Version:  2.0.40 2.2.26 2.4.37 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c

  1 /*
  2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3  *
  4  * Copyright (c) 2003 Intracom S.A.
  5  *  by Pantelis Antoniou <panto@intracom.gr>
  6  *
  7  * 2005 (c) MontaVista Software, Inc.
  8  * Vitaly Bordug <vbordug@ru.mvista.com>
  9  *
 10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
 11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 12  *
 13  * This file is licensed under the terms of the GNU General Public License
 14  * version 2. This program is licensed "as is" without any warranty of any
 15  * kind, whether express or implied.
 16  */
 17 
 18 #include <linux/module.h>
 19 #include <linux/kernel.h>
 20 #include <linux/types.h>
 21 #include <linux/string.h>
 22 #include <linux/ptrace.h>
 23 #include <linux/errno.h>
 24 #include <linux/ioport.h>
 25 #include <linux/slab.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/delay.h>
 28 #include <linux/netdevice.h>
 29 #include <linux/etherdevice.h>
 30 #include <linux/skbuff.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/mii.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/bitops.h>
 35 #include <linux/fs.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/phy.h>
 38 #include <linux/of.h>
 39 #include <linux/of_mdio.h>
 40 #include <linux/of_platform.h>
 41 #include <linux/of_gpio.h>
 42 #include <linux/of_net.h>
 43 
 44 #include <linux/vmalloc.h>
 45 #include <asm/pgtable.h>
 46 #include <asm/irq.h>
 47 #include <asm/uaccess.h>
 48 
 49 #include "fs_enet.h"
 50 
 51 /*************************************************/
 52 
 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
 54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
 55 MODULE_LICENSE("GPL");
 56 MODULE_VERSION(DRV_MODULE_VERSION);
 57 
 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
 59 module_param(fs_enet_debug, int, 0);
 60 MODULE_PARM_DESC(fs_enet_debug,
 61                  "Freescale bitmapped debugging message enable value");
 62 
 63 #ifdef CONFIG_NET_POLL_CONTROLLER
 64 static void fs_enet_netpoll(struct net_device *dev);
 65 #endif
 66 
 67 static void fs_set_multicast_list(struct net_device *dev)
 68 {
 69         struct fs_enet_private *fep = netdev_priv(dev);
 70 
 71         (*fep->ops->set_multicast_list)(dev);
 72 }
 73 
 74 static void skb_align(struct sk_buff *skb, int align)
 75 {
 76         int off = ((unsigned long)skb->data) & (align - 1);
 77 
 78         if (off)
 79                 skb_reserve(skb, align - off);
 80 }
 81 
 82 /* NAPI receive function */
 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
 84 {
 85         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
 86         struct net_device *dev = fep->ndev;
 87         const struct fs_platform_info *fpi = fep->fpi;
 88         cbd_t __iomem *bdp;
 89         struct sk_buff *skb, *skbn, *skbt;
 90         int received = 0;
 91         u16 pkt_len, sc;
 92         int curidx;
 93 
 94         if (budget <= 0)
 95                 return received;
 96 
 97         /*
 98          * First, grab all of the stats for the incoming packet.
 99          * These get messed up if we get called due to a busy condition.
100          */
101         bdp = fep->cur_rx;
102 
103         /* clear RX status bits for napi*/
104         (*fep->ops->napi_clear_rx_event)(dev);
105 
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107                 curidx = bdp - fep->rx_bd_base;
108 
109                 /*
110                  * Since we have allocated space to hold a complete frame,
111                  * the last indicator should be set.
112                  */
113                 if ((sc & BD_ENET_RX_LAST) == 0)
114                         dev_warn(fep->dev, "rcv is not +last\n");
115 
116                 /*
117                  * Check for errors.
118                  */
119                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121                         fep->stats.rx_errors++;
122                         /* Frame too long or too short. */
123                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124                                 fep->stats.rx_length_errors++;
125                         /* Frame alignment */
126                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127                                 fep->stats.rx_frame_errors++;
128                         /* CRC Error */
129                         if (sc & BD_ENET_RX_CR)
130                                 fep->stats.rx_crc_errors++;
131                         /* FIFO overrun */
132                         if (sc & BD_ENET_RX_OV)
133                                 fep->stats.rx_crc_errors++;
134 
135                         skb = fep->rx_skbuff[curidx];
136 
137                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139                                 DMA_FROM_DEVICE);
140 
141                         skbn = skb;
142 
143                 } else {
144                         skb = fep->rx_skbuff[curidx];
145 
146                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148                                 DMA_FROM_DEVICE);
149 
150                         /*
151                          * Process the incoming frame.
152                          */
153                         fep->stats.rx_packets++;
154                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155                         fep->stats.rx_bytes += pkt_len + 4;
156 
157                         if (pkt_len <= fpi->rx_copybreak) {
158                                 /* +2 to make IP header L1 cache aligned */
159                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160                                 if (skbn != NULL) {
161                                         skb_reserve(skbn, 2);   /* align IP header */
162                                         skb_copy_from_linear_data(skb,
163                                                       skbn->data, pkt_len);
164                                         /* swap */
165                                         skbt = skb;
166                                         skb = skbn;
167                                         skbn = skbt;
168                                 }
169                         } else {
170                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171 
172                                 if (skbn)
173                                         skb_align(skbn, ENET_RX_ALIGN);
174                         }
175 
176                         if (skbn != NULL) {
177                                 skb_put(skb, pkt_len);  /* Make room */
178                                 skb->protocol = eth_type_trans(skb, dev);
179                                 received++;
180                                 netif_receive_skb(skb);
181                         } else {
182                                 fep->stats.rx_dropped++;
183                                 skbn = skb;
184                         }
185                 }
186 
187                 fep->rx_skbuff[curidx] = skbn;
188                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190                              DMA_FROM_DEVICE));
191                 CBDW_DATLEN(bdp, 0);
192                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193 
194                 /*
195                  * Update BD pointer to next entry.
196                  */
197                 if ((sc & BD_ENET_RX_WRAP) == 0)
198                         bdp++;
199                 else
200                         bdp = fep->rx_bd_base;
201 
202                 (*fep->ops->rx_bd_done)(dev);
203 
204                 if (received >= budget)
205                         break;
206         }
207 
208         fep->cur_rx = bdp;
209 
210         if (received < budget) {
211                 /* done */
212                 napi_complete(napi);
213                 (*fep->ops->napi_enable_rx)(dev);
214         }
215         return received;
216 }
217 
218 /* non NAPI receive function */
219 static int fs_enet_rx_non_napi(struct net_device *dev)
220 {
221         struct fs_enet_private *fep = netdev_priv(dev);
222         const struct fs_platform_info *fpi = fep->fpi;
223         cbd_t __iomem *bdp;
224         struct sk_buff *skb, *skbn, *skbt;
225         int received = 0;
226         u16 pkt_len, sc;
227         int curidx;
228         /*
229          * First, grab all of the stats for the incoming packet.
230          * These get messed up if we get called due to a busy condition.
231          */
232         bdp = fep->cur_rx;
233 
234         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
235 
236                 curidx = bdp - fep->rx_bd_base;
237 
238                 /*
239                  * Since we have allocated space to hold a complete frame,
240                  * the last indicator should be set.
241                  */
242                 if ((sc & BD_ENET_RX_LAST) == 0)
243                         dev_warn(fep->dev, "rcv is not +last\n");
244 
245                 /*
246                  * Check for errors.
247                  */
248                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
249                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
250                         fep->stats.rx_errors++;
251                         /* Frame too long or too short. */
252                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
253                                 fep->stats.rx_length_errors++;
254                         /* Frame alignment */
255                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
256                                 fep->stats.rx_frame_errors++;
257                         /* CRC Error */
258                         if (sc & BD_ENET_RX_CR)
259                                 fep->stats.rx_crc_errors++;
260                         /* FIFO overrun */
261                         if (sc & BD_ENET_RX_OV)
262                                 fep->stats.rx_crc_errors++;
263 
264                         skb = fep->rx_skbuff[curidx];
265 
266                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
267                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
268                                 DMA_FROM_DEVICE);
269 
270                         skbn = skb;
271 
272                 } else {
273 
274                         skb = fep->rx_skbuff[curidx];
275 
276                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
277                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
278                                 DMA_FROM_DEVICE);
279 
280                         /*
281                          * Process the incoming frame.
282                          */
283                         fep->stats.rx_packets++;
284                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
285                         fep->stats.rx_bytes += pkt_len + 4;
286 
287                         if (pkt_len <= fpi->rx_copybreak) {
288                                 /* +2 to make IP header L1 cache aligned */
289                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
290                                 if (skbn != NULL) {
291                                         skb_reserve(skbn, 2);   /* align IP header */
292                                         skb_copy_from_linear_data(skb,
293                                                       skbn->data, pkt_len);
294                                         /* swap */
295                                         skbt = skb;
296                                         skb = skbn;
297                                         skbn = skbt;
298                                 }
299                         } else {
300                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
301 
302                                 if (skbn)
303                                         skb_align(skbn, ENET_RX_ALIGN);
304                         }
305 
306                         if (skbn != NULL) {
307                                 skb_put(skb, pkt_len);  /* Make room */
308                                 skb->protocol = eth_type_trans(skb, dev);
309                                 received++;
310                                 netif_rx(skb);
311                         } else {
312                                 fep->stats.rx_dropped++;
313                                 skbn = skb;
314                         }
315                 }
316 
317                 fep->rx_skbuff[curidx] = skbn;
318                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
319                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
320                              DMA_FROM_DEVICE));
321                 CBDW_DATLEN(bdp, 0);
322                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
323 
324                 /*
325                  * Update BD pointer to next entry.
326                  */
327                 if ((sc & BD_ENET_RX_WRAP) == 0)
328                         bdp++;
329                 else
330                         bdp = fep->rx_bd_base;
331 
332                 (*fep->ops->rx_bd_done)(dev);
333         }
334 
335         fep->cur_rx = bdp;
336 
337         return 0;
338 }
339 
340 static void fs_enet_tx(struct net_device *dev)
341 {
342         struct fs_enet_private *fep = netdev_priv(dev);
343         cbd_t __iomem *bdp;
344         struct sk_buff *skb;
345         int dirtyidx, do_wake, do_restart;
346         u16 sc;
347 
348         spin_lock(&fep->tx_lock);
349         bdp = fep->dirty_tx;
350 
351         do_wake = do_restart = 0;
352         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
353                 dirtyidx = bdp - fep->tx_bd_base;
354 
355                 if (fep->tx_free == fep->tx_ring)
356                         break;
357 
358                 skb = fep->tx_skbuff[dirtyidx];
359 
360                 /*
361                  * Check for errors.
362                  */
363                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
364                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
365 
366                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
367                                 fep->stats.tx_heartbeat_errors++;
368                         if (sc & BD_ENET_TX_LC) /* Late collision */
369                                 fep->stats.tx_window_errors++;
370                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
371                                 fep->stats.tx_aborted_errors++;
372                         if (sc & BD_ENET_TX_UN) /* Underrun */
373                                 fep->stats.tx_fifo_errors++;
374                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
375                                 fep->stats.tx_carrier_errors++;
376 
377                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
378                                 fep->stats.tx_errors++;
379                                 do_restart = 1;
380                         }
381                 } else
382                         fep->stats.tx_packets++;
383 
384                 if (sc & BD_ENET_TX_READY) {
385                         dev_warn(fep->dev,
386                                  "HEY! Enet xmit interrupt and TX_READY.\n");
387                 }
388 
389                 /*
390                  * Deferred means some collisions occurred during transmit,
391                  * but we eventually sent the packet OK.
392                  */
393                 if (sc & BD_ENET_TX_DEF)
394                         fep->stats.collisions++;
395 
396                 /* unmap */
397                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
398                                 skb->len, DMA_TO_DEVICE);
399 
400                 /*
401                  * Free the sk buffer associated with this last transmit.
402                  */
403                 dev_kfree_skb_irq(skb);
404                 fep->tx_skbuff[dirtyidx] = NULL;
405 
406                 /*
407                  * Update pointer to next buffer descriptor to be transmitted.
408                  */
409                 if ((sc & BD_ENET_TX_WRAP) == 0)
410                         bdp++;
411                 else
412                         bdp = fep->tx_bd_base;
413 
414                 /*
415                  * Since we have freed up a buffer, the ring is no longer
416                  * full.
417                  */
418                 if (!fep->tx_free++)
419                         do_wake = 1;
420         }
421 
422         fep->dirty_tx = bdp;
423 
424         if (do_restart)
425                 (*fep->ops->tx_restart)(dev);
426 
427         spin_unlock(&fep->tx_lock);
428 
429         if (do_wake)
430                 netif_wake_queue(dev);
431 }
432 
433 /*
434  * The interrupt handler.
435  * This is called from the MPC core interrupt.
436  */
437 static irqreturn_t
438 fs_enet_interrupt(int irq, void *dev_id)
439 {
440         struct net_device *dev = dev_id;
441         struct fs_enet_private *fep;
442         const struct fs_platform_info *fpi;
443         u32 int_events;
444         u32 int_clr_events;
445         int nr, napi_ok;
446         int handled;
447 
448         fep = netdev_priv(dev);
449         fpi = fep->fpi;
450 
451         nr = 0;
452         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
453                 nr++;
454 
455                 int_clr_events = int_events;
456                 if (fpi->use_napi)
457                         int_clr_events &= ~fep->ev_napi_rx;
458 
459                 (*fep->ops->clear_int_events)(dev, int_clr_events);
460 
461                 if (int_events & fep->ev_err)
462                         (*fep->ops->ev_error)(dev, int_events);
463 
464                 if (int_events & fep->ev_rx) {
465                         if (!fpi->use_napi)
466                                 fs_enet_rx_non_napi(dev);
467                         else {
468                                 napi_ok = napi_schedule_prep(&fep->napi);
469 
470                                 (*fep->ops->napi_disable_rx)(dev);
471                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
472 
473                                 /* NOTE: it is possible for FCCs in NAPI mode    */
474                                 /* to submit a spurious interrupt while in poll  */
475                                 if (napi_ok)
476                                         __napi_schedule(&fep->napi);
477                         }
478                 }
479 
480                 if (int_events & fep->ev_tx)
481                         fs_enet_tx(dev);
482         }
483 
484         handled = nr > 0;
485         return IRQ_RETVAL(handled);
486 }
487 
488 void fs_init_bds(struct net_device *dev)
489 {
490         struct fs_enet_private *fep = netdev_priv(dev);
491         cbd_t __iomem *bdp;
492         struct sk_buff *skb;
493         int i;
494 
495         fs_cleanup_bds(dev);
496 
497         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
498         fep->tx_free = fep->tx_ring;
499         fep->cur_rx = fep->rx_bd_base;
500 
501         /*
502          * Initialize the receive buffer descriptors.
503          */
504         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
505                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
506                 if (skb == NULL)
507                         break;
508 
509                 skb_align(skb, ENET_RX_ALIGN);
510                 fep->rx_skbuff[i] = skb;
511                 CBDW_BUFADDR(bdp,
512                         dma_map_single(fep->dev, skb->data,
513                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
514                                 DMA_FROM_DEVICE));
515                 CBDW_DATLEN(bdp, 0);    /* zero */
516                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
517                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
518         }
519         /*
520          * if we failed, fillup remainder
521          */
522         for (; i < fep->rx_ring; i++, bdp++) {
523                 fep->rx_skbuff[i] = NULL;
524                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
525         }
526 
527         /*
528          * ...and the same for transmit.
529          */
530         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
531                 fep->tx_skbuff[i] = NULL;
532                 CBDW_BUFADDR(bdp, 0);
533                 CBDW_DATLEN(bdp, 0);
534                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
535         }
536 }
537 
538 void fs_cleanup_bds(struct net_device *dev)
539 {
540         struct fs_enet_private *fep = netdev_priv(dev);
541         struct sk_buff *skb;
542         cbd_t __iomem *bdp;
543         int i;
544 
545         /*
546          * Reset SKB transmit buffers.
547          */
548         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
549                 if ((skb = fep->tx_skbuff[i]) == NULL)
550                         continue;
551 
552                 /* unmap */
553                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
554                                 skb->len, DMA_TO_DEVICE);
555 
556                 fep->tx_skbuff[i] = NULL;
557                 dev_kfree_skb(skb);
558         }
559 
560         /*
561          * Reset SKB receive buffers
562          */
563         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
564                 if ((skb = fep->rx_skbuff[i]) == NULL)
565                         continue;
566 
567                 /* unmap */
568                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
569                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
570                         DMA_FROM_DEVICE);
571 
572                 fep->rx_skbuff[i] = NULL;
573 
574                 dev_kfree_skb(skb);
575         }
576 }
577 
578 /**********************************************************************************/
579 
580 #ifdef CONFIG_FS_ENET_MPC5121_FEC
581 /*
582  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
583  */
584 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
585                                                struct sk_buff *skb)
586 {
587         struct sk_buff *new_skb;
588 
589         /* Alloc new skb */
590         new_skb = netdev_alloc_skb(dev, skb->len + 4);
591         if (!new_skb)
592                 return NULL;
593 
594         /* Make sure new skb is properly aligned */
595         skb_align(new_skb, 4);
596 
597         /* Copy data to new skb ... */
598         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
599         skb_put(new_skb, skb->len);
600 
601         /* ... and free an old one */
602         dev_kfree_skb_any(skb);
603 
604         return new_skb;
605 }
606 #endif
607 
608 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
609 {
610         struct fs_enet_private *fep = netdev_priv(dev);
611         cbd_t __iomem *bdp;
612         int curidx;
613         u16 sc;
614         unsigned long flags;
615 
616 #ifdef CONFIG_FS_ENET_MPC5121_FEC
617         if (((unsigned long)skb->data) & 0x3) {
618                 skb = tx_skb_align_workaround(dev, skb);
619                 if (!skb) {
620                         /*
621                          * We have lost packet due to memory allocation error
622                          * in tx_skb_align_workaround(). Hopefully original
623                          * skb is still valid, so try transmit it later.
624                          */
625                         return NETDEV_TX_BUSY;
626                 }
627         }
628 #endif
629         spin_lock_irqsave(&fep->tx_lock, flags);
630 
631         /*
632          * Fill in a Tx ring entry
633          */
634         bdp = fep->cur_tx;
635 
636         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
637                 netif_stop_queue(dev);
638                 spin_unlock_irqrestore(&fep->tx_lock, flags);
639 
640                 /*
641                  * Ooops.  All transmit buffers are full.  Bail out.
642                  * This should not happen, since the tx queue should be stopped.
643                  */
644                 dev_warn(fep->dev, "tx queue full!.\n");
645                 return NETDEV_TX_BUSY;
646         }
647 
648         curidx = bdp - fep->tx_bd_base;
649         /*
650          * Clear all of the status flags.
651          */
652         CBDC_SC(bdp, BD_ENET_TX_STATS);
653 
654         /*
655          * Save skb pointer.
656          */
657         fep->tx_skbuff[curidx] = skb;
658 
659         fep->stats.tx_bytes += skb->len;
660 
661         /*
662          * Push the data cache so the CPM does not get stale memory data.
663          */
664         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
665                                 skb->data, skb->len, DMA_TO_DEVICE));
666         CBDW_DATLEN(bdp, skb->len);
667 
668         /*
669          * If this was the last BD in the ring, start at the beginning again.
670          */
671         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
672                 fep->cur_tx++;
673         else
674                 fep->cur_tx = fep->tx_bd_base;
675 
676         if (!--fep->tx_free)
677                 netif_stop_queue(dev);
678 
679         /* Trigger transmission start */
680         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
681              BD_ENET_TX_LAST | BD_ENET_TX_TC;
682 
683         /* note that while FEC does not have this bit
684          * it marks it as available for software use
685          * yay for hw reuse :) */
686         if (skb->len <= 60)
687                 sc |= BD_ENET_TX_PAD;
688         CBDS_SC(bdp, sc);
689 
690         skb_tx_timestamp(skb);
691 
692         (*fep->ops->tx_kickstart)(dev);
693 
694         spin_unlock_irqrestore(&fep->tx_lock, flags);
695 
696         return NETDEV_TX_OK;
697 }
698 
699 static void fs_timeout(struct net_device *dev)
700 {
701         struct fs_enet_private *fep = netdev_priv(dev);
702         unsigned long flags;
703         int wake = 0;
704 
705         fep->stats.tx_errors++;
706 
707         spin_lock_irqsave(&fep->lock, flags);
708 
709         if (dev->flags & IFF_UP) {
710                 phy_stop(fep->phydev);
711                 (*fep->ops->stop)(dev);
712                 (*fep->ops->restart)(dev);
713                 phy_start(fep->phydev);
714         }
715 
716         phy_start(fep->phydev);
717         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
718         spin_unlock_irqrestore(&fep->lock, flags);
719 
720         if (wake)
721                 netif_wake_queue(dev);
722 }
723 
724 /*-----------------------------------------------------------------------------
725  *  generic link-change handler - should be sufficient for most cases
726  *-----------------------------------------------------------------------------*/
727 static void generic_adjust_link(struct  net_device *dev)
728 {
729         struct fs_enet_private *fep = netdev_priv(dev);
730         struct phy_device *phydev = fep->phydev;
731         int new_state = 0;
732 
733         if (phydev->link) {
734                 /* adjust to duplex mode */
735                 if (phydev->duplex != fep->oldduplex) {
736                         new_state = 1;
737                         fep->oldduplex = phydev->duplex;
738                 }
739 
740                 if (phydev->speed != fep->oldspeed) {
741                         new_state = 1;
742                         fep->oldspeed = phydev->speed;
743                 }
744 
745                 if (!fep->oldlink) {
746                         new_state = 1;
747                         fep->oldlink = 1;
748                 }
749 
750                 if (new_state)
751                         fep->ops->restart(dev);
752         } else if (fep->oldlink) {
753                 new_state = 1;
754                 fep->oldlink = 0;
755                 fep->oldspeed = 0;
756                 fep->oldduplex = -1;
757         }
758 
759         if (new_state && netif_msg_link(fep))
760                 phy_print_status(phydev);
761 }
762 
763 
764 static void fs_adjust_link(struct net_device *dev)
765 {
766         struct fs_enet_private *fep = netdev_priv(dev);
767         unsigned long flags;
768 
769         spin_lock_irqsave(&fep->lock, flags);
770 
771         if(fep->ops->adjust_link)
772                 fep->ops->adjust_link(dev);
773         else
774                 generic_adjust_link(dev);
775 
776         spin_unlock_irqrestore(&fep->lock, flags);
777 }
778 
779 static int fs_init_phy(struct net_device *dev)
780 {
781         struct fs_enet_private *fep = netdev_priv(dev);
782         struct phy_device *phydev;
783         phy_interface_t iface;
784 
785         fep->oldlink = 0;
786         fep->oldspeed = 0;
787         fep->oldduplex = -1;
788 
789         iface = fep->fpi->use_rmii ?
790                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
791 
792         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
793                                 iface);
794         if (!phydev) {
795                 dev_err(&dev->dev, "Could not attach to PHY\n");
796                 return -ENODEV;
797         }
798 
799         fep->phydev = phydev;
800 
801         return 0;
802 }
803 
804 static int fs_enet_open(struct net_device *dev)
805 {
806         struct fs_enet_private *fep = netdev_priv(dev);
807         int r;
808         int err;
809 
810         /* to initialize the fep->cur_rx,... */
811         /* not doing this, will cause a crash in fs_enet_rx_napi */
812         fs_init_bds(fep->ndev);
813 
814         if (fep->fpi->use_napi)
815                 napi_enable(&fep->napi);
816 
817         /* Install our interrupt handler. */
818         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
819                         "fs_enet-mac", dev);
820         if (r != 0) {
821                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
822                 if (fep->fpi->use_napi)
823                         napi_disable(&fep->napi);
824                 return -EINVAL;
825         }
826 
827         err = fs_init_phy(dev);
828         if (err) {
829                 free_irq(fep->interrupt, dev);
830                 if (fep->fpi->use_napi)
831                         napi_disable(&fep->napi);
832                 return err;
833         }
834         phy_start(fep->phydev);
835 
836         netif_start_queue(dev);
837 
838         return 0;
839 }
840 
841 static int fs_enet_close(struct net_device *dev)
842 {
843         struct fs_enet_private *fep = netdev_priv(dev);
844         unsigned long flags;
845 
846         netif_stop_queue(dev);
847         netif_carrier_off(dev);
848         if (fep->fpi->use_napi)
849                 napi_disable(&fep->napi);
850         phy_stop(fep->phydev);
851 
852         spin_lock_irqsave(&fep->lock, flags);
853         spin_lock(&fep->tx_lock);
854         (*fep->ops->stop)(dev);
855         spin_unlock(&fep->tx_lock);
856         spin_unlock_irqrestore(&fep->lock, flags);
857 
858         /* release any irqs */
859         phy_disconnect(fep->phydev);
860         fep->phydev = NULL;
861         free_irq(fep->interrupt, dev);
862 
863         return 0;
864 }
865 
866 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
867 {
868         struct fs_enet_private *fep = netdev_priv(dev);
869         return &fep->stats;
870 }
871 
872 /*************************************************************************/
873 
874 static void fs_get_drvinfo(struct net_device *dev,
875                             struct ethtool_drvinfo *info)
876 {
877         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
878         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
879 }
880 
881 static int fs_get_regs_len(struct net_device *dev)
882 {
883         struct fs_enet_private *fep = netdev_priv(dev);
884 
885         return (*fep->ops->get_regs_len)(dev);
886 }
887 
888 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
889                          void *p)
890 {
891         struct fs_enet_private *fep = netdev_priv(dev);
892         unsigned long flags;
893         int r, len;
894 
895         len = regs->len;
896 
897         spin_lock_irqsave(&fep->lock, flags);
898         r = (*fep->ops->get_regs)(dev, p, &len);
899         spin_unlock_irqrestore(&fep->lock, flags);
900 
901         if (r == 0)
902                 regs->version = 0;
903 }
904 
905 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
906 {
907         struct fs_enet_private *fep = netdev_priv(dev);
908 
909         if (!fep->phydev)
910                 return -ENODEV;
911 
912         return phy_ethtool_gset(fep->phydev, cmd);
913 }
914 
915 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
916 {
917         struct fs_enet_private *fep = netdev_priv(dev);
918 
919         if (!fep->phydev)
920                 return -ENODEV;
921 
922         return phy_ethtool_sset(fep->phydev, cmd);
923 }
924 
925 static int fs_nway_reset(struct net_device *dev)
926 {
927         return 0;
928 }
929 
930 static u32 fs_get_msglevel(struct net_device *dev)
931 {
932         struct fs_enet_private *fep = netdev_priv(dev);
933         return fep->msg_enable;
934 }
935 
936 static void fs_set_msglevel(struct net_device *dev, u32 value)
937 {
938         struct fs_enet_private *fep = netdev_priv(dev);
939         fep->msg_enable = value;
940 }
941 
942 static const struct ethtool_ops fs_ethtool_ops = {
943         .get_drvinfo = fs_get_drvinfo,
944         .get_regs_len = fs_get_regs_len,
945         .get_settings = fs_get_settings,
946         .set_settings = fs_set_settings,
947         .nway_reset = fs_nway_reset,
948         .get_link = ethtool_op_get_link,
949         .get_msglevel = fs_get_msglevel,
950         .set_msglevel = fs_set_msglevel,
951         .get_regs = fs_get_regs,
952         .get_ts_info = ethtool_op_get_ts_info,
953 };
954 
955 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
956 {
957         struct fs_enet_private *fep = netdev_priv(dev);
958 
959         if (!netif_running(dev))
960                 return -EINVAL;
961 
962         return phy_mii_ioctl(fep->phydev, rq, cmd);
963 }
964 
965 extern int fs_mii_connect(struct net_device *dev);
966 extern void fs_mii_disconnect(struct net_device *dev);
967 
968 /**************************************************************************************/
969 
970 #ifdef CONFIG_FS_ENET_HAS_FEC
971 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
972 #else
973 #define IS_FEC(match) 0
974 #endif
975 
976 static const struct net_device_ops fs_enet_netdev_ops = {
977         .ndo_open               = fs_enet_open,
978         .ndo_stop               = fs_enet_close,
979         .ndo_get_stats          = fs_enet_get_stats,
980         .ndo_start_xmit         = fs_enet_start_xmit,
981         .ndo_tx_timeout         = fs_timeout,
982         .ndo_set_rx_mode        = fs_set_multicast_list,
983         .ndo_do_ioctl           = fs_ioctl,
984         .ndo_validate_addr      = eth_validate_addr,
985         .ndo_set_mac_address    = eth_mac_addr,
986         .ndo_change_mtu         = eth_change_mtu,
987 #ifdef CONFIG_NET_POLL_CONTROLLER
988         .ndo_poll_controller    = fs_enet_netpoll,
989 #endif
990 };
991 
992 static struct of_device_id fs_enet_match[];
993 static int fs_enet_probe(struct platform_device *ofdev)
994 {
995         const struct of_device_id *match;
996         struct net_device *ndev;
997         struct fs_enet_private *fep;
998         struct fs_platform_info *fpi;
999         const u32 *data;
1000         struct clk *clk;
1001         int err;
1002         const u8 *mac_addr;
1003         const char *phy_connection_type;
1004         int privsize, len, ret = -ENODEV;
1005 
1006         match = of_match_device(fs_enet_match, &ofdev->dev);
1007         if (!match)
1008                 return -EINVAL;
1009 
1010         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1011         if (!fpi)
1012                 return -ENOMEM;
1013 
1014         if (!IS_FEC(match)) {
1015                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
1016                 if (!data || len != 4)
1017                         goto out_free_fpi;
1018 
1019                 fpi->cp_command = *data;
1020         }
1021 
1022         fpi->rx_ring = 32;
1023         fpi->tx_ring = 32;
1024         fpi->rx_copybreak = 240;
1025         fpi->use_napi = 1;
1026         fpi->napi_weight = 17;
1027         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
1028         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
1029                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
1030                 if (err)
1031                         goto out_free_fpi;
1032 
1033                 /* In the case of a fixed PHY, the DT node associated
1034                  * to the PHY is the Ethernet MAC DT node.
1035                  */
1036                 fpi->phy_node = ofdev->dev.of_node;
1037         }
1038 
1039         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
1040                 phy_connection_type = of_get_property(ofdev->dev.of_node,
1041                                                 "phy-connection-type", NULL);
1042                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
1043                         fpi->use_rmii = 1;
1044         }
1045 
1046         /* make clock lookup non-fatal (the driver is shared among platforms),
1047          * but require enable to succeed when a clock was specified/found,
1048          * keep a reference to the clock upon successful acquisition
1049          */
1050         clk = devm_clk_get(&ofdev->dev, "per");
1051         if (!IS_ERR(clk)) {
1052                 err = clk_prepare_enable(clk);
1053                 if (err) {
1054                         ret = err;
1055                         goto out_free_fpi;
1056                 }
1057                 fpi->clk_per = clk;
1058         }
1059 
1060         privsize = sizeof(*fep) +
1061                    sizeof(struct sk_buff **) *
1062                    (fpi->rx_ring + fpi->tx_ring);
1063 
1064         ndev = alloc_etherdev(privsize);
1065         if (!ndev) {
1066                 ret = -ENOMEM;
1067                 goto out_put;
1068         }
1069 
1070         SET_NETDEV_DEV(ndev, &ofdev->dev);
1071         platform_set_drvdata(ofdev, ndev);
1072 
1073         fep = netdev_priv(ndev);
1074         fep->dev = &ofdev->dev;
1075         fep->ndev = ndev;
1076         fep->fpi = fpi;
1077         fep->ops = match->data;
1078 
1079         ret = fep->ops->setup_data(ndev);
1080         if (ret)
1081                 goto out_free_dev;
1082 
1083         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1084         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1085 
1086         spin_lock_init(&fep->lock);
1087         spin_lock_init(&fep->tx_lock);
1088 
1089         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1090         if (mac_addr)
1091                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1092 
1093         ret = fep->ops->allocate_bd(ndev);
1094         if (ret)
1095                 goto out_cleanup_data;
1096 
1097         fep->rx_bd_base = fep->ring_base;
1098         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1099 
1100         fep->tx_ring = fpi->tx_ring;
1101         fep->rx_ring = fpi->rx_ring;
1102 
1103         ndev->netdev_ops = &fs_enet_netdev_ops;
1104         ndev->watchdog_timeo = 2 * HZ;
1105         if (fpi->use_napi)
1106                 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1107                                fpi->napi_weight);
1108 
1109         ndev->ethtool_ops = &fs_ethtool_ops;
1110 
1111         init_timer(&fep->phy_timer_list);
1112 
1113         netif_carrier_off(ndev);
1114 
1115         ret = register_netdev(ndev);
1116         if (ret)
1117                 goto out_free_bd;
1118 
1119         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1120 
1121         return 0;
1122 
1123 out_free_bd:
1124         fep->ops->free_bd(ndev);
1125 out_cleanup_data:
1126         fep->ops->cleanup_data(ndev);
1127 out_free_dev:
1128         free_netdev(ndev);
1129 out_put:
1130         of_node_put(fpi->phy_node);
1131         if (fpi->clk_per)
1132                 clk_disable_unprepare(fpi->clk_per);
1133 out_free_fpi:
1134         kfree(fpi);
1135         return ret;
1136 }
1137 
1138 static int fs_enet_remove(struct platform_device *ofdev)
1139 {
1140         struct net_device *ndev = platform_get_drvdata(ofdev);
1141         struct fs_enet_private *fep = netdev_priv(ndev);
1142 
1143         unregister_netdev(ndev);
1144 
1145         fep->ops->free_bd(ndev);
1146         fep->ops->cleanup_data(ndev);
1147         dev_set_drvdata(fep->dev, NULL);
1148         of_node_put(fep->fpi->phy_node);
1149         if (fep->fpi->clk_per)
1150                 clk_disable_unprepare(fep->fpi->clk_per);
1151         free_netdev(ndev);
1152         return 0;
1153 }
1154 
1155 static struct of_device_id fs_enet_match[] = {
1156 #ifdef CONFIG_FS_ENET_HAS_SCC
1157         {
1158                 .compatible = "fsl,cpm1-scc-enet",
1159                 .data = (void *)&fs_scc_ops,
1160         },
1161         {
1162                 .compatible = "fsl,cpm2-scc-enet",
1163                 .data = (void *)&fs_scc_ops,
1164         },
1165 #endif
1166 #ifdef CONFIG_FS_ENET_HAS_FCC
1167         {
1168                 .compatible = "fsl,cpm2-fcc-enet",
1169                 .data = (void *)&fs_fcc_ops,
1170         },
1171 #endif
1172 #ifdef CONFIG_FS_ENET_HAS_FEC
1173 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1174         {
1175                 .compatible = "fsl,mpc5121-fec",
1176                 .data = (void *)&fs_fec_ops,
1177         },
1178         {
1179                 .compatible = "fsl,mpc5125-fec",
1180                 .data = (void *)&fs_fec_ops,
1181         },
1182 #else
1183         {
1184                 .compatible = "fsl,pq1-fec-enet",
1185                 .data = (void *)&fs_fec_ops,
1186         },
1187 #endif
1188 #endif
1189         {}
1190 };
1191 MODULE_DEVICE_TABLE(of, fs_enet_match);
1192 
1193 static struct platform_driver fs_enet_driver = {
1194         .driver = {
1195                 .owner = THIS_MODULE,
1196                 .name = "fs_enet",
1197                 .of_match_table = fs_enet_match,
1198         },
1199         .probe = fs_enet_probe,
1200         .remove = fs_enet_remove,
1201 };
1202 
1203 #ifdef CONFIG_NET_POLL_CONTROLLER
1204 static void fs_enet_netpoll(struct net_device *dev)
1205 {
1206        disable_irq(dev->irq);
1207        fs_enet_interrupt(dev->irq, dev);
1208        enable_irq(dev->irq);
1209 }
1210 #endif
1211 
1212 module_platform_driver(fs_enet_driver);
1213 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us