Version:  2.0.40 2.2.26 2.4.37 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1

Linux/drivers/net/ethernet/davicom/dm9000.c

  1 /*
  2  *      Davicom DM9000 Fast Ethernet driver for Linux.
  3  *      Copyright (C) 1997  Sten Wang
  4  *
  5  *      This program is free software; you can redistribute it and/or
  6  *      modify it under the terms of the GNU General Public License
  7  *      as published by the Free Software Foundation; either version 2
  8  *      of the License, or (at your option) any later version.
  9  *
 10  *      This program is distributed in the hope that it will be useful,
 11  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 12  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13  *      GNU General Public License for more details.
 14  *
 15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
 16  *
 17  * Additional updates, Copyright:
 18  *      Ben Dooks <ben@simtec.co.uk>
 19  *      Sascha Hauer <s.hauer@pengutronix.de>
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/ioport.h>
 24 #include <linux/netdevice.h>
 25 #include <linux/etherdevice.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/skbuff.h>
 28 #include <linux/spinlock.h>
 29 #include <linux/crc32.h>
 30 #include <linux/mii.h>
 31 #include <linux/of.h>
 32 #include <linux/of_net.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/dm9000.h>
 35 #include <linux/delay.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/irq.h>
 38 #include <linux/slab.h>
 39 #include <linux/regulator/consumer.h>
 40 #include <linux/gpio.h>
 41 #include <linux/of_gpio.h>
 42 
 43 #include <asm/delay.h>
 44 #include <asm/irq.h>
 45 #include <asm/io.h>
 46 
 47 #include "dm9000.h"
 48 
 49 /* Board/System/Debug information/definition ---------------- */
 50 
 51 #define DM9000_PHY              0x40    /* PHY address 0x01 */
 52 
 53 #define CARDNAME        "dm9000"
 54 #define DRV_VERSION     "1.31"
 55 
 56 /*
 57  * Transmit timeout, default 5 seconds.
 58  */
 59 static int watchdog = 5000;
 60 module_param(watchdog, int, 0400);
 61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 62 
 63 /*
 64  * Debug messages level
 65  */
 66 static int debug;
 67 module_param(debug, int, 0644);
 68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
 69 
 70 /* DM9000 register address locking.
 71  *
 72  * The DM9000 uses an address register to control where data written
 73  * to the data register goes. This means that the address register
 74  * must be preserved over interrupts or similar calls.
 75  *
 76  * During interrupt and other critical calls, a spinlock is used to
 77  * protect the system, but the calls themselves save the address
 78  * in the address register in case they are interrupting another
 79  * access to the device.
 80  *
 81  * For general accesses a lock is provided so that calls which are
 82  * allowed to sleep are serialised so that the address register does
 83  * not need to be saved. This lock also serves to serialise access
 84  * to the EEPROM and PHY access registers which are shared between
 85  * these two devices.
 86  */
 87 
 88 /* The driver supports the original DM9000E, and now the two newer
 89  * devices, DM9000A and DM9000B.
 90  */
 91 
 92 enum dm9000_type {
 93         TYPE_DM9000E,   /* original DM9000 */
 94         TYPE_DM9000A,
 95         TYPE_DM9000B
 96 };
 97 
 98 /* Structure/enum declaration ------------------------------- */
 99 struct board_info {
100 
101         void __iomem    *io_addr;       /* Register I/O base address */
102         void __iomem    *io_data;       /* Data I/O address */
103         u16              irq;           /* IRQ */
104 
105         u16             tx_pkt_cnt;
106         u16             queue_pkt_len;
107         u16             queue_start_addr;
108         u16             queue_ip_summed;
109         u16             dbug_cnt;
110         u8              io_mode;                /* 0:word, 2:byte */
111         u8              phy_addr;
112         u8              imr_all;
113 
114         unsigned int    flags;
115         unsigned int    in_timeout:1;
116         unsigned int    in_suspend:1;
117         unsigned int    wake_supported:1;
118 
119         enum dm9000_type type;
120 
121         void (*inblk)(void __iomem *port, void *data, int length);
122         void (*outblk)(void __iomem *port, void *data, int length);
123         void (*dumpblk)(void __iomem *port, int length);
124 
125         struct device   *dev;        /* parent device */
126 
127         struct resource *addr_res;   /* resources found */
128         struct resource *data_res;
129         struct resource *addr_req;   /* resources requested */
130         struct resource *data_req;
131         struct resource *irq_res;
132 
133         int              irq_wake;
134 
135         struct mutex     addr_lock;     /* phy and eeprom access lock */
136 
137         struct delayed_work phy_poll;
138         struct net_device  *ndev;
139 
140         spinlock_t      lock;
141 
142         struct mii_if_info mii;
143         u32             msg_enable;
144         u32             wake_state;
145 
146         int             ip_summed;
147 };
148 
149 /* debug code */
150 
151 #define dm9000_dbg(db, lev, msg...) do {                \
152         if ((lev) < debug) {                            \
153                 dev_dbg(db->dev, msg);                  \
154         }                                               \
155 } while (0)
156 
157 static inline struct board_info *to_dm9000_board(struct net_device *dev)
158 {
159         return netdev_priv(dev);
160 }
161 
162 /* DM9000 network board routine ---------------------------- */
163 
164 /*
165  *   Read a byte from I/O port
166  */
167 static u8
168 ior(struct board_info *db, int reg)
169 {
170         writeb(reg, db->io_addr);
171         return readb(db->io_data);
172 }
173 
174 /*
175  *   Write a byte to I/O port
176  */
177 
178 static void
179 iow(struct board_info *db, int reg, int value)
180 {
181         writeb(reg, db->io_addr);
182         writeb(value, db->io_data);
183 }
184 
185 static void
186 dm9000_reset(struct board_info *db)
187 {
188         dev_dbg(db->dev, "resetting device\n");
189 
190         /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
191          * The essential point is that we have to do a double reset, and the
192          * instruction is to set LBK into MAC internal loopback mode.
193          */
194         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
195         udelay(100); /* Application note says at least 20 us */
196         if (ior(db, DM9000_NCR) & 1)
197                 dev_err(db->dev, "dm9000 did not respond to first reset\n");
198 
199         iow(db, DM9000_NCR, 0);
200         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
201         udelay(100);
202         if (ior(db, DM9000_NCR) & 1)
203                 dev_err(db->dev, "dm9000 did not respond to second reset\n");
204 }
205 
206 /* routines for sending block to chip */
207 
208 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
209 {
210         iowrite8_rep(reg, data, count);
211 }
212 
213 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
214 {
215         iowrite16_rep(reg, data, (count+1) >> 1);
216 }
217 
218 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
219 {
220         iowrite32_rep(reg, data, (count+3) >> 2);
221 }
222 
223 /* input block from chip to memory */
224 
225 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
226 {
227         ioread8_rep(reg, data, count);
228 }
229 
230 
231 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
232 {
233         ioread16_rep(reg, data, (count+1) >> 1);
234 }
235 
236 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
237 {
238         ioread32_rep(reg, data, (count+3) >> 2);
239 }
240 
241 /* dump block from chip to null */
242 
243 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
244 {
245         int i;
246         int tmp;
247 
248         for (i = 0; i < count; i++)
249                 tmp = readb(reg);
250 }
251 
252 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
253 {
254         int i;
255         int tmp;
256 
257         count = (count + 1) >> 1;
258 
259         for (i = 0; i < count; i++)
260                 tmp = readw(reg);
261 }
262 
263 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
264 {
265         int i;
266         int tmp;
267 
268         count = (count + 3) >> 2;
269 
270         for (i = 0; i < count; i++)
271                 tmp = readl(reg);
272 }
273 
274 /*
275  * Sleep, either by using msleep() or if we are suspending, then
276  * use mdelay() to sleep.
277  */
278 static void dm9000_msleep(struct board_info *db, unsigned int ms)
279 {
280         if (db->in_suspend || db->in_timeout)
281                 mdelay(ms);
282         else
283                 msleep(ms);
284 }
285 
286 /* Read a word from phyxcer */
287 static int
288 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
289 {
290         struct board_info *db = netdev_priv(dev);
291         unsigned long flags;
292         unsigned int reg_save;
293         int ret;
294 
295         mutex_lock(&db->addr_lock);
296 
297         spin_lock_irqsave(&db->lock, flags);
298 
299         /* Save previous register address */
300         reg_save = readb(db->io_addr);
301 
302         /* Fill the phyxcer register into REG_0C */
303         iow(db, DM9000_EPAR, DM9000_PHY | reg);
304 
305         /* Issue phyxcer read command */
306         iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
307 
308         writeb(reg_save, db->io_addr);
309         spin_unlock_irqrestore(&db->lock, flags);
310 
311         dm9000_msleep(db, 1);           /* Wait read complete */
312 
313         spin_lock_irqsave(&db->lock, flags);
314         reg_save = readb(db->io_addr);
315 
316         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
317 
318         /* The read data keeps on REG_0D & REG_0E */
319         ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
320 
321         /* restore the previous address */
322         writeb(reg_save, db->io_addr);
323         spin_unlock_irqrestore(&db->lock, flags);
324 
325         mutex_unlock(&db->addr_lock);
326 
327         dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
328         return ret;
329 }
330 
331 /* Write a word to phyxcer */
332 static void
333 dm9000_phy_write(struct net_device *dev,
334                  int phyaddr_unused, int reg, int value)
335 {
336         struct board_info *db = netdev_priv(dev);
337         unsigned long flags;
338         unsigned long reg_save;
339 
340         dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
341         if (!db->in_timeout)
342                 mutex_lock(&db->addr_lock);
343 
344         spin_lock_irqsave(&db->lock, flags);
345 
346         /* Save previous register address */
347         reg_save = readb(db->io_addr);
348 
349         /* Fill the phyxcer register into REG_0C */
350         iow(db, DM9000_EPAR, DM9000_PHY | reg);
351 
352         /* Fill the written data into REG_0D & REG_0E */
353         iow(db, DM9000_EPDRL, value);
354         iow(db, DM9000_EPDRH, value >> 8);
355 
356         /* Issue phyxcer write command */
357         iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
358 
359         writeb(reg_save, db->io_addr);
360         spin_unlock_irqrestore(&db->lock, flags);
361 
362         dm9000_msleep(db, 1);           /* Wait write complete */
363 
364         spin_lock_irqsave(&db->lock, flags);
365         reg_save = readb(db->io_addr);
366 
367         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
368 
369         /* restore the previous address */
370         writeb(reg_save, db->io_addr);
371 
372         spin_unlock_irqrestore(&db->lock, flags);
373         if (!db->in_timeout)
374                 mutex_unlock(&db->addr_lock);
375 }
376 
377 /* dm9000_set_io
378  *
379  * select the specified set of io routines to use with the
380  * device
381  */
382 
383 static void dm9000_set_io(struct board_info *db, int byte_width)
384 {
385         /* use the size of the data resource to work out what IO
386          * routines we want to use
387          */
388 
389         switch (byte_width) {
390         case 1:
391                 db->dumpblk = dm9000_dumpblk_8bit;
392                 db->outblk  = dm9000_outblk_8bit;
393                 db->inblk   = dm9000_inblk_8bit;
394                 break;
395 
396 
397         case 3:
398                 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
399         case 2:
400                 db->dumpblk = dm9000_dumpblk_16bit;
401                 db->outblk  = dm9000_outblk_16bit;
402                 db->inblk   = dm9000_inblk_16bit;
403                 break;
404 
405         case 4:
406         default:
407                 db->dumpblk = dm9000_dumpblk_32bit;
408                 db->outblk  = dm9000_outblk_32bit;
409                 db->inblk   = dm9000_inblk_32bit;
410                 break;
411         }
412 }
413 
414 static void dm9000_schedule_poll(struct board_info *db)
415 {
416         if (db->type == TYPE_DM9000E)
417                 schedule_delayed_work(&db->phy_poll, HZ * 2);
418 }
419 
420 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
421 {
422         struct board_info *dm = to_dm9000_board(dev);
423 
424         if (!netif_running(dev))
425                 return -EINVAL;
426 
427         return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
428 }
429 
430 static unsigned int
431 dm9000_read_locked(struct board_info *db, int reg)
432 {
433         unsigned long flags;
434         unsigned int ret;
435 
436         spin_lock_irqsave(&db->lock, flags);
437         ret = ior(db, reg);
438         spin_unlock_irqrestore(&db->lock, flags);
439 
440         return ret;
441 }
442 
443 static int dm9000_wait_eeprom(struct board_info *db)
444 {
445         unsigned int status;
446         int timeout = 8;        /* wait max 8msec */
447 
448         /* The DM9000 data sheets say we should be able to
449          * poll the ERRE bit in EPCR to wait for the EEPROM
450          * operation. From testing several chips, this bit
451          * does not seem to work.
452          *
453          * We attempt to use the bit, but fall back to the
454          * timeout (which is why we do not return an error
455          * on expiry) to say that the EEPROM operation has
456          * completed.
457          */
458 
459         while (1) {
460                 status = dm9000_read_locked(db, DM9000_EPCR);
461 
462                 if ((status & EPCR_ERRE) == 0)
463                         break;
464 
465                 msleep(1);
466 
467                 if (timeout-- < 0) {
468                         dev_dbg(db->dev, "timeout waiting EEPROM\n");
469                         break;
470                 }
471         }
472 
473         return 0;
474 }
475 
476 /*
477  *  Read a word data from EEPROM
478  */
479 static void
480 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
481 {
482         unsigned long flags;
483 
484         if (db->flags & DM9000_PLATF_NO_EEPROM) {
485                 to[0] = 0xff;
486                 to[1] = 0xff;
487                 return;
488         }
489 
490         mutex_lock(&db->addr_lock);
491 
492         spin_lock_irqsave(&db->lock, flags);
493 
494         iow(db, DM9000_EPAR, offset);
495         iow(db, DM9000_EPCR, EPCR_ERPRR);
496 
497         spin_unlock_irqrestore(&db->lock, flags);
498 
499         dm9000_wait_eeprom(db);
500 
501         /* delay for at-least 150uS */
502         msleep(1);
503 
504         spin_lock_irqsave(&db->lock, flags);
505 
506         iow(db, DM9000_EPCR, 0x0);
507 
508         to[0] = ior(db, DM9000_EPDRL);
509         to[1] = ior(db, DM9000_EPDRH);
510 
511         spin_unlock_irqrestore(&db->lock, flags);
512 
513         mutex_unlock(&db->addr_lock);
514 }
515 
516 /*
517  * Write a word data to SROM
518  */
519 static void
520 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
521 {
522         unsigned long flags;
523 
524         if (db->flags & DM9000_PLATF_NO_EEPROM)
525                 return;
526 
527         mutex_lock(&db->addr_lock);
528 
529         spin_lock_irqsave(&db->lock, flags);
530         iow(db, DM9000_EPAR, offset);
531         iow(db, DM9000_EPDRH, data[1]);
532         iow(db, DM9000_EPDRL, data[0]);
533         iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
534         spin_unlock_irqrestore(&db->lock, flags);
535 
536         dm9000_wait_eeprom(db);
537 
538         mdelay(1);      /* wait at least 150uS to clear */
539 
540         spin_lock_irqsave(&db->lock, flags);
541         iow(db, DM9000_EPCR, 0);
542         spin_unlock_irqrestore(&db->lock, flags);
543 
544         mutex_unlock(&db->addr_lock);
545 }
546 
547 /* ethtool ops */
548 
549 static void dm9000_get_drvinfo(struct net_device *dev,
550                                struct ethtool_drvinfo *info)
551 {
552         struct board_info *dm = to_dm9000_board(dev);
553 
554         strlcpy(info->driver, CARDNAME, sizeof(info->driver));
555         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
556         strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
557                 sizeof(info->bus_info));
558 }
559 
560 static u32 dm9000_get_msglevel(struct net_device *dev)
561 {
562         struct board_info *dm = to_dm9000_board(dev);
563 
564         return dm->msg_enable;
565 }
566 
567 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
568 {
569         struct board_info *dm = to_dm9000_board(dev);
570 
571         dm->msg_enable = value;
572 }
573 
574 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
575 {
576         struct board_info *dm = to_dm9000_board(dev);
577 
578         mii_ethtool_gset(&dm->mii, cmd);
579         return 0;
580 }
581 
582 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
583 {
584         struct board_info *dm = to_dm9000_board(dev);
585 
586         return mii_ethtool_sset(&dm->mii, cmd);
587 }
588 
589 static int dm9000_nway_reset(struct net_device *dev)
590 {
591         struct board_info *dm = to_dm9000_board(dev);
592         return mii_nway_restart(&dm->mii);
593 }
594 
595 static int dm9000_set_features(struct net_device *dev,
596         netdev_features_t features)
597 {
598         struct board_info *dm = to_dm9000_board(dev);
599         netdev_features_t changed = dev->features ^ features;
600         unsigned long flags;
601 
602         if (!(changed & NETIF_F_RXCSUM))
603                 return 0;
604 
605         spin_lock_irqsave(&dm->lock, flags);
606         iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
607         spin_unlock_irqrestore(&dm->lock, flags);
608 
609         return 0;
610 }
611 
612 static u32 dm9000_get_link(struct net_device *dev)
613 {
614         struct board_info *dm = to_dm9000_board(dev);
615         u32 ret;
616 
617         if (dm->flags & DM9000_PLATF_EXT_PHY)
618                 ret = mii_link_ok(&dm->mii);
619         else
620                 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
621 
622         return ret;
623 }
624 
625 #define DM_EEPROM_MAGIC         (0x444D394B)
626 
627 static int dm9000_get_eeprom_len(struct net_device *dev)
628 {
629         return 128;
630 }
631 
632 static int dm9000_get_eeprom(struct net_device *dev,
633                              struct ethtool_eeprom *ee, u8 *data)
634 {
635         struct board_info *dm = to_dm9000_board(dev);
636         int offset = ee->offset;
637         int len = ee->len;
638         int i;
639 
640         /* EEPROM access is aligned to two bytes */
641 
642         if ((len & 1) != 0 || (offset & 1) != 0)
643                 return -EINVAL;
644 
645         if (dm->flags & DM9000_PLATF_NO_EEPROM)
646                 return -ENOENT;
647 
648         ee->magic = DM_EEPROM_MAGIC;
649 
650         for (i = 0; i < len; i += 2)
651                 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
652 
653         return 0;
654 }
655 
656 static int dm9000_set_eeprom(struct net_device *dev,
657                              struct ethtool_eeprom *ee, u8 *data)
658 {
659         struct board_info *dm = to_dm9000_board(dev);
660         int offset = ee->offset;
661         int len = ee->len;
662         int done;
663 
664         /* EEPROM access is aligned to two bytes */
665 
666         if (dm->flags & DM9000_PLATF_NO_EEPROM)
667                 return -ENOENT;
668 
669         if (ee->magic != DM_EEPROM_MAGIC)
670                 return -EINVAL;
671 
672         while (len > 0) {
673                 if (len & 1 || offset & 1) {
674                         int which = offset & 1;
675                         u8 tmp[2];
676 
677                         dm9000_read_eeprom(dm, offset / 2, tmp);
678                         tmp[which] = *data;
679                         dm9000_write_eeprom(dm, offset / 2, tmp);
680 
681                         done = 1;
682                 } else {
683                         dm9000_write_eeprom(dm, offset / 2, data);
684                         done = 2;
685                 }
686 
687                 data += done;
688                 offset += done;
689                 len -= done;
690         }
691 
692         return 0;
693 }
694 
695 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
696 {
697         struct board_info *dm = to_dm9000_board(dev);
698 
699         memset(w, 0, sizeof(struct ethtool_wolinfo));
700 
701         /* note, we could probably support wake-phy too */
702         w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
703         w->wolopts = dm->wake_state;
704 }
705 
706 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
707 {
708         struct board_info *dm = to_dm9000_board(dev);
709         unsigned long flags;
710         u32 opts = w->wolopts;
711         u32 wcr = 0;
712 
713         if (!dm->wake_supported)
714                 return -EOPNOTSUPP;
715 
716         if (opts & ~WAKE_MAGIC)
717                 return -EINVAL;
718 
719         if (opts & WAKE_MAGIC)
720                 wcr |= WCR_MAGICEN;
721 
722         mutex_lock(&dm->addr_lock);
723 
724         spin_lock_irqsave(&dm->lock, flags);
725         iow(dm, DM9000_WCR, wcr);
726         spin_unlock_irqrestore(&dm->lock, flags);
727 
728         mutex_unlock(&dm->addr_lock);
729 
730         if (dm->wake_state != opts) {
731                 /* change in wol state, update IRQ state */
732 
733                 if (!dm->wake_state)
734                         irq_set_irq_wake(dm->irq_wake, 1);
735                 else if (dm->wake_state && !opts)
736                         irq_set_irq_wake(dm->irq_wake, 0);
737         }
738 
739         dm->wake_state = opts;
740         return 0;
741 }
742 
743 static const struct ethtool_ops dm9000_ethtool_ops = {
744         .get_drvinfo            = dm9000_get_drvinfo,
745         .get_settings           = dm9000_get_settings,
746         .set_settings           = dm9000_set_settings,
747         .get_msglevel           = dm9000_get_msglevel,
748         .set_msglevel           = dm9000_set_msglevel,
749         .nway_reset             = dm9000_nway_reset,
750         .get_link               = dm9000_get_link,
751         .get_wol                = dm9000_get_wol,
752         .set_wol                = dm9000_set_wol,
753         .get_eeprom_len         = dm9000_get_eeprom_len,
754         .get_eeprom             = dm9000_get_eeprom,
755         .set_eeprom             = dm9000_set_eeprom,
756 };
757 
758 static void dm9000_show_carrier(struct board_info *db,
759                                 unsigned carrier, unsigned nsr)
760 {
761         int lpa;
762         struct net_device *ndev = db->ndev;
763         struct mii_if_info *mii = &db->mii;
764         unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
765 
766         if (carrier) {
767                 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
768                 dev_info(db->dev,
769                          "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
770                          ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
771                          (ncr & NCR_FDX) ? "full" : "half", lpa);
772         } else {
773                 dev_info(db->dev, "%s: link down\n", ndev->name);
774         }
775 }
776 
777 static void
778 dm9000_poll_work(struct work_struct *w)
779 {
780         struct delayed_work *dw = to_delayed_work(w);
781         struct board_info *db = container_of(dw, struct board_info, phy_poll);
782         struct net_device *ndev = db->ndev;
783 
784         if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
785             !(db->flags & DM9000_PLATF_EXT_PHY)) {
786                 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
787                 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
788                 unsigned new_carrier;
789 
790                 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
791 
792                 if (old_carrier != new_carrier) {
793                         if (netif_msg_link(db))
794                                 dm9000_show_carrier(db, new_carrier, nsr);
795 
796                         if (!new_carrier)
797                                 netif_carrier_off(ndev);
798                         else
799                                 netif_carrier_on(ndev);
800                 }
801         } else
802                 mii_check_media(&db->mii, netif_msg_link(db), 0);
803 
804         if (netif_running(ndev))
805                 dm9000_schedule_poll(db);
806 }
807 
808 /* dm9000_release_board
809  *
810  * release a board, and any mapped resources
811  */
812 
813 static void
814 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
815 {
816         /* unmap our resources */
817 
818         iounmap(db->io_addr);
819         iounmap(db->io_data);
820 
821         /* release the resources */
822 
823         if (db->data_req)
824                 release_resource(db->data_req);
825         kfree(db->data_req);
826 
827         if (db->addr_req)
828                 release_resource(db->addr_req);
829         kfree(db->addr_req);
830 }
831 
832 static unsigned char dm9000_type_to_char(enum dm9000_type type)
833 {
834         switch (type) {
835         case TYPE_DM9000E: return 'e';
836         case TYPE_DM9000A: return 'a';
837         case TYPE_DM9000B: return 'b';
838         }
839 
840         return '?';
841 }
842 
843 /*
844  *  Set DM9000 multicast address
845  */
846 static void
847 dm9000_hash_table_unlocked(struct net_device *dev)
848 {
849         struct board_info *db = netdev_priv(dev);
850         struct netdev_hw_addr *ha;
851         int i, oft;
852         u32 hash_val;
853         u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
854         u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
855 
856         dm9000_dbg(db, 1, "entering %s\n", __func__);
857 
858         for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
859                 iow(db, oft, dev->dev_addr[i]);
860 
861         if (dev->flags & IFF_PROMISC)
862                 rcr |= RCR_PRMSC;
863 
864         if (dev->flags & IFF_ALLMULTI)
865                 rcr |= RCR_ALL;
866 
867         /* the multicast address in Hash Table : 64 bits */
868         netdev_for_each_mc_addr(ha, dev) {
869                 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
870                 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
871         }
872 
873         /* Write the hash table to MAC MD table */
874         for (i = 0, oft = DM9000_MAR; i < 4; i++) {
875                 iow(db, oft++, hash_table[i]);
876                 iow(db, oft++, hash_table[i] >> 8);
877         }
878 
879         iow(db, DM9000_RCR, rcr);
880 }
881 
882 static void
883 dm9000_hash_table(struct net_device *dev)
884 {
885         struct board_info *db = netdev_priv(dev);
886         unsigned long flags;
887 
888         spin_lock_irqsave(&db->lock, flags);
889         dm9000_hash_table_unlocked(dev);
890         spin_unlock_irqrestore(&db->lock, flags);
891 }
892 
893 static void
894 dm9000_mask_interrupts(struct board_info *db)
895 {
896         iow(db, DM9000_IMR, IMR_PAR);
897 }
898 
899 static void
900 dm9000_unmask_interrupts(struct board_info *db)
901 {
902         iow(db, DM9000_IMR, db->imr_all);
903 }
904 
905 /*
906  * Initialize dm9000 board
907  */
908 static void
909 dm9000_init_dm9000(struct net_device *dev)
910 {
911         struct board_info *db = netdev_priv(dev);
912         unsigned int imr;
913         unsigned int ncr;
914 
915         dm9000_dbg(db, 1, "entering %s\n", __func__);
916 
917         dm9000_reset(db);
918         dm9000_mask_interrupts(db);
919 
920         /* I/O mode */
921         db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
922 
923         /* Checksum mode */
924         if (dev->hw_features & NETIF_F_RXCSUM)
925                 iow(db, DM9000_RCSR,
926                         (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
927 
928         iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
929         iow(db, DM9000_GPR, 0);
930 
931         /* If we are dealing with DM9000B, some extra steps are required: a
932          * manual phy reset, and setting init params.
933          */
934         if (db->type == TYPE_DM9000B) {
935                 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
936                 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
937         }
938 
939         ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
940 
941         /* if wol is needed, then always set NCR_WAKEEN otherwise we end
942          * up dumping the wake events if we disable this. There is already
943          * a wake-mask in DM9000_WCR */
944         if (db->wake_supported)
945                 ncr |= NCR_WAKEEN;
946 
947         iow(db, DM9000_NCR, ncr);
948 
949         /* Program operating register */
950         iow(db, DM9000_TCR, 0);         /* TX Polling clear */
951         iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
952         iow(db, DM9000_FCR, 0xff);      /* Flow Control */
953         iow(db, DM9000_SMCR, 0);        /* Special Mode */
954         /* clear TX status */
955         iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
956         iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
957 
958         /* Set address filter table */
959         dm9000_hash_table_unlocked(dev);
960 
961         imr = IMR_PAR | IMR_PTM | IMR_PRM;
962         if (db->type != TYPE_DM9000E)
963                 imr |= IMR_LNKCHNG;
964 
965         db->imr_all = imr;
966 
967         /* Init Driver variable */
968         db->tx_pkt_cnt = 0;
969         db->queue_pkt_len = 0;
970         dev->trans_start = jiffies;
971 }
972 
973 /* Our watchdog timed out. Called by the networking layer */
974 static void dm9000_timeout(struct net_device *dev)
975 {
976         struct board_info *db = netdev_priv(dev);
977         u8 reg_save;
978         unsigned long flags;
979 
980         /* Save previous register address */
981         spin_lock_irqsave(&db->lock, flags);
982         db->in_timeout = 1;
983         reg_save = readb(db->io_addr);
984 
985         netif_stop_queue(dev);
986         dm9000_init_dm9000(dev);
987         dm9000_unmask_interrupts(db);
988         /* We can accept TX packets again */
989         dev->trans_start = jiffies; /* prevent tx timeout */
990         netif_wake_queue(dev);
991 
992         /* Restore previous register address */
993         writeb(reg_save, db->io_addr);
994         db->in_timeout = 0;
995         spin_unlock_irqrestore(&db->lock, flags);
996 }
997 
998 static void dm9000_send_packet(struct net_device *dev,
999                                int ip_summed,
1000                                u16 pkt_len)
1001 {
1002         struct board_info *dm = to_dm9000_board(dev);
1003 
1004         /* The DM9000 is not smart enough to leave fragmented packets alone. */
1005         if (dm->ip_summed != ip_summed) {
1006                 if (ip_summed == CHECKSUM_NONE)
1007                         iow(dm, DM9000_TCCR, 0);
1008                 else
1009                         iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1010                 dm->ip_summed = ip_summed;
1011         }
1012 
1013         /* Set TX length to DM9000 */
1014         iow(dm, DM9000_TXPLL, pkt_len);
1015         iow(dm, DM9000_TXPLH, pkt_len >> 8);
1016 
1017         /* Issue TX polling command */
1018         iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1019 }
1020 
1021 /*
1022  *  Hardware start transmission.
1023  *  Send a packet to media from the upper layer.
1024  */
1025 static int
1026 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1027 {
1028         unsigned long flags;
1029         struct board_info *db = netdev_priv(dev);
1030 
1031         dm9000_dbg(db, 3, "%s:\n", __func__);
1032 
1033         if (db->tx_pkt_cnt > 1)
1034                 return NETDEV_TX_BUSY;
1035 
1036         spin_lock_irqsave(&db->lock, flags);
1037 
1038         /* Move data to DM9000 TX RAM */
1039         writeb(DM9000_MWCMD, db->io_addr);
1040 
1041         (db->outblk)(db->io_data, skb->data, skb->len);
1042         dev->stats.tx_bytes += skb->len;
1043 
1044         db->tx_pkt_cnt++;
1045         /* TX control: First packet immediately send, second packet queue */
1046         if (db->tx_pkt_cnt == 1) {
1047                 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1048         } else {
1049                 /* Second packet */
1050                 db->queue_pkt_len = skb->len;
1051                 db->queue_ip_summed = skb->ip_summed;
1052                 netif_stop_queue(dev);
1053         }
1054 
1055         spin_unlock_irqrestore(&db->lock, flags);
1056 
1057         /* free this SKB */
1058         dev_consume_skb_any(skb);
1059 
1060         return NETDEV_TX_OK;
1061 }
1062 
1063 /*
1064  * DM9000 interrupt handler
1065  * receive the packet to upper layer, free the transmitted packet
1066  */
1067 
1068 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1069 {
1070         int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1071 
1072         if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1073                 /* One packet sent complete */
1074                 db->tx_pkt_cnt--;
1075                 dev->stats.tx_packets++;
1076 
1077                 if (netif_msg_tx_done(db))
1078                         dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1079 
1080                 /* Queue packet check & send */
1081                 if (db->tx_pkt_cnt > 0)
1082                         dm9000_send_packet(dev, db->queue_ip_summed,
1083                                            db->queue_pkt_len);
1084                 netif_wake_queue(dev);
1085         }
1086 }
1087 
1088 struct dm9000_rxhdr {
1089         u8      RxPktReady;
1090         u8      RxStatus;
1091         __le16  RxLen;
1092 } __packed;
1093 
1094 /*
1095  *  Received a packet and pass to upper layer
1096  */
1097 static void
1098 dm9000_rx(struct net_device *dev)
1099 {
1100         struct board_info *db = netdev_priv(dev);
1101         struct dm9000_rxhdr rxhdr;
1102         struct sk_buff *skb;
1103         u8 rxbyte, *rdptr;
1104         bool GoodPacket;
1105         int RxLen;
1106 
1107         /* Check packet ready or not */
1108         do {
1109                 ior(db, DM9000_MRCMDX); /* Dummy read */
1110 
1111                 /* Get most updated data */
1112                 rxbyte = readb(db->io_data);
1113 
1114                 /* Status check: this byte must be 0 or 1 */
1115                 if (rxbyte & DM9000_PKT_ERR) {
1116                         dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1117                         iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1118                         return;
1119                 }
1120 
1121                 if (!(rxbyte & DM9000_PKT_RDY))
1122                         return;
1123 
1124                 /* A packet ready now  & Get status/length */
1125                 GoodPacket = true;
1126                 writeb(DM9000_MRCMD, db->io_addr);
1127 
1128                 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1129 
1130                 RxLen = le16_to_cpu(rxhdr.RxLen);
1131 
1132                 if (netif_msg_rx_status(db))
1133                         dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1134                                 rxhdr.RxStatus, RxLen);
1135 
1136                 /* Packet Status check */
1137                 if (RxLen < 0x40) {
1138                         GoodPacket = false;
1139                         if (netif_msg_rx_err(db))
1140                                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1141                 }
1142 
1143                 if (RxLen > DM9000_PKT_MAX) {
1144                         dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1145                 }
1146 
1147                 /* rxhdr.RxStatus is identical to RSR register. */
1148                 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1149                                       RSR_PLE | RSR_RWTO |
1150                                       RSR_LCS | RSR_RF)) {
1151                         GoodPacket = false;
1152                         if (rxhdr.RxStatus & RSR_FOE) {
1153                                 if (netif_msg_rx_err(db))
1154                                         dev_dbg(db->dev, "fifo error\n");
1155                                 dev->stats.rx_fifo_errors++;
1156                         }
1157                         if (rxhdr.RxStatus & RSR_CE) {
1158                                 if (netif_msg_rx_err(db))
1159                                         dev_dbg(db->dev, "crc error\n");
1160                                 dev->stats.rx_crc_errors++;
1161                         }
1162                         if (rxhdr.RxStatus & RSR_RF) {
1163                                 if (netif_msg_rx_err(db))
1164                                         dev_dbg(db->dev, "length error\n");
1165                                 dev->stats.rx_length_errors++;
1166                         }
1167                 }
1168 
1169                 /* Move data from DM9000 */
1170                 if (GoodPacket &&
1171                     ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1172                         skb_reserve(skb, 2);
1173                         rdptr = (u8 *) skb_put(skb, RxLen - 4);
1174 
1175                         /* Read received packet from RX SRAM */
1176 
1177                         (db->inblk)(db->io_data, rdptr, RxLen);
1178                         dev->stats.rx_bytes += RxLen;
1179 
1180                         /* Pass to upper layer */
1181                         skb->protocol = eth_type_trans(skb, dev);
1182                         if (dev->features & NETIF_F_RXCSUM) {
1183                                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1184                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1185                                 else
1186                                         skb_checksum_none_assert(skb);
1187                         }
1188                         netif_rx(skb);
1189                         dev->stats.rx_packets++;
1190 
1191                 } else {
1192                         /* need to dump the packet's data */
1193 
1194                         (db->dumpblk)(db->io_data, RxLen);
1195                 }
1196         } while (rxbyte & DM9000_PKT_RDY);
1197 }
1198 
1199 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1200 {
1201         struct net_device *dev = dev_id;
1202         struct board_info *db = netdev_priv(dev);
1203         int int_status;
1204         unsigned long flags;
1205         u8 reg_save;
1206 
1207         dm9000_dbg(db, 3, "entering %s\n", __func__);
1208 
1209         /* A real interrupt coming */
1210 
1211         /* holders of db->lock must always block IRQs */
1212         spin_lock_irqsave(&db->lock, flags);
1213 
1214         /* Save previous register address */
1215         reg_save = readb(db->io_addr);
1216 
1217         dm9000_mask_interrupts(db);
1218         /* Got DM9000 interrupt status */
1219         int_status = ior(db, DM9000_ISR);       /* Got ISR */
1220         iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1221 
1222         if (netif_msg_intr(db))
1223                 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1224 
1225         /* Received the coming packet */
1226         if (int_status & ISR_PRS)
1227                 dm9000_rx(dev);
1228 
1229         /* Trnasmit Interrupt check */
1230         if (int_status & ISR_PTS)
1231                 dm9000_tx_done(dev, db);
1232 
1233         if (db->type != TYPE_DM9000E) {
1234                 if (int_status & ISR_LNKCHNG) {
1235                         /* fire a link-change request */
1236                         schedule_delayed_work(&db->phy_poll, 1);
1237                 }
1238         }
1239 
1240         dm9000_unmask_interrupts(db);
1241         /* Restore previous register address */
1242         writeb(reg_save, db->io_addr);
1243 
1244         spin_unlock_irqrestore(&db->lock, flags);
1245 
1246         return IRQ_HANDLED;
1247 }
1248 
1249 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1250 {
1251         struct net_device *dev = dev_id;
1252         struct board_info *db = netdev_priv(dev);
1253         unsigned long flags;
1254         unsigned nsr, wcr;
1255 
1256         spin_lock_irqsave(&db->lock, flags);
1257 
1258         nsr = ior(db, DM9000_NSR);
1259         wcr = ior(db, DM9000_WCR);
1260 
1261         dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1262 
1263         if (nsr & NSR_WAKEST) {
1264                 /* clear, so we can avoid */
1265                 iow(db, DM9000_NSR, NSR_WAKEST);
1266 
1267                 if (wcr & WCR_LINKST)
1268                         dev_info(db->dev, "wake by link status change\n");
1269                 if (wcr & WCR_SAMPLEST)
1270                         dev_info(db->dev, "wake by sample packet\n");
1271                 if (wcr & WCR_MAGICST)
1272                         dev_info(db->dev, "wake by magic packet\n");
1273                 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1274                         dev_err(db->dev, "wake signalled with no reason? "
1275                                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1276         }
1277 
1278         spin_unlock_irqrestore(&db->lock, flags);
1279 
1280         return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1281 }
1282 
1283 #ifdef CONFIG_NET_POLL_CONTROLLER
1284 /*
1285  *Used by netconsole
1286  */
1287 static void dm9000_poll_controller(struct net_device *dev)
1288 {
1289         disable_irq(dev->irq);
1290         dm9000_interrupt(dev->irq, dev);
1291         enable_irq(dev->irq);
1292 }
1293 #endif
1294 
1295 /*
1296  *  Open the interface.
1297  *  The interface is opened whenever "ifconfig" actives it.
1298  */
1299 static int
1300 dm9000_open(struct net_device *dev)
1301 {
1302         struct board_info *db = netdev_priv(dev);
1303         unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1304 
1305         if (netif_msg_ifup(db))
1306                 dev_dbg(db->dev, "enabling %s\n", dev->name);
1307 
1308         /* If there is no IRQ type specified, default to something that
1309          * may work, and tell the user that this is a problem */
1310 
1311         if (irqflags == IRQF_TRIGGER_NONE)
1312                 irqflags = irq_get_trigger_type(dev->irq);
1313 
1314         if (irqflags == IRQF_TRIGGER_NONE)
1315                 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1316 
1317         irqflags |= IRQF_SHARED;
1318 
1319         /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1320         iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1321         mdelay(1); /* delay needs by DM9000B */
1322 
1323         /* Initialize DM9000 board */
1324         dm9000_init_dm9000(dev);
1325 
1326         if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1327                 return -EAGAIN;
1328         /* Now that we have an interrupt handler hooked up we can unmask
1329          * our interrupts
1330          */
1331         dm9000_unmask_interrupts(db);
1332 
1333         /* Init driver variable */
1334         db->dbug_cnt = 0;
1335 
1336         mii_check_media(&db->mii, netif_msg_link(db), 1);
1337         netif_start_queue(dev);
1338 
1339         /* Poll initial link status */
1340         schedule_delayed_work(&db->phy_poll, 1);
1341 
1342         return 0;
1343 }
1344 
1345 static void
1346 dm9000_shutdown(struct net_device *dev)
1347 {
1348         struct board_info *db = netdev_priv(dev);
1349 
1350         /* RESET device */
1351         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1352         iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1353         dm9000_mask_interrupts(db);
1354         iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1355 }
1356 
1357 /*
1358  * Stop the interface.
1359  * The interface is stopped when it is brought.
1360  */
1361 static int
1362 dm9000_stop(struct net_device *ndev)
1363 {
1364         struct board_info *db = netdev_priv(ndev);
1365 
1366         if (netif_msg_ifdown(db))
1367                 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1368 
1369         cancel_delayed_work_sync(&db->phy_poll);
1370 
1371         netif_stop_queue(ndev);
1372         netif_carrier_off(ndev);
1373 
1374         /* free interrupt */
1375         free_irq(ndev->irq, ndev);
1376 
1377         dm9000_shutdown(ndev);
1378 
1379         return 0;
1380 }
1381 
1382 static const struct net_device_ops dm9000_netdev_ops = {
1383         .ndo_open               = dm9000_open,
1384         .ndo_stop               = dm9000_stop,
1385         .ndo_start_xmit         = dm9000_start_xmit,
1386         .ndo_tx_timeout         = dm9000_timeout,
1387         .ndo_set_rx_mode        = dm9000_hash_table,
1388         .ndo_do_ioctl           = dm9000_ioctl,
1389         .ndo_change_mtu         = eth_change_mtu,
1390         .ndo_set_features       = dm9000_set_features,
1391         .ndo_validate_addr      = eth_validate_addr,
1392         .ndo_set_mac_address    = eth_mac_addr,
1393 #ifdef CONFIG_NET_POLL_CONTROLLER
1394         .ndo_poll_controller    = dm9000_poll_controller,
1395 #endif
1396 };
1397 
1398 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1399 {
1400         struct dm9000_plat_data *pdata;
1401         struct device_node *np = dev->of_node;
1402         const void *mac_addr;
1403 
1404         if (!IS_ENABLED(CONFIG_OF) || !np)
1405                 return ERR_PTR(-ENXIO);
1406 
1407         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1408         if (!pdata)
1409                 return ERR_PTR(-ENOMEM);
1410 
1411         if (of_find_property(np, "davicom,ext-phy", NULL))
1412                 pdata->flags |= DM9000_PLATF_EXT_PHY;
1413         if (of_find_property(np, "davicom,no-eeprom", NULL))
1414                 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1415 
1416         mac_addr = of_get_mac_address(np);
1417         if (mac_addr)
1418                 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1419 
1420         return pdata;
1421 }
1422 
1423 /*
1424  * Search DM9000 board, allocate space and register it
1425  */
1426 static int
1427 dm9000_probe(struct platform_device *pdev)
1428 {
1429         struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1430         struct board_info *db;  /* Point a board information structure */
1431         struct net_device *ndev;
1432         struct device *dev = &pdev->dev;
1433         const unsigned char *mac_src;
1434         int ret = 0;
1435         int iosize;
1436         int i;
1437         u32 id_val;
1438         int reset_gpios;
1439         enum of_gpio_flags flags;
1440         struct regulator *power;
1441 
1442         power = devm_regulator_get(dev, "vcc");
1443         if (IS_ERR(power)) {
1444                 if (PTR_ERR(power) == -EPROBE_DEFER)
1445                         return -EPROBE_DEFER;
1446                 dev_dbg(dev, "no regulator provided\n");
1447         } else {
1448                 ret = regulator_enable(power);
1449                 if (ret != 0) {
1450                         dev_err(dev,
1451                                 "Failed to enable power regulator: %d\n", ret);
1452                         return ret;
1453                 }
1454                 dev_dbg(dev, "regulator enabled\n");
1455         }
1456 
1457         reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1458                                               &flags);
1459         if (gpio_is_valid(reset_gpios)) {
1460                 ret = devm_gpio_request_one(dev, reset_gpios, flags,
1461                                             "dm9000_reset");
1462                 if (ret) {
1463                         dev_err(dev, "failed to request reset gpio %d: %d\n",
1464                                 reset_gpios, ret);
1465                         return -ENODEV;
1466                 }
1467 
1468                 /* According to manual PWRST# Low Period Min 1ms */
1469                 msleep(2);
1470                 gpio_set_value(reset_gpios, 1);
1471                 /* Needs 3ms to read eeprom when PWRST is deasserted */
1472                 msleep(4);
1473         }
1474 
1475         if (!pdata) {
1476                 pdata = dm9000_parse_dt(&pdev->dev);
1477                 if (IS_ERR(pdata))
1478                         return PTR_ERR(pdata);
1479         }
1480 
1481         /* Init network device */
1482         ndev = alloc_etherdev(sizeof(struct board_info));
1483         if (!ndev)
1484                 return -ENOMEM;
1485 
1486         SET_NETDEV_DEV(ndev, &pdev->dev);
1487 
1488         dev_dbg(&pdev->dev, "dm9000_probe()\n");
1489 
1490         /* setup board info structure */
1491         db = netdev_priv(ndev);
1492 
1493         db->dev = &pdev->dev;
1494         db->ndev = ndev;
1495 
1496         spin_lock_init(&db->lock);
1497         mutex_init(&db->addr_lock);
1498 
1499         INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1500 
1501         db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502         db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1503         db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1504 
1505         if (db->addr_res == NULL || db->data_res == NULL ||
1506             db->irq_res == NULL) {
1507                 dev_err(db->dev, "insufficient resources\n");
1508                 ret = -ENOENT;
1509                 goto out;
1510         }
1511 
1512         db->irq_wake = platform_get_irq(pdev, 1);
1513         if (db->irq_wake >= 0) {
1514                 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1515 
1516                 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1517                                   IRQF_SHARED, dev_name(db->dev), ndev);
1518                 if (ret) {
1519                         dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1520                 } else {
1521 
1522                         /* test to see if irq is really wakeup capable */
1523                         ret = irq_set_irq_wake(db->irq_wake, 1);
1524                         if (ret) {
1525                                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1526                                         db->irq_wake, ret);
1527                                 ret = 0;
1528                         } else {
1529                                 irq_set_irq_wake(db->irq_wake, 0);
1530                                 db->wake_supported = 1;
1531                         }
1532                 }
1533         }
1534 
1535         iosize = resource_size(db->addr_res);
1536         db->addr_req = request_mem_region(db->addr_res->start, iosize,
1537                                           pdev->name);
1538 
1539         if (db->addr_req == NULL) {
1540                 dev_err(db->dev, "cannot claim address reg area\n");
1541                 ret = -EIO;
1542                 goto out;
1543         }
1544 
1545         db->io_addr = ioremap(db->addr_res->start, iosize);
1546 
1547         if (db->io_addr == NULL) {
1548                 dev_err(db->dev, "failed to ioremap address reg\n");
1549                 ret = -EINVAL;
1550                 goto out;
1551         }
1552 
1553         iosize = resource_size(db->data_res);
1554         db->data_req = request_mem_region(db->data_res->start, iosize,
1555                                           pdev->name);
1556 
1557         if (db->data_req == NULL) {
1558                 dev_err(db->dev, "cannot claim data reg area\n");
1559                 ret = -EIO;
1560                 goto out;
1561         }
1562 
1563         db->io_data = ioremap(db->data_res->start, iosize);
1564 
1565         if (db->io_data == NULL) {
1566                 dev_err(db->dev, "failed to ioremap data reg\n");
1567                 ret = -EINVAL;
1568                 goto out;
1569         }
1570 
1571         /* fill in parameters for net-dev structure */
1572         ndev->base_addr = (unsigned long)db->io_addr;
1573         ndev->irq       = db->irq_res->start;
1574 
1575         /* ensure at least we have a default set of IO routines */
1576         dm9000_set_io(db, iosize);
1577 
1578         /* check to see if anything is being over-ridden */
1579         if (pdata != NULL) {
1580                 /* check to see if the driver wants to over-ride the
1581                  * default IO width */
1582 
1583                 if (pdata->flags & DM9000_PLATF_8BITONLY)
1584                         dm9000_set_io(db, 1);
1585 
1586                 if (pdata->flags & DM9000_PLATF_16BITONLY)
1587                         dm9000_set_io(db, 2);
1588 
1589                 if (pdata->flags & DM9000_PLATF_32BITONLY)
1590                         dm9000_set_io(db, 4);
1591 
1592                 /* check to see if there are any IO routine
1593                  * over-rides */
1594 
1595                 if (pdata->inblk != NULL)
1596                         db->inblk = pdata->inblk;
1597 
1598                 if (pdata->outblk != NULL)
1599                         db->outblk = pdata->outblk;
1600 
1601                 if (pdata->dumpblk != NULL)
1602                         db->dumpblk = pdata->dumpblk;
1603 
1604                 db->flags = pdata->flags;
1605         }
1606 
1607 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1608         db->flags |= DM9000_PLATF_SIMPLE_PHY;
1609 #endif
1610 
1611         dm9000_reset(db);
1612 
1613         /* try multiple times, DM9000 sometimes gets the read wrong */
1614         for (i = 0; i < 8; i++) {
1615                 id_val  = ior(db, DM9000_VIDL);
1616                 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1617                 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1618                 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1619 
1620                 if (id_val == DM9000_ID)
1621                         break;
1622                 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1623         }
1624 
1625         if (id_val != DM9000_ID) {
1626                 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1627                 ret = -ENODEV;
1628                 goto out;
1629         }
1630 
1631         /* Identify what type of DM9000 we are working on */
1632 
1633         id_val = ior(db, DM9000_CHIPR);
1634         dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1635 
1636         switch (id_val) {
1637         case CHIPR_DM9000A:
1638                 db->type = TYPE_DM9000A;
1639                 break;
1640         case CHIPR_DM9000B:
1641                 db->type = TYPE_DM9000B;
1642                 break;
1643         default:
1644                 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1645                 db->type = TYPE_DM9000E;
1646         }
1647 
1648         /* dm9000a/b are capable of hardware checksum offload */
1649         if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1650                 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1651                 ndev->features |= ndev->hw_features;
1652         }
1653 
1654         /* from this point we assume that we have found a DM9000 */
1655 
1656         ndev->netdev_ops        = &dm9000_netdev_ops;
1657         ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1658         ndev->ethtool_ops       = &dm9000_ethtool_ops;
1659 
1660         db->msg_enable       = NETIF_MSG_LINK;
1661         db->mii.phy_id_mask  = 0x1f;
1662         db->mii.reg_num_mask = 0x1f;
1663         db->mii.force_media  = 0;
1664         db->mii.full_duplex  = 0;
1665         db->mii.dev          = ndev;
1666         db->mii.mdio_read    = dm9000_phy_read;
1667         db->mii.mdio_write   = dm9000_phy_write;
1668 
1669         mac_src = "eeprom";
1670 
1671         /* try reading the node address from the attached EEPROM */
1672         for (i = 0; i < 6; i += 2)
1673                 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1674 
1675         if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1676                 mac_src = "platform data";
1677                 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1678         }
1679 
1680         if (!is_valid_ether_addr(ndev->dev_addr)) {
1681                 /* try reading from mac */
1682 
1683                 mac_src = "chip";
1684                 for (i = 0; i < 6; i++)
1685                         ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1686         }
1687 
1688         if (!is_valid_ether_addr(ndev->dev_addr)) {
1689                 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1690                          "set using ifconfig\n", ndev->name);
1691 
1692                 eth_hw_addr_random(ndev);
1693                 mac_src = "random";
1694         }
1695 
1696 
1697         platform_set_drvdata(pdev, ndev);
1698         ret = register_netdev(ndev);
1699 
1700         if (ret == 0)
1701                 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702                        ndev->name, dm9000_type_to_char(db->type),
1703                        db->io_addr, db->io_data, ndev->irq,
1704                        ndev->dev_addr, mac_src);
1705         return 0;
1706 
1707 out:
1708         dev_err(db->dev, "not found (%d).\n", ret);
1709 
1710         dm9000_release_board(pdev, db);
1711         free_netdev(ndev);
1712 
1713         return ret;
1714 }
1715 
1716 static int
1717 dm9000_drv_suspend(struct device *dev)
1718 {
1719         struct platform_device *pdev = to_platform_device(dev);
1720         struct net_device *ndev = platform_get_drvdata(pdev);
1721         struct board_info *db;
1722 
1723         if (ndev) {
1724                 db = netdev_priv(ndev);
1725                 db->in_suspend = 1;
1726 
1727                 if (!netif_running(ndev))
1728                         return 0;
1729 
1730                 netif_device_detach(ndev);
1731 
1732                 /* only shutdown if not using WoL */
1733                 if (!db->wake_state)
1734                         dm9000_shutdown(ndev);
1735         }
1736         return 0;
1737 }
1738 
1739 static int
1740 dm9000_drv_resume(struct device *dev)
1741 {
1742         struct platform_device *pdev = to_platform_device(dev);
1743         struct net_device *ndev = platform_get_drvdata(pdev);
1744         struct board_info *db = netdev_priv(ndev);
1745 
1746         if (ndev) {
1747                 if (netif_running(ndev)) {
1748                         /* reset if we were not in wake mode to ensure if
1749                          * the device was powered off it is in a known state */
1750                         if (!db->wake_state) {
1751                                 dm9000_init_dm9000(ndev);
1752                                 dm9000_unmask_interrupts(db);
1753                         }
1754 
1755                         netif_device_attach(ndev);
1756                 }
1757 
1758                 db->in_suspend = 0;
1759         }
1760         return 0;
1761 }
1762 
1763 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1764         .suspend        = dm9000_drv_suspend,
1765         .resume         = dm9000_drv_resume,
1766 };
1767 
1768 static int
1769 dm9000_drv_remove(struct platform_device *pdev)
1770 {
1771         struct net_device *ndev = platform_get_drvdata(pdev);
1772 
1773         unregister_netdev(ndev);
1774         dm9000_release_board(pdev, netdev_priv(ndev));
1775         free_netdev(ndev);              /* free device structure */
1776 
1777         dev_dbg(&pdev->dev, "released and freed device\n");
1778         return 0;
1779 }
1780 
1781 #ifdef CONFIG_OF
1782 static const struct of_device_id dm9000_of_matches[] = {
1783         { .compatible = "davicom,dm9000", },
1784         { /* sentinel */ }
1785 };
1786 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1787 #endif
1788 
1789 static struct platform_driver dm9000_driver = {
1790         .driver = {
1791                 .name    = "dm9000",
1792                 .pm      = &dm9000_drv_pm_ops,
1793                 .of_match_table = of_match_ptr(dm9000_of_matches),
1794         },
1795         .probe   = dm9000_probe,
1796         .remove  = dm9000_drv_remove,
1797 };
1798 
1799 module_platform_driver(dm9000_driver);
1800 
1801 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1802 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1803 MODULE_LICENSE("GPL");
1804 MODULE_ALIAS("platform:dm9000");
1805 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us