Version:  2.0.40 2.2.26 2.4.37 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

Linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c

  1 /*
  2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3  *
  4  * Copyright (c) 2003 Intracom S.A.
  5  *  by Pantelis Antoniou <panto@intracom.gr>
  6  *
  7  * 2005 (c) MontaVista Software, Inc.
  8  * Vitaly Bordug <vbordug@ru.mvista.com>
  9  *
 10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
 11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 12  *
 13  * This file is licensed under the terms of the GNU General Public License
 14  * version 2. This program is licensed "as is" without any warranty of any
 15  * kind, whether express or implied.
 16  */
 17 
 18 #include <linux/module.h>
 19 #include <linux/kernel.h>
 20 #include <linux/types.h>
 21 #include <linux/string.h>
 22 #include <linux/ptrace.h>
 23 #include <linux/errno.h>
 24 #include <linux/ioport.h>
 25 #include <linux/slab.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/delay.h>
 28 #include <linux/netdevice.h>
 29 #include <linux/etherdevice.h>
 30 #include <linux/skbuff.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/mii.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/bitops.h>
 35 #include <linux/fs.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/phy.h>
 38 #include <linux/of.h>
 39 #include <linux/of_mdio.h>
 40 #include <linux/of_platform.h>
 41 #include <linux/of_gpio.h>
 42 #include <linux/of_net.h>
 43 
 44 #include <linux/vmalloc.h>
 45 #include <asm/pgtable.h>
 46 #include <asm/irq.h>
 47 #include <linux/uaccess.h>
 48 
 49 #include "fs_enet.h"
 50 
 51 /*************************************************/
 52 
 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
 54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
 55 MODULE_LICENSE("GPL");
 56 MODULE_VERSION(DRV_MODULE_VERSION);
 57 
 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
 59 module_param(fs_enet_debug, int, 0);
 60 MODULE_PARM_DESC(fs_enet_debug,
 61                  "Freescale bitmapped debugging message enable value");
 62 
 63 #define RX_RING_SIZE    32
 64 #define TX_RING_SIZE    64
 65 
 66 #ifdef CONFIG_NET_POLL_CONTROLLER
 67 static void fs_enet_netpoll(struct net_device *dev);
 68 #endif
 69 
 70 static void fs_set_multicast_list(struct net_device *dev)
 71 {
 72         struct fs_enet_private *fep = netdev_priv(dev);
 73 
 74         (*fep->ops->set_multicast_list)(dev);
 75 }
 76 
 77 static void skb_align(struct sk_buff *skb, int align)
 78 {
 79         int off = ((unsigned long)skb->data) & (align - 1);
 80 
 81         if (off)
 82                 skb_reserve(skb, align - off);
 83 }
 84 
 85 /* NAPI function */
 86 static int fs_enet_napi(struct napi_struct *napi, int budget)
 87 {
 88         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
 89         struct net_device *dev = fep->ndev;
 90         const struct fs_platform_info *fpi = fep->fpi;
 91         cbd_t __iomem *bdp;
 92         struct sk_buff *skb, *skbn;
 93         int received = 0;
 94         u16 pkt_len, sc;
 95         int curidx;
 96         int dirtyidx, do_wake, do_restart;
 97         int tx_left = TX_RING_SIZE;
 98 
 99         spin_lock(&fep->tx_lock);
100         bdp = fep->dirty_tx;
101 
102         /* clear status bits for napi*/
103         (*fep->ops->napi_clear_event)(dev);
104 
105         do_wake = do_restart = 0;
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107                 dirtyidx = bdp - fep->tx_bd_base;
108 
109                 if (fep->tx_free == fep->tx_ring)
110                         break;
111 
112                 skb = fep->tx_skbuff[dirtyidx];
113 
114                 /*
115                  * Check for errors.
116                  */
117                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
119 
120                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
121                                 dev->stats.tx_heartbeat_errors++;
122                         if (sc & BD_ENET_TX_LC) /* Late collision */
123                                 dev->stats.tx_window_errors++;
124                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
125                                 dev->stats.tx_aborted_errors++;
126                         if (sc & BD_ENET_TX_UN) /* Underrun */
127                                 dev->stats.tx_fifo_errors++;
128                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
129                                 dev->stats.tx_carrier_errors++;
130 
131                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132                                 dev->stats.tx_errors++;
133                                 do_restart = 1;
134                         }
135                 } else
136                         dev->stats.tx_packets++;
137 
138                 if (sc & BD_ENET_TX_READY) {
139                         dev_warn(fep->dev,
140                                  "HEY! Enet xmit interrupt and TX_READY.\n");
141                 }
142 
143                 /*
144                  * Deferred means some collisions occurred during transmit,
145                  * but we eventually sent the packet OK.
146                  */
147                 if (sc & BD_ENET_TX_DEF)
148                         dev->stats.collisions++;
149 
150                 /* unmap */
151                 if (fep->mapped_as_page[dirtyidx])
152                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154                 else
155                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
157 
158                 /*
159                  * Free the sk buffer associated with this last transmit.
160                  */
161                 if (skb) {
162                         dev_kfree_skb(skb);
163                         fep->tx_skbuff[dirtyidx] = NULL;
164                 }
165 
166                 /*
167                  * Update pointer to next buffer descriptor to be transmitted.
168                  */
169                 if ((sc & BD_ENET_TX_WRAP) == 0)
170                         bdp++;
171                 else
172                         bdp = fep->tx_bd_base;
173 
174                 /*
175                  * Since we have freed up a buffer, the ring is no longer
176                  * full.
177                  */
178                 if (++fep->tx_free == MAX_SKB_FRAGS)
179                         do_wake = 1;
180                 tx_left--;
181         }
182 
183         fep->dirty_tx = bdp;
184 
185         if (do_restart)
186                 (*fep->ops->tx_restart)(dev);
187 
188         spin_unlock(&fep->tx_lock);
189 
190         if (do_wake)
191                 netif_wake_queue(dev);
192 
193         /*
194          * First, grab all of the stats for the incoming packet.
195          * These get messed up if we get called due to a busy condition.
196          */
197         bdp = fep->cur_rx;
198 
199         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200                received < budget) {
201                 curidx = bdp - fep->rx_bd_base;
202 
203                 /*
204                  * Since we have allocated space to hold a complete frame,
205                  * the last indicator should be set.
206                  */
207                 if ((sc & BD_ENET_RX_LAST) == 0)
208                         dev_warn(fep->dev, "rcv is not +last\n");
209 
210                 /*
211                  * Check for errors.
212                  */
213                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215                         dev->stats.rx_errors++;
216                         /* Frame too long or too short. */
217                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218                                 dev->stats.rx_length_errors++;
219                         /* Frame alignment */
220                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221                                 dev->stats.rx_frame_errors++;
222                         /* CRC Error */
223                         if (sc & BD_ENET_RX_CR)
224                                 dev->stats.rx_crc_errors++;
225                         /* FIFO overrun */
226                         if (sc & BD_ENET_RX_OV)
227                                 dev->stats.rx_crc_errors++;
228 
229                         skbn = fep->rx_skbuff[curidx];
230                 } else {
231                         skb = fep->rx_skbuff[curidx];
232 
233                         /*
234                          * Process the incoming frame.
235                          */
236                         dev->stats.rx_packets++;
237                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
238                         dev->stats.rx_bytes += pkt_len + 4;
239 
240                         if (pkt_len <= fpi->rx_copybreak) {
241                                 /* +2 to make IP header L1 cache aligned */
242                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
243                                 if (skbn != NULL) {
244                                         skb_reserve(skbn, 2);   /* align IP header */
245                                         skb_copy_from_linear_data(skb,
246                                                       skbn->data, pkt_len);
247                                         swap(skb, skbn);
248                                         dma_sync_single_for_cpu(fep->dev,
249                                                 CBDR_BUFADDR(bdp),
250                                                 L1_CACHE_ALIGN(pkt_len),
251                                                 DMA_FROM_DEVICE);
252                                 }
253                         } else {
254                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
255 
256                                 if (skbn) {
257                                         dma_addr_t dma;
258 
259                                         skb_align(skbn, ENET_RX_ALIGN);
260 
261                                         dma_unmap_single(fep->dev,
262                                                 CBDR_BUFADDR(bdp),
263                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264                                                 DMA_FROM_DEVICE);
265 
266                                         dma = dma_map_single(fep->dev,
267                                                 skbn->data,
268                                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269                                                 DMA_FROM_DEVICE);
270                                         CBDW_BUFADDR(bdp, dma);
271                                 }
272                         }
273 
274                         if (skbn != NULL) {
275                                 skb_put(skb, pkt_len);  /* Make room */
276                                 skb->protocol = eth_type_trans(skb, dev);
277                                 received++;
278                                 netif_receive_skb(skb);
279                         } else {
280                                 dev->stats.rx_dropped++;
281                                 skbn = skb;
282                         }
283                 }
284 
285                 fep->rx_skbuff[curidx] = skbn;
286                 CBDW_DATLEN(bdp, 0);
287                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
288 
289                 /*
290                  * Update BD pointer to next entry.
291                  */
292                 if ((sc & BD_ENET_RX_WRAP) == 0)
293                         bdp++;
294                 else
295                         bdp = fep->rx_bd_base;
296 
297                 (*fep->ops->rx_bd_done)(dev);
298         }
299 
300         fep->cur_rx = bdp;
301 
302         if (received < budget && tx_left) {
303                 /* done */
304                 napi_complete(napi);
305                 (*fep->ops->napi_enable)(dev);
306 
307                 return received;
308         }
309 
310         return budget;
311 }
312 
313 /*
314  * The interrupt handler.
315  * This is called from the MPC core interrupt.
316  */
317 static irqreturn_t
318 fs_enet_interrupt(int irq, void *dev_id)
319 {
320         struct net_device *dev = dev_id;
321         struct fs_enet_private *fep;
322         const struct fs_platform_info *fpi;
323         u32 int_events;
324         u32 int_clr_events;
325         int nr, napi_ok;
326         int handled;
327 
328         fep = netdev_priv(dev);
329         fpi = fep->fpi;
330 
331         nr = 0;
332         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333                 nr++;
334 
335                 int_clr_events = int_events;
336                 int_clr_events &= ~fep->ev_napi;
337 
338                 (*fep->ops->clear_int_events)(dev, int_clr_events);
339 
340                 if (int_events & fep->ev_err)
341                         (*fep->ops->ev_error)(dev, int_events);
342 
343                 if (int_events & fep->ev) {
344                         napi_ok = napi_schedule_prep(&fep->napi);
345 
346                         (*fep->ops->napi_disable)(dev);
347                         (*fep->ops->clear_int_events)(dev, fep->ev_napi);
348 
349                         /* NOTE: it is possible for FCCs in NAPI mode    */
350                         /* to submit a spurious interrupt while in poll  */
351                         if (napi_ok)
352                                 __napi_schedule(&fep->napi);
353                 }
354 
355         }
356 
357         handled = nr > 0;
358         return IRQ_RETVAL(handled);
359 }
360 
361 void fs_init_bds(struct net_device *dev)
362 {
363         struct fs_enet_private *fep = netdev_priv(dev);
364         cbd_t __iomem *bdp;
365         struct sk_buff *skb;
366         int i;
367 
368         fs_cleanup_bds(dev);
369 
370         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371         fep->tx_free = fep->tx_ring;
372         fep->cur_rx = fep->rx_bd_base;
373 
374         /*
375          * Initialize the receive buffer descriptors.
376          */
377         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379                 if (skb == NULL)
380                         break;
381 
382                 skb_align(skb, ENET_RX_ALIGN);
383                 fep->rx_skbuff[i] = skb;
384                 CBDW_BUFADDR(bdp,
385                         dma_map_single(fep->dev, skb->data,
386                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387                                 DMA_FROM_DEVICE));
388                 CBDW_DATLEN(bdp, 0);    /* zero */
389                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
391         }
392         /*
393          * if we failed, fillup remainder
394          */
395         for (; i < fep->rx_ring; i++, bdp++) {
396                 fep->rx_skbuff[i] = NULL;
397                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
398         }
399 
400         /*
401          * ...and the same for transmit.
402          */
403         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404                 fep->tx_skbuff[i] = NULL;
405                 CBDW_BUFADDR(bdp, 0);
406                 CBDW_DATLEN(bdp, 0);
407                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
408         }
409 }
410 
411 void fs_cleanup_bds(struct net_device *dev)
412 {
413         struct fs_enet_private *fep = netdev_priv(dev);
414         struct sk_buff *skb;
415         cbd_t __iomem *bdp;
416         int i;
417 
418         /*
419          * Reset SKB transmit buffers.
420          */
421         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422                 if ((skb = fep->tx_skbuff[i]) == NULL)
423                         continue;
424 
425                 /* unmap */
426                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427                                 skb->len, DMA_TO_DEVICE);
428 
429                 fep->tx_skbuff[i] = NULL;
430                 dev_kfree_skb(skb);
431         }
432 
433         /*
434          * Reset SKB receive buffers
435          */
436         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437                 if ((skb = fep->rx_skbuff[i]) == NULL)
438                         continue;
439 
440                 /* unmap */
441                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443                         DMA_FROM_DEVICE);
444 
445                 fep->rx_skbuff[i] = NULL;
446 
447                 dev_kfree_skb(skb);
448         }
449 }
450 
451 /**********************************************************************************/
452 
453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
454 /*
455  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
456  */
457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458                                                struct sk_buff *skb)
459 {
460         struct sk_buff *new_skb;
461 
462         if (skb_linearize(skb))
463                 return NULL;
464 
465         /* Alloc new skb */
466         new_skb = netdev_alloc_skb(dev, skb->len + 4);
467         if (!new_skb)
468                 return NULL;
469 
470         /* Make sure new skb is properly aligned */
471         skb_align(new_skb, 4);
472 
473         /* Copy data to new skb ... */
474         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475         skb_put(new_skb, skb->len);
476 
477         /* ... and free an old one */
478         dev_kfree_skb_any(skb);
479 
480         return new_skb;
481 }
482 #endif
483 
484 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
485 {
486         struct fs_enet_private *fep = netdev_priv(dev);
487         cbd_t __iomem *bdp;
488         int curidx;
489         u16 sc;
490         int nr_frags;
491         skb_frag_t *frag;
492         int len;
493 #ifdef CONFIG_FS_ENET_MPC5121_FEC
494         int is_aligned = 1;
495         int i;
496 
497         if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498                 is_aligned = 0;
499         } else {
500                 nr_frags = skb_shinfo(skb)->nr_frags;
501                 frag = skb_shinfo(skb)->frags;
502                 for (i = 0; i < nr_frags; i++, frag++) {
503                         if (!IS_ALIGNED(frag->page_offset, 4)) {
504                                 is_aligned = 0;
505                                 break;
506                         }
507                 }
508         }
509 
510         if (!is_aligned) {
511                 skb = tx_skb_align_workaround(dev, skb);
512                 if (!skb) {
513                         /*
514                          * We have lost packet due to memory allocation error
515                          * in tx_skb_align_workaround(). Hopefully original
516                          * skb is still valid, so try transmit it later.
517                          */
518                         return NETDEV_TX_BUSY;
519                 }
520         }
521 #endif
522 
523         spin_lock(&fep->tx_lock);
524 
525         /*
526          * Fill in a Tx ring entry
527          */
528         bdp = fep->cur_tx;
529 
530         nr_frags = skb_shinfo(skb)->nr_frags;
531         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532                 netif_stop_queue(dev);
533                 spin_unlock(&fep->tx_lock);
534 
535                 /*
536                  * Ooops.  All transmit buffers are full.  Bail out.
537                  * This should not happen, since the tx queue should be stopped.
538                  */
539                 dev_warn(fep->dev, "tx queue full!.\n");
540                 return NETDEV_TX_BUSY;
541         }
542 
543         curidx = bdp - fep->tx_bd_base;
544 
545         len = skb->len;
546         dev->stats.tx_bytes += len;
547         if (nr_frags)
548                 len -= skb->data_len;
549         fep->tx_free -= nr_frags + 1;
550         /*
551          * Push the data cache so the CPM does not get stale memory data.
552          */
553         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554                                 skb->data, len, DMA_TO_DEVICE));
555         CBDW_DATLEN(bdp, len);
556 
557         fep->mapped_as_page[curidx] = 0;
558         frag = skb_shinfo(skb)->frags;
559         while (nr_frags) {
560                 CBDC_SC(bdp,
561                         BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562                         BD_ENET_TX_TC);
563                 CBDS_SC(bdp, BD_ENET_TX_READY);
564 
565                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
566                         bdp++, curidx++;
567                 else
568                         bdp = fep->tx_bd_base, curidx = 0;
569 
570                 len = skb_frag_size(frag);
571                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572                                                    DMA_TO_DEVICE));
573                 CBDW_DATLEN(bdp, len);
574 
575                 fep->tx_skbuff[curidx] = NULL;
576                 fep->mapped_as_page[curidx] = 1;
577 
578                 frag++;
579                 nr_frags--;
580         }
581 
582         /* Trigger transmission start */
583         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584              BD_ENET_TX_LAST | BD_ENET_TX_TC;
585 
586         /* note that while FEC does not have this bit
587          * it marks it as available for software use
588          * yay for hw reuse :) */
589         if (skb->len <= 60)
590                 sc |= BD_ENET_TX_PAD;
591         CBDC_SC(bdp, BD_ENET_TX_STATS);
592         CBDS_SC(bdp, sc);
593 
594         /* Save skb pointer. */
595         fep->tx_skbuff[curidx] = skb;
596 
597         /* If this was the last BD in the ring, start at the beginning again. */
598         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599                 bdp++;
600         else
601                 bdp = fep->tx_bd_base;
602         fep->cur_tx = bdp;
603 
604         if (fep->tx_free < MAX_SKB_FRAGS)
605                 netif_stop_queue(dev);
606 
607         skb_tx_timestamp(skb);
608 
609         (*fep->ops->tx_kickstart)(dev);
610 
611         spin_unlock(&fep->tx_lock);
612 
613         return NETDEV_TX_OK;
614 }
615 
616 static void fs_timeout(struct net_device *dev)
617 {
618         struct fs_enet_private *fep = netdev_priv(dev);
619         unsigned long flags;
620         int wake = 0;
621 
622         dev->stats.tx_errors++;
623 
624         spin_lock_irqsave(&fep->lock, flags);
625 
626         if (dev->flags & IFF_UP) {
627                 phy_stop(dev->phydev);
628                 (*fep->ops->stop)(dev);
629                 (*fep->ops->restart)(dev);
630                 phy_start(dev->phydev);
631         }
632 
633         phy_start(dev->phydev);
634         wake = fep->tx_free >= MAX_SKB_FRAGS &&
635                !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
636         spin_unlock_irqrestore(&fep->lock, flags);
637 
638         if (wake)
639                 netif_wake_queue(dev);
640 }
641 
642 /*-----------------------------------------------------------------------------
643  *  generic link-change handler - should be sufficient for most cases
644  *-----------------------------------------------------------------------------*/
645 static void generic_adjust_link(struct  net_device *dev)
646 {
647         struct fs_enet_private *fep = netdev_priv(dev);
648         struct phy_device *phydev = dev->phydev;
649         int new_state = 0;
650 
651         if (phydev->link) {
652                 /* adjust to duplex mode */
653                 if (phydev->duplex != fep->oldduplex) {
654                         new_state = 1;
655                         fep->oldduplex = phydev->duplex;
656                 }
657 
658                 if (phydev->speed != fep->oldspeed) {
659                         new_state = 1;
660                         fep->oldspeed = phydev->speed;
661                 }
662 
663                 if (!fep->oldlink) {
664                         new_state = 1;
665                         fep->oldlink = 1;
666                 }
667 
668                 if (new_state)
669                         fep->ops->restart(dev);
670         } else if (fep->oldlink) {
671                 new_state = 1;
672                 fep->oldlink = 0;
673                 fep->oldspeed = 0;
674                 fep->oldduplex = -1;
675         }
676 
677         if (new_state && netif_msg_link(fep))
678                 phy_print_status(phydev);
679 }
680 
681 
682 static void fs_adjust_link(struct net_device *dev)
683 {
684         struct fs_enet_private *fep = netdev_priv(dev);
685         unsigned long flags;
686 
687         spin_lock_irqsave(&fep->lock, flags);
688 
689         if(fep->ops->adjust_link)
690                 fep->ops->adjust_link(dev);
691         else
692                 generic_adjust_link(dev);
693 
694         spin_unlock_irqrestore(&fep->lock, flags);
695 }
696 
697 static int fs_init_phy(struct net_device *dev)
698 {
699         struct fs_enet_private *fep = netdev_priv(dev);
700         struct phy_device *phydev;
701         phy_interface_t iface;
702 
703         fep->oldlink = 0;
704         fep->oldspeed = 0;
705         fep->oldduplex = -1;
706 
707         iface = fep->fpi->use_rmii ?
708                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
709 
710         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
711                                 iface);
712         if (!phydev) {
713                 dev_err(&dev->dev, "Could not attach to PHY\n");
714                 return -ENODEV;
715         }
716 
717         return 0;
718 }
719 
720 static int fs_enet_open(struct net_device *dev)
721 {
722         struct fs_enet_private *fep = netdev_priv(dev);
723         int r;
724         int err;
725 
726         /* to initialize the fep->cur_rx,... */
727         /* not doing this, will cause a crash in fs_enet_napi */
728         fs_init_bds(fep->ndev);
729 
730         napi_enable(&fep->napi);
731 
732         /* Install our interrupt handler. */
733         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
734                         "fs_enet-mac", dev);
735         if (r != 0) {
736                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
737                 napi_disable(&fep->napi);
738                 return -EINVAL;
739         }
740 
741         err = fs_init_phy(dev);
742         if (err) {
743                 free_irq(fep->interrupt, dev);
744                 napi_disable(&fep->napi);
745                 return err;
746         }
747         phy_start(dev->phydev);
748 
749         netif_start_queue(dev);
750 
751         return 0;
752 }
753 
754 static int fs_enet_close(struct net_device *dev)
755 {
756         struct fs_enet_private *fep = netdev_priv(dev);
757         unsigned long flags;
758 
759         netif_stop_queue(dev);
760         netif_carrier_off(dev);
761         napi_disable(&fep->napi);
762         phy_stop(dev->phydev);
763 
764         spin_lock_irqsave(&fep->lock, flags);
765         spin_lock(&fep->tx_lock);
766         (*fep->ops->stop)(dev);
767         spin_unlock(&fep->tx_lock);
768         spin_unlock_irqrestore(&fep->lock, flags);
769 
770         /* release any irqs */
771         phy_disconnect(dev->phydev);
772         free_irq(fep->interrupt, dev);
773 
774         return 0;
775 }
776 
777 /*************************************************************************/
778 
779 static void fs_get_drvinfo(struct net_device *dev,
780                             struct ethtool_drvinfo *info)
781 {
782         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
783         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
784 }
785 
786 static int fs_get_regs_len(struct net_device *dev)
787 {
788         struct fs_enet_private *fep = netdev_priv(dev);
789 
790         return (*fep->ops->get_regs_len)(dev);
791 }
792 
793 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
794                          void *p)
795 {
796         struct fs_enet_private *fep = netdev_priv(dev);
797         unsigned long flags;
798         int r, len;
799 
800         len = regs->len;
801 
802         spin_lock_irqsave(&fep->lock, flags);
803         r = (*fep->ops->get_regs)(dev, p, &len);
804         spin_unlock_irqrestore(&fep->lock, flags);
805 
806         if (r == 0)
807                 regs->version = 0;
808 }
809 
810 static u32 fs_get_msglevel(struct net_device *dev)
811 {
812         struct fs_enet_private *fep = netdev_priv(dev);
813         return fep->msg_enable;
814 }
815 
816 static void fs_set_msglevel(struct net_device *dev, u32 value)
817 {
818         struct fs_enet_private *fep = netdev_priv(dev);
819         fep->msg_enable = value;
820 }
821 
822 static int fs_get_tunable(struct net_device *dev,
823                           const struct ethtool_tunable *tuna, void *data)
824 {
825         struct fs_enet_private *fep = netdev_priv(dev);
826         struct fs_platform_info *fpi = fep->fpi;
827         int ret = 0;
828 
829         switch (tuna->id) {
830         case ETHTOOL_RX_COPYBREAK:
831                 *(u32 *)data = fpi->rx_copybreak;
832                 break;
833         default:
834                 ret = -EINVAL;
835                 break;
836         }
837 
838         return ret;
839 }
840 
841 static int fs_set_tunable(struct net_device *dev,
842                           const struct ethtool_tunable *tuna, const void *data)
843 {
844         struct fs_enet_private *fep = netdev_priv(dev);
845         struct fs_platform_info *fpi = fep->fpi;
846         int ret = 0;
847 
848         switch (tuna->id) {
849         case ETHTOOL_RX_COPYBREAK:
850                 fpi->rx_copybreak = *(u32 *)data;
851                 break;
852         default:
853                 ret = -EINVAL;
854                 break;
855         }
856 
857         return ret;
858 }
859 
860 static const struct ethtool_ops fs_ethtool_ops = {
861         .get_drvinfo = fs_get_drvinfo,
862         .get_regs_len = fs_get_regs_len,
863         .nway_reset = phy_ethtool_nway_reset,
864         .get_link = ethtool_op_get_link,
865         .get_msglevel = fs_get_msglevel,
866         .set_msglevel = fs_set_msglevel,
867         .get_regs = fs_get_regs,
868         .get_ts_info = ethtool_op_get_ts_info,
869         .get_link_ksettings = phy_ethtool_get_link_ksettings,
870         .set_link_ksettings = phy_ethtool_set_link_ksettings,
871         .get_tunable = fs_get_tunable,
872         .set_tunable = fs_set_tunable,
873 };
874 
875 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
876 {
877         if (!netif_running(dev))
878                 return -EINVAL;
879 
880         return phy_mii_ioctl(dev->phydev, rq, cmd);
881 }
882 
883 extern int fs_mii_connect(struct net_device *dev);
884 extern void fs_mii_disconnect(struct net_device *dev);
885 
886 /**************************************************************************************/
887 
888 #ifdef CONFIG_FS_ENET_HAS_FEC
889 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
890 #else
891 #define IS_FEC(match) 0
892 #endif
893 
894 static const struct net_device_ops fs_enet_netdev_ops = {
895         .ndo_open               = fs_enet_open,
896         .ndo_stop               = fs_enet_close,
897         .ndo_start_xmit         = fs_enet_start_xmit,
898         .ndo_tx_timeout         = fs_timeout,
899         .ndo_set_rx_mode        = fs_set_multicast_list,
900         .ndo_do_ioctl           = fs_ioctl,
901         .ndo_validate_addr      = eth_validate_addr,
902         .ndo_set_mac_address    = eth_mac_addr,
903 #ifdef CONFIG_NET_POLL_CONTROLLER
904         .ndo_poll_controller    = fs_enet_netpoll,
905 #endif
906 };
907 
908 static const struct of_device_id fs_enet_match[];
909 static int fs_enet_probe(struct platform_device *ofdev)
910 {
911         const struct of_device_id *match;
912         struct net_device *ndev;
913         struct fs_enet_private *fep;
914         struct fs_platform_info *fpi;
915         const u32 *data;
916         struct clk *clk;
917         int err;
918         const u8 *mac_addr;
919         const char *phy_connection_type;
920         int privsize, len, ret = -ENODEV;
921 
922         match = of_match_device(fs_enet_match, &ofdev->dev);
923         if (!match)
924                 return -EINVAL;
925 
926         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
927         if (!fpi)
928                 return -ENOMEM;
929 
930         if (!IS_FEC(match)) {
931                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
932                 if (!data || len != 4)
933                         goto out_free_fpi;
934 
935                 fpi->cp_command = *data;
936         }
937 
938         fpi->rx_ring = RX_RING_SIZE;
939         fpi->tx_ring = TX_RING_SIZE;
940         fpi->rx_copybreak = 240;
941         fpi->napi_weight = 17;
942         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
943         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
944                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
945                 if (err)
946                         goto out_free_fpi;
947 
948                 /* In the case of a fixed PHY, the DT node associated
949                  * to the PHY is the Ethernet MAC DT node.
950                  */
951                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
952         }
953 
954         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
955                 phy_connection_type = of_get_property(ofdev->dev.of_node,
956                                                 "phy-connection-type", NULL);
957                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
958                         fpi->use_rmii = 1;
959         }
960 
961         /* make clock lookup non-fatal (the driver is shared among platforms),
962          * but require enable to succeed when a clock was specified/found,
963          * keep a reference to the clock upon successful acquisition
964          */
965         clk = devm_clk_get(&ofdev->dev, "per");
966         if (!IS_ERR(clk)) {
967                 err = clk_prepare_enable(clk);
968                 if (err) {
969                         ret = err;
970                         goto out_deregister_fixed_link;
971                 }
972                 fpi->clk_per = clk;
973         }
974 
975         privsize = sizeof(*fep) +
976                    sizeof(struct sk_buff **) *
977                      (fpi->rx_ring + fpi->tx_ring) +
978                    sizeof(char) * fpi->tx_ring;
979 
980         ndev = alloc_etherdev(privsize);
981         if (!ndev) {
982                 ret = -ENOMEM;
983                 goto out_put;
984         }
985 
986         SET_NETDEV_DEV(ndev, &ofdev->dev);
987         platform_set_drvdata(ofdev, ndev);
988 
989         fep = netdev_priv(ndev);
990         fep->dev = &ofdev->dev;
991         fep->ndev = ndev;
992         fep->fpi = fpi;
993         fep->ops = match->data;
994 
995         ret = fep->ops->setup_data(ndev);
996         if (ret)
997                 goto out_free_dev;
998 
999         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1000         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1001         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1002                                        fpi->tx_ring);
1003 
1004         spin_lock_init(&fep->lock);
1005         spin_lock_init(&fep->tx_lock);
1006 
1007         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1008         if (mac_addr)
1009                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1010 
1011         ret = fep->ops->allocate_bd(ndev);
1012         if (ret)
1013                 goto out_cleanup_data;
1014 
1015         fep->rx_bd_base = fep->ring_base;
1016         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1017 
1018         fep->tx_ring = fpi->tx_ring;
1019         fep->rx_ring = fpi->rx_ring;
1020 
1021         ndev->netdev_ops = &fs_enet_netdev_ops;
1022         ndev->watchdog_timeo = 2 * HZ;
1023         netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1024 
1025         ndev->ethtool_ops = &fs_ethtool_ops;
1026 
1027         init_timer(&fep->phy_timer_list);
1028 
1029         netif_carrier_off(ndev);
1030 
1031         ndev->features |= NETIF_F_SG;
1032 
1033         ret = register_netdev(ndev);
1034         if (ret)
1035                 goto out_free_bd;
1036 
1037         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1038 
1039         return 0;
1040 
1041 out_free_bd:
1042         fep->ops->free_bd(ndev);
1043 out_cleanup_data:
1044         fep->ops->cleanup_data(ndev);
1045 out_free_dev:
1046         free_netdev(ndev);
1047 out_put:
1048         of_node_put(fpi->phy_node);
1049         if (fpi->clk_per)
1050                 clk_disable_unprepare(fpi->clk_per);
1051 out_deregister_fixed_link:
1052         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1053                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1054 out_free_fpi:
1055         kfree(fpi);
1056         return ret;
1057 }
1058 
1059 static int fs_enet_remove(struct platform_device *ofdev)
1060 {
1061         struct net_device *ndev = platform_get_drvdata(ofdev);
1062         struct fs_enet_private *fep = netdev_priv(ndev);
1063 
1064         unregister_netdev(ndev);
1065 
1066         fep->ops->free_bd(ndev);
1067         fep->ops->cleanup_data(ndev);
1068         dev_set_drvdata(fep->dev, NULL);
1069         of_node_put(fep->fpi->phy_node);
1070         if (fep->fpi->clk_per)
1071                 clk_disable_unprepare(fep->fpi->clk_per);
1072         if (of_phy_is_fixed_link(ofdev->dev.of_node))
1073                 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1074         free_netdev(ndev);
1075         return 0;
1076 }
1077 
1078 static const struct of_device_id fs_enet_match[] = {
1079 #ifdef CONFIG_FS_ENET_HAS_SCC
1080         {
1081                 .compatible = "fsl,cpm1-scc-enet",
1082                 .data = (void *)&fs_scc_ops,
1083         },
1084         {
1085                 .compatible = "fsl,cpm2-scc-enet",
1086                 .data = (void *)&fs_scc_ops,
1087         },
1088 #endif
1089 #ifdef CONFIG_FS_ENET_HAS_FCC
1090         {
1091                 .compatible = "fsl,cpm2-fcc-enet",
1092                 .data = (void *)&fs_fcc_ops,
1093         },
1094 #endif
1095 #ifdef CONFIG_FS_ENET_HAS_FEC
1096 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1097         {
1098                 .compatible = "fsl,mpc5121-fec",
1099                 .data = (void *)&fs_fec_ops,
1100         },
1101         {
1102                 .compatible = "fsl,mpc5125-fec",
1103                 .data = (void *)&fs_fec_ops,
1104         },
1105 #else
1106         {
1107                 .compatible = "fsl,pq1-fec-enet",
1108                 .data = (void *)&fs_fec_ops,
1109         },
1110 #endif
1111 #endif
1112         {}
1113 };
1114 MODULE_DEVICE_TABLE(of, fs_enet_match);
1115 
1116 static struct platform_driver fs_enet_driver = {
1117         .driver = {
1118                 .name = "fs_enet",
1119                 .of_match_table = fs_enet_match,
1120         },
1121         .probe = fs_enet_probe,
1122         .remove = fs_enet_remove,
1123 };
1124 
1125 #ifdef CONFIG_NET_POLL_CONTROLLER
1126 static void fs_enet_netpoll(struct net_device *dev)
1127 {
1128        disable_irq(dev->irq);
1129        fs_enet_interrupt(dev->irq, dev);
1130        enable_irq(dev->irq);
1131 }
1132 #endif
1133 
1134 module_platform_driver(fs_enet_driver);
1135 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us