Version:  2.0.40 2.2.26 2.4.37 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2

Linux/drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c

  1 /*
  2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3  *
  4  * Copyright (c) 2003 Intracom S.A.
  5  *  by Pantelis Antoniou <panto@intracom.gr>
  6  *
  7  * 2005 (c) MontaVista Software, Inc.
  8  * Vitaly Bordug <vbordug@ru.mvista.com>
  9  *
 10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
 11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
 12  *
 13  * This file is licensed under the terms of the GNU General Public License
 14  * version 2. This program is licensed "as is" without any warranty of any
 15  * kind, whether express or implied.
 16  */
 17 
 18 #include <linux/module.h>
 19 #include <linux/kernel.h>
 20 #include <linux/types.h>
 21 #include <linux/string.h>
 22 #include <linux/ptrace.h>
 23 #include <linux/errno.h>
 24 #include <linux/ioport.h>
 25 #include <linux/slab.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/delay.h>
 28 #include <linux/netdevice.h>
 29 #include <linux/etherdevice.h>
 30 #include <linux/skbuff.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/mii.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/bitops.h>
 35 #include <linux/fs.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/phy.h>
 38 #include <linux/of.h>
 39 #include <linux/of_mdio.h>
 40 #include <linux/of_platform.h>
 41 #include <linux/of_gpio.h>
 42 #include <linux/of_net.h>
 43 
 44 #include <linux/vmalloc.h>
 45 #include <asm/pgtable.h>
 46 #include <asm/irq.h>
 47 #include <asm/uaccess.h>
 48 
 49 #include "fs_enet.h"
 50 
 51 /*************************************************/
 52 
 53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
 54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
 55 MODULE_LICENSE("GPL");
 56 MODULE_VERSION(DRV_MODULE_VERSION);
 57 
 58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
 59 module_param(fs_enet_debug, int, 0);
 60 MODULE_PARM_DESC(fs_enet_debug,
 61                  "Freescale bitmapped debugging message enable value");
 62 
 63 #ifdef CONFIG_NET_POLL_CONTROLLER
 64 static void fs_enet_netpoll(struct net_device *dev);
 65 #endif
 66 
 67 static void fs_set_multicast_list(struct net_device *dev)
 68 {
 69         struct fs_enet_private *fep = netdev_priv(dev);
 70 
 71         (*fep->ops->set_multicast_list)(dev);
 72 }
 73 
 74 static void skb_align(struct sk_buff *skb, int align)
 75 {
 76         int off = ((unsigned long)skb->data) & (align - 1);
 77 
 78         if (off)
 79                 skb_reserve(skb, align - off);
 80 }
 81 
 82 /* NAPI receive function */
 83 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
 84 {
 85         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
 86         struct net_device *dev = fep->ndev;
 87         const struct fs_platform_info *fpi = fep->fpi;
 88         cbd_t __iomem *bdp;
 89         struct sk_buff *skb, *skbn;
 90         int received = 0;
 91         u16 pkt_len, sc;
 92         int curidx;
 93 
 94         if (budget <= 0)
 95                 return received;
 96 
 97         /*
 98          * First, grab all of the stats for the incoming packet.
 99          * These get messed up if we get called due to a busy condition.
100          */
101         bdp = fep->cur_rx;
102 
103         /* clear RX status bits for napi*/
104         (*fep->ops->napi_clear_rx_event)(dev);
105 
106         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
107                 curidx = bdp - fep->rx_bd_base;
108 
109                 /*
110                  * Since we have allocated space to hold a complete frame,
111                  * the last indicator should be set.
112                  */
113                 if ((sc & BD_ENET_RX_LAST) == 0)
114                         dev_warn(fep->dev, "rcv is not +last\n");
115 
116                 /*
117                  * Check for errors.
118                  */
119                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
120                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
121                         fep->stats.rx_errors++;
122                         /* Frame too long or too short. */
123                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
124                                 fep->stats.rx_length_errors++;
125                         /* Frame alignment */
126                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
127                                 fep->stats.rx_frame_errors++;
128                         /* CRC Error */
129                         if (sc & BD_ENET_RX_CR)
130                                 fep->stats.rx_crc_errors++;
131                         /* FIFO overrun */
132                         if (sc & BD_ENET_RX_OV)
133                                 fep->stats.rx_crc_errors++;
134 
135                         skb = fep->rx_skbuff[curidx];
136 
137                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
138                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
139                                 DMA_FROM_DEVICE);
140 
141                         skbn = skb;
142 
143                 } else {
144                         skb = fep->rx_skbuff[curidx];
145 
146                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
147                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
148                                 DMA_FROM_DEVICE);
149 
150                         /*
151                          * Process the incoming frame.
152                          */
153                         fep->stats.rx_packets++;
154                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
155                         fep->stats.rx_bytes += pkt_len + 4;
156 
157                         if (pkt_len <= fpi->rx_copybreak) {
158                                 /* +2 to make IP header L1 cache aligned */
159                                 skbn = netdev_alloc_skb(dev, pkt_len + 2);
160                                 if (skbn != NULL) {
161                                         skb_reserve(skbn, 2);   /* align IP header */
162                                         skb_copy_from_linear_data(skb,
163                                                       skbn->data, pkt_len);
164                                         swap(skb, skbn);
165                                 }
166                         } else {
167                                 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
168 
169                                 if (skbn)
170                                         skb_align(skbn, ENET_RX_ALIGN);
171                         }
172 
173                         if (skbn != NULL) {
174                                 skb_put(skb, pkt_len);  /* Make room */
175                                 skb->protocol = eth_type_trans(skb, dev);
176                                 received++;
177                                 netif_receive_skb(skb);
178                         } else {
179                                 fep->stats.rx_dropped++;
180                                 skbn = skb;
181                         }
182                 }
183 
184                 fep->rx_skbuff[curidx] = skbn;
185                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
186                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
187                              DMA_FROM_DEVICE));
188                 CBDW_DATLEN(bdp, 0);
189                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
190 
191                 /*
192                  * Update BD pointer to next entry.
193                  */
194                 if ((sc & BD_ENET_RX_WRAP) == 0)
195                         bdp++;
196                 else
197                         bdp = fep->rx_bd_base;
198 
199                 (*fep->ops->rx_bd_done)(dev);
200 
201                 if (received >= budget)
202                         break;
203         }
204 
205         fep->cur_rx = bdp;
206 
207         if (received < budget) {
208                 /* done */
209                 napi_complete(napi);
210                 (*fep->ops->napi_enable_rx)(dev);
211         }
212         return received;
213 }
214 
215 static int fs_enet_tx_napi(struct napi_struct *napi, int budget)
216 {
217         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private,
218                                                    napi_tx);
219         struct net_device *dev = fep->ndev;
220         cbd_t __iomem *bdp;
221         struct sk_buff *skb;
222         int dirtyidx, do_wake, do_restart;
223         u16 sc;
224         int has_tx_work = 0;
225 
226         spin_lock(&fep->tx_lock);
227         bdp = fep->dirty_tx;
228 
229         /* clear TX status bits for napi*/
230         (*fep->ops->napi_clear_tx_event)(dev);
231 
232         do_wake = do_restart = 0;
233         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
234                 dirtyidx = bdp - fep->tx_bd_base;
235 
236                 if (fep->tx_free == fep->tx_ring)
237                         break;
238 
239                 skb = fep->tx_skbuff[dirtyidx];
240 
241                 /*
242                  * Check for errors.
243                  */
244                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
245                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
246 
247                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
248                                 fep->stats.tx_heartbeat_errors++;
249                         if (sc & BD_ENET_TX_LC) /* Late collision */
250                                 fep->stats.tx_window_errors++;
251                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
252                                 fep->stats.tx_aborted_errors++;
253                         if (sc & BD_ENET_TX_UN) /* Underrun */
254                                 fep->stats.tx_fifo_errors++;
255                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
256                                 fep->stats.tx_carrier_errors++;
257 
258                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
259                                 fep->stats.tx_errors++;
260                                 do_restart = 1;
261                         }
262                 } else
263                         fep->stats.tx_packets++;
264 
265                 if (sc & BD_ENET_TX_READY) {
266                         dev_warn(fep->dev,
267                                  "HEY! Enet xmit interrupt and TX_READY.\n");
268                 }
269 
270                 /*
271                  * Deferred means some collisions occurred during transmit,
272                  * but we eventually sent the packet OK.
273                  */
274                 if (sc & BD_ENET_TX_DEF)
275                         fep->stats.collisions++;
276 
277                 /* unmap */
278                 if (fep->mapped_as_page[dirtyidx])
279                         dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
280                                        CBDR_DATLEN(bdp), DMA_TO_DEVICE);
281                 else
282                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
283                                          CBDR_DATLEN(bdp), DMA_TO_DEVICE);
284 
285                 /*
286                  * Free the sk buffer associated with this last transmit.
287                  */
288                 if (skb) {
289                         dev_kfree_skb(skb);
290                         fep->tx_skbuff[dirtyidx] = NULL;
291                 }
292 
293                 /*
294                  * Update pointer to next buffer descriptor to be transmitted.
295                  */
296                 if ((sc & BD_ENET_TX_WRAP) == 0)
297                         bdp++;
298                 else
299                         bdp = fep->tx_bd_base;
300 
301                 /*
302                  * Since we have freed up a buffer, the ring is no longer
303                  * full.
304                  */
305                 if (++fep->tx_free >= MAX_SKB_FRAGS)
306                         do_wake = 1;
307                 has_tx_work = 1;
308         }
309 
310         fep->dirty_tx = bdp;
311 
312         if (do_restart)
313                 (*fep->ops->tx_restart)(dev);
314 
315         if (!has_tx_work) {
316                 napi_complete(napi);
317                 (*fep->ops->napi_enable_tx)(dev);
318         }
319 
320         spin_unlock(&fep->tx_lock);
321 
322         if (do_wake)
323                 netif_wake_queue(dev);
324 
325         if (has_tx_work)
326                 return budget;
327         return 0;
328 }
329 
330 /*
331  * The interrupt handler.
332  * This is called from the MPC core interrupt.
333  */
334 static irqreturn_t
335 fs_enet_interrupt(int irq, void *dev_id)
336 {
337         struct net_device *dev = dev_id;
338         struct fs_enet_private *fep;
339         const struct fs_platform_info *fpi;
340         u32 int_events;
341         u32 int_clr_events;
342         int nr, napi_ok;
343         int handled;
344 
345         fep = netdev_priv(dev);
346         fpi = fep->fpi;
347 
348         nr = 0;
349         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
350                 nr++;
351 
352                 int_clr_events = int_events;
353                 int_clr_events &= ~fep->ev_napi_rx;
354 
355                 (*fep->ops->clear_int_events)(dev, int_clr_events);
356 
357                 if (int_events & fep->ev_err)
358                         (*fep->ops->ev_error)(dev, int_events);
359 
360                 if (int_events & fep->ev_rx) {
361                         napi_ok = napi_schedule_prep(&fep->napi);
362 
363                         (*fep->ops->napi_disable_rx)(dev);
364                         (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
365 
366                         /* NOTE: it is possible for FCCs in NAPI mode    */
367                         /* to submit a spurious interrupt while in poll  */
368                         if (napi_ok)
369                                 __napi_schedule(&fep->napi);
370                 }
371 
372                 if (int_events & fep->ev_tx) {
373                         napi_ok = napi_schedule_prep(&fep->napi_tx);
374 
375                         (*fep->ops->napi_disable_tx)(dev);
376                         (*fep->ops->clear_int_events)(dev, fep->ev_napi_tx);
377 
378                         /* NOTE: it is possible for FCCs in NAPI mode    */
379                         /* to submit a spurious interrupt while in poll  */
380                         if (napi_ok)
381                                 __napi_schedule(&fep->napi_tx);
382                 }
383         }
384 
385         handled = nr > 0;
386         return IRQ_RETVAL(handled);
387 }
388 
389 void fs_init_bds(struct net_device *dev)
390 {
391         struct fs_enet_private *fep = netdev_priv(dev);
392         cbd_t __iomem *bdp;
393         struct sk_buff *skb;
394         int i;
395 
396         fs_cleanup_bds(dev);
397 
398         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
399         fep->tx_free = fep->tx_ring;
400         fep->cur_rx = fep->rx_bd_base;
401 
402         /*
403          * Initialize the receive buffer descriptors.
404          */
405         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
406                 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
407                 if (skb == NULL)
408                         break;
409 
410                 skb_align(skb, ENET_RX_ALIGN);
411                 fep->rx_skbuff[i] = skb;
412                 CBDW_BUFADDR(bdp,
413                         dma_map_single(fep->dev, skb->data,
414                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
415                                 DMA_FROM_DEVICE));
416                 CBDW_DATLEN(bdp, 0);    /* zero */
417                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
418                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
419         }
420         /*
421          * if we failed, fillup remainder
422          */
423         for (; i < fep->rx_ring; i++, bdp++) {
424                 fep->rx_skbuff[i] = NULL;
425                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
426         }
427 
428         /*
429          * ...and the same for transmit.
430          */
431         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
432                 fep->tx_skbuff[i] = NULL;
433                 CBDW_BUFADDR(bdp, 0);
434                 CBDW_DATLEN(bdp, 0);
435                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
436         }
437 }
438 
439 void fs_cleanup_bds(struct net_device *dev)
440 {
441         struct fs_enet_private *fep = netdev_priv(dev);
442         struct sk_buff *skb;
443         cbd_t __iomem *bdp;
444         int i;
445 
446         /*
447          * Reset SKB transmit buffers.
448          */
449         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
450                 if ((skb = fep->tx_skbuff[i]) == NULL)
451                         continue;
452 
453                 /* unmap */
454                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
455                                 skb->len, DMA_TO_DEVICE);
456 
457                 fep->tx_skbuff[i] = NULL;
458                 dev_kfree_skb(skb);
459         }
460 
461         /*
462          * Reset SKB receive buffers
463          */
464         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
465                 if ((skb = fep->rx_skbuff[i]) == NULL)
466                         continue;
467 
468                 /* unmap */
469                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
470                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
471                         DMA_FROM_DEVICE);
472 
473                 fep->rx_skbuff[i] = NULL;
474 
475                 dev_kfree_skb(skb);
476         }
477 }
478 
479 /**********************************************************************************/
480 
481 #ifdef CONFIG_FS_ENET_MPC5121_FEC
482 /*
483  * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
484  */
485 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
486                                                struct sk_buff *skb)
487 {
488         struct sk_buff *new_skb;
489 
490         if (skb_linearize(skb))
491                 return NULL;
492 
493         /* Alloc new skb */
494         new_skb = netdev_alloc_skb(dev, skb->len + 4);
495         if (!new_skb)
496                 return NULL;
497 
498         /* Make sure new skb is properly aligned */
499         skb_align(new_skb, 4);
500 
501         /* Copy data to new skb ... */
502         skb_copy_from_linear_data(skb, new_skb->data, skb->len);
503         skb_put(new_skb, skb->len);
504 
505         /* ... and free an old one */
506         dev_kfree_skb_any(skb);
507 
508         return new_skb;
509 }
510 #endif
511 
512 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
513 {
514         struct fs_enet_private *fep = netdev_priv(dev);
515         cbd_t __iomem *bdp;
516         int curidx;
517         u16 sc;
518         int nr_frags;
519         skb_frag_t *frag;
520         int len;
521 #ifdef CONFIG_FS_ENET_MPC5121_FEC
522         int is_aligned = 1;
523         int i;
524 
525         if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
526                 is_aligned = 0;
527         } else {
528                 nr_frags = skb_shinfo(skb)->nr_frags;
529                 frag = skb_shinfo(skb)->frags;
530                 for (i = 0; i < nr_frags; i++, frag++) {
531                         if (!IS_ALIGNED(frag->page_offset, 4)) {
532                                 is_aligned = 0;
533                                 break;
534                         }
535                 }
536         }
537 
538         if (!is_aligned) {
539                 skb = tx_skb_align_workaround(dev, skb);
540                 if (!skb) {
541                         /*
542                          * We have lost packet due to memory allocation error
543                          * in tx_skb_align_workaround(). Hopefully original
544                          * skb is still valid, so try transmit it later.
545                          */
546                         return NETDEV_TX_BUSY;
547                 }
548         }
549 #endif
550 
551         spin_lock(&fep->tx_lock);
552 
553         /*
554          * Fill in a Tx ring entry
555          */
556         bdp = fep->cur_tx;
557 
558         nr_frags = skb_shinfo(skb)->nr_frags;
559         if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
560                 netif_stop_queue(dev);
561                 spin_unlock(&fep->tx_lock);
562 
563                 /*
564                  * Ooops.  All transmit buffers are full.  Bail out.
565                  * This should not happen, since the tx queue should be stopped.
566                  */
567                 dev_warn(fep->dev, "tx queue full!.\n");
568                 return NETDEV_TX_BUSY;
569         }
570 
571         curidx = bdp - fep->tx_bd_base;
572 
573         len = skb->len;
574         fep->stats.tx_bytes += len;
575         if (nr_frags)
576                 len -= skb->data_len;
577         fep->tx_free -= nr_frags + 1;
578         /*
579          * Push the data cache so the CPM does not get stale memory data.
580          */
581         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
582                                 skb->data, len, DMA_TO_DEVICE));
583         CBDW_DATLEN(bdp, len);
584 
585         fep->mapped_as_page[curidx] = 0;
586         frag = skb_shinfo(skb)->frags;
587         while (nr_frags) {
588                 CBDC_SC(bdp,
589                         BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
590                         BD_ENET_TX_TC);
591                 CBDS_SC(bdp, BD_ENET_TX_READY);
592 
593                 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
594                         bdp++, curidx++;
595                 else
596                         bdp = fep->tx_bd_base, curidx = 0;
597 
598                 len = skb_frag_size(frag);
599                 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
600                                                    DMA_TO_DEVICE));
601                 CBDW_DATLEN(bdp, len);
602 
603                 fep->tx_skbuff[curidx] = NULL;
604                 fep->mapped_as_page[curidx] = 1;
605 
606                 frag++;
607                 nr_frags--;
608         }
609 
610         /* Trigger transmission start */
611         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
612              BD_ENET_TX_LAST | BD_ENET_TX_TC;
613 
614         /* note that while FEC does not have this bit
615          * it marks it as available for software use
616          * yay for hw reuse :) */
617         if (skb->len <= 60)
618                 sc |= BD_ENET_TX_PAD;
619         CBDC_SC(bdp, BD_ENET_TX_STATS);
620         CBDS_SC(bdp, sc);
621 
622         /* Save skb pointer. */
623         fep->tx_skbuff[curidx] = skb;
624 
625         /* If this was the last BD in the ring, start at the beginning again. */
626         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
627                 bdp++;
628         else
629                 bdp = fep->tx_bd_base;
630         fep->cur_tx = bdp;
631 
632         if (fep->tx_free < MAX_SKB_FRAGS)
633                 netif_stop_queue(dev);
634 
635         skb_tx_timestamp(skb);
636 
637         (*fep->ops->tx_kickstart)(dev);
638 
639         spin_unlock(&fep->tx_lock);
640 
641         return NETDEV_TX_OK;
642 }
643 
644 static void fs_timeout(struct net_device *dev)
645 {
646         struct fs_enet_private *fep = netdev_priv(dev);
647         unsigned long flags;
648         int wake = 0;
649 
650         fep->stats.tx_errors++;
651 
652         spin_lock_irqsave(&fep->lock, flags);
653 
654         if (dev->flags & IFF_UP) {
655                 phy_stop(fep->phydev);
656                 (*fep->ops->stop)(dev);
657                 (*fep->ops->restart)(dev);
658                 phy_start(fep->phydev);
659         }
660 
661         phy_start(fep->phydev);
662         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
663         spin_unlock_irqrestore(&fep->lock, flags);
664 
665         if (wake)
666                 netif_wake_queue(dev);
667 }
668 
669 /*-----------------------------------------------------------------------------
670  *  generic link-change handler - should be sufficient for most cases
671  *-----------------------------------------------------------------------------*/
672 static void generic_adjust_link(struct  net_device *dev)
673 {
674         struct fs_enet_private *fep = netdev_priv(dev);
675         struct phy_device *phydev = fep->phydev;
676         int new_state = 0;
677 
678         if (phydev->link) {
679                 /* adjust to duplex mode */
680                 if (phydev->duplex != fep->oldduplex) {
681                         new_state = 1;
682                         fep->oldduplex = phydev->duplex;
683                 }
684 
685                 if (phydev->speed != fep->oldspeed) {
686                         new_state = 1;
687                         fep->oldspeed = phydev->speed;
688                 }
689 
690                 if (!fep->oldlink) {
691                         new_state = 1;
692                         fep->oldlink = 1;
693                 }
694 
695                 if (new_state)
696                         fep->ops->restart(dev);
697         } else if (fep->oldlink) {
698                 new_state = 1;
699                 fep->oldlink = 0;
700                 fep->oldspeed = 0;
701                 fep->oldduplex = -1;
702         }
703 
704         if (new_state && netif_msg_link(fep))
705                 phy_print_status(phydev);
706 }
707 
708 
709 static void fs_adjust_link(struct net_device *dev)
710 {
711         struct fs_enet_private *fep = netdev_priv(dev);
712         unsigned long flags;
713 
714         spin_lock_irqsave(&fep->lock, flags);
715 
716         if(fep->ops->adjust_link)
717                 fep->ops->adjust_link(dev);
718         else
719                 generic_adjust_link(dev);
720 
721         spin_unlock_irqrestore(&fep->lock, flags);
722 }
723 
724 static int fs_init_phy(struct net_device *dev)
725 {
726         struct fs_enet_private *fep = netdev_priv(dev);
727         struct phy_device *phydev;
728         phy_interface_t iface;
729 
730         fep->oldlink = 0;
731         fep->oldspeed = 0;
732         fep->oldduplex = -1;
733 
734         iface = fep->fpi->use_rmii ?
735                 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
736 
737         phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
738                                 iface);
739         if (!phydev) {
740                 dev_err(&dev->dev, "Could not attach to PHY\n");
741                 return -ENODEV;
742         }
743 
744         fep->phydev = phydev;
745 
746         return 0;
747 }
748 
749 static int fs_enet_open(struct net_device *dev)
750 {
751         struct fs_enet_private *fep = netdev_priv(dev);
752         int r;
753         int err;
754 
755         /* to initialize the fep->cur_rx,... */
756         /* not doing this, will cause a crash in fs_enet_rx_napi */
757         fs_init_bds(fep->ndev);
758 
759         napi_enable(&fep->napi);
760         napi_enable(&fep->napi_tx);
761 
762         /* Install our interrupt handler. */
763         r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
764                         "fs_enet-mac", dev);
765         if (r != 0) {
766                 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
767                 napi_disable(&fep->napi);
768                 napi_disable(&fep->napi_tx);
769                 return -EINVAL;
770         }
771 
772         err = fs_init_phy(dev);
773         if (err) {
774                 free_irq(fep->interrupt, dev);
775                 napi_disable(&fep->napi);
776                 napi_disable(&fep->napi_tx);
777                 return err;
778         }
779         phy_start(fep->phydev);
780 
781         netif_start_queue(dev);
782 
783         return 0;
784 }
785 
786 static int fs_enet_close(struct net_device *dev)
787 {
788         struct fs_enet_private *fep = netdev_priv(dev);
789         unsigned long flags;
790 
791         netif_stop_queue(dev);
792         netif_carrier_off(dev);
793         napi_disable(&fep->napi);
794         napi_disable(&fep->napi_tx);
795         phy_stop(fep->phydev);
796 
797         spin_lock_irqsave(&fep->lock, flags);
798         spin_lock(&fep->tx_lock);
799         (*fep->ops->stop)(dev);
800         spin_unlock(&fep->tx_lock);
801         spin_unlock_irqrestore(&fep->lock, flags);
802 
803         /* release any irqs */
804         phy_disconnect(fep->phydev);
805         fep->phydev = NULL;
806         free_irq(fep->interrupt, dev);
807 
808         return 0;
809 }
810 
811 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
812 {
813         struct fs_enet_private *fep = netdev_priv(dev);
814         return &fep->stats;
815 }
816 
817 /*************************************************************************/
818 
819 static void fs_get_drvinfo(struct net_device *dev,
820                             struct ethtool_drvinfo *info)
821 {
822         strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
823         strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
824 }
825 
826 static int fs_get_regs_len(struct net_device *dev)
827 {
828         struct fs_enet_private *fep = netdev_priv(dev);
829 
830         return (*fep->ops->get_regs_len)(dev);
831 }
832 
833 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
834                          void *p)
835 {
836         struct fs_enet_private *fep = netdev_priv(dev);
837         unsigned long flags;
838         int r, len;
839 
840         len = regs->len;
841 
842         spin_lock_irqsave(&fep->lock, flags);
843         r = (*fep->ops->get_regs)(dev, p, &len);
844         spin_unlock_irqrestore(&fep->lock, flags);
845 
846         if (r == 0)
847                 regs->version = 0;
848 }
849 
850 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
851 {
852         struct fs_enet_private *fep = netdev_priv(dev);
853 
854         if (!fep->phydev)
855                 return -ENODEV;
856 
857         return phy_ethtool_gset(fep->phydev, cmd);
858 }
859 
860 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
861 {
862         struct fs_enet_private *fep = netdev_priv(dev);
863 
864         if (!fep->phydev)
865                 return -ENODEV;
866 
867         return phy_ethtool_sset(fep->phydev, cmd);
868 }
869 
870 static int fs_nway_reset(struct net_device *dev)
871 {
872         return 0;
873 }
874 
875 static u32 fs_get_msglevel(struct net_device *dev)
876 {
877         struct fs_enet_private *fep = netdev_priv(dev);
878         return fep->msg_enable;
879 }
880 
881 static void fs_set_msglevel(struct net_device *dev, u32 value)
882 {
883         struct fs_enet_private *fep = netdev_priv(dev);
884         fep->msg_enable = value;
885 }
886 
887 static const struct ethtool_ops fs_ethtool_ops = {
888         .get_drvinfo = fs_get_drvinfo,
889         .get_regs_len = fs_get_regs_len,
890         .get_settings = fs_get_settings,
891         .set_settings = fs_set_settings,
892         .nway_reset = fs_nway_reset,
893         .get_link = ethtool_op_get_link,
894         .get_msglevel = fs_get_msglevel,
895         .set_msglevel = fs_set_msglevel,
896         .get_regs = fs_get_regs,
897         .get_ts_info = ethtool_op_get_ts_info,
898 };
899 
900 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
901 {
902         struct fs_enet_private *fep = netdev_priv(dev);
903 
904         if (!netif_running(dev))
905                 return -EINVAL;
906 
907         return phy_mii_ioctl(fep->phydev, rq, cmd);
908 }
909 
910 extern int fs_mii_connect(struct net_device *dev);
911 extern void fs_mii_disconnect(struct net_device *dev);
912 
913 /**************************************************************************************/
914 
915 #ifdef CONFIG_FS_ENET_HAS_FEC
916 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
917 #else
918 #define IS_FEC(match) 0
919 #endif
920 
921 static const struct net_device_ops fs_enet_netdev_ops = {
922         .ndo_open               = fs_enet_open,
923         .ndo_stop               = fs_enet_close,
924         .ndo_get_stats          = fs_enet_get_stats,
925         .ndo_start_xmit         = fs_enet_start_xmit,
926         .ndo_tx_timeout         = fs_timeout,
927         .ndo_set_rx_mode        = fs_set_multicast_list,
928         .ndo_do_ioctl           = fs_ioctl,
929         .ndo_validate_addr      = eth_validate_addr,
930         .ndo_set_mac_address    = eth_mac_addr,
931         .ndo_change_mtu         = eth_change_mtu,
932 #ifdef CONFIG_NET_POLL_CONTROLLER
933         .ndo_poll_controller    = fs_enet_netpoll,
934 #endif
935 };
936 
937 static const struct of_device_id fs_enet_match[];
938 static int fs_enet_probe(struct platform_device *ofdev)
939 {
940         const struct of_device_id *match;
941         struct net_device *ndev;
942         struct fs_enet_private *fep;
943         struct fs_platform_info *fpi;
944         const u32 *data;
945         struct clk *clk;
946         int err;
947         const u8 *mac_addr;
948         const char *phy_connection_type;
949         int privsize, len, ret = -ENODEV;
950 
951         match = of_match_device(fs_enet_match, &ofdev->dev);
952         if (!match)
953                 return -EINVAL;
954 
955         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
956         if (!fpi)
957                 return -ENOMEM;
958 
959         if (!IS_FEC(match)) {
960                 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
961                 if (!data || len != 4)
962                         goto out_free_fpi;
963 
964                 fpi->cp_command = *data;
965         }
966 
967         fpi->rx_ring = 32;
968         fpi->tx_ring = 64;
969         fpi->rx_copybreak = 240;
970         fpi->napi_weight = 17;
971         fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
972         if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
973                 err = of_phy_register_fixed_link(ofdev->dev.of_node);
974                 if (err)
975                         goto out_free_fpi;
976 
977                 /* In the case of a fixed PHY, the DT node associated
978                  * to the PHY is the Ethernet MAC DT node.
979                  */
980                 fpi->phy_node = of_node_get(ofdev->dev.of_node);
981         }
982 
983         if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
984                 phy_connection_type = of_get_property(ofdev->dev.of_node,
985                                                 "phy-connection-type", NULL);
986                 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
987                         fpi->use_rmii = 1;
988         }
989 
990         /* make clock lookup non-fatal (the driver is shared among platforms),
991          * but require enable to succeed when a clock was specified/found,
992          * keep a reference to the clock upon successful acquisition
993          */
994         clk = devm_clk_get(&ofdev->dev, "per");
995         if (!IS_ERR(clk)) {
996                 err = clk_prepare_enable(clk);
997                 if (err) {
998                         ret = err;
999                         goto out_free_fpi;
1000                 }
1001                 fpi->clk_per = clk;
1002         }
1003 
1004         privsize = sizeof(*fep) +
1005                    sizeof(struct sk_buff **) *
1006                      (fpi->rx_ring + fpi->tx_ring) +
1007                    sizeof(char) * fpi->tx_ring;
1008 
1009         ndev = alloc_etherdev(privsize);
1010         if (!ndev) {
1011                 ret = -ENOMEM;
1012                 goto out_put;
1013         }
1014 
1015         SET_NETDEV_DEV(ndev, &ofdev->dev);
1016         platform_set_drvdata(ofdev, ndev);
1017 
1018         fep = netdev_priv(ndev);
1019         fep->dev = &ofdev->dev;
1020         fep->ndev = ndev;
1021         fep->fpi = fpi;
1022         fep->ops = match->data;
1023 
1024         ret = fep->ops->setup_data(ndev);
1025         if (ret)
1026                 goto out_free_dev;
1027 
1028         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1029         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1030         fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1031                                        fpi->tx_ring);
1032 
1033         spin_lock_init(&fep->lock);
1034         spin_lock_init(&fep->tx_lock);
1035 
1036         mac_addr = of_get_mac_address(ofdev->dev.of_node);
1037         if (mac_addr)
1038                 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1039 
1040         ret = fep->ops->allocate_bd(ndev);
1041         if (ret)
1042                 goto out_cleanup_data;
1043 
1044         fep->rx_bd_base = fep->ring_base;
1045         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1046 
1047         fep->tx_ring = fpi->tx_ring;
1048         fep->rx_ring = fpi->rx_ring;
1049 
1050         ndev->netdev_ops = &fs_enet_netdev_ops;
1051         ndev->watchdog_timeo = 2 * HZ;
1052         netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi, fpi->napi_weight);
1053         netif_napi_add(ndev, &fep->napi_tx, fs_enet_tx_napi, 2);
1054 
1055         ndev->ethtool_ops = &fs_ethtool_ops;
1056 
1057         init_timer(&fep->phy_timer_list);
1058 
1059         netif_carrier_off(ndev);
1060 
1061         ndev->features |= NETIF_F_SG;
1062 
1063         ret = register_netdev(ndev);
1064         if (ret)
1065                 goto out_free_bd;
1066 
1067         pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1068 
1069         return 0;
1070 
1071 out_free_bd:
1072         fep->ops->free_bd(ndev);
1073 out_cleanup_data:
1074         fep->ops->cleanup_data(ndev);
1075 out_free_dev:
1076         free_netdev(ndev);
1077 out_put:
1078         of_node_put(fpi->phy_node);
1079         if (fpi->clk_per)
1080                 clk_disable_unprepare(fpi->clk_per);
1081 out_free_fpi:
1082         kfree(fpi);
1083         return ret;
1084 }
1085 
1086 static int fs_enet_remove(struct platform_device *ofdev)
1087 {
1088         struct net_device *ndev = platform_get_drvdata(ofdev);
1089         struct fs_enet_private *fep = netdev_priv(ndev);
1090 
1091         unregister_netdev(ndev);
1092 
1093         fep->ops->free_bd(ndev);
1094         fep->ops->cleanup_data(ndev);
1095         dev_set_drvdata(fep->dev, NULL);
1096         of_node_put(fep->fpi->phy_node);
1097         if (fep->fpi->clk_per)
1098                 clk_disable_unprepare(fep->fpi->clk_per);
1099         free_netdev(ndev);
1100         return 0;
1101 }
1102 
1103 static const struct of_device_id fs_enet_match[] = {
1104 #ifdef CONFIG_FS_ENET_HAS_SCC
1105         {
1106                 .compatible = "fsl,cpm1-scc-enet",
1107                 .data = (void *)&fs_scc_ops,
1108         },
1109         {
1110                 .compatible = "fsl,cpm2-scc-enet",
1111                 .data = (void *)&fs_scc_ops,
1112         },
1113 #endif
1114 #ifdef CONFIG_FS_ENET_HAS_FCC
1115         {
1116                 .compatible = "fsl,cpm2-fcc-enet",
1117                 .data = (void *)&fs_fcc_ops,
1118         },
1119 #endif
1120 #ifdef CONFIG_FS_ENET_HAS_FEC
1121 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1122         {
1123                 .compatible = "fsl,mpc5121-fec",
1124                 .data = (void *)&fs_fec_ops,
1125         },
1126         {
1127                 .compatible = "fsl,mpc5125-fec",
1128                 .data = (void *)&fs_fec_ops,
1129         },
1130 #else
1131         {
1132                 .compatible = "fsl,pq1-fec-enet",
1133                 .data = (void *)&fs_fec_ops,
1134         },
1135 #endif
1136 #endif
1137         {}
1138 };
1139 MODULE_DEVICE_TABLE(of, fs_enet_match);
1140 
1141 static struct platform_driver fs_enet_driver = {
1142         .driver = {
1143                 .name = "fs_enet",
1144                 .of_match_table = fs_enet_match,
1145         },
1146         .probe = fs_enet_probe,
1147         .remove = fs_enet_remove,
1148 };
1149 
1150 #ifdef CONFIG_NET_POLL_CONTROLLER
1151 static void fs_enet_netpoll(struct net_device *dev)
1152 {
1153        disable_irq(dev->irq);
1154        fs_enet_interrupt(dev->irq, dev);
1155        enable_irq(dev->irq);
1156 }
1157 #endif
1158 
1159 module_platform_driver(fs_enet_driver);
1160 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us