Version:  2.0.40 2.2.26 2.4.37 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18

Linux/drivers/net/ethernet/freescale/fec_main.c

  1 /*
  2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4  *
  5  * Right now, I am very wasteful with the buffers.  I allocate memory
  6  * pages and then divide them into 2K frame buffers.  This way I know I
  7  * have buffers large enough to hold one frame within one buffer descriptor.
  8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  9  * will be much more memory efficient and will easily handle lots of
 10  * small packets.
 11  *
 12  * Much better multiple PHY support by Magnus Damm.
 13  * Copyright (c) 2000 Ericsson Radio Systems AB.
 14  *
 15  * Support for FEC controller of ColdFire processors.
 16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
 17  *
 18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
 19  * Copyright (c) 2004-2006 Macq Electronique SA.
 20  *
 21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
 22  */
 23 
 24 #include <linux/module.h>
 25 #include <linux/kernel.h>
 26 #include <linux/string.h>
 27 #include <linux/ptrace.h>
 28 #include <linux/errno.h>
 29 #include <linux/ioport.h>
 30 #include <linux/slab.h>
 31 #include <linux/interrupt.h>
 32 #include <linux/delay.h>
 33 #include <linux/netdevice.h>
 34 #include <linux/etherdevice.h>
 35 #include <linux/skbuff.h>
 36 #include <linux/in.h>
 37 #include <linux/ip.h>
 38 #include <net/ip.h>
 39 #include <net/tso.h>
 40 #include <linux/tcp.h>
 41 #include <linux/udp.h>
 42 #include <linux/icmp.h>
 43 #include <linux/spinlock.h>
 44 #include <linux/workqueue.h>
 45 #include <linux/bitops.h>
 46 #include <linux/io.h>
 47 #include <linux/irq.h>
 48 #include <linux/clk.h>
 49 #include <linux/platform_device.h>
 50 #include <linux/phy.h>
 51 #include <linux/fec.h>
 52 #include <linux/of.h>
 53 #include <linux/of_device.h>
 54 #include <linux/of_gpio.h>
 55 #include <linux/of_mdio.h>
 56 #include <linux/of_net.h>
 57 #include <linux/regulator/consumer.h>
 58 #include <linux/if_vlan.h>
 59 #include <linux/pinctrl/consumer.h>
 60 #include <linux/prefetch.h>
 61 
 62 #include <asm/cacheflush.h>
 63 
 64 #include "fec.h"
 65 
 66 static void set_multicast_list(struct net_device *ndev);
 67 static void fec_enet_itr_coal_init(struct net_device *ndev);
 68 
 69 #define DRIVER_NAME     "fec"
 70 
 71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
 72 
 73 /* Pause frame feild and FIFO threshold */
 74 #define FEC_ENET_FCE    (1 << 5)
 75 #define FEC_ENET_RSEM_V 0x84
 76 #define FEC_ENET_RSFL_V 16
 77 #define FEC_ENET_RAEM_V 0x8
 78 #define FEC_ENET_RAFL_V 0x8
 79 #define FEC_ENET_OPD_V  0xFFF0
 80 
 81 static struct platform_device_id fec_devtype[] = {
 82         {
 83                 /* keep it for coldfire */
 84                 .name = DRIVER_NAME,
 85                 .driver_data = 0,
 86         }, {
 87                 .name = "imx25-fec",
 88                 .driver_data = FEC_QUIRK_USE_GASKET,
 89         }, {
 90                 .name = "imx27-fec",
 91                 .driver_data = 0,
 92         }, {
 93                 .name = "imx28-fec",
 94                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
 95         }, {
 96                 .name = "imx6q-fec",
 97                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
 98                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
 99                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
100         }, {
101                 .name = "mvf600-fec",
102                 .driver_data = FEC_QUIRK_ENET_MAC,
103         }, {
104                 .name = "imx6sx-fec",
105                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
106                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
107                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
108                                 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
109         }, {
110                 /* sentinel */
111         }
112 };
113 MODULE_DEVICE_TABLE(platform, fec_devtype);
114 
115 enum imx_fec_type {
116         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
117         IMX27_FEC,      /* runs on i.mx27/35/51 */
118         IMX28_FEC,
119         IMX6Q_FEC,
120         MVF600_FEC,
121         IMX6SX_FEC,
122 };
123 
124 static const struct of_device_id fec_dt_ids[] = {
125         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
126         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
127         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
128         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
129         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
130         { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
131         { /* sentinel */ }
132 };
133 MODULE_DEVICE_TABLE(of, fec_dt_ids);
134 
135 static unsigned char macaddr[ETH_ALEN];
136 module_param_array(macaddr, byte, NULL, 0);
137 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
138 
139 #if defined(CONFIG_M5272)
140 /*
141  * Some hardware gets it MAC address out of local flash memory.
142  * if this is non-zero then assume it is the address to get MAC from.
143  */
144 #if defined(CONFIG_NETtel)
145 #define FEC_FLASHMAC    0xf0006006
146 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
147 #define FEC_FLASHMAC    0xf0006000
148 #elif defined(CONFIG_CANCam)
149 #define FEC_FLASHMAC    0xf0020000
150 #elif defined (CONFIG_M5272C3)
151 #define FEC_FLASHMAC    (0xffe04000 + 4)
152 #elif defined(CONFIG_MOD5272)
153 #define FEC_FLASHMAC    0xffc0406b
154 #else
155 #define FEC_FLASHMAC    0
156 #endif
157 #endif /* CONFIG_M5272 */
158 
159 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
160  */
161 #define PKT_MAXBUF_SIZE         1522
162 #define PKT_MINBUF_SIZE         64
163 #define PKT_MAXBLR_SIZE         1536
164 
165 /* FEC receive acceleration */
166 #define FEC_RACC_IPDIS          (1 << 1)
167 #define FEC_RACC_PRODIS         (1 << 2)
168 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
169 
170 /*
171  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
172  * size bits. Other FEC hardware does not, so we need to take that into
173  * account when setting it.
174  */
175 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
176     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
177 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
178 #else
179 #define OPT_FRAME_SIZE  0
180 #endif
181 
182 /* FEC MII MMFR bits definition */
183 #define FEC_MMFR_ST             (1 << 30)
184 #define FEC_MMFR_OP_READ        (2 << 28)
185 #define FEC_MMFR_OP_WRITE       (1 << 28)
186 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
187 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
188 #define FEC_MMFR_TA             (2 << 16)
189 #define FEC_MMFR_DATA(v)        (v & 0xffff)
190 
191 #define FEC_MII_TIMEOUT         30000 /* us */
192 
193 /* Transmitter timeout */
194 #define TX_TIMEOUT (2 * HZ)
195 
196 #define FEC_PAUSE_FLAG_AUTONEG  0x1
197 #define FEC_PAUSE_FLAG_ENABLE   0x2
198 
199 #define COPYBREAK_DEFAULT       256
200 
201 #define TSO_HEADER_SIZE         128
202 /* Max number of allowed TCP segments for software TSO */
203 #define FEC_MAX_TSO_SEGS        100
204 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
205 
206 #define IS_TSO_HEADER(txq, addr) \
207         ((addr >= txq->tso_hdrs_dma) && \
208         (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
209 
210 static int mii_cnt;
211 
212 static inline
213 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
214                                       struct fec_enet_private *fep,
215                                       int queue_id)
216 {
217         struct bufdesc *new_bd = bdp + 1;
218         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
219         struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
220         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
221         struct bufdesc_ex *ex_base;
222         struct bufdesc *base;
223         int ring_size;
224 
225         if (bdp >= txq->tx_bd_base) {
226                 base = txq->tx_bd_base;
227                 ring_size = txq->tx_ring_size;
228                 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
229         } else {
230                 base = rxq->rx_bd_base;
231                 ring_size = rxq->rx_ring_size;
232                 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
233         }
234 
235         if (fep->bufdesc_ex)
236                 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
237                         ex_base : ex_new_bd);
238         else
239                 return (new_bd >= (base + ring_size)) ?
240                         base : new_bd;
241 }
242 
243 static inline
244 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
245                                       struct fec_enet_private *fep,
246                                       int queue_id)
247 {
248         struct bufdesc *new_bd = bdp - 1;
249         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
250         struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
251         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
252         struct bufdesc_ex *ex_base;
253         struct bufdesc *base;
254         int ring_size;
255 
256         if (bdp >= txq->tx_bd_base) {
257                 base = txq->tx_bd_base;
258                 ring_size = txq->tx_ring_size;
259                 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
260         } else {
261                 base = rxq->rx_bd_base;
262                 ring_size = rxq->rx_ring_size;
263                 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
264         }
265 
266         if (fep->bufdesc_ex)
267                 return (struct bufdesc *)((ex_new_bd < ex_base) ?
268                         (ex_new_bd + ring_size) : ex_new_bd);
269         else
270                 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
271 }
272 
273 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
274                                 struct fec_enet_private *fep)
275 {
276         return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
277 }
278 
279 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
280                                         struct fec_enet_priv_tx_q *txq)
281 {
282         int entries;
283 
284         entries = ((const char *)txq->dirty_tx -
285                         (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
286 
287         return entries > 0 ? entries : entries + txq->tx_ring_size;
288 }
289 
290 static void *swap_buffer(void *bufaddr, int len)
291 {
292         int i;
293         unsigned int *buf = bufaddr;
294 
295         for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296                 *buf = cpu_to_be32(*buf);
297 
298         return bufaddr;
299 }
300 
301 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
302 {
303         int i;
304         unsigned int *src = src_buf;
305         unsigned int *dst = dst_buf;
306 
307         for (i = 0; i < len; i += 4, src++, dst++)
308                 *dst = swab32p(src);
309 }
310 
311 static void fec_dump(struct net_device *ndev)
312 {
313         struct fec_enet_private *fep = netdev_priv(ndev);
314         struct bufdesc *bdp;
315         struct fec_enet_priv_tx_q *txq;
316         int index = 0;
317 
318         netdev_info(ndev, "TX ring dump\n");
319         pr_info("Nr     SC     addr       len  SKB\n");
320 
321         txq = fep->tx_queue[0];
322         bdp = txq->tx_bd_base;
323 
324         do {
325                 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
326                         index,
327                         bdp == txq->cur_tx ? 'S' : ' ',
328                         bdp == txq->dirty_tx ? 'H' : ' ',
329                         bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
330                         txq->tx_skbuff[index]);
331                 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
332                 index++;
333         } while (bdp != txq->tx_bd_base);
334 }
335 
336 static inline bool is_ipv4_pkt(struct sk_buff *skb)
337 {
338         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
339 }
340 
341 static int
342 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
343 {
344         /* Only run for packets requiring a checksum. */
345         if (skb->ip_summed != CHECKSUM_PARTIAL)
346                 return 0;
347 
348         if (unlikely(skb_cow_head(skb, 0)))
349                 return -1;
350 
351         if (is_ipv4_pkt(skb))
352                 ip_hdr(skb)->check = 0;
353         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
354 
355         return 0;
356 }
357 
358 static int
359 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
360                              struct sk_buff *skb,
361                              struct net_device *ndev)
362 {
363         struct fec_enet_private *fep = netdev_priv(ndev);
364         const struct platform_device_id *id_entry =
365                                 platform_get_device_id(fep->pdev);
366         struct bufdesc *bdp = txq->cur_tx;
367         struct bufdesc_ex *ebdp;
368         int nr_frags = skb_shinfo(skb)->nr_frags;
369         unsigned short queue = skb_get_queue_mapping(skb);
370         int frag, frag_len;
371         unsigned short status;
372         unsigned int estatus = 0;
373         skb_frag_t *this_frag;
374         unsigned int index;
375         void *bufaddr;
376         dma_addr_t addr;
377         int i;
378 
379         for (frag = 0; frag < nr_frags; frag++) {
380                 this_frag = &skb_shinfo(skb)->frags[frag];
381                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
382                 ebdp = (struct bufdesc_ex *)bdp;
383 
384                 status = bdp->cbd_sc;
385                 status &= ~BD_ENET_TX_STATS;
386                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
387                 frag_len = skb_shinfo(skb)->frags[frag].size;
388 
389                 /* Handle the last BD specially */
390                 if (frag == nr_frags - 1) {
391                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
392                         if (fep->bufdesc_ex) {
393                                 estatus |= BD_ENET_TX_INT;
394                                 if (unlikely(skb_shinfo(skb)->tx_flags &
395                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
396                                         estatus |= BD_ENET_TX_TS;
397                         }
398                 }
399 
400                 if (fep->bufdesc_ex) {
401                         if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
402                                 estatus |= FEC_TX_BD_FTYPE(queue);
403                         if (skb->ip_summed == CHECKSUM_PARTIAL)
404                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
405                         ebdp->cbd_bdu = 0;
406                         ebdp->cbd_esc = estatus;
407                 }
408 
409                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
410 
411                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
412                 if (((unsigned long) bufaddr) & fep->tx_align ||
413                         id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
414                         memcpy(txq->tx_bounce[index], bufaddr, frag_len);
415                         bufaddr = txq->tx_bounce[index];
416 
417                         if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
418                                 swap_buffer(bufaddr, frag_len);
419                 }
420 
421                 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
422                                       DMA_TO_DEVICE);
423                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
424                         dev_kfree_skb_any(skb);
425                         if (net_ratelimit())
426                                 netdev_err(ndev, "Tx DMA memory map failed\n");
427                         goto dma_mapping_error;
428                 }
429 
430                 bdp->cbd_bufaddr = addr;
431                 bdp->cbd_datlen = frag_len;
432                 bdp->cbd_sc = status;
433         }
434 
435         txq->cur_tx = bdp;
436 
437         return 0;
438 
439 dma_mapping_error:
440         bdp = txq->cur_tx;
441         for (i = 0; i < frag; i++) {
442                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
443                 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
444                                 bdp->cbd_datlen, DMA_TO_DEVICE);
445         }
446         return NETDEV_TX_OK;
447 }
448 
449 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
450                                    struct sk_buff *skb, struct net_device *ndev)
451 {
452         struct fec_enet_private *fep = netdev_priv(ndev);
453         const struct platform_device_id *id_entry =
454                                 platform_get_device_id(fep->pdev);
455         int nr_frags = skb_shinfo(skb)->nr_frags;
456         struct bufdesc *bdp, *last_bdp;
457         void *bufaddr;
458         dma_addr_t addr;
459         unsigned short status;
460         unsigned short buflen;
461         unsigned short queue;
462         unsigned int estatus = 0;
463         unsigned int index;
464         int entries_free;
465         int ret;
466 
467         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
468         if (entries_free < MAX_SKB_FRAGS + 1) {
469                 dev_kfree_skb_any(skb);
470                 if (net_ratelimit())
471                         netdev_err(ndev, "NOT enough BD for SG!\n");
472                 return NETDEV_TX_OK;
473         }
474 
475         /* Protocol checksum off-load for TCP and UDP. */
476         if (fec_enet_clear_csum(skb, ndev)) {
477                 dev_kfree_skb_any(skb);
478                 return NETDEV_TX_OK;
479         }
480 
481         /* Fill in a Tx ring entry */
482         bdp = txq->cur_tx;
483         status = bdp->cbd_sc;
484         status &= ~BD_ENET_TX_STATS;
485 
486         /* Set buffer length and buffer pointer */
487         bufaddr = skb->data;
488         buflen = skb_headlen(skb);
489 
490         queue = skb_get_queue_mapping(skb);
491         index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
492         if (((unsigned long) bufaddr) & fep->tx_align ||
493                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
494                 memcpy(txq->tx_bounce[index], skb->data, buflen);
495                 bufaddr = txq->tx_bounce[index];
496 
497                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
498                         swap_buffer(bufaddr, buflen);
499         }
500 
501         /* Push the data cache so the CPM does not get stale memory data. */
502         addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
503         if (dma_mapping_error(&fep->pdev->dev, addr)) {
504                 dev_kfree_skb_any(skb);
505                 if (net_ratelimit())
506                         netdev_err(ndev, "Tx DMA memory map failed\n");
507                 return NETDEV_TX_OK;
508         }
509 
510         if (nr_frags) {
511                 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
512                 if (ret)
513                         return ret;
514         } else {
515                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
516                 if (fep->bufdesc_ex) {
517                         estatus = BD_ENET_TX_INT;
518                         if (unlikely(skb_shinfo(skb)->tx_flags &
519                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
520                                 estatus |= BD_ENET_TX_TS;
521                 }
522         }
523 
524         if (fep->bufdesc_ex) {
525 
526                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
527 
528                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
529                         fep->hwts_tx_en))
530                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
531 
532                 if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
533                         estatus |= FEC_TX_BD_FTYPE(queue);
534 
535                 if (skb->ip_summed == CHECKSUM_PARTIAL)
536                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
537 
538                 ebdp->cbd_bdu = 0;
539                 ebdp->cbd_esc = estatus;
540         }
541 
542         last_bdp = txq->cur_tx;
543         index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
544         /* Save skb pointer */
545         txq->tx_skbuff[index] = skb;
546 
547         bdp->cbd_datlen = buflen;
548         bdp->cbd_bufaddr = addr;
549 
550         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
551          * it's the last BD of the frame, and to put the CRC on the end.
552          */
553         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
554         bdp->cbd_sc = status;
555 
556         /* If this was the last BD in the ring, start at the beginning again. */
557         bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
558 
559         skb_tx_timestamp(skb);
560 
561         txq->cur_tx = bdp;
562 
563         /* Trigger transmission start */
564         writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
565 
566         return 0;
567 }
568 
569 static int
570 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
571                           struct net_device *ndev,
572                           struct bufdesc *bdp, int index, char *data,
573                           int size, bool last_tcp, bool is_last)
574 {
575         struct fec_enet_private *fep = netdev_priv(ndev);
576         const struct platform_device_id *id_entry =
577                                 platform_get_device_id(fep->pdev);
578         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
579         unsigned short queue = skb_get_queue_mapping(skb);
580         unsigned short status;
581         unsigned int estatus = 0;
582         dma_addr_t addr;
583 
584         status = bdp->cbd_sc;
585         status &= ~BD_ENET_TX_STATS;
586 
587         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
588 
589         if (((unsigned long) data) & fep->tx_align ||
590                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
591                 memcpy(txq->tx_bounce[index], data, size);
592                 data = txq->tx_bounce[index];
593 
594                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
595                         swap_buffer(data, size);
596         }
597 
598         addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
599         if (dma_mapping_error(&fep->pdev->dev, addr)) {
600                 dev_kfree_skb_any(skb);
601                 if (net_ratelimit())
602                         netdev_err(ndev, "Tx DMA memory map failed\n");
603                 return NETDEV_TX_BUSY;
604         }
605 
606         bdp->cbd_datlen = size;
607         bdp->cbd_bufaddr = addr;
608 
609         if (fep->bufdesc_ex) {
610                 if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
611                         estatus |= FEC_TX_BD_FTYPE(queue);
612                 if (skb->ip_summed == CHECKSUM_PARTIAL)
613                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
614                 ebdp->cbd_bdu = 0;
615                 ebdp->cbd_esc = estatus;
616         }
617 
618         /* Handle the last BD specially */
619         if (last_tcp)
620                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
621         if (is_last) {
622                 status |= BD_ENET_TX_INTR;
623                 if (fep->bufdesc_ex)
624                         ebdp->cbd_esc |= BD_ENET_TX_INT;
625         }
626 
627         bdp->cbd_sc = status;
628 
629         return 0;
630 }
631 
632 static int
633 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
634                          struct sk_buff *skb, struct net_device *ndev,
635                          struct bufdesc *bdp, int index)
636 {
637         struct fec_enet_private *fep = netdev_priv(ndev);
638         const struct platform_device_id *id_entry =
639                                 platform_get_device_id(fep->pdev);
640         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
641         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
642         unsigned short queue = skb_get_queue_mapping(skb);
643         void *bufaddr;
644         unsigned long dmabuf;
645         unsigned short status;
646         unsigned int estatus = 0;
647 
648         status = bdp->cbd_sc;
649         status &= ~BD_ENET_TX_STATS;
650         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
651 
652         bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
653         dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
654         if (((unsigned long)bufaddr) & fep->tx_align ||
655                 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
656                 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
657                 bufaddr = txq->tx_bounce[index];
658 
659                 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
660                         swap_buffer(bufaddr, hdr_len);
661 
662                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
663                                         hdr_len, DMA_TO_DEVICE);
664                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
665                         dev_kfree_skb_any(skb);
666                         if (net_ratelimit())
667                                 netdev_err(ndev, "Tx DMA memory map failed\n");
668                         return NETDEV_TX_BUSY;
669                 }
670         }
671 
672         bdp->cbd_bufaddr = dmabuf;
673         bdp->cbd_datlen = hdr_len;
674 
675         if (fep->bufdesc_ex) {
676                 if (id_entry->driver_data & FEC_QUIRK_HAS_AVB)
677                         estatus |= FEC_TX_BD_FTYPE(queue);
678                 if (skb->ip_summed == CHECKSUM_PARTIAL)
679                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
680                 ebdp->cbd_bdu = 0;
681                 ebdp->cbd_esc = estatus;
682         }
683 
684         bdp->cbd_sc = status;
685 
686         return 0;
687 }
688 
689 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
690                                    struct sk_buff *skb,
691                                    struct net_device *ndev)
692 {
693         struct fec_enet_private *fep = netdev_priv(ndev);
694         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
695         int total_len, data_left;
696         struct bufdesc *bdp = txq->cur_tx;
697         unsigned short queue = skb_get_queue_mapping(skb);
698         struct tso_t tso;
699         unsigned int index = 0;
700         int ret;
701         const struct platform_device_id *id_entry =
702                                 platform_get_device_id(fep->pdev);
703 
704         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
705                 dev_kfree_skb_any(skb);
706                 if (net_ratelimit())
707                         netdev_err(ndev, "NOT enough BD for TSO!\n");
708                 return NETDEV_TX_OK;
709         }
710 
711         /* Protocol checksum off-load for TCP and UDP. */
712         if (fec_enet_clear_csum(skb, ndev)) {
713                 dev_kfree_skb_any(skb);
714                 return NETDEV_TX_OK;
715         }
716 
717         /* Initialize the TSO handler, and prepare the first payload */
718         tso_start(skb, &tso);
719 
720         total_len = skb->len - hdr_len;
721         while (total_len > 0) {
722                 char *hdr;
723 
724                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
725                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
726                 total_len -= data_left;
727 
728                 /* prepare packet headers: MAC + IP + TCP */
729                 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
730                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
731                 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
732                 if (ret)
733                         goto err_release;
734 
735                 while (data_left > 0) {
736                         int size;
737 
738                         size = min_t(int, tso.size, data_left);
739                         bdp = fec_enet_get_nextdesc(bdp, fep, queue);
740                         index = fec_enet_get_bd_index(txq->tx_bd_base,
741                                                       bdp, fep);
742                         ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
743                                                         bdp, index,
744                                                         tso.data, size,
745                                                         size == data_left,
746                                                         total_len == 0);
747                         if (ret)
748                                 goto err_release;
749 
750                         data_left -= size;
751                         tso_build_data(skb, &tso, size);
752                 }
753 
754                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
755         }
756 
757         /* Save skb pointer */
758         txq->tx_skbuff[index] = skb;
759 
760         skb_tx_timestamp(skb);
761         txq->cur_tx = bdp;
762 
763         /* Trigger transmission start */
764         if (!(id_entry->driver_data & FEC_QUIRK_ERR007885) ||
765             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
768             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
769                 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
770 
771         return 0;
772 
773 err_release:
774         /* TODO: Release all used data descriptors for TSO */
775         return ret;
776 }
777 
778 static netdev_tx_t
779 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
780 {
781         struct fec_enet_private *fep = netdev_priv(ndev);
782         int entries_free;
783         unsigned short queue;
784         struct fec_enet_priv_tx_q *txq;
785         struct netdev_queue *nq;
786         int ret;
787 
788         queue = skb_get_queue_mapping(skb);
789         txq = fep->tx_queue[queue];
790         nq = netdev_get_tx_queue(ndev, queue);
791 
792         if (skb_is_gso(skb))
793                 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
794         else
795                 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
796         if (ret)
797                 return ret;
798 
799         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
800         if (entries_free <= txq->tx_stop_threshold)
801                 netif_tx_stop_queue(nq);
802 
803         return NETDEV_TX_OK;
804 }
805 
806 /* Init RX & TX buffer descriptors
807  */
808 static void fec_enet_bd_init(struct net_device *dev)
809 {
810         struct fec_enet_private *fep = netdev_priv(dev);
811         struct fec_enet_priv_tx_q *txq;
812         struct fec_enet_priv_rx_q *rxq;
813         struct bufdesc *bdp;
814         unsigned int i;
815         unsigned int q;
816 
817         for (q = 0; q < fep->num_rx_queues; q++) {
818                 /* Initialize the receive buffer descriptors. */
819                 rxq = fep->rx_queue[q];
820                 bdp = rxq->rx_bd_base;
821 
822                 for (i = 0; i < rxq->rx_ring_size; i++) {
823 
824                         /* Initialize the BD for every fragment in the page. */
825                         if (bdp->cbd_bufaddr)
826                                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
827                         else
828                                 bdp->cbd_sc = 0;
829                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
830                 }
831 
832                 /* Set the last buffer to wrap */
833                 bdp = fec_enet_get_prevdesc(bdp, fep, q);
834                 bdp->cbd_sc |= BD_SC_WRAP;
835 
836                 rxq->cur_rx = rxq->rx_bd_base;
837         }
838 
839         for (q = 0; q < fep->num_tx_queues; q++) {
840                 /* ...and the same for transmit */
841                 txq = fep->tx_queue[q];
842                 bdp = txq->tx_bd_base;
843                 txq->cur_tx = bdp;
844 
845                 for (i = 0; i < txq->tx_ring_size; i++) {
846                         /* Initialize the BD for every fragment in the page. */
847                         bdp->cbd_sc = 0;
848                         if (txq->tx_skbuff[i]) {
849                                 dev_kfree_skb_any(txq->tx_skbuff[i]);
850                                 txq->tx_skbuff[i] = NULL;
851                         }
852                         bdp->cbd_bufaddr = 0;
853                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
854                 }
855 
856                 /* Set the last buffer to wrap */
857                 bdp = fec_enet_get_prevdesc(bdp, fep, q);
858                 bdp->cbd_sc |= BD_SC_WRAP;
859                 txq->dirty_tx = bdp;
860         }
861 }
862 
863 static void fec_enet_active_rxring(struct net_device *ndev)
864 {
865         struct fec_enet_private *fep = netdev_priv(ndev);
866         int i;
867 
868         for (i = 0; i < fep->num_rx_queues; i++)
869                 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
870 }
871 
872 static void fec_enet_enable_ring(struct net_device *ndev)
873 {
874         struct fec_enet_private *fep = netdev_priv(ndev);
875         struct fec_enet_priv_tx_q *txq;
876         struct fec_enet_priv_rx_q *rxq;
877         int i;
878 
879         for (i = 0; i < fep->num_rx_queues; i++) {
880                 rxq = fep->rx_queue[i];
881                 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
882 
883                 /* enable DMA1/2 */
884                 if (i)
885                         writel(RCMR_MATCHEN | RCMR_CMP(i),
886                                fep->hwp + FEC_RCMR(i));
887         }
888 
889         for (i = 0; i < fep->num_tx_queues; i++) {
890                 txq = fep->tx_queue[i];
891                 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892 
893                 /* enable DMA1/2 */
894                 if (i)
895                         writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896                                fep->hwp + FEC_DMA_CFG(i));
897         }
898 }
899 
900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902         struct fec_enet_private *fep = netdev_priv(ndev);
903         struct fec_enet_priv_tx_q *txq;
904         int i, j;
905 
906         for (i = 0; i < fep->num_tx_queues; i++) {
907                 txq = fep->tx_queue[i];
908 
909                 for (j = 0; j < txq->tx_ring_size; j++) {
910                         if (txq->tx_skbuff[j]) {
911                                 dev_kfree_skb_any(txq->tx_skbuff[j]);
912                                 txq->tx_skbuff[j] = NULL;
913                         }
914                 }
915         }
916 }
917 
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
924 fec_restart(struct net_device *ndev)
925 {
926         struct fec_enet_private *fep = netdev_priv(ndev);
927         const struct platform_device_id *id_entry =
928                                 platform_get_device_id(fep->pdev);
929         u32 val;
930         u32 temp_mac[2];
931         u32 rcntl = OPT_FRAME_SIZE | 0x04;
932         u32 ecntl = 0x2; /* ETHEREN */
933 
934         /* Whack a reset.  We should wait for this.
935          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
936          * instead of reset MAC itself.
937          */
938         if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
939                 writel(0, fep->hwp + FEC_ECNTRL);
940         } else {
941                 writel(1, fep->hwp + FEC_ECNTRL);
942                 udelay(10);
943         }
944 
945         /*
946          * enet-mac reset will reset mac address registers too,
947          * so need to reconfigure it.
948          */
949         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
950                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
951                 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
952                 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
953         }
954 
955         /* Clear any outstanding interrupt. */
956         writel(0xffc00000, fep->hwp + FEC_IEVENT);
957 
958         /* Set maximum receive buffer size. */
959         writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
960 
961         fec_enet_bd_init(ndev);
962 
963         fec_enet_enable_ring(ndev);
964 
965         /* Reset tx SKB buffers. */
966         fec_enet_reset_skb(ndev);
967 
968         /* Enable MII mode */
969         if (fep->full_duplex == DUPLEX_FULL) {
970                 /* FD enable */
971                 writel(0x04, fep->hwp + FEC_X_CNTRL);
972         } else {
973                 /* No Rcv on Xmit */
974                 rcntl |= 0x02;
975                 writel(0x0, fep->hwp + FEC_X_CNTRL);
976         }
977 
978         /* Set MII speed */
979         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
980 
981 #if !defined(CONFIG_M5272)
982         /* set RX checksum */
983         val = readl(fep->hwp + FEC_RACC);
984         if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
985                 val |= FEC_RACC_OPTIONS;
986         else
987                 val &= ~FEC_RACC_OPTIONS;
988         writel(val, fep->hwp + FEC_RACC);
989 #endif
990 
991         /*
992          * The phy interface and speed need to get configured
993          * differently on enet-mac.
994          */
995         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
996                 /* Enable flow control and length check */
997                 rcntl |= 0x40000000 | 0x00000020;
998 
999                 /* RGMII, RMII or MII */
1000                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
1001                         rcntl |= (1 << 6);
1002                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003                         rcntl |= (1 << 8);
1004                 else
1005                         rcntl &= ~(1 << 8);
1006 
1007                 /* 1G, 100M or 10M */
1008                 if (fep->phy_dev) {
1009                         if (fep->phy_dev->speed == SPEED_1000)
1010                                 ecntl |= (1 << 5);
1011                         else if (fep->phy_dev->speed == SPEED_100)
1012                                 rcntl &= ~(1 << 9);
1013                         else
1014                                 rcntl |= (1 << 9);
1015                 }
1016         } else {
1017 #ifdef FEC_MIIGSK_ENR
1018                 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
1019                         u32 cfgr;
1020                         /* disable the gasket and wait */
1021                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023                                 udelay(1);
1024 
1025                         /*
1026                          * configure the gasket:
1027                          *   RMII, 50 MHz, no loopback, no echo
1028                          *   MII, 25 MHz, no loopback, no echo
1029                          */
1030                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032                         if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035 
1036                         /* re-enable the gasket */
1037                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038                 }
1039 #endif
1040         }
1041 
1042 #if !defined(CONFIG_M5272)
1043         /* enable pause frame*/
1044         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046              fep->phy_dev && fep->phy_dev->pause)) {
1047                 rcntl |= FEC_ENET_FCE;
1048 
1049                 /* set FIFO threshold parameter to reduce overrun */
1050                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054 
1055                 /* OPD */
1056                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057         } else {
1058                 rcntl &= ~FEC_ENET_FCE;
1059         }
1060 #endif /* !defined(CONFIG_M5272) */
1061 
1062         writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063 
1064         /* Setup multicast filter. */
1065         set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070 
1071         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1072                 /* enable ENET endian swap */
1073                 ecntl |= (1 << 8);
1074                 /* enable ENET store and forward mode */
1075                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076         }
1077 
1078         if (fep->bufdesc_ex)
1079                 ecntl |= (1 << 4);
1080 
1081 #ifndef CONFIG_M5272
1082         /* Enable the MIB statistic event counters */
1083         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085 
1086         /* And last, enable the transmit and receive processing */
1087         writel(ecntl, fep->hwp + FEC_ECNTRL);
1088         fec_enet_active_rxring(ndev);
1089 
1090         if (fep->bufdesc_ex)
1091                 fec_ptp_start_cyclecounter(ndev);
1092 
1093         /* Enable interrupts we wish to service */
1094         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1095 
1096         /* Init the interrupt coalescing */
1097         fec_enet_itr_coal_init(ndev);
1098 
1099 }
1100 
1101 static void
1102 fec_stop(struct net_device *ndev)
1103 {
1104         struct fec_enet_private *fep = netdev_priv(ndev);
1105         const struct platform_device_id *id_entry =
1106                                 platform_get_device_id(fep->pdev);
1107         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1108 
1109         /* We cannot expect a graceful transmit stop without link !!! */
1110         if (fep->link) {
1111                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1112                 udelay(10);
1113                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1114                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1115         }
1116 
1117         /* Whack a reset.  We should wait for this.
1118          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1119          * instead of reset MAC itself.
1120          */
1121         if (id_entry && id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
1122                 writel(0, fep->hwp + FEC_ECNTRL);
1123         } else {
1124                 writel(1, fep->hwp + FEC_ECNTRL);
1125                 udelay(10);
1126         }
1127         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1128         writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1129 
1130         /* We have to keep ENET enabled to have MII interrupt stay working */
1131         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1132                 writel(2, fep->hwp + FEC_ECNTRL);
1133                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1134         }
1135 }
1136 
1137 
1138 static void
1139 fec_timeout(struct net_device *ndev)
1140 {
1141         struct fec_enet_private *fep = netdev_priv(ndev);
1142 
1143         fec_dump(ndev);
1144 
1145         ndev->stats.tx_errors++;
1146 
1147         schedule_work(&fep->tx_timeout_work);
1148 }
1149 
1150 static void fec_enet_timeout_work(struct work_struct *work)
1151 {
1152         struct fec_enet_private *fep =
1153                 container_of(work, struct fec_enet_private, tx_timeout_work);
1154         struct net_device *ndev = fep->netdev;
1155 
1156         rtnl_lock();
1157         if (netif_device_present(ndev) || netif_running(ndev)) {
1158                 napi_disable(&fep->napi);
1159                 netif_tx_lock_bh(ndev);
1160                 fec_restart(ndev);
1161                 netif_wake_queue(ndev);
1162                 netif_tx_unlock_bh(ndev);
1163                 napi_enable(&fep->napi);
1164         }
1165         rtnl_unlock();
1166 }
1167 
1168 static void
1169 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1170         struct skb_shared_hwtstamps *hwtstamps)
1171 {
1172         unsigned long flags;
1173         u64 ns;
1174 
1175         spin_lock_irqsave(&fep->tmreg_lock, flags);
1176         ns = timecounter_cyc2time(&fep->tc, ts);
1177         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1178 
1179         memset(hwtstamps, 0, sizeof(*hwtstamps));
1180         hwtstamps->hwtstamp = ns_to_ktime(ns);
1181 }
1182 
1183 static void
1184 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1185 {
1186         struct  fec_enet_private *fep;
1187         struct bufdesc *bdp;
1188         unsigned short status;
1189         struct  sk_buff *skb;
1190         struct fec_enet_priv_tx_q *txq;
1191         struct netdev_queue *nq;
1192         int     index = 0;
1193         int     entries_free;
1194 
1195         fep = netdev_priv(ndev);
1196 
1197         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1198 
1199         txq = fep->tx_queue[queue_id];
1200         /* get next bdp of dirty_tx */
1201         nq = netdev_get_tx_queue(ndev, queue_id);
1202         bdp = txq->dirty_tx;
1203 
1204         /* get next bdp of dirty_tx */
1205         bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1206 
1207         while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1208 
1209                 /* current queue is empty */
1210                 if (bdp == txq->cur_tx)
1211                         break;
1212 
1213                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1214 
1215                 skb = txq->tx_skbuff[index];
1216                 txq->tx_skbuff[index] = NULL;
1217                 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1218                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1219                                         bdp->cbd_datlen, DMA_TO_DEVICE);
1220                 bdp->cbd_bufaddr = 0;
1221                 if (!skb) {
1222                         bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1223                         continue;
1224                 }
1225 
1226                 /* Check for errors. */
1227                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1228                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1229                                    BD_ENET_TX_CSL)) {
1230                         ndev->stats.tx_errors++;
1231                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1232                                 ndev->stats.tx_heartbeat_errors++;
1233                         if (status & BD_ENET_TX_LC)  /* Late collision */
1234                                 ndev->stats.tx_window_errors++;
1235                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1236                                 ndev->stats.tx_aborted_errors++;
1237                         if (status & BD_ENET_TX_UN)  /* Underrun */
1238                                 ndev->stats.tx_fifo_errors++;
1239                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1240                                 ndev->stats.tx_carrier_errors++;
1241                 } else {
1242                         ndev->stats.tx_packets++;
1243                         ndev->stats.tx_bytes += skb->len;
1244                 }
1245 
1246                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1247                         fep->bufdesc_ex) {
1248                         struct skb_shared_hwtstamps shhwtstamps;
1249                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1250 
1251                         fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1252                         skb_tstamp_tx(skb, &shhwtstamps);
1253                 }
1254 
1255                 /* Deferred means some collisions occurred during transmit,
1256                  * but we eventually sent the packet OK.
1257                  */
1258                 if (status & BD_ENET_TX_DEF)
1259                         ndev->stats.collisions++;
1260 
1261                 /* Free the sk buffer associated with this last transmit */
1262                 dev_kfree_skb_any(skb);
1263 
1264                 txq->dirty_tx = bdp;
1265 
1266                 /* Update pointer to next buffer descriptor to be transmitted */
1267                 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1268 
1269                 /* Since we have freed up a buffer, the ring is no longer full
1270                  */
1271                 if (netif_queue_stopped(ndev)) {
1272                         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1273                         if (entries_free >= txq->tx_wake_threshold)
1274                                 netif_tx_wake_queue(nq);
1275                 }
1276         }
1277 
1278         /* ERR006538: Keep the transmitter going */
1279         if (bdp != txq->cur_tx &&
1280             readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1281                 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1282 }
1283 
1284 static void
1285 fec_enet_tx(struct net_device *ndev)
1286 {
1287         struct fec_enet_private *fep = netdev_priv(ndev);
1288         u16 queue_id;
1289         /* First process class A queue, then Class B and Best Effort queue */
1290         for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1291                 clear_bit(queue_id, &fep->work_tx);
1292                 fec_enet_tx_queue(ndev, queue_id);
1293         }
1294         return;
1295 }
1296 
1297 static int
1298 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1299 {
1300         struct  fec_enet_private *fep = netdev_priv(ndev);
1301         int off;
1302 
1303         off = ((unsigned long)skb->data) & fep->rx_align;
1304         if (off)
1305                 skb_reserve(skb, fep->rx_align + 1 - off);
1306 
1307         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1308                                           FEC_ENET_RX_FRSIZE - fep->rx_align,
1309                                           DMA_FROM_DEVICE);
1310         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1311                 if (net_ratelimit())
1312                         netdev_err(ndev, "Rx DMA memory map failed\n");
1313                 return -ENOMEM;
1314         }
1315 
1316         return 0;
1317 }
1318 
1319 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1320                                struct bufdesc *bdp, u32 length, bool swap)
1321 {
1322         struct  fec_enet_private *fep = netdev_priv(ndev);
1323         struct sk_buff *new_skb;
1324 
1325         if (length > fep->rx_copybreak)
1326                 return false;
1327 
1328         new_skb = netdev_alloc_skb(ndev, length);
1329         if (!new_skb)
1330                 return false;
1331 
1332         dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1333                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
1334                                 DMA_FROM_DEVICE);
1335         if (!swap)
1336                 memcpy(new_skb->data, (*skb)->data, length);
1337         else
1338                 swap_buffer2(new_skb->data, (*skb)->data, length);
1339         *skb = new_skb;
1340 
1341         return true;
1342 }
1343 
1344 /* During a receive, the cur_rx points to the current incoming buffer.
1345  * When we update through the ring, if the next incoming buffer has
1346  * not been given to the system, we just set the empty indicator,
1347  * effectively tossing the packet.
1348  */
1349 static int
1350 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1351 {
1352         struct fec_enet_private *fep = netdev_priv(ndev);
1353         const struct platform_device_id *id_entry =
1354                                 platform_get_device_id(fep->pdev);
1355         struct fec_enet_priv_rx_q *rxq;
1356         struct bufdesc *bdp;
1357         unsigned short status;
1358         struct  sk_buff *skb_new = NULL;
1359         struct  sk_buff *skb;
1360         ushort  pkt_len;
1361         __u8 *data;
1362         int     pkt_received = 0;
1363         struct  bufdesc_ex *ebdp = NULL;
1364         bool    vlan_packet_rcvd = false;
1365         u16     vlan_tag;
1366         int     index = 0;
1367         bool    is_copybreak;
1368         bool    need_swap = id_entry->driver_data & FEC_QUIRK_SWAP_FRAME;
1369 
1370 #ifdef CONFIG_M532x
1371         flush_cache_all();
1372 #endif
1373         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1374         rxq = fep->rx_queue[queue_id];
1375 
1376         /* First, grab all of the stats for the incoming packet.
1377          * These get messed up if we get called due to a busy condition.
1378          */
1379         bdp = rxq->cur_rx;
1380 
1381         while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1382 
1383                 if (pkt_received >= budget)
1384                         break;
1385                 pkt_received++;
1386 
1387                 /* Since we have allocated space to hold a complete frame,
1388                  * the last indicator should be set.
1389                  */
1390                 if ((status & BD_ENET_RX_LAST) == 0)
1391                         netdev_err(ndev, "rcv is not +last\n");
1392 
1393 
1394                 /* Check for errors. */
1395                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1396                            BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1397                         ndev->stats.rx_errors++;
1398                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1399                                 /* Frame too long or too short. */
1400                                 ndev->stats.rx_length_errors++;
1401                         }
1402                         if (status & BD_ENET_RX_NO)     /* Frame alignment */
1403                                 ndev->stats.rx_frame_errors++;
1404                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1405                                 ndev->stats.rx_crc_errors++;
1406                         if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1407                                 ndev->stats.rx_fifo_errors++;
1408                 }
1409 
1410                 /* Report late collisions as a frame error.
1411                  * On this error, the BD is closed, but we don't know what we
1412                  * have in the buffer.  So, just drop this frame on the floor.
1413                  */
1414                 if (status & BD_ENET_RX_CL) {
1415                         ndev->stats.rx_errors++;
1416                         ndev->stats.rx_frame_errors++;
1417                         goto rx_processing_done;
1418                 }
1419 
1420                 /* Process the incoming frame. */
1421                 ndev->stats.rx_packets++;
1422                 pkt_len = bdp->cbd_datlen;
1423                 ndev->stats.rx_bytes += pkt_len;
1424 
1425                 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1426                 skb = rxq->rx_skbuff[index];
1427 
1428                 /* The packet length includes FCS, but we don't want to
1429                  * include that when passing upstream as it messes up
1430                  * bridging applications.
1431                  */
1432                 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1433                                                   need_swap);
1434                 if (!is_copybreak) {
1435                         skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1436                         if (unlikely(!skb_new)) {
1437                                 ndev->stats.rx_dropped++;
1438                                 goto rx_processing_done;
1439                         }
1440                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1441                                          FEC_ENET_RX_FRSIZE - fep->rx_align,
1442                                          DMA_FROM_DEVICE);
1443                 }
1444 
1445                 prefetch(skb->data - NET_IP_ALIGN);
1446                 skb_put(skb, pkt_len - 4);
1447                 data = skb->data;
1448                 if (!is_copybreak && need_swap)
1449                         swap_buffer(data, pkt_len);
1450 
1451                 /* Extract the enhanced buffer descriptor */
1452                 ebdp = NULL;
1453                 if (fep->bufdesc_ex)
1454                         ebdp = (struct bufdesc_ex *)bdp;
1455 
1456                 /* If this is a VLAN packet remove the VLAN Tag */
1457                 vlan_packet_rcvd = false;
1458                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1459                         fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1460                         /* Push and remove the vlan tag */
1461                         struct vlan_hdr *vlan_header =
1462                                         (struct vlan_hdr *) (data + ETH_HLEN);
1463                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1464 
1465                         vlan_packet_rcvd = true;
1466 
1467                         skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1468                                                        data, (2 * ETH_ALEN));
1469                         skb_pull(skb, VLAN_HLEN);
1470                 }
1471 
1472                 skb->protocol = eth_type_trans(skb, ndev);
1473 
1474                 /* Get receive timestamp from the skb */
1475                 if (fep->hwts_rx_en && fep->bufdesc_ex)
1476                         fec_enet_hwtstamp(fep, ebdp->ts,
1477                                           skb_hwtstamps(skb));
1478 
1479                 if (fep->bufdesc_ex &&
1480                     (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1481                         if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1482                                 /* don't check it */
1483                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1484                         } else {
1485                                 skb_checksum_none_assert(skb);
1486                         }
1487                 }
1488 
1489                 /* Handle received VLAN packets */
1490                 if (vlan_packet_rcvd)
1491                         __vlan_hwaccel_put_tag(skb,
1492                                                htons(ETH_P_8021Q),
1493                                                vlan_tag);
1494 
1495                 napi_gro_receive(&fep->napi, skb);
1496 
1497                 if (is_copybreak) {
1498                         dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1499                                                    FEC_ENET_RX_FRSIZE - fep->rx_align,
1500                                                    DMA_FROM_DEVICE);
1501                 } else {
1502                         rxq->rx_skbuff[index] = skb_new;
1503                         fec_enet_new_rxbdp(ndev, bdp, skb_new);
1504                 }
1505 
1506 rx_processing_done:
1507                 /* Clear the status flags for this buffer */
1508                 status &= ~BD_ENET_RX_STATS;
1509 
1510                 /* Mark the buffer empty */
1511                 status |= BD_ENET_RX_EMPTY;
1512                 bdp->cbd_sc = status;
1513 
1514                 if (fep->bufdesc_ex) {
1515                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1516 
1517                         ebdp->cbd_esc = BD_ENET_RX_INT;
1518                         ebdp->cbd_prot = 0;
1519                         ebdp->cbd_bdu = 0;
1520                 }
1521 
1522                 /* Update BD pointer to next entry */
1523                 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1524 
1525                 /* Doing this here will keep the FEC running while we process
1526                  * incoming frames.  On a heavily loaded network, we should be
1527                  * able to keep up at the expense of system resources.
1528                  */
1529                 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1530         }
1531         rxq->cur_rx = bdp;
1532         return pkt_received;
1533 }
1534 
1535 static int
1536 fec_enet_rx(struct net_device *ndev, int budget)
1537 {
1538         int     pkt_received = 0;
1539         u16     queue_id;
1540         struct fec_enet_private *fep = netdev_priv(ndev);
1541 
1542         for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1543                 clear_bit(queue_id, &fep->work_rx);
1544                 pkt_received += fec_enet_rx_queue(ndev,
1545                                         budget - pkt_received, queue_id);
1546         }
1547         return pkt_received;
1548 }
1549 
1550 static bool
1551 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1552 {
1553         if (int_events == 0)
1554                 return false;
1555 
1556         if (int_events & FEC_ENET_RXF)
1557                 fep->work_rx |= (1 << 2);
1558         if (int_events & FEC_ENET_RXF_1)
1559                 fep->work_rx |= (1 << 0);
1560         if (int_events & FEC_ENET_RXF_2)
1561                 fep->work_rx |= (1 << 1);
1562 
1563         if (int_events & FEC_ENET_TXF)
1564                 fep->work_tx |= (1 << 2);
1565         if (int_events & FEC_ENET_TXF_1)
1566                 fep->work_tx |= (1 << 0);
1567         if (int_events & FEC_ENET_TXF_2)
1568                 fep->work_tx |= (1 << 1);
1569 
1570         return true;
1571 }
1572 
1573 static irqreturn_t
1574 fec_enet_interrupt(int irq, void *dev_id)
1575 {
1576         struct net_device *ndev = dev_id;
1577         struct fec_enet_private *fep = netdev_priv(ndev);
1578         const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1579         uint int_events;
1580         irqreturn_t ret = IRQ_NONE;
1581 
1582         int_events = readl(fep->hwp + FEC_IEVENT);
1583         writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1584         fec_enet_collect_events(fep, int_events);
1585 
1586         if (int_events & napi_mask) {
1587                 ret = IRQ_HANDLED;
1588 
1589                 /* Disable the NAPI interrupts */
1590                 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1591                 napi_schedule(&fep->napi);
1592         }
1593 
1594         if (int_events & FEC_ENET_MII) {
1595                 ret = IRQ_HANDLED;
1596                 complete(&fep->mdio_done);
1597         }
1598 
1599         if (fep->ptp_clock)
1600                 fec_ptp_check_pps_event(fep);
1601 
1602         return ret;
1603 }
1604 
1605 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1606 {
1607         struct net_device *ndev = napi->dev;
1608         struct fec_enet_private *fep = netdev_priv(ndev);
1609         int pkts;
1610 
1611         /*
1612          * Clear any pending transmit or receive interrupts before
1613          * processing the rings to avoid racing with the hardware.
1614          */
1615         writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1616 
1617         pkts = fec_enet_rx(ndev, budget);
1618 
1619         fec_enet_tx(ndev);
1620 
1621         if (pkts < budget) {
1622                 napi_complete(napi);
1623                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1624         }
1625         return pkts;
1626 }
1627 
1628 /* ------------------------------------------------------------------------- */
1629 static void fec_get_mac(struct net_device *ndev)
1630 {
1631         struct fec_enet_private *fep = netdev_priv(ndev);
1632         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1633         unsigned char *iap, tmpaddr[ETH_ALEN];
1634 
1635         /*
1636          * try to get mac address in following order:
1637          *
1638          * 1) module parameter via kernel command line in form
1639          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1640          */
1641         iap = macaddr;
1642 
1643         /*
1644          * 2) from device tree data
1645          */
1646         if (!is_valid_ether_addr(iap)) {
1647                 struct device_node *np = fep->pdev->dev.of_node;
1648                 if (np) {
1649                         const char *mac = of_get_mac_address(np);
1650                         if (mac)
1651                                 iap = (unsigned char *) mac;
1652                 }
1653         }
1654 
1655         /*
1656          * 3) from flash or fuse (via platform data)
1657          */
1658         if (!is_valid_ether_addr(iap)) {
1659 #ifdef CONFIG_M5272
1660                 if (FEC_FLASHMAC)
1661                         iap = (unsigned char *)FEC_FLASHMAC;
1662 #else
1663                 if (pdata)
1664                         iap = (unsigned char *)&pdata->mac;
1665 #endif
1666         }
1667 
1668         /*
1669          * 4) FEC mac registers set by bootloader
1670          */
1671         if (!is_valid_ether_addr(iap)) {
1672                 *((__be32 *) &tmpaddr[0]) =
1673                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1674                 *((__be16 *) &tmpaddr[4]) =
1675                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1676                 iap = &tmpaddr[0];
1677         }
1678 
1679         /*
1680          * 5) random mac address
1681          */
1682         if (!is_valid_ether_addr(iap)) {
1683                 /* Report it and use a random ethernet address instead */
1684                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1685                 eth_hw_addr_random(ndev);
1686                 netdev_info(ndev, "Using random MAC address: %pM\n",
1687                             ndev->dev_addr);
1688                 return;
1689         }
1690 
1691         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1692 
1693         /* Adjust MAC if using macaddr */
1694         if (iap == macaddr)
1695                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1696 }
1697 
1698 /* ------------------------------------------------------------------------- */
1699 
1700 /*
1701  * Phy section
1702  */
1703 static void fec_enet_adjust_link(struct net_device *ndev)
1704 {
1705         struct fec_enet_private *fep = netdev_priv(ndev);
1706         struct phy_device *phy_dev = fep->phy_dev;
1707         int status_change = 0;
1708 
1709         /* Prevent a state halted on mii error */
1710         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1711                 phy_dev->state = PHY_RESUMING;
1712                 return;
1713         }
1714 
1715         /*
1716          * If the netdev is down, or is going down, we're not interested
1717          * in link state events, so just mark our idea of the link as down
1718          * and ignore the event.
1719          */
1720         if (!netif_running(ndev) || !netif_device_present(ndev)) {
1721                 fep->link = 0;
1722         } else if (phy_dev->link) {
1723                 if (!fep->link) {
1724                         fep->link = phy_dev->link;
1725                         status_change = 1;
1726                 }
1727 
1728                 if (fep->full_duplex != phy_dev->duplex) {
1729                         fep->full_duplex = phy_dev->duplex;
1730                         status_change = 1;
1731                 }
1732 
1733                 if (phy_dev->speed != fep->speed) {
1734                         fep->speed = phy_dev->speed;
1735                         status_change = 1;
1736                 }
1737 
1738                 /* if any of the above changed restart the FEC */
1739                 if (status_change) {
1740                         napi_disable(&fep->napi);
1741                         netif_tx_lock_bh(ndev);
1742                         fec_restart(ndev);
1743                         netif_wake_queue(ndev);
1744                         netif_tx_unlock_bh(ndev);
1745                         napi_enable(&fep->napi);
1746                 }
1747         } else {
1748                 if (fep->link) {
1749                         napi_disable(&fep->napi);
1750                         netif_tx_lock_bh(ndev);
1751                         fec_stop(ndev);
1752                         netif_tx_unlock_bh(ndev);
1753                         napi_enable(&fep->napi);
1754                         fep->link = phy_dev->link;
1755                         status_change = 1;
1756                 }
1757         }
1758 
1759         if (status_change)
1760                 phy_print_status(phy_dev);
1761 }
1762 
1763 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1764 {
1765         struct fec_enet_private *fep = bus->priv;
1766         unsigned long time_left;
1767 
1768         fep->mii_timeout = 0;
1769         init_completion(&fep->mdio_done);
1770 
1771         /* start a read op */
1772         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1773                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1774                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1775 
1776         /* wait for end of transfer */
1777         time_left = wait_for_completion_timeout(&fep->mdio_done,
1778                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1779         if (time_left == 0) {
1780                 fep->mii_timeout = 1;
1781                 netdev_err(fep->netdev, "MDIO read timeout\n");
1782                 return -ETIMEDOUT;
1783         }
1784 
1785         /* return value */
1786         return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1787 }
1788 
1789 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1790                            u16 value)
1791 {
1792         struct fec_enet_private *fep = bus->priv;
1793         unsigned long time_left;
1794 
1795         fep->mii_timeout = 0;
1796         init_completion(&fep->mdio_done);
1797 
1798         /* start a write op */
1799         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802                 fep->hwp + FEC_MII_DATA);
1803 
1804         /* wait for end of transfer */
1805         time_left = wait_for_completion_timeout(&fep->mdio_done,
1806                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1807         if (time_left == 0) {
1808                 fep->mii_timeout = 1;
1809                 netdev_err(fep->netdev, "MDIO write timeout\n");
1810                 return -ETIMEDOUT;
1811         }
1812 
1813         return 0;
1814 }
1815 
1816 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1817 {
1818         struct fec_enet_private *fep = netdev_priv(ndev);
1819         int ret;
1820 
1821         if (enable) {
1822                 ret = clk_prepare_enable(fep->clk_ahb);
1823                 if (ret)
1824                         return ret;
1825                 ret = clk_prepare_enable(fep->clk_ipg);
1826                 if (ret)
1827                         goto failed_clk_ipg;
1828                 if (fep->clk_enet_out) {
1829                         ret = clk_prepare_enable(fep->clk_enet_out);
1830                         if (ret)
1831                                 goto failed_clk_enet_out;
1832                 }
1833                 if (fep->clk_ptp) {
1834                         mutex_lock(&fep->ptp_clk_mutex);
1835                         ret = clk_prepare_enable(fep->clk_ptp);
1836                         if (ret) {
1837                                 mutex_unlock(&fep->ptp_clk_mutex);
1838                                 goto failed_clk_ptp;
1839                         } else {
1840                                 fep->ptp_clk_on = true;
1841                         }
1842                         mutex_unlock(&fep->ptp_clk_mutex);
1843                 }
1844                 if (fep->clk_ref) {
1845                         ret = clk_prepare_enable(fep->clk_ref);
1846                         if (ret)
1847                                 goto failed_clk_ref;
1848                 }
1849         } else {
1850                 clk_disable_unprepare(fep->clk_ahb);
1851                 clk_disable_unprepare(fep->clk_ipg);
1852                 if (fep->clk_enet_out)
1853                         clk_disable_unprepare(fep->clk_enet_out);
1854                 if (fep->clk_ptp) {
1855                         mutex_lock(&fep->ptp_clk_mutex);
1856                         clk_disable_unprepare(fep->clk_ptp);
1857                         fep->ptp_clk_on = false;
1858                         mutex_unlock(&fep->ptp_clk_mutex);
1859                 }
1860                 if (fep->clk_ref)
1861                         clk_disable_unprepare(fep->clk_ref);
1862         }
1863 
1864         return 0;
1865 
1866 failed_clk_ref:
1867         if (fep->clk_ref)
1868                 clk_disable_unprepare(fep->clk_ref);
1869 failed_clk_ptp:
1870         if (fep->clk_enet_out)
1871                 clk_disable_unprepare(fep->clk_enet_out);
1872 failed_clk_enet_out:
1873                 clk_disable_unprepare(fep->clk_ipg);
1874 failed_clk_ipg:
1875                 clk_disable_unprepare(fep->clk_ahb);
1876 
1877         return ret;
1878 }
1879 
1880 static int fec_enet_mii_probe(struct net_device *ndev)
1881 {
1882         struct fec_enet_private *fep = netdev_priv(ndev);
1883         const struct platform_device_id *id_entry =
1884                                 platform_get_device_id(fep->pdev);
1885         struct phy_device *phy_dev = NULL;
1886         char mdio_bus_id[MII_BUS_ID_SIZE];
1887         char phy_name[MII_BUS_ID_SIZE + 3];
1888         int phy_id;
1889         int dev_id = fep->dev_id;
1890 
1891         fep->phy_dev = NULL;
1892 
1893         if (fep->phy_node) {
1894                 phy_dev = of_phy_connect(ndev, fep->phy_node,
1895                                          &fec_enet_adjust_link, 0,
1896                                          fep->phy_interface);
1897         } else {
1898                 /* check for attached phy */
1899                 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1900                         if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1901                                 continue;
1902                         if (fep->mii_bus->phy_map[phy_id] == NULL)
1903                                 continue;
1904                         if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1905                                 continue;
1906                         if (dev_id--)
1907                                 continue;
1908                         strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909                         break;
1910                 }
1911 
1912                 if (phy_id >= PHY_MAX_ADDR) {
1913                         netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914                         strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915                         phy_id = 0;
1916                 }
1917 
1918                 snprintf(phy_name, sizeof(phy_name),
1919                          PHY_ID_FMT, mdio_bus_id, phy_id);
1920                 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921                                       fep->phy_interface);
1922         }
1923 
1924         if (IS_ERR(phy_dev)) {
1925                 netdev_err(ndev, "could not attach to PHY\n");
1926                 return PTR_ERR(phy_dev);
1927         }
1928 
1929         /* mask with MAC supported features */
1930         if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1931                 phy_dev->supported &= PHY_GBIT_FEATURES;
1932                 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933 #if !defined(CONFIG_M5272)
1934                 phy_dev->supported |= SUPPORTED_Pause;
1935 #endif
1936         }
1937         else
1938                 phy_dev->supported &= PHY_BASIC_FEATURES;
1939 
1940         phy_dev->advertising = phy_dev->supported;
1941 
1942         fep->phy_dev = phy_dev;
1943         fep->link = 0;
1944         fep->full_duplex = 0;
1945 
1946         netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1947                     fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1948                     fep->phy_dev->irq);
1949 
1950         return 0;
1951 }
1952 
1953 static int fec_enet_mii_init(struct platform_device *pdev)
1954 {
1955         static struct mii_bus *fec0_mii_bus;
1956         struct net_device *ndev = platform_get_drvdata(pdev);
1957         struct fec_enet_private *fep = netdev_priv(ndev);
1958         const struct platform_device_id *id_entry =
1959                                 platform_get_device_id(fep->pdev);
1960         struct device_node *node;
1961         int err = -ENXIO, i;
1962 
1963         /*
1964          * The dual fec interfaces are not equivalent with enet-mac.
1965          * Here are the differences:
1966          *
1967          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1968          *  - fec0 acts as the 1588 time master while fec1 is slave
1969          *  - external phys can only be configured by fec0
1970          *
1971          * That is to say fec1 can not work independently. It only works
1972          * when fec0 is working. The reason behind this design is that the
1973          * second interface is added primarily for Switch mode.
1974          *
1975          * Because of the last point above, both phys are attached on fec0
1976          * mdio interface in board design, and need to be configured by
1977          * fec0 mii_bus.
1978          */
1979         if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1980                 /* fec1 uses fec0 mii_bus */
1981                 if (mii_cnt && fec0_mii_bus) {
1982                         fep->mii_bus = fec0_mii_bus;
1983                         mii_cnt++;
1984                         return 0;
1985                 }
1986                 return -ENOENT;
1987         }
1988 
1989         fep->mii_timeout = 0;
1990 
1991         /*
1992          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1993          *
1994          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1995          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1996          * Reference Manual has an error on this, and gets fixed on i.MX6Q
1997          * document.
1998          */
1999         fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2000         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2001                 fep->phy_speed--;
2002         fep->phy_speed <<= 1;
2003         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2004 
2005         fep->mii_bus = mdiobus_alloc();
2006         if (fep->mii_bus == NULL) {
2007                 err = -ENOMEM;
2008                 goto err_out;
2009         }
2010 
2011         fep->mii_bus->name = "fec_enet_mii_bus";
2012         fep->mii_bus->read = fec_enet_mdio_read;
2013         fep->mii_bus->write = fec_enet_mdio_write;
2014         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2015                 pdev->name, fep->dev_id + 1);
2016         fep->mii_bus->priv = fep;
2017         fep->mii_bus->parent = &pdev->dev;
2018 
2019         fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2020         if (!fep->mii_bus->irq) {
2021                 err = -ENOMEM;
2022                 goto err_out_free_mdiobus;
2023         }
2024 
2025         for (i = 0; i < PHY_MAX_ADDR; i++)
2026                 fep->mii_bus->irq[i] = PHY_POLL;
2027 
2028         node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2029         if (node) {
2030                 err = of_mdiobus_register(fep->mii_bus, node);
2031                 of_node_put(node);
2032         } else {
2033                 err = mdiobus_register(fep->mii_bus);
2034         }
2035 
2036         if (err)
2037                 goto err_out_free_mdio_irq;
2038 
2039         mii_cnt++;
2040 
2041         /* save fec0 mii_bus */
2042         if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
2043                 fec0_mii_bus = fep->mii_bus;
2044 
2045         return 0;
2046 
2047 err_out_free_mdio_irq:
2048         kfree(fep->mii_bus->irq);
2049 err_out_free_mdiobus:
2050         mdiobus_free(fep->mii_bus);
2051 err_out:
2052         return err;
2053 }
2054 
2055 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2056 {
2057         if (--mii_cnt == 0) {
2058                 mdiobus_unregister(fep->mii_bus);
2059                 kfree(fep->mii_bus->irq);
2060                 mdiobus_free(fep->mii_bus);
2061         }
2062 }
2063 
2064 static int fec_enet_get_settings(struct net_device *ndev,
2065                                   struct ethtool_cmd *cmd)
2066 {
2067         struct fec_enet_private *fep = netdev_priv(ndev);
2068         struct phy_device *phydev = fep->phy_dev;
2069 
2070         if (!phydev)
2071                 return -ENODEV;
2072 
2073         return phy_ethtool_gset(phydev, cmd);
2074 }
2075 
2076 static int fec_enet_set_settings(struct net_device *ndev,
2077                                  struct ethtool_cmd *cmd)
2078 {
2079         struct fec_enet_private *fep = netdev_priv(ndev);
2080         struct phy_device *phydev = fep->phy_dev;
2081 
2082         if (!phydev)
2083                 return -ENODEV;
2084 
2085         return phy_ethtool_sset(phydev, cmd);
2086 }
2087 
2088 static void fec_enet_get_drvinfo(struct net_device *ndev,
2089                                  struct ethtool_drvinfo *info)
2090 {
2091         struct fec_enet_private *fep = netdev_priv(ndev);
2092 
2093         strlcpy(info->driver, fep->pdev->dev.driver->name,
2094                 sizeof(info->driver));
2095         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2096         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2097 }
2098 
2099 static int fec_enet_get_ts_info(struct net_device *ndev,
2100                                 struct ethtool_ts_info *info)
2101 {
2102         struct fec_enet_private *fep = netdev_priv(ndev);
2103 
2104         if (fep->bufdesc_ex) {
2105 
2106                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2107                                         SOF_TIMESTAMPING_RX_SOFTWARE |
2108                                         SOF_TIMESTAMPING_SOFTWARE |
2109                                         SOF_TIMESTAMPING_TX_HARDWARE |
2110                                         SOF_TIMESTAMPING_RX_HARDWARE |
2111                                         SOF_TIMESTAMPING_RAW_HARDWARE;
2112                 if (fep->ptp_clock)
2113                         info->phc_index = ptp_clock_index(fep->ptp_clock);
2114                 else
2115                         info->phc_index = -1;
2116 
2117                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2118                                  (1 << HWTSTAMP_TX_ON);
2119 
2120                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2121                                    (1 << HWTSTAMP_FILTER_ALL);
2122                 return 0;
2123         } else {
2124                 return ethtool_op_get_ts_info(ndev, info);
2125         }
2126 }
2127 
2128 #if !defined(CONFIG_M5272)
2129 
2130 static void fec_enet_get_pauseparam(struct net_device *ndev,
2131                                     struct ethtool_pauseparam *pause)
2132 {
2133         struct fec_enet_private *fep = netdev_priv(ndev);
2134 
2135         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2136         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2137         pause->rx_pause = pause->tx_pause;
2138 }
2139 
2140 static int fec_enet_set_pauseparam(struct net_device *ndev,
2141                                    struct ethtool_pauseparam *pause)
2142 {
2143         struct fec_enet_private *fep = netdev_priv(ndev);
2144 
2145         if (!fep->phy_dev)
2146                 return -ENODEV;
2147 
2148         if (pause->tx_pause != pause->rx_pause) {
2149                 netdev_info(ndev,
2150                         "hardware only support enable/disable both tx and rx");
2151                 return -EINVAL;
2152         }
2153 
2154         fep->pause_flag = 0;
2155 
2156         /* tx pause must be same as rx pause */
2157         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2158         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2159 
2160         if (pause->rx_pause || pause->autoneg) {
2161                 fep->phy_dev->supported |= ADVERTISED_Pause;
2162                 fep->phy_dev->advertising |= ADVERTISED_Pause;
2163         } else {
2164                 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2165                 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2166         }
2167 
2168         if (pause->autoneg) {
2169                 if (netif_running(ndev))
2170                         fec_stop(ndev);
2171                 phy_start_aneg(fep->phy_dev);
2172         }
2173         if (netif_running(ndev)) {
2174                 napi_disable(&fep->napi);
2175                 netif_tx_lock_bh(ndev);
2176                 fec_restart(ndev);
2177                 netif_wake_queue(ndev);
2178                 netif_tx_unlock_bh(ndev);
2179                 napi_enable(&fep->napi);
2180         }
2181 
2182         return 0;
2183 }
2184 
2185 static const struct fec_stat {
2186         char name[ETH_GSTRING_LEN];
2187         u16 offset;
2188 } fec_stats[] = {
2189         /* RMON TX */
2190         { "tx_dropped", RMON_T_DROP },
2191         { "tx_packets", RMON_T_PACKETS },
2192         { "tx_broadcast", RMON_T_BC_PKT },
2193         { "tx_multicast", RMON_T_MC_PKT },
2194         { "tx_crc_errors", RMON_T_CRC_ALIGN },
2195         { "tx_undersize", RMON_T_UNDERSIZE },
2196         { "tx_oversize", RMON_T_OVERSIZE },
2197         { "tx_fragment", RMON_T_FRAG },
2198         { "tx_jabber", RMON_T_JAB },
2199         { "tx_collision", RMON_T_COL },
2200         { "tx_64byte", RMON_T_P64 },
2201         { "tx_65to127byte", RMON_T_P65TO127 },
2202         { "tx_128to255byte", RMON_T_P128TO255 },
2203         { "tx_256to511byte", RMON_T_P256TO511 },
2204         { "tx_512to1023byte", RMON_T_P512TO1023 },
2205         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2206         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2207         { "tx_octets", RMON_T_OCTETS },
2208 
2209         /* IEEE TX */
2210         { "IEEE_tx_drop", IEEE_T_DROP },
2211         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2212         { "IEEE_tx_1col", IEEE_T_1COL },
2213         { "IEEE_tx_mcol", IEEE_T_MCOL },
2214         { "IEEE_tx_def", IEEE_T_DEF },
2215         { "IEEE_tx_lcol", IEEE_T_LCOL },
2216         { "IEEE_tx_excol", IEEE_T_EXCOL },
2217         { "IEEE_tx_macerr", IEEE_T_MACERR },
2218         { "IEEE_tx_cserr", IEEE_T_CSERR },
2219         { "IEEE_tx_sqe", IEEE_T_SQE },
2220         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2221         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2222 
2223         /* RMON RX */
2224         { "rx_packets", RMON_R_PACKETS },
2225         { "rx_broadcast", RMON_R_BC_PKT },
2226         { "rx_multicast", RMON_R_MC_PKT },
2227         { "rx_crc_errors", RMON_R_CRC_ALIGN },
2228         { "rx_undersize", RMON_R_UNDERSIZE },
2229         { "rx_oversize", RMON_R_OVERSIZE },
2230         { "rx_fragment", RMON_R_FRAG },
2231         { "rx_jabber", RMON_R_JAB },
2232         { "rx_64byte", RMON_R_P64 },
2233         { "rx_65to127byte", RMON_R_P65TO127 },
2234         { "rx_128to255byte", RMON_R_P128TO255 },
2235         { "rx_256to511byte", RMON_R_P256TO511 },
2236         { "rx_512to1023byte", RMON_R_P512TO1023 },
2237         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2238         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2239         { "rx_octets", RMON_R_OCTETS },
2240 
2241         /* IEEE RX */
2242         { "IEEE_rx_drop", IEEE_R_DROP },
2243         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2244         { "IEEE_rx_crc", IEEE_R_CRC },
2245         { "IEEE_rx_align", IEEE_R_ALIGN },
2246         { "IEEE_rx_macerr", IEEE_R_MACERR },
2247         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2248         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2249 };
2250 
2251 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2252         struct ethtool_stats *stats, u64 *data)
2253 {
2254         struct fec_enet_private *fep = netdev_priv(dev);
2255         int i;
2256 
2257         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2258                 data[i] = readl(fep->hwp + fec_stats[i].offset);
2259 }
2260 
2261 static void fec_enet_get_strings(struct net_device *netdev,
2262         u32 stringset, u8 *data)
2263 {
2264         int i;
2265         switch (stringset) {
2266         case ETH_SS_STATS:
2267                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2268                         memcpy(data + i * ETH_GSTRING_LEN,
2269                                 fec_stats[i].name, ETH_GSTRING_LEN);
2270                 break;
2271         }
2272 }
2273 
2274 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2275 {
2276         switch (sset) {
2277         case ETH_SS_STATS:
2278                 return ARRAY_SIZE(fec_stats);
2279         default:
2280                 return -EOPNOTSUPP;
2281         }
2282 }
2283 #endif /* !defined(CONFIG_M5272) */
2284 
2285 static int fec_enet_nway_reset(struct net_device *dev)
2286 {
2287         struct fec_enet_private *fep = netdev_priv(dev);
2288         struct phy_device *phydev = fep->phy_dev;
2289 
2290         if (!phydev)
2291                 return -ENODEV;
2292 
2293         return genphy_restart_aneg(phydev);
2294 }
2295 
2296 /* ITR clock source is enet system clock (clk_ahb).
2297  * TCTT unit is cycle_ns * 64 cycle
2298  * So, the ICTT value = X us / (cycle_ns * 64)
2299  */
2300 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2301 {
2302         struct fec_enet_private *fep = netdev_priv(ndev);
2303 
2304         return us * (fep->itr_clk_rate / 64000) / 1000;
2305 }
2306 
2307 /* Set threshold for interrupt coalescing */
2308 static void fec_enet_itr_coal_set(struct net_device *ndev)
2309 {
2310         struct fec_enet_private *fep = netdev_priv(ndev);
2311         const struct platform_device_id *id_entry =
2312                                 platform_get_device_id(fep->pdev);
2313         int rx_itr, tx_itr;
2314 
2315         if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2316                 return;
2317 
2318         /* Must be greater than zero to avoid unpredictable behavior */
2319         if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2320             !fep->tx_time_itr || !fep->tx_pkts_itr)
2321                 return;
2322 
2323         /* Select enet system clock as Interrupt Coalescing
2324          * timer Clock Source
2325          */
2326         rx_itr = FEC_ITR_CLK_SEL;
2327         tx_itr = FEC_ITR_CLK_SEL;
2328 
2329         /* set ICFT and ICTT */
2330         rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2331         rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2332         tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2333         tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2334 
2335         rx_itr |= FEC_ITR_EN;
2336         tx_itr |= FEC_ITR_EN;
2337 
2338         writel(tx_itr, fep->hwp + FEC_TXIC0);
2339         writel(rx_itr, fep->hwp + FEC_RXIC0);
2340         writel(tx_itr, fep->hwp + FEC_TXIC1);
2341         writel(rx_itr, fep->hwp + FEC_RXIC1);
2342         writel(tx_itr, fep->hwp + FEC_TXIC2);
2343         writel(rx_itr, fep->hwp + FEC_RXIC2);
2344 }
2345 
2346 static int
2347 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2348 {
2349         struct fec_enet_private *fep = netdev_priv(ndev);
2350         const struct platform_device_id *id_entry =
2351                                 platform_get_device_id(fep->pdev);
2352 
2353         if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2354                 return -EOPNOTSUPP;
2355 
2356         ec->rx_coalesce_usecs = fep->rx_time_itr;
2357         ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2358 
2359         ec->tx_coalesce_usecs = fep->tx_time_itr;
2360         ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2361 
2362         return 0;
2363 }
2364 
2365 static int
2366 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2367 {
2368         struct fec_enet_private *fep = netdev_priv(ndev);
2369         const struct platform_device_id *id_entry =
2370                                 platform_get_device_id(fep->pdev);
2371 
2372         unsigned int cycle;
2373 
2374         if (!(id_entry->driver_data & FEC_QUIRK_HAS_AVB))
2375                 return -EOPNOTSUPP;
2376 
2377         if (ec->rx_max_coalesced_frames > 255) {
2378                 pr_err("Rx coalesced frames exceed hardware limiation");
2379                 return -EINVAL;
2380         }
2381 
2382         if (ec->tx_max_coalesced_frames > 255) {
2383                 pr_err("Tx coalesced frame exceed hardware limiation");
2384                 return -EINVAL;
2385         }
2386 
2387         cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2388         if (cycle > 0xFFFF) {
2389                 pr_err("Rx coalesed usec exceeed hardware limiation");
2390                 return -EINVAL;
2391         }
2392 
2393         cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2394         if (cycle > 0xFFFF) {
2395                 pr_err("Rx coalesed usec exceeed hardware limiation");
2396                 return -EINVAL;
2397         }
2398 
2399         fep->rx_time_itr = ec->rx_coalesce_usecs;
2400         fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2401 
2402         fep->tx_time_itr = ec->tx_coalesce_usecs;
2403         fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2404 
2405         fec_enet_itr_coal_set(ndev);
2406 
2407         return 0;
2408 }
2409 
2410 static void fec_enet_itr_coal_init(struct net_device *ndev)
2411 {
2412         struct ethtool_coalesce ec;
2413 
2414         ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2415         ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2416 
2417         ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2418         ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2419 
2420         fec_enet_set_coalesce(ndev, &ec);
2421 }
2422 
2423 static int fec_enet_get_tunable(struct net_device *netdev,
2424                                 const struct ethtool_tunable *tuna,
2425                                 void *data)
2426 {
2427         struct fec_enet_private *fep = netdev_priv(netdev);
2428         int ret = 0;
2429 
2430         switch (tuna->id) {
2431         case ETHTOOL_RX_COPYBREAK:
2432                 *(u32 *)data = fep->rx_copybreak;
2433                 break;
2434         default:
2435                 ret = -EINVAL;
2436                 break;
2437         }
2438 
2439         return ret;
2440 }
2441 
2442 static int fec_enet_set_tunable(struct net_device *netdev,
2443                                 const struct ethtool_tunable *tuna,
2444                                 const void *data)
2445 {
2446         struct fec_enet_private *fep = netdev_priv(netdev);
2447         int ret = 0;
2448 
2449         switch (tuna->id) {
2450         case ETHTOOL_RX_COPYBREAK:
2451                 fep->rx_copybreak = *(u32 *)data;
2452                 break;
2453         default:
2454                 ret = -EINVAL;
2455                 break;
2456         }
2457 
2458         return ret;
2459 }
2460 
2461 static const struct ethtool_ops fec_enet_ethtool_ops = {
2462         .get_settings           = fec_enet_get_settings,
2463         .set_settings           = fec_enet_set_settings,
2464         .get_drvinfo            = fec_enet_get_drvinfo,
2465         .nway_reset             = fec_enet_nway_reset,
2466         .get_link               = ethtool_op_get_link,
2467         .get_coalesce           = fec_enet_get_coalesce,
2468         .set_coalesce           = fec_enet_set_coalesce,
2469 #ifndef CONFIG_M5272
2470         .get_pauseparam         = fec_enet_get_pauseparam,
2471         .set_pauseparam         = fec_enet_set_pauseparam,
2472         .get_strings            = fec_enet_get_strings,
2473         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2474         .get_sset_count         = fec_enet_get_sset_count,
2475 #endif
2476         .get_ts_info            = fec_enet_get_ts_info,
2477         .get_tunable            = fec_enet_get_tunable,
2478         .set_tunable            = fec_enet_set_tunable,
2479 };
2480 
2481 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2482 {
2483         struct fec_enet_private *fep = netdev_priv(ndev);
2484         struct phy_device *phydev = fep->phy_dev;
2485 
2486         if (!netif_running(ndev))
2487                 return -EINVAL;
2488 
2489         if (!phydev)
2490                 return -ENODEV;
2491 
2492         if (fep->bufdesc_ex) {
2493                 if (cmd == SIOCSHWTSTAMP)
2494                         return fec_ptp_set(ndev, rq);
2495                 if (cmd == SIOCGHWTSTAMP)
2496                         return fec_ptp_get(ndev, rq);
2497         }
2498 
2499         return phy_mii_ioctl(phydev, rq, cmd);
2500 }
2501 
2502 static void fec_enet_free_buffers(struct net_device *ndev)
2503 {
2504         struct fec_enet_private *fep = netdev_priv(ndev);
2505         unsigned int i;
2506         struct sk_buff *skb;
2507         struct bufdesc  *bdp;
2508         struct fec_enet_priv_tx_q *txq;
2509         struct fec_enet_priv_rx_q *rxq;
2510         unsigned int q;
2511 
2512         for (q = 0; q < fep->num_rx_queues; q++) {
2513                 rxq = fep->rx_queue[q];
2514                 bdp = rxq->rx_bd_base;
2515                 for (i = 0; i < rxq->rx_ring_size; i++) {
2516                         skb = rxq->rx_skbuff[i];
2517                         rxq->rx_skbuff[i] = NULL;
2518                         if (skb) {
2519                                 dma_unmap_single(&fep->pdev->dev,
2520                                                  bdp->cbd_bufaddr,
2521                                                  FEC_ENET_RX_FRSIZE - fep->rx_align,
2522                                                  DMA_FROM_DEVICE);
2523                                 dev_kfree_skb(skb);
2524                         }
2525                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
2526                 }
2527         }
2528 
2529         for (q = 0; q < fep->num_tx_queues; q++) {
2530                 txq = fep->tx_queue[q];
2531                 bdp = txq->tx_bd_base;
2532                 for (i = 0; i < txq->tx_ring_size; i++) {
2533                         kfree(txq->tx_bounce[i]);
2534                         txq->tx_bounce[i] = NULL;
2535                         skb = txq->tx_skbuff[i];
2536                         txq->tx_skbuff[i] = NULL;
2537                         dev_kfree_skb(skb);
2538                 }
2539         }
2540 }
2541 
2542 static void fec_enet_free_queue(struct net_device *ndev)
2543 {
2544         struct fec_enet_private *fep = netdev_priv(ndev);
2545         int i;
2546         struct fec_enet_priv_tx_q *txq;
2547 
2548         for (i = 0; i < fep->num_tx_queues; i++)
2549                 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2550                         txq = fep->tx_queue[i];
2551                         dma_free_coherent(NULL,
2552                                           txq->tx_ring_size * TSO_HEADER_SIZE,
2553                                           txq->tso_hdrs,
2554                                           txq->tso_hdrs_dma);
2555                 }
2556 
2557         for (i = 0; i < fep->num_rx_queues; i++)
2558                 if (fep->rx_queue[i])
2559                         kfree(fep->rx_queue[i]);
2560 
2561         for (i = 0; i < fep->num_tx_queues; i++)
2562                 if (fep->tx_queue[i])
2563                         kfree(fep->tx_queue[i]);
2564 }
2565 
2566 static int fec_enet_alloc_queue(struct net_device *ndev)
2567 {
2568         struct fec_enet_private *fep = netdev_priv(ndev);
2569         int i;
2570         int ret = 0;
2571         struct fec_enet_priv_tx_q *txq;
2572 
2573         for (i = 0; i < fep->num_tx_queues; i++) {
2574                 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2575                 if (!txq) {
2576                         ret = -ENOMEM;
2577                         goto alloc_failed;
2578                 }
2579 
2580                 fep->tx_queue[i] = txq;
2581                 txq->tx_ring_size = TX_RING_SIZE;
2582                 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2583 
2584                 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2585                 txq->tx_wake_threshold =
2586                                 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2587 
2588                 txq->tso_hdrs = dma_alloc_coherent(NULL,
2589                                         txq->tx_ring_size * TSO_HEADER_SIZE,
2590                                         &txq->tso_hdrs_dma,
2591                                         GFP_KERNEL);
2592                 if (!txq->tso_hdrs) {
2593                         ret = -ENOMEM;
2594                         goto alloc_failed;
2595                 }
2596         }
2597 
2598         for (i = 0; i < fep->num_rx_queues; i++) {
2599                 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2600                                            GFP_KERNEL);
2601                 if (!fep->rx_queue[i]) {
2602                         ret = -ENOMEM;
2603                         goto alloc_failed;
2604                 }
2605 
2606                 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2607                 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2608         }
2609         return ret;
2610 
2611 alloc_failed:
2612         fec_enet_free_queue(ndev);
2613         return ret;
2614 }
2615 
2616 static int
2617 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2618 {
2619         struct fec_enet_private *fep = netdev_priv(ndev);
2620         unsigned int i;
2621         struct sk_buff *skb;
2622         struct bufdesc  *bdp;
2623         struct fec_enet_priv_rx_q *rxq;
2624 
2625         rxq = fep->rx_queue[queue];
2626         bdp = rxq->rx_bd_base;
2627         for (i = 0; i < rxq->rx_ring_size; i++) {
2628                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2629                 if (!skb)
2630                         goto err_alloc;
2631 
2632                 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2633                         dev_kfree_skb(skb);
2634                         goto err_alloc;
2635                 }
2636 
2637                 rxq->rx_skbuff[i] = skb;
2638                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2639 
2640                 if (fep->bufdesc_ex) {
2641                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2642                         ebdp->cbd_esc = BD_ENET_RX_INT;
2643                 }
2644 
2645                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2646         }
2647 
2648         /* Set the last buffer to wrap. */
2649         bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2650         bdp->cbd_sc |= BD_SC_WRAP;
2651         return 0;
2652 
2653  err_alloc:
2654         fec_enet_free_buffers(ndev);
2655         return -ENOMEM;
2656 }
2657 
2658 static int
2659 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2660 {
2661         struct fec_enet_private *fep = netdev_priv(ndev);
2662         unsigned int i;
2663         struct bufdesc  *bdp;
2664         struct fec_enet_priv_tx_q *txq;
2665 
2666         txq = fep->tx_queue[queue];
2667         bdp = txq->tx_bd_base;
2668         for (i = 0; i < txq->tx_ring_size; i++) {
2669                 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2670                 if (!txq->tx_bounce[i])
2671                         goto err_alloc;
2672 
2673                 bdp->cbd_sc = 0;
2674                 bdp->cbd_bufaddr = 0;
2675 
2676                 if (fep->bufdesc_ex) {
2677                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2678                         ebdp->cbd_esc = BD_ENET_TX_INT;
2679                 }
2680 
2681                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2682         }
2683 
2684         /* Set the last buffer to wrap. */
2685         bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2686         bdp->cbd_sc |= BD_SC_WRAP;
2687 
2688         return 0;
2689 
2690  err_alloc:
2691         fec_enet_free_buffers(ndev);
2692         return -ENOMEM;
2693 }
2694 
2695 static int fec_enet_alloc_buffers(struct net_device *ndev)
2696 {
2697         struct fec_enet_private *fep = netdev_priv(ndev);
2698         unsigned int i;
2699 
2700         for (i = 0; i < fep->num_rx_queues; i++)
2701                 if (fec_enet_alloc_rxq_buffers(ndev, i))
2702                         return -ENOMEM;
2703 
2704         for (i = 0; i < fep->num_tx_queues; i++)
2705                 if (fec_enet_alloc_txq_buffers(ndev, i))
2706                         return -ENOMEM;
2707         return 0;
2708 }
2709 
2710 static int
2711 fec_enet_open(struct net_device *ndev)
2712 {
2713         struct fec_enet_private *fep = netdev_priv(ndev);
2714         int ret;
2715 
2716         pinctrl_pm_select_default_state(&fep->pdev->dev);
2717         ret = fec_enet_clk_enable(ndev, true);
2718         if (ret)
2719                 return ret;
2720 
2721         /* I should reset the ring buffers here, but I don't yet know
2722          * a simple way to do that.
2723          */
2724 
2725         ret = fec_enet_alloc_buffers(ndev);
2726         if (ret)
2727                 goto err_enet_alloc;
2728 
2729         /* Probe and connect to PHY when open the interface */
2730         ret = fec_enet_mii_probe(ndev);
2731         if (ret)
2732                 goto err_enet_mii_probe;
2733 
2734         fec_restart(ndev);
2735         napi_enable(&fep->napi);
2736         phy_start(fep->phy_dev);
2737         netif_tx_start_all_queues(ndev);
2738 
2739         return 0;
2740 
2741 err_enet_mii_probe:
2742         fec_enet_free_buffers(ndev);
2743 err_enet_alloc:
2744         fec_enet_clk_enable(ndev, false);
2745         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2746         return ret;
2747 }
2748 
2749 static int
2750 fec_enet_close(struct net_device *ndev)
2751 {
2752         struct fec_enet_private *fep = netdev_priv(ndev);
2753 
2754         phy_stop(fep->phy_dev);
2755 
2756         if (netif_device_present(ndev)) {
2757                 napi_disable(&fep->napi);
2758                 netif_tx_disable(ndev);
2759                 fec_stop(ndev);
2760         }
2761 
2762         phy_disconnect(fep->phy_dev);
2763         fep->phy_dev = NULL;
2764 
2765         fec_enet_clk_enable(ndev, false);
2766         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2767         fec_enet_free_buffers(ndev);
2768 
2769         return 0;
2770 }
2771 
2772 /* Set or clear the multicast filter for this adaptor.
2773  * Skeleton taken from sunlance driver.
2774  * The CPM Ethernet implementation allows Multicast as well as individual
2775  * MAC address filtering.  Some of the drivers check to make sure it is
2776  * a group multicast address, and discard those that are not.  I guess I
2777  * will do the same for now, but just remove the test if you want
2778  * individual filtering as well (do the upper net layers want or support
2779  * this kind of feature?).
2780  */
2781 
2782 #define HASH_BITS       6               /* #bits in hash */
2783 #define CRC32_POLY      0xEDB88320
2784 
2785 static void set_multicast_list(struct net_device *ndev)
2786 {
2787         struct fec_enet_private *fep = netdev_priv(ndev);
2788         struct netdev_hw_addr *ha;
2789         unsigned int i, bit, data, crc, tmp;
2790         unsigned char hash;
2791 
2792         if (ndev->flags & IFF_PROMISC) {
2793                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2794                 tmp |= 0x8;
2795                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2796                 return;
2797         }
2798 
2799         tmp = readl(fep->hwp + FEC_R_CNTRL);
2800         tmp &= ~0x8;
2801         writel(tmp, fep->hwp + FEC_R_CNTRL);
2802 
2803         if (ndev->flags & IFF_ALLMULTI) {
2804                 /* Catch all multicast addresses, so set the
2805                  * filter to all 1's
2806                  */
2807                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2808                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2809 
2810                 return;
2811         }
2812 
2813         /* Clear filter and add the addresses in hash register
2814          */
2815         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2816         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2817 
2818         netdev_for_each_mc_addr(ha, ndev) {
2819                 /* calculate crc32 value of mac address */
2820                 crc = 0xffffffff;
2821 
2822                 for (i = 0; i < ndev->addr_len; i++) {
2823                         data = ha->addr[i];
2824                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2825                                 crc = (crc >> 1) ^
2826                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2827                         }
2828                 }
2829 
2830                 /* only upper 6 bits (HASH_BITS) are used
2831                  * which point to specific bit in he hash registers
2832                  */
2833                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2834 
2835                 if (hash > 31) {
2836                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2837                         tmp |= 1 << (hash - 32);
2838                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2839                 } else {
2840                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2841                         tmp |= 1 << hash;
2842                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2843                 }
2844         }
2845 }
2846 
2847 /* Set a MAC change in hardware. */
2848 static int
2849 fec_set_mac_address(struct net_device *ndev, void *p)
2850 {
2851         struct fec_enet_private *fep = netdev_priv(ndev);
2852         struct sockaddr *addr = p;
2853 
2854         if (addr) {
2855                 if (!is_valid_ether_addr(addr->sa_data))
2856                         return -EADDRNOTAVAIL;
2857                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2858         }
2859 
2860         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2861                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2862                 fep->hwp + FEC_ADDR_LOW);
2863         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2864                 fep->hwp + FEC_ADDR_HIGH);
2865         return 0;
2866 }
2867 
2868 #ifdef CONFIG_NET_POLL_CONTROLLER
2869 /**
2870  * fec_poll_controller - FEC Poll controller function
2871  * @dev: The FEC network adapter
2872  *
2873  * Polled functionality used by netconsole and others in non interrupt mode
2874  *
2875  */
2876 static void fec_poll_controller(struct net_device *dev)
2877 {
2878         int i;
2879         struct fec_enet_private *fep = netdev_priv(dev);
2880 
2881         for (i = 0; i < FEC_IRQ_NUM; i++) {
2882                 if (fep->irq[i] > 0) {
2883                         disable_irq(fep->irq[i]);
2884                         fec_enet_interrupt(fep->irq[i], dev);
2885                         enable_irq(fep->irq[i]);
2886                 }
2887         }
2888 }
2889 #endif
2890 
2891 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2892 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2893         netdev_features_t features)
2894 {
2895         struct fec_enet_private *fep = netdev_priv(netdev);
2896         netdev_features_t changed = features ^ netdev->features;
2897 
2898         netdev->features = features;
2899 
2900         /* Receive checksum has been changed */
2901         if (changed & NETIF_F_RXCSUM) {
2902                 if (features & NETIF_F_RXCSUM)
2903                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2904                 else
2905                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2906         }
2907 }
2908 
2909 static int fec_set_features(struct net_device *netdev,
2910         netdev_features_t features)
2911 {
2912         struct fec_enet_private *fep = netdev_priv(netdev);
2913         netdev_features_t changed = features ^ netdev->features;
2914 
2915         if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2916                 napi_disable(&fep->napi);
2917                 netif_tx_lock_bh(netdev);
2918                 fec_stop(netdev);
2919                 fec_enet_set_netdev_features(netdev, features);
2920                 fec_restart(netdev);
2921                 netif_tx_wake_all_queues(netdev);
2922                 netif_tx_unlock_bh(netdev);
2923                 napi_enable(&fep->napi);
2924         } else {
2925                 fec_enet_set_netdev_features(netdev, features);
2926         }
2927 
2928         return 0;
2929 }
2930 
2931 static const struct net_device_ops fec_netdev_ops = {
2932         .ndo_open               = fec_enet_open,
2933         .ndo_stop               = fec_enet_close,
2934         .ndo_start_xmit         = fec_enet_start_xmit,
2935         .ndo_set_rx_mode        = set_multicast_list,
2936         .ndo_change_mtu         = eth_change_mtu,
2937         .ndo_validate_addr      = eth_validate_addr,
2938         .ndo_tx_timeout         = fec_timeout,
2939         .ndo_set_mac_address    = fec_set_mac_address,
2940         .ndo_do_ioctl           = fec_enet_ioctl,
2941 #ifdef CONFIG_NET_POLL_CONTROLLER
2942         .ndo_poll_controller    = fec_poll_controller,
2943 #endif
2944         .ndo_set_features       = fec_set_features,
2945 };
2946 
2947  /*
2948   * XXX:  We need to clean up on failure exits here.
2949   *
2950   */
2951 static int fec_enet_init(struct net_device *ndev)
2952 {
2953         struct fec_enet_private *fep = netdev_priv(ndev);
2954         const struct platform_device_id *id_entry =
2955                                 platform_get_device_id(fep->pdev);
2956         struct fec_enet_priv_tx_q *txq;
2957         struct fec_enet_priv_rx_q *rxq;
2958         struct bufdesc *cbd_base;
2959         dma_addr_t bd_dma;
2960         int bd_size;
2961         unsigned int i;
2962 
2963 #if defined(CONFIG_ARM)
2964         fep->rx_align = 0xf;
2965         fep->tx_align = 0xf;
2966 #else
2967         fep->rx_align = 0x3;
2968         fep->tx_align = 0x3;
2969 #endif
2970 
2971         fec_enet_alloc_queue(ndev);
2972 
2973         if (fep->bufdesc_ex)
2974                 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2975         else
2976                 fep->bufdesc_size = sizeof(struct bufdesc);
2977         bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
2978                         fep->bufdesc_size;
2979 
2980         /* Allocate memory for buffer descriptors. */
2981         cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
2982                                       GFP_KERNEL);
2983         if (!cbd_base) {
2984                 return -ENOMEM;
2985         }
2986 
2987         memset(cbd_base, 0, bd_size);
2988 
2989         /* Get the Ethernet address */
2990         fec_get_mac(ndev);
2991         /* make sure MAC we just acquired is programmed into the hw */
2992         fec_set_mac_address(ndev, NULL);
2993 
2994         /* Set receive and transmit descriptor base. */
2995         for (i = 0; i < fep->num_rx_queues; i++) {
2996                 rxq = fep->rx_queue[i];
2997                 rxq->index = i;
2998                 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
2999                 rxq->bd_dma = bd_dma;
3000                 if (fep->bufdesc_ex) {
3001                         bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3002                         cbd_base = (struct bufdesc *)
3003                                 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3004                 } else {
3005                         bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3006                         cbd_base += rxq->rx_ring_size;
3007                 }
3008         }
3009 
3010         for (i = 0; i < fep->num_tx_queues; i++) {
3011                 txq = fep->tx_queue[i];
3012                 txq->index = i;
3013                 txq->tx_bd_base = (struct bufdesc *)cbd_base;
3014                 txq->bd_dma = bd_dma;
3015                 if (fep->bufdesc_ex) {
3016                         bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3017                         cbd_base = (struct bufdesc *)
3018                          (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3019                 } else {
3020                         bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3021                         cbd_base += txq->tx_ring_size;
3022                 }
3023         }
3024 
3025 
3026         /* The FEC Ethernet specific entries in the device structure */
3027         ndev->watchdog_timeo = TX_TIMEOUT;
3028         ndev->netdev_ops = &fec_netdev_ops;
3029         ndev->ethtool_ops = &fec_enet_ethtool_ops;
3030 
3031         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3032         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3033 
3034         if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
3035                 /* enable hw VLAN support */
3036                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3037 
3038         if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
3039                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3040 
3041                 /* enable hw accelerator */
3042                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3043                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3044                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3045         }
3046 
3047         if (id_entry->driver_data & FEC_QUIRK_HAS_AVB) {
3048                 fep->tx_align = 0;
3049                 fep->rx_align = 0x3f;
3050         }
3051 
3052         ndev->hw_features = ndev->features;
3053 
3054         fec_restart(ndev);
3055 
3056         return 0;
3057 }
3058 
3059 #ifdef CONFIG_OF
3060 static void fec_reset_phy(struct platform_device *pdev)
3061 {
3062         int err, phy_reset;
3063         int msec = 1;
3064         struct device_node *np = pdev->dev.of_node;
3065 
3066         if (!np)
3067                 return;
3068 
3069         of_property_read_u32(np, "phy-reset-duration", &msec);
3070         /* A sane reset duration should not be longer than 1s */
3071         if (msec > 1000)
3072                 msec = 1;
3073 
3074         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3075         if (!gpio_is_valid(phy_reset))
3076                 return;
3077 
3078         err = devm_gpio_request_one(&pdev->dev, phy_reset,
3079                                     GPIOF_OUT_INIT_LOW, "phy-reset");
3080         if (err) {
3081                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3082                 return;
3083         }
3084         msleep(msec);
3085         gpio_set_value(phy_reset, 1);
3086 }
3087 #else /* CONFIG_OF */
3088 static void fec_reset_phy(struct platform_device *pdev)
3089 {
3090         /*
3091          * In case of platform probe, the reset has been done
3092          * by machine code.
3093          */
3094 }
3095 #endif /* CONFIG_OF */
3096 
3097 static void
3098 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3099 {
3100         struct device_node *np = pdev->dev.of_node;
3101         int err;
3102 
3103         *num_tx = *num_rx = 1;
3104 
3105         if (!np || !of_device_is_available(np))
3106                 return;
3107 
3108         /* parse the num of tx and rx queues */
3109         err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3110         if (err)
3111                 *num_tx = 1;
3112 
3113         err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3114         if (err)
3115                 *num_rx = 1;
3116 
3117         if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3118                 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3119                          *num_tx);
3120                 *num_tx = 1;
3121                 return;
3122         }
3123 
3124         if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3125                 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3126                          *num_rx);
3127                 *num_rx = 1;
3128                 return;
3129         }
3130 
3131 }
3132 
3133 static int
3134 fec_probe(struct platform_device *pdev)
3135 {
3136         struct fec_enet_private *fep;
3137         struct fec_platform_data *pdata;
3138         struct net_device *ndev;
3139         int i, irq, ret = 0;
3140         struct resource *r;
3141         const struct of_device_id *of_id;
3142         static int dev_id;
3143         struct device_node *np = pdev->dev.of_node, *phy_node;
3144         int num_tx_qs;
3145         int num_rx_qs;
3146 
3147         of_id = of_match_device(fec_dt_ids, &pdev->dev);
3148         if (of_id)
3149                 pdev->id_entry = of_id->data;
3150 
3151         fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3152 
3153         /* Init network device */
3154         ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3155                                   num_tx_qs, num_rx_qs);
3156         if (!ndev)
3157                 return -ENOMEM;
3158 
3159         SET_NETDEV_DEV(ndev, &pdev->dev);
3160 
3161         /* setup board info structure */
3162         fep = netdev_priv(ndev);
3163 
3164         fep->num_rx_queues = num_rx_qs;
3165         fep->num_tx_queues = num_tx_qs;
3166 
3167 #if !defined(CONFIG_M5272)
3168         /* default enable pause frame auto negotiation */
3169         if (pdev->id_entry &&
3170             (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
3171                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3172 #endif
3173 
3174         /* Select default pin state */
3175         pinctrl_pm_select_default_state(&pdev->dev);
3176 
3177         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3178         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3179         if (IS_ERR(fep->hwp)) {
3180                 ret = PTR_ERR(fep->hwp);
3181                 goto failed_ioremap;
3182         }
3183 
3184         fep->pdev = pdev;
3185         fep->dev_id = dev_id++;
3186 
3187         fep->bufdesc_ex = 0;
3188 
3189         platform_set_drvdata(pdev, ndev);
3190 
3191         phy_node = of_parse_phandle(np, "phy-handle", 0);
3192         if (!phy_node && of_phy_is_fixed_link(np)) {
3193                 ret = of_phy_register_fixed_link(np);
3194                 if (ret < 0) {
3195                         dev_err(&pdev->dev,
3196                                 "broken fixed-link specification\n");
3197                         goto failed_phy;
3198                 }
3199                 phy_node = of_node_get(np);
3200         }
3201         fep->phy_node = phy_node;
3202 
3203         ret = of_get_phy_mode(pdev->dev.of_node);
3204         if (ret < 0) {
3205                 pdata = dev_get_platdata(&pdev->dev);
3206                 if (pdata)
3207                         fep->phy_interface = pdata->phy;
3208                 else
3209                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
3210         } else {
3211                 fep->phy_interface = ret;
3212         }
3213 
3214         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3215         if (IS_ERR(fep->clk_ipg)) {
3216                 ret = PTR_ERR(fep->clk_ipg);
3217                 goto failed_clk;
3218         }
3219 
3220         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3221         if (IS_ERR(fep->clk_ahb)) {
3222                 ret = PTR_ERR(fep->clk_ahb);
3223                 goto failed_clk;
3224         }
3225 
3226         fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3227 
3228         /* enet_out is optional, depends on board */
3229         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3230         if (IS_ERR(fep->clk_enet_out))
3231                 fep->clk_enet_out = NULL;
3232 
3233         fep->ptp_clk_on = false;
3234         mutex_init(&fep->ptp_clk_mutex);
3235 
3236         /* clk_ref is optional, depends on board */
3237         fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3238         if (IS_ERR(fep->clk_ref))
3239                 fep->clk_ref = NULL;
3240 
3241         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3242         fep->bufdesc_ex =
3243                 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
3244         if (IS_ERR(fep->clk_ptp)) {
3245                 fep->clk_ptp = NULL;
3246                 fep->bufdesc_ex = 0;
3247         }
3248 
3249         ret = fec_enet_clk_enable(ndev, true);
3250         if (ret)
3251                 goto failed_clk;
3252 
3253         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3254         if (!IS_ERR(fep->reg_phy)) {
3255                 ret = regulator_enable(fep->reg_phy);
3256                 if (ret) {
3257                         dev_err(&pdev->dev,
3258                                 "Failed to enable phy regulator: %d\n", ret);
3259                         goto failed_regulator;
3260                 }
3261         } else {
3262                 fep->reg_phy = NULL;
3263         }
3264 
3265         fec_reset_phy(pdev);
3266 
3267         if (fep->bufdesc_ex)
3268                 fec_ptp_init(pdev);
3269 
3270         ret = fec_enet_init(ndev);
3271         if (ret)
3272                 goto failed_init;
3273 
3274         for (i = 0; i < FEC_IRQ_NUM; i++) {
3275                 irq = platform_get_irq(pdev, i);
3276                 if (irq < 0) {
3277                         if (i)
3278                                 break;
3279                         ret = irq;
3280                         goto failed_irq;
3281                 }
3282                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3283                                        0, pdev->name, ndev);
3284                 if (ret)
3285                         goto failed_irq;
3286         }
3287 
3288         init_completion(&fep->mdio_done);
3289         ret = fec_enet_mii_init(pdev);
3290         if (ret)
3291                 goto failed_mii_init;
3292 
3293         /* Carrier starts down, phylib will bring it up */
3294         netif_carrier_off(ndev);
3295         fec_enet_clk_enable(ndev, false);
3296         pinctrl_pm_select_sleep_state(&pdev->dev);
3297 
3298         ret = register_netdev(ndev);
3299         if (ret)
3300                 goto failed_register;
3301 
3302         if (fep->bufdesc_ex && fep->ptp_clock)
3303                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3304 
3305         fep->rx_copybreak = COPYBREAK_DEFAULT;
3306         INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3307         return 0;
3308 
3309 failed_register:
3310         fec_enet_mii_remove(fep);
3311 failed_mii_init:
3312 failed_irq:
3313 failed_init:
3314         if (fep->reg_phy)
3315                 regulator_disable(fep->reg_phy);
3316 failed_regulator:
3317         fec_enet_clk_enable(ndev, false);
3318 failed_clk:
3319 failed_phy:
3320         of_node_put(phy_node);
3321 failed_ioremap:
3322         free_netdev(ndev);
3323 
3324         return ret;
3325 }
3326 
3327 static int
3328 fec_drv_remove(struct platform_device *pdev)
3329 {
3330         struct net_device *ndev = platform_get_drvdata(pdev);
3331         struct fec_enet_private *fep = netdev_priv(ndev);
3332 
3333         cancel_delayed_work_sync(&fep->time_keep);
3334         cancel_work_sync(&fep->tx_timeout_work);
3335         unregister_netdev(ndev);
3336         fec_enet_mii_remove(fep);
3337         if (fep->reg_phy)
3338                 regulator_disable(fep->reg_phy);
3339         if (fep->ptp_clock)
3340                 ptp_clock_unregister(fep->ptp_clock);
3341         fec_enet_clk_enable(ndev, false);
3342         of_node_put(fep->phy_node);
3343         free_netdev(ndev);
3344 
3345         return 0;
3346 }
3347 
3348 static int __maybe_unused fec_suspend(struct device *dev)
3349 {
3350         struct net_device *ndev = dev_get_drvdata(dev);
3351         struct fec_enet_private *fep = netdev_priv(ndev);
3352 
3353         rtnl_lock();
3354         if (netif_running(ndev)) {
3355                 phy_stop(fep->phy_dev);
3356                 napi_disable(&fep->napi);
3357                 netif_tx_lock_bh(ndev);
3358                 netif_device_detach(ndev);
3359                 netif_tx_unlock_bh(ndev);
3360                 fec_stop(ndev);
3361                 fec_enet_clk_enable(ndev, false);
3362                 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3363         }
3364         rtnl_unlock();
3365 
3366         if (fep->reg_phy)
3367                 regulator_disable(fep->reg_phy);
3368 
3369         return 0;
3370 }
3371 
3372 static int __maybe_unused fec_resume(struct device *dev)
3373 {
3374         struct net_device *ndev = dev_get_drvdata(dev);
3375         struct fec_enet_private *fep = netdev_priv(ndev);
3376         int ret;
3377 
3378         if (fep->reg_phy) {
3379                 ret = regulator_enable(fep->reg_phy);
3380                 if (ret)
3381                         return ret;
3382         }
3383 
3384         rtnl_lock();
3385         if (netif_running(ndev)) {
3386                 pinctrl_pm_select_default_state(&fep->pdev->dev);
3387                 ret = fec_enet_clk_enable(ndev, true);
3388                 if (ret) {
3389                         rtnl_unlock();
3390                         goto failed_clk;
3391                 }
3392                 fec_restart(ndev);
3393                 netif_tx_lock_bh(ndev);
3394                 netif_device_attach(ndev);
3395                 netif_tx_unlock_bh(ndev);
3396                 napi_enable(&fep->napi);
3397                 phy_start(fep->phy_dev);
3398         }
3399         rtnl_unlock();
3400 
3401         return 0;
3402 
3403 failed_clk:
3404         if (fep->reg_phy)
3405                 regulator_disable(fep->reg_phy);
3406         return ret;
3407 }
3408 
3409 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3410 
3411 static struct platform_driver fec_driver = {
3412         .driver = {
3413                 .name   = DRIVER_NAME,
3414                 .owner  = THIS_MODULE,
3415                 .pm     = &fec_pm_ops,
3416                 .of_match_table = fec_dt_ids,
3417         },
3418         .id_table = fec_devtype,
3419         .probe  = fec_probe,
3420         .remove = fec_drv_remove,
3421 };
3422 
3423 module_platform_driver(fec_driver);
3424 
3425 MODULE_ALIAS("platform:"DRIVER_NAME);
3426 MODULE_LICENSE("GPL");
3427 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us