Version:  2.0.40 2.2.26 2.4.37 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Linux/drivers/net/ethernet/davicom/dm9000.c

  1 /*
  2  *      Davicom DM9000 Fast Ethernet driver for Linux.
  3  *      Copyright (C) 1997  Sten Wang
  4  *
  5  *      This program is free software; you can redistribute it and/or
  6  *      modify it under the terms of the GNU General Public License
  7  *      as published by the Free Software Foundation; either version 2
  8  *      of the License, or (at your option) any later version.
  9  *
 10  *      This program is distributed in the hope that it will be useful,
 11  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 12  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13  *      GNU General Public License for more details.
 14  *
 15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
 16  *
 17  * Additional updates, Copyright:
 18  *      Ben Dooks <ben@simtec.co.uk>
 19  *      Sascha Hauer <s.hauer@pengutronix.de>
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/ioport.h>
 24 #include <linux/netdevice.h>
 25 #include <linux/etherdevice.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/skbuff.h>
 28 #include <linux/spinlock.h>
 29 #include <linux/crc32.h>
 30 #include <linux/mii.h>
 31 #include <linux/of.h>
 32 #include <linux/of_net.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/dm9000.h>
 35 #include <linux/delay.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/irq.h>
 38 #include <linux/slab.h>
 39 #include <linux/regulator/consumer.h>
 40 #include <linux/gpio.h>
 41 #include <linux/of_gpio.h>
 42 
 43 #include <asm/delay.h>
 44 #include <asm/irq.h>
 45 #include <asm/io.h>
 46 
 47 #include "dm9000.h"
 48 
 49 /* Board/System/Debug information/definition ---------------- */
 50 
 51 #define DM9000_PHY              0x40    /* PHY address 0x01 */
 52 
 53 #define CARDNAME        "dm9000"
 54 #define DRV_VERSION     "1.31"
 55 
 56 /*
 57  * Transmit timeout, default 5 seconds.
 58  */
 59 static int watchdog = 5000;
 60 module_param(watchdog, int, 0400);
 61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 62 
 63 /*
 64  * Debug messages level
 65  */
 66 static int debug;
 67 module_param(debug, int, 0644);
 68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
 69 
 70 /* DM9000 register address locking.
 71  *
 72  * The DM9000 uses an address register to control where data written
 73  * to the data register goes. This means that the address register
 74  * must be preserved over interrupts or similar calls.
 75  *
 76  * During interrupt and other critical calls, a spinlock is used to
 77  * protect the system, but the calls themselves save the address
 78  * in the address register in case they are interrupting another
 79  * access to the device.
 80  *
 81  * For general accesses a lock is provided so that calls which are
 82  * allowed to sleep are serialised so that the address register does
 83  * not need to be saved. This lock also serves to serialise access
 84  * to the EEPROM and PHY access registers which are shared between
 85  * these two devices.
 86  */
 87 
 88 /* The driver supports the original DM9000E, and now the two newer
 89  * devices, DM9000A and DM9000B.
 90  */
 91 
 92 enum dm9000_type {
 93         TYPE_DM9000E,   /* original DM9000 */
 94         TYPE_DM9000A,
 95         TYPE_DM9000B
 96 };
 97 
 98 /* Structure/enum declaration ------------------------------- */
 99 struct board_info {
100 
101         void __iomem    *io_addr;       /* Register I/O base address */
102         void __iomem    *io_data;       /* Data I/O address */
103         u16              irq;           /* IRQ */
104 
105         u16             tx_pkt_cnt;
106         u16             queue_pkt_len;
107         u16             queue_start_addr;
108         u16             queue_ip_summed;
109         u16             dbug_cnt;
110         u8              io_mode;                /* 0:word, 2:byte */
111         u8              phy_addr;
112         u8              imr_all;
113 
114         unsigned int    flags;
115         unsigned int    in_timeout:1;
116         unsigned int    in_suspend:1;
117         unsigned int    wake_supported:1;
118 
119         enum dm9000_type type;
120 
121         void (*inblk)(void __iomem *port, void *data, int length);
122         void (*outblk)(void __iomem *port, void *data, int length);
123         void (*dumpblk)(void __iomem *port, int length);
124 
125         struct device   *dev;        /* parent device */
126 
127         struct resource *addr_res;   /* resources found */
128         struct resource *data_res;
129         struct resource *addr_req;   /* resources requested */
130         struct resource *data_req;
131 
132         int              irq_wake;
133 
134         struct mutex     addr_lock;     /* phy and eeprom access lock */
135 
136         struct delayed_work phy_poll;
137         struct net_device  *ndev;
138 
139         spinlock_t      lock;
140 
141         struct mii_if_info mii;
142         u32             msg_enable;
143         u32             wake_state;
144 
145         int             ip_summed;
146 };
147 
148 /* debug code */
149 
150 #define dm9000_dbg(db, lev, msg...) do {                \
151         if ((lev) < debug) {                            \
152                 dev_dbg(db->dev, msg);                  \
153         }                                               \
154 } while (0)
155 
156 static inline struct board_info *to_dm9000_board(struct net_device *dev)
157 {
158         return netdev_priv(dev);
159 }
160 
161 /* DM9000 network board routine ---------------------------- */
162 
163 /*
164  *   Read a byte from I/O port
165  */
166 static u8
167 ior(struct board_info *db, int reg)
168 {
169         writeb(reg, db->io_addr);
170         return readb(db->io_data);
171 }
172 
173 /*
174  *   Write a byte to I/O port
175  */
176 
177 static void
178 iow(struct board_info *db, int reg, int value)
179 {
180         writeb(reg, db->io_addr);
181         writeb(value, db->io_data);
182 }
183 
184 static void
185 dm9000_reset(struct board_info *db)
186 {
187         dev_dbg(db->dev, "resetting device\n");
188 
189         /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
190          * The essential point is that we have to do a double reset, and the
191          * instruction is to set LBK into MAC internal loopback mode.
192          */
193         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
194         udelay(100); /* Application note says at least 20 us */
195         if (ior(db, DM9000_NCR) & 1)
196                 dev_err(db->dev, "dm9000 did not respond to first reset\n");
197 
198         iow(db, DM9000_NCR, 0);
199         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
200         udelay(100);
201         if (ior(db, DM9000_NCR) & 1)
202                 dev_err(db->dev, "dm9000 did not respond to second reset\n");
203 }
204 
205 /* routines for sending block to chip */
206 
207 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
208 {
209         iowrite8_rep(reg, data, count);
210 }
211 
212 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
213 {
214         iowrite16_rep(reg, data, (count+1) >> 1);
215 }
216 
217 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
218 {
219         iowrite32_rep(reg, data, (count+3) >> 2);
220 }
221 
222 /* input block from chip to memory */
223 
224 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
225 {
226         ioread8_rep(reg, data, count);
227 }
228 
229 
230 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
231 {
232         ioread16_rep(reg, data, (count+1) >> 1);
233 }
234 
235 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
236 {
237         ioread32_rep(reg, data, (count+3) >> 2);
238 }
239 
240 /* dump block from chip to null */
241 
242 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
243 {
244         int i;
245         int tmp;
246 
247         for (i = 0; i < count; i++)
248                 tmp = readb(reg);
249 }
250 
251 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
252 {
253         int i;
254         int tmp;
255 
256         count = (count + 1) >> 1;
257 
258         for (i = 0; i < count; i++)
259                 tmp = readw(reg);
260 }
261 
262 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
263 {
264         int i;
265         int tmp;
266 
267         count = (count + 3) >> 2;
268 
269         for (i = 0; i < count; i++)
270                 tmp = readl(reg);
271 }
272 
273 /*
274  * Sleep, either by using msleep() or if we are suspending, then
275  * use mdelay() to sleep.
276  */
277 static void dm9000_msleep(struct board_info *db, unsigned int ms)
278 {
279         if (db->in_suspend || db->in_timeout)
280                 mdelay(ms);
281         else
282                 msleep(ms);
283 }
284 
285 /* Read a word from phyxcer */
286 static int
287 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
288 {
289         struct board_info *db = netdev_priv(dev);
290         unsigned long flags;
291         unsigned int reg_save;
292         int ret;
293 
294         mutex_lock(&db->addr_lock);
295 
296         spin_lock_irqsave(&db->lock, flags);
297 
298         /* Save previous register address */
299         reg_save = readb(db->io_addr);
300 
301         /* Fill the phyxcer register into REG_0C */
302         iow(db, DM9000_EPAR, DM9000_PHY | reg);
303 
304         /* Issue phyxcer read command */
305         iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
306 
307         writeb(reg_save, db->io_addr);
308         spin_unlock_irqrestore(&db->lock, flags);
309 
310         dm9000_msleep(db, 1);           /* Wait read complete */
311 
312         spin_lock_irqsave(&db->lock, flags);
313         reg_save = readb(db->io_addr);
314 
315         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
316 
317         /* The read data keeps on REG_0D & REG_0E */
318         ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
319 
320         /* restore the previous address */
321         writeb(reg_save, db->io_addr);
322         spin_unlock_irqrestore(&db->lock, flags);
323 
324         mutex_unlock(&db->addr_lock);
325 
326         dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
327         return ret;
328 }
329 
330 /* Write a word to phyxcer */
331 static void
332 dm9000_phy_write(struct net_device *dev,
333                  int phyaddr_unused, int reg, int value)
334 {
335         struct board_info *db = netdev_priv(dev);
336         unsigned long flags;
337         unsigned long reg_save;
338 
339         dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
340         if (!db->in_timeout)
341                 mutex_lock(&db->addr_lock);
342 
343         spin_lock_irqsave(&db->lock, flags);
344 
345         /* Save previous register address */
346         reg_save = readb(db->io_addr);
347 
348         /* Fill the phyxcer register into REG_0C */
349         iow(db, DM9000_EPAR, DM9000_PHY | reg);
350 
351         /* Fill the written data into REG_0D & REG_0E */
352         iow(db, DM9000_EPDRL, value);
353         iow(db, DM9000_EPDRH, value >> 8);
354 
355         /* Issue phyxcer write command */
356         iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
357 
358         writeb(reg_save, db->io_addr);
359         spin_unlock_irqrestore(&db->lock, flags);
360 
361         dm9000_msleep(db, 1);           /* Wait write complete */
362 
363         spin_lock_irqsave(&db->lock, flags);
364         reg_save = readb(db->io_addr);
365 
366         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
367 
368         /* restore the previous address */
369         writeb(reg_save, db->io_addr);
370 
371         spin_unlock_irqrestore(&db->lock, flags);
372         if (!db->in_timeout)
373                 mutex_unlock(&db->addr_lock);
374 }
375 
376 /* dm9000_set_io
377  *
378  * select the specified set of io routines to use with the
379  * device
380  */
381 
382 static void dm9000_set_io(struct board_info *db, int byte_width)
383 {
384         /* use the size of the data resource to work out what IO
385          * routines we want to use
386          */
387 
388         switch (byte_width) {
389         case 1:
390                 db->dumpblk = dm9000_dumpblk_8bit;
391                 db->outblk  = dm9000_outblk_8bit;
392                 db->inblk   = dm9000_inblk_8bit;
393                 break;
394 
395 
396         case 3:
397                 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
398         case 2:
399                 db->dumpblk = dm9000_dumpblk_16bit;
400                 db->outblk  = dm9000_outblk_16bit;
401                 db->inblk   = dm9000_inblk_16bit;
402                 break;
403 
404         case 4:
405         default:
406                 db->dumpblk = dm9000_dumpblk_32bit;
407                 db->outblk  = dm9000_outblk_32bit;
408                 db->inblk   = dm9000_inblk_32bit;
409                 break;
410         }
411 }
412 
413 static void dm9000_schedule_poll(struct board_info *db)
414 {
415         if (db->type == TYPE_DM9000E)
416                 schedule_delayed_work(&db->phy_poll, HZ * 2);
417 }
418 
419 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
420 {
421         struct board_info *dm = to_dm9000_board(dev);
422 
423         if (!netif_running(dev))
424                 return -EINVAL;
425 
426         return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
427 }
428 
429 static unsigned int
430 dm9000_read_locked(struct board_info *db, int reg)
431 {
432         unsigned long flags;
433         unsigned int ret;
434 
435         spin_lock_irqsave(&db->lock, flags);
436         ret = ior(db, reg);
437         spin_unlock_irqrestore(&db->lock, flags);
438 
439         return ret;
440 }
441 
442 static int dm9000_wait_eeprom(struct board_info *db)
443 {
444         unsigned int status;
445         int timeout = 8;        /* wait max 8msec */
446 
447         /* The DM9000 data sheets say we should be able to
448          * poll the ERRE bit in EPCR to wait for the EEPROM
449          * operation. From testing several chips, this bit
450          * does not seem to work.
451          *
452          * We attempt to use the bit, but fall back to the
453          * timeout (which is why we do not return an error
454          * on expiry) to say that the EEPROM operation has
455          * completed.
456          */
457 
458         while (1) {
459                 status = dm9000_read_locked(db, DM9000_EPCR);
460 
461                 if ((status & EPCR_ERRE) == 0)
462                         break;
463 
464                 msleep(1);
465 
466                 if (timeout-- < 0) {
467                         dev_dbg(db->dev, "timeout waiting EEPROM\n");
468                         break;
469                 }
470         }
471 
472         return 0;
473 }
474 
475 /*
476  *  Read a word data from EEPROM
477  */
478 static void
479 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
480 {
481         unsigned long flags;
482 
483         if (db->flags & DM9000_PLATF_NO_EEPROM) {
484                 to[0] = 0xff;
485                 to[1] = 0xff;
486                 return;
487         }
488 
489         mutex_lock(&db->addr_lock);
490 
491         spin_lock_irqsave(&db->lock, flags);
492 
493         iow(db, DM9000_EPAR, offset);
494         iow(db, DM9000_EPCR, EPCR_ERPRR);
495 
496         spin_unlock_irqrestore(&db->lock, flags);
497 
498         dm9000_wait_eeprom(db);
499 
500         /* delay for at-least 150uS */
501         msleep(1);
502 
503         spin_lock_irqsave(&db->lock, flags);
504 
505         iow(db, DM9000_EPCR, 0x0);
506 
507         to[0] = ior(db, DM9000_EPDRL);
508         to[1] = ior(db, DM9000_EPDRH);
509 
510         spin_unlock_irqrestore(&db->lock, flags);
511 
512         mutex_unlock(&db->addr_lock);
513 }
514 
515 /*
516  * Write a word data to SROM
517  */
518 static void
519 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
520 {
521         unsigned long flags;
522 
523         if (db->flags & DM9000_PLATF_NO_EEPROM)
524                 return;
525 
526         mutex_lock(&db->addr_lock);
527 
528         spin_lock_irqsave(&db->lock, flags);
529         iow(db, DM9000_EPAR, offset);
530         iow(db, DM9000_EPDRH, data[1]);
531         iow(db, DM9000_EPDRL, data[0]);
532         iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
533         spin_unlock_irqrestore(&db->lock, flags);
534 
535         dm9000_wait_eeprom(db);
536 
537         mdelay(1);      /* wait at least 150uS to clear */
538 
539         spin_lock_irqsave(&db->lock, flags);
540         iow(db, DM9000_EPCR, 0);
541         spin_unlock_irqrestore(&db->lock, flags);
542 
543         mutex_unlock(&db->addr_lock);
544 }
545 
546 /* ethtool ops */
547 
548 static void dm9000_get_drvinfo(struct net_device *dev,
549                                struct ethtool_drvinfo *info)
550 {
551         struct board_info *dm = to_dm9000_board(dev);
552 
553         strlcpy(info->driver, CARDNAME, sizeof(info->driver));
554         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
555         strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
556                 sizeof(info->bus_info));
557 }
558 
559 static u32 dm9000_get_msglevel(struct net_device *dev)
560 {
561         struct board_info *dm = to_dm9000_board(dev);
562 
563         return dm->msg_enable;
564 }
565 
566 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
567 {
568         struct board_info *dm = to_dm9000_board(dev);
569 
570         dm->msg_enable = value;
571 }
572 
573 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
574 {
575         struct board_info *dm = to_dm9000_board(dev);
576 
577         mii_ethtool_gset(&dm->mii, cmd);
578         return 0;
579 }
580 
581 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
582 {
583         struct board_info *dm = to_dm9000_board(dev);
584 
585         return mii_ethtool_sset(&dm->mii, cmd);
586 }
587 
588 static int dm9000_nway_reset(struct net_device *dev)
589 {
590         struct board_info *dm = to_dm9000_board(dev);
591         return mii_nway_restart(&dm->mii);
592 }
593 
594 static int dm9000_set_features(struct net_device *dev,
595         netdev_features_t features)
596 {
597         struct board_info *dm = to_dm9000_board(dev);
598         netdev_features_t changed = dev->features ^ features;
599         unsigned long flags;
600 
601         if (!(changed & NETIF_F_RXCSUM))
602                 return 0;
603 
604         spin_lock_irqsave(&dm->lock, flags);
605         iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
606         spin_unlock_irqrestore(&dm->lock, flags);
607 
608         return 0;
609 }
610 
611 static u32 dm9000_get_link(struct net_device *dev)
612 {
613         struct board_info *dm = to_dm9000_board(dev);
614         u32 ret;
615 
616         if (dm->flags & DM9000_PLATF_EXT_PHY)
617                 ret = mii_link_ok(&dm->mii);
618         else
619                 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
620 
621         return ret;
622 }
623 
624 #define DM_EEPROM_MAGIC         (0x444D394B)
625 
626 static int dm9000_get_eeprom_len(struct net_device *dev)
627 {
628         return 128;
629 }
630 
631 static int dm9000_get_eeprom(struct net_device *dev,
632                              struct ethtool_eeprom *ee, u8 *data)
633 {
634         struct board_info *dm = to_dm9000_board(dev);
635         int offset = ee->offset;
636         int len = ee->len;
637         int i;
638 
639         /* EEPROM access is aligned to two bytes */
640 
641         if ((len & 1) != 0 || (offset & 1) != 0)
642                 return -EINVAL;
643 
644         if (dm->flags & DM9000_PLATF_NO_EEPROM)
645                 return -ENOENT;
646 
647         ee->magic = DM_EEPROM_MAGIC;
648 
649         for (i = 0; i < len; i += 2)
650                 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
651 
652         return 0;
653 }
654 
655 static int dm9000_set_eeprom(struct net_device *dev,
656                              struct ethtool_eeprom *ee, u8 *data)
657 {
658         struct board_info *dm = to_dm9000_board(dev);
659         int offset = ee->offset;
660         int len = ee->len;
661         int done;
662 
663         /* EEPROM access is aligned to two bytes */
664 
665         if (dm->flags & DM9000_PLATF_NO_EEPROM)
666                 return -ENOENT;
667 
668         if (ee->magic != DM_EEPROM_MAGIC)
669                 return -EINVAL;
670 
671         while (len > 0) {
672                 if (len & 1 || offset & 1) {
673                         int which = offset & 1;
674                         u8 tmp[2];
675 
676                         dm9000_read_eeprom(dm, offset / 2, tmp);
677                         tmp[which] = *data;
678                         dm9000_write_eeprom(dm, offset / 2, tmp);
679 
680                         done = 1;
681                 } else {
682                         dm9000_write_eeprom(dm, offset / 2, data);
683                         done = 2;
684                 }
685 
686                 data += done;
687                 offset += done;
688                 len -= done;
689         }
690 
691         return 0;
692 }
693 
694 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
695 {
696         struct board_info *dm = to_dm9000_board(dev);
697 
698         memset(w, 0, sizeof(struct ethtool_wolinfo));
699 
700         /* note, we could probably support wake-phy too */
701         w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
702         w->wolopts = dm->wake_state;
703 }
704 
705 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
706 {
707         struct board_info *dm = to_dm9000_board(dev);
708         unsigned long flags;
709         u32 opts = w->wolopts;
710         u32 wcr = 0;
711 
712         if (!dm->wake_supported)
713                 return -EOPNOTSUPP;
714 
715         if (opts & ~WAKE_MAGIC)
716                 return -EINVAL;
717 
718         if (opts & WAKE_MAGIC)
719                 wcr |= WCR_MAGICEN;
720 
721         mutex_lock(&dm->addr_lock);
722 
723         spin_lock_irqsave(&dm->lock, flags);
724         iow(dm, DM9000_WCR, wcr);
725         spin_unlock_irqrestore(&dm->lock, flags);
726 
727         mutex_unlock(&dm->addr_lock);
728 
729         if (dm->wake_state != opts) {
730                 /* change in wol state, update IRQ state */
731 
732                 if (!dm->wake_state)
733                         irq_set_irq_wake(dm->irq_wake, 1);
734                 else if (dm->wake_state && !opts)
735                         irq_set_irq_wake(dm->irq_wake, 0);
736         }
737 
738         dm->wake_state = opts;
739         return 0;
740 }
741 
742 static const struct ethtool_ops dm9000_ethtool_ops = {
743         .get_drvinfo            = dm9000_get_drvinfo,
744         .get_settings           = dm9000_get_settings,
745         .set_settings           = dm9000_set_settings,
746         .get_msglevel           = dm9000_get_msglevel,
747         .set_msglevel           = dm9000_set_msglevel,
748         .nway_reset             = dm9000_nway_reset,
749         .get_link               = dm9000_get_link,
750         .get_wol                = dm9000_get_wol,
751         .set_wol                = dm9000_set_wol,
752         .get_eeprom_len         = dm9000_get_eeprom_len,
753         .get_eeprom             = dm9000_get_eeprom,
754         .set_eeprom             = dm9000_set_eeprom,
755 };
756 
757 static void dm9000_show_carrier(struct board_info *db,
758                                 unsigned carrier, unsigned nsr)
759 {
760         int lpa;
761         struct net_device *ndev = db->ndev;
762         struct mii_if_info *mii = &db->mii;
763         unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
764 
765         if (carrier) {
766                 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
767                 dev_info(db->dev,
768                          "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
769                          ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
770                          (ncr & NCR_FDX) ? "full" : "half", lpa);
771         } else {
772                 dev_info(db->dev, "%s: link down\n", ndev->name);
773         }
774 }
775 
776 static void
777 dm9000_poll_work(struct work_struct *w)
778 {
779         struct delayed_work *dw = to_delayed_work(w);
780         struct board_info *db = container_of(dw, struct board_info, phy_poll);
781         struct net_device *ndev = db->ndev;
782 
783         if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
784             !(db->flags & DM9000_PLATF_EXT_PHY)) {
785                 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
786                 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
787                 unsigned new_carrier;
788 
789                 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
790 
791                 if (old_carrier != new_carrier) {
792                         if (netif_msg_link(db))
793                                 dm9000_show_carrier(db, new_carrier, nsr);
794 
795                         if (!new_carrier)
796                                 netif_carrier_off(ndev);
797                         else
798                                 netif_carrier_on(ndev);
799                 }
800         } else
801                 mii_check_media(&db->mii, netif_msg_link(db), 0);
802 
803         if (netif_running(ndev))
804                 dm9000_schedule_poll(db);
805 }
806 
807 /* dm9000_release_board
808  *
809  * release a board, and any mapped resources
810  */
811 
812 static void
813 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
814 {
815         /* unmap our resources */
816 
817         iounmap(db->io_addr);
818         iounmap(db->io_data);
819 
820         /* release the resources */
821 
822         if (db->data_req)
823                 release_resource(db->data_req);
824         kfree(db->data_req);
825 
826         if (db->addr_req)
827                 release_resource(db->addr_req);
828         kfree(db->addr_req);
829 }
830 
831 static unsigned char dm9000_type_to_char(enum dm9000_type type)
832 {
833         switch (type) {
834         case TYPE_DM9000E: return 'e';
835         case TYPE_DM9000A: return 'a';
836         case TYPE_DM9000B: return 'b';
837         }
838 
839         return '?';
840 }
841 
842 /*
843  *  Set DM9000 multicast address
844  */
845 static void
846 dm9000_hash_table_unlocked(struct net_device *dev)
847 {
848         struct board_info *db = netdev_priv(dev);
849         struct netdev_hw_addr *ha;
850         int i, oft;
851         u32 hash_val;
852         u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
853         u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
854 
855         dm9000_dbg(db, 1, "entering %s\n", __func__);
856 
857         for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
858                 iow(db, oft, dev->dev_addr[i]);
859 
860         if (dev->flags & IFF_PROMISC)
861                 rcr |= RCR_PRMSC;
862 
863         if (dev->flags & IFF_ALLMULTI)
864                 rcr |= RCR_ALL;
865 
866         /* the multicast address in Hash Table : 64 bits */
867         netdev_for_each_mc_addr(ha, dev) {
868                 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
869                 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
870         }
871 
872         /* Write the hash table to MAC MD table */
873         for (i = 0, oft = DM9000_MAR; i < 4; i++) {
874                 iow(db, oft++, hash_table[i]);
875                 iow(db, oft++, hash_table[i] >> 8);
876         }
877 
878         iow(db, DM9000_RCR, rcr);
879 }
880 
881 static void
882 dm9000_hash_table(struct net_device *dev)
883 {
884         struct board_info *db = netdev_priv(dev);
885         unsigned long flags;
886 
887         spin_lock_irqsave(&db->lock, flags);
888         dm9000_hash_table_unlocked(dev);
889         spin_unlock_irqrestore(&db->lock, flags);
890 }
891 
892 static void
893 dm9000_mask_interrupts(struct board_info *db)
894 {
895         iow(db, DM9000_IMR, IMR_PAR);
896 }
897 
898 static void
899 dm9000_unmask_interrupts(struct board_info *db)
900 {
901         iow(db, DM9000_IMR, db->imr_all);
902 }
903 
904 /*
905  * Initialize dm9000 board
906  */
907 static void
908 dm9000_init_dm9000(struct net_device *dev)
909 {
910         struct board_info *db = netdev_priv(dev);
911         unsigned int imr;
912         unsigned int ncr;
913 
914         dm9000_dbg(db, 1, "entering %s\n", __func__);
915 
916         dm9000_reset(db);
917         dm9000_mask_interrupts(db);
918 
919         /* I/O mode */
920         db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
921 
922         /* Checksum mode */
923         if (dev->hw_features & NETIF_F_RXCSUM)
924                 iow(db, DM9000_RCSR,
925                         (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
926 
927         iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
928         iow(db, DM9000_GPR, 0);
929 
930         /* If we are dealing with DM9000B, some extra steps are required: a
931          * manual phy reset, and setting init params.
932          */
933         if (db->type == TYPE_DM9000B) {
934                 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
935                 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
936         }
937 
938         ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
939 
940         /* if wol is needed, then always set NCR_WAKEEN otherwise we end
941          * up dumping the wake events if we disable this. There is already
942          * a wake-mask in DM9000_WCR */
943         if (db->wake_supported)
944                 ncr |= NCR_WAKEEN;
945 
946         iow(db, DM9000_NCR, ncr);
947 
948         /* Program operating register */
949         iow(db, DM9000_TCR, 0);         /* TX Polling clear */
950         iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
951         iow(db, DM9000_FCR, 0xff);      /* Flow Control */
952         iow(db, DM9000_SMCR, 0);        /* Special Mode */
953         /* clear TX status */
954         iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
955         iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
956 
957         /* Set address filter table */
958         dm9000_hash_table_unlocked(dev);
959 
960         imr = IMR_PAR | IMR_PTM | IMR_PRM;
961         if (db->type != TYPE_DM9000E)
962                 imr |= IMR_LNKCHNG;
963 
964         db->imr_all = imr;
965 
966         /* Init Driver variable */
967         db->tx_pkt_cnt = 0;
968         db->queue_pkt_len = 0;
969         netif_trans_update(dev);
970 }
971 
972 /* Our watchdog timed out. Called by the networking layer */
973 static void dm9000_timeout(struct net_device *dev)
974 {
975         struct board_info *db = netdev_priv(dev);
976         u8 reg_save;
977         unsigned long flags;
978 
979         /* Save previous register address */
980         spin_lock_irqsave(&db->lock, flags);
981         db->in_timeout = 1;
982         reg_save = readb(db->io_addr);
983 
984         netif_stop_queue(dev);
985         dm9000_init_dm9000(dev);
986         dm9000_unmask_interrupts(db);
987         /* We can accept TX packets again */
988         netif_trans_update(dev); /* prevent tx timeout */
989         netif_wake_queue(dev);
990 
991         /* Restore previous register address */
992         writeb(reg_save, db->io_addr);
993         db->in_timeout = 0;
994         spin_unlock_irqrestore(&db->lock, flags);
995 }
996 
997 static void dm9000_send_packet(struct net_device *dev,
998                                int ip_summed,
999                                u16 pkt_len)
1000 {
1001         struct board_info *dm = to_dm9000_board(dev);
1002 
1003         /* The DM9000 is not smart enough to leave fragmented packets alone. */
1004         if (dm->ip_summed != ip_summed) {
1005                 if (ip_summed == CHECKSUM_NONE)
1006                         iow(dm, DM9000_TCCR, 0);
1007                 else
1008                         iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1009                 dm->ip_summed = ip_summed;
1010         }
1011 
1012         /* Set TX length to DM9000 */
1013         iow(dm, DM9000_TXPLL, pkt_len);
1014         iow(dm, DM9000_TXPLH, pkt_len >> 8);
1015 
1016         /* Issue TX polling command */
1017         iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1018 }
1019 
1020 /*
1021  *  Hardware start transmission.
1022  *  Send a packet to media from the upper layer.
1023  */
1024 static int
1025 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1026 {
1027         unsigned long flags;
1028         struct board_info *db = netdev_priv(dev);
1029 
1030         dm9000_dbg(db, 3, "%s:\n", __func__);
1031 
1032         if (db->tx_pkt_cnt > 1)
1033                 return NETDEV_TX_BUSY;
1034 
1035         spin_lock_irqsave(&db->lock, flags);
1036 
1037         /* Move data to DM9000 TX RAM */
1038         writeb(DM9000_MWCMD, db->io_addr);
1039 
1040         (db->outblk)(db->io_data, skb->data, skb->len);
1041         dev->stats.tx_bytes += skb->len;
1042 
1043         db->tx_pkt_cnt++;
1044         /* TX control: First packet immediately send, second packet queue */
1045         if (db->tx_pkt_cnt == 1) {
1046                 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1047         } else {
1048                 /* Second packet */
1049                 db->queue_pkt_len = skb->len;
1050                 db->queue_ip_summed = skb->ip_summed;
1051                 netif_stop_queue(dev);
1052         }
1053 
1054         spin_unlock_irqrestore(&db->lock, flags);
1055 
1056         /* free this SKB */
1057         dev_consume_skb_any(skb);
1058 
1059         return NETDEV_TX_OK;
1060 }
1061 
1062 /*
1063  * DM9000 interrupt handler
1064  * receive the packet to upper layer, free the transmitted packet
1065  */
1066 
1067 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1068 {
1069         int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1070 
1071         if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1072                 /* One packet sent complete */
1073                 db->tx_pkt_cnt--;
1074                 dev->stats.tx_packets++;
1075 
1076                 if (netif_msg_tx_done(db))
1077                         dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1078 
1079                 /* Queue packet check & send */
1080                 if (db->tx_pkt_cnt > 0)
1081                         dm9000_send_packet(dev, db->queue_ip_summed,
1082                                            db->queue_pkt_len);
1083                 netif_wake_queue(dev);
1084         }
1085 }
1086 
1087 struct dm9000_rxhdr {
1088         u8      RxPktReady;
1089         u8      RxStatus;
1090         __le16  RxLen;
1091 } __packed;
1092 
1093 /*
1094  *  Received a packet and pass to upper layer
1095  */
1096 static void
1097 dm9000_rx(struct net_device *dev)
1098 {
1099         struct board_info *db = netdev_priv(dev);
1100         struct dm9000_rxhdr rxhdr;
1101         struct sk_buff *skb;
1102         u8 rxbyte, *rdptr;
1103         bool GoodPacket;
1104         int RxLen;
1105 
1106         /* Check packet ready or not */
1107         do {
1108                 ior(db, DM9000_MRCMDX); /* Dummy read */
1109 
1110                 /* Get most updated data */
1111                 rxbyte = readb(db->io_data);
1112 
1113                 /* Status check: this byte must be 0 or 1 */
1114                 if (rxbyte & DM9000_PKT_ERR) {
1115                         dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1116                         iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1117                         return;
1118                 }
1119 
1120                 if (!(rxbyte & DM9000_PKT_RDY))
1121                         return;
1122 
1123                 /* A packet ready now  & Get status/length */
1124                 GoodPacket = true;
1125                 writeb(DM9000_MRCMD, db->io_addr);
1126 
1127                 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1128 
1129                 RxLen = le16_to_cpu(rxhdr.RxLen);
1130 
1131                 if (netif_msg_rx_status(db))
1132                         dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1133                                 rxhdr.RxStatus, RxLen);
1134 
1135                 /* Packet Status check */
1136                 if (RxLen < 0x40) {
1137                         GoodPacket = false;
1138                         if (netif_msg_rx_err(db))
1139                                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1140                 }
1141 
1142                 if (RxLen > DM9000_PKT_MAX) {
1143                         dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1144                 }
1145 
1146                 /* rxhdr.RxStatus is identical to RSR register. */
1147                 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1148                                       RSR_PLE | RSR_RWTO |
1149                                       RSR_LCS | RSR_RF)) {
1150                         GoodPacket = false;
1151                         if (rxhdr.RxStatus & RSR_FOE) {
1152                                 if (netif_msg_rx_err(db))
1153                                         dev_dbg(db->dev, "fifo error\n");
1154                                 dev->stats.rx_fifo_errors++;
1155                         }
1156                         if (rxhdr.RxStatus & RSR_CE) {
1157                                 if (netif_msg_rx_err(db))
1158                                         dev_dbg(db->dev, "crc error\n");
1159                                 dev->stats.rx_crc_errors++;
1160                         }
1161                         if (rxhdr.RxStatus & RSR_RF) {
1162                                 if (netif_msg_rx_err(db))
1163                                         dev_dbg(db->dev, "length error\n");
1164                                 dev->stats.rx_length_errors++;
1165                         }
1166                 }
1167 
1168                 /* Move data from DM9000 */
1169                 if (GoodPacket &&
1170                     ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1171                         skb_reserve(skb, 2);
1172                         rdptr = (u8 *) skb_put(skb, RxLen - 4);
1173 
1174                         /* Read received packet from RX SRAM */
1175 
1176                         (db->inblk)(db->io_data, rdptr, RxLen);
1177                         dev->stats.rx_bytes += RxLen;
1178 
1179                         /* Pass to upper layer */
1180                         skb->protocol = eth_type_trans(skb, dev);
1181                         if (dev->features & NETIF_F_RXCSUM) {
1182                                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1183                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1184                                 else
1185                                         skb_checksum_none_assert(skb);
1186                         }
1187                         netif_rx(skb);
1188                         dev->stats.rx_packets++;
1189 
1190                 } else {
1191                         /* need to dump the packet's data */
1192 
1193                         (db->dumpblk)(db->io_data, RxLen);
1194                 }
1195         } while (rxbyte & DM9000_PKT_RDY);
1196 }
1197 
1198 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1199 {
1200         struct net_device *dev = dev_id;
1201         struct board_info *db = netdev_priv(dev);
1202         int int_status;
1203         unsigned long flags;
1204         u8 reg_save;
1205 
1206         dm9000_dbg(db, 3, "entering %s\n", __func__);
1207 
1208         /* A real interrupt coming */
1209 
1210         /* holders of db->lock must always block IRQs */
1211         spin_lock_irqsave(&db->lock, flags);
1212 
1213         /* Save previous register address */
1214         reg_save = readb(db->io_addr);
1215 
1216         dm9000_mask_interrupts(db);
1217         /* Got DM9000 interrupt status */
1218         int_status = ior(db, DM9000_ISR);       /* Got ISR */
1219         iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1220 
1221         if (netif_msg_intr(db))
1222                 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1223 
1224         /* Received the coming packet */
1225         if (int_status & ISR_PRS)
1226                 dm9000_rx(dev);
1227 
1228         /* Transmit Interrupt check */
1229         if (int_status & ISR_PTS)
1230                 dm9000_tx_done(dev, db);
1231 
1232         if (db->type != TYPE_DM9000E) {
1233                 if (int_status & ISR_LNKCHNG) {
1234                         /* fire a link-change request */
1235                         schedule_delayed_work(&db->phy_poll, 1);
1236                 }
1237         }
1238 
1239         dm9000_unmask_interrupts(db);
1240         /* Restore previous register address */
1241         writeb(reg_save, db->io_addr);
1242 
1243         spin_unlock_irqrestore(&db->lock, flags);
1244 
1245         return IRQ_HANDLED;
1246 }
1247 
1248 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1249 {
1250         struct net_device *dev = dev_id;
1251         struct board_info *db = netdev_priv(dev);
1252         unsigned long flags;
1253         unsigned nsr, wcr;
1254 
1255         spin_lock_irqsave(&db->lock, flags);
1256 
1257         nsr = ior(db, DM9000_NSR);
1258         wcr = ior(db, DM9000_WCR);
1259 
1260         dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1261 
1262         if (nsr & NSR_WAKEST) {
1263                 /* clear, so we can avoid */
1264                 iow(db, DM9000_NSR, NSR_WAKEST);
1265 
1266                 if (wcr & WCR_LINKST)
1267                         dev_info(db->dev, "wake by link status change\n");
1268                 if (wcr & WCR_SAMPLEST)
1269                         dev_info(db->dev, "wake by sample packet\n");
1270                 if (wcr & WCR_MAGICST)
1271                         dev_info(db->dev, "wake by magic packet\n");
1272                 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1273                         dev_err(db->dev, "wake signalled with no reason? "
1274                                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1275         }
1276 
1277         spin_unlock_irqrestore(&db->lock, flags);
1278 
1279         return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1280 }
1281 
1282 #ifdef CONFIG_NET_POLL_CONTROLLER
1283 /*
1284  *Used by netconsole
1285  */
1286 static void dm9000_poll_controller(struct net_device *dev)
1287 {
1288         disable_irq(dev->irq);
1289         dm9000_interrupt(dev->irq, dev);
1290         enable_irq(dev->irq);
1291 }
1292 #endif
1293 
1294 /*
1295  *  Open the interface.
1296  *  The interface is opened whenever "ifconfig" actives it.
1297  */
1298 static int
1299 dm9000_open(struct net_device *dev)
1300 {
1301         struct board_info *db = netdev_priv(dev);
1302         unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1303 
1304         if (netif_msg_ifup(db))
1305                 dev_dbg(db->dev, "enabling %s\n", dev->name);
1306 
1307         /* If there is no IRQ type specified, tell the user that this is a
1308          * problem
1309          */
1310         if (irq_flags == IRQF_TRIGGER_NONE)
1311                 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1312 
1313         irq_flags |= IRQF_SHARED;
1314 
1315         /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1316         iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1317         mdelay(1); /* delay needs by DM9000B */
1318 
1319         /* Initialize DM9000 board */
1320         dm9000_init_dm9000(dev);
1321 
1322         if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1323                 return -EAGAIN;
1324         /* Now that we have an interrupt handler hooked up we can unmask
1325          * our interrupts
1326          */
1327         dm9000_unmask_interrupts(db);
1328 
1329         /* Init driver variable */
1330         db->dbug_cnt = 0;
1331 
1332         mii_check_media(&db->mii, netif_msg_link(db), 1);
1333         netif_start_queue(dev);
1334 
1335         /* Poll initial link status */
1336         schedule_delayed_work(&db->phy_poll, 1);
1337 
1338         return 0;
1339 }
1340 
1341 static void
1342 dm9000_shutdown(struct net_device *dev)
1343 {
1344         struct board_info *db = netdev_priv(dev);
1345 
1346         /* RESET device */
1347         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1348         iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1349         dm9000_mask_interrupts(db);
1350         iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1351 }
1352 
1353 /*
1354  * Stop the interface.
1355  * The interface is stopped when it is brought.
1356  */
1357 static int
1358 dm9000_stop(struct net_device *ndev)
1359 {
1360         struct board_info *db = netdev_priv(ndev);
1361 
1362         if (netif_msg_ifdown(db))
1363                 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1364 
1365         cancel_delayed_work_sync(&db->phy_poll);
1366 
1367         netif_stop_queue(ndev);
1368         netif_carrier_off(ndev);
1369 
1370         /* free interrupt */
1371         free_irq(ndev->irq, ndev);
1372 
1373         dm9000_shutdown(ndev);
1374 
1375         return 0;
1376 }
1377 
1378 static const struct net_device_ops dm9000_netdev_ops = {
1379         .ndo_open               = dm9000_open,
1380         .ndo_stop               = dm9000_stop,
1381         .ndo_start_xmit         = dm9000_start_xmit,
1382         .ndo_tx_timeout         = dm9000_timeout,
1383         .ndo_set_rx_mode        = dm9000_hash_table,
1384         .ndo_do_ioctl           = dm9000_ioctl,
1385         .ndo_change_mtu         = eth_change_mtu,
1386         .ndo_set_features       = dm9000_set_features,
1387         .ndo_validate_addr      = eth_validate_addr,
1388         .ndo_set_mac_address    = eth_mac_addr,
1389 #ifdef CONFIG_NET_POLL_CONTROLLER
1390         .ndo_poll_controller    = dm9000_poll_controller,
1391 #endif
1392 };
1393 
1394 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1395 {
1396         struct dm9000_plat_data *pdata;
1397         struct device_node *np = dev->of_node;
1398         const void *mac_addr;
1399 
1400         if (!IS_ENABLED(CONFIG_OF) || !np)
1401                 return ERR_PTR(-ENXIO);
1402 
1403         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1404         if (!pdata)
1405                 return ERR_PTR(-ENOMEM);
1406 
1407         if (of_find_property(np, "davicom,ext-phy", NULL))
1408                 pdata->flags |= DM9000_PLATF_EXT_PHY;
1409         if (of_find_property(np, "davicom,no-eeprom", NULL))
1410                 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1411 
1412         mac_addr = of_get_mac_address(np);
1413         if (mac_addr)
1414                 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1415 
1416         return pdata;
1417 }
1418 
1419 /*
1420  * Search DM9000 board, allocate space and register it
1421  */
1422 static int
1423 dm9000_probe(struct platform_device *pdev)
1424 {
1425         struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1426         struct board_info *db;  /* Point a board information structure */
1427         struct net_device *ndev;
1428         struct device *dev = &pdev->dev;
1429         const unsigned char *mac_src;
1430         int ret = 0;
1431         int iosize;
1432         int i;
1433         u32 id_val;
1434         int reset_gpios;
1435         enum of_gpio_flags flags;
1436         struct regulator *power;
1437         bool inv_mac_addr = false;
1438 
1439         power = devm_regulator_get(dev, "vcc");
1440         if (IS_ERR(power)) {
1441                 if (PTR_ERR(power) == -EPROBE_DEFER)
1442                         return -EPROBE_DEFER;
1443                 dev_dbg(dev, "no regulator provided\n");
1444         } else {
1445                 ret = regulator_enable(power);
1446                 if (ret != 0) {
1447                         dev_err(dev,
1448                                 "Failed to enable power regulator: %d\n", ret);
1449                         return ret;
1450                 }
1451                 dev_dbg(dev, "regulator enabled\n");
1452         }
1453 
1454         reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1455                                               &flags);
1456         if (gpio_is_valid(reset_gpios)) {
1457                 ret = devm_gpio_request_one(dev, reset_gpios, flags,
1458                                             "dm9000_reset");
1459                 if (ret) {
1460                         dev_err(dev, "failed to request reset gpio %d: %d\n",
1461                                 reset_gpios, ret);
1462                         return -ENODEV;
1463                 }
1464 
1465                 /* According to manual PWRST# Low Period Min 1ms */
1466                 msleep(2);
1467                 gpio_set_value(reset_gpios, 1);
1468                 /* Needs 3ms to read eeprom when PWRST is deasserted */
1469                 msleep(4);
1470         }
1471 
1472         if (!pdata) {
1473                 pdata = dm9000_parse_dt(&pdev->dev);
1474                 if (IS_ERR(pdata))
1475                         return PTR_ERR(pdata);
1476         }
1477 
1478         /* Init network device */
1479         ndev = alloc_etherdev(sizeof(struct board_info));
1480         if (!ndev)
1481                 return -ENOMEM;
1482 
1483         SET_NETDEV_DEV(ndev, &pdev->dev);
1484 
1485         dev_dbg(&pdev->dev, "dm9000_probe()\n");
1486 
1487         /* setup board info structure */
1488         db = netdev_priv(ndev);
1489 
1490         db->dev = &pdev->dev;
1491         db->ndev = ndev;
1492 
1493         spin_lock_init(&db->lock);
1494         mutex_init(&db->addr_lock);
1495 
1496         INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1497 
1498         db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1499         db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1500 
1501         if (!db->addr_res || !db->data_res) {
1502                 dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1503                         db->addr_res, db->data_res);
1504                 ret = -ENOENT;
1505                 goto out;
1506         }
1507 
1508         ndev->irq = platform_get_irq(pdev, 0);
1509         if (ndev->irq < 0) {
1510                 dev_err(db->dev, "interrupt resource unavailable: %d\n",
1511                         ndev->irq);
1512                 ret = ndev->irq;
1513                 goto out;
1514         }
1515 
1516         db->irq_wake = platform_get_irq(pdev, 1);
1517         if (db->irq_wake >= 0) {
1518                 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1519 
1520                 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1521                                   IRQF_SHARED, dev_name(db->dev), ndev);
1522                 if (ret) {
1523                         dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1524                 } else {
1525 
1526                         /* test to see if irq is really wakeup capable */
1527                         ret = irq_set_irq_wake(db->irq_wake, 1);
1528                         if (ret) {
1529                                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1530                                         db->irq_wake, ret);
1531                                 ret = 0;
1532                         } else {
1533                                 irq_set_irq_wake(db->irq_wake, 0);
1534                                 db->wake_supported = 1;
1535                         }
1536                 }
1537         }
1538 
1539         iosize = resource_size(db->addr_res);
1540         db->addr_req = request_mem_region(db->addr_res->start, iosize,
1541                                           pdev->name);
1542 
1543         if (db->addr_req == NULL) {
1544                 dev_err(db->dev, "cannot claim address reg area\n");
1545                 ret = -EIO;
1546                 goto out;
1547         }
1548 
1549         db->io_addr = ioremap(db->addr_res->start, iosize);
1550 
1551         if (db->io_addr == NULL) {
1552                 dev_err(db->dev, "failed to ioremap address reg\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556 
1557         iosize = resource_size(db->data_res);
1558         db->data_req = request_mem_region(db->data_res->start, iosize,
1559                                           pdev->name);
1560 
1561         if (db->data_req == NULL) {
1562                 dev_err(db->dev, "cannot claim data reg area\n");
1563                 ret = -EIO;
1564                 goto out;
1565         }
1566 
1567         db->io_data = ioremap(db->data_res->start, iosize);
1568 
1569         if (db->io_data == NULL) {
1570                 dev_err(db->dev, "failed to ioremap data reg\n");
1571                 ret = -EINVAL;
1572                 goto out;
1573         }
1574 
1575         /* fill in parameters for net-dev structure */
1576         ndev->base_addr = (unsigned long)db->io_addr;
1577 
1578         /* ensure at least we have a default set of IO routines */
1579         dm9000_set_io(db, iosize);
1580 
1581         /* check to see if anything is being over-ridden */
1582         if (pdata != NULL) {
1583                 /* check to see if the driver wants to over-ride the
1584                  * default IO width */
1585 
1586                 if (pdata->flags & DM9000_PLATF_8BITONLY)
1587                         dm9000_set_io(db, 1);
1588 
1589                 if (pdata->flags & DM9000_PLATF_16BITONLY)
1590                         dm9000_set_io(db, 2);
1591 
1592                 if (pdata->flags & DM9000_PLATF_32BITONLY)
1593                         dm9000_set_io(db, 4);
1594 
1595                 /* check to see if there are any IO routine
1596                  * over-rides */
1597 
1598                 if (pdata->inblk != NULL)
1599                         db->inblk = pdata->inblk;
1600 
1601                 if (pdata->outblk != NULL)
1602                         db->outblk = pdata->outblk;
1603 
1604                 if (pdata->dumpblk != NULL)
1605                         db->dumpblk = pdata->dumpblk;
1606 
1607                 db->flags = pdata->flags;
1608         }
1609 
1610 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1611         db->flags |= DM9000_PLATF_SIMPLE_PHY;
1612 #endif
1613 
1614         dm9000_reset(db);
1615 
1616         /* try multiple times, DM9000 sometimes gets the read wrong */
1617         for (i = 0; i < 8; i++) {
1618                 id_val  = ior(db, DM9000_VIDL);
1619                 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1620                 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1621                 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1622 
1623                 if (id_val == DM9000_ID)
1624                         break;
1625                 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1626         }
1627 
1628         if (id_val != DM9000_ID) {
1629                 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1630                 ret = -ENODEV;
1631                 goto out;
1632         }
1633 
1634         /* Identify what type of DM9000 we are working on */
1635 
1636         id_val = ior(db, DM9000_CHIPR);
1637         dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1638 
1639         switch (id_val) {
1640         case CHIPR_DM9000A:
1641                 db->type = TYPE_DM9000A;
1642                 break;
1643         case CHIPR_DM9000B:
1644                 db->type = TYPE_DM9000B;
1645                 break;
1646         default:
1647                 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1648                 db->type = TYPE_DM9000E;
1649         }
1650 
1651         /* dm9000a/b are capable of hardware checksum offload */
1652         if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1653                 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1654                 ndev->features |= ndev->hw_features;
1655         }
1656 
1657         /* from this point we assume that we have found a DM9000 */
1658 
1659         ndev->netdev_ops        = &dm9000_netdev_ops;
1660         ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1661         ndev->ethtool_ops       = &dm9000_ethtool_ops;
1662 
1663         db->msg_enable       = NETIF_MSG_LINK;
1664         db->mii.phy_id_mask  = 0x1f;
1665         db->mii.reg_num_mask = 0x1f;
1666         db->mii.force_media  = 0;
1667         db->mii.full_duplex  = 0;
1668         db->mii.dev          = ndev;
1669         db->mii.mdio_read    = dm9000_phy_read;
1670         db->mii.mdio_write   = dm9000_phy_write;
1671 
1672         mac_src = "eeprom";
1673 
1674         /* try reading the node address from the attached EEPROM */
1675         for (i = 0; i < 6; i += 2)
1676                 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1677 
1678         if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1679                 mac_src = "platform data";
1680                 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1681         }
1682 
1683         if (!is_valid_ether_addr(ndev->dev_addr)) {
1684                 /* try reading from mac */
1685 
1686                 mac_src = "chip";
1687                 for (i = 0; i < 6; i++)
1688                         ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1689         }
1690 
1691         if (!is_valid_ether_addr(ndev->dev_addr)) {
1692                 inv_mac_addr = true;
1693                 eth_hw_addr_random(ndev);
1694                 mac_src = "random";
1695         }
1696 
1697 
1698         platform_set_drvdata(pdev, ndev);
1699         ret = register_netdev(ndev);
1700 
1701         if (ret == 0) {
1702                 if (inv_mac_addr)
1703                         dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1704                                  ndev->name);
1705                 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1706                        ndev->name, dm9000_type_to_char(db->type),
1707                        db->io_addr, db->io_data, ndev->irq,
1708                        ndev->dev_addr, mac_src);
1709         }
1710         return 0;
1711 
1712 out:
1713         dev_err(db->dev, "not found (%d).\n", ret);
1714 
1715         dm9000_release_board(pdev, db);
1716         free_netdev(ndev);
1717 
1718         return ret;
1719 }
1720 
1721 static int
1722 dm9000_drv_suspend(struct device *dev)
1723 {
1724         struct platform_device *pdev = to_platform_device(dev);
1725         struct net_device *ndev = platform_get_drvdata(pdev);
1726         struct board_info *db;
1727 
1728         if (ndev) {
1729                 db = netdev_priv(ndev);
1730                 db->in_suspend = 1;
1731 
1732                 if (!netif_running(ndev))
1733                         return 0;
1734 
1735                 netif_device_detach(ndev);
1736 
1737                 /* only shutdown if not using WoL */
1738                 if (!db->wake_state)
1739                         dm9000_shutdown(ndev);
1740         }
1741         return 0;
1742 }
1743 
1744 static int
1745 dm9000_drv_resume(struct device *dev)
1746 {
1747         struct platform_device *pdev = to_platform_device(dev);
1748         struct net_device *ndev = platform_get_drvdata(pdev);
1749         struct board_info *db = netdev_priv(ndev);
1750 
1751         if (ndev) {
1752                 if (netif_running(ndev)) {
1753                         /* reset if we were not in wake mode to ensure if
1754                          * the device was powered off it is in a known state */
1755                         if (!db->wake_state) {
1756                                 dm9000_init_dm9000(ndev);
1757                                 dm9000_unmask_interrupts(db);
1758                         }
1759 
1760                         netif_device_attach(ndev);
1761                 }
1762 
1763                 db->in_suspend = 0;
1764         }
1765         return 0;
1766 }
1767 
1768 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1769         .suspend        = dm9000_drv_suspend,
1770         .resume         = dm9000_drv_resume,
1771 };
1772 
1773 static int
1774 dm9000_drv_remove(struct platform_device *pdev)
1775 {
1776         struct net_device *ndev = platform_get_drvdata(pdev);
1777 
1778         unregister_netdev(ndev);
1779         dm9000_release_board(pdev, netdev_priv(ndev));
1780         free_netdev(ndev);              /* free device structure */
1781 
1782         dev_dbg(&pdev->dev, "released and freed device\n");
1783         return 0;
1784 }
1785 
1786 #ifdef CONFIG_OF
1787 static const struct of_device_id dm9000_of_matches[] = {
1788         { .compatible = "davicom,dm9000", },
1789         { /* sentinel */ }
1790 };
1791 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1792 #endif
1793 
1794 static struct platform_driver dm9000_driver = {
1795         .driver = {
1796                 .name    = "dm9000",
1797                 .pm      = &dm9000_drv_pm_ops,
1798                 .of_match_table = of_match_ptr(dm9000_of_matches),
1799         },
1800         .probe   = dm9000_probe,
1801         .remove  = dm9000_drv_remove,
1802 };
1803 
1804 module_platform_driver(dm9000_driver);
1805 
1806 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1807 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1808 MODULE_LICENSE("GPL");
1809 MODULE_ALIAS("platform:dm9000");
1810 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us