, if necessary */
2751         if (tx_queue->num_txbdfree &&
2752             netif_tx_queue_stopped(txq) &&
2753             !(test_bit(GFAR_DOWN, &priv->state)))
2754                 netif_wake_subqueue(priv->ndev, tqi);
2755 
2756         /* Update dirty indicators */
2757         tx_queue->skb_dirtytx = skb_dirtytx;
2758         tx_queue->dirty_tx = bdp;
2759 
2760         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2761 }
2762 
2763 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2764 {
2765         struct page *page;
2766         dma_addr_t addr;
2767 
2768         page = dev_alloc_page();
2769         if (unlikely(!page))
2770                 return false;
2771 
2772         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2773         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2774                 __free_page(page);
2775 
2776                 return false;
2777         }
2778 
2779         rxb->dma = addr;
2780         rxb->page = page;
2781         rxb->page_offset = 0;
2782 
2783         return true;
2784 }
2785 
2786 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2787 {
2788         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2789         struct gfar_extra_stats *estats = &priv->extra_stats;
2790 
2791         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2792         atomic64_inc(&estats->rx_alloc_err);
2793 }
2794 
2795 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2796                                 int alloc_cnt)
2797 {
2798         struct rxbd8 *bdp;
2799         struct gfar_rx_buff *rxb;
2800         int i;
2801 
2802         i = rx_queue->next_to_use;
2803         bdp = &rx_queue->rx_bd_base[i];
2804         rxb = &rx_queue->rx_buff[i];
2805 
2806         while (alloc_cnt--) {
2807                 /* try reuse page */
2808                 if (unlikely(!rxb->page)) {
2809                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2810                                 gfar_rx_alloc_err(rx_queue);
2811                                 break;
2812                         }
2813                 }
2814 
2815                 /* Setup the new RxBD */
2816                 gfar_init_rxbdp(rx_queue, bdp,
2817                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2818 
2819                 /* Update to the next pointer */
2820                 bdp++;
2821                 rxb++;
2822 
2823                 if (unlikely(++i == rx_queue->rx_ring_size)) {
2824                         i = 0;
2825                         bdp = rx_queue->rx_bd_base;
2826                         rxb = rx_queue->rx_buff;
2827                 }
2828         }
2829 
2830         rx_queue->next_to_use = i;
2831         rx_queue->next_to_alloc = i;
2832 }
2833 
2834 static void count_errors(u32 lstatus, struct net_device *ndev)
2835 {
2836         struct gfar_private *priv = netdev_priv(ndev);
2837         struct net_device_stats *stats = &ndev->stats;
2838         struct gfar_extra_stats *estats = &priv->extra_stats;
2839 
2840         /* If the packet was truncated, none of the other errors matter */
2841         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2842                 stats->rx_length_errors++;
2843 
2844                 atomic64_inc(&estats->rx_trunc);
2845 
2846                 return;
2847         }
2848         /* Count the errors, if there were any */
2849         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2850                 stats->rx_length_errors++;
2851 
2852                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2853                         atomic64_inc(&estats->rx_large);
2854                 else
2855                         atomic64_inc(&estats->rx_short);
2856         }
2857         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2858                 stats->rx_frame_errors++;
2859                 atomic64_inc(&estats->rx_nonoctet);
2860         }
2861         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2862                 atomic64_inc(&estats->rx_crcerr);
2863                 stats->rx_crc_errors++;
2864         }
2865         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2866                 atomic64_inc(&estats->rx_overrun);
2867                 stats->rx_over_errors++;
2868         }
2869 }
2870 
2871 irqreturn_t gfar_receive(int irq, void *grp_id)
2872 {
2873         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2874         unsigned long flags;
2875         u32 imask, ievent;
2876 
2877         ievent = gfar_read(&grp->regs->ievent);
2878 
2879         if (unlikely(ievent & IEVENT_FGPI)) {
2880                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2881                 return IRQ_HANDLED;
2882         }
2883 
2884         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2885                 spin_lock_irqsave(&grp->grplock, flags);
2886                 imask = gfar_read(&grp->regs->imask);
2887                 imask &= IMASK_RX_DISABLED;
2888                 gfar_write(&grp->regs->imask, imask);
2889                 spin_unlock_irqrestore(&grp->grplock, flags);
2890                 __napi_schedule(&grp->napi_rx);
2891         } else {
2892                 /* Clear IEVENT, so interrupts aren't called again
2893                  * because of the packets that have already arrived.
2894                  */
2895                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2896         }
2897 
2898         return IRQ_HANDLED;
2899 }
2900 
2901 /* Interrupt Handler for Transmit complete */
2902 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2903 {
2904         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2905         unsigned long flags;
2906         u32 imask;
2907 
2908         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2909                 spin_lock_irqsave(&grp->grplock, flags);
2910                 imask = gfar_read(&grp->regs->imask);
2911                 imask &= IMASK_TX_DISABLED;
2912                 gfar_write(&grp->regs->imask, imask);
2913                 spin_unlock_irqrestore(&grp->grplock, flags);
2914                 __napi_schedule(&grp->napi_tx);
2915         } else {
2916                 /* Clear IEVENT, so interrupts aren't called again
2917                  * because of the packets that have already arrived.
2918                  */
2919                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2920         }
2921 
2922         return IRQ_HANDLED;
2923 }
2924 
2925 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2926                              struct sk_buff *skb, bool first)
2927 {
2928         unsigned int size = lstatus & BD_LENGTH_MASK;
2929         struct page *page = rxb->page;
2930         bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2931 
2932         /* Remove the FCS from the packet length */
2933         if (last)
2934                 size -= ETH_FCS_LEN;
2935 
2936         if (likely(first)) {
2937                 skb_put(skb, size);
2938         } else {
2939                 /* the last fragments' length contains the full frame length */
2940                 if (last)
2941                         size -= skb->len;
2942 
2943                 /* in case the last fragment consisted only of the FCS */
2944                 if (size > 0)
2945                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2946                                         rxb->page_offset + RXBUF_ALIGNMENT,
2947                                         size, GFAR_RXB_TRUESIZE);
2948         }
2949 
2950         /* try reuse page */
2951         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2952                 return false;
2953 
2954         /* change offset to the other half */
2955         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2956 
2957         page_ref_inc(page);
2958 
2959         return true;
2960 }
2961 
2962 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2963                                struct gfar_rx_buff *old_rxb)
2964 {
2965         struct gfar_rx_buff *new_rxb;
2966         u16 nta = rxq->next_to_alloc;
2967 
2968         new_rxb = &rxq->rx_buff[nta];
2969 
2970         /* find next buf that can reuse a page */
2971         nta++;
2972         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2973 
2974         /* copy page reference */
2975         *new_rxb = *old_rxb;
2976 
2977         /* sync for use by the device */
2978         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2979                                          old_rxb->page_offset,
2980                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2981 }
2982 
2983 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2984                                             u32 lstatus, struct sk_buff *skb)
2985 {
2986         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2987         struct page *page = rxb->page;
2988         bool first = false;
2989 
2990         if (likely(!skb)) {
2991                 void *buff_addr = page_address(page) + rxb->page_offset;
2992 
2993                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2994                 if (unlikely(!skb)) {
2995                         gfar_rx_alloc_err(rx_queue);
2996                         return NULL;
2997                 }
2998                 skb_reserve(skb, RXBUF_ALIGNMENT);
2999                 first = true;
3000         }
3001 
3002         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3003                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3004 
3005         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3006                 /* reuse the free half of the page */
3007                 gfar_reuse_rx_page(rx_queue, rxb);
3008         } else {
3009                 /* page cannot be reused, unmap it */
3010                 dma_unmap_page(rx_queue->dev, rxb->dma,
3011                                PAGE_SIZE, DMA_FROM_DEVICE);
3012         }
3013 
3014         /* clear rxb content */
3015         rxb->page = NULL;
3016 
3017         return skb;
3018 }
3019 
3020 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3021 {
3022         /* If valid headers were found, and valid sums
3023          * were verified, then we tell the kernel that no
3024          * checksumming is necessary.  Otherwise, it is [FIXME]
3025          */
3026         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3027             (RXFCB_CIP | RXFCB_CTU))
3028                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3029         else
3030                 skb_checksum_none_assert(skb);
3031 }
3032 
3033 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3034 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3035 {
3036         struct gfar_private *priv = netdev_priv(ndev);
3037         struct rxfcb *fcb = NULL;
3038 
3039         /* fcb is at the beginning if exists */
3040         fcb = (struct rxfcb *)skb->data;
3041 
3042         /* Remove the FCB from the skb
3043          * Remove the padded bytes, if there are any
3044          */
3045         if (priv->uses_rxfcb)
3046                 skb_pull(skb, GMAC_FCB_LEN);
3047 
3048         /* Get receive timestamp from the skb */
3049         if (priv->hwts_rx_en) {
3050                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3051                 u64 *ns = (u64 *) skb->data;
3052 
3053                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3054                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3055         }
3056 
3057         if (priv->padding)
3058                 skb_pull(skb, priv->padding);
3059 
3060         if (ndev->features & NETIF_F_RXCSUM)
3061                 gfar_rx_checksum(skb, fcb);
3062 
3063         /* Tell the skb what kind of packet this is */
3064         skb->protocol = eth_type_trans(skb, ndev);
3065 
3066         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3067          * Even if vlan rx accel is disabled, on some chips
3068          * RXFCB_VLN is pseudo randomly set.
3069          */
3070         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3071             be16_to_cpu(fcb->flags) & RXFCB_VLN)
3072                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3073                                        be16_to_cpu(fcb->vlctl));
3074 }
3075 
3076 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3077  * until the budget/quota has been reached. Returns the number
3078  * of frames handled
3079  */
3080 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3081 {
3082         struct net_device *ndev = rx_queue->ndev;
3083         struct gfar_private *priv = netdev_priv(ndev);
3084         struct rxbd8 *bdp;
3085         int i, howmany = 0;
3086         struct sk_buff *skb = rx_queue->skb;
3087         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3088         unsigned int total_bytes = 0, total_pkts = 0;
3089 
3090         /* Get the first full descriptor */
3091         i = rx_queue->next_to_clean;
3092 
3093         while (rx_work_limit--) {
3094                 u32 lstatus;
3095 
3096                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3097                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3098                         cleaned_cnt = 0;
3099                 }
3100 
3101                 bdp = &rx_queue->rx_bd_base[i];
3102                 lstatus = be32_to_cpu(bdp->lstatus);
3103                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3104                         break;
3105 
3106                 /* order rx buffer descriptor reads */
3107                 rmb();
3108 
3109                 /* fetch next to clean buffer from the ring */
3110                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3111                 if (unlikely(!skb))
3112                         break;
3113 
3114                 cleaned_cnt++;
3115                 howmany++;
3116 
3117                 if (unlikely(++i == rx_queue->rx_ring_size))
3118                         i = 0;
3119 
3120                 rx_queue->next_to_clean = i;
3121 
3122                 /* fetch next buffer if not the last in frame */
3123                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3124                         continue;
3125 
3126                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3127                         count_errors(lstatus, ndev);
3128 
3129                         /* discard faulty buffer */
3130                         dev_kfree_skb(skb);
3131                         skb = NULL;
3132                         rx_queue->stats.rx_dropped++;
3133                         continue;
3134                 }
3135 
3136                 /* Increment the number of packets */
3137                 total_pkts++;
3138                 total_bytes += skb->len;
3139 
3140                 skb_record_rx_queue(skb, rx_queue->qindex);
3141 
3142                 gfar_process_frame(ndev, skb);
3143 
3144                 /* Send the packet up the stack */
3145                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3146 
3147                 skb = NULL;
3148         }
3149 
3150         /* Store incomplete frames for completion */
3151         rx_queue->skb = skb;
3152 
3153         rx_queue->stats.rx_packets += total_pkts;
3154         rx_queue->stats.rx_bytes += total_bytes;
3155 
3156         if (cleaned_cnt)
3157                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3158 
3159         /* Update Last Free RxBD pointer for LFC */
3160         if (unlikely(priv->tx_actual_en)) {
3161                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3162 
3163                 gfar_write(rx_queue->rfbptr, bdp_dma);
3164         }
3165 
3166         return howmany;
3167 }
3168 
3169 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3170 {
3171         struct gfar_priv_grp *gfargrp =
3172                 container_of(napi, struct gfar_priv_grp, napi_rx);
3173         struct gfar __iomem *regs = gfargrp->regs;
3174         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3175         int work_done = 0;
3176 
3177         /* Clear IEVENT, so interrupts aren't called again
3178          * because of the packets that have already arrived
3179          */
3180         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3181 
3182         work_done = gfar_clean_rx_ring(rx_queue, budget);
3183 
3184         if (work_done < budget) {
3185                 u32 imask;
3186                 napi_complete(napi);
3187                 /* Clear the halt bit in RSTAT */
3188                 gfar_write(&regs->rstat, gfargrp->rstat);
3189 
3190                 spin_lock_irq(&gfargrp->grplock);
3191                 imask = gfar_read(&regs->imask);
3192                 imask |= IMASK_RX_DEFAULT;
3193                 gfar_write(&regs->imask, imask);
3194                 spin_unlock_irq(&gfargrp->grplock);
3195         }
3196 
3197         return work_done;
3198 }
3199 
3200 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3201 {
3202         struct gfar_priv_grp *gfargrp =
3203                 container_of(napi, struct gfar_priv_grp, napi_tx);
3204         struct gfar __iomem *regs = gfargrp->regs;
3205         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3206         u32 imask;
3207 
3208         /* Clear IEVENT, so interrupts aren't called again
3209          * because of the packets that have already arrived
3210          */
3211         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3212 
3213         /* run Tx cleanup to completion */
3214         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3215                 gfar_clean_tx_ring(tx_queue);
3216 
3217         napi_complete(napi);
3218 
3219         spin_lock_irq(&gfargrp->grplock);
3220         imask = gfar_read(&regs->imask);
3221         imask |= IMASK_TX_DEFAULT;
3222         gfar_write(&regs->imask, imask);
3223         spin_unlock_irq(&gfargrp->grplock);
3224 
3225         return 0;
3226 }
3227 
3228 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3229 {
3230         struct gfar_priv_grp *gfargrp =
3231                 container_of(napi, struct gfar_priv_grp, napi_rx);
3232         struct gfar_private *priv = gfargrp->priv;
3233         struct gfar __iomem *regs = gfargrp->regs;
3234         struct gfar_priv_rx_q *rx_queue = NULL;
3235         int work_done = 0, work_done_per_q = 0;
3236         int i, budget_per_q = 0;
3237         unsigned long rstat_rxf;
3238         int num_act_queues;
3239 
3240         /* Clear IEVENT, so interrupts aren't called again
3241          * because of the packets that have already arrived
3242          */
3243         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3244 
3245         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3246 
3247         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3248         if (num_act_queues)
3249                 budget_per_q = budget/num_act_queues;
3250 
3251         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3252                 /* skip queue if not active */
3253                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3254                         continue;
3255 
3256                 rx_queue = priv->rx_queue[i];
3257                 work_done_per_q =
3258                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3259                 work_done += work_done_per_q;
3260 
3261                 /* finished processing this queue */
3262                 if (work_done_per_q < budget_per_q) {
3263                         /* clear active queue hw indication */
3264                         gfar_write(&regs->rstat,
3265                                    RSTAT_CLEAR_RXF0 >> i);
3266                         num_act_queues--;
3267 
3268                         if (!num_act_queues)
3269                                 break;
3270                 }
3271         }
3272 
3273         if (!num_act_queues) {
3274                 u32 imask;
3275                 napi_complete(napi);
3276 
3277                 /* Clear the halt bit in RSTAT */
3278                 gfar_write(&regs->rstat, gfargrp->rstat);
3279 
3280                 spin_lock_irq(&gfargrp->grplock);
3281                 imask = gfar_read(&regs->imask);
3282                 imask |= IMASK_RX_DEFAULT;
3283                 gfar_write(&regs->imask, imask);
3284                 spin_unlock_irq(&gfargrp->grplock);
3285         }
3286 
3287         return work_done;
3288 }
3289 
3290 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3291 {
3292         struct gfar_priv_grp *gfargrp =
3293                 container_of(napi, struct gfar_priv_grp, napi_tx);
3294         struct gfar_private *priv = gfargrp->priv;
3295         struct gfar __iomem *regs = gfargrp->regs;
3296         struct gfar_priv_tx_q *tx_queue = NULL;
3297         int has_tx_work = 0;
3298         int i;
3299 
3300         /* Clear IEVENT, so interrupts aren't called again
3301          * because of the packets that have already arrived
3302          */
3303         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3304 
3305         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3306                 tx_queue = priv->tx_queue[i];
3307                 /* run Tx cleanup to completion */
3308                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3309                         gfar_clean_tx_ring(tx_queue);
3310                         has_tx_work = 1;
3311                 }
3312         }
3313 
3314         if (!has_tx_work) {
3315                 u32 imask;
3316                 napi_complete(napi);
3317 
3318                 spin_lock_irq(&gfargrp->grplock);
3319                 imask = gfar_read(&regs->imask);
3320                 imask |= IMASK_TX_DEFAULT;
3321                 gfar_write(&regs->imask, imask);
3322                 spin_unlock_irq(&gfargrp->grplock);
3323         }
3324 
3325         return 0;
3326 }
3327 
3328 
3329 #ifdef CONFIG_NET_POLL_CONTROLLER
3330 /* Polling 'interrupt' - used by things like netconsole to send skbs
3331  * without having to re-enable interrupts. It's not called while
3332  * the interrupt routine is executing.
3333  */
3334 static void gfar_netpoll(struct net_device *dev)
3335 {
3336         struct gfar_private *priv = netdev_priv(dev);
3337         int i;
3338 
3339         /* If the device has multiple interrupts, run tx/rx */
3340         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3341                 for (i = 0; i < priv->num_grps; i++) {
3342                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3343 
3344                         disable_irq(gfar_irq(grp, TX)->irq);
3345                         disable_irq(gfar_irq(grp, RX)->irq);
3346                         disable_irq(gfar_irq(grp, ER)->irq);
3347                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3348                         enable_irq(gfar_irq(grp, ER)->irq);
3349                         enable_irq(gfar_irq(grp, RX)->irq);
3350                         enable_irq(gfar_irq(grp, TX)->irq);
3351                 }
3352         } else {
3353                 for (i = 0; i < priv->num_grps; i++) {
3354                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3355 
3356                         disable_irq(gfar_irq(grp, TX)->irq);
3357                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3358                         enable_irq(gfar_irq(grp, TX)->irq);
3359                 }
3360         }
3361 }
3362 #endif
3363 
3364 /* The interrupt handler for devices with one interrupt */
3365 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3366 {
3367         struct gfar_priv_grp *gfargrp = grp_id;
3368 
3369         /* Save ievent for future reference */
3370         u32 events = gfar_read(&gfargrp->regs->ievent);
3371 
3372         /* Check for reception */
3373         if (events & IEVENT_RX_MASK)
3374                 gfar_receive(irq, grp_id);
3375 
3376         /* Check for transmit completion */
3377         if (events & IEVENT_TX_MASK)
3378                 gfar_transmit(irq, grp_id);
3379 
3380         /* Check for errors */
3381         if (events & IEVENT_ERR_MASK)
3382                 gfar_error(irq, grp_id);
3383 
3384         return IRQ_HANDLED;
3385 }
3386 
3387 /* Called every time the controller might need to be made
3388  * aware of new link state.  The PHY code conveys this
3389  * information through variables in the phydev structure, and this
3390  * function converts those variables into the appropriate
3391  * register values, and can bring down the device if needed.
3392  */
3393 static void adjust_link(struct net_device *dev)
3394 {
3395         struct gfar_private *priv = netdev_priv(dev);
3396         struct phy_device *phydev = dev->phydev;
3397 
3398         if (unlikely(phydev->link != priv->oldlink ||
3399                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3400                                        phydev->speed != priv->oldspeed))))
3401                 gfar_update_link_state(priv);
3402 }
3403 
3404 /* Update the hash table based on the current list of multicast
3405  * addresses we subscribe to.  Also, change the promiscuity of
3406  * the device based on the flags (this function is called
3407  * whenever dev->flags is changed
3408  */
3409 static void gfar_set_multi(struct net_device *dev)
3410 {
3411         struct netdev_hw_addr *ha;
3412         struct gfar_private *priv = netdev_priv(dev);
3413         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3414         u32 tempval;
3415 
3416         if (dev->flags & IFF_PROMISC) {
3417                 /* Set RCTRL to PROM */
3418                 tempval = gfar_read(&regs->rctrl);
3419                 tempval |= RCTRL_PROM;
3420                 gfar_write(&regs->rctrl, tempval);
3421         } else {
3422                 /* Set RCTRL to not PROM */
3423                 tempval = gfar_read(&regs->rctrl);
3424                 tempval &= ~(RCTRL_PROM);
3425                 gfar_write(&regs->rctrl, tempval);
3426         }
3427 
3428         if (dev->flags & IFF_ALLMULTI) {
3429                 /* Set the hash to rx all multicast frames */
3430                 gfar_write(&regs->igaddr0, 0xffffffff);
3431                 gfar_write(&regs->igaddr1, 0xffffffff);
3432                 gfar_write(&regs->igaddr2, 0xffffffff);
3433                 gfar_write(&regs->igaddr3, 0xffffffff);
3434                 gfar_write(&regs->igaddr4, 0xffffffff);
3435                 gfar_write(&regs->igaddr5, 0xffffffff);
3436                 gfar_write(&regs->igaddr6, 0xffffffff);
3437                 gfar_write(&regs->igaddr7, 0xffffffff);
3438                 gfar_write(&regs->gaddr0, 0xffffffff);
3439                 gfar_write(&regs->gaddr1, 0xffffffff);
3440                 gfar_write(&regs->gaddr2, 0xffffffff);
3441                 gfar_write(&regs->gaddr3, 0xffffffff);
3442                 gfar_write(&regs->gaddr4, 0xffffffff);
3443                 gfar_write(&regs->gaddr5, 0xffffffff);
3444                 gfar_write(&regs->gaddr6, 0xffffffff);
3445                 gfar_write(&regs->gaddr7, 0xffffffff);
3446         } else {
3447                 int em_num;
3448                 int idx;
3449 
3450                 /* zero out the hash */
3451                 gfar_write(&regs->igaddr0, 0x0);
3452                 gfar_write(&regs->igaddr1, 0x0);
3453                 gfar_write(&regs->igaddr2, 0x0);
3454                 gfar_write(&regs->igaddr3, 0x0);
3455                 gfar_write(&regs->igaddr4, 0x0);
3456                 gfar_write(&regs->igaddr5, 0x0);
3457                 gfar_write(&regs->igaddr6, 0x0);
3458                 gfar_write(&regs->igaddr7, 0x0);
3459                 gfar_write(&regs->gaddr0, 0x0);
3460                 gfar_write(&regs->gaddr1, 0x0);
3461                 gfar_write(&regs->gaddr2, 0x0);
3462                 gfar_write(&regs->gaddr3, 0x0);
3463                 gfar_write(&regs->gaddr4, 0x0);
3464                 gfar_write(&regs->gaddr5, 0x0);
3465                 gfar_write(&regs->gaddr6, 0x0);
3466                 gfar_write(&regs->gaddr7, 0x0);
3467 
3468                 /* If we have extended hash tables, we need to
3469                  * clear the exact match registers to prepare for
3470                  * setting them
3471                  */
3472                 if (priv->extended_hash) {
3473                         em_num = GFAR_EM_NUM + 1;
3474                         gfar_clear_exact_match(dev);
3475                         idx = 1;
3476                 } else {
3477                         idx = 0;
3478                         em_num = 0;
3479                 }
3480 
3481                 if (netdev_mc_empty(dev))
3482                         return;
3483 
3484                 /* Parse the list, and set the appropriate bits */
3485                 netdev_for_each_mc_addr(ha, dev) {
3486                         if (idx < em_num) {
3487                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3488                                 idx++;
3489                         } else
3490                                 gfar_set_hash_for_addr(dev, ha->addr);
3491                 }
3492         }
3493 }
3494 
3495 
3496 /* Clears each of the exact match registers to zero, so they
3497  * don't interfere with normal reception
3498  */
3499 static void gfar_clear_exact_match(struct net_device *dev)
3500 {
3501         int idx;
3502         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3503 
3504         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3505                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3506 }
3507 
3508 /* Set the appropriate hash bit for the given addr */
3509 /* The algorithm works like so:
3510  * 1) Take the Destination Address (ie the multicast address), and
3511  * do a CRC on it (little endian), and reverse the bits of the
3512  * result.
3513  * 2) Use the 8 most significant bits as a hash into a 256-entry
3514  * table.  The table is controlled through 8 32-bit registers:
3515  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3516  * gaddr7.  This means that the 3 most significant bits in the
3517  * hash index which gaddr register to use, and the 5 other bits
3518  * indicate which bit (assuming an IBM numbering scheme, which
3519  * for PowerPC (tm) is usually the case) in the register holds
3520  * the entry.
3521  */
3522 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3523 {
3524         u32 tempval;
3525         struct gfar_private *priv = netdev_priv(dev);
3526         u32 result = ether_crc(ETH_ALEN, addr);
3527         int width = priv->hash_width;
3528         u8 whichbit = (result >> (32 - width)) & 0x1f;
3529         u8 whichreg = result >> (32 - width + 5);
3530         u32 value = (1 << (31-whichbit));
3531 
3532         tempval = gfar_read(priv->hash_regs[whichreg]);
3533         tempval |= value;
3534         gfar_write(priv->hash_regs[whichreg], tempval);
3535 }
3536 
3537 
3538 /* There are multiple MAC Address register pairs on some controllers
3539  * This function sets the numth pair to a given address
3540  */
3541 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3542                                   const u8 *addr)
3543 {
3544         struct gfar_private *priv = netdev_priv(dev);
3545         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3546         u32 tempval;
3547         u32 __iomem *macptr = &regs->macstnaddr1;
3548 
3549         macptr += num*2;
3550 
3551         /* For a station address of 0x12345678ABCD in transmission
3552          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3553          * MACnADDR2 is set to 0x34120000.
3554          */
3555         tempval = (addr[5] << 24) | (addr[4] << 16) |
3556                   (addr[3] << 8)  |  addr[2];
3557 
3558         gfar_write(macptr, tempval);
3559 
3560         tempval = (addr[1] << 24) | (addr[0] << 16);
3561 
3562         gfar_write(macptr+1, tempval);
3563 }
3564 
3565 /* GFAR error interrupt handler */
3566 static irqreturn_t gfar_error(int irq, void *grp_id)
3567 {
3568         struct gfar_priv_grp *gfargrp = grp_id;
3569         struct gfar __iomem *regs = gfargrp->regs;
3570         struct gfar_private *priv= gfargrp->priv;
3571         struct net_device *dev = priv->ndev;
3572 
3573         /* Save ievent for future reference */
3574         u32 events = gfar_read(&regs->ievent);
3575 
3576         /* Clear IEVENT */
3577         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3578 
3579         /* Magic Packet is not an error. */
3580         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3581             (events & IEVENT_MAG))
3582                 events &= ~IEVENT_MAG;
3583 
3584         /* Hmm... */
3585         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3586                 netdev_dbg(dev,
3587                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3588                            events, gfar_read(&regs->imask));
3589 
3590         /* Update the error counters */
3591         if (events & IEVENT_TXE) {
3592                 dev->stats.tx_errors++;
3593 
3594                 if (events & IEVENT_LC)
3595                         dev->stats.tx_window_errors++;
3596                 if (events & IEVENT_CRL)
3597                         dev->stats.tx_aborted_errors++;
3598                 if (events & IEVENT_XFUN) {
3599                         netif_dbg(priv, tx_err, dev,
3600                                   "TX FIFO underrun, packet dropped\n");
3601                         dev->stats.tx_dropped++;
3602                         atomic64_inc(&priv->extra_stats.tx_underrun);
3603 
3604                         schedule_work(&priv->reset_task);
3605                 }
3606                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3607         }
3608         if (events & IEVENT_BSY) {
3609                 dev->stats.rx_over_errors++;
3610                 atomic64_inc(&priv->extra_stats.rx_bsy);
3611 
3612                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3613                           gfar_read(&regs->rstat));
3614         }
3615         if (events & IEVENT_BABR) {
3616                 dev->stats.rx_errors++;
3617                 atomic64_inc(&priv->extra_stats.rx_babr);
3618 
3619                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3620         }
3621         if (events & IEVENT_EBERR) {
3622                 atomic64_inc(&priv->extra_stats.eberr);
3623                 netif_dbg(priv, rx_err, dev, "bus error\n");
3624         }
3625         if (events & IEVENT_RXC)
3626                 netif_dbg(priv, rx_status, dev, "control frame\n");
3627 
3628         if (events & IEVENT_BABT) {
3629                 atomic64_inc(&priv->extra_stats.tx_babt);
3630                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3631         }
3632         return IRQ_HANDLED;
3633 }
3634 
3635 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3636 {
3637         struct net_device *ndev = priv->ndev;
3638         struct phy_device *phydev = ndev->phydev;
3639         u32 val = 0;
3640 
3641         if (!phydev->duplex)
3642                 return val;
3643 
3644         if (!priv->pause_aneg_en) {
3645                 if (priv->tx_pause_en)
3646                         val |= MACCFG1_TX_FLOW;
3647                 if (priv->rx_pause_en)
3648                         val |= MACCFG1_RX_FLOW;
3649         } else {
3650                 u16 lcl_adv, rmt_adv;
3651                 u8 flowctrl;
3652                 /* get link partner capabilities */
3653                 rmt_adv = 0;
3654                 if (phydev->pause)
3655                         rmt_adv = LPA_PAUSE_CAP;
3656                 if (phydev->asym_pause)
3657                         rmt_adv |= LPA_PAUSE_ASYM;
3658 
3659                 lcl_adv = 0;
3660                 if (phydev->advertising & ADVERTISED_Pause)
3661                         lcl_adv |= ADVERTISE_PAUSE_CAP;
3662                 if (phydev->advertising & ADVERTISED_Asym_Pause)
3663                         lcl_adv |= ADVERTISE_PAUSE_ASYM;
3664 
3665                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3666                 if (flowctrl & FLOW_CTRL_TX)
3667                         val |= MACCFG1_TX_FLOW;
3668                 if (flowctrl & FLOW_CTRL_RX)
3669                         val |= MACCFG1_RX_FLOW;
3670         }
3671 
3672         return val;
3673 }
3674 
3675 static noinline void gfar_update_link_state(struct gfar_private *priv)
3676 {
3677         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3678         struct net_device *ndev = priv->ndev;
3679         struct phy_device *phydev = ndev->phydev;
3680         struct gfar_priv_rx_q *rx_queue = NULL;
3681         int i;
3682 
3683         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3684                 return;
3685 
3686         if (phydev->link) {
3687                 u32 tempval1 = gfar_read(&regs->maccfg1);
3688                 u32 tempval = gfar_read(&regs->maccfg2);
3689                 u32 ecntrl = gfar_read(&regs->ecntrl);
3690                 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3691 
3692                 if (phydev->duplex != priv->oldduplex) {
3693                         if (!(phydev->duplex))
3694                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3695                         else
3696                                 tempval |= MACCFG2_FULL_DUPLEX;
3697 
3698                         priv->oldduplex = phydev->duplex;
3699                 }
3700 
3701                 if (phydev->speed != priv->oldspeed) {
3702                         switch (phydev->speed) {
3703                         case 1000:
3704                                 tempval =
3705                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3706 
3707                                 ecntrl &= ~(ECNTRL_R100);
3708                                 break;
3709                         case 100:
3710                         case 10:
3711                                 tempval =
3712                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3713 
3714                                 /* Reduced mode distinguishes
3715                                  * between 10 and 100
3716                                  */
3717                                 if (phydev->speed == SPEED_100)
3718                                         ecntrl |= ECNTRL_R100;
3719                                 else
3720                                         ecntrl &= ~(ECNTRL_R100);
3721                                 break;
3722                         default:
3723                                 netif_warn(priv, link, priv->ndev,
3724                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3725                                            phydev->speed);
3726                                 break;
3727                         }
3728 
3729                         priv->oldspeed = phydev->speed;
3730                 }
3731 
3732                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3733                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3734 
3735                 /* Turn last free buffer recording on */
3736                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3737                         for (i = 0; i < priv->num_rx_queues; i++) {
3738                                 u32 bdp_dma;
3739 
3740                                 rx_queue = priv->rx_queue[i];
3741                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3742                                 gfar_write(rx_queue->rfbptr, bdp_dma);
3743                         }
3744 
3745                         priv->tx_actual_en = 1;
3746                 }
3747 
3748                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3749                         priv->tx_actual_en = 0;
3750 
3751                 gfar_write(&regs->maccfg1, tempval1);
3752                 gfar_write(&regs->maccfg2, tempval);
3753                 gfar_write(&regs->ecntrl, ecntrl);
3754 
3755                 if (!priv->oldlink)
3756                         priv->oldlink = 1;
3757 
3758         } else if (priv->oldlink) {
3759                 priv->oldlink = 0;
3760                 priv->oldspeed = 0;
3761                 priv->oldduplex = -1;
3762         }
3763 
3764         if (netif_msg_link(priv))
3765                 phy_print_status(phydev);
3766 }
3767 
3768 static const struct of_device_id gfar_match[] =
3769 {
3770         {
3771                 .type = "network",
3772                 .compatible = "gianfar",
3773         },
3774         {
3775                 .compatible = "fsl,etsec2",
3776         },
3777         {},
3778 };
3779 MODULE_DEVICE_TABLE(of, gfar_match);
3780 
3781 /* Structure for a device driver */
3782 static struct platform_driver gfar_driver = {
3783         .driver = {
3784                 .name = "fsl-gianfar",
3785                 .pm = GFAR_PM_OPS,
3786                 .of_match_table = gfar_match,
3787         },
3788         .probe = gfar_probe,
3789         .remove = gfar_remove,
3790 };
3791 
3792 module_platform_driver(gfar_driver);
3793 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us