Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c

  1 /*
  2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3  *
  4  * Copyright (c) 2003 Intracom S.A.
  5  *  by Pantelis Antoniou <panto@intracom.gr>
  6  *
  7  * 2005 (c) MontaVista Software, Inc.
  8  * Vitaly Bordug <vbordug@ru.mvista.com>
  9  *
 10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
 11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 12  *
 13  * This file is licensed under the terms of the GNU General Public License
 14  * version 2. This program is licensed "as is" without any warranty of any
 15  * kind, whether express or implied.
 16  */
 17 
 18 #include <linux/module.h>
 19 #include <linux/kernel.h>
 20 #include <linux/types.h>
 21 #include <linux/string.h>
 22 #include <linux/ptrace.h>
 23 #include <linux/errno.h>
 24 #include <linux/ioport.h>
 25 #include <linux/slab.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/delay.h>
 28 #include <linux/netdevice.h>
 29 #include <linux/etherdevice.h>
 30 #include <linux/skbuff.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/mii.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/bitops.h>
 35 #include <linux/fs.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/phy.h>
 38 #include <linux/of.h>
 39 #include <linux/of_mdio.h>
 40 #include <linux/of_platform.h>
 41 #include <linux/of_gpio.h>
 42 #include <linux/of_net.h>
 43 
 44 #include <linux/vmalloc.h>
 45 #include <asm/pgtable.h>
 46 #include <asm/irq.h>
 47 #include <asm/uaccess.h>
 48 
 49 #include "fs_enet.h"
 50 
 51 /*************************************************/
 52 
 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
 54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
 55 MODULE_LICENSE("GPL");
 56 MODULE_VERSION(DRV_MODULE_VERSION);
 57 
 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
 59 module_param(fs_enet_debug, int, 0);
 60 MODULE_PARM_DESC(fs_enet_debug,
 61                  "Freescale bitmapped debugging message enable value");
 62 
 63 #ifdef CONFIG_NET_POLL_CONTROLLER
 64 static void fs_enet_netpoll(struct net_device *dev);
 65 #endif
 66 
 67 static void fs_set_multicast_list(struct net_device *dev)
 68 {
 69         struct fs_enet_private *fep = netdev_priv(dev);
 70 
 71         (*fep->ops->set_multicast_list)(dev);
 72 }
 73 
 74 static void skb_align(struct sk_buff *skb, int align)
 75 {
 76         int off = ((unsigned long)skb->data) & (align - 1);
 77 
 78         if (off)
 79                 skb_reserve(skb, align - off);
 80 }
 81 
 82 /* NAPI receive function */
 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
 84 {
 85         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
 86         struct net_device *dev = fep->ndev;
 87         const struct fs_platform_info *fpi = fep->fpi;
 88         cbd_t __iomem *bdp;
 89         struct sk_buff *skb, *skbn, *skbt;
 90         int received = 0;
 91         u16 pkt_len, sc;
 92         int curidx;
 93 
 94         if (budget <= 0)
 95                 return received;
 96 
 97         /*
 98          * First, grab all of the stats for the incoming packet.
 99          * These get messed up if we get called due to a busy condition.
100          */
101         bdp = fep->cur_rx;
102 
103         /* clear RX status bits for napi*/
104         (*fep->ops->napi_clear_rx_event)(dev);
105 
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107                 curidx = bdp - fep->rx_bd_base;
108 
109                 /*
110                  * Since we have allocated space to hold a complete frame,
111                  * the last indicator should be set.
112                  */
113                 if ((sc & BD_ENET_RX_LAST) == 0)
114                         dev_warn(fep->dev, "rcv is not +last\n");
115 
116                 /*
117                  * Check for errors.
118                  */
119                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121                         fep->stats.rx_errors++;
122                         /* Frame too long or too short. */
123                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124                                 fep->stats.rx_length_errors++;
125                         /* Frame alignment */
126                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127                                 fep->stats.rx_frame_errors++;
128                         /* CRC Error */
129                         if (sc & BD_ENET_RX_CR)
130                                 fep->stats.rx_crc_errors++;
131                         /* FIFO overrun */
132                         if (sc & BD_ENET_RX_OV)
133                                 fep->stats.rx_crc_errors++;
134 
135                         skb = fep->rx_skbuff[curidx];
136 
137                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139                                 DMA_FROM_DEVICE);
140 
141                         skbn = skb;
142 
143                 } else {
144                         skb = fep->rx_skbuff[curidx];
145 
146                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148                                 DMA_FROM_DEVICE);
149 
150                         /*
151                          * Process the incoming frame.
152                          */
153                         fep->stats.rx_packets++;
154                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155                         fep->stats.rx_bytes += pkt_len + 4;
156 
157                         if (pkt_len <= fpi->rx_copybreak) {
158                                 /* +2 to make IP header L1 cache aligned */
159                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160                                 if (skbn != NULL) {
161                                         skb_reserve(skbn, 2);   /* align IP header */
162                                         skb_copy_from_linear_data(skb,
163                                                       skbn->data, pkt_len);
164                                         /* swap */
165                                         skbt = skb;
166                                         skb = skbn;
167                                         skbn = skbt;
168                                 }
169                         } else {
170                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
171 
172                                 if (skbn)
173                                         skb_align(skbn, ENET_RX_ALIGN);
174                         }
175 
176                         if (skbn != NULL) {
177                                 skb_put(skb, pkt_len);  /* Make room */
178                                 skb->protocol = eth_type_trans(skb, dev);
179                                 received++;
180                                 netif_receive_skb(skb);
181                         } else {
182                                 fep->stats.rx_dropped++;
183                                 skbn = skb;
184                         }
185                 }
186 
187                 fep->rx_skbuff[curidx] = skbn;
188                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
189                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
190                              DMA_FROM_DEVICE));
191                 CBDW_DATLEN(bdp, 0);
192                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
193 
194                 /*
195                  * Update BD pointer to next entry.
196                  */
197                 if ((sc & BD_ENET_RX_WRAP) == 0)
198                         bdp++;
199                 else
200                         bdp = fep->rx_bd_base;
201 
202                 (*fep->ops->rx_bd_done)(dev);
203 
204                 if (received >= budget)
205                         break;
206         }
207 
208         fep->cur_rx = bdp;
209 
210         if (received < budget) {
211                 /* done */
212                 napi_complete(napi);
213                 (*fep->ops->napi_enable_rx)(dev);
214         }
215         return received;
216 }
217 
218 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
219 {
220         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
221                                                    napi_tx);
222         struct net_device *dev = fep->ndev;
223         cbd_t __iomem *bdp;
224         struct sk_buff *skb;
225         int dirtyidx, do_wake, do_restart;
226         u16 sc;
227         int has_tx_work = 0;
228 
229         spin_lock(&fep->tx_lock);
230         bdp = fep->dirty_tx;
231 
232         /* clear TX status bits for napi*/
233         (*fep->ops->napi_clear_tx_event)(dev);
234 
235         do_wake = do_restart = 0;
236         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
237                 dirtyidx = bdp - fep->tx_bd_base;
238 
239                 if (fep->tx_free == fep->tx_ring)
240                         break;
241 
242                 skb = fep->tx_skbuff[dirtyidx];
243 
244                 /*
245                  * Check for errors.
246                  */
247                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
248                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
249 
250                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
251                                 fep->stats.tx_heartbeat_errors++;
252                         if (sc & BD_ENET_TX_LC) /* Late collision */
253                                 fep->stats.tx_window_errors++;
254                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
255                                 fep->stats.tx_aborted_errors++;
256                         if (sc & BD_ENET_TX_UN) /* Underrun */
257                                 fep->stats.tx_fifo_errors++;
258                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
259                                 fep->stats.tx_carrier_errors++;
260 
261                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
262                                 fep->stats.tx_errors++;
263                                 do_restart = 1;
264                         }
265                 } else
266                         fep->stats.tx_packets++;
267 
268                 if (sc & BD_ENET_TX_READY) {
269                         dev_warn(fep->dev,
270                                  "HEY! Enet xmit interrupt and TX_READY.\n");
271                 }
272 
273                 /*
274                  * Deferred means some collisions occurred during transmit,
275                  * but we eventually sent the packet OK.
276                  */
277                 if (sc & BD_ENET_TX_DEF)
278                         fep->stats.collisions++;
279 
280                 /* unmap */
281                 if (fep->mapped_as_page[dirtyidx])
282                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
283                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284                 else
285                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
286                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
287 
288                 /*
289                  * Free the sk buffer associated with this last transmit.
290                  */
291                 if (skb) {
292                         dev_kfree_skb(skb);
293                         fep->tx_skbuff[dirtyidx] = NULL;
294                 }
295 
296                 /*
297                  * Update pointer to next buffer descriptor to be transmitted.
298                  */
299                 if ((sc & BD_ENET_TX_WRAP) == 0)
300                         bdp++;
301                 else
302                         bdp = fep->tx_bd_base;
303 
304                 /*
305                  * Since we have freed up a buffer, the ring is no longer
306                  * full.
307                  */
308                 if (++fep->tx_free >= MAX_SKB_FRAGS)
309                         do_wake = 1;
310                 has_tx_work = 1;
311         }
312 
313         fep->dirty_tx = bdp;
314 
315         if (do_restart)
316                 (*fep->ops->tx_restart)(dev);
317 
318         if (!has_tx_work) {
319                 napi_complete(napi);
320                 (*fep->ops->napi_enable_tx)(dev);
321         }
322 
323         spin_unlock(&fep->tx_lock);
324 
325         if (do_wake)
326                 netif_wake_queue(dev);
327 
328         if (has_tx_work)
329                 return budget;
330         return 0;
331 }
332 
333 /*
334  * The interrupt handler.
335  * This is called from the MPC core interrupt.
336  */
337 static irqreturn_t
338 fs_enet_interrupt(int irq, void *dev_id)
339 {
340         struct net_device *dev = dev_id;
341         struct fs_enet_private *fep;
342         const struct fs_platform_info *fpi;
343         u32 int_events;
344         u32 int_clr_events;
345         int nr, napi_ok;
346         int handled;
347 
348         fep = netdev_priv(dev);
349         fpi = fep->fpi;
350 
351         nr = 0;
352         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
353                 nr++;
354 
355                 int_clr_events = int_events;
356                 int_clr_events &= ~fep->ev_napi_rx;
357 
358                 (*fep->ops->clear_int_events)(dev, int_clr_events);
359 
360                 if (int_events & fep->ev_err)
361                         (*fep->ops->ev_error)(dev, int_events);
362 
363                 if (int_events & fep->ev_rx) {
364                         napi_ok = napi_schedule_prep(&fep->napi);
365 
366                         (*fep->ops->napi_disable_rx)(dev);
367                         (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
368 
369                         /* NOTE: it is possible for FCCs in NAPI mode    */
370                         /* to submit a spurious interrupt while in poll  */
371                         if (napi_ok)
372                                 __napi_schedule(&fep->napi);
373                 }
374 
375                 if (int_events & fep->ev_tx) {
376                         napi_ok = napi_schedule_prep(&fep->napi_tx);
377 
378                         (*fep->ops->napi_disable_tx)(dev);
379                         (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
380 
381                         /* NOTE: it is possible for FCCs in NAPI mode    */
382                         /* to submit a spurious interrupt while in poll  */
383                         if (napi_ok)
384                                 __napi_schedule(&fep->napi_tx);
385                 }
386         }
387 
388         handled = nr > 0;
389         return IRQ_RETVAL(handled);
390 }
391 
392 void fs_init_bds(struct net_device *dev)
393 {
394         struct fs_enet_private *fep = netdev_priv(dev);
395         cbd_t __iomem *bdp;
396         struct sk_buff *skb;
397         int i;
398 
399         fs_cleanup_bds(dev);
400 
401         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
402         fep->tx_free = fep->tx_ring;
403         fep->cur_rx = fep->rx_bd_base;
404 
405         /*
406          * Initialize the receive buffer descriptors.
407          */
408         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
409                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
410                 if (skb == NULL)
411                         break;
412 
413                 skb_align(skb, ENET_RX_ALIGN);
414                 fep->rx_skbuff[i] = skb;
415                 CBDW_BUFADDR(bdp,
416                         dma_map_single(fep->dev, skb->data,
417                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
418                                 DMA_FROM_DEVICE));
419                 CBDW_DATLEN(bdp, 0);    /* zero */
420                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
421                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
422         }
423         /*
424          * if we failed, fillup remainder
425          */
426         for (; i < fep->rx_ring; i++, bdp++) {
427                 fep->rx_skbuff[i] = NULL;
428                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
429         }
430 
431         /*
432          * ...and the same for transmit.
433          */
434         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
435                 fep->tx_skbuff[i] = NULL;
436                 CBDW_BUFADDR(bdp, 0);
437                 CBDW_DATLEN(bdp, 0);
438                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
439         }
440 }
441 
442 void fs_cleanup_bds(struct net_device *dev)
443 {
444         struct fs_enet_private *fep = netdev_priv(dev);
445         struct sk_buff *skb;
446         cbd_t __iomem *bdp;
447         int i;
448 
449         /*
450          * Reset SKB transmit buffers.
451          */
452         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
453                 if ((skb = fep->tx_skbuff[i]) == NULL)
454                         continue;
455 
456                 /* unmap */
457                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
458                                 skb->len, DMA_TO_DEVICE);
459 
460                 fep->tx_skbuff[i] = NULL;
461                 dev_kfree_skb(skb);
462         }
463 
464         /*
465          * Reset SKB receive buffers
466          */
467         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
468                 if ((skb = fep->rx_skbuff[i]) == NULL)
469                         continue;
470 
471                 /* unmap */
472                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
473                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
474                         DMA_FROM_DEVICE);
475 
476                 fep->rx_skbuff[i] = NULL;
477 
478                 dev_kfree_skb(skb);
479         }
480 }
481 
482 /**********************************************************************************/
483 
484 #ifdef CONFIG_FS_ENET_MPC5121_FEC
485 /*
486  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
487  */
488 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
489                                                struct sk_buff *skb)
490 {
491         struct sk_buff *new_skb;
492 
493         /* Alloc new skb */
494         new_skb = netdev_alloc_skb(dev, skb->len + 4);
495         if (!new_skb)
496                 return NULL;
497 
498         /* Make sure new skb is properly aligned */
499         skb_align(new_skb, 4);
500 
501         /* Copy data to new skb ... */
502         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503         skb_put(new_skb, skb->len);
504 
505         /* ... and free an old one */
506         dev_kfree_skb_any(skb);
507 
508         return new_skb;
509 }
510 #endif
511 
512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513 {
514         struct fs_enet_private *fep = netdev_priv(dev);
515         cbd_t __iomem *bdp;
516         int curidx;
517         u16 sc;
518         int nr_frags = skb_shinfo(skb)->nr_frags;
519         skb_frag_t *frag;
520         int len;
521 
522 #ifdef CONFIG_FS_ENET_MPC5121_FEC
523         if (((unsigned long)skb->data) & 0x3) {
524                 skb = tx_skb_align_workaround(dev, skb);
525                 if (!skb) {
526                         /*
527                          * We have lost packet due to memory allocation error
528                          * in tx_skb_align_workaround(). Hopefully original
529                          * skb is still valid, so try transmit it later.
530                          */
531                         return NETDEV_TX_BUSY;
532                 }
533         }
534 #endif
535         spin_lock(&fep->tx_lock);
536 
537         /*
538          * Fill in a Tx ring entry
539          */
540         bdp = fep->cur_tx;
541 
542         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
543                 netif_stop_queue(dev);
544                 spin_unlock(&fep->tx_lock);
545 
546                 /*
547                  * Ooops.  All transmit buffers are full.  Bail out.
548                  * This should not happen, since the tx queue should be stopped.
549                  */
550                 dev_warn(fep->dev, "tx queue full!.\n");
551                 return NETDEV_TX_BUSY;
552         }
553 
554         curidx = bdp - fep->tx_bd_base;
555 
556         len = skb->len;
557         fep->stats.tx_bytes += len;
558         if (nr_frags)
559                 len -= skb->data_len;
560         fep->tx_free -= nr_frags + 1;
561         /*
562          * Push the data cache so the CPM does not get stale memory data.
563          */
564         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
565                                 skb->data, len, DMA_TO_DEVICE));
566         CBDW_DATLEN(bdp, len);
567 
568         fep->mapped_as_page[curidx] = 0;
569         frag = skb_shinfo(skb)->frags;
570         while (nr_frags) {
571                 CBDC_SC(bdp,
572                         BD_ENET_TX_STATS | BD_ENET_TX_LAST | BD_ENET_TX_TC);
573                 CBDS_SC(bdp, BD_ENET_TX_READY);
574 
575                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
576                         bdp++, curidx++;
577                 else
578                         bdp = fep->tx_bd_base, curidx = 0;
579 
580                 len = skb_frag_size(frag);
581                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
582                                                    DMA_TO_DEVICE));
583                 CBDW_DATLEN(bdp, len);
584 
585                 fep->tx_skbuff[curidx] = NULL;
586                 fep->mapped_as_page[curidx] = 1;
587 
588                 frag++;
589                 nr_frags--;
590         }
591 
592         /* Trigger transmission start */
593         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
594              BD_ENET_TX_LAST | BD_ENET_TX_TC;
595 
596         /* note that while FEC does not have this bit
597          * it marks it as available for software use
598          * yay for hw reuse :) */
599         if (skb->len <= 60)
600                 sc |= BD_ENET_TX_PAD;
601         CBDC_SC(bdp, BD_ENET_TX_STATS);
602         CBDS_SC(bdp, sc);
603 
604         /* Save skb pointer. */
605         fep->tx_skbuff[curidx] = skb;
606 
607         /* If this was the last BD in the ring, start at the beginning again. */
608         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
609                 bdp++;
610         else
611                 bdp = fep->tx_bd_base;
612         fep->cur_tx = bdp;
613 
614         if (fep->tx_free < MAX_SKB_FRAGS)
615                 netif_stop_queue(dev);
616 
617         skb_tx_timestamp(skb);
618 
619         (*fep->ops->tx_kickstart)(dev);
620 
621         spin_unlock(&fep->tx_lock);
622 
623         return NETDEV_TX_OK;
624 }
625 
626 static void fs_timeout(struct net_device *dev)
627 {
628         struct fs_enet_private *fep = netdev_priv(dev);
629         unsigned long flags;
630         int wake = 0;
631 
632         fep->stats.tx_errors++;
633 
634         spin_lock_irqsave(&fep->lock, flags);
635 
636         if (dev->flags & IFF_UP) {
637                 phy_stop(fep->phydev);
638                 (*fep->ops->stop)(dev);
639                 (*fep->ops->restart)(dev);
640                 phy_start(fep->phydev);
641         }
642 
643         phy_start(fep->phydev);
644         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
645         spin_unlock_irqrestore(&fep->lock, flags);
646 
647         if (wake)
648                 netif_wake_queue(dev);
649 }
650 
651 /*-----------------------------------------------------------------------------
652  *  generic link-change handler - should be sufficient for most cases
653  *-----------------------------------------------------------------------------*/
654 static void generic_adjust_link(struct  net_device *dev)
655 {
656         struct fs_enet_private *fep = netdev_priv(dev);
657         struct phy_device *phydev = fep->phydev;
658         int new_state = 0;
659 
660         if (phydev->link) {
661                 /* adjust to duplex mode */
662                 if (phydev->duplex != fep->oldduplex) {
663                         new_state = 1;
664                         fep->oldduplex = phydev->duplex;
665                 }
666 
667                 if (phydev->speed != fep->oldspeed) {
668                         new_state = 1;
669                         fep->oldspeed = phydev->speed;
670                 }
671 
672                 if (!fep->oldlink) {
673                         new_state = 1;
674                         fep->oldlink = 1;
675                 }
676 
677                 if (new_state)
678                         fep->ops->restart(dev);
679         } else if (fep->oldlink) {
680                 new_state = 1;
681                 fep->oldlink = 0;
682                 fep->oldspeed = 0;
683                 fep->oldduplex = -1;
684         }
685 
686         if (new_state && netif_msg_link(fep))
687                 phy_print_status(phydev);
688 }
689 
690 
691 static void fs_adjust_link(struct net_device *dev)
692 {
693         struct fs_enet_private *fep = netdev_priv(dev);
694         unsigned long flags;
695 
696         spin_lock_irqsave(&fep->lock, flags);
697 
698         if(fep->ops->adjust_link)
699                 fep->ops->adjust_link(dev);
700         else
701                 generic_adjust_link(dev);
702 
703         spin_unlock_irqrestore(&fep->lock, flags);
704 }
705 
706 static int fs_init_phy(struct net_device *dev)
707 {
708         struct fs_enet_private *fep = netdev_priv(dev);
709         struct phy_device *phydev;
710         phy_interface_t iface;
711 
712         fep->oldlink = 0;
713         fep->oldspeed = 0;
714         fep->oldduplex = -1;
715 
716         iface = fep->fpi->use_rmii ?
717                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718 
719         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
720                                 iface);
721         if (!phydev) {
722                 dev_err(&dev->dev, "Could not attach to PHY\n");
723                 return -ENODEV;
724         }
725 
726         fep->phydev = phydev;
727 
728         return 0;
729 }
730 
731 static int fs_enet_open(struct net_device *dev)
732 {
733         struct fs_enet_private *fep = netdev_priv(dev);
734         int r;
735         int err;
736 
737         /* to initialize the fep->cur_rx,... */
738         /* not doing this, will cause a crash in fs_enet_rx_napi */
739         fs_init_bds(fep->ndev);
740 
741         napi_enable(&fep->napi);
742         napi_enable(&fep->napi_tx);
743 
744         /* Install our interrupt handler. */
745         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
746                         "fs_enet-mac", dev);
747         if (r != 0) {
748                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
749                 napi_disable(&fep->napi);
750                 napi_disable(&fep->napi_tx);
751                 return -EINVAL;
752         }
753 
754         err = fs_init_phy(dev);
755         if (err) {
756                 free_irq(fep->interrupt, dev);
757                 napi_disable(&fep->napi);
758                 napi_disable(&fep->napi_tx);
759                 return err;
760         }
761         phy_start(fep->phydev);
762 
763         netif_start_queue(dev);
764 
765         return 0;
766 }
767 
768 static int fs_enet_close(struct net_device *dev)
769 {
770         struct fs_enet_private *fep = netdev_priv(dev);
771         unsigned long flags;
772 
773         netif_stop_queue(dev);
774         netif_carrier_off(dev);
775         napi_disable(&fep->napi);
776         napi_disable(&fep->napi_tx);
777         phy_stop(fep->phydev);
778 
779         spin_lock_irqsave(&fep->lock, flags);
780         spin_lock(&fep->tx_lock);
781         (*fep->ops->stop)(dev);
782         spin_unlock(&fep->tx_lock);
783         spin_unlock_irqrestore(&fep->lock, flags);
784 
785         /* release any irqs */
786         phy_disconnect(fep->phydev);
787         fep->phydev = NULL;
788         free_irq(fep->interrupt, dev);
789 
790         return 0;
791 }
792 
793 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
794 {
795         struct fs_enet_private *fep = netdev_priv(dev);
796         return &fep->stats;
797 }
798 
799 /*************************************************************************/
800 
801 static void fs_get_drvinfo(struct net_device *dev,
802                             struct ethtool_drvinfo *info)
803 {
804         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
805         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
806 }
807 
808 static int fs_get_regs_len(struct net_device *dev)
809 {
810         struct fs_enet_private *fep = netdev_priv(dev);
811 
812         return (*fep->ops->get_regs_len)(dev);
813 }
814 
815 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
816                          void *p)
817 {
818         struct fs_enet_private *fep = netdev_priv(dev);
819         unsigned long flags;
820         int r, len;
821 
822         len = regs->len;
823 
824         spin_lock_irqsave(&fep->lock, flags);
825         r = (*fep->ops->get_regs)(dev, p, &len);
826         spin_unlock_irqrestore(&fep->lock, flags);
827 
828         if (r == 0)
829                 regs->version = 0;
830 }
831 
832 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
833 {
834         struct fs_enet_private *fep = netdev_priv(dev);
835 
836         if (!fep->phydev)
837                 return -ENODEV;
838 
839         return phy_ethtool_gset(fep->phydev, cmd);
840 }
841 
842 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
843 {
844         struct fs_enet_private *fep = netdev_priv(dev);
845 
846         if (!fep->phydev)
847                 return -ENODEV;
848 
849         return phy_ethtool_sset(fep->phydev, cmd);
850 }
851 
852 static int fs_nway_reset(struct net_device *dev)
853 {
854         return 0;
855 }
856 
857 static u32 fs_get_msglevel(struct net_device *dev)
858 {
859         struct fs_enet_private *fep = netdev_priv(dev);
860         return fep->msg_enable;
861 }
862 
863 static void fs_set_msglevel(struct net_device *dev, u32 value)
864 {
865         struct fs_enet_private *fep = netdev_priv(dev);
866         fep->msg_enable = value;
867 }
868 
869 static const struct ethtool_ops fs_ethtool_ops = {
870         .get_drvinfo = fs_get_drvinfo,
871         .get_regs_len = fs_get_regs_len,
872         .get_settings = fs_get_settings,
873         .set_settings = fs_set_settings,
874         .nway_reset = fs_nway_reset,
875         .get_link = ethtool_op_get_link,
876         .get_msglevel = fs_get_msglevel,
877         .set_msglevel = fs_set_msglevel,
878         .get_regs = fs_get_regs,
879         .get_ts_info = ethtool_op_get_ts_info,
880 };
881 
882 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
883 {
884         struct fs_enet_private *fep = netdev_priv(dev);
885 
886         if (!netif_running(dev))
887                 return -EINVAL;
888 
889         return phy_mii_ioctl(fep->phydev, rq, cmd);
890 }
891 
892 extern int fs_mii_connect(struct net_device *dev);
893 extern void fs_mii_disconnect(struct net_device *dev);
894 
895 /**************************************************************************************/
896 
897 #ifdef CONFIG_FS_ENET_HAS_FEC
898 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
899 #else
900 #define IS_FEC(match) 0
901 #endif
902 
903 static const struct net_device_ops fs_enet_netdev_ops = {
904         .ndo_open               = fs_enet_open,
905         .ndo_stop               = fs_enet_close,
906         .ndo_get_stats          = fs_enet_get_stats,
907         .ndo_start_xmit         = fs_enet_start_xmit,
908         .ndo_tx_timeout         = fs_timeout,
909         .ndo_set_rx_mode        = fs_set_multicast_list,
910         .ndo_do_ioctl           = fs_ioctl,
911         .ndo_validate_addr      = eth_validate_addr,
912         .ndo_set_mac_address    = eth_mac_addr,
913         .ndo_change_mtu         = eth_change_mtu,
914 #ifdef CONFIG_NET_POLL_CONTROLLER
915         .ndo_poll_controller    = fs_enet_netpoll,
916 #endif
917 };
918 
919 static const struct of_device_id fs_enet_match[];
920 static int fs_enet_probe(struct platform_device *ofdev)
921 {
922         const struct of_device_id *match;
923         struct net_device *ndev;
924         struct fs_enet_private *fep;
925         struct fs_platform_info *fpi;
926         const u32 *data;
927         struct clk *clk;
928         int err;
929         const u8 *mac_addr;
930         const char *phy_connection_type;
931         int privsize, len, ret = -ENODEV;
932 
933         match = of_match_device(fs_enet_match, &ofdev->dev);
934         if (!match)
935                 return -EINVAL;
936 
937         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
938         if (!fpi)
939                 return -ENOMEM;
940 
941         if (!IS_FEC(match)) {
942                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
943                 if (!data || len != 4)
944                         goto out_free_fpi;
945 
946                 fpi->cp_command = *data;
947         }
948 
949         fpi->rx_ring = 32;
950         fpi->tx_ring = 64;
951         fpi->rx_copybreak = 240;
952         fpi->napi_weight = 17;
953         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
954         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
955                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
956                 if (err)
957                         goto out_free_fpi;
958 
959                 /* In the case of a fixed PHY, the DT node associated
960                  * to the PHY is the Ethernet MAC DT node.
961                  */
962                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
963         }
964 
965         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
966                 phy_connection_type = of_get_property(ofdev->dev.of_node,
967                                                 "phy-connection-type", NULL);
968                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
969                         fpi->use_rmii = 1;
970         }
971 
972         /* make clock lookup non-fatal (the driver is shared among platforms),
973          * but require enable to succeed when a clock was specified/found,
974          * keep a reference to the clock upon successful acquisition
975          */
976         clk = devm_clk_get(&ofdev->dev, "per");
977         if (!IS_ERR(clk)) {
978                 err = clk_prepare_enable(clk);
979                 if (err) {
980                         ret = err;
981                         goto out_free_fpi;
982                 }
983                 fpi->clk_per = clk;
984         }
985 
986         privsize = sizeof(*fep) +
987                    sizeof(struct sk_buff **) *
988                      (fpi->rx_ring + fpi->tx_ring) +
989                    sizeof(char) * fpi->tx_ring;
990 
991         ndev = alloc_etherdev(privsize);
992         if (!ndev) {
993                 ret = -ENOMEM;
994                 goto out_put;
995         }
996 
997         SET_NETDEV_DEV(ndev, &ofdev->dev);
998         platform_set_drvdata(ofdev, ndev);
999 
1000         fep = netdev_priv(ndev);
1001         fep->dev = &ofdev->dev;
1002         fep->ndev = ndev;
1003         fep->fpi = fpi;
1004         fep->ops = match->data;
1005 
1006         ret = fep->ops->setup_data(ndev);
1007         if (ret)
1008                 goto out_free_dev;
1009 
1010         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1011         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1012         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1013                                        fpi->tx_ring);
1014 
1015         spin_lock_init(&fep->lock);
1016         spin_lock_init(&fep->tx_lock);
1017 
1018         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1019         if (mac_addr)
1020                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1021 
1022         ret = fep->ops->allocate_bd(ndev);
1023         if (ret)
1024                 goto out_cleanup_data;
1025 
1026         fep->rx_bd_base = fep->ring_base;
1027         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1028 
1029         fep->tx_ring = fpi->tx_ring;
1030         fep->rx_ring = fpi->rx_ring;
1031 
1032         ndev->netdev_ops = &fs_enet_netdev_ops;
1033         ndev->watchdog_timeo = 2 * HZ;
1034         netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1035         netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1036 
1037         ndev->ethtool_ops = &fs_ethtool_ops;
1038 
1039         init_timer(&fep->phy_timer_list);
1040 
1041         netif_carrier_off(ndev);
1042 
1043         ndev->features |= NETIF_F_SG;
1044 
1045         ret = register_netdev(ndev);
1046         if (ret)
1047                 goto out_free_bd;
1048 
1049         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1050 
1051         return 0;
1052 
1053 out_free_bd:
1054         fep->ops->free_bd(ndev);
1055 out_cleanup_data:
1056         fep->ops->cleanup_data(ndev);
1057 out_free_dev:
1058         free_netdev(ndev);
1059 out_put:
1060         of_node_put(fpi->phy_node);
1061         if (fpi->clk_per)
1062                 clk_disable_unprepare(fpi->clk_per);
1063 out_free_fpi:
1064         kfree(fpi);
1065         return ret;
1066 }
1067 
1068 static int fs_enet_remove(struct platform_device *ofdev)
1069 {
1070         struct net_device *ndev = platform_get_drvdata(ofdev);
1071         struct fs_enet_private *fep = netdev_priv(ndev);
1072 
1073         unregister_netdev(ndev);
1074 
1075         fep->ops->free_bd(ndev);
1076         fep->ops->cleanup_data(ndev);
1077         dev_set_drvdata(fep->dev, NULL);
1078         of_node_put(fep->fpi->phy_node);
1079         if (fep->fpi->clk_per)
1080                 clk_disable_unprepare(fep->fpi->clk_per);
1081         free_netdev(ndev);
1082         return 0;
1083 }
1084 
1085 static const struct of_device_id fs_enet_match[] = {
1086 #ifdef CONFIG_FS_ENET_HAS_SCC
1087         {
1088                 .compatible = "fsl,cpm1-scc-enet",
1089                 .data = (void *)&fs_scc_ops,
1090         },
1091         {
1092                 .compatible = "fsl,cpm2-scc-enet",
1093                 .data = (void *)&fs_scc_ops,
1094         },
1095 #endif
1096 #ifdef CONFIG_FS_ENET_HAS_FCC
1097         {
1098                 .compatible = "fsl,cpm2-fcc-enet",
1099                 .data = (void *)&fs_fcc_ops,
1100         },
1101 #endif
1102 #ifdef CONFIG_FS_ENET_HAS_FEC
1103 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1104         {
1105                 .compatible = "fsl,mpc5121-fec",
1106                 .data = (void *)&fs_fec_ops,
1107         },
1108         {
1109                 .compatible = "fsl,mpc5125-fec",
1110                 .data = (void *)&fs_fec_ops,
1111         },
1112 #else
1113         {
1114                 .compatible = "fsl,pq1-fec-enet",
1115                 .data = (void *)&fs_fec_ops,
1116         },
1117 #endif
1118 #endif
1119         {}
1120 };
1121 MODULE_DEVICE_TABLE(of, fs_enet_match);
1122 
1123 static struct platform_driver fs_enet_driver = {
1124         .driver = {
1125                 .name = "fs_enet",
1126                 .of_match_table = fs_enet_match,
1127         },
1128         .probe = fs_enet_probe,
1129         .remove = fs_enet_remove,
1130 };
1131 
1132 #ifdef CONFIG_NET_POLL_CONTROLLER
1133 static void fs_enet_netpoll(struct net_device *dev)
1134 {
1135        disable_irq(dev->irq);
1136        fs_enet_interrupt(dev->irq, dev);
1137        enable_irq(dev->irq);
1138 }
1139 #endif
1140 
1141 module_platform_driver(fs_enet_driver);
1142 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us