Version:  2.0.40 2.2.26 2.4.37 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19

Linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c

  1 /*
  2  * Broadcom GENET (Gigabit Ethernet) controller driver
  3  *
  4  * Copyright (c) 2014 Broadcom Corporation
  5  *
  6  * This program is free software; you can redistribute it and/or modify
  7  * it under the terms of the GNU General Public License version 2 as
  8  * published by the Free Software Foundation.
  9  */
 10 
 11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
 12 
 13 #include <linux/kernel.h>
 14 #include <linux/module.h>
 15 #include <linux/sched.h>
 16 #include <linux/types.h>
 17 #include <linux/fcntl.h>
 18 #include <linux/interrupt.h>
 19 #include <linux/string.h>
 20 #include <linux/if_ether.h>
 21 #include <linux/init.h>
 22 #include <linux/errno.h>
 23 #include <linux/delay.h>
 24 #include <linux/platform_device.h>
 25 #include <linux/dma-mapping.h>
 26 #include <linux/pm.h>
 27 #include <linux/clk.h>
 28 #include <linux/of.h>
 29 #include <linux/of_address.h>
 30 #include <linux/of_irq.h>
 31 #include <linux/of_net.h>
 32 #include <linux/of_platform.h>
 33 #include <net/arp.h>
 34 
 35 #include <linux/mii.h>
 36 #include <linux/ethtool.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/inetdevice.h>
 39 #include <linux/etherdevice.h>
 40 #include <linux/skbuff.h>
 41 #include <linux/in.h>
 42 #include <linux/ip.h>
 43 #include <linux/ipv6.h>
 44 #include <linux/phy.h>
 45 #include <linux/platform_data/bcmgenet.h>
 46 
 47 #include <asm/unaligned.h>
 48 
 49 #include "bcmgenet.h"
 50 
 51 /* Maximum number of hardware queues, downsized if needed */
 52 #define GENET_MAX_MQ_CNT        4
 53 
 54 /* Default highest priority queue for multi queue support */
 55 #define GENET_Q0_PRIORITY       0
 56 
 57 #define GENET_DEFAULT_BD_CNT    \
 58         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt)
 59 
 60 #define RX_BUF_LENGTH           2048
 61 #define SKB_ALIGNMENT           32
 62 
 63 /* Tx/Rx DMA register offset, skip 256 descriptors */
 64 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
 65 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
 66 
 67 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
 68                                 TOTAL_DESC * DMA_DESC_SIZE)
 69 
 70 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
 71                                 TOTAL_DESC * DMA_DESC_SIZE)
 72 
 73 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
 74                                              void __iomem *d, u32 value)
 75 {
 76         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
 77 }
 78 
 79 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
 80                                             void __iomem *d)
 81 {
 82         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
 83 }
 84 
 85 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
 86                                     void __iomem *d,
 87                                     dma_addr_t addr)
 88 {
 89         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 90 
 91         /* Register writes to GISB bus can take couple hundred nanoseconds
 92          * and are done for each packet, save these expensive writes unless
 93          * the platform is explicitly configured for 64-bits/LPAE.
 94          */
 95 #ifdef CONFIG_PHYS_ADDR_T_64BIT
 96         if (priv->hw_params->flags & GENET_HAS_40BITS)
 97                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 98 #endif
 99 }
100 
101 /* Combined address + length/status setter */
102 static inline void dmadesc_set(struct bcmgenet_priv *priv,
103                                void __iomem *d, dma_addr_t addr, u32 val)
104 {
105         dmadesc_set_length_status(priv, d, val);
106         dmadesc_set_addr(priv, d, addr);
107 }
108 
109 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
110                                           void __iomem *d)
111 {
112         dma_addr_t addr;
113 
114         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
115 
116         /* Register writes to GISB bus can take couple hundred nanoseconds
117          * and are done for each packet, save these expensive writes unless
118          * the platform is explicitly configured for 64-bits/LPAE.
119          */
120 #ifdef CONFIG_PHYS_ADDR_T_64BIT
121         if (priv->hw_params->flags & GENET_HAS_40BITS)
122                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
123 #endif
124         return addr;
125 }
126 
127 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
128 
129 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
130                                 NETIF_MSG_LINK)
131 
132 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
133 {
134         if (GENET_IS_V1(priv))
135                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
136         else
137                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
138 }
139 
140 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
141 {
142         if (GENET_IS_V1(priv))
143                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
144         else
145                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
146 }
147 
148 /* These macros are defined to deal with register map change
149  * between GENET1.1 and GENET2. Only those currently being used
150  * by driver are defined.
151  */
152 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
153 {
154         if (GENET_IS_V1(priv))
155                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
156         else
157                 return __raw_readl(priv->base +
158                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
159 }
160 
161 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163         if (GENET_IS_V1(priv))
164                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
165         else
166                 __raw_writel(val, priv->base +
167                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
168 }
169 
170 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
174         else
175                 return __raw_readl(priv->base +
176                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
177 }
178 
179 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
183         else
184                 __raw_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
186 }
187 
188 /* RX/TX DMA register accessors */
189 enum dma_reg {
190         DMA_RING_CFG = 0,
191         DMA_CTRL,
192         DMA_STATUS,
193         DMA_SCB_BURST_SIZE,
194         DMA_ARB_CTRL,
195         DMA_PRIORITY_0,
196         DMA_PRIORITY_1,
197         DMA_PRIORITY_2,
198 };
199 
200 static const u8 bcmgenet_dma_regs_v3plus[] = {
201         [DMA_RING_CFG]          = 0x00,
202         [DMA_CTRL]              = 0x04,
203         [DMA_STATUS]            = 0x08,
204         [DMA_SCB_BURST_SIZE]    = 0x0C,
205         [DMA_ARB_CTRL]          = 0x2C,
206         [DMA_PRIORITY_0]        = 0x30,
207         [DMA_PRIORITY_1]        = 0x34,
208         [DMA_PRIORITY_2]        = 0x38,
209 };
210 
211 static const u8 bcmgenet_dma_regs_v2[] = {
212         [DMA_RING_CFG]          = 0x00,
213         [DMA_CTRL]              = 0x04,
214         [DMA_STATUS]            = 0x08,
215         [DMA_SCB_BURST_SIZE]    = 0x0C,
216         [DMA_ARB_CTRL]          = 0x30,
217         [DMA_PRIORITY_0]        = 0x34,
218         [DMA_PRIORITY_1]        = 0x38,
219         [DMA_PRIORITY_2]        = 0x3C,
220 };
221 
222 static const u8 bcmgenet_dma_regs_v1[] = {
223         [DMA_CTRL]              = 0x00,
224         [DMA_STATUS]            = 0x04,
225         [DMA_SCB_BURST_SIZE]    = 0x0C,
226         [DMA_ARB_CTRL]          = 0x30,
227         [DMA_PRIORITY_0]        = 0x34,
228         [DMA_PRIORITY_1]        = 0x38,
229         [DMA_PRIORITY_2]        = 0x3C,
230 };
231 
232 /* Set at runtime once bcmgenet version is known */
233 static const u8 *bcmgenet_dma_regs;
234 
235 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
236 {
237         return netdev_priv(dev_get_drvdata(dev));
238 }
239 
240 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
241                                       enum dma_reg r)
242 {
243         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
244                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
245 }
246 
247 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
248                                         u32 val, enum dma_reg r)
249 {
250         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
251                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
252 }
253 
254 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
255                                       enum dma_reg r)
256 {
257         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
258                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
259 }
260 
261 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
262                                         u32 val, enum dma_reg r)
263 {
264         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
265                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
266 }
267 
268 /* RDMA/TDMA ring registers and accessors
269  * we merge the common fields and just prefix with T/D the registers
270  * having different meaning depending on the direction
271  */
272 enum dma_ring_reg {
273         TDMA_READ_PTR = 0,
274         RDMA_WRITE_PTR = TDMA_READ_PTR,
275         TDMA_READ_PTR_HI,
276         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
277         TDMA_CONS_INDEX,
278         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
279         TDMA_PROD_INDEX,
280         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
281         DMA_RING_BUF_SIZE,
282         DMA_START_ADDR,
283         DMA_START_ADDR_HI,
284         DMA_END_ADDR,
285         DMA_END_ADDR_HI,
286         DMA_MBUF_DONE_THRESH,
287         TDMA_FLOW_PERIOD,
288         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
289         TDMA_WRITE_PTR,
290         RDMA_READ_PTR = TDMA_WRITE_PTR,
291         TDMA_WRITE_PTR_HI,
292         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
293 };
294 
295 /* GENET v4 supports 40-bits pointer addressing
296  * for obvious reasons the LO and HI word parts
297  * are contiguous, but this offsets the other
298  * registers.
299  */
300 static const u8 genet_dma_ring_regs_v4[] = {
301         [TDMA_READ_PTR]                 = 0x00,
302         [TDMA_READ_PTR_HI]              = 0x04,
303         [TDMA_CONS_INDEX]               = 0x08,
304         [TDMA_PROD_INDEX]               = 0x0C,
305         [DMA_RING_BUF_SIZE]             = 0x10,
306         [DMA_START_ADDR]                = 0x14,
307         [DMA_START_ADDR_HI]             = 0x18,
308         [DMA_END_ADDR]                  = 0x1C,
309         [DMA_END_ADDR_HI]               = 0x20,
310         [DMA_MBUF_DONE_THRESH]          = 0x24,
311         [TDMA_FLOW_PERIOD]              = 0x28,
312         [TDMA_WRITE_PTR]                = 0x2C,
313         [TDMA_WRITE_PTR_HI]             = 0x30,
314 };
315 
316 static const u8 genet_dma_ring_regs_v123[] = {
317         [TDMA_READ_PTR]                 = 0x00,
318         [TDMA_CONS_INDEX]               = 0x04,
319         [TDMA_PROD_INDEX]               = 0x08,
320         [DMA_RING_BUF_SIZE]             = 0x0C,
321         [DMA_START_ADDR]                = 0x10,
322         [DMA_END_ADDR]                  = 0x14,
323         [DMA_MBUF_DONE_THRESH]          = 0x18,
324         [TDMA_FLOW_PERIOD]              = 0x1C,
325         [TDMA_WRITE_PTR]                = 0x20,
326 };
327 
328 /* Set at runtime once GENET version is known */
329 static const u8 *genet_dma_ring_regs;
330 
331 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
332                                            unsigned int ring,
333                                            enum dma_ring_reg r)
334 {
335         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
336                         (DMA_RING_SIZE * ring) +
337                         genet_dma_ring_regs[r]);
338 }
339 
340 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
341                                              unsigned int ring, u32 val,
342                                              enum dma_ring_reg r)
343 {
344         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
345                         (DMA_RING_SIZE * ring) +
346                         genet_dma_ring_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
350                                            unsigned int ring,
351                                            enum dma_ring_reg r)
352 {
353         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
354                         (DMA_RING_SIZE * ring) +
355                         genet_dma_ring_regs[r]);
356 }
357 
358 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
359                                              unsigned int ring, u32 val,
360                                              enum dma_ring_reg r)
361 {
362         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
363                         (DMA_RING_SIZE * ring) +
364                         genet_dma_ring_regs[r]);
365 }
366 
367 static int bcmgenet_get_settings(struct net_device *dev,
368                                  struct ethtool_cmd *cmd)
369 {
370         struct bcmgenet_priv *priv = netdev_priv(dev);
371 
372         if (!netif_running(dev))
373                 return -EINVAL;
374 
375         if (!priv->phydev)
376                 return -ENODEV;
377 
378         return phy_ethtool_gset(priv->phydev, cmd);
379 }
380 
381 static int bcmgenet_set_settings(struct net_device *dev,
382                                  struct ethtool_cmd *cmd)
383 {
384         struct bcmgenet_priv *priv = netdev_priv(dev);
385 
386         if (!netif_running(dev))
387                 return -EINVAL;
388 
389         if (!priv->phydev)
390                 return -ENODEV;
391 
392         return phy_ethtool_sset(priv->phydev, cmd);
393 }
394 
395 static int bcmgenet_set_rx_csum(struct net_device *dev,
396                                 netdev_features_t wanted)
397 {
398         struct bcmgenet_priv *priv = netdev_priv(dev);
399         u32 rbuf_chk_ctrl;
400         bool rx_csum_en;
401 
402         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
403 
404         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
405 
406         /* enable rx checksumming */
407         if (rx_csum_en)
408                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
409         else
410                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
411         priv->desc_rxchk_en = rx_csum_en;
412 
413         /* If UniMAC forwards CRC, we need to skip over it to get
414          * a valid CHK bit to be set in the per-packet status word
415         */
416         if (rx_csum_en && priv->crc_fwd_en)
417                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
418         else
419                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
420 
421         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
422 
423         return 0;
424 }
425 
426 static int bcmgenet_set_tx_csum(struct net_device *dev,
427                                 netdev_features_t wanted)
428 {
429         struct bcmgenet_priv *priv = netdev_priv(dev);
430         bool desc_64b_en;
431         u32 tbuf_ctrl, rbuf_ctrl;
432 
433         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
434         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
435 
436         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
437 
438         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
439         if (desc_64b_en) {
440                 tbuf_ctrl |= RBUF_64B_EN;
441                 rbuf_ctrl |= RBUF_64B_EN;
442         } else {
443                 tbuf_ctrl &= ~RBUF_64B_EN;
444                 rbuf_ctrl &= ~RBUF_64B_EN;
445         }
446         priv->desc_64b_en = desc_64b_en;
447 
448         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
449         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
450 
451         return 0;
452 }
453 
454 static int bcmgenet_set_features(struct net_device *dev,
455                                  netdev_features_t features)
456 {
457         netdev_features_t changed = features ^ dev->features;
458         netdev_features_t wanted = dev->wanted_features;
459         int ret = 0;
460 
461         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
462                 ret = bcmgenet_set_tx_csum(dev, wanted);
463         if (changed & (NETIF_F_RXCSUM))
464                 ret = bcmgenet_set_rx_csum(dev, wanted);
465 
466         return ret;
467 }
468 
469 static u32 bcmgenet_get_msglevel(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472 
473         return priv->msg_enable;
474 }
475 
476 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
477 {
478         struct bcmgenet_priv *priv = netdev_priv(dev);
479 
480         priv->msg_enable = level;
481 }
482 
483 /* standard ethtool support functions. */
484 enum bcmgenet_stat_type {
485         BCMGENET_STAT_NETDEV = -1,
486         BCMGENET_STAT_MIB_RX,
487         BCMGENET_STAT_MIB_TX,
488         BCMGENET_STAT_RUNT,
489         BCMGENET_STAT_MISC,
490 };
491 
492 struct bcmgenet_stats {
493         char stat_string[ETH_GSTRING_LEN];
494         int stat_sizeof;
495         int stat_offset;
496         enum bcmgenet_stat_type type;
497         /* reg offset from UMAC base for misc counters */
498         u16 reg_offset;
499 };
500 
501 #define STAT_NETDEV(m) { \
502         .stat_string = __stringify(m), \
503         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
504         .stat_offset = offsetof(struct net_device_stats, m), \
505         .type = BCMGENET_STAT_NETDEV, \
506 }
507 
508 #define STAT_GENET_MIB(str, m, _type) { \
509         .stat_string = str, \
510         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
511         .stat_offset = offsetof(struct bcmgenet_priv, m), \
512         .type = _type, \
513 }
514 
515 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
516 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
517 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
518 
519 #define STAT_GENET_MISC(str, m, offset) { \
520         .stat_string = str, \
521         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
522         .stat_offset = offsetof(struct bcmgenet_priv, m), \
523         .type = BCMGENET_STAT_MISC, \
524         .reg_offset = offset, \
525 }
526 
527 
528 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
529  * between the end of TX stats and the beginning of the RX RUNT
530  */
531 #define BCMGENET_STAT_OFFSET    0xc
532 
533 /* Hardware counters must be kept in sync because the order/offset
534  * is important here (order in structure declaration = order in hardware)
535  */
536 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
537         /* general stats */
538         STAT_NETDEV(rx_packets),
539         STAT_NETDEV(tx_packets),
540         STAT_NETDEV(rx_bytes),
541         STAT_NETDEV(tx_bytes),
542         STAT_NETDEV(rx_errors),
543         STAT_NETDEV(tx_errors),
544         STAT_NETDEV(rx_dropped),
545         STAT_NETDEV(tx_dropped),
546         STAT_NETDEV(multicast),
547         /* UniMAC RSV counters */
548         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
549         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
550         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
551         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
552         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
553         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
554         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
555         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
556         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
557         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
558         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
559         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
560         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
561         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
562         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
563         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
564         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
565         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
566         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
567         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
568         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
569         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
570         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
571         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
572         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
573         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
574         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
575         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
576         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
577         /* UniMAC TSV counters */
578         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
579         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
580         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
581         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
582         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
583         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
584         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
585         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
586         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
587         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
588         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
589         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
590         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
591         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
592         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
593         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
594         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
595         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
596         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
597         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
598         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
599         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
600         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
601         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
602         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
603         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
604         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
605         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
606         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
607         /* UniMAC RUNT counters */
608         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
609         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
610         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
611         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
612         /* Misc UniMAC counters */
613         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
614                         UMAC_RBUF_OVFL_CNT),
615         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
616         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
617         STAT_GENET_MIB_RX("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
618         STAT_GENET_MIB_RX("rx_dma_failed", mib.rx_dma_failed),
619         STAT_GENET_MIB_TX("tx_dma_failed", mib.tx_dma_failed),
620 };
621 
622 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
623 
624 static void bcmgenet_get_drvinfo(struct net_device *dev,
625                                  struct ethtool_drvinfo *info)
626 {
627         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
628         strlcpy(info->version, "v2.0", sizeof(info->version));
629         info->n_stats = BCMGENET_STATS_LEN;
630 }
631 
632 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
633 {
634         switch (string_set) {
635         case ETH_SS_STATS:
636                 return BCMGENET_STATS_LEN;
637         default:
638                 return -EOPNOTSUPP;
639         }
640 }
641 
642 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
643                                  u8 *data)
644 {
645         int i;
646 
647         switch (stringset) {
648         case ETH_SS_STATS:
649                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
650                         memcpy(data + i * ETH_GSTRING_LEN,
651                                bcmgenet_gstrings_stats[i].stat_string,
652                                ETH_GSTRING_LEN);
653                 }
654                 break;
655         }
656 }
657 
658 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
659 {
660         int i, j = 0;
661 
662         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
663                 const struct bcmgenet_stats *s;
664                 u8 offset = 0;
665                 u32 val = 0;
666                 char *p;
667 
668                 s = &bcmgenet_gstrings_stats[i];
669                 switch (s->type) {
670                 case BCMGENET_STAT_NETDEV:
671                         continue;
672                 case BCMGENET_STAT_MIB_RX:
673                 case BCMGENET_STAT_MIB_TX:
674                 case BCMGENET_STAT_RUNT:
675                         if (s->type != BCMGENET_STAT_MIB_RX)
676                                 offset = BCMGENET_STAT_OFFSET;
677                         val = bcmgenet_umac_readl(priv,
678                                                   UMAC_MIB_START + j + offset);
679                         break;
680                 case BCMGENET_STAT_MISC:
681                         val = bcmgenet_umac_readl(priv, s->reg_offset);
682                         /* clear if overflowed */
683                         if (val == ~0)
684                                 bcmgenet_umac_writel(priv, 0, s->reg_offset);
685                         break;
686                 }
687 
688                 j += s->stat_sizeof;
689                 p = (char *)priv + s->stat_offset;
690                 *(u32 *)p = val;
691         }
692 }
693 
694 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
695                                        struct ethtool_stats *stats,
696                                        u64 *data)
697 {
698         struct bcmgenet_priv *priv = netdev_priv(dev);
699         int i;
700 
701         if (netif_running(dev))
702                 bcmgenet_update_mib_counters(priv);
703 
704         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
705                 const struct bcmgenet_stats *s;
706                 char *p;
707 
708                 s = &bcmgenet_gstrings_stats[i];
709                 if (s->type == BCMGENET_STAT_NETDEV)
710                         p = (char *)&dev->stats;
711                 else
712                         p = (char *)priv;
713                 p += s->stat_offset;
714                 data[i] = *(u32 *)p;
715         }
716 }
717 
718 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
719 {
720         struct bcmgenet_priv *priv = netdev_priv(dev);
721         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
722         u32 reg;
723 
724         if (enable && !priv->clk_eee_enabled) {
725                 clk_prepare_enable(priv->clk_eee);
726                 priv->clk_eee_enabled = true;
727         }
728 
729         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
730         if (enable)
731                 reg |= EEE_EN;
732         else
733                 reg &= ~EEE_EN;
734         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
735 
736         /* Enable EEE and switch to a 27Mhz clock automatically */
737         reg = __raw_readl(priv->base + off);
738         if (enable)
739                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
740         else
741                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
742         __raw_writel(reg, priv->base + off);
743 
744         /* Do the same for thing for RBUF */
745         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
746         if (enable)
747                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
748         else
749                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
750         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
751 
752         if (!enable && priv->clk_eee_enabled) {
753                 clk_disable_unprepare(priv->clk_eee);
754                 priv->clk_eee_enabled = false;
755         }
756 
757         priv->eee.eee_enabled = enable;
758         priv->eee.eee_active = enable;
759 }
760 
761 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
762 {
763         struct bcmgenet_priv *priv = netdev_priv(dev);
764         struct ethtool_eee *p = &priv->eee;
765 
766         if (GENET_IS_V1(priv))
767                 return -EOPNOTSUPP;
768 
769         e->eee_enabled = p->eee_enabled;
770         e->eee_active = p->eee_active;
771         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
772 
773         return phy_ethtool_get_eee(priv->phydev, e);
774 }
775 
776 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
777 {
778         struct bcmgenet_priv *priv = netdev_priv(dev);
779         struct ethtool_eee *p = &priv->eee;
780         int ret = 0;
781 
782         if (GENET_IS_V1(priv))
783                 return -EOPNOTSUPP;
784 
785         p->eee_enabled = e->eee_enabled;
786 
787         if (!p->eee_enabled) {
788                 bcmgenet_eee_enable_set(dev, false);
789         } else {
790                 ret = phy_init_eee(priv->phydev, 0);
791                 if (ret) {
792                         netif_err(priv, hw, dev, "EEE initialization failed\n");
793                         return ret;
794                 }
795 
796                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
797                 bcmgenet_eee_enable_set(dev, true);
798         }
799 
800         return phy_ethtool_set_eee(priv->phydev, e);
801 }
802 
803 static int bcmgenet_nway_reset(struct net_device *dev)
804 {
805         struct bcmgenet_priv *priv = netdev_priv(dev);
806 
807         return genphy_restart_aneg(priv->phydev);
808 }
809 
810 /* standard ethtool support functions. */
811 static struct ethtool_ops bcmgenet_ethtool_ops = {
812         .get_strings            = bcmgenet_get_strings,
813         .get_sset_count         = bcmgenet_get_sset_count,
814         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
815         .get_settings           = bcmgenet_get_settings,
816         .set_settings           = bcmgenet_set_settings,
817         .get_drvinfo            = bcmgenet_get_drvinfo,
818         .get_link               = ethtool_op_get_link,
819         .get_msglevel           = bcmgenet_get_msglevel,
820         .set_msglevel           = bcmgenet_set_msglevel,
821         .get_wol                = bcmgenet_get_wol,
822         .set_wol                = bcmgenet_set_wol,
823         .get_eee                = bcmgenet_get_eee,
824         .set_eee                = bcmgenet_set_eee,
825         .nway_reset             = bcmgenet_nway_reset,
826 };
827 
828 /* Power down the unimac, based on mode. */
829 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
830                                 enum bcmgenet_power_mode mode)
831 {
832         u32 reg;
833 
834         switch (mode) {
835         case GENET_POWER_CABLE_SENSE:
836                 phy_detach(priv->phydev);
837                 break;
838 
839         case GENET_POWER_WOL_MAGIC:
840                 bcmgenet_wol_power_down_cfg(priv, mode);
841                 break;
842 
843         case GENET_POWER_PASSIVE:
844                 /* Power down LED */
845                 if (priv->hw_params->flags & GENET_HAS_EXT) {
846                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
847                         reg |= (EXT_PWR_DOWN_PHY |
848                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
849                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
850                 }
851                 break;
852         default:
853                 break;
854         }
855 }
856 
857 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
858                               enum bcmgenet_power_mode mode)
859 {
860         u32 reg;
861 
862         if (!(priv->hw_params->flags & GENET_HAS_EXT))
863                 return;
864 
865         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
866 
867         switch (mode) {
868         case GENET_POWER_PASSIVE:
869                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
870                                 EXT_PWR_DOWN_BIAS);
871                 /* fallthrough */
872         case GENET_POWER_CABLE_SENSE:
873                 /* enable APD */
874                 reg |= EXT_PWR_DN_EN_LD;
875                 break;
876         case GENET_POWER_WOL_MAGIC:
877                 bcmgenet_wol_power_up_cfg(priv, mode);
878                 return;
879         default:
880                 break;
881         }
882 
883         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
884 
885         if (mode == GENET_POWER_PASSIVE)
886                 bcmgenet_mii_reset(priv->dev);
887 }
888 
889 /* ioctl handle special commands that are not present in ethtool. */
890 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
891 {
892         struct bcmgenet_priv *priv = netdev_priv(dev);
893         int val = 0;
894 
895         if (!netif_running(dev))
896                 return -EINVAL;
897 
898         switch (cmd) {
899         case SIOCGMIIPHY:
900         case SIOCGMIIREG:
901         case SIOCSMIIREG:
902                 if (!priv->phydev)
903                         val = -ENODEV;
904                 else
905                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
906                 break;
907 
908         default:
909                 val = -EINVAL;
910                 break;
911         }
912 
913         return val;
914 }
915 
916 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
917                                          struct bcmgenet_tx_ring *ring)
918 {
919         struct enet_cb *tx_cb_ptr;
920 
921         tx_cb_ptr = ring->cbs;
922         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
923         tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE;
924         /* Advancing local write pointer */
925         if (ring->write_ptr == ring->end_ptr)
926                 ring->write_ptr = ring->cb_ptr;
927         else
928                 ring->write_ptr++;
929 
930         return tx_cb_ptr;
931 }
932 
933 /* Simple helper to free a control block's resources */
934 static void bcmgenet_free_cb(struct enet_cb *cb)
935 {
936         dev_kfree_skb_any(cb->skb);
937         cb->skb = NULL;
938         dma_unmap_addr_set(cb, dma_addr, 0);
939 }
940 
941 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
942                                                   struct bcmgenet_tx_ring *ring)
943 {
944         bcmgenet_intrl2_0_writel(priv,
945                                  UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
946                                  INTRL2_CPU_MASK_SET);
947 }
948 
949 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
950                                                  struct bcmgenet_tx_ring *ring)
951 {
952         bcmgenet_intrl2_0_writel(priv,
953                                  UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
954                                  INTRL2_CPU_MASK_CLEAR);
955 }
956 
957 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
958                                                struct bcmgenet_tx_ring *ring)
959 {
960         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
961                                  INTRL2_CPU_MASK_CLEAR);
962         priv->int1_mask &= ~(1 << ring->index);
963 }
964 
965 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
966                                                 struct bcmgenet_tx_ring *ring)
967 {
968         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
969                                  INTRL2_CPU_MASK_SET);
970         priv->int1_mask |= (1 << ring->index);
971 }
972 
973 /* Unlocked version of the reclaim routine */
974 static void __bcmgenet_tx_reclaim(struct net_device *dev,
975                                   struct bcmgenet_tx_ring *ring)
976 {
977         struct bcmgenet_priv *priv = netdev_priv(dev);
978         int last_tx_cn, last_c_index, num_tx_bds;
979         struct enet_cb *tx_cb_ptr;
980         struct netdev_queue *txq;
981         unsigned int bds_compl;
982         unsigned int c_index;
983 
984         /* Compute how many buffers are transmitted since last xmit call */
985         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
986         txq = netdev_get_tx_queue(dev, ring->queue);
987 
988         last_c_index = ring->c_index;
989         num_tx_bds = ring->size;
990 
991         c_index &= (num_tx_bds - 1);
992 
993         if (c_index >= last_c_index)
994                 last_tx_cn = c_index - last_c_index;
995         else
996                 last_tx_cn = num_tx_bds - last_c_index + c_index;
997 
998         netif_dbg(priv, tx_done, dev,
999                   "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n",
1000                   __func__, ring->index,
1001                   c_index, last_tx_cn, last_c_index);
1002 
1003         /* Reclaim transmitted buffers */
1004         while (last_tx_cn-- > 0) {
1005                 tx_cb_ptr = ring->cbs + last_c_index;
1006                 bds_compl = 0;
1007                 if (tx_cb_ptr->skb) {
1008                         bds_compl = skb_shinfo(tx_cb_ptr->skb)->nr_frags + 1;
1009                         dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1010                         dma_unmap_single(&dev->dev,
1011                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1012                                          tx_cb_ptr->skb->len,
1013                                          DMA_TO_DEVICE);
1014                         bcmgenet_free_cb(tx_cb_ptr);
1015                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1016                         dev->stats.tx_bytes +=
1017                                 dma_unmap_len(tx_cb_ptr, dma_len);
1018                         dma_unmap_page(&dev->dev,
1019                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1020                                        dma_unmap_len(tx_cb_ptr, dma_len),
1021                                        DMA_TO_DEVICE);
1022                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1023                 }
1024                 dev->stats.tx_packets++;
1025                 ring->free_bds += bds_compl;
1026 
1027                 last_c_index++;
1028                 last_c_index &= (num_tx_bds - 1);
1029         }
1030 
1031         if (ring->free_bds > (MAX_SKB_FRAGS + 1))
1032                 ring->int_disable(priv, ring);
1033 
1034         if (netif_tx_queue_stopped(txq))
1035                 netif_tx_wake_queue(txq);
1036 
1037         ring->c_index = c_index;
1038 }
1039 
1040 static void bcmgenet_tx_reclaim(struct net_device *dev,
1041                                 struct bcmgenet_tx_ring *ring)
1042 {
1043         unsigned long flags;
1044 
1045         spin_lock_irqsave(&ring->lock, flags);
1046         __bcmgenet_tx_reclaim(dev, ring);
1047         spin_unlock_irqrestore(&ring->lock, flags);
1048 }
1049 
1050 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1051 {
1052         struct bcmgenet_priv *priv = netdev_priv(dev);
1053         int i;
1054 
1055         if (netif_is_multiqueue(dev)) {
1056                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1057                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1058         }
1059 
1060         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1061 }
1062 
1063 /* Transmits a single SKB (either head of a fragment or a single SKB)
1064  * caller must hold priv->lock
1065  */
1066 static int bcmgenet_xmit_single(struct net_device *dev,
1067                                 struct sk_buff *skb,
1068                                 u16 dma_desc_flags,
1069                                 struct bcmgenet_tx_ring *ring)
1070 {
1071         struct bcmgenet_priv *priv = netdev_priv(dev);
1072         struct device *kdev = &priv->pdev->dev;
1073         struct enet_cb *tx_cb_ptr;
1074         unsigned int skb_len;
1075         dma_addr_t mapping;
1076         u32 length_status;
1077         int ret;
1078 
1079         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1080 
1081         if (unlikely(!tx_cb_ptr))
1082                 BUG();
1083 
1084         tx_cb_ptr->skb = skb;
1085 
1086         skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1087 
1088         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1089         ret = dma_mapping_error(kdev, mapping);
1090         if (ret) {
1091                 priv->mib.tx_dma_failed++;
1092                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1093                 dev_kfree_skb(skb);
1094                 return ret;
1095         }
1096 
1097         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1098         dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1099         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1100                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1101                         DMA_TX_APPEND_CRC;
1102 
1103         if (skb->ip_summed == CHECKSUM_PARTIAL)
1104                 length_status |= DMA_TX_DO_CSUM;
1105 
1106         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1107 
1108         /* Decrement total BD count and advance our write pointer */
1109         ring->free_bds -= 1;
1110         ring->prod_index += 1;
1111         ring->prod_index &= DMA_P_INDEX_MASK;
1112 
1113         return 0;
1114 }
1115 
1116 /* Transmit a SKB fragment */
1117 static int bcmgenet_xmit_frag(struct net_device *dev,
1118                               skb_frag_t *frag,
1119                               u16 dma_desc_flags,
1120                               struct bcmgenet_tx_ring *ring)
1121 {
1122         struct bcmgenet_priv *priv = netdev_priv(dev);
1123         struct device *kdev = &priv->pdev->dev;
1124         struct enet_cb *tx_cb_ptr;
1125         dma_addr_t mapping;
1126         int ret;
1127 
1128         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1129 
1130         if (unlikely(!tx_cb_ptr))
1131                 BUG();
1132         tx_cb_ptr->skb = NULL;
1133 
1134         mapping = skb_frag_dma_map(kdev, frag, 0,
1135                                    skb_frag_size(frag), DMA_TO_DEVICE);
1136         ret = dma_mapping_error(kdev, mapping);
1137         if (ret) {
1138                 priv->mib.tx_dma_failed++;
1139                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1140                           __func__);
1141                 return ret;
1142         }
1143 
1144         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1145         dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1146 
1147         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1148                     (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1149                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1150 
1151 
1152         ring->free_bds -= 1;
1153         ring->prod_index += 1;
1154         ring->prod_index &= DMA_P_INDEX_MASK;
1155 
1156         return 0;
1157 }
1158 
1159 /* Reallocate the SKB to put enough headroom in front of it and insert
1160  * the transmit checksum offsets in the descriptors
1161  */
1162 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1163                                             struct sk_buff *skb)
1164 {
1165         struct status_64 *status = NULL;
1166         struct sk_buff *new_skb;
1167         u16 offset;
1168         u8 ip_proto;
1169         u16 ip_ver;
1170         u32 tx_csum_info;
1171 
1172         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1173                 /* If 64 byte status block enabled, must make sure skb has
1174                  * enough headroom for us to insert 64B status block.
1175                  */
1176                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1177                 dev_kfree_skb(skb);
1178                 if (!new_skb) {
1179                         dev->stats.tx_errors++;
1180                         dev->stats.tx_dropped++;
1181                         return NULL;
1182                 }
1183                 skb = new_skb;
1184         }
1185 
1186         skb_push(skb, sizeof(*status));
1187         status = (struct status_64 *)skb->data;
1188 
1189         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1190                 ip_ver = htons(skb->protocol);
1191                 switch (ip_ver) {
1192                 case ETH_P_IP:
1193                         ip_proto = ip_hdr(skb)->protocol;
1194                         break;
1195                 case ETH_P_IPV6:
1196                         ip_proto = ipv6_hdr(skb)->nexthdr;
1197                         break;
1198                 default:
1199                         return skb;
1200                 }
1201 
1202                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1203                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1204                                 (offset + skb->csum_offset);
1205 
1206                 /* Set the length valid bit for TCP and UDP and just set
1207                  * the special UDP flag for IPv4, else just set to 0.
1208                  */
1209                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1210                         tx_csum_info |= STATUS_TX_CSUM_LV;
1211                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1212                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1213                 } else {
1214                         tx_csum_info = 0;
1215                 }
1216 
1217                 status->tx_csum_info = tx_csum_info;
1218         }
1219 
1220         return skb;
1221 }
1222 
1223 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1224 {
1225         struct bcmgenet_priv *priv = netdev_priv(dev);
1226         struct bcmgenet_tx_ring *ring = NULL;
1227         struct netdev_queue *txq;
1228         unsigned long flags = 0;
1229         int nr_frags, index;
1230         u16 dma_desc_flags;
1231         int ret;
1232         int i;
1233 
1234         index = skb_get_queue_mapping(skb);
1235         /* Mapping strategy:
1236          * queue_mapping = 0, unclassified, packet xmited through ring16
1237          * queue_mapping = 1, goes to ring 0. (highest priority queue
1238          * queue_mapping = 2, goes to ring 1.
1239          * queue_mapping = 3, goes to ring 2.
1240          * queue_mapping = 4, goes to ring 3.
1241          */
1242         if (index == 0)
1243                 index = DESC_INDEX;
1244         else
1245                 index -= 1;
1246 
1247         nr_frags = skb_shinfo(skb)->nr_frags;
1248         ring = &priv->tx_rings[index];
1249         txq = netdev_get_tx_queue(dev, ring->queue);
1250 
1251         spin_lock_irqsave(&ring->lock, flags);
1252         if (ring->free_bds <= nr_frags + 1) {
1253                 netif_tx_stop_queue(txq);
1254                 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1255                            __func__, index, ring->queue);
1256                 ret = NETDEV_TX_BUSY;
1257                 goto out;
1258         }
1259 
1260         if (skb_padto(skb, ETH_ZLEN)) {
1261                 ret = NETDEV_TX_OK;
1262                 goto out;
1263         }
1264 
1265         /* set the SKB transmit checksum */
1266         if (priv->desc_64b_en) {
1267                 skb = bcmgenet_put_tx_csum(dev, skb);
1268                 if (!skb) {
1269                         ret = NETDEV_TX_OK;
1270                         goto out;
1271                 }
1272         }
1273 
1274         dma_desc_flags = DMA_SOP;
1275         if (nr_frags == 0)
1276                 dma_desc_flags |= DMA_EOP;
1277 
1278         /* Transmit single SKB or head of fragment list */
1279         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1280         if (ret) {
1281                 ret = NETDEV_TX_OK;
1282                 goto out;
1283         }
1284 
1285         /* xmit fragment */
1286         for (i = 0; i < nr_frags; i++) {
1287                 ret = bcmgenet_xmit_frag(dev,
1288                                          &skb_shinfo(skb)->frags[i],
1289                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1290                                          ring);
1291                 if (ret) {
1292                         ret = NETDEV_TX_OK;
1293                         goto out;
1294                 }
1295         }
1296 
1297         skb_tx_timestamp(skb);
1298 
1299         /* we kept a software copy of how much we should advance the TDMA
1300          * producer index, now write it down to the hardware
1301          */
1302         bcmgenet_tdma_ring_writel(priv, ring->index,
1303                                   ring->prod_index, TDMA_PROD_INDEX);
1304 
1305         if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) {
1306                 netif_tx_stop_queue(txq);
1307                 ring->int_enable(priv, ring);
1308         }
1309 
1310 out:
1311         spin_unlock_irqrestore(&ring->lock, flags);
1312 
1313         return ret;
1314 }
1315 
1316 
1317 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1318 {
1319         struct device *kdev = &priv->pdev->dev;
1320         struct sk_buff *skb;
1321         dma_addr_t mapping;
1322         int ret;
1323 
1324         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1325         if (!skb)
1326                 return -ENOMEM;
1327 
1328         /* a caller did not release this control block */
1329         WARN_ON(cb->skb != NULL);
1330         cb->skb = skb;
1331         mapping = dma_map_single(kdev, skb->data,
1332                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1333         ret = dma_mapping_error(kdev, mapping);
1334         if (ret) {
1335                 priv->mib.rx_dma_failed++;
1336                 bcmgenet_free_cb(cb);
1337                 netif_err(priv, rx_err, priv->dev,
1338                           "%s DMA map failed\n", __func__);
1339                 return ret;
1340         }
1341 
1342         dma_unmap_addr_set(cb, dma_addr, mapping);
1343         /* assign packet, prepare descriptor, and advance pointer */
1344 
1345         dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1346 
1347         /* turn on the newly assigned BD for DMA to use */
1348         priv->rx_bd_assign_index++;
1349         priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1350 
1351         priv->rx_bd_assign_ptr = priv->rx_bds +
1352                 (priv->rx_bd_assign_index * DMA_DESC_SIZE);
1353 
1354         return 0;
1355 }
1356 
1357 /* bcmgenet_desc_rx - descriptor based rx process.
1358  * this could be called from bottom half, or from NAPI polling method.
1359  */
1360 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1361                                      unsigned int budget)
1362 {
1363         struct net_device *dev = priv->dev;
1364         struct enet_cb *cb;
1365         struct sk_buff *skb;
1366         u32 dma_length_status;
1367         unsigned long dma_flag;
1368         int len, err;
1369         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1370         unsigned int p_index;
1371         unsigned int chksum_ok = 0;
1372 
1373         p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1374         p_index &= DMA_P_INDEX_MASK;
1375 
1376         if (p_index < priv->rx_c_index)
1377                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1378                         priv->rx_c_index + p_index;
1379         else
1380                 rxpkttoprocess = p_index - priv->rx_c_index;
1381 
1382         netif_dbg(priv, rx_status, dev,
1383                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1384 
1385         while ((rxpktprocessed < rxpkttoprocess) &&
1386                (rxpktprocessed < budget)) {
1387                 cb = &priv->rx_cbs[priv->rx_read_ptr];
1388                 skb = cb->skb;
1389 
1390                 /* We do not have a backing SKB, so we do not have a
1391                  * corresponding DMA mapping for this incoming packet since
1392                  * bcmgenet_rx_refill always either has both skb and mapping or
1393                  * none.
1394                  */
1395                 if (unlikely(!skb)) {
1396                         dev->stats.rx_dropped++;
1397                         dev->stats.rx_errors++;
1398                         goto refill;
1399                 }
1400 
1401                 /* Unmap the packet contents such that we can use the
1402                  * RSV from the 64 bytes descriptor when enabled and save
1403                  * a 32-bits register read
1404                  */
1405                 dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1406                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1407 
1408                 if (!priv->desc_64b_en) {
1409                         dma_length_status =
1410                                 dmadesc_get_length_status(priv,
1411                                                           priv->rx_bds +
1412                                                           (priv->rx_read_ptr *
1413                                                            DMA_DESC_SIZE));
1414                 } else {
1415                         struct status_64 *status;
1416 
1417                         status = (struct status_64 *)skb->data;
1418                         dma_length_status = status->length_status;
1419                 }
1420 
1421                 /* DMA flags and length are still valid no matter how
1422                  * we got the Receive Status Vector (64B RSB or register)
1423                  */
1424                 dma_flag = dma_length_status & 0xffff;
1425                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1426 
1427                 netif_dbg(priv, rx_status, dev,
1428                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1429                           __func__, p_index, priv->rx_c_index,
1430                           priv->rx_read_ptr, dma_length_status);
1431 
1432                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1433                         netif_err(priv, rx_status, dev,
1434                                   "dropping fragmented packet!\n");
1435                         dev->stats.rx_dropped++;
1436                         dev->stats.rx_errors++;
1437                         dev_kfree_skb_any(cb->skb);
1438                         cb->skb = NULL;
1439                         goto refill;
1440                 }
1441                 /* report errors */
1442                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1443                                                 DMA_RX_OV |
1444                                                 DMA_RX_NO |
1445                                                 DMA_RX_LG |
1446                                                 DMA_RX_RXER))) {
1447                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1448                                   (unsigned int)dma_flag);
1449                         if (dma_flag & DMA_RX_CRC_ERROR)
1450                                 dev->stats.rx_crc_errors++;
1451                         if (dma_flag & DMA_RX_OV)
1452                                 dev->stats.rx_over_errors++;
1453                         if (dma_flag & DMA_RX_NO)
1454                                 dev->stats.rx_frame_errors++;
1455                         if (dma_flag & DMA_RX_LG)
1456                                 dev->stats.rx_length_errors++;
1457                         dev->stats.rx_dropped++;
1458                         dev->stats.rx_errors++;
1459 
1460                         /* discard the packet and advance consumer index.*/
1461                         dev_kfree_skb_any(cb->skb);
1462                         cb->skb = NULL;
1463                         goto refill;
1464                 } /* error packet */
1465 
1466                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1467                              priv->desc_rxchk_en;
1468 
1469                 skb_put(skb, len);
1470                 if (priv->desc_64b_en) {
1471                         skb_pull(skb, 64);
1472                         len -= 64;
1473                 }
1474 
1475                 if (likely(chksum_ok))
1476                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1477 
1478                 /* remove hardware 2bytes added for IP alignment */
1479                 skb_pull(skb, 2);
1480                 len -= 2;
1481 
1482                 if (priv->crc_fwd_en) {
1483                         skb_trim(skb, len - ETH_FCS_LEN);
1484                         len -= ETH_FCS_LEN;
1485                 }
1486 
1487                 /*Finish setting up the received SKB and send it to the kernel*/
1488                 skb->protocol = eth_type_trans(skb, priv->dev);
1489                 dev->stats.rx_packets++;
1490                 dev->stats.rx_bytes += len;
1491                 if (dma_flag & DMA_RX_MULT)
1492                         dev->stats.multicast++;
1493 
1494                 /* Notify kernel */
1495                 napi_gro_receive(&priv->napi, skb);
1496                 cb->skb = NULL;
1497                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1498 
1499                 /* refill RX path on the current control block */
1500 refill:
1501                 err = bcmgenet_rx_refill(priv, cb);
1502                 if (err) {
1503                         priv->mib.alloc_rx_buff_failed++;
1504                         netif_err(priv, rx_err, dev, "Rx refill failed\n");
1505                 }
1506 
1507                 rxpktprocessed++;
1508                 priv->rx_read_ptr++;
1509                 priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1510         }
1511 
1512         return rxpktprocessed;
1513 }
1514 
1515 /* Assign skb to RX DMA descriptor. */
1516 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1517 {
1518         struct enet_cb *cb;
1519         int ret = 0;
1520         int i;
1521 
1522         netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1523 
1524         /* loop here for each buffer needing assign */
1525         for (i = 0; i < priv->num_rx_bds; i++) {
1526                 cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1527                 if (cb->skb)
1528                         continue;
1529 
1530                 ret = bcmgenet_rx_refill(priv, cb);
1531                 if (ret)
1532                         break;
1533         }
1534 
1535         return ret;
1536 }
1537 
1538 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1539 {
1540         struct enet_cb *cb;
1541         int i;
1542 
1543         for (i = 0; i < priv->num_rx_bds; i++) {
1544                 cb = &priv->rx_cbs[i];
1545 
1546                 if (dma_unmap_addr(cb, dma_addr)) {
1547                         dma_unmap_single(&priv->dev->dev,
1548                                          dma_unmap_addr(cb, dma_addr),
1549                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1550                         dma_unmap_addr_set(cb, dma_addr, 0);
1551                 }
1552 
1553                 if (cb->skb)
1554                         bcmgenet_free_cb(cb);
1555         }
1556 }
1557 
1558 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1559 {
1560         u32 reg;
1561 
1562         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1563         if (enable)
1564                 reg |= mask;
1565         else
1566                 reg &= ~mask;
1567         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1568 
1569         /* UniMAC stops on a packet boundary, wait for a full-size packet
1570          * to be processed
1571          */
1572         if (enable == 0)
1573                 usleep_range(1000, 2000);
1574 }
1575 
1576 static int reset_umac(struct bcmgenet_priv *priv)
1577 {
1578         struct device *kdev = &priv->pdev->dev;
1579         unsigned int timeout = 0;
1580         u32 reg;
1581 
1582         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1583         bcmgenet_rbuf_ctrl_set(priv, 0);
1584         udelay(10);
1585 
1586         /* disable MAC while updating its registers */
1587         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1588 
1589         /* issue soft reset, wait for it to complete */
1590         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1591         while (timeout++ < 1000) {
1592                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1593                 if (!(reg & CMD_SW_RESET))
1594                         return 0;
1595 
1596                 udelay(1);
1597         }
1598 
1599         if (timeout == 1000) {
1600                 dev_err(kdev,
1601                         "timeout waiting for MAC to come out of reset\n");
1602                 return -ETIMEDOUT;
1603         }
1604 
1605         return 0;
1606 }
1607 
1608 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1609 {
1610         /* Mask all interrupts.*/
1611         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1612         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1613         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1614         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1615         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1616         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1617 }
1618 
1619 static int init_umac(struct bcmgenet_priv *priv)
1620 {
1621         struct device *kdev = &priv->pdev->dev;
1622         int ret;
1623         u32 reg, cpu_mask_clear;
1624 
1625         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1626 
1627         ret = reset_umac(priv);
1628         if (ret)
1629                 return ret;
1630 
1631         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1632         /* clear tx/rx counter */
1633         bcmgenet_umac_writel(priv,
1634                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1635                              UMAC_MIB_CTRL);
1636         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1637 
1638         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1639 
1640         /* init rx registers, enable ip header optimization */
1641         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1642         reg |= RBUF_ALIGN_2B;
1643         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1644 
1645         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1646                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1647 
1648         bcmgenet_intr_disable(priv);
1649 
1650         cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE;
1651 
1652         dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1653 
1654         /* Monitor cable plug/unplugged event for internal PHY */
1655         if (phy_is_internal(priv->phydev)) {
1656                 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1657         } else if (priv->ext_phy) {
1658                 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1659         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1660                 reg = bcmgenet_bp_mc_get(priv);
1661                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1662 
1663                 /* bp_mask: back pressure mask */
1664                 if (netif_is_multiqueue(priv->dev))
1665                         reg |= priv->hw_params->bp_in_mask;
1666                 else
1667                         reg &= ~priv->hw_params->bp_in_mask;
1668                 bcmgenet_bp_mc_set(priv, reg);
1669         }
1670 
1671         /* Enable MDIO interrupts on GENET v3+ */
1672         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1673                 cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1674 
1675         bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1676 
1677         /* Enable rx/tx engine.*/
1678         dev_dbg(kdev, "done init umac\n");
1679 
1680         return 0;
1681 }
1682 
1683 /* Initialize all house-keeping variables for a TX ring, along
1684  * with corresponding hardware registers
1685  */
1686 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1687                                   unsigned int index, unsigned int size,
1688                                   unsigned int write_ptr, unsigned int end_ptr)
1689 {
1690         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1691         u32 words_per_bd = WORDS_PER_BD(priv);
1692         u32 flow_period_val = 0;
1693         unsigned int first_bd;
1694 
1695         spin_lock_init(&ring->lock);
1696         ring->index = index;
1697         if (index == DESC_INDEX) {
1698                 ring->queue = 0;
1699                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1700                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1701         } else {
1702                 ring->queue = index + 1;
1703                 ring->int_enable = bcmgenet_tx_ring_int_enable;
1704                 ring->int_disable = bcmgenet_tx_ring_int_disable;
1705         }
1706         ring->cbs = priv->tx_cbs + write_ptr;
1707         ring->size = size;
1708         ring->c_index = 0;
1709         ring->free_bds = size;
1710         ring->write_ptr = write_ptr;
1711         ring->cb_ptr = write_ptr;
1712         ring->end_ptr = end_ptr - 1;
1713         ring->prod_index = 0;
1714 
1715         /* Set flow period for ring != 16 */
1716         if (index != DESC_INDEX)
1717                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1718 
1719         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1720         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1721         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1722         /* Disable rate control for now */
1723         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1724                                   TDMA_FLOW_PERIOD);
1725         /* Unclassified traffic goes to ring 16 */
1726         bcmgenet_tdma_ring_writel(priv, index,
1727                                   ((size << DMA_RING_SIZE_SHIFT) |
1728                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1729 
1730         first_bd = write_ptr;
1731 
1732         /* Set start and end address, read and write pointers */
1733         bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1734                                   DMA_START_ADDR);
1735         bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1736                                   TDMA_READ_PTR);
1737         bcmgenet_tdma_ring_writel(priv, index, first_bd,
1738                                   TDMA_WRITE_PTR);
1739         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1740                                   DMA_END_ADDR);
1741 }
1742 
1743 /* Initialize a RDMA ring */
1744 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1745                                  unsigned int index, unsigned int size)
1746 {
1747         u32 words_per_bd = WORDS_PER_BD(priv);
1748         int ret;
1749 
1750         priv->num_rx_bds = TOTAL_DESC;
1751         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1752         priv->rx_bd_assign_ptr = priv->rx_bds;
1753         priv->rx_bd_assign_index = 0;
1754         priv->rx_c_index = 0;
1755         priv->rx_read_ptr = 0;
1756         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1757                                GFP_KERNEL);
1758         if (!priv->rx_cbs)
1759                 return -ENOMEM;
1760 
1761         ret = bcmgenet_alloc_rx_buffers(priv);
1762         if (ret) {
1763                 kfree(priv->rx_cbs);
1764                 return ret;
1765         }
1766 
1767         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1768         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1769         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1770         bcmgenet_rdma_ring_writel(priv, index,
1771                                   ((size << DMA_RING_SIZE_SHIFT) |
1772                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1773         bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1774         bcmgenet_rdma_ring_writel(priv, index,
1775                                   words_per_bd * size - 1, DMA_END_ADDR);
1776         bcmgenet_rdma_ring_writel(priv, index,
1777                                   (DMA_FC_THRESH_LO <<
1778                                    DMA_XOFF_THRESHOLD_SHIFT) |
1779                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1780         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1781 
1782         return ret;
1783 }
1784 
1785 /* init multi xmit queues, only available for GENET2+
1786  * the queue is partitioned as follows:
1787  *
1788  * queue 0 - 3 is priority based, each one has 32 descriptors,
1789  * with queue 0 being the highest priority queue.
1790  *
1791  * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT
1792  * descriptors: 256 - (number of tx queues * bds per queues) = 128
1793  * descriptors.
1794  *
1795  * The transmit control block pool is then partitioned as following:
1796  * - tx_cbs[0...127] are for queue 16
1797  * - tx_ring_cbs[0] points to tx_cbs[128..159]
1798  * - tx_ring_cbs[1] points to tx_cbs[160..191]
1799  * - tx_ring_cbs[2] points to tx_cbs[192..223]
1800  * - tx_ring_cbs[3] points to tx_cbs[224..255]
1801  */
1802 static void bcmgenet_init_multiq(struct net_device *dev)
1803 {
1804         struct bcmgenet_priv *priv = netdev_priv(dev);
1805         unsigned int i, dma_enable;
1806         u32 reg, dma_ctrl, ring_cfg = 0;
1807         u32 dma_priority[3] = {0, 0, 0};
1808 
1809         if (!netif_is_multiqueue(dev)) {
1810                 netdev_warn(dev, "called with non multi queue aware HW\n");
1811                 return;
1812         }
1813 
1814         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1815         dma_enable = dma_ctrl & DMA_EN;
1816         dma_ctrl &= ~DMA_EN;
1817         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1818 
1819         /* Enable strict priority arbiter mode */
1820         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1821 
1822         for (i = 0; i < priv->hw_params->tx_queues; i++) {
1823                 /* first 64 tx_cbs are reserved for default tx queue
1824                  * (ring 16)
1825                  */
1826                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt,
1827                                       i * priv->hw_params->bds_cnt,
1828                                       (i + 1) * priv->hw_params->bds_cnt);
1829 
1830                 /* Configure ring as descriptor ring and setup priority */
1831                 ring_cfg |= 1 << i;
1832                 dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT);
1833 
1834                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1835                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1836         }
1837 
1838         /* Set ring 16 priority and program the hardware registers */
1839         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1840                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1841                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
1842         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1843         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1844         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1845 
1846         /* Enable rings */
1847         reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG);
1848         reg |= ring_cfg;
1849         bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG);
1850 
1851         /* Configure ring as descriptor ring and re-enable DMA if enabled */
1852         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1853         reg |= dma_ctrl;
1854         if (dma_enable)
1855                 reg |= DMA_EN;
1856         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1857 }
1858 
1859 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1860 {
1861         int ret = 0;
1862         int timeout = 0;
1863         u32 reg;
1864 
1865         /* Disable TDMA to stop add more frames in TX DMA */
1866         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1867         reg &= ~DMA_EN;
1868         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1869 
1870         /* Check TDMA status register to confirm TDMA is disabled */
1871         while (timeout++ < DMA_TIMEOUT_VAL) {
1872                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1873                 if (reg & DMA_DISABLED)
1874                         break;
1875 
1876                 udelay(1);
1877         }
1878 
1879         if (timeout == DMA_TIMEOUT_VAL) {
1880                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1881                 ret = -ETIMEDOUT;
1882         }
1883 
1884         /* Wait 10ms for packet drain in both tx and rx dma */
1885         usleep_range(10000, 20000);
1886 
1887         /* Disable RDMA */
1888         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1889         reg &= ~DMA_EN;
1890         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1891 
1892         timeout = 0;
1893         /* Check RDMA status register to confirm RDMA is disabled */
1894         while (timeout++ < DMA_TIMEOUT_VAL) {
1895                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1896                 if (reg & DMA_DISABLED)
1897                         break;
1898 
1899                 udelay(1);
1900         }
1901 
1902         if (timeout == DMA_TIMEOUT_VAL) {
1903                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1904                 ret = -ETIMEDOUT;
1905         }
1906 
1907         return ret;
1908 }
1909 
1910 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1911 {
1912         int i;
1913 
1914         /* disable DMA */
1915         bcmgenet_dma_teardown(priv);
1916 
1917         for (i = 0; i < priv->num_tx_bds; i++) {
1918                 if (priv->tx_cbs[i].skb != NULL) {
1919                         dev_kfree_skb(priv->tx_cbs[i].skb);
1920                         priv->tx_cbs[i].skb = NULL;
1921                 }
1922         }
1923 
1924         bcmgenet_free_rx_buffers(priv);
1925         kfree(priv->rx_cbs);
1926         kfree(priv->tx_cbs);
1927 }
1928 
1929 /* init_edma: Initialize DMA control register */
1930 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1931 {
1932         int ret;
1933 
1934         netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1935 
1936         /* by default, enable ring 16 (descriptor based) */
1937         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1938         if (ret) {
1939                 netdev_err(priv->dev, "failed to initialize RX ring\n");
1940                 return ret;
1941         }
1942 
1943         /* init rDma */
1944         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1945 
1946         /* Init tDma */
1947         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
1948 
1949         /* Initialize common TX ring structures */
1950         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
1951         priv->num_tx_bds = TOTAL_DESC;
1952         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
1953                                GFP_KERNEL);
1954         if (!priv->tx_cbs) {
1955                 bcmgenet_fini_dma(priv);
1956                 return -ENOMEM;
1957         }
1958 
1959         /* initialize multi xmit queue */
1960         bcmgenet_init_multiq(priv->dev);
1961 
1962         /* initialize special ring 16 */
1963         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT,
1964                               priv->hw_params->tx_queues *
1965                               priv->hw_params->bds_cnt,
1966                               TOTAL_DESC);
1967 
1968         return 0;
1969 }
1970 
1971 /* NAPI polling method*/
1972 static int bcmgenet_poll(struct napi_struct *napi, int budget)
1973 {
1974         struct bcmgenet_priv *priv = container_of(napi,
1975                         struct bcmgenet_priv, napi);
1976         unsigned int work_done;
1977 
1978         /* tx reclaim */
1979         bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
1980 
1981         work_done = bcmgenet_desc_rx(priv, budget);
1982 
1983         /* Advancing our consumer index*/
1984         priv->rx_c_index += work_done;
1985         priv->rx_c_index &= DMA_C_INDEX_MASK;
1986         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
1987                                   priv->rx_c_index, RDMA_CONS_INDEX);
1988         if (work_done < budget) {
1989                 napi_complete(napi);
1990                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
1991                                          INTRL2_CPU_MASK_CLEAR);
1992         }
1993 
1994         return work_done;
1995 }
1996 
1997 /* Interrupt bottom half */
1998 static void bcmgenet_irq_task(struct work_struct *work)
1999 {
2000         struct bcmgenet_priv *priv = container_of(
2001                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2002 
2003         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2004 
2005         if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2006                 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2007                 netif_dbg(priv, wol, priv->dev,
2008                           "magic packet detected, waking up\n");
2009                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2010         }
2011 
2012         /* Link UP/DOWN event */
2013         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2014             (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2015                 phy_mac_interrupt(priv->phydev,
2016                                   priv->irq0_stat & UMAC_IRQ_LINK_UP);
2017                 priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2018         }
2019 }
2020 
2021 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2022 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2023 {
2024         struct bcmgenet_priv *priv = dev_id;
2025         unsigned int index;
2026 
2027         /* Save irq status for bottom-half processing. */
2028         priv->irq1_stat =
2029                 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2030                 ~priv->int1_mask;
2031         /* clear interrupts */
2032         bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2033 
2034         netif_dbg(priv, intr, priv->dev,
2035                   "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2036         /* Check the MBDONE interrupts.
2037          * packet is done, reclaim descriptors
2038          */
2039         if (priv->irq1_stat & 0x0000ffff) {
2040                 index = 0;
2041                 for (index = 0; index < 16; index++) {
2042                         if (priv->irq1_stat & (1 << index))
2043                                 bcmgenet_tx_reclaim(priv->dev,
2044                                                     &priv->tx_rings[index]);
2045                 }
2046         }
2047         return IRQ_HANDLED;
2048 }
2049 
2050 /* bcmgenet_isr0: Handle various interrupts. */
2051 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2052 {
2053         struct bcmgenet_priv *priv = dev_id;
2054 
2055         /* Save irq status for bottom-half processing. */
2056         priv->irq0_stat =
2057                 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2058                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2059         /* clear interrupts */
2060         bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2061 
2062         netif_dbg(priv, intr, priv->dev,
2063                   "IRQ=0x%x\n", priv->irq0_stat);
2064 
2065         if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2066                 /* We use NAPI(software interrupt throttling, if
2067                  * Rx Descriptor throttling is not used.
2068                  * Disable interrupt, will be enabled in the poll method.
2069                  */
2070                 if (likely(napi_schedule_prep(&priv->napi))) {
2071                         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2072                                                  INTRL2_CPU_MASK_SET);
2073                         __napi_schedule(&priv->napi);
2074                 }
2075         }
2076         if (priv->irq0_stat &
2077                         (UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2078                 /* Tx reclaim */
2079                 bcmgenet_tx_reclaim(priv->dev, &priv->tx_rings[DESC_INDEX]);
2080         }
2081         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2082                                 UMAC_IRQ_PHY_DET_F |
2083                                 UMAC_IRQ_LINK_UP |
2084                                 UMAC_IRQ_LINK_DOWN |
2085                                 UMAC_IRQ_HFB_SM |
2086                                 UMAC_IRQ_HFB_MM |
2087                                 UMAC_IRQ_MPD_R)) {
2088                 /* all other interested interrupts handled in bottom half */
2089                 schedule_work(&priv->bcmgenet_irq_work);
2090         }
2091 
2092         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2093             priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2094                 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2095                 wake_up(&priv->wq);
2096         }
2097 
2098         return IRQ_HANDLED;
2099 }
2100 
2101 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2102 {
2103         struct bcmgenet_priv *priv = dev_id;
2104 
2105         pm_wakeup_event(&priv->pdev->dev, 0);
2106 
2107         return IRQ_HANDLED;
2108 }
2109 
2110 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2111 {
2112         u32 reg;
2113 
2114         reg = bcmgenet_rbuf_ctrl_get(priv);
2115         reg |= BIT(1);
2116         bcmgenet_rbuf_ctrl_set(priv, reg);
2117         udelay(10);
2118 
2119         reg &= ~BIT(1);
2120         bcmgenet_rbuf_ctrl_set(priv, reg);
2121         udelay(10);
2122 }
2123 
2124 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2125                                  unsigned char *addr)
2126 {
2127         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2128                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2129         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2130 }
2131 
2132 /* Returns a reusable dma control register value */
2133 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2134 {
2135         u32 reg;
2136         u32 dma_ctrl;
2137 
2138         /* disable DMA */
2139         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2140         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2141         reg &= ~dma_ctrl;
2142         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2143 
2144         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2145         reg &= ~dma_ctrl;
2146         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2147 
2148         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2149         udelay(10);
2150         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2151 
2152         return dma_ctrl;
2153 }
2154 
2155 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2156 {
2157         u32 reg;
2158 
2159         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2160         reg |= dma_ctrl;
2161         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2162 
2163         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2164         reg |= dma_ctrl;
2165         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2166 }
2167 
2168 static void bcmgenet_netif_start(struct net_device *dev)
2169 {
2170         struct bcmgenet_priv *priv = netdev_priv(dev);
2171 
2172         /* Start the network engine */
2173         napi_enable(&priv->napi);
2174 
2175         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2176 
2177         if (phy_is_internal(priv->phydev))
2178                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2179 
2180         netif_tx_start_all_queues(dev);
2181 
2182         phy_start(priv->phydev);
2183 }
2184 
2185 static int bcmgenet_open(struct net_device *dev)
2186 {
2187         struct bcmgenet_priv *priv = netdev_priv(dev);
2188         unsigned long dma_ctrl;
2189         u32 reg;
2190         int ret;
2191 
2192         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2193 
2194         /* Turn on the clock */
2195         if (!IS_ERR(priv->clk))
2196                 clk_prepare_enable(priv->clk);
2197 
2198         /* take MAC out of reset */
2199         bcmgenet_umac_reset(priv);
2200 
2201         ret = init_umac(priv);
2202         if (ret)
2203                 goto err_clk_disable;
2204 
2205         /* disable ethernet MAC while updating its registers */
2206         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2207 
2208         /* Make sure we reflect the value of CRC_CMD_FWD */
2209         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2210         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2211 
2212         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2213 
2214         if (phy_is_internal(priv->phydev)) {
2215                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2216                 reg |= EXT_ENERGY_DET_MASK;
2217                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2218         }
2219 
2220         /* Disable RX/TX DMA and flush TX queues */
2221         dma_ctrl = bcmgenet_dma_disable(priv);
2222 
2223         /* Reinitialize TDMA and RDMA and SW housekeeping */
2224         ret = bcmgenet_init_dma(priv);
2225         if (ret) {
2226                 netdev_err(dev, "failed to initialize DMA\n");
2227                 goto err_fini_dma;
2228         }
2229 
2230         /* Always enable ring 16 - descriptor ring */
2231         bcmgenet_enable_dma(priv, dma_ctrl);
2232 
2233         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2234                           dev->name, priv);
2235         if (ret < 0) {
2236                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2237                 goto err_fini_dma;
2238         }
2239 
2240         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2241                           dev->name, priv);
2242         if (ret < 0) {
2243                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2244                 goto err_irq0;
2245         }
2246 
2247         /* Re-configure the port multiplexer towards the PHY device */
2248         bcmgenet_mii_config(priv->dev, false);
2249 
2250         phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2251                            priv->phy_interface);
2252 
2253         bcmgenet_netif_start(dev);
2254 
2255         return 0;
2256 
2257 err_irq0:
2258         free_irq(priv->irq0, dev);
2259 err_fini_dma:
2260         bcmgenet_fini_dma(priv);
2261 err_clk_disable:
2262         if (!IS_ERR(priv->clk))
2263                 clk_disable_unprepare(priv->clk);
2264         return ret;
2265 }
2266 
2267 static void bcmgenet_netif_stop(struct net_device *dev)
2268 {
2269         struct bcmgenet_priv *priv = netdev_priv(dev);
2270 
2271         netif_tx_stop_all_queues(dev);
2272         napi_disable(&priv->napi);
2273         phy_stop(priv->phydev);
2274 
2275         bcmgenet_intr_disable(priv);
2276 
2277         /* Wait for pending work items to complete. Since interrupts are
2278          * disabled no new work will be scheduled.
2279          */
2280         cancel_work_sync(&priv->bcmgenet_irq_work);
2281 
2282         priv->old_link = -1;
2283         priv->old_speed = -1;
2284         priv->old_duplex = -1;
2285         priv->old_pause = -1;
2286 }
2287 
2288 static int bcmgenet_close(struct net_device *dev)
2289 {
2290         struct bcmgenet_priv *priv = netdev_priv(dev);
2291         int ret;
2292 
2293         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2294 
2295         bcmgenet_netif_stop(dev);
2296 
2297         /* Really kill the PHY state machine and disconnect from it */
2298         phy_disconnect(priv->phydev);
2299 
2300         /* Disable MAC receive */
2301         umac_enable_set(priv, CMD_RX_EN, false);
2302 
2303         ret = bcmgenet_dma_teardown(priv);
2304         if (ret)
2305                 return ret;
2306 
2307         /* Disable MAC transmit. TX DMA disabled have to done before this */
2308         umac_enable_set(priv, CMD_TX_EN, false);
2309 
2310         /* tx reclaim */
2311         bcmgenet_tx_reclaim_all(dev);
2312         bcmgenet_fini_dma(priv);
2313 
2314         free_irq(priv->irq0, priv);
2315         free_irq(priv->irq1, priv);
2316 
2317         if (phy_is_internal(priv->phydev))
2318                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2319 
2320         if (!IS_ERR(priv->clk))
2321                 clk_disable_unprepare(priv->clk);
2322 
2323         return 0;
2324 }
2325 
2326 static void bcmgenet_timeout(struct net_device *dev)
2327 {
2328         struct bcmgenet_priv *priv = netdev_priv(dev);
2329 
2330         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2331 
2332         dev->trans_start = jiffies;
2333 
2334         dev->stats.tx_errors++;
2335 
2336         netif_tx_wake_all_queues(dev);
2337 }
2338 
2339 #define MAX_MC_COUNT    16
2340 
2341 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2342                                          unsigned char *addr,
2343                                          int *i,
2344                                          int *mc)
2345 {
2346         u32 reg;
2347 
2348         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2349                              UMAC_MDF_ADDR + (*i * 4));
2350         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2351                              addr[4] << 8 | addr[5],
2352                              UMAC_MDF_ADDR + ((*i + 1) * 4));
2353         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2354         reg |= (1 << (MAX_MC_COUNT - *mc));
2355         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2356         *i += 2;
2357         (*mc)++;
2358 }
2359 
2360 static void bcmgenet_set_rx_mode(struct net_device *dev)
2361 {
2362         struct bcmgenet_priv *priv = netdev_priv(dev);
2363         struct netdev_hw_addr *ha;
2364         int i, mc;
2365         u32 reg;
2366 
2367         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2368 
2369         /* Promiscuous mode */
2370         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2371         if (dev->flags & IFF_PROMISC) {
2372                 reg |= CMD_PROMISC;
2373                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2374                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2375                 return;
2376         } else {
2377                 reg &= ~CMD_PROMISC;
2378                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2379         }
2380 
2381         /* UniMac doesn't support ALLMULTI */
2382         if (dev->flags & IFF_ALLMULTI) {
2383                 netdev_warn(dev, "ALLMULTI is not supported\n");
2384                 return;
2385         }
2386 
2387         /* update MDF filter */
2388         i = 0;
2389         mc = 0;
2390         /* Broadcast */
2391         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2392         /* my own address.*/
2393         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2394         /* Unicast list*/
2395         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2396                 return;
2397 
2398         if (!netdev_uc_empty(dev))
2399                 netdev_for_each_uc_addr(ha, dev)
2400                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2401         /* Multicast */
2402         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2403                 return;
2404 
2405         netdev_for_each_mc_addr(ha, dev)
2406                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2407 }
2408 
2409 /* Set the hardware MAC address. */
2410 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2411 {
2412         struct sockaddr *addr = p;
2413 
2414         /* Setting the MAC address at the hardware level is not possible
2415          * without disabling the UniMAC RX/TX enable bits.
2416          */
2417         if (netif_running(dev))
2418                 return -EBUSY;
2419 
2420         ether_addr_copy(dev->dev_addr, addr->sa_data);
2421 
2422         return 0;
2423 }
2424 
2425 static const struct net_device_ops bcmgenet_netdev_ops = {
2426         .ndo_open               = bcmgenet_open,
2427         .ndo_stop               = bcmgenet_close,
2428         .ndo_start_xmit         = bcmgenet_xmit,
2429         .ndo_tx_timeout         = bcmgenet_timeout,
2430         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
2431         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
2432         .ndo_do_ioctl           = bcmgenet_ioctl,
2433         .ndo_set_features       = bcmgenet_set_features,
2434 };
2435 
2436 /* Array of GENET hardware parameters/characteristics */
2437 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2438         [GENET_V1] = {
2439                 .tx_queues = 0,
2440                 .rx_queues = 0,
2441                 .bds_cnt = 0,
2442                 .bp_in_en_shift = 16,
2443                 .bp_in_mask = 0xffff,
2444                 .hfb_filter_cnt = 16,
2445                 .qtag_mask = 0x1F,
2446                 .hfb_offset = 0x1000,
2447                 .rdma_offset = 0x2000,
2448                 .tdma_offset = 0x3000,
2449                 .words_per_bd = 2,
2450         },
2451         [GENET_V2] = {
2452                 .tx_queues = 4,
2453                 .rx_queues = 4,
2454                 .bds_cnt = 32,
2455                 .bp_in_en_shift = 16,
2456                 .bp_in_mask = 0xffff,
2457                 .hfb_filter_cnt = 16,
2458                 .qtag_mask = 0x1F,
2459                 .tbuf_offset = 0x0600,
2460                 .hfb_offset = 0x1000,
2461                 .hfb_reg_offset = 0x2000,
2462                 .rdma_offset = 0x3000,
2463                 .tdma_offset = 0x4000,
2464                 .words_per_bd = 2,
2465                 .flags = GENET_HAS_EXT,
2466         },
2467         [GENET_V3] = {
2468                 .tx_queues = 4,
2469                 .rx_queues = 4,
2470                 .bds_cnt = 32,
2471                 .bp_in_en_shift = 17,
2472                 .bp_in_mask = 0x1ffff,
2473                 .hfb_filter_cnt = 48,
2474                 .qtag_mask = 0x3F,
2475                 .tbuf_offset = 0x0600,
2476                 .hfb_offset = 0x8000,
2477                 .hfb_reg_offset = 0xfc00,
2478                 .rdma_offset = 0x10000,
2479                 .tdma_offset = 0x11000,
2480                 .words_per_bd = 2,
2481                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2482         },
2483         [GENET_V4] = {
2484                 .tx_queues = 4,
2485                 .rx_queues = 4,
2486                 .bds_cnt = 32,
2487                 .bp_in_en_shift = 17,
2488                 .bp_in_mask = 0x1ffff,
2489                 .hfb_filter_cnt = 48,
2490                 .qtag_mask = 0x3F,
2491                 .tbuf_offset = 0x0600,
2492                 .hfb_offset = 0x8000,
2493                 .hfb_reg_offset = 0xfc00,
2494                 .rdma_offset = 0x2000,
2495                 .tdma_offset = 0x4000,
2496                 .words_per_bd = 3,
2497                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2498         },
2499 };
2500 
2501 /* Infer hardware parameters from the detected GENET version */
2502 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2503 {
2504         struct bcmgenet_hw_params *params;
2505         u32 reg;
2506         u8 major;
2507         u16 gphy_rev;
2508 
2509         if (GENET_IS_V4(priv)) {
2510                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2511                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
2512                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2513                 priv->version = GENET_V4;
2514         } else if (GENET_IS_V3(priv)) {
2515                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2516                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2517                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2518                 priv->version = GENET_V3;
2519         } else if (GENET_IS_V2(priv)) {
2520                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2521                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2522                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2523                 priv->version = GENET_V2;
2524         } else if (GENET_IS_V1(priv)) {
2525                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2526                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2527                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2528                 priv->version = GENET_V1;
2529         }
2530 
2531         /* enum genet_version starts at 1 */
2532         priv->hw_params = &bcmgenet_hw_params[priv->version];
2533         params = priv->hw_params;
2534 
2535         /* Read GENET HW version */
2536         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2537         major = (reg >> 24 & 0x0f);
2538         if (major == 5)
2539                 major = 4;
2540         else if (major == 0)
2541                 major = 1;
2542         if (major != priv->version) {
2543                 dev_err(&priv->pdev->dev,
2544                         "GENET version mismatch, got: %d, configured for: %d\n",
2545                         major, priv->version);
2546         }
2547 
2548         /* Print the GENET core version */
2549         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2550                  major, (reg >> 16) & 0x0f, reg & 0xffff);
2551 
2552         /* Store the integrated PHY revision for the MDIO probing function
2553          * to pass this information to the PHY driver. The PHY driver expects
2554          * to find the PHY major revision in bits 15:8 while the GENET register
2555          * stores that information in bits 7:0, account for that.
2556          *
2557          * On newer chips, starting with PHY revision G0, a new scheme is
2558          * deployed similar to the Starfighter 2 switch with GPHY major
2559          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2560          * is reserved as well as special value 0x01ff, we have a small
2561          * heuristic to check for the new GPHY revision and re-arrange things
2562          * so the GPHY driver is happy.
2563          */
2564         gphy_rev = reg & 0xffff;
2565 
2566         /* This is the good old scheme, just GPHY major, no minor nor patch */
2567         if ((gphy_rev & 0xf0) != 0)
2568                 priv->gphy_rev = gphy_rev << 8;
2569 
2570         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2571         else if ((gphy_rev & 0xff00) != 0)
2572                 priv->gphy_rev = gphy_rev;
2573 
2574         /* This is reserved so should require special treatment */
2575         else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2576                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2577                 return;
2578         }
2579 
2580 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2581         if (!(params->flags & GENET_HAS_40BITS))
2582                 pr_warn("GENET does not support 40-bits PA\n");
2583 #endif
2584 
2585         pr_debug("Configuration for version: %d\n"
2586                 "TXq: %1d, RXq: %1d, BDs: %1d\n"
2587                 "BP << en: %2d, BP msk: 0x%05x\n"
2588                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
2589                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2590                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
2591                 "Words/BD: %d\n",
2592                 priv->version,
2593                 params->tx_queues, params->rx_queues, params->bds_cnt,
2594                 params->bp_in_en_shift, params->bp_in_mask,
2595                 params->hfb_filter_cnt, params->qtag_mask,
2596                 params->tbuf_offset, params->hfb_offset,
2597                 params->hfb_reg_offset,
2598                 params->rdma_offset, params->tdma_offset,
2599                 params->words_per_bd);
2600 }
2601 
2602 static const struct of_device_id bcmgenet_match[] = {
2603         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2604         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2605         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2606         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2607         { },
2608 };
2609 
2610 static int bcmgenet_probe(struct platform_device *pdev)
2611 {
2612         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2613         struct device_node *dn = pdev->dev.of_node;
2614         const struct of_device_id *of_id = NULL;
2615         struct bcmgenet_priv *priv;
2616         struct net_device *dev;
2617         const void *macaddr;
2618         struct resource *r;
2619         int err = -EIO;
2620 
2621         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2622         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2623         if (!dev) {
2624                 dev_err(&pdev->dev, "can't allocate net device\n");
2625                 return -ENOMEM;
2626         }
2627 
2628         if (dn) {
2629                 of_id = of_match_node(bcmgenet_match, dn);
2630                 if (!of_id)
2631                         return -EINVAL;
2632         }
2633 
2634         priv = netdev_priv(dev);
2635         priv->irq0 = platform_get_irq(pdev, 0);
2636         priv->irq1 = platform_get_irq(pdev, 1);
2637         priv->wol_irq = platform_get_irq(pdev, 2);
2638         if (!priv->irq0 || !priv->irq1) {
2639                 dev_err(&pdev->dev, "can't find IRQs\n");
2640                 err = -EINVAL;
2641                 goto err;
2642         }
2643 
2644         if (dn) {
2645                 macaddr = of_get_mac_address(dn);
2646                 if (!macaddr) {
2647                         dev_err(&pdev->dev, "can't find MAC address\n");
2648                         err = -EINVAL;
2649                         goto err;
2650                 }
2651         } else {
2652                 macaddr = pd->mac_address;
2653         }
2654 
2655         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2656         priv->base = devm_ioremap_resource(&pdev->dev, r);
2657         if (IS_ERR(priv->base)) {
2658                 err = PTR_ERR(priv->base);
2659                 goto err;
2660         }
2661 
2662         SET_NETDEV_DEV(dev, &pdev->dev);
2663         dev_set_drvdata(&pdev->dev, dev);
2664         ether_addr_copy(dev->dev_addr, macaddr);
2665         dev->watchdog_timeo = 2 * HZ;
2666         dev->ethtool_ops = &bcmgenet_ethtool_ops;
2667         dev->netdev_ops = &bcmgenet_netdev_ops;
2668         netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2669 
2670         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2671 
2672         /* Set hardware features */
2673         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2674                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2675 
2676         /* Request the WOL interrupt and advertise suspend if available */
2677         priv->wol_irq_disabled = true;
2678         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2679                                dev->name, priv);
2680         if (!err)
2681                 device_set_wakeup_capable(&pdev->dev, 1);
2682 
2683         /* Set the needed headroom to account for any possible
2684          * features enabling/disabling at runtime
2685          */
2686         dev->needed_headroom += 64;
2687 
2688         netdev_boot_setup_check(dev);
2689 
2690         priv->dev = dev;
2691         priv->pdev = pdev;
2692         if (of_id)
2693                 priv->version = (enum bcmgenet_version)of_id->data;
2694         else
2695                 priv->version = pd->genet_version;
2696 
2697         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2698         if (IS_ERR(priv->clk))
2699                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2700 
2701         if (!IS_ERR(priv->clk))
2702                 clk_prepare_enable(priv->clk);
2703 
2704         bcmgenet_set_hw_params(priv);
2705 
2706         /* Mii wait queue */
2707         init_waitqueue_head(&priv->wq);
2708         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2709         priv->rx_buf_len = RX_BUF_LENGTH;
2710         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2711 
2712         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2713         if (IS_ERR(priv->clk_wol))
2714                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2715 
2716         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2717         if (IS_ERR(priv->clk_eee)) {
2718                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2719                 priv->clk_eee = NULL;
2720         }
2721 
2722         err = reset_umac(priv);
2723         if (err)
2724                 goto err_clk_disable;
2725 
2726         err = bcmgenet_mii_init(dev);
2727         if (err)
2728                 goto err_clk_disable;
2729 
2730         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2731          * just the ring 16 descriptor based TX
2732          */
2733         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2734         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2735 
2736         /* libphy will determine the link state */
2737         netif_carrier_off(dev);
2738 
2739         /* Turn off the main clock, WOL clock is handled separately */
2740         if (!IS_ERR(priv->clk))
2741                 clk_disable_unprepare(priv->clk);
2742 
2743         err = register_netdev(dev);
2744         if (err)
2745                 goto err;
2746 
2747         return err;
2748 
2749 err_clk_disable:
2750         if (!IS_ERR(priv->clk))
2751                 clk_disable_unprepare(priv->clk);
2752 err:
2753         free_netdev(dev);
2754         return err;
2755 }
2756 
2757 static int bcmgenet_remove(struct platform_device *pdev)
2758 {
2759         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2760 
2761         dev_set_drvdata(&pdev->dev, NULL);
2762         unregister_netdev(priv->dev);
2763         bcmgenet_mii_exit(priv->dev);
2764         free_netdev(priv->dev);
2765 
2766         return 0;
2767 }
2768 
2769 #ifdef CONFIG_PM_SLEEP
2770 static int bcmgenet_suspend(struct device *d)
2771 {
2772         struct net_device *dev = dev_get_drvdata(d);
2773         struct bcmgenet_priv *priv = netdev_priv(dev);
2774         int ret;
2775 
2776         if (!netif_running(dev))
2777                 return 0;
2778 
2779         bcmgenet_netif_stop(dev);
2780 
2781         phy_suspend(priv->phydev);
2782 
2783         netif_device_detach(dev);
2784 
2785         /* Disable MAC receive */
2786         umac_enable_set(priv, CMD_RX_EN, false);
2787 
2788         ret = bcmgenet_dma_teardown(priv);
2789         if (ret)
2790                 return ret;
2791 
2792         /* Disable MAC transmit. TX DMA disabled have to done before this */
2793         umac_enable_set(priv, CMD_TX_EN, false);
2794 
2795         /* tx reclaim */
2796         bcmgenet_tx_reclaim_all(dev);
2797         bcmgenet_fini_dma(priv);
2798 
2799         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
2800         if (device_may_wakeup(d) && priv->wolopts) {
2801                 bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2802                 clk_prepare_enable(priv->clk_wol);
2803         }
2804 
2805         /* Turn off the clocks */
2806         clk_disable_unprepare(priv->clk);
2807 
2808         return 0;
2809 }
2810 
2811 static int bcmgenet_resume(struct device *d)
2812 {
2813         struct net_device *dev = dev_get_drvdata(d);
2814         struct bcmgenet_priv *priv = netdev_priv(dev);
2815         unsigned long dma_ctrl;
2816         int ret;
2817         u32 reg;
2818 
2819         if (!netif_running(dev))
2820                 return 0;
2821 
2822         /* Turn on the clock */
2823         ret = clk_prepare_enable(priv->clk);
2824         if (ret)
2825                 return ret;
2826 
2827         bcmgenet_umac_reset(priv);
2828 
2829         ret = init_umac(priv);
2830         if (ret)
2831                 goto out_clk_disable;
2832 
2833         /* From WOL-enabled suspend, switch to regular clock */
2834         if (priv->wolopts)
2835                 clk_disable_unprepare(priv->clk_wol);
2836 
2837         phy_init_hw(priv->phydev);
2838         /* Speed settings must be restored */
2839         bcmgenet_mii_config(priv->dev, false);
2840 
2841         /* disable ethernet MAC while updating its registers */
2842         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2843 
2844         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2845 
2846         if (phy_is_internal(priv->phydev)) {
2847                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2848                 reg |= EXT_ENERGY_DET_MASK;
2849                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2850         }
2851 
2852         if (priv->wolopts)
2853                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2854 
2855         /* Disable RX/TX DMA and flush TX queues */
2856         dma_ctrl = bcmgenet_dma_disable(priv);
2857 
2858         /* Reinitialize TDMA and RDMA and SW housekeeping */
2859         ret = bcmgenet_init_dma(priv);
2860         if (ret) {
2861                 netdev_err(dev, "failed to initialize DMA\n");
2862                 goto out_clk_disable;
2863         }
2864 
2865         /* Always enable ring 16 - descriptor ring */
2866         bcmgenet_enable_dma(priv, dma_ctrl);
2867 
2868         netif_device_attach(dev);
2869 
2870         phy_resume(priv->phydev);
2871 
2872         if (priv->eee.eee_enabled)
2873                 bcmgenet_eee_enable_set(dev, true);
2874 
2875         bcmgenet_netif_start(dev);
2876 
2877         return 0;
2878 
2879 out_clk_disable:
2880         clk_disable_unprepare(priv->clk);
2881         return ret;
2882 }
2883 #endif /* CONFIG_PM_SLEEP */
2884 
2885 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2886 
2887 static struct platform_driver bcmgenet_driver = {
2888         .probe  = bcmgenet_probe,
2889         .remove = bcmgenet_remove,
2890         .driver = {
2891                 .name   = "bcmgenet",
2892                 .of_match_table = bcmgenet_match,
2893                 .pm     = &bcmgenet_pm_ops,
2894         },
2895 };
2896 module_platform_driver(bcmgenet_driver);
2897 
2898 MODULE_AUTHOR("Broadcom Corporation");
2899 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2900 MODULE_ALIAS("platform:bcmgenet");
2901 MODULE_LICENSE("GPL");
2902 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us