Version:  2.0.40 2.2.26 2.4.37 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17

Linux/drivers/net/ethernet/davicom/dm9000.c

  1 /*
  2  *      Davicom DM9000 Fast Ethernet driver for Linux.
  3  *      Copyright (C) 1997  Sten Wang
  4  *
  5  *      This program is free software; you can redistribute it and/or
  6  *      modify it under the terms of the GNU General Public License
  7  *      as published by the Free Software Foundation; either version 2
  8  *      of the License, or (at your option) any later version.
  9  *
 10  *      This program is distributed in the hope that it will be useful,
 11  *      but WITHOUT ANY WARRANTY; without even the implied warranty of
 12  *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13  *      GNU General Public License for more details.
 14  *
 15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
 16  *
 17  * Additional updates, Copyright:
 18  *      Ben Dooks <ben@simtec.co.uk>
 19  *      Sascha Hauer <s.hauer@pengutronix.de>
 20  */
 21 
 22 #include <linux/module.h>
 23 #include <linux/ioport.h>
 24 #include <linux/netdevice.h>
 25 #include <linux/etherdevice.h>
 26 #include <linux/interrupt.h>
 27 #include <linux/skbuff.h>
 28 #include <linux/spinlock.h>
 29 #include <linux/crc32.h>
 30 #include <linux/mii.h>
 31 #include <linux/of.h>
 32 #include <linux/of_net.h>
 33 #include <linux/ethtool.h>
 34 #include <linux/dm9000.h>
 35 #include <linux/delay.h>
 36 #include <linux/platform_device.h>
 37 #include <linux/irq.h>
 38 #include <linux/slab.h>
 39 
 40 #include <asm/delay.h>
 41 #include <asm/irq.h>
 42 #include <asm/io.h>
 43 
 44 #include "dm9000.h"
 45 
 46 /* Board/System/Debug information/definition ---------------- */
 47 
 48 #define DM9000_PHY              0x40    /* PHY address 0x01 */
 49 
 50 #define CARDNAME        "dm9000"
 51 #define DRV_VERSION     "1.31"
 52 
 53 /*
 54  * Transmit timeout, default 5 seconds.
 55  */
 56 static int watchdog = 5000;
 57 module_param(watchdog, int, 0400);
 58 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 59 
 60 /*
 61  * Debug messages level
 62  */
 63 static int debug;
 64 module_param(debug, int, 0644);
 65 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
 66 
 67 /* DM9000 register address locking.
 68  *
 69  * The DM9000 uses an address register to control where data written
 70  * to the data register goes. This means that the address register
 71  * must be preserved over interrupts or similar calls.
 72  *
 73  * During interrupt and other critical calls, a spinlock is used to
 74  * protect the system, but the calls themselves save the address
 75  * in the address register in case they are interrupting another
 76  * access to the device.
 77  *
 78  * For general accesses a lock is provided so that calls which are
 79  * allowed to sleep are serialised so that the address register does
 80  * not need to be saved. This lock also serves to serialise access
 81  * to the EEPROM and PHY access registers which are shared between
 82  * these two devices.
 83  */
 84 
 85 /* The driver supports the original DM9000E, and now the two newer
 86  * devices, DM9000A and DM9000B.
 87  */
 88 
 89 enum dm9000_type {
 90         TYPE_DM9000E,   /* original DM9000 */
 91         TYPE_DM9000A,
 92         TYPE_DM9000B
 93 };
 94 
 95 /* Structure/enum declaration ------------------------------- */
 96 struct board_info {
 97 
 98         void __iomem    *io_addr;       /* Register I/O base address */
 99         void __iomem    *io_data;       /* Data I/O address */
100         u16              irq;           /* IRQ */
101 
102         u16             tx_pkt_cnt;
103         u16             queue_pkt_len;
104         u16             queue_start_addr;
105         u16             queue_ip_summed;
106         u16             dbug_cnt;
107         u8              io_mode;                /* 0:word, 2:byte */
108         u8              phy_addr;
109         u8              imr_all;
110 
111         unsigned int    flags;
112         unsigned int    in_timeout:1;
113         unsigned int    in_suspend:1;
114         unsigned int    wake_supported:1;
115 
116         enum dm9000_type type;
117 
118         void (*inblk)(void __iomem *port, void *data, int length);
119         void (*outblk)(void __iomem *port, void *data, int length);
120         void (*dumpblk)(void __iomem *port, int length);
121 
122         struct device   *dev;        /* parent device */
123 
124         struct resource *addr_res;   /* resources found */
125         struct resource *data_res;
126         struct resource *addr_req;   /* resources requested */
127         struct resource *data_req;
128         struct resource *irq_res;
129 
130         int              irq_wake;
131 
132         struct mutex     addr_lock;     /* phy and eeprom access lock */
133 
134         struct delayed_work phy_poll;
135         struct net_device  *ndev;
136 
137         spinlock_t      lock;
138 
139         struct mii_if_info mii;
140         u32             msg_enable;
141         u32             wake_state;
142 
143         int             ip_summed;
144 };
145 
146 /* debug code */
147 
148 #define dm9000_dbg(db, lev, msg...) do {                \
149         if ((lev) < debug) {                            \
150                 dev_dbg(db->dev, msg);                  \
151         }                                               \
152 } while (0)
153 
154 static inline struct board_info *to_dm9000_board(struct net_device *dev)
155 {
156         return netdev_priv(dev);
157 }
158 
159 /* DM9000 network board routine ---------------------------- */
160 
161 /*
162  *   Read a byte from I/O port
163  */
164 static u8
165 ior(struct board_info *db, int reg)
166 {
167         writeb(reg, db->io_addr);
168         return readb(db->io_data);
169 }
170 
171 /*
172  *   Write a byte to I/O port
173  */
174 
175 static void
176 iow(struct board_info *db, int reg, int value)
177 {
178         writeb(reg, db->io_addr);
179         writeb(value, db->io_data);
180 }
181 
182 static void
183 dm9000_reset(struct board_info *db)
184 {
185         dev_dbg(db->dev, "resetting device\n");
186 
187         /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
188          * The essential point is that we have to do a double reset, and the
189          * instruction is to set LBK into MAC internal loopback mode.
190          */
191         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
192         udelay(100); /* Application note says at least 20 us */
193         if (ior(db, DM9000_NCR) & 1)
194                 dev_err(db->dev, "dm9000 did not respond to first reset\n");
195 
196         iow(db, DM9000_NCR, 0);
197         iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
198         udelay(100);
199         if (ior(db, DM9000_NCR) & 1)
200                 dev_err(db->dev, "dm9000 did not respond to second reset\n");
201 }
202 
203 /* routines for sending block to chip */
204 
205 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
206 {
207         iowrite8_rep(reg, data, count);
208 }
209 
210 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
211 {
212         iowrite16_rep(reg, data, (count+1) >> 1);
213 }
214 
215 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
216 {
217         iowrite32_rep(reg, data, (count+3) >> 2);
218 }
219 
220 /* input block from chip to memory */
221 
222 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
223 {
224         ioread8_rep(reg, data, count);
225 }
226 
227 
228 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
229 {
230         ioread16_rep(reg, data, (count+1) >> 1);
231 }
232 
233 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
234 {
235         ioread32_rep(reg, data, (count+3) >> 2);
236 }
237 
238 /* dump block from chip to null */
239 
240 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
241 {
242         int i;
243         int tmp;
244 
245         for (i = 0; i < count; i++)
246                 tmp = readb(reg);
247 }
248 
249 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
250 {
251         int i;
252         int tmp;
253 
254         count = (count + 1) >> 1;
255 
256         for (i = 0; i < count; i++)
257                 tmp = readw(reg);
258 }
259 
260 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
261 {
262         int i;
263         int tmp;
264 
265         count = (count + 3) >> 2;
266 
267         for (i = 0; i < count; i++)
268                 tmp = readl(reg);
269 }
270 
271 /*
272  * Sleep, either by using msleep() or if we are suspending, then
273  * use mdelay() to sleep.
274  */
275 static void dm9000_msleep(struct board_info *db, unsigned int ms)
276 {
277         if (db->in_suspend || db->in_timeout)
278                 mdelay(ms);
279         else
280                 msleep(ms);
281 }
282 
283 /* Read a word from phyxcer */
284 static int
285 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
286 {
287         struct board_info *db = netdev_priv(dev);
288         unsigned long flags;
289         unsigned int reg_save;
290         int ret;
291 
292         mutex_lock(&db->addr_lock);
293 
294         spin_lock_irqsave(&db->lock, flags);
295 
296         /* Save previous register address */
297         reg_save = readb(db->io_addr);
298 
299         /* Fill the phyxcer register into REG_0C */
300         iow(db, DM9000_EPAR, DM9000_PHY | reg);
301 
302         /* Issue phyxcer read command */
303         iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
304 
305         writeb(reg_save, db->io_addr);
306         spin_unlock_irqrestore(&db->lock, flags);
307 
308         dm9000_msleep(db, 1);           /* Wait read complete */
309 
310         spin_lock_irqsave(&db->lock, flags);
311         reg_save = readb(db->io_addr);
312 
313         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
314 
315         /* The read data keeps on REG_0D & REG_0E */
316         ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
317 
318         /* restore the previous address */
319         writeb(reg_save, db->io_addr);
320         spin_unlock_irqrestore(&db->lock, flags);
321 
322         mutex_unlock(&db->addr_lock);
323 
324         dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
325         return ret;
326 }
327 
328 /* Write a word to phyxcer */
329 static void
330 dm9000_phy_write(struct net_device *dev,
331                  int phyaddr_unused, int reg, int value)
332 {
333         struct board_info *db = netdev_priv(dev);
334         unsigned long flags;
335         unsigned long reg_save;
336 
337         dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
338         if (!db->in_timeout)
339                 mutex_lock(&db->addr_lock);
340 
341         spin_lock_irqsave(&db->lock, flags);
342 
343         /* Save previous register address */
344         reg_save = readb(db->io_addr);
345 
346         /* Fill the phyxcer register into REG_0C */
347         iow(db, DM9000_EPAR, DM9000_PHY | reg);
348 
349         /* Fill the written data into REG_0D & REG_0E */
350         iow(db, DM9000_EPDRL, value);
351         iow(db, DM9000_EPDRH, value >> 8);
352 
353         /* Issue phyxcer write command */
354         iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
355 
356         writeb(reg_save, db->io_addr);
357         spin_unlock_irqrestore(&db->lock, flags);
358 
359         dm9000_msleep(db, 1);           /* Wait write complete */
360 
361         spin_lock_irqsave(&db->lock, flags);
362         reg_save = readb(db->io_addr);
363 
364         iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
365 
366         /* restore the previous address */
367         writeb(reg_save, db->io_addr);
368 
369         spin_unlock_irqrestore(&db->lock, flags);
370         if (!db->in_timeout)
371                 mutex_unlock(&db->addr_lock);
372 }
373 
374 /* dm9000_set_io
375  *
376  * select the specified set of io routines to use with the
377  * device
378  */
379 
380 static void dm9000_set_io(struct board_info *db, int byte_width)
381 {
382         /* use the size of the data resource to work out what IO
383          * routines we want to use
384          */
385 
386         switch (byte_width) {
387         case 1:
388                 db->dumpblk = dm9000_dumpblk_8bit;
389                 db->outblk  = dm9000_outblk_8bit;
390                 db->inblk   = dm9000_inblk_8bit;
391                 break;
392 
393 
394         case 3:
395                 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
396         case 2:
397                 db->dumpblk = dm9000_dumpblk_16bit;
398                 db->outblk  = dm9000_outblk_16bit;
399                 db->inblk   = dm9000_inblk_16bit;
400                 break;
401 
402         case 4:
403         default:
404                 db->dumpblk = dm9000_dumpblk_32bit;
405                 db->outblk  = dm9000_outblk_32bit;
406                 db->inblk   = dm9000_inblk_32bit;
407                 break;
408         }
409 }
410 
411 static void dm9000_schedule_poll(struct board_info *db)
412 {
413         if (db->type == TYPE_DM9000E)
414                 schedule_delayed_work(&db->phy_poll, HZ * 2);
415 }
416 
417 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
418 {
419         struct board_info *dm = to_dm9000_board(dev);
420 
421         if (!netif_running(dev))
422                 return -EINVAL;
423 
424         return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
425 }
426 
427 static unsigned int
428 dm9000_read_locked(struct board_info *db, int reg)
429 {
430         unsigned long flags;
431         unsigned int ret;
432 
433         spin_lock_irqsave(&db->lock, flags);
434         ret = ior(db, reg);
435         spin_unlock_irqrestore(&db->lock, flags);
436 
437         return ret;
438 }
439 
440 static int dm9000_wait_eeprom(struct board_info *db)
441 {
442         unsigned int status;
443         int timeout = 8;        /* wait max 8msec */
444 
445         /* The DM9000 data sheets say we should be able to
446          * poll the ERRE bit in EPCR to wait for the EEPROM
447          * operation. From testing several chips, this bit
448          * does not seem to work.
449          *
450          * We attempt to use the bit, but fall back to the
451          * timeout (which is why we do not return an error
452          * on expiry) to say that the EEPROM operation has
453          * completed.
454          */
455 
456         while (1) {
457                 status = dm9000_read_locked(db, DM9000_EPCR);
458 
459                 if ((status & EPCR_ERRE) == 0)
460                         break;
461 
462                 msleep(1);
463 
464                 if (timeout-- < 0) {
465                         dev_dbg(db->dev, "timeout waiting EEPROM\n");
466                         break;
467                 }
468         }
469 
470         return 0;
471 }
472 
473 /*
474  *  Read a word data from EEPROM
475  */
476 static void
477 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
478 {
479         unsigned long flags;
480 
481         if (db->flags & DM9000_PLATF_NO_EEPROM) {
482                 to[0] = 0xff;
483                 to[1] = 0xff;
484                 return;
485         }
486 
487         mutex_lock(&db->addr_lock);
488 
489         spin_lock_irqsave(&db->lock, flags);
490 
491         iow(db, DM9000_EPAR, offset);
492         iow(db, DM9000_EPCR, EPCR_ERPRR);
493 
494         spin_unlock_irqrestore(&db->lock, flags);
495 
496         dm9000_wait_eeprom(db);
497 
498         /* delay for at-least 150uS */
499         msleep(1);
500 
501         spin_lock_irqsave(&db->lock, flags);
502 
503         iow(db, DM9000_EPCR, 0x0);
504 
505         to[0] = ior(db, DM9000_EPDRL);
506         to[1] = ior(db, DM9000_EPDRH);
507 
508         spin_unlock_irqrestore(&db->lock, flags);
509 
510         mutex_unlock(&db->addr_lock);
511 }
512 
513 /*
514  * Write a word data to SROM
515  */
516 static void
517 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
518 {
519         unsigned long flags;
520 
521         if (db->flags & DM9000_PLATF_NO_EEPROM)
522                 return;
523 
524         mutex_lock(&db->addr_lock);
525 
526         spin_lock_irqsave(&db->lock, flags);
527         iow(db, DM9000_EPAR, offset);
528         iow(db, DM9000_EPDRH, data[1]);
529         iow(db, DM9000_EPDRL, data[0]);
530         iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
531         spin_unlock_irqrestore(&db->lock, flags);
532 
533         dm9000_wait_eeprom(db);
534 
535         mdelay(1);      /* wait at least 150uS to clear */
536 
537         spin_lock_irqsave(&db->lock, flags);
538         iow(db, DM9000_EPCR, 0);
539         spin_unlock_irqrestore(&db->lock, flags);
540 
541         mutex_unlock(&db->addr_lock);
542 }
543 
544 /* ethtool ops */
545 
546 static void dm9000_get_drvinfo(struct net_device *dev,
547                                struct ethtool_drvinfo *info)
548 {
549         struct board_info *dm = to_dm9000_board(dev);
550 
551         strlcpy(info->driver, CARDNAME, sizeof(info->driver));
552         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
553         strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
554                 sizeof(info->bus_info));
555 }
556 
557 static u32 dm9000_get_msglevel(struct net_device *dev)
558 {
559         struct board_info *dm = to_dm9000_board(dev);
560 
561         return dm->msg_enable;
562 }
563 
564 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
565 {
566         struct board_info *dm = to_dm9000_board(dev);
567 
568         dm->msg_enable = value;
569 }
570 
571 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
572 {
573         struct board_info *dm = to_dm9000_board(dev);
574 
575         mii_ethtool_gset(&dm->mii, cmd);
576         return 0;
577 }
578 
579 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
580 {
581         struct board_info *dm = to_dm9000_board(dev);
582 
583         return mii_ethtool_sset(&dm->mii, cmd);
584 }
585 
586 static int dm9000_nway_reset(struct net_device *dev)
587 {
588         struct board_info *dm = to_dm9000_board(dev);
589         return mii_nway_restart(&dm->mii);
590 }
591 
592 static int dm9000_set_features(struct net_device *dev,
593         netdev_features_t features)
594 {
595         struct board_info *dm = to_dm9000_board(dev);
596         netdev_features_t changed = dev->features ^ features;
597         unsigned long flags;
598 
599         if (!(changed & NETIF_F_RXCSUM))
600                 return 0;
601 
602         spin_lock_irqsave(&dm->lock, flags);
603         iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
604         spin_unlock_irqrestore(&dm->lock, flags);
605 
606         return 0;
607 }
608 
609 static u32 dm9000_get_link(struct net_device *dev)
610 {
611         struct board_info *dm = to_dm9000_board(dev);
612         u32 ret;
613 
614         if (dm->flags & DM9000_PLATF_EXT_PHY)
615                 ret = mii_link_ok(&dm->mii);
616         else
617                 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
618 
619         return ret;
620 }
621 
622 #define DM_EEPROM_MAGIC         (0x444D394B)
623 
624 static int dm9000_get_eeprom_len(struct net_device *dev)
625 {
626         return 128;
627 }
628 
629 static int dm9000_get_eeprom(struct net_device *dev,
630                              struct ethtool_eeprom *ee, u8 *data)
631 {
632         struct board_info *dm = to_dm9000_board(dev);
633         int offset = ee->offset;
634         int len = ee->len;
635         int i;
636 
637         /* EEPROM access is aligned to two bytes */
638 
639         if ((len & 1) != 0 || (offset & 1) != 0)
640                 return -EINVAL;
641 
642         if (dm->flags & DM9000_PLATF_NO_EEPROM)
643                 return -ENOENT;
644 
645         ee->magic = DM_EEPROM_MAGIC;
646 
647         for (i = 0; i < len; i += 2)
648                 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
649 
650         return 0;
651 }
652 
653 static int dm9000_set_eeprom(struct net_device *dev,
654                              struct ethtool_eeprom *ee, u8 *data)
655 {
656         struct board_info *dm = to_dm9000_board(dev);
657         int offset = ee->offset;
658         int len = ee->len;
659         int done;
660 
661         /* EEPROM access is aligned to two bytes */
662 
663         if (dm->flags & DM9000_PLATF_NO_EEPROM)
664                 return -ENOENT;
665 
666         if (ee->magic != DM_EEPROM_MAGIC)
667                 return -EINVAL;
668 
669         while (len > 0) {
670                 if (len & 1 || offset & 1) {
671                         int which = offset & 1;
672                         u8 tmp[2];
673 
674                         dm9000_read_eeprom(dm, offset / 2, tmp);
675                         tmp[which] = *data;
676                         dm9000_write_eeprom(dm, offset / 2, tmp);
677 
678                         done = 1;
679                 } else {
680                         dm9000_write_eeprom(dm, offset / 2, data);
681                         done = 2;
682                 }
683 
684                 data += done;
685                 offset += done;
686                 len -= done;
687         }
688 
689         return 0;
690 }
691 
692 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
693 {
694         struct board_info *dm = to_dm9000_board(dev);
695 
696         memset(w, 0, sizeof(struct ethtool_wolinfo));
697 
698         /* note, we could probably support wake-phy too */
699         w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
700         w->wolopts = dm->wake_state;
701 }
702 
703 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
704 {
705         struct board_info *dm = to_dm9000_board(dev);
706         unsigned long flags;
707         u32 opts = w->wolopts;
708         u32 wcr = 0;
709 
710         if (!dm->wake_supported)
711                 return -EOPNOTSUPP;
712 
713         if (opts & ~WAKE_MAGIC)
714                 return -EINVAL;
715 
716         if (opts & WAKE_MAGIC)
717                 wcr |= WCR_MAGICEN;
718 
719         mutex_lock(&dm->addr_lock);
720 
721         spin_lock_irqsave(&dm->lock, flags);
722         iow(dm, DM9000_WCR, wcr);
723         spin_unlock_irqrestore(&dm->lock, flags);
724 
725         mutex_unlock(&dm->addr_lock);
726 
727         if (dm->wake_state != opts) {
728                 /* change in wol state, update IRQ state */
729 
730                 if (!dm->wake_state)
731                         irq_set_irq_wake(dm->irq_wake, 1);
732                 else if (dm->wake_state && !opts)
733                         irq_set_irq_wake(dm->irq_wake, 0);
734         }
735 
736         dm->wake_state = opts;
737         return 0;
738 }
739 
740 static const struct ethtool_ops dm9000_ethtool_ops = {
741         .get_drvinfo            = dm9000_get_drvinfo,
742         .get_settings           = dm9000_get_settings,
743         .set_settings           = dm9000_set_settings,
744         .get_msglevel           = dm9000_get_msglevel,
745         .set_msglevel           = dm9000_set_msglevel,
746         .nway_reset             = dm9000_nway_reset,
747         .get_link               = dm9000_get_link,
748         .get_wol                = dm9000_get_wol,
749         .set_wol                = dm9000_set_wol,
750         .get_eeprom_len         = dm9000_get_eeprom_len,
751         .get_eeprom             = dm9000_get_eeprom,
752         .set_eeprom             = dm9000_set_eeprom,
753 };
754 
755 static void dm9000_show_carrier(struct board_info *db,
756                                 unsigned carrier, unsigned nsr)
757 {
758         int lpa;
759         struct net_device *ndev = db->ndev;
760         struct mii_if_info *mii = &db->mii;
761         unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
762 
763         if (carrier) {
764                 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
765                 dev_info(db->dev,
766                          "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
767                          ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
768                          (ncr & NCR_FDX) ? "full" : "half", lpa);
769         } else {
770                 dev_info(db->dev, "%s: link down\n", ndev->name);
771         }
772 }
773 
774 static void
775 dm9000_poll_work(struct work_struct *w)
776 {
777         struct delayed_work *dw = to_delayed_work(w);
778         struct board_info *db = container_of(dw, struct board_info, phy_poll);
779         struct net_device *ndev = db->ndev;
780 
781         if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
782             !(db->flags & DM9000_PLATF_EXT_PHY)) {
783                 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
784                 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
785                 unsigned new_carrier;
786 
787                 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
788 
789                 if (old_carrier != new_carrier) {
790                         if (netif_msg_link(db))
791                                 dm9000_show_carrier(db, new_carrier, nsr);
792 
793                         if (!new_carrier)
794                                 netif_carrier_off(ndev);
795                         else
796                                 netif_carrier_on(ndev);
797                 }
798         } else
799                 mii_check_media(&db->mii, netif_msg_link(db), 0);
800 
801         if (netif_running(ndev))
802                 dm9000_schedule_poll(db);
803 }
804 
805 /* dm9000_release_board
806  *
807  * release a board, and any mapped resources
808  */
809 
810 static void
811 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
812 {
813         /* unmap our resources */
814 
815         iounmap(db->io_addr);
816         iounmap(db->io_data);
817 
818         /* release the resources */
819 
820         if (db->data_req)
821                 release_resource(db->data_req);
822         kfree(db->data_req);
823 
824         if (db->addr_req)
825                 release_resource(db->addr_req);
826         kfree(db->addr_req);
827 }
828 
829 static unsigned char dm9000_type_to_char(enum dm9000_type type)
830 {
831         switch (type) {
832         case TYPE_DM9000E: return 'e';
833         case TYPE_DM9000A: return 'a';
834         case TYPE_DM9000B: return 'b';
835         }
836 
837         return '?';
838 }
839 
840 /*
841  *  Set DM9000 multicast address
842  */
843 static void
844 dm9000_hash_table_unlocked(struct net_device *dev)
845 {
846         struct board_info *db = netdev_priv(dev);
847         struct netdev_hw_addr *ha;
848         int i, oft;
849         u32 hash_val;
850         u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
851         u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
852 
853         dm9000_dbg(db, 1, "entering %s\n", __func__);
854 
855         for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
856                 iow(db, oft, dev->dev_addr[i]);
857 
858         if (dev->flags & IFF_PROMISC)
859                 rcr |= RCR_PRMSC;
860 
861         if (dev->flags & IFF_ALLMULTI)
862                 rcr |= RCR_ALL;
863 
864         /* the multicast address in Hash Table : 64 bits */
865         netdev_for_each_mc_addr(ha, dev) {
866                 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
867                 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
868         }
869 
870         /* Write the hash table to MAC MD table */
871         for (i = 0, oft = DM9000_MAR; i < 4; i++) {
872                 iow(db, oft++, hash_table[i]);
873                 iow(db, oft++, hash_table[i] >> 8);
874         }
875 
876         iow(db, DM9000_RCR, rcr);
877 }
878 
879 static void
880 dm9000_hash_table(struct net_device *dev)
881 {
882         struct board_info *db = netdev_priv(dev);
883         unsigned long flags;
884 
885         spin_lock_irqsave(&db->lock, flags);
886         dm9000_hash_table_unlocked(dev);
887         spin_unlock_irqrestore(&db->lock, flags);
888 }
889 
890 static void
891 dm9000_mask_interrupts(struct board_info *db)
892 {
893         iow(db, DM9000_IMR, IMR_PAR);
894 }
895 
896 static void
897 dm9000_unmask_interrupts(struct board_info *db)
898 {
899         iow(db, DM9000_IMR, db->imr_all);
900 }
901 
902 /*
903  * Initialize dm9000 board
904  */
905 static void
906 dm9000_init_dm9000(struct net_device *dev)
907 {
908         struct board_info *db = netdev_priv(dev);
909         unsigned int imr;
910         unsigned int ncr;
911 
912         dm9000_dbg(db, 1, "entering %s\n", __func__);
913 
914         dm9000_reset(db);
915         dm9000_mask_interrupts(db);
916 
917         /* I/O mode */
918         db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
919 
920         /* Checksum mode */
921         if (dev->hw_features & NETIF_F_RXCSUM)
922                 iow(db, DM9000_RCSR,
923                         (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
924 
925         iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
926         iow(db, DM9000_GPR, 0);
927 
928         /* If we are dealing with DM9000B, some extra steps are required: a
929          * manual phy reset, and setting init params.
930          */
931         if (db->type == TYPE_DM9000B) {
932                 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
933                 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
934         }
935 
936         ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
937 
938         /* if wol is needed, then always set NCR_WAKEEN otherwise we end
939          * up dumping the wake events if we disable this. There is already
940          * a wake-mask in DM9000_WCR */
941         if (db->wake_supported)
942                 ncr |= NCR_WAKEEN;
943 
944         iow(db, DM9000_NCR, ncr);
945 
946         /* Program operating register */
947         iow(db, DM9000_TCR, 0);         /* TX Polling clear */
948         iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
949         iow(db, DM9000_FCR, 0xff);      /* Flow Control */
950         iow(db, DM9000_SMCR, 0);        /* Special Mode */
951         /* clear TX status */
952         iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
953         iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
954 
955         /* Set address filter table */
956         dm9000_hash_table_unlocked(dev);
957 
958         imr = IMR_PAR | IMR_PTM | IMR_PRM;
959         if (db->type != TYPE_DM9000E)
960                 imr |= IMR_LNKCHNG;
961 
962         db->imr_all = imr;
963 
964         /* Init Driver variable */
965         db->tx_pkt_cnt = 0;
966         db->queue_pkt_len = 0;
967         dev->trans_start = jiffies;
968 }
969 
970 /* Our watchdog timed out. Called by the networking layer */
971 static void dm9000_timeout(struct net_device *dev)
972 {
973         struct board_info *db = netdev_priv(dev);
974         u8 reg_save;
975         unsigned long flags;
976 
977         /* Save previous register address */
978         spin_lock_irqsave(&db->lock, flags);
979         db->in_timeout = 1;
980         reg_save = readb(db->io_addr);
981 
982         netif_stop_queue(dev);
983         dm9000_init_dm9000(dev);
984         dm9000_unmask_interrupts(db);
985         /* We can accept TX packets again */
986         dev->trans_start = jiffies; /* prevent tx timeout */
987         netif_wake_queue(dev);
988 
989         /* Restore previous register address */
990         writeb(reg_save, db->io_addr);
991         db->in_timeout = 0;
992         spin_unlock_irqrestore(&db->lock, flags);
993 }
994 
995 static void dm9000_send_packet(struct net_device *dev,
996                                int ip_summed,
997                                u16 pkt_len)
998 {
999         struct board_info *dm = to_dm9000_board(dev);
1000 
1001         /* The DM9000 is not smart enough to leave fragmented packets alone. */
1002         if (dm->ip_summed != ip_summed) {
1003                 if (ip_summed == CHECKSUM_NONE)
1004                         iow(dm, DM9000_TCCR, 0);
1005                 else
1006                         iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1007                 dm->ip_summed = ip_summed;
1008         }
1009 
1010         /* Set TX length to DM9000 */
1011         iow(dm, DM9000_TXPLL, pkt_len);
1012         iow(dm, DM9000_TXPLH, pkt_len >> 8);
1013 
1014         /* Issue TX polling command */
1015         iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
1016 }
1017 
1018 /*
1019  *  Hardware start transmission.
1020  *  Send a packet to media from the upper layer.
1021  */
1022 static int
1023 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1024 {
1025         unsigned long flags;
1026         struct board_info *db = netdev_priv(dev);
1027 
1028         dm9000_dbg(db, 3, "%s:\n", __func__);
1029 
1030         if (db->tx_pkt_cnt > 1)
1031                 return NETDEV_TX_BUSY;
1032 
1033         spin_lock_irqsave(&db->lock, flags);
1034 
1035         /* Move data to DM9000 TX RAM */
1036         writeb(DM9000_MWCMD, db->io_addr);
1037 
1038         (db->outblk)(db->io_data, skb->data, skb->len);
1039         dev->stats.tx_bytes += skb->len;
1040 
1041         db->tx_pkt_cnt++;
1042         /* TX control: First packet immediately send, second packet queue */
1043         if (db->tx_pkt_cnt == 1) {
1044                 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1045         } else {
1046                 /* Second packet */
1047                 db->queue_pkt_len = skb->len;
1048                 db->queue_ip_summed = skb->ip_summed;
1049                 netif_stop_queue(dev);
1050         }
1051 
1052         spin_unlock_irqrestore(&db->lock, flags);
1053 
1054         /* free this SKB */
1055         dev_consume_skb_any(skb);
1056 
1057         return NETDEV_TX_OK;
1058 }
1059 
1060 /*
1061  * DM9000 interrupt handler
1062  * receive the packet to upper layer, free the transmitted packet
1063  */
1064 
1065 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1066 {
1067         int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1068 
1069         if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1070                 /* One packet sent complete */
1071                 db->tx_pkt_cnt--;
1072                 dev->stats.tx_packets++;
1073 
1074                 if (netif_msg_tx_done(db))
1075                         dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1076 
1077                 /* Queue packet check & send */
1078                 if (db->tx_pkt_cnt > 0)
1079                         dm9000_send_packet(dev, db->queue_ip_summed,
1080                                            db->queue_pkt_len);
1081                 netif_wake_queue(dev);
1082         }
1083 }
1084 
1085 struct dm9000_rxhdr {
1086         u8      RxPktReady;
1087         u8      RxStatus;
1088         __le16  RxLen;
1089 } __packed;
1090 
1091 /*
1092  *  Received a packet and pass to upper layer
1093  */
1094 static void
1095 dm9000_rx(struct net_device *dev)
1096 {
1097         struct board_info *db = netdev_priv(dev);
1098         struct dm9000_rxhdr rxhdr;
1099         struct sk_buff *skb;
1100         u8 rxbyte, *rdptr;
1101         bool GoodPacket;
1102         int RxLen;
1103 
1104         /* Check packet ready or not */
1105         do {
1106                 ior(db, DM9000_MRCMDX); /* Dummy read */
1107 
1108                 /* Get most updated data */
1109                 rxbyte = readb(db->io_data);
1110 
1111                 /* Status check: this byte must be 0 or 1 */
1112                 if (rxbyte & DM9000_PKT_ERR) {
1113                         dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1114                         iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1115                         return;
1116                 }
1117 
1118                 if (!(rxbyte & DM9000_PKT_RDY))
1119                         return;
1120 
1121                 /* A packet ready now  & Get status/length */
1122                 GoodPacket = true;
1123                 writeb(DM9000_MRCMD, db->io_addr);
1124 
1125                 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1126 
1127                 RxLen = le16_to_cpu(rxhdr.RxLen);
1128 
1129                 if (netif_msg_rx_status(db))
1130                         dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1131                                 rxhdr.RxStatus, RxLen);
1132 
1133                 /* Packet Status check */
1134                 if (RxLen < 0x40) {
1135                         GoodPacket = false;
1136                         if (netif_msg_rx_err(db))
1137                                 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1138                 }
1139 
1140                 if (RxLen > DM9000_PKT_MAX) {
1141                         dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1142                 }
1143 
1144                 /* rxhdr.RxStatus is identical to RSR register. */
1145                 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1146                                       RSR_PLE | RSR_RWTO |
1147                                       RSR_LCS | RSR_RF)) {
1148                         GoodPacket = false;
1149                         if (rxhdr.RxStatus & RSR_FOE) {
1150                                 if (netif_msg_rx_err(db))
1151                                         dev_dbg(db->dev, "fifo error\n");
1152                                 dev->stats.rx_fifo_errors++;
1153                         }
1154                         if (rxhdr.RxStatus & RSR_CE) {
1155                                 if (netif_msg_rx_err(db))
1156                                         dev_dbg(db->dev, "crc error\n");
1157                                 dev->stats.rx_crc_errors++;
1158                         }
1159                         if (rxhdr.RxStatus & RSR_RF) {
1160                                 if (netif_msg_rx_err(db))
1161                                         dev_dbg(db->dev, "length error\n");
1162                                 dev->stats.rx_length_errors++;
1163                         }
1164                 }
1165 
1166                 /* Move data from DM9000 */
1167                 if (GoodPacket &&
1168                     ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1169                         skb_reserve(skb, 2);
1170                         rdptr = (u8 *) skb_put(skb, RxLen - 4);
1171 
1172                         /* Read received packet from RX SRAM */
1173 
1174                         (db->inblk)(db->io_data, rdptr, RxLen);
1175                         dev->stats.rx_bytes += RxLen;
1176 
1177                         /* Pass to upper layer */
1178                         skb->protocol = eth_type_trans(skb, dev);
1179                         if (dev->features & NETIF_F_RXCSUM) {
1180                                 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1181                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1182                                 else
1183                                         skb_checksum_none_assert(skb);
1184                         }
1185                         netif_rx(skb);
1186                         dev->stats.rx_packets++;
1187 
1188                 } else {
1189                         /* need to dump the packet's data */
1190 
1191                         (db->dumpblk)(db->io_data, RxLen);
1192                 }
1193         } while (rxbyte & DM9000_PKT_RDY);
1194 }
1195 
1196 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1197 {
1198         struct net_device *dev = dev_id;
1199         struct board_info *db = netdev_priv(dev);
1200         int int_status;
1201         unsigned long flags;
1202         u8 reg_save;
1203 
1204         dm9000_dbg(db, 3, "entering %s\n", __func__);
1205 
1206         /* A real interrupt coming */
1207 
1208         /* holders of db->lock must always block IRQs */
1209         spin_lock_irqsave(&db->lock, flags);
1210 
1211         /* Save previous register address */
1212         reg_save = readb(db->io_addr);
1213 
1214         dm9000_mask_interrupts(db);
1215         /* Got DM9000 interrupt status */
1216         int_status = ior(db, DM9000_ISR);       /* Got ISR */
1217         iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1218 
1219         if (netif_msg_intr(db))
1220                 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1221 
1222         /* Received the coming packet */
1223         if (int_status & ISR_PRS)
1224                 dm9000_rx(dev);
1225 
1226         /* Trnasmit Interrupt check */
1227         if (int_status & ISR_PTS)
1228                 dm9000_tx_done(dev, db);
1229 
1230         if (db->type != TYPE_DM9000E) {
1231                 if (int_status & ISR_LNKCHNG) {
1232                         /* fire a link-change request */
1233                         schedule_delayed_work(&db->phy_poll, 1);
1234                 }
1235         }
1236 
1237         dm9000_unmask_interrupts(db);
1238         /* Restore previous register address */
1239         writeb(reg_save, db->io_addr);
1240 
1241         spin_unlock_irqrestore(&db->lock, flags);
1242 
1243         return IRQ_HANDLED;
1244 }
1245 
1246 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1247 {
1248         struct net_device *dev = dev_id;
1249         struct board_info *db = netdev_priv(dev);
1250         unsigned long flags;
1251         unsigned nsr, wcr;
1252 
1253         spin_lock_irqsave(&db->lock, flags);
1254 
1255         nsr = ior(db, DM9000_NSR);
1256         wcr = ior(db, DM9000_WCR);
1257 
1258         dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1259 
1260         if (nsr & NSR_WAKEST) {
1261                 /* clear, so we can avoid */
1262                 iow(db, DM9000_NSR, NSR_WAKEST);
1263 
1264                 if (wcr & WCR_LINKST)
1265                         dev_info(db->dev, "wake by link status change\n");
1266                 if (wcr & WCR_SAMPLEST)
1267                         dev_info(db->dev, "wake by sample packet\n");
1268                 if (wcr & WCR_MAGICST)
1269                         dev_info(db->dev, "wake by magic packet\n");
1270                 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1271                         dev_err(db->dev, "wake signalled with no reason? "
1272                                 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1273         }
1274 
1275         spin_unlock_irqrestore(&db->lock, flags);
1276 
1277         return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1278 }
1279 
1280 #ifdef CONFIG_NET_POLL_CONTROLLER
1281 /*
1282  *Used by netconsole
1283  */
1284 static void dm9000_poll_controller(struct net_device *dev)
1285 {
1286         disable_irq(dev->irq);
1287         dm9000_interrupt(dev->irq, dev);
1288         enable_irq(dev->irq);
1289 }
1290 #endif
1291 
1292 /*
1293  *  Open the interface.
1294  *  The interface is opened whenever "ifconfig" actives it.
1295  */
1296 static int
1297 dm9000_open(struct net_device *dev)
1298 {
1299         struct board_info *db = netdev_priv(dev);
1300         unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1301 
1302         if (netif_msg_ifup(db))
1303                 dev_dbg(db->dev, "enabling %s\n", dev->name);
1304 
1305         /* If there is no IRQ type specified, default to something that
1306          * may work, and tell the user that this is a problem */
1307 
1308         if (irqflags == IRQF_TRIGGER_NONE)
1309                 irqflags = irq_get_trigger_type(dev->irq);
1310 
1311         if (irqflags == IRQF_TRIGGER_NONE)
1312                 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1313 
1314         irqflags |= IRQF_SHARED;
1315 
1316         /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1317         iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1318         mdelay(1); /* delay needs by DM9000B */
1319 
1320         /* Initialize DM9000 board */
1321         dm9000_init_dm9000(dev);
1322 
1323         if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1324                 return -EAGAIN;
1325         /* Now that we have an interrupt handler hooked up we can unmask
1326          * our interrupts
1327          */
1328         dm9000_unmask_interrupts(db);
1329 
1330         /* Init driver variable */
1331         db->dbug_cnt = 0;
1332 
1333         mii_check_media(&db->mii, netif_msg_link(db), 1);
1334         netif_start_queue(dev);
1335 
1336         /* Poll initial link status */
1337         schedule_delayed_work(&db->phy_poll, 1);
1338 
1339         return 0;
1340 }
1341 
1342 static void
1343 dm9000_shutdown(struct net_device *dev)
1344 {
1345         struct board_info *db = netdev_priv(dev);
1346 
1347         /* RESET device */
1348         dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1349         iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1350         dm9000_mask_interrupts(db);
1351         iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1352 }
1353 
1354 /*
1355  * Stop the interface.
1356  * The interface is stopped when it is brought.
1357  */
1358 static int
1359 dm9000_stop(struct net_device *ndev)
1360 {
1361         struct board_info *db = netdev_priv(ndev);
1362 
1363         if (netif_msg_ifdown(db))
1364                 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1365 
1366         cancel_delayed_work_sync(&db->phy_poll);
1367 
1368         netif_stop_queue(ndev);
1369         netif_carrier_off(ndev);
1370 
1371         /* free interrupt */
1372         free_irq(ndev->irq, ndev);
1373 
1374         dm9000_shutdown(ndev);
1375 
1376         return 0;
1377 }
1378 
1379 static const struct net_device_ops dm9000_netdev_ops = {
1380         .ndo_open               = dm9000_open,
1381         .ndo_stop               = dm9000_stop,
1382         .ndo_start_xmit         = dm9000_start_xmit,
1383         .ndo_tx_timeout         = dm9000_timeout,
1384         .ndo_set_rx_mode        = dm9000_hash_table,
1385         .ndo_do_ioctl           = dm9000_ioctl,
1386         .ndo_change_mtu         = eth_change_mtu,
1387         .ndo_set_features       = dm9000_set_features,
1388         .ndo_validate_addr      = eth_validate_addr,
1389         .ndo_set_mac_address    = eth_mac_addr,
1390 #ifdef CONFIG_NET_POLL_CONTROLLER
1391         .ndo_poll_controller    = dm9000_poll_controller,
1392 #endif
1393 };
1394 
1395 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1396 {
1397         struct dm9000_plat_data *pdata;
1398         struct device_node *np = dev->of_node;
1399         const void *mac_addr;
1400 
1401         if (!IS_ENABLED(CONFIG_OF) || !np)
1402                 return ERR_PTR(-ENXIO);
1403 
1404         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1405         if (!pdata)
1406                 return ERR_PTR(-ENOMEM);
1407 
1408         if (of_find_property(np, "davicom,ext-phy", NULL))
1409                 pdata->flags |= DM9000_PLATF_EXT_PHY;
1410         if (of_find_property(np, "davicom,no-eeprom", NULL))
1411                 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1412 
1413         mac_addr = of_get_mac_address(np);
1414         if (mac_addr)
1415                 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1416 
1417         return pdata;
1418 }
1419 
1420 /*
1421  * Search DM9000 board, allocate space and register it
1422  */
1423 static int
1424 dm9000_probe(struct platform_device *pdev)
1425 {
1426         struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1427         struct board_info *db;  /* Point a board information structure */
1428         struct net_device *ndev;
1429         const unsigned char *mac_src;
1430         int ret = 0;
1431         int iosize;
1432         int i;
1433         u32 id_val;
1434 
1435         if (!pdata) {
1436                 pdata = dm9000_parse_dt(&pdev->dev);
1437                 if (IS_ERR(pdata))
1438                         return PTR_ERR(pdata);
1439         }
1440 
1441         /* Init network device */
1442         ndev = alloc_etherdev(sizeof(struct board_info));
1443         if (!ndev)
1444                 return -ENOMEM;
1445 
1446         SET_NETDEV_DEV(ndev, &pdev->dev);
1447 
1448         dev_dbg(&pdev->dev, "dm9000_probe()\n");
1449 
1450         /* setup board info structure */
1451         db = netdev_priv(ndev);
1452 
1453         db->dev = &pdev->dev;
1454         db->ndev = ndev;
1455 
1456         spin_lock_init(&db->lock);
1457         mutex_init(&db->addr_lock);
1458 
1459         INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1460 
1461         db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1462         db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1463         db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1464 
1465         if (db->addr_res == NULL || db->data_res == NULL ||
1466             db->irq_res == NULL) {
1467                 dev_err(db->dev, "insufficient resources\n");
1468                 ret = -ENOENT;
1469                 goto out;
1470         }
1471 
1472         db->irq_wake = platform_get_irq(pdev, 1);
1473         if (db->irq_wake >= 0) {
1474                 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1475 
1476                 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1477                                   IRQF_SHARED, dev_name(db->dev), ndev);
1478                 if (ret) {
1479                         dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1480                 } else {
1481 
1482                         /* test to see if irq is really wakeup capable */
1483                         ret = irq_set_irq_wake(db->irq_wake, 1);
1484                         if (ret) {
1485                                 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1486                                         db->irq_wake, ret);
1487                                 ret = 0;
1488                         } else {
1489                                 irq_set_irq_wake(db->irq_wake, 0);
1490                                 db->wake_supported = 1;
1491                         }
1492                 }
1493         }
1494 
1495         iosize = resource_size(db->addr_res);
1496         db->addr_req = request_mem_region(db->addr_res->start, iosize,
1497                                           pdev->name);
1498 
1499         if (db->addr_req == NULL) {
1500                 dev_err(db->dev, "cannot claim address reg area\n");
1501                 ret = -EIO;
1502                 goto out;
1503         }
1504 
1505         db->io_addr = ioremap(db->addr_res->start, iosize);
1506 
1507         if (db->io_addr == NULL) {
1508                 dev_err(db->dev, "failed to ioremap address reg\n");
1509                 ret = -EINVAL;
1510                 goto out;
1511         }
1512 
1513         iosize = resource_size(db->data_res);
1514         db->data_req = request_mem_region(db->data_res->start, iosize,
1515                                           pdev->name);
1516 
1517         if (db->data_req == NULL) {
1518                 dev_err(db->dev, "cannot claim data reg area\n");
1519                 ret = -EIO;
1520                 goto out;
1521         }
1522 
1523         db->io_data = ioremap(db->data_res->start, iosize);
1524 
1525         if (db->io_data == NULL) {
1526                 dev_err(db->dev, "failed to ioremap data reg\n");
1527                 ret = -EINVAL;
1528                 goto out;
1529         }
1530 
1531         /* fill in parameters for net-dev structure */
1532         ndev->base_addr = (unsigned long)db->io_addr;
1533         ndev->irq       = db->irq_res->start;
1534 
1535         /* ensure at least we have a default set of IO routines */
1536         dm9000_set_io(db, iosize);
1537 
1538         /* check to see if anything is being over-ridden */
1539         if (pdata != NULL) {
1540                 /* check to see if the driver wants to over-ride the
1541                  * default IO width */
1542 
1543                 if (pdata->flags & DM9000_PLATF_8BITONLY)
1544                         dm9000_set_io(db, 1);
1545 
1546                 if (pdata->flags & DM9000_PLATF_16BITONLY)
1547                         dm9000_set_io(db, 2);
1548 
1549                 if (pdata->flags & DM9000_PLATF_32BITONLY)
1550                         dm9000_set_io(db, 4);
1551 
1552                 /* check to see if there are any IO routine
1553                  * over-rides */
1554 
1555                 if (pdata->inblk != NULL)
1556                         db->inblk = pdata->inblk;
1557 
1558                 if (pdata->outblk != NULL)
1559                         db->outblk = pdata->outblk;
1560 
1561                 if (pdata->dumpblk != NULL)
1562                         db->dumpblk = pdata->dumpblk;
1563 
1564                 db->flags = pdata->flags;
1565         }
1566 
1567 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1568         db->flags |= DM9000_PLATF_SIMPLE_PHY;
1569 #endif
1570 
1571         dm9000_reset(db);
1572 
1573         /* try multiple times, DM9000 sometimes gets the read wrong */
1574         for (i = 0; i < 8; i++) {
1575                 id_val  = ior(db, DM9000_VIDL);
1576                 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1577                 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1578                 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1579 
1580                 if (id_val == DM9000_ID)
1581                         break;
1582                 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1583         }
1584 
1585         if (id_val != DM9000_ID) {
1586                 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1587                 ret = -ENODEV;
1588                 goto out;
1589         }
1590 
1591         /* Identify what type of DM9000 we are working on */
1592 
1593         id_val = ior(db, DM9000_CHIPR);
1594         dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1595 
1596         switch (id_val) {
1597         case CHIPR_DM9000A:
1598                 db->type = TYPE_DM9000A;
1599                 break;
1600         case CHIPR_DM9000B:
1601                 db->type = TYPE_DM9000B;
1602                 break;
1603         default:
1604                 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1605                 db->type = TYPE_DM9000E;
1606         }
1607 
1608         /* dm9000a/b are capable of hardware checksum offload */
1609         if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1610                 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1611                 ndev->features |= ndev->hw_features;
1612         }
1613 
1614         /* from this point we assume that we have found a DM9000 */
1615 
1616         /* driver system function */
1617         ether_setup(ndev);
1618 
1619         ndev->netdev_ops        = &dm9000_netdev_ops;
1620         ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1621         ndev->ethtool_ops       = &dm9000_ethtool_ops;
1622 
1623         db->msg_enable       = NETIF_MSG_LINK;
1624         db->mii.phy_id_mask  = 0x1f;
1625         db->mii.reg_num_mask = 0x1f;
1626         db->mii.force_media  = 0;
1627         db->mii.full_duplex  = 0;
1628         db->mii.dev          = ndev;
1629         db->mii.mdio_read    = dm9000_phy_read;
1630         db->mii.mdio_write   = dm9000_phy_write;
1631 
1632         mac_src = "eeprom";
1633 
1634         /* try reading the node address from the attached EEPROM */
1635         for (i = 0; i < 6; i += 2)
1636                 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1637 
1638         if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1639                 mac_src = "platform data";
1640                 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1641         }
1642 
1643         if (!is_valid_ether_addr(ndev->dev_addr)) {
1644                 /* try reading from mac */
1645 
1646                 mac_src = "chip";
1647                 for (i = 0; i < 6; i++)
1648                         ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1649         }
1650 
1651         if (!is_valid_ether_addr(ndev->dev_addr)) {
1652                 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1653                          "set using ifconfig\n", ndev->name);
1654 
1655                 eth_hw_addr_random(ndev);
1656                 mac_src = "random";
1657         }
1658 
1659 
1660         platform_set_drvdata(pdev, ndev);
1661         ret = register_netdev(ndev);
1662 
1663         if (ret == 0)
1664                 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1665                        ndev->name, dm9000_type_to_char(db->type),
1666                        db->io_addr, db->io_data, ndev->irq,
1667                        ndev->dev_addr, mac_src);
1668         return 0;
1669 
1670 out:
1671         dev_err(db->dev, "not found (%d).\n", ret);
1672 
1673         dm9000_release_board(pdev, db);
1674         free_netdev(ndev);
1675 
1676         return ret;
1677 }
1678 
1679 static int
1680 dm9000_drv_suspend(struct device *dev)
1681 {
1682         struct platform_device *pdev = to_platform_device(dev);
1683         struct net_device *ndev = platform_get_drvdata(pdev);
1684         struct board_info *db;
1685 
1686         if (ndev) {
1687                 db = netdev_priv(ndev);
1688                 db->in_suspend = 1;
1689 
1690                 if (!netif_running(ndev))
1691                         return 0;
1692 
1693                 netif_device_detach(ndev);
1694 
1695                 /* only shutdown if not using WoL */
1696                 if (!db->wake_state)
1697                         dm9000_shutdown(ndev);
1698         }
1699         return 0;
1700 }
1701 
1702 static int
1703 dm9000_drv_resume(struct device *dev)
1704 {
1705         struct platform_device *pdev = to_platform_device(dev);
1706         struct net_device *ndev = platform_get_drvdata(pdev);
1707         struct board_info *db = netdev_priv(ndev);
1708 
1709         if (ndev) {
1710                 if (netif_running(ndev)) {
1711                         /* reset if we were not in wake mode to ensure if
1712                          * the device was powered off it is in a known state */
1713                         if (!db->wake_state) {
1714                                 dm9000_init_dm9000(ndev);
1715                                 dm9000_unmask_interrupts(db);
1716                         }
1717 
1718                         netif_device_attach(ndev);
1719                 }
1720 
1721                 db->in_suspend = 0;
1722         }
1723         return 0;
1724 }
1725 
1726 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1727         .suspend        = dm9000_drv_suspend,
1728         .resume         = dm9000_drv_resume,
1729 };
1730 
1731 static int
1732 dm9000_drv_remove(struct platform_device *pdev)
1733 {
1734         struct net_device *ndev = platform_get_drvdata(pdev);
1735 
1736         unregister_netdev(ndev);
1737         dm9000_release_board(pdev, netdev_priv(ndev));
1738         free_netdev(ndev);              /* free device structure */
1739 
1740         dev_dbg(&pdev->dev, "released and freed device\n");
1741         return 0;
1742 }
1743 
1744 #ifdef CONFIG_OF
1745 static const struct of_device_id dm9000_of_matches[] = {
1746         { .compatible = "davicom,dm9000", },
1747         { /* sentinel */ }
1748 };
1749 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1750 #endif
1751 
1752 static struct platform_driver dm9000_driver = {
1753         .driver = {
1754                 .name    = "dm9000",
1755                 .owner   = THIS_MODULE,
1756                 .pm      = &dm9000_drv_pm_ops,
1757                 .of_match_table = of_match_ptr(dm9000_of_matches),
1758         },
1759         .probe   = dm9000_probe,
1760         .remove  = dm9000_drv_remove,
1761 };
1762 
1763 module_platform_driver(dm9000_driver);
1764 
1765 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1766 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1767 MODULE_LICENSE("GPL");
1768 MODULE_ALIAS("platform:dm9000");
1769 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us