Version:  2.0.40 2.2.26 2.4.37 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Linux/drivers/net/ethernet/freescale/fec_main.c

  1 /*
  2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4  *
  5  * Right now, I am very wasteful with the buffers.  I allocate memory
  6  * pages and then divide them into 2K frame buffers.  This way I know I
  7  * have buffers large enough to hold one frame within one buffer descriptor.
  8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  9  * will be much more memory efficient and will easily handle lots of
 10  * small packets.
 11  *
 12  * Much better multiple PHY support by Magnus Damm.
 13  * Copyright (c) 2000 Ericsson Radio Systems AB.
 14  *
 15  * Support for FEC controller of ColdFire processors.
 16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
 17  *
 18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
 19  * Copyright (c) 2004-2006 Macq Electronique SA.
 20  *
 21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
 22  */
 23 
 24 #include <linux/module.h>
 25 #include <linux/kernel.h>
 26 #include <linux/string.h>
 27 #include <linux/ptrace.h>
 28 #include <linux/errno.h>
 29 #include <linux/ioport.h>
 30 #include <linux/slab.h>
 31 #include <linux/interrupt.h>
 32 #include <linux/delay.h>
 33 #include <linux/netdevice.h>
 34 #include <linux/etherdevice.h>
 35 #include <linux/skbuff.h>
 36 #include <linux/in.h>
 37 #include <linux/ip.h>
 38 #include <net/ip.h>
 39 #include <net/tso.h>
 40 #include <linux/tcp.h>
 41 #include <linux/udp.h>
 42 #include <linux/icmp.h>
 43 #include <linux/spinlock.h>
 44 #include <linux/workqueue.h>
 45 #include <linux/bitops.h>
 46 #include <linux/io.h>
 47 #include <linux/irq.h>
 48 #include <linux/clk.h>
 49 #include <linux/platform_device.h>
 50 #include <linux/phy.h>
 51 #include <linux/fec.h>
 52 #include <linux/of.h>
 53 #include <linux/of_device.h>
 54 #include <linux/of_gpio.h>
 55 #include <linux/of_net.h>
 56 #include <linux/regulator/consumer.h>
 57 #include <linux/if_vlan.h>
 58 #include <linux/pinctrl/consumer.h>
 59 
 60 #include <asm/cacheflush.h>
 61 
 62 #include "fec.h"
 63 
 64 static void set_multicast_list(struct net_device *ndev);
 65 
 66 #if defined(CONFIG_ARM)
 67 #define FEC_ALIGNMENT   0xf
 68 #else
 69 #define FEC_ALIGNMENT   0x3
 70 #endif
 71 
 72 #define DRIVER_NAME     "fec"
 73 
 74 /* Pause frame feild and FIFO threshold */
 75 #define FEC_ENET_FCE    (1 << 5)
 76 #define FEC_ENET_RSEM_V 0x84
 77 #define FEC_ENET_RSFL_V 16
 78 #define FEC_ENET_RAEM_V 0x8
 79 #define FEC_ENET_RAFL_V 0x8
 80 #define FEC_ENET_OPD_V  0xFFF0
 81 
 82 /* Controller is ENET-MAC */
 83 #define FEC_QUIRK_ENET_MAC              (1 << 0)
 84 /* Controller needs driver to swap frame */
 85 #define FEC_QUIRK_SWAP_FRAME            (1 << 1)
 86 /* Controller uses gasket */
 87 #define FEC_QUIRK_USE_GASKET            (1 << 2)
 88 /* Controller has GBIT support */
 89 #define FEC_QUIRK_HAS_GBIT              (1 << 3)
 90 /* Controller has extend desc buffer */
 91 #define FEC_QUIRK_HAS_BUFDESC_EX        (1 << 4)
 92 /* Controller has hardware checksum support */
 93 #define FEC_QUIRK_HAS_CSUM              (1 << 5)
 94 /* Controller has hardware vlan support */
 95 #define FEC_QUIRK_HAS_VLAN              (1 << 6)
 96 /* ENET IP errata ERR006358
 97  *
 98  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
 99  * detected as not set during a prior frame transmission, then the
100  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
101  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
102  * frames not being transmitted until there is a 0-to-1 transition on
103  * ENET_TDAR[TDAR].
104  */
105 #define FEC_QUIRK_ERR006358            (1 << 7)
106 
107 static struct platform_device_id fec_devtype[] = {
108         {
109                 /* keep it for coldfire */
110                 .name = DRIVER_NAME,
111                 .driver_data = 0,
112         }, {
113                 .name = "imx25-fec",
114                 .driver_data = FEC_QUIRK_USE_GASKET,
115         }, {
116                 .name = "imx27-fec",
117                 .driver_data = 0,
118         }, {
119                 .name = "imx28-fec",
120                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
121         }, {
122                 .name = "imx6q-fec",
123                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
126         }, {
127                 .name = "mvf600-fec",
128                 .driver_data = FEC_QUIRK_ENET_MAC,
129         }, {
130                 /* sentinel */
131         }
132 };
133 MODULE_DEVICE_TABLE(platform, fec_devtype);
134 
135 enum imx_fec_type {
136         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
137         IMX27_FEC,      /* runs on i.mx27/35/51 */
138         IMX28_FEC,
139         IMX6Q_FEC,
140         MVF600_FEC,
141 };
142 
143 static const struct of_device_id fec_dt_ids[] = {
144         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
145         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
146         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
147         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
148         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
149         { /* sentinel */ }
150 };
151 MODULE_DEVICE_TABLE(of, fec_dt_ids);
152 
153 static unsigned char macaddr[ETH_ALEN];
154 module_param_array(macaddr, byte, NULL, 0);
155 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
156 
157 #if defined(CONFIG_M5272)
158 /*
159  * Some hardware gets it MAC address out of local flash memory.
160  * if this is non-zero then assume it is the address to get MAC from.
161  */
162 #if defined(CONFIG_NETtel)
163 #define FEC_FLASHMAC    0xf0006006
164 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
165 #define FEC_FLASHMAC    0xf0006000
166 #elif defined(CONFIG_CANCam)
167 #define FEC_FLASHMAC    0xf0020000
168 #elif defined (CONFIG_M5272C3)
169 #define FEC_FLASHMAC    (0xffe04000 + 4)
170 #elif defined(CONFIG_MOD5272)
171 #define FEC_FLASHMAC    0xffc0406b
172 #else
173 #define FEC_FLASHMAC    0
174 #endif
175 #endif /* CONFIG_M5272 */
176 
177 /* Interrupt events/masks. */
178 #define FEC_ENET_HBERR  ((uint)0x80000000)      /* Heartbeat error */
179 #define FEC_ENET_BABR   ((uint)0x40000000)      /* Babbling receiver */
180 #define FEC_ENET_BABT   ((uint)0x20000000)      /* Babbling transmitter */
181 #define FEC_ENET_GRA    ((uint)0x10000000)      /* Graceful stop complete */
182 #define FEC_ENET_TXF    ((uint)0x08000000)      /* Full frame transmitted */
183 #define FEC_ENET_TXB    ((uint)0x04000000)      /* A buffer was transmitted */
184 #define FEC_ENET_RXF    ((uint)0x02000000)      /* Full frame received */
185 #define FEC_ENET_RXB    ((uint)0x01000000)      /* A buffer was received */
186 #define FEC_ENET_MII    ((uint)0x00800000)      /* MII interrupt */
187 #define FEC_ENET_EBERR  ((uint)0x00400000)      /* SDMA bus error */
188 
189 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
190 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
191 
192 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
193  */
194 #define PKT_MAXBUF_SIZE         1522
195 #define PKT_MINBUF_SIZE         64
196 #define PKT_MAXBLR_SIZE         1536
197 
198 /* FEC receive acceleration */
199 #define FEC_RACC_IPDIS          (1 << 1)
200 #define FEC_RACC_PRODIS         (1 << 2)
201 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
202 
203 /*
204  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
205  * size bits. Other FEC hardware does not, so we need to take that into
206  * account when setting it.
207  */
208 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
209     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
210 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
211 #else
212 #define OPT_FRAME_SIZE  0
213 #endif
214 
215 /* FEC MII MMFR bits definition */
216 #define FEC_MMFR_ST             (1 << 30)
217 #define FEC_MMFR_OP_READ        (2 << 28)
218 #define FEC_MMFR_OP_WRITE       (1 << 28)
219 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
220 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
221 #define FEC_MMFR_TA             (2 << 16)
222 #define FEC_MMFR_DATA(v)        (v & 0xffff)
223 
224 #define FEC_MII_TIMEOUT         30000 /* us */
225 
226 /* Transmitter timeout */
227 #define TX_TIMEOUT (2 * HZ)
228 
229 #define FEC_PAUSE_FLAG_AUTONEG  0x1
230 #define FEC_PAUSE_FLAG_ENABLE   0x2
231 
232 #define TSO_HEADER_SIZE         128
233 /* Max number of allowed TCP segments for software TSO */
234 #define FEC_MAX_TSO_SEGS        100
235 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
236 
237 #define IS_TSO_HEADER(txq, addr) \
238         ((addr >= txq->tso_hdrs_dma) && \
239         (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
240 
241 static int mii_cnt;
242 
243 static inline
244 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
245 {
246         struct bufdesc *new_bd = bdp + 1;
247         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
248         struct bufdesc_ex *ex_base;
249         struct bufdesc *base;
250         int ring_size;
251 
252         if (bdp >= fep->tx_bd_base) {
253                 base = fep->tx_bd_base;
254                 ring_size = fep->tx_ring_size;
255                 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
256         } else {
257                 base = fep->rx_bd_base;
258                 ring_size = fep->rx_ring_size;
259                 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
260         }
261 
262         if (fep->bufdesc_ex)
263                 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
264                         ex_base : ex_new_bd);
265         else
266                 return (new_bd >= (base + ring_size)) ?
267                         base : new_bd;
268 }
269 
270 static inline
271 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
272 {
273         struct bufdesc *new_bd = bdp - 1;
274         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
275         struct bufdesc_ex *ex_base;
276         struct bufdesc *base;
277         int ring_size;
278 
279         if (bdp >= fep->tx_bd_base) {
280                 base = fep->tx_bd_base;
281                 ring_size = fep->tx_ring_size;
282                 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
283         } else {
284                 base = fep->rx_bd_base;
285                 ring_size = fep->rx_ring_size;
286                 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
287         }
288 
289         if (fep->bufdesc_ex)
290                 return (struct bufdesc *)((ex_new_bd < ex_base) ?
291                         (ex_new_bd + ring_size) : ex_new_bd);
292         else
293                 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
294 }
295 
296 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
297                                 struct fec_enet_private *fep)
298 {
299         return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
300 }
301 
302 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
303 {
304         int entries;
305 
306         entries = ((const char *)fep->dirty_tx -
307                         (const char *)fep->cur_tx) / fep->bufdesc_size - 1;
308 
309         return entries > 0 ? entries : entries + fep->tx_ring_size;
310 }
311 
312 static void *swap_buffer(void *bufaddr, int len)
313 {
314         int i;
315         unsigned int *buf = bufaddr;
316 
317         for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
318                 *buf = cpu_to_be32(*buf);
319 
320         return bufaddr;
321 }
322 
323 static inline bool is_ipv4_pkt(struct sk_buff *skb)
324 {
325         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
326 }
327 
328 static int
329 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
330 {
331         /* Only run for packets requiring a checksum. */
332         if (skb->ip_summed != CHECKSUM_PARTIAL)
333                 return 0;
334 
335         if (unlikely(skb_cow_head(skb, 0)))
336                 return -1;
337 
338         if (is_ipv4_pkt(skb))
339                 ip_hdr(skb)->check = 0;
340         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
341 
342         return 0;
343 }
344 
345 static void
346 fec_enet_submit_work(struct bufdesc *bdp, struct fec_enet_private *fep)
347 {
348         const struct platform_device_id *id_entry =
349                                 platform_get_device_id(fep->pdev);
350         struct bufdesc *bdp_pre;
351 
352         bdp_pre = fec_enet_get_prevdesc(bdp, fep);
353         if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
354             !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
355                 fep->delay_work.trig_tx = true;
356                 schedule_delayed_work(&(fep->delay_work.delay_work),
357                                         msecs_to_jiffies(1));
358         }
359 }
360 
361 static int
362 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
363 {
364         struct fec_enet_private *fep = netdev_priv(ndev);
365         const struct platform_device_id *id_entry =
366                                 platform_get_device_id(fep->pdev);
367         struct bufdesc *bdp = fep->cur_tx;
368         struct bufdesc_ex *ebdp;
369         int nr_frags = skb_shinfo(skb)->nr_frags;
370         int frag, frag_len;
371         unsigned short status;
372         unsigned int estatus = 0;
373         skb_frag_t *this_frag;
374         unsigned int index;
375         void *bufaddr;
376         int i;
377 
378         for (frag = 0; frag < nr_frags; frag++) {
379                 this_frag = &skb_shinfo(skb)->frags[frag];
380                 bdp = fec_enet_get_nextdesc(bdp, fep);
381                 ebdp = (struct bufdesc_ex *)bdp;
382 
383                 status = bdp->cbd_sc;
384                 status &= ~BD_ENET_TX_STATS;
385                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
386                 frag_len = skb_shinfo(skb)->frags[frag].size;
387 
388                 /* Handle the last BD specially */
389                 if (frag == nr_frags - 1) {
390                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
391                         if (fep->bufdesc_ex) {
392                                 estatus |= BD_ENET_TX_INT;
393                                 if (unlikely(skb_shinfo(skb)->tx_flags &
394                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
395                                         estatus |= BD_ENET_TX_TS;
396                         }
397                 }
398 
399                 if (fep->bufdesc_ex) {
400                         if (skb->ip_summed == CHECKSUM_PARTIAL)
401                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
402                         ebdp->cbd_bdu = 0;
403                         ebdp->cbd_esc = estatus;
404                 }
405 
406                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
407 
408                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
409                 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
410                         id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
411                         memcpy(fep->tx_bounce[index], bufaddr, frag_len);
412                         bufaddr = fep->tx_bounce[index];
413 
414                         if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
415                                 swap_buffer(bufaddr, frag_len);
416                 }
417 
418                 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
419                                                 frag_len, DMA_TO_DEVICE);
420                 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
421                         dev_kfree_skb_any(skb);
422                         if (net_ratelimit())
423                                 netdev_err(ndev, "Tx DMA memory map failed\n");
424                         goto dma_mapping_error;
425                 }
426 
427                 bdp->cbd_datlen = frag_len;
428                 bdp->cbd_sc = status;
429         }
430 
431         fep->cur_tx = bdp;
432 
433         return 0;
434 
435 dma_mapping_error:
436         bdp = fep->cur_tx;
437         for (i = 0; i < frag; i++) {
438                 bdp = fec_enet_get_nextdesc(bdp, fep);
439                 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
440                                 bdp->cbd_datlen, DMA_TO_DEVICE);
441         }
442         return NETDEV_TX_OK;
443 }
444 
445 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
446 {
447         struct fec_enet_private *fep = netdev_priv(ndev);
448         const struct platform_device_id *id_entry =
449                                 platform_get_device_id(fep->pdev);
450         int nr_frags = skb_shinfo(skb)->nr_frags;
451         struct bufdesc *bdp, *last_bdp;
452         void *bufaddr;
453         unsigned short status;
454         unsigned short buflen;
455         unsigned int estatus = 0;
456         unsigned int index;
457         int entries_free;
458         int ret;
459 
460         entries_free = fec_enet_get_free_txdesc_num(fep);
461         if (entries_free < MAX_SKB_FRAGS + 1) {
462                 dev_kfree_skb_any(skb);
463                 if (net_ratelimit())
464                         netdev_err(ndev, "NOT enough BD for SG!\n");
465                 return NETDEV_TX_OK;
466         }
467 
468         /* Protocol checksum off-load for TCP and UDP. */
469         if (fec_enet_clear_csum(skb, ndev)) {
470                 dev_kfree_skb_any(skb);
471                 return NETDEV_TX_OK;
472         }
473 
474         /* Fill in a Tx ring entry */
475         bdp = fep->cur_tx;
476         status = bdp->cbd_sc;
477         status &= ~BD_ENET_TX_STATS;
478 
479         /* Set buffer length and buffer pointer */
480         bufaddr = skb->data;
481         buflen = skb_headlen(skb);
482 
483         index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
484         if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
485                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
486                 memcpy(fep->tx_bounce[index], skb->data, buflen);
487                 bufaddr = fep->tx_bounce[index];
488 
489                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
490                         swap_buffer(bufaddr, buflen);
491         }
492 
493         /* Push the data cache so the CPM does not get stale memory
494          * data.
495          */
496         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
497                                         buflen, DMA_TO_DEVICE);
498         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
499                 dev_kfree_skb_any(skb);
500                 if (net_ratelimit())
501                         netdev_err(ndev, "Tx DMA memory map failed\n");
502                 return NETDEV_TX_OK;
503         }
504 
505         if (nr_frags) {
506                 ret = fec_enet_txq_submit_frag_skb(skb, ndev);
507                 if (ret)
508                         return ret;
509         } else {
510                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
511                 if (fep->bufdesc_ex) {
512                         estatus = BD_ENET_TX_INT;
513                         if (unlikely(skb_shinfo(skb)->tx_flags &
514                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
515                                 estatus |= BD_ENET_TX_TS;
516                 }
517         }
518 
519         if (fep->bufdesc_ex) {
520 
521                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
522 
523                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
524                         fep->hwts_tx_en))
525                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
526 
527                 if (skb->ip_summed == CHECKSUM_PARTIAL)
528                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
529 
530                 ebdp->cbd_bdu = 0;
531                 ebdp->cbd_esc = estatus;
532         }
533 
534         last_bdp = fep->cur_tx;
535         index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
536         /* Save skb pointer */
537         fep->tx_skbuff[index] = skb;
538 
539         bdp->cbd_datlen = buflen;
540 
541         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
542          * it's the last BD of the frame, and to put the CRC on the end.
543          */
544         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
545         bdp->cbd_sc = status;
546 
547         fec_enet_submit_work(bdp, fep);
548 
549         /* If this was the last BD in the ring, start at the beginning again. */
550         bdp = fec_enet_get_nextdesc(last_bdp, fep);
551 
552         skb_tx_timestamp(skb);
553 
554         fep->cur_tx = bdp;
555 
556         /* Trigger transmission start */
557         writel(0, fep->hwp + FEC_X_DES_ACTIVE);
558 
559         return 0;
560 }
561 
562 static int
563 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
564                         struct bufdesc *bdp, int index, char *data,
565                         int size, bool last_tcp, bool is_last)
566 {
567         struct fec_enet_private *fep = netdev_priv(ndev);
568         const struct platform_device_id *id_entry =
569                                 platform_get_device_id(fep->pdev);
570         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
571         unsigned short status;
572         unsigned int estatus = 0;
573 
574         status = bdp->cbd_sc;
575         status &= ~BD_ENET_TX_STATS;
576 
577         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
578         bdp->cbd_datlen = size;
579 
580         if (((unsigned long) data) & FEC_ALIGNMENT ||
581                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
582                 memcpy(fep->tx_bounce[index], data, size);
583                 data = fep->tx_bounce[index];
584 
585                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
586                         swap_buffer(data, size);
587         }
588 
589         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
590                                         size, DMA_TO_DEVICE);
591         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
592                 dev_kfree_skb_any(skb);
593                 if (net_ratelimit())
594                         netdev_err(ndev, "Tx DMA memory map failed\n");
595                 return NETDEV_TX_BUSY;
596         }
597 
598         if (fep->bufdesc_ex) {
599                 if (skb->ip_summed == CHECKSUM_PARTIAL)
600                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
601                 ebdp->cbd_bdu = 0;
602                 ebdp->cbd_esc = estatus;
603         }
604 
605         /* Handle the last BD specially */
606         if (last_tcp)
607                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
608         if (is_last) {
609                 status |= BD_ENET_TX_INTR;
610                 if (fep->bufdesc_ex)
611                         ebdp->cbd_esc |= BD_ENET_TX_INT;
612         }
613 
614         bdp->cbd_sc = status;
615 
616         return 0;
617 }
618 
619 static int
620 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
621                         struct bufdesc *bdp, int index)
622 {
623         struct fec_enet_private *fep = netdev_priv(ndev);
624         const struct platform_device_id *id_entry =
625                                 platform_get_device_id(fep->pdev);
626         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
627         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
628         void *bufaddr;
629         unsigned long dmabuf;
630         unsigned short status;
631         unsigned int estatus = 0;
632 
633         status = bdp->cbd_sc;
634         status &= ~BD_ENET_TX_STATS;
635         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
636 
637         bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
638         dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
639         if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
640                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
641                 memcpy(fep->tx_bounce[index], skb->data, hdr_len);
642                 bufaddr = fep->tx_bounce[index];
643 
644                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
645                         swap_buffer(bufaddr, hdr_len);
646 
647                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
648                                         hdr_len, DMA_TO_DEVICE);
649                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
650                         dev_kfree_skb_any(skb);
651                         if (net_ratelimit())
652                                 netdev_err(ndev, "Tx DMA memory map failed\n");
653                         return NETDEV_TX_BUSY;
654                 }
655         }
656 
657         bdp->cbd_bufaddr = dmabuf;
658         bdp->cbd_datlen = hdr_len;
659 
660         if (fep->bufdesc_ex) {
661                 if (skb->ip_summed == CHECKSUM_PARTIAL)
662                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
663                 ebdp->cbd_bdu = 0;
664                 ebdp->cbd_esc = estatus;
665         }
666 
667         bdp->cbd_sc = status;
668 
669         return 0;
670 }
671 
672 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
673 {
674         struct fec_enet_private *fep = netdev_priv(ndev);
675         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
676         int total_len, data_left;
677         struct bufdesc *bdp = fep->cur_tx;
678         struct tso_t tso;
679         unsigned int index = 0;
680         int ret;
681 
682         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
683                 dev_kfree_skb_any(skb);
684                 if (net_ratelimit())
685                         netdev_err(ndev, "NOT enough BD for TSO!\n");
686                 return NETDEV_TX_OK;
687         }
688 
689         /* Protocol checksum off-load for TCP and UDP. */
690         if (fec_enet_clear_csum(skb, ndev)) {
691                 dev_kfree_skb_any(skb);
692                 return NETDEV_TX_OK;
693         }
694 
695         /* Initialize the TSO handler, and prepare the first payload */
696         tso_start(skb, &tso);
697 
698         total_len = skb->len - hdr_len;
699         while (total_len > 0) {
700                 char *hdr;
701 
702                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
703                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
704                 total_len -= data_left;
705 
706                 /* prepare packet headers: MAC + IP + TCP */
707                 hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
708                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
709                 ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
710                 if (ret)
711                         goto err_release;
712 
713                 while (data_left > 0) {
714                         int size;
715 
716                         size = min_t(int, tso.size, data_left);
717                         bdp = fec_enet_get_nextdesc(bdp, fep);
718                         index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
719                         ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
720                                                         size, size == data_left,
721                                                         total_len == 0);
722                         if (ret)
723                                 goto err_release;
724 
725                         data_left -= size;
726                         tso_build_data(skb, &tso, size);
727                 }
728 
729                 bdp = fec_enet_get_nextdesc(bdp, fep);
730         }
731 
732         /* Save skb pointer */
733         fep->tx_skbuff[index] = skb;
734 
735         fec_enet_submit_work(bdp, fep);
736 
737         skb_tx_timestamp(skb);
738         fep->cur_tx = bdp;
739 
740         /* Trigger transmission start */
741         writel(0, fep->hwp + FEC_X_DES_ACTIVE);
742 
743         return 0;
744 
745 err_release:
746         /* TODO: Release all used data descriptors for TSO */
747         return ret;
748 }
749 
750 static netdev_tx_t
751 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
752 {
753         struct fec_enet_private *fep = netdev_priv(ndev);
754         int entries_free;
755         int ret;
756 
757         if (skb_is_gso(skb))
758                 ret = fec_enet_txq_submit_tso(skb, ndev);
759         else
760                 ret = fec_enet_txq_submit_skb(skb, ndev);
761         if (ret)
762                 return ret;
763 
764         entries_free = fec_enet_get_free_txdesc_num(fep);
765         if (entries_free <= fep->tx_stop_threshold)
766                 netif_stop_queue(ndev);
767 
768         return NETDEV_TX_OK;
769 }
770 
771 /* Init RX & TX buffer descriptors
772  */
773 static void fec_enet_bd_init(struct net_device *dev)
774 {
775         struct fec_enet_private *fep = netdev_priv(dev);
776         struct bufdesc *bdp;
777         unsigned int i;
778 
779         /* Initialize the receive buffer descriptors. */
780         bdp = fep->rx_bd_base;
781         for (i = 0; i < fep->rx_ring_size; i++) {
782 
783                 /* Initialize the BD for every fragment in the page. */
784                 if (bdp->cbd_bufaddr)
785                         bdp->cbd_sc = BD_ENET_RX_EMPTY;
786                 else
787                         bdp->cbd_sc = 0;
788                 bdp = fec_enet_get_nextdesc(bdp, fep);
789         }
790 
791         /* Set the last buffer to wrap */
792         bdp = fec_enet_get_prevdesc(bdp, fep);
793         bdp->cbd_sc |= BD_SC_WRAP;
794 
795         fep->cur_rx = fep->rx_bd_base;
796 
797         /* ...and the same for transmit */
798         bdp = fep->tx_bd_base;
799         fep->cur_tx = bdp;
800         for (i = 0; i < fep->tx_ring_size; i++) {
801 
802                 /* Initialize the BD for every fragment in the page. */
803                 bdp->cbd_sc = 0;
804                 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
805                         dev_kfree_skb_any(fep->tx_skbuff[i]);
806                         fep->tx_skbuff[i] = NULL;
807                 }
808                 bdp->cbd_bufaddr = 0;
809                 bdp = fec_enet_get_nextdesc(bdp, fep);
810         }
811 
812         /* Set the last buffer to wrap */
813         bdp = fec_enet_get_prevdesc(bdp, fep);
814         bdp->cbd_sc |= BD_SC_WRAP;
815         fep->dirty_tx = bdp;
816 }
817 
818 /* This function is called to start or restart the FEC during a link
819  * change.  This only happens when switching between half and full
820  * duplex.
821  */
822 static void
823 fec_restart(struct net_device *ndev, int duplex)
824 {
825         struct fec_enet_private *fep = netdev_priv(ndev);
826         const struct platform_device_id *id_entry =
827                                 platform_get_device_id(fep->pdev);
828         int i;
829         u32 val;
830         u32 temp_mac[2];
831         u32 rcntl = OPT_FRAME_SIZE | 0x04;
832         u32 ecntl = 0x2; /* ETHEREN */
833 
834         if (netif_running(ndev)) {
835                 netif_device_detach(ndev);
836                 napi_disable(&fep->napi);
837                 netif_stop_queue(ndev);
838                 netif_tx_lock_bh(ndev);
839         }
840 
841         /* Whack a reset.  We should wait for this. */
842         writel(1, fep->hwp + FEC_ECNTRL);
843         udelay(10);
844 
845         /*
846          * enet-mac reset will reset mac address registers too,
847          * so need to reconfigure it.
848          */
849         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
850                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
851                 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
852                 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
853         }
854 
855         /* Clear any outstanding interrupt. */
856         writel(0xffc00000, fep->hwp + FEC_IEVENT);
857 
858         /* Set maximum receive buffer size. */
859         writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
860 
861         fec_enet_bd_init(ndev);
862 
863         /* Set receive and transmit descriptor base. */
864         writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
865         if (fep->bufdesc_ex)
866                 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
867                         * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
868         else
869                 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
870                         * fep->rx_ring_size,    fep->hwp + FEC_X_DES_START);
871 
872 
873         for (i = 0; i <= TX_RING_MOD_MASK; i++) {
874                 if (fep->tx_skbuff[i]) {
875                         dev_kfree_skb_any(fep->tx_skbuff[i]);
876                         fep->tx_skbuff[i] = NULL;
877                 }
878         }
879 
880         /* Enable MII mode */
881         if (duplex) {
882                 /* FD enable */
883                 writel(0x04, fep->hwp + FEC_X_CNTRL);
884         } else {
885                 /* No Rcv on Xmit */
886                 rcntl |= 0x02;
887                 writel(0x0, fep->hwp + FEC_X_CNTRL);
888         }
889 
890         fep->full_duplex = duplex;
891 
892         /* Set MII speed */
893         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
894 
895 #if !defined(CONFIG_M5272)
896         /* set RX checksum */
897         val = readl(fep->hwp + FEC_RACC);
898         if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
899                 val |= FEC_RACC_OPTIONS;
900         else
901                 val &= ~FEC_RACC_OPTIONS;
902         writel(val, fep->hwp + FEC_RACC);
903 #endif
904 
905         /*
906          * The phy interface and speed need to get configured
907          * differently on enet-mac.
908          */
909         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
910                 /* Enable flow control and length check */
911                 rcntl |= 0x40000000 | 0x00000020;
912 
913                 /* RGMII, RMII or MII */
914                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
915                         rcntl |= (1 << 6);
916                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
917                         rcntl |= (1 << 8);
918                 else
919                         rcntl &= ~(1 << 8);
920 
921                 /* 1G, 100M or 10M */
922                 if (fep->phy_dev) {
923                         if (fep->phy_dev->speed == SPEED_1000)
924                                 ecntl |= (1 << 5);
925                         else if (fep->phy_dev->speed == SPEED_100)
926                                 rcntl &= ~(1 << 9);
927                         else
928                                 rcntl |= (1 << 9);
929                 }
930         } else {
931 #ifdef FEC_MIIGSK_ENR
932                 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
933                         u32 cfgr;
934                         /* disable the gasket and wait */
935                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
936                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
937                                 udelay(1);
938 
939                         /*
940                          * configure the gasket:
941                          *   RMII, 50 MHz, no loopback, no echo
942                          *   MII, 25 MHz, no loopback, no echo
943                          */
944                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
945                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
946                         if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
947                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
948                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
949 
950                         /* re-enable the gasket */
951                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
952                 }
953 #endif
954         }
955 
956 #if !defined(CONFIG_M5272)
957         /* enable pause frame*/
958         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
959             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
960              fep->phy_dev && fep->phy_dev->pause)) {
961                 rcntl |= FEC_ENET_FCE;
962 
963                 /* set FIFO threshold parameter to reduce overrun */
964                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
965                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
966                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
967                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
968 
969                 /* OPD */
970                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
971         } else {
972                 rcntl &= ~FEC_ENET_FCE;
973         }
974 #endif /* !defined(CONFIG_M5272) */
975 
976         writel(rcntl, fep->hwp + FEC_R_CNTRL);
977 
978         /* Setup multicast filter. */
979         set_multicast_list(ndev);
980 #ifndef CONFIG_M5272
981         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
982         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
983 #endif
984 
985         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
986                 /* enable ENET endian swap */
987                 ecntl |= (1 << 8);
988                 /* enable ENET store and forward mode */
989                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
990         }
991 
992         if (fep->bufdesc_ex)
993                 ecntl |= (1 << 4);
994 
995 #ifndef CONFIG_M5272
996         /* Enable the MIB statistic event counters */
997         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
998 #endif
999 
1000         /* And last, enable the transmit and receive processing */
1001         writel(ecntl, fep->hwp + FEC_ECNTRL);
1002         writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1003 
1004         if (fep->bufdesc_ex)
1005                 fec_ptp_start_cyclecounter(ndev);
1006 
1007         /* Enable interrupts we wish to service */
1008         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1009 
1010         if (netif_running(ndev)) {
1011                 netif_tx_unlock_bh(ndev);
1012                 netif_wake_queue(ndev);
1013                 napi_enable(&fep->napi);
1014                 netif_device_attach(ndev);
1015         }
1016 }
1017 
1018 static void
1019 fec_stop(struct net_device *ndev)
1020 {
1021         struct fec_enet_private *fep = netdev_priv(ndev);
1022         const struct platform_device_id *id_entry =
1023                                 platform_get_device_id(fep->pdev);
1024         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1025 
1026         /* We cannot expect a graceful transmit stop without link !!! */
1027         if (fep->link) {
1028                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1029                 udelay(10);
1030                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1031                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1032         }
1033 
1034         /* Whack a reset.  We should wait for this. */
1035         writel(1, fep->hwp + FEC_ECNTRL);
1036         udelay(10);
1037         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1038         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1039 
1040         /* We have to keep ENET enabled to have MII interrupt stay working */
1041         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1042                 writel(2, fep->hwp + FEC_ECNTRL);
1043                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1044         }
1045 }
1046 
1047 
1048 static void
1049 fec_timeout(struct net_device *ndev)
1050 {
1051         struct fec_enet_private *fep = netdev_priv(ndev);
1052 
1053         ndev->stats.tx_errors++;
1054 
1055         fep->delay_work.timeout = true;
1056         schedule_delayed_work(&(fep->delay_work.delay_work), 0);
1057 }
1058 
1059 static void fec_enet_work(struct work_struct *work)
1060 {
1061         struct fec_enet_private *fep =
1062                 container_of(work,
1063                              struct fec_enet_private,
1064                              delay_work.delay_work.work);
1065 
1066         if (fep->delay_work.timeout) {
1067                 fep->delay_work.timeout = false;
1068                 fec_restart(fep->netdev, fep->full_duplex);
1069                 netif_wake_queue(fep->netdev);
1070         }
1071 
1072         if (fep->delay_work.trig_tx) {
1073                 fep->delay_work.trig_tx = false;
1074                 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1075         }
1076 }
1077 
1078 static void
1079 fec_enet_tx(struct net_device *ndev)
1080 {
1081         struct  fec_enet_private *fep;
1082         struct bufdesc *bdp;
1083         unsigned short status;
1084         struct  sk_buff *skb;
1085         int     index = 0;
1086         int     entries_free;
1087 
1088         fep = netdev_priv(ndev);
1089         bdp = fep->dirty_tx;
1090 
1091         /* get next bdp of dirty_tx */
1092         bdp = fec_enet_get_nextdesc(bdp, fep);
1093 
1094         while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1095 
1096                 /* current queue is empty */
1097                 if (bdp == fep->cur_tx)
1098                         break;
1099 
1100                 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1101 
1102                 skb = fep->tx_skbuff[index];
1103                 if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1104                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1105                                         bdp->cbd_datlen, DMA_TO_DEVICE);
1106                 bdp->cbd_bufaddr = 0;
1107                 if (!skb) {
1108                         bdp = fec_enet_get_nextdesc(bdp, fep);
1109                         continue;
1110                 }
1111 
1112                 /* Check for errors. */
1113                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1114                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1115                                    BD_ENET_TX_CSL)) {
1116                         ndev->stats.tx_errors++;
1117                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1118                                 ndev->stats.tx_heartbeat_errors++;
1119                         if (status & BD_ENET_TX_LC)  /* Late collision */
1120                                 ndev->stats.tx_window_errors++;
1121                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1122                                 ndev->stats.tx_aborted_errors++;
1123                         if (status & BD_ENET_TX_UN)  /* Underrun */
1124                                 ndev->stats.tx_fifo_errors++;
1125                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1126                                 ndev->stats.tx_carrier_errors++;
1127                 } else {
1128                         ndev->stats.tx_packets++;
1129                         ndev->stats.tx_bytes += skb->len;
1130                 }
1131 
1132                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1133                         fep->bufdesc_ex) {
1134                         struct skb_shared_hwtstamps shhwtstamps;
1135                         unsigned long flags;
1136                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1137 
1138                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1139                         spin_lock_irqsave(&fep->tmreg_lock, flags);
1140                         shhwtstamps.hwtstamp = ns_to_ktime(
1141                                 timecounter_cyc2time(&fep->tc, ebdp->ts));
1142                         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1143                         skb_tstamp_tx(skb, &shhwtstamps);
1144                 }
1145 
1146                 if (status & BD_ENET_TX_READY)
1147                         netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
1148 
1149                 /* Deferred means some collisions occurred during transmit,
1150                  * but we eventually sent the packet OK.
1151                  */
1152                 if (status & BD_ENET_TX_DEF)
1153                         ndev->stats.collisions++;
1154 
1155                 /* Free the sk buffer associated with this last transmit */
1156                 dev_kfree_skb_any(skb);
1157                 fep->tx_skbuff[index] = NULL;
1158 
1159                 fep->dirty_tx = bdp;
1160 
1161                 /* Update pointer to next buffer descriptor to be transmitted */
1162                 bdp = fec_enet_get_nextdesc(bdp, fep);
1163 
1164                 /* Since we have freed up a buffer, the ring is no longer full
1165                  */
1166                 if (netif_queue_stopped(ndev)) {
1167                         entries_free = fec_enet_get_free_txdesc_num(fep);
1168                         if (entries_free >= fep->tx_wake_threshold)
1169                                 netif_wake_queue(ndev);
1170                 }
1171         }
1172         return;
1173 }
1174 
1175 /* During a receive, the cur_rx points to the current incoming buffer.
1176  * When we update through the ring, if the next incoming buffer has
1177  * not been given to the system, we just set the empty indicator,
1178  * effectively tossing the packet.
1179  */
1180 static int
1181 fec_enet_rx(struct net_device *ndev, int budget)
1182 {
1183         struct fec_enet_private *fep = netdev_priv(ndev);
1184         const struct platform_device_id *id_entry =
1185                                 platform_get_device_id(fep->pdev);
1186         struct bufdesc *bdp;
1187         unsigned short status;
1188         struct  sk_buff *skb;
1189         ushort  pkt_len;
1190         __u8 *data;
1191         int     pkt_received = 0;
1192         struct  bufdesc_ex *ebdp = NULL;
1193         bool    vlan_packet_rcvd = false;
1194         u16     vlan_tag;
1195         int     index = 0;
1196 
1197 #ifdef CONFIG_M532x
1198         flush_cache_all();
1199 #endif
1200 
1201         /* First, grab all of the stats for the incoming packet.
1202          * These get messed up if we get called due to a busy condition.
1203          */
1204         bdp = fep->cur_rx;
1205 
1206         while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1207 
1208                 if (pkt_received >= budget)
1209                         break;
1210                 pkt_received++;
1211 
1212                 /* Since we have allocated space to hold a complete frame,
1213                  * the last indicator should be set.
1214                  */
1215                 if ((status & BD_ENET_RX_LAST) == 0)
1216                         netdev_err(ndev, "rcv is not +last\n");
1217 
1218                 if (!fep->opened)
1219                         goto rx_processing_done;
1220 
1221                 /* Check for errors. */
1222                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1223                            BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1224                         ndev->stats.rx_errors++;
1225                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1226                                 /* Frame too long or too short. */
1227                                 ndev->stats.rx_length_errors++;
1228                         }
1229                         if (status & BD_ENET_RX_NO)     /* Frame alignment */
1230                                 ndev->stats.rx_frame_errors++;
1231                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1232                                 ndev->stats.rx_crc_errors++;
1233                         if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1234                                 ndev->stats.rx_fifo_errors++;
1235                 }
1236 
1237                 /* Report late collisions as a frame error.
1238                  * On this error, the BD is closed, but we don't know what we
1239                  * have in the buffer.  So, just drop this frame on the floor.
1240                  */
1241                 if (status & BD_ENET_RX_CL) {
1242                         ndev->stats.rx_errors++;
1243                         ndev->stats.rx_frame_errors++;
1244                         goto rx_processing_done;
1245                 }
1246 
1247                 /* Process the incoming frame. */
1248                 ndev->stats.rx_packets++;
1249                 pkt_len = bdp->cbd_datlen;
1250                 ndev->stats.rx_bytes += pkt_len;
1251 
1252                 index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1253                 data = fep->rx_skbuff[index]->data;
1254                 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1255                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1256 
1257                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1258                         swap_buffer(data, pkt_len);
1259 
1260                 /* Extract the enhanced buffer descriptor */
1261                 ebdp = NULL;
1262                 if (fep->bufdesc_ex)
1263                         ebdp = (struct bufdesc_ex *)bdp;
1264 
1265                 /* If this is a VLAN packet remove the VLAN Tag */
1266                 vlan_packet_rcvd = false;
1267                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1268                     fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1269                         /* Push and remove the vlan tag */
1270                         struct vlan_hdr *vlan_header =
1271                                         (struct vlan_hdr *) (data + ETH_HLEN);
1272                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1273                         pkt_len -= VLAN_HLEN;
1274 
1275                         vlan_packet_rcvd = true;
1276                 }
1277 
1278                 /* This does 16 byte alignment, exactly what we need.
1279                  * The packet length includes FCS, but we don't want to
1280                  * include that when passing upstream as it messes up
1281                  * bridging applications.
1282                  */
1283                 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1284 
1285                 if (unlikely(!skb)) {
1286                         ndev->stats.rx_dropped++;
1287                 } else {
1288                         int payload_offset = (2 * ETH_ALEN);
1289                         skb_reserve(skb, NET_IP_ALIGN);
1290                         skb_put(skb, pkt_len - 4);      /* Make room */
1291 
1292                         /* Extract the frame data without the VLAN header. */
1293                         skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1294                         if (vlan_packet_rcvd)
1295                                 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1296                         skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1297                                                        data + payload_offset,
1298                                                        pkt_len - 4 - (2 * ETH_ALEN));
1299 
1300                         skb->protocol = eth_type_trans(skb, ndev);
1301 
1302                         /* Get receive timestamp from the skb */
1303                         if (fep->hwts_rx_en && fep->bufdesc_ex) {
1304                                 struct skb_shared_hwtstamps *shhwtstamps =
1305                                                             skb_hwtstamps(skb);
1306                                 unsigned long flags;
1307 
1308                                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1309 
1310                                 spin_lock_irqsave(&fep->tmreg_lock, flags);
1311                                 shhwtstamps->hwtstamp = ns_to_ktime(
1312                                     timecounter_cyc2time(&fep->tc, ebdp->ts));
1313                                 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1314                         }
1315 
1316                         if (fep->bufdesc_ex &&
1317                             (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1318                                 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1319                                         /* don't check it */
1320                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1321                                 } else {
1322                                         skb_checksum_none_assert(skb);
1323                                 }
1324                         }
1325 
1326                         /* Handle received VLAN packets */
1327                         if (vlan_packet_rcvd)
1328                                 __vlan_hwaccel_put_tag(skb,
1329                                                        htons(ETH_P_8021Q),
1330                                                        vlan_tag);
1331 
1332                         napi_gro_receive(&fep->napi, skb);
1333                 }
1334 
1335                 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1336                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1337 rx_processing_done:
1338                 /* Clear the status flags for this buffer */
1339                 status &= ~BD_ENET_RX_STATS;
1340 
1341                 /* Mark the buffer empty */
1342                 status |= BD_ENET_RX_EMPTY;
1343                 bdp->cbd_sc = status;
1344 
1345                 if (fep->bufdesc_ex) {
1346                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1347 
1348                         ebdp->cbd_esc = BD_ENET_RX_INT;
1349                         ebdp->cbd_prot = 0;
1350                         ebdp->cbd_bdu = 0;
1351                 }
1352 
1353                 /* Update BD pointer to next entry */
1354                 bdp = fec_enet_get_nextdesc(bdp, fep);
1355 
1356                 /* Doing this here will keep the FEC running while we process
1357                  * incoming frames.  On a heavily loaded network, we should be
1358                  * able to keep up at the expense of system resources.
1359                  */
1360                 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1361         }
1362         fep->cur_rx = bdp;
1363 
1364         return pkt_received;
1365 }
1366 
1367 static irqreturn_t
1368 fec_enet_interrupt(int irq, void *dev_id)
1369 {
1370         struct net_device *ndev = dev_id;
1371         struct fec_enet_private *fep = netdev_priv(ndev);
1372         uint int_events;
1373         irqreturn_t ret = IRQ_NONE;
1374 
1375         do {
1376                 int_events = readl(fep->hwp + FEC_IEVENT);
1377                 writel(int_events, fep->hwp + FEC_IEVENT);
1378 
1379                 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1380                         ret = IRQ_HANDLED;
1381 
1382                         /* Disable the RX interrupt */
1383                         if (napi_schedule_prep(&fep->napi)) {
1384                                 writel(FEC_RX_DISABLED_IMASK,
1385                                         fep->hwp + FEC_IMASK);
1386                                 __napi_schedule(&fep->napi);
1387                         }
1388                 }
1389 
1390                 if (int_events & FEC_ENET_MII) {
1391                         ret = IRQ_HANDLED;
1392                         complete(&fep->mdio_done);
1393                 }
1394         } while (int_events);
1395 
1396         return ret;
1397 }
1398 
1399 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1400 {
1401         struct net_device *ndev = napi->dev;
1402         int pkts = fec_enet_rx(ndev, budget);
1403         struct fec_enet_private *fep = netdev_priv(ndev);
1404 
1405         fec_enet_tx(ndev);
1406 
1407         if (pkts < budget) {
1408                 napi_complete(napi);
1409                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1410         }
1411         return pkts;
1412 }
1413 
1414 /* ------------------------------------------------------------------------- */
1415 static void fec_get_mac(struct net_device *ndev)
1416 {
1417         struct fec_enet_private *fep = netdev_priv(ndev);
1418         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1419         unsigned char *iap, tmpaddr[ETH_ALEN];
1420 
1421         /*
1422          * try to get mac address in following order:
1423          *
1424          * 1) module parameter via kernel command line in form
1425          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1426          */
1427         iap = macaddr;
1428 
1429         /*
1430          * 2) from device tree data
1431          */
1432         if (!is_valid_ether_addr(iap)) {
1433                 struct device_node *np = fep->pdev->dev.of_node;
1434                 if (np) {
1435                         const char *mac = of_get_mac_address(np);
1436                         if (mac)
1437                                 iap = (unsigned char *) mac;
1438                 }
1439         }
1440 
1441         /*
1442          * 3) from flash or fuse (via platform data)
1443          */
1444         if (!is_valid_ether_addr(iap)) {
1445 #ifdef CONFIG_M5272
1446                 if (FEC_FLASHMAC)
1447                         iap = (unsigned char *)FEC_FLASHMAC;
1448 #else
1449                 if (pdata)
1450                         iap = (unsigned char *)&pdata->mac;
1451 #endif
1452         }
1453 
1454         /*
1455          * 4) FEC mac registers set by bootloader
1456          */
1457         if (!is_valid_ether_addr(iap)) {
1458                 *((__be32 *) &tmpaddr[0]) =
1459                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1460                 *((__be16 *) &tmpaddr[4]) =
1461                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1462                 iap = &tmpaddr[0];
1463         }
1464 
1465         /*
1466          * 5) random mac address
1467          */
1468         if (!is_valid_ether_addr(iap)) {
1469                 /* Report it and use a random ethernet address instead */
1470                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1471                 eth_hw_addr_random(ndev);
1472                 netdev_info(ndev, "Using random MAC address: %pM\n",
1473                             ndev->dev_addr);
1474                 return;
1475         }
1476 
1477         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1478 
1479         /* Adjust MAC if using macaddr */
1480         if (iap == macaddr)
1481                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1482 }
1483 
1484 /* ------------------------------------------------------------------------- */
1485 
1486 /*
1487  * Phy section
1488  */
1489 static void fec_enet_adjust_link(struct net_device *ndev)
1490 {
1491         struct fec_enet_private *fep = netdev_priv(ndev);
1492         struct phy_device *phy_dev = fep->phy_dev;
1493         int status_change = 0;
1494 
1495         /* Prevent a state halted on mii error */
1496         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1497                 phy_dev->state = PHY_RESUMING;
1498                 return;
1499         }
1500 
1501         if (phy_dev->link) {
1502                 if (!fep->link) {
1503                         fep->link = phy_dev->link;
1504                         status_change = 1;
1505                 }
1506 
1507                 if (fep->full_duplex != phy_dev->duplex)
1508                         status_change = 1;
1509 
1510                 if (phy_dev->speed != fep->speed) {
1511                         fep->speed = phy_dev->speed;
1512                         status_change = 1;
1513                 }
1514 
1515                 /* if any of the above changed restart the FEC */
1516                 if (status_change)
1517                         fec_restart(ndev, phy_dev->duplex);
1518         } else {
1519                 if (fep->link) {
1520                         fec_stop(ndev);
1521                         fep->link = phy_dev->link;
1522                         status_change = 1;
1523                 }
1524         }
1525 
1526         if (status_change)
1527                 phy_print_status(phy_dev);
1528 }
1529 
1530 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1531 {
1532         struct fec_enet_private *fep = bus->priv;
1533         unsigned long time_left;
1534 
1535         fep->mii_timeout = 0;
1536         init_completion(&fep->mdio_done);
1537 
1538         /* start a read op */
1539         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1540                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1541                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1542 
1543         /* wait for end of transfer */
1544         time_left = wait_for_completion_timeout(&fep->mdio_done,
1545                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1546         if (time_left == 0) {
1547                 fep->mii_timeout = 1;
1548                 netdev_err(fep->netdev, "MDIO read timeout\n");
1549                 return -ETIMEDOUT;
1550         }
1551 
1552         /* return value */
1553         return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1554 }
1555 
1556 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1557                            u16 value)
1558 {
1559         struct fec_enet_private *fep = bus->priv;
1560         unsigned long time_left;
1561 
1562         fep->mii_timeout = 0;
1563         init_completion(&fep->mdio_done);
1564 
1565         /* start a write op */
1566         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1567                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1568                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1569                 fep->hwp + FEC_MII_DATA);
1570 
1571         /* wait for end of transfer */
1572         time_left = wait_for_completion_timeout(&fep->mdio_done,
1573                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1574         if (time_left == 0) {
1575                 fep->mii_timeout = 1;
1576                 netdev_err(fep->netdev, "MDIO write timeout\n");
1577                 return -ETIMEDOUT;
1578         }
1579 
1580         return 0;
1581 }
1582 
1583 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1584 {
1585         struct fec_enet_private *fep = netdev_priv(ndev);
1586         int ret;
1587 
1588         if (enable) {
1589                 ret = clk_prepare_enable(fep->clk_ahb);
1590                 if (ret)
1591                         return ret;
1592                 ret = clk_prepare_enable(fep->clk_ipg);
1593                 if (ret)
1594                         goto failed_clk_ipg;
1595                 if (fep->clk_enet_out) {
1596                         ret = clk_prepare_enable(fep->clk_enet_out);
1597                         if (ret)
1598                                 goto failed_clk_enet_out;
1599                 }
1600                 if (fep->clk_ptp) {
1601                         ret = clk_prepare_enable(fep->clk_ptp);
1602                         if (ret)
1603                                 goto failed_clk_ptp;
1604                 }
1605         } else {
1606                 clk_disable_unprepare(fep->clk_ahb);
1607                 clk_disable_unprepare(fep->clk_ipg);
1608                 if (fep->clk_enet_out)
1609                         clk_disable_unprepare(fep->clk_enet_out);
1610                 if (fep->clk_ptp)
1611                         clk_disable_unprepare(fep->clk_ptp);
1612         }
1613 
1614         return 0;
1615 failed_clk_ptp:
1616         if (fep->clk_enet_out)
1617                 clk_disable_unprepare(fep->clk_enet_out);
1618 failed_clk_enet_out:
1619                 clk_disable_unprepare(fep->clk_ipg);
1620 failed_clk_ipg:
1621                 clk_disable_unprepare(fep->clk_ahb);
1622 
1623         return ret;
1624 }
1625 
1626 static int fec_enet_mii_probe(struct net_device *ndev)
1627 {
1628         struct fec_enet_private *fep = netdev_priv(ndev);
1629         const struct platform_device_id *id_entry =
1630                                 platform_get_device_id(fep->pdev);
1631         struct phy_device *phy_dev = NULL;
1632         char mdio_bus_id[MII_BUS_ID_SIZE];
1633         char phy_name[MII_BUS_ID_SIZE + 3];
1634         int phy_id;
1635         int dev_id = fep->dev_id;
1636 
1637         fep->phy_dev = NULL;
1638 
1639         /* check for attached phy */
1640         for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1641                 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1642                         continue;
1643                 if (fep->mii_bus->phy_map[phy_id] == NULL)
1644                         continue;
1645                 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1646                         continue;
1647                 if (dev_id--)
1648                         continue;
1649                 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1650                 break;
1651         }
1652 
1653         if (phy_id >= PHY_MAX_ADDR) {
1654                 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1655                 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1656                 phy_id = 0;
1657         }
1658 
1659         snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1660         phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1661                               fep->phy_interface);
1662         if (IS_ERR(phy_dev)) {
1663                 netdev_err(ndev, "could not attach to PHY\n");
1664                 return PTR_ERR(phy_dev);
1665         }
1666 
1667         /* mask with MAC supported features */
1668         if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1669                 phy_dev->supported &= PHY_GBIT_FEATURES;
1670 #if !defined(CONFIG_M5272)
1671                 phy_dev->supported |= SUPPORTED_Pause;
1672 #endif
1673         }
1674         else
1675                 phy_dev->supported &= PHY_BASIC_FEATURES;
1676 
1677         phy_dev->advertising = phy_dev->supported;
1678 
1679         fep->phy_dev = phy_dev;
1680         fep->link = 0;
1681         fep->full_duplex = 0;
1682 
1683         netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1684                     fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1685                     fep->phy_dev->irq);
1686 
1687         return 0;
1688 }
1689 
1690 static int fec_enet_mii_init(struct platform_device *pdev)
1691 {
1692         static struct mii_bus *fec0_mii_bus;
1693         struct net_device *ndev = platform_get_drvdata(pdev);
1694         struct fec_enet_private *fep = netdev_priv(ndev);
1695         const struct platform_device_id *id_entry =
1696                                 platform_get_device_id(fep->pdev);
1697         int err = -ENXIO, i;
1698 
1699         /*
1700          * The dual fec interfaces are not equivalent with enet-mac.
1701          * Here are the differences:
1702          *
1703          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1704          *  - fec0 acts as the 1588 time master while fec1 is slave
1705          *  - external phys can only be configured by fec0
1706          *
1707          * That is to say fec1 can not work independently. It only works
1708          * when fec0 is working. The reason behind this design is that the
1709          * second interface is added primarily for Switch mode.
1710          *
1711          * Because of the last point above, both phys are attached on fec0
1712          * mdio interface in board design, and need to be configured by
1713          * fec0 mii_bus.
1714          */
1715         if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1716                 /* fec1 uses fec0 mii_bus */
1717                 if (mii_cnt && fec0_mii_bus) {
1718                         fep->mii_bus = fec0_mii_bus;
1719                         mii_cnt++;
1720                         return 0;
1721                 }
1722                 return -ENOENT;
1723         }
1724 
1725         fep->mii_timeout = 0;
1726 
1727         /*
1728          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1729          *
1730          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1731          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1732          * Reference Manual has an error on this, and gets fixed on i.MX6Q
1733          * document.
1734          */
1735         fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1736         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1737                 fep->phy_speed--;
1738         fep->phy_speed <<= 1;
1739         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1740 
1741         fep->mii_bus = mdiobus_alloc();
1742         if (fep->mii_bus == NULL) {
1743                 err = -ENOMEM;
1744                 goto err_out;
1745         }
1746 
1747         fep->mii_bus->name = "fec_enet_mii_bus";
1748         fep->mii_bus->read = fec_enet_mdio_read;
1749         fep->mii_bus->write = fec_enet_mdio_write;
1750         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1751                 pdev->name, fep->dev_id + 1);
1752         fep->mii_bus->priv = fep;
1753         fep->mii_bus->parent = &pdev->dev;
1754 
1755         fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1756         if (!fep->mii_bus->irq) {
1757                 err = -ENOMEM;
1758                 goto err_out_free_mdiobus;
1759         }
1760 
1761         for (i = 0; i < PHY_MAX_ADDR; i++)
1762                 fep->mii_bus->irq[i] = PHY_POLL;
1763 
1764         if (mdiobus_register(fep->mii_bus))
1765                 goto err_out_free_mdio_irq;
1766 
1767         mii_cnt++;
1768 
1769         /* save fec0 mii_bus */
1770         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1771                 fec0_mii_bus = fep->mii_bus;
1772 
1773         return 0;
1774 
1775 err_out_free_mdio_irq:
1776         kfree(fep->mii_bus->irq);
1777 err_out_free_mdiobus:
1778         mdiobus_free(fep->mii_bus);
1779 err_out:
1780         return err;
1781 }
1782 
1783 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1784 {
1785         if (--mii_cnt == 0) {
1786                 mdiobus_unregister(fep->mii_bus);
1787                 kfree(fep->mii_bus->irq);
1788                 mdiobus_free(fep->mii_bus);
1789         }
1790 }
1791 
1792 static int fec_enet_get_settings(struct net_device *ndev,
1793                                   struct ethtool_cmd *cmd)
1794 {
1795         struct fec_enet_private *fep = netdev_priv(ndev);
1796         struct phy_device *phydev = fep->phy_dev;
1797 
1798         if (!phydev)
1799                 return -ENODEV;
1800 
1801         return phy_ethtool_gset(phydev, cmd);
1802 }
1803 
1804 static int fec_enet_set_settings(struct net_device *ndev,
1805                                  struct ethtool_cmd *cmd)
1806 {
1807         struct fec_enet_private *fep = netdev_priv(ndev);
1808         struct phy_device *phydev = fep->phy_dev;
1809 
1810         if (!phydev)
1811                 return -ENODEV;
1812 
1813         return phy_ethtool_sset(phydev, cmd);
1814 }
1815 
1816 static void fec_enet_get_drvinfo(struct net_device *ndev,
1817                                  struct ethtool_drvinfo *info)
1818 {
1819         struct fec_enet_private *fep = netdev_priv(ndev);
1820 
1821         strlcpy(info->driver, fep->pdev->dev.driver->name,
1822                 sizeof(info->driver));
1823         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1824         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1825 }
1826 
1827 static int fec_enet_get_ts_info(struct net_device *ndev,
1828                                 struct ethtool_ts_info *info)
1829 {
1830         struct fec_enet_private *fep = netdev_priv(ndev);
1831 
1832         if (fep->bufdesc_ex) {
1833 
1834                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1835                                         SOF_TIMESTAMPING_RX_SOFTWARE |
1836                                         SOF_TIMESTAMPING_SOFTWARE |
1837                                         SOF_TIMESTAMPING_TX_HARDWARE |
1838                                         SOF_TIMESTAMPING_RX_HARDWARE |
1839                                         SOF_TIMESTAMPING_RAW_HARDWARE;
1840                 if (fep->ptp_clock)
1841                         info->phc_index = ptp_clock_index(fep->ptp_clock);
1842                 else
1843                         info->phc_index = -1;
1844 
1845                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1846                                  (1 << HWTSTAMP_TX_ON);
1847 
1848                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1849                                    (1 << HWTSTAMP_FILTER_ALL);
1850                 return 0;
1851         } else {
1852                 return ethtool_op_get_ts_info(ndev, info);
1853         }
1854 }
1855 
1856 #if !defined(CONFIG_M5272)
1857 
1858 static void fec_enet_get_pauseparam(struct net_device *ndev,
1859                                     struct ethtool_pauseparam *pause)
1860 {
1861         struct fec_enet_private *fep = netdev_priv(ndev);
1862 
1863         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1864         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1865         pause->rx_pause = pause->tx_pause;
1866 }
1867 
1868 static int fec_enet_set_pauseparam(struct net_device *ndev,
1869                                    struct ethtool_pauseparam *pause)
1870 {
1871         struct fec_enet_private *fep = netdev_priv(ndev);
1872 
1873         if (pause->tx_pause != pause->rx_pause) {
1874                 netdev_info(ndev,
1875                         "hardware only support enable/disable both tx and rx");
1876                 return -EINVAL;
1877         }
1878 
1879         fep->pause_flag = 0;
1880 
1881         /* tx pause must be same as rx pause */
1882         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1883         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1884 
1885         if (pause->rx_pause || pause->autoneg) {
1886                 fep->phy_dev->supported |= ADVERTISED_Pause;
1887                 fep->phy_dev->advertising |= ADVERTISED_Pause;
1888         } else {
1889                 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1890                 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1891         }
1892 
1893         if (pause->autoneg) {
1894                 if (netif_running(ndev))
1895                         fec_stop(ndev);
1896                 phy_start_aneg(fep->phy_dev);
1897         }
1898         if (netif_running(ndev))
1899                 fec_restart(ndev, 0);
1900 
1901         return 0;
1902 }
1903 
1904 static const struct fec_stat {
1905         char name[ETH_GSTRING_LEN];
1906         u16 offset;
1907 } fec_stats[] = {
1908         /* RMON TX */
1909         { "tx_dropped", RMON_T_DROP },
1910         { "tx_packets", RMON_T_PACKETS },
1911         { "tx_broadcast", RMON_T_BC_PKT },
1912         { "tx_multicast", RMON_T_MC_PKT },
1913         { "tx_crc_errors", RMON_T_CRC_ALIGN },
1914         { "tx_undersize", RMON_T_UNDERSIZE },
1915         { "tx_oversize", RMON_T_OVERSIZE },
1916         { "tx_fragment", RMON_T_FRAG },
1917         { "tx_jabber", RMON_T_JAB },
1918         { "tx_collision", RMON_T_COL },
1919         { "tx_64byte", RMON_T_P64 },
1920         { "tx_65to127byte", RMON_T_P65TO127 },
1921         { "tx_128to255byte", RMON_T_P128TO255 },
1922         { "tx_256to511byte", RMON_T_P256TO511 },
1923         { "tx_512to1023byte", RMON_T_P512TO1023 },
1924         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1925         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1926         { "tx_octets", RMON_T_OCTETS },
1927 
1928         /* IEEE TX */
1929         { "IEEE_tx_drop", IEEE_T_DROP },
1930         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1931         { "IEEE_tx_1col", IEEE_T_1COL },
1932         { "IEEE_tx_mcol", IEEE_T_MCOL },
1933         { "IEEE_tx_def", IEEE_T_DEF },
1934         { "IEEE_tx_lcol", IEEE_T_LCOL },
1935         { "IEEE_tx_excol", IEEE_T_EXCOL },
1936         { "IEEE_tx_macerr", IEEE_T_MACERR },
1937         { "IEEE_tx_cserr", IEEE_T_CSERR },
1938         { "IEEE_tx_sqe", IEEE_T_SQE },
1939         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1940         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1941 
1942         /* RMON RX */
1943         { "rx_packets", RMON_R_PACKETS },
1944         { "rx_broadcast", RMON_R_BC_PKT },
1945         { "rx_multicast", RMON_R_MC_PKT },
1946         { "rx_crc_errors", RMON_R_CRC_ALIGN },
1947         { "rx_undersize", RMON_R_UNDERSIZE },
1948         { "rx_oversize", RMON_R_OVERSIZE },
1949         { "rx_fragment", RMON_R_FRAG },
1950         { "rx_jabber", RMON_R_JAB },
1951         { "rx_64byte", RMON_R_P64 },
1952         { "rx_65to127byte", RMON_R_P65TO127 },
1953         { "rx_128to255byte", RMON_R_P128TO255 },
1954         { "rx_256to511byte", RMON_R_P256TO511 },
1955         { "rx_512to1023byte", RMON_R_P512TO1023 },
1956         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1957         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1958         { "rx_octets", RMON_R_OCTETS },
1959 
1960         /* IEEE RX */
1961         { "IEEE_rx_drop", IEEE_R_DROP },
1962         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1963         { "IEEE_rx_crc", IEEE_R_CRC },
1964         { "IEEE_rx_align", IEEE_R_ALIGN },
1965         { "IEEE_rx_macerr", IEEE_R_MACERR },
1966         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1967         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1968 };
1969 
1970 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1971         struct ethtool_stats *stats, u64 *data)
1972 {
1973         struct fec_enet_private *fep = netdev_priv(dev);
1974         int i;
1975 
1976         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1977                 data[i] = readl(fep->hwp + fec_stats[i].offset);
1978 }
1979 
1980 static void fec_enet_get_strings(struct net_device *netdev,
1981         u32 stringset, u8 *data)
1982 {
1983         int i;
1984         switch (stringset) {
1985         case ETH_SS_STATS:
1986                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1987                         memcpy(data + i * ETH_GSTRING_LEN,
1988                                 fec_stats[i].name, ETH_GSTRING_LEN);
1989                 break;
1990         }
1991 }
1992 
1993 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1994 {
1995         switch (sset) {
1996         case ETH_SS_STATS:
1997                 return ARRAY_SIZE(fec_stats);
1998         default:
1999                 return -EOPNOTSUPP;
2000         }
2001 }
2002 #endif /* !defined(CONFIG_M5272) */
2003 
2004 static int fec_enet_nway_reset(struct net_device *dev)
2005 {
2006         struct fec_enet_private *fep = netdev_priv(dev);
2007         struct phy_device *phydev = fep->phy_dev;
2008 
2009         if (!phydev)
2010                 return -ENODEV;
2011 
2012         return genphy_restart_aneg(phydev);
2013 }
2014 
2015 static const struct ethtool_ops fec_enet_ethtool_ops = {
2016 #if !defined(CONFIG_M5272)
2017         .get_pauseparam         = fec_enet_get_pauseparam,
2018         .set_pauseparam         = fec_enet_set_pauseparam,
2019 #endif
2020         .get_settings           = fec_enet_get_settings,
2021         .set_settings           = fec_enet_set_settings,
2022         .get_drvinfo            = fec_enet_get_drvinfo,
2023         .get_link               = ethtool_op_get_link,
2024         .get_ts_info            = fec_enet_get_ts_info,
2025         .nway_reset             = fec_enet_nway_reset,
2026 #ifndef CONFIG_M5272
2027         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2028         .get_strings            = fec_enet_get_strings,
2029         .get_sset_count         = fec_enet_get_sset_count,
2030 #endif
2031 };
2032 
2033 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2034 {
2035         struct fec_enet_private *fep = netdev_priv(ndev);
2036         struct phy_device *phydev = fep->phy_dev;
2037 
2038         if (!netif_running(ndev))
2039                 return -EINVAL;
2040 
2041         if (!phydev)
2042                 return -ENODEV;
2043 
2044         if (fep->bufdesc_ex) {
2045                 if (cmd == SIOCSHWTSTAMP)
2046                         return fec_ptp_set(ndev, rq);
2047                 if (cmd == SIOCGHWTSTAMP)
2048                         return fec_ptp_get(ndev, rq);
2049         }
2050 
2051         return phy_mii_ioctl(phydev, rq, cmd);
2052 }
2053 
2054 static void fec_enet_free_buffers(struct net_device *ndev)
2055 {
2056         struct fec_enet_private *fep = netdev_priv(ndev);
2057         unsigned int i;
2058         struct sk_buff *skb;
2059         struct bufdesc  *bdp;
2060 
2061         bdp = fep->rx_bd_base;
2062         for (i = 0; i < fep->rx_ring_size; i++) {
2063                 skb = fep->rx_skbuff[i];
2064 
2065                 if (bdp->cbd_bufaddr)
2066                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2067                                         FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2068                 if (skb)
2069                         dev_kfree_skb(skb);
2070                 bdp = fec_enet_get_nextdesc(bdp, fep);
2071         }
2072 
2073         bdp = fep->tx_bd_base;
2074         for (i = 0; i < fep->tx_ring_size; i++)
2075                 kfree(fep->tx_bounce[i]);
2076 }
2077 
2078 static int fec_enet_alloc_buffers(struct net_device *ndev)
2079 {
2080         struct fec_enet_private *fep = netdev_priv(ndev);
2081         unsigned int i;
2082         struct sk_buff *skb;
2083         struct bufdesc  *bdp;
2084 
2085         bdp = fep->rx_bd_base;
2086         for (i = 0; i < fep->rx_ring_size; i++) {
2087                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2088                 if (!skb) {
2089                         fec_enet_free_buffers(ndev);
2090                         return -ENOMEM;
2091                 }
2092                 fep->rx_skbuff[i] = skb;
2093 
2094                 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
2095                                 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2096                 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
2097                         fec_enet_free_buffers(ndev);
2098                         if (net_ratelimit())
2099                                 netdev_err(ndev, "Rx DMA memory map failed\n");
2100                         return -ENOMEM;
2101                 }
2102                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2103 
2104                 if (fep->bufdesc_ex) {
2105                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2106                         ebdp->cbd_esc = BD_ENET_RX_INT;
2107                 }
2108 
2109                 bdp = fec_enet_get_nextdesc(bdp, fep);
2110         }
2111 
2112         /* Set the last buffer to wrap. */
2113         bdp = fec_enet_get_prevdesc(bdp, fep);
2114         bdp->cbd_sc |= BD_SC_WRAP;
2115 
2116         bdp = fep->tx_bd_base;
2117         for (i = 0; i < fep->tx_ring_size; i++) {
2118                 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2119 
2120                 bdp->cbd_sc = 0;
2121                 bdp->cbd_bufaddr = 0;
2122 
2123                 if (fep->bufdesc_ex) {
2124                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2125                         ebdp->cbd_esc = BD_ENET_TX_INT;
2126                 }
2127 
2128                 bdp = fec_enet_get_nextdesc(bdp, fep);
2129         }
2130 
2131         /* Set the last buffer to wrap. */
2132         bdp = fec_enet_get_prevdesc(bdp, fep);
2133         bdp->cbd_sc |= BD_SC_WRAP;
2134 
2135         return 0;
2136 }
2137 
2138 static int
2139 fec_enet_open(struct net_device *ndev)
2140 {
2141         struct fec_enet_private *fep = netdev_priv(ndev);
2142         int ret;
2143 
2144         pinctrl_pm_select_default_state(&fep->pdev->dev);
2145         ret = fec_enet_clk_enable(ndev, true);
2146         if (ret)
2147                 return ret;
2148 
2149         /* I should reset the ring buffers here, but I don't yet know
2150          * a simple way to do that.
2151          */
2152 
2153         ret = fec_enet_alloc_buffers(ndev);
2154         if (ret)
2155                 return ret;
2156 
2157         /* Probe and connect to PHY when open the interface */
2158         ret = fec_enet_mii_probe(ndev);
2159         if (ret) {
2160                 fec_enet_free_buffers(ndev);
2161                 return ret;
2162         }
2163 
2164         napi_enable(&fep->napi);
2165         phy_start(fep->phy_dev);
2166         netif_start_queue(ndev);
2167         fep->opened = 1;
2168         return 0;
2169 }
2170 
2171 static int
2172 fec_enet_close(struct net_device *ndev)
2173 {
2174         struct fec_enet_private *fep = netdev_priv(ndev);
2175 
2176         /* Don't know what to do yet. */
2177         napi_disable(&fep->napi);
2178         fep->opened = 0;
2179         netif_stop_queue(ndev);
2180         fec_stop(ndev);
2181 
2182         if (fep->phy_dev) {
2183                 phy_stop(fep->phy_dev);
2184                 phy_disconnect(fep->phy_dev);
2185         }
2186 
2187         fec_enet_clk_enable(ndev, false);
2188         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2189         fec_enet_free_buffers(ndev);
2190 
2191         return 0;
2192 }
2193 
2194 /* Set or clear the multicast filter for this adaptor.
2195  * Skeleton taken from sunlance driver.
2196  * The CPM Ethernet implementation allows Multicast as well as individual
2197  * MAC address filtering.  Some of the drivers check to make sure it is
2198  * a group multicast address, and discard those that are not.  I guess I
2199  * will do the same for now, but just remove the test if you want
2200  * individual filtering as well (do the upper net layers want or support
2201  * this kind of feature?).
2202  */
2203 
2204 #define HASH_BITS       6               /* #bits in hash */
2205 #define CRC32_POLY      0xEDB88320
2206 
2207 static void set_multicast_list(struct net_device *ndev)
2208 {
2209         struct fec_enet_private *fep = netdev_priv(ndev);
2210         struct netdev_hw_addr *ha;
2211         unsigned int i, bit, data, crc, tmp;
2212         unsigned char hash;
2213 
2214         if (ndev->flags & IFF_PROMISC) {
2215                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2216                 tmp |= 0x8;
2217                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2218                 return;
2219         }
2220 
2221         tmp = readl(fep->hwp + FEC_R_CNTRL);
2222         tmp &= ~0x8;
2223         writel(tmp, fep->hwp + FEC_R_CNTRL);
2224 
2225         if (ndev->flags & IFF_ALLMULTI) {
2226                 /* Catch all multicast addresses, so set the
2227                  * filter to all 1's
2228                  */
2229                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2230                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2231 
2232                 return;
2233         }
2234 
2235         /* Clear filter and add the addresses in hash register
2236          */
2237         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2238         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2239 
2240         netdev_for_each_mc_addr(ha, ndev) {
2241                 /* calculate crc32 value of mac address */
2242                 crc = 0xffffffff;
2243 
2244                 for (i = 0; i < ndev->addr_len; i++) {
2245                         data = ha->addr[i];
2246                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2247                                 crc = (crc >> 1) ^
2248                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2249                         }
2250                 }
2251 
2252                 /* only upper 6 bits (HASH_BITS) are used
2253                  * which point to specific bit in he hash registers
2254                  */
2255                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2256 
2257                 if (hash > 31) {
2258                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2259                         tmp |= 1 << (hash - 32);
2260                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2261                 } else {
2262                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2263                         tmp |= 1 << hash;
2264                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2265                 }
2266         }
2267 }
2268 
2269 /* Set a MAC change in hardware. */
2270 static int
2271 fec_set_mac_address(struct net_device *ndev, void *p)
2272 {
2273         struct fec_enet_private *fep = netdev_priv(ndev);
2274         struct sockaddr *addr = p;
2275 
2276         if (addr) {
2277                 if (!is_valid_ether_addr(addr->sa_data))
2278                         return -EADDRNOTAVAIL;
2279                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2280         }
2281 
2282         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2283                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2284                 fep->hwp + FEC_ADDR_LOW);
2285         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2286                 fep->hwp + FEC_ADDR_HIGH);
2287         return 0;
2288 }
2289 
2290 #ifdef CONFIG_NET_POLL_CONTROLLER
2291 /**
2292  * fec_poll_controller - FEC Poll controller function
2293  * @dev: The FEC network adapter
2294  *
2295  * Polled functionality used by netconsole and others in non interrupt mode
2296  *
2297  */
2298 static void fec_poll_controller(struct net_device *dev)
2299 {
2300         int i;
2301         struct fec_enet_private *fep = netdev_priv(dev);
2302 
2303         for (i = 0; i < FEC_IRQ_NUM; i++) {
2304                 if (fep->irq[i] > 0) {
2305                         disable_irq(fep->irq[i]);
2306                         fec_enet_interrupt(fep->irq[i], dev);
2307                         enable_irq(fep->irq[i]);
2308                 }
2309         }
2310 }
2311 #endif
2312 
2313 static int fec_set_features(struct net_device *netdev,
2314         netdev_features_t features)
2315 {
2316         struct fec_enet_private *fep = netdev_priv(netdev);
2317         netdev_features_t changed = features ^ netdev->features;
2318 
2319         netdev->features = features;
2320 
2321         /* Receive checksum has been changed */
2322         if (changed & NETIF_F_RXCSUM) {
2323                 if (features & NETIF_F_RXCSUM)
2324                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2325                 else
2326                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2327 
2328                 if (netif_running(netdev)) {
2329                         fec_stop(netdev);
2330                         fec_restart(netdev, fep->phy_dev->duplex);
2331                         netif_wake_queue(netdev);
2332                 } else {
2333                         fec_restart(netdev, fep->phy_dev->duplex);
2334                 }
2335         }
2336 
2337         return 0;
2338 }
2339 
2340 static const struct net_device_ops fec_netdev_ops = {
2341         .ndo_open               = fec_enet_open,
2342         .ndo_stop               = fec_enet_close,
2343         .ndo_start_xmit         = fec_enet_start_xmit,
2344         .ndo_set_rx_mode        = set_multicast_list,
2345         .ndo_change_mtu         = eth_change_mtu,
2346         .ndo_validate_addr      = eth_validate_addr,
2347         .ndo_tx_timeout         = fec_timeout,
2348         .ndo_set_mac_address    = fec_set_mac_address,
2349         .ndo_do_ioctl           = fec_enet_ioctl,
2350 #ifdef CONFIG_NET_POLL_CONTROLLER
2351         .ndo_poll_controller    = fec_poll_controller,
2352 #endif
2353         .ndo_set_features       = fec_set_features,
2354 };
2355 
2356  /*
2357   * XXX:  We need to clean up on failure exits here.
2358   *
2359   */
2360 static int fec_enet_init(struct net_device *ndev)
2361 {
2362         struct fec_enet_private *fep = netdev_priv(ndev);
2363         const struct platform_device_id *id_entry =
2364                                 platform_get_device_id(fep->pdev);
2365         struct bufdesc *cbd_base;
2366         int bd_size;
2367 
2368         /* init the tx & rx ring size */
2369         fep->tx_ring_size = TX_RING_SIZE;
2370         fep->rx_ring_size = RX_RING_SIZE;
2371 
2372         fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2373         fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2374 
2375         if (fep->bufdesc_ex)
2376                 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2377         else
2378                 fep->bufdesc_size = sizeof(struct bufdesc);
2379         bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2380                         fep->bufdesc_size;
2381 
2382         /* Allocate memory for buffer descriptors. */
2383         cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2384                                       GFP_KERNEL);
2385         if (!cbd_base)
2386                 return -ENOMEM;
2387 
2388         fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2389                                                 &fep->tso_hdrs_dma, GFP_KERNEL);
2390         if (!fep->tso_hdrs) {
2391                 dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2392                 return -ENOMEM;
2393         }
2394 
2395         memset(cbd_base, 0, PAGE_SIZE);
2396 
2397         fep->netdev = ndev;
2398 
2399         /* Get the Ethernet address */
2400         fec_get_mac(ndev);
2401         /* make sure MAC we just acquired is programmed into the hw */
2402         fec_set_mac_address(ndev, NULL);
2403 
2404         /* Set receive and transmit descriptor base. */
2405         fep->rx_bd_base = cbd_base;
2406         if (fep->bufdesc_ex)
2407                 fep->tx_bd_base = (struct bufdesc *)
2408                         (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2409         else
2410                 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2411 
2412         /* The FEC Ethernet specific entries in the device structure */
2413         ndev->watchdog_timeo = TX_TIMEOUT;
2414         ndev->netdev_ops = &fec_netdev_ops;
2415         ndev->ethtool_ops = &fec_enet_ethtool_ops;
2416 
2417         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2418         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2419 
2420         if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2421                 /* enable hw VLAN support */
2422                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2423 
2424         if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2425                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2426 
2427                 /* enable hw accelerator */
2428                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2429                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2430                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2431         }
2432 
2433         ndev->hw_features = ndev->features;
2434 
2435         fec_restart(ndev, 0);
2436 
2437         return 0;
2438 }
2439 
2440 #ifdef CONFIG_OF
2441 static void fec_reset_phy(struct platform_device *pdev)
2442 {
2443         int err, phy_reset;
2444         int msec = 1;
2445         struct device_node *np = pdev->dev.of_node;
2446 
2447         if (!np)
2448                 return;
2449 
2450         of_property_read_u32(np, "phy-reset-duration", &msec);
2451         /* A sane reset duration should not be longer than 1s */
2452         if (msec > 1000)
2453                 msec = 1;
2454 
2455         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2456         if (!gpio_is_valid(phy_reset))
2457                 return;
2458 
2459         err = devm_gpio_request_one(&pdev->dev, phy_reset,
2460                                     GPIOF_OUT_INIT_LOW, "phy-reset");
2461         if (err) {
2462                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2463                 return;
2464         }
2465         msleep(msec);
2466         gpio_set_value(phy_reset, 1);
2467 }
2468 #else /* CONFIG_OF */
2469 static void fec_reset_phy(struct platform_device *pdev)
2470 {
2471         /*
2472          * In case of platform probe, the reset has been done
2473          * by machine code.
2474          */
2475 }
2476 #endif /* CONFIG_OF */
2477 
2478 static int
2479 fec_probe(struct platform_device *pdev)
2480 {
2481         struct fec_enet_private *fep;
2482         struct fec_platform_data *pdata;
2483         struct net_device *ndev;
2484         int i, irq, ret = 0;
2485         struct resource *r;
2486         const struct of_device_id *of_id;
2487         static int dev_id;
2488 
2489         of_id = of_match_device(fec_dt_ids, &pdev->dev);
2490         if (of_id)
2491                 pdev->id_entry = of_id->data;
2492 
2493         /* Init network device */
2494         ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2495         if (!ndev)
2496                 return -ENOMEM;
2497 
2498         SET_NETDEV_DEV(ndev, &pdev->dev);
2499 
2500         /* setup board info structure */
2501         fep = netdev_priv(ndev);
2502 
2503 #if !defined(CONFIG_M5272)
2504         /* default enable pause frame auto negotiation */
2505         if (pdev->id_entry &&
2506             (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2507                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2508 #endif
2509 
2510         /* Select default pin state */
2511         pinctrl_pm_select_default_state(&pdev->dev);
2512 
2513         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2514         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2515         if (IS_ERR(fep->hwp)) {
2516                 ret = PTR_ERR(fep->hwp);
2517                 goto failed_ioremap;
2518         }
2519 
2520         fep->pdev = pdev;
2521         fep->dev_id = dev_id++;
2522 
2523         fep->bufdesc_ex = 0;
2524 
2525         platform_set_drvdata(pdev, ndev);
2526 
2527         ret = of_get_phy_mode(pdev->dev.of_node);
2528         if (ret < 0) {
2529                 pdata = dev_get_platdata(&pdev->dev);
2530                 if (pdata)
2531                         fep->phy_interface = pdata->phy;
2532                 else
2533                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
2534         } else {
2535                 fep->phy_interface = ret;
2536         }
2537 
2538         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2539         if (IS_ERR(fep->clk_ipg)) {
2540                 ret = PTR_ERR(fep->clk_ipg);
2541                 goto failed_clk;
2542         }
2543 
2544         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2545         if (IS_ERR(fep->clk_ahb)) {
2546                 ret = PTR_ERR(fep->clk_ahb);
2547                 goto failed_clk;
2548         }
2549 
2550         /* enet_out is optional, depends on board */
2551         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2552         if (IS_ERR(fep->clk_enet_out))
2553                 fep->clk_enet_out = NULL;
2554 
2555         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2556         fep->bufdesc_ex =
2557                 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2558         if (IS_ERR(fep->clk_ptp)) {
2559                 fep->clk_ptp = NULL;
2560                 fep->bufdesc_ex = 0;
2561         }
2562 
2563         ret = fec_enet_clk_enable(ndev, true);
2564         if (ret)
2565                 goto failed_clk;
2566 
2567         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2568         if (!IS_ERR(fep->reg_phy)) {
2569                 ret = regulator_enable(fep->reg_phy);
2570                 if (ret) {
2571                         dev_err(&pdev->dev,
2572                                 "Failed to enable phy regulator: %d\n", ret);
2573                         goto failed_regulator;
2574                 }
2575         } else {
2576                 fep->reg_phy = NULL;
2577         }
2578 
2579         fec_reset_phy(pdev);
2580 
2581         if (fep->bufdesc_ex)
2582                 fec_ptp_init(pdev);
2583 
2584         ret = fec_enet_init(ndev);
2585         if (ret)
2586                 goto failed_init;
2587 
2588         for (i = 0; i < FEC_IRQ_NUM; i++) {
2589                 irq = platform_get_irq(pdev, i);
2590                 if (irq < 0) {
2591                         if (i)
2592                                 break;
2593                         ret = irq;
2594                         goto failed_irq;
2595                 }
2596                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2597                                        0, pdev->name, ndev);
2598                 if (ret)
2599                         goto failed_irq;
2600         }
2601 
2602         ret = fec_enet_mii_init(pdev);
2603         if (ret)
2604                 goto failed_mii_init;
2605 
2606         /* Carrier starts down, phylib will bring it up */
2607         netif_carrier_off(ndev);
2608         fec_enet_clk_enable(ndev, false);
2609         pinctrl_pm_select_sleep_state(&pdev->dev);
2610 
2611         ret = register_netdev(ndev);
2612         if (ret)
2613                 goto failed_register;
2614 
2615         if (fep->bufdesc_ex && fep->ptp_clock)
2616                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2617 
2618         INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2619         return 0;
2620 
2621 failed_register:
2622         fec_enet_mii_remove(fep);
2623 failed_mii_init:
2624 failed_irq:
2625 failed_init:
2626         if (fep->reg_phy)
2627                 regulator_disable(fep->reg_phy);
2628 failed_regulator:
2629         fec_enet_clk_enable(ndev, false);
2630 failed_clk:
2631 failed_ioremap:
2632         free_netdev(ndev);
2633 
2634         return ret;
2635 }
2636 
2637 static int
2638 fec_drv_remove(struct platform_device *pdev)
2639 {
2640         struct net_device *ndev = platform_get_drvdata(pdev);
2641         struct fec_enet_private *fep = netdev_priv(ndev);
2642 
2643         cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2644         unregister_netdev(ndev);
2645         fec_enet_mii_remove(fep);
2646         del_timer_sync(&fep->time_keep);
2647         if (fep->reg_phy)
2648                 regulator_disable(fep->reg_phy);
2649         if (fep->ptp_clock)
2650                 ptp_clock_unregister(fep->ptp_clock);
2651         fec_enet_clk_enable(ndev, false);
2652         free_netdev(ndev);
2653 
2654         return 0;
2655 }
2656 
2657 #ifdef CONFIG_PM_SLEEP
2658 static int
2659 fec_suspend(struct device *dev)
2660 {
2661         struct net_device *ndev = dev_get_drvdata(dev);
2662         struct fec_enet_private *fep = netdev_priv(ndev);
2663 
2664         if (netif_running(ndev)) {
2665                 fec_stop(ndev);
2666                 netif_device_detach(ndev);
2667         }
2668         fec_enet_clk_enable(ndev, false);
2669         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2670 
2671         if (fep->reg_phy)
2672                 regulator_disable(fep->reg_phy);
2673 
2674         return 0;
2675 }
2676 
2677 static int
2678 fec_resume(struct device *dev)
2679 {
2680         struct net_device *ndev = dev_get_drvdata(dev);
2681         struct fec_enet_private *fep = netdev_priv(ndev);
2682         int ret;
2683 
2684         if (fep->reg_phy) {
2685                 ret = regulator_enable(fep->reg_phy);
2686                 if (ret)
2687                         return ret;
2688         }
2689 
2690         pinctrl_pm_select_default_state(&fep->pdev->dev);
2691         ret = fec_enet_clk_enable(ndev, true);
2692         if (ret)
2693                 goto failed_clk;
2694 
2695         if (netif_running(ndev)) {
2696                 fec_restart(ndev, fep->full_duplex);
2697                 netif_device_attach(ndev);
2698         }
2699 
2700         return 0;
2701 
2702 failed_clk:
2703         if (fep->reg_phy)
2704                 regulator_disable(fep->reg_phy);
2705         return ret;
2706 }
2707 #endif /* CONFIG_PM_SLEEP */
2708 
2709 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2710 
2711 static struct platform_driver fec_driver = {
2712         .driver = {
2713                 .name   = DRIVER_NAME,
2714                 .owner  = THIS_MODULE,
2715                 .pm     = &fec_pm_ops,
2716                 .of_match_table = fec_dt_ids,
2717         },
2718         .id_table = fec_devtype,
2719         .probe  = fec_probe,
2720         .remove = fec_drv_remove,
2721 };
2722 
2723 module_platform_driver(fec_driver);
2724 
2725 MODULE_ALIAS("platform:"DRIVER_NAME);
2726 MODULE_LICENSE("GPL");
2727 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us