Version:  2.0.40 2.2.26 2.4.37 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0

Linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c

  1 /*
  2  * Broadcom GENET (Gigabit Ethernet) controller driver
  3  *
  4  * Copyright (c) 2014 Broadcom Corporation
  5  *
  6  * This program is free software; you can redistribute it and/or modify
  7  * it under the terms of the GNU General Public License version 2 as
  8  * published by the Free Software Foundation.
  9  */
 10 
 11 #define pr_fmt(fmt)                             "bcmgenet: " fmt
 12 
 13 #include <linux/kernel.h>
 14 #include <linux/module.h>
 15 #include <linux/sched.h>
 16 #include <linux/types.h>
 17 #include <linux/fcntl.h>
 18 #include <linux/interrupt.h>
 19 #include <linux/string.h>
 20 #include <linux/if_ether.h>
 21 #include <linux/init.h>
 22 #include <linux/errno.h>
 23 #include <linux/delay.h>
 24 #include <linux/platform_device.h>
 25 #include <linux/dma-mapping.h>
 26 #include <linux/pm.h>
 27 #include <linux/clk.h>
 28 #include <linux/of.h>
 29 #include <linux/of_address.h>
 30 #include <linux/of_irq.h>
 31 #include <linux/of_net.h>
 32 #include <linux/of_platform.h>
 33 #include <net/arp.h>
 34 
 35 #include <linux/mii.h>
 36 #include <linux/ethtool.h>
 37 #include <linux/netdevice.h>
 38 #include <linux/inetdevice.h>
 39 #include <linux/etherdevice.h>
 40 #include <linux/skbuff.h>
 41 #include <linux/in.h>
 42 #include <linux/ip.h>
 43 #include <linux/ipv6.h>
 44 #include <linux/phy.h>
 45 #include <linux/platform_data/bcmgenet.h>
 46 
 47 #include <asm/unaligned.h>
 48 
 49 #include "bcmgenet.h"
 50 
 51 /* Maximum number of hardware queues, downsized if needed */
 52 #define GENET_MAX_MQ_CNT        4
 53 
 54 /* Default highest priority queue for multi queue support */
 55 #define GENET_Q0_PRIORITY       0
 56 
 57 #define GENET_DEFAULT_BD_CNT    \
 58         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt)
 59 
 60 #define RX_BUF_LENGTH           2048
 61 #define SKB_ALIGNMENT           32
 62 
 63 /* Tx/Rx DMA register offset, skip 256 descriptors */
 64 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
 65 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
 66 
 67 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
 68                                 TOTAL_DESC * DMA_DESC_SIZE)
 69 
 70 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
 71                                 TOTAL_DESC * DMA_DESC_SIZE)
 72 
 73 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
 74                                              void __iomem *d, u32 value)
 75 {
 76         __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
 77 }
 78 
 79 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
 80                                             void __iomem *d)
 81 {
 82         return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
 83 }
 84 
 85 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
 86                                     void __iomem *d,
 87                                     dma_addr_t addr)
 88 {
 89         __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
 90 
 91         /* Register writes to GISB bus can take couple hundred nanoseconds
 92          * and are done for each packet, save these expensive writes unless
 93          * the platform is explicitly configured for 64-bits/LPAE.
 94          */
 95 #ifdef CONFIG_PHYS_ADDR_T_64BIT
 96         if (priv->hw_params->flags & GENET_HAS_40BITS)
 97                 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
 98 #endif
 99 }
100 
101 /* Combined address + length/status setter */
102 static inline void dmadesc_set(struct bcmgenet_priv *priv,
103                                void __iomem *d, dma_addr_t addr, u32 val)
104 {
105         dmadesc_set_length_status(priv, d, val);
106         dmadesc_set_addr(priv, d, addr);
107 }
108 
109 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
110                                           void __iomem *d)
111 {
112         dma_addr_t addr;
113 
114         addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
115 
116         /* Register writes to GISB bus can take couple hundred nanoseconds
117          * and are done for each packet, save these expensive writes unless
118          * the platform is explicitly configured for 64-bits/LPAE.
119          */
120 #ifdef CONFIG_PHYS_ADDR_T_64BIT
121         if (priv->hw_params->flags & GENET_HAS_40BITS)
122                 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
123 #endif
124         return addr;
125 }
126 
127 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
128 
129 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
130                                 NETIF_MSG_LINK)
131 
132 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
133 {
134         if (GENET_IS_V1(priv))
135                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
136         else
137                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
138 }
139 
140 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
141 {
142         if (GENET_IS_V1(priv))
143                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
144         else
145                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
146 }
147 
148 /* These macros are defined to deal with register map change
149  * between GENET1.1 and GENET2. Only those currently being used
150  * by driver are defined.
151  */
152 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
153 {
154         if (GENET_IS_V1(priv))
155                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
156         else
157                 return __raw_readl(priv->base +
158                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
159 }
160 
161 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163         if (GENET_IS_V1(priv))
164                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
165         else
166                 __raw_writel(val, priv->base +
167                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
168 }
169 
170 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
174         else
175                 return __raw_readl(priv->base +
176                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
177 }
178 
179 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
183         else
184                 __raw_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
186 }
187 
188 /* RX/TX DMA register accessors */
189 enum dma_reg {
190         DMA_RING_CFG = 0,
191         DMA_CTRL,
192         DMA_STATUS,
193         DMA_SCB_BURST_SIZE,
194         DMA_ARB_CTRL,
195         DMA_PRIORITY_0,
196         DMA_PRIORITY_1,
197         DMA_PRIORITY_2,
198 };
199 
200 static const u8 bcmgenet_dma_regs_v3plus[] = {
201         [DMA_RING_CFG]          = 0x00,
202         [DMA_CTRL]              = 0x04,
203         [DMA_STATUS]            = 0x08,
204         [DMA_SCB_BURST_SIZE]    = 0x0C,
205         [DMA_ARB_CTRL]          = 0x2C,
206         [DMA_PRIORITY_0]        = 0x30,
207         [DMA_PRIORITY_1]        = 0x34,
208         [DMA_PRIORITY_2]        = 0x38,
209 };
210 
211 static const u8 bcmgenet_dma_regs_v2[] = {
212         [DMA_RING_CFG]          = 0x00,
213         [DMA_CTRL]              = 0x04,
214         [DMA_STATUS]            = 0x08,
215         [DMA_SCB_BURST_SIZE]    = 0x0C,
216         [DMA_ARB_CTRL]          = 0x30,
217         [DMA_PRIORITY_0]        = 0x34,
218         [DMA_PRIORITY_1]        = 0x38,
219         [DMA_PRIORITY_2]        = 0x3C,
220 };
221 
222 static const u8 bcmgenet_dma_regs_v1[] = {
223         [DMA_CTRL]              = 0x00,
224         [DMA_STATUS]            = 0x04,
225         [DMA_SCB_BURST_SIZE]    = 0x0C,
226         [DMA_ARB_CTRL]          = 0x30,
227         [DMA_PRIORITY_0]        = 0x34,
228         [DMA_PRIORITY_1]        = 0x38,
229         [DMA_PRIORITY_2]        = 0x3C,
230 };
231 
232 /* Set at runtime once bcmgenet version is known */
233 static const u8 *bcmgenet_dma_regs;
234 
235 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
236 {
237         return netdev_priv(dev_get_drvdata(dev));
238 }
239 
240 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
241                                       enum dma_reg r)
242 {
243         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
244                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
245 }
246 
247 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
248                                         u32 val, enum dma_reg r)
249 {
250         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
251                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
252 }
253 
254 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
255                                       enum dma_reg r)
256 {
257         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
258                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
259 }
260 
261 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
262                                         u32 val, enum dma_reg r)
263 {
264         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
265                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
266 }
267 
268 /* RDMA/TDMA ring registers and accessors
269  * we merge the common fields and just prefix with T/D the registers
270  * having different meaning depending on the direction
271  */
272 enum dma_ring_reg {
273         TDMA_READ_PTR = 0,
274         RDMA_WRITE_PTR = TDMA_READ_PTR,
275         TDMA_READ_PTR_HI,
276         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
277         TDMA_CONS_INDEX,
278         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
279         TDMA_PROD_INDEX,
280         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
281         DMA_RING_BUF_SIZE,
282         DMA_START_ADDR,
283         DMA_START_ADDR_HI,
284         DMA_END_ADDR,
285         DMA_END_ADDR_HI,
286         DMA_MBUF_DONE_THRESH,
287         TDMA_FLOW_PERIOD,
288         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
289         TDMA_WRITE_PTR,
290         RDMA_READ_PTR = TDMA_WRITE_PTR,
291         TDMA_WRITE_PTR_HI,
292         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
293 };
294 
295 /* GENET v4 supports 40-bits pointer addressing
296  * for obvious reasons the LO and HI word parts
297  * are contiguous, but this offsets the other
298  * registers.
299  */
300 static const u8 genet_dma_ring_regs_v4[] = {
301         [TDMA_READ_PTR]                 = 0x00,
302         [TDMA_READ_PTR_HI]              = 0x04,
303         [TDMA_CONS_INDEX]               = 0x08,
304         [TDMA_PROD_INDEX]               = 0x0C,
305         [DMA_RING_BUF_SIZE]             = 0x10,
306         [DMA_START_ADDR]                = 0x14,
307         [DMA_START_ADDR_HI]             = 0x18,
308         [DMA_END_ADDR]                  = 0x1C,
309         [DMA_END_ADDR_HI]               = 0x20,
310         [DMA_MBUF_DONE_THRESH]          = 0x24,
311         [TDMA_FLOW_PERIOD]              = 0x28,
312         [TDMA_WRITE_PTR]                = 0x2C,
313         [TDMA_WRITE_PTR_HI]             = 0x30,
314 };
315 
316 static const u8 genet_dma_ring_regs_v123[] = {
317         [TDMA_READ_PTR]                 = 0x00,
318         [TDMA_CONS_INDEX]               = 0x04,
319         [TDMA_PROD_INDEX]               = 0x08,
320         [DMA_RING_BUF_SIZE]             = 0x0C,
321         [DMA_START_ADDR]                = 0x10,
322         [DMA_END_ADDR]                  = 0x14,
323         [DMA_MBUF_DONE_THRESH]          = 0x18,
324         [TDMA_FLOW_PERIOD]              = 0x1C,
325         [TDMA_WRITE_PTR]                = 0x20,
326 };
327 
328 /* Set at runtime once GENET version is known */
329 static const u8 *genet_dma_ring_regs;
330 
331 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
332                                            unsigned int ring,
333                                            enum dma_ring_reg r)
334 {
335         return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
336                         (DMA_RING_SIZE * ring) +
337                         genet_dma_ring_regs[r]);
338 }
339 
340 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
341                                              unsigned int ring, u32 val,
342                                              enum dma_ring_reg r)
343 {
344         __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
345                         (DMA_RING_SIZE * ring) +
346                         genet_dma_ring_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
350                                            unsigned int ring,
351                                            enum dma_ring_reg r)
352 {
353         return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
354                         (DMA_RING_SIZE * ring) +
355                         genet_dma_ring_regs[r]);
356 }
357 
358 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
359                                              unsigned int ring, u32 val,
360                                              enum dma_ring_reg r)
361 {
362         __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
363                         (DMA_RING_SIZE * ring) +
364                         genet_dma_ring_regs[r]);
365 }
366 
367 static int bcmgenet_get_settings(struct net_device *dev,
368                                  struct ethtool_cmd *cmd)
369 {
370         struct bcmgenet_priv *priv = netdev_priv(dev);
371 
372         if (!netif_running(dev))
373                 return -EINVAL;
374 
375         if (!priv->phydev)
376                 return -ENODEV;
377 
378         return phy_ethtool_gset(priv->phydev, cmd);
379 }
380 
381 static int bcmgenet_set_settings(struct net_device *dev,
382                                  struct ethtool_cmd *cmd)
383 {
384         struct bcmgenet_priv *priv = netdev_priv(dev);
385 
386         if (!netif_running(dev))
387                 return -EINVAL;
388 
389         if (!priv->phydev)
390                 return -ENODEV;
391 
392         return phy_ethtool_sset(priv->phydev, cmd);
393 }
394 
395 static int bcmgenet_set_rx_csum(struct net_device *dev,
396                                 netdev_features_t wanted)
397 {
398         struct bcmgenet_priv *priv = netdev_priv(dev);
399         u32 rbuf_chk_ctrl;
400         bool rx_csum_en;
401 
402         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
403 
404         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
405 
406         /* enable rx checksumming */
407         if (rx_csum_en)
408                 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
409         else
410                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
411         priv->desc_rxchk_en = rx_csum_en;
412 
413         /* If UniMAC forwards CRC, we need to skip over it to get
414          * a valid CHK bit to be set in the per-packet status word
415         */
416         if (rx_csum_en && priv->crc_fwd_en)
417                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
418         else
419                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
420 
421         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
422 
423         return 0;
424 }
425 
426 static int bcmgenet_set_tx_csum(struct net_device *dev,
427                                 netdev_features_t wanted)
428 {
429         struct bcmgenet_priv *priv = netdev_priv(dev);
430         bool desc_64b_en;
431         u32 tbuf_ctrl, rbuf_ctrl;
432 
433         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
434         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
435 
436         desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
437 
438         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
439         if (desc_64b_en) {
440                 tbuf_ctrl |= RBUF_64B_EN;
441                 rbuf_ctrl |= RBUF_64B_EN;
442         } else {
443                 tbuf_ctrl &= ~RBUF_64B_EN;
444                 rbuf_ctrl &= ~RBUF_64B_EN;
445         }
446         priv->desc_64b_en = desc_64b_en;
447 
448         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
449         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
450 
451         return 0;
452 }
453 
454 static int bcmgenet_set_features(struct net_device *dev,
455                                  netdev_features_t features)
456 {
457         netdev_features_t changed = features ^ dev->features;
458         netdev_features_t wanted = dev->wanted_features;
459         int ret = 0;
460 
461         if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
462                 ret = bcmgenet_set_tx_csum(dev, wanted);
463         if (changed & (NETIF_F_RXCSUM))
464                 ret = bcmgenet_set_rx_csum(dev, wanted);
465 
466         return ret;
467 }
468 
469 static u32 bcmgenet_get_msglevel(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472 
473         return priv->msg_enable;
474 }
475 
476 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
477 {
478         struct bcmgenet_priv *priv = netdev_priv(dev);
479 
480         priv->msg_enable = level;
481 }
482 
483 /* standard ethtool support functions. */
484 enum bcmgenet_stat_type {
485         BCMGENET_STAT_NETDEV = -1,
486         BCMGENET_STAT_MIB_RX,
487         BCMGENET_STAT_MIB_TX,
488         BCMGENET_STAT_RUNT,
489         BCMGENET_STAT_MISC,
490         BCMGENET_STAT_SOFT,
491 };
492 
493 struct bcmgenet_stats {
494         char stat_string[ETH_GSTRING_LEN];
495         int stat_sizeof;
496         int stat_offset;
497         enum bcmgenet_stat_type type;
498         /* reg offset from UMAC base for misc counters */
499         u16 reg_offset;
500 };
501 
502 #define STAT_NETDEV(m) { \
503         .stat_string = __stringify(m), \
504         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
505         .stat_offset = offsetof(struct net_device_stats, m), \
506         .type = BCMGENET_STAT_NETDEV, \
507 }
508 
509 #define STAT_GENET_MIB(str, m, _type) { \
510         .stat_string = str, \
511         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
512         .stat_offset = offsetof(struct bcmgenet_priv, m), \
513         .type = _type, \
514 }
515 
516 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
517 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
518 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
519 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
520 
521 #define STAT_GENET_MISC(str, m, offset) { \
522         .stat_string = str, \
523         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
524         .stat_offset = offsetof(struct bcmgenet_priv, m), \
525         .type = BCMGENET_STAT_MISC, \
526         .reg_offset = offset, \
527 }
528 
529 
530 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
531  * between the end of TX stats and the beginning of the RX RUNT
532  */
533 #define BCMGENET_STAT_OFFSET    0xc
534 
535 /* Hardware counters must be kept in sync because the order/offset
536  * is important here (order in structure declaration = order in hardware)
537  */
538 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
539         /* general stats */
540         STAT_NETDEV(rx_packets),
541         STAT_NETDEV(tx_packets),
542         STAT_NETDEV(rx_bytes),
543         STAT_NETDEV(tx_bytes),
544         STAT_NETDEV(rx_errors),
545         STAT_NETDEV(tx_errors),
546         STAT_NETDEV(rx_dropped),
547         STAT_NETDEV(tx_dropped),
548         STAT_NETDEV(multicast),
549         /* UniMAC RSV counters */
550         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
551         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
552         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
553         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
554         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
555         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
556         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
557         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
558         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
559         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
560         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
561         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
562         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
563         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
564         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
565         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
566         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
567         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
568         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
569         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
570         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
571         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
572         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
573         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
574         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
575         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
576         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
577         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
578         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
579         /* UniMAC TSV counters */
580         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
581         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
582         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
583         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
584         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
585         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
586         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
587         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
588         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
589         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
590         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
591         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
592         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
593         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
594         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
595         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
596         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
597         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
598         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
599         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
600         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
601         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
602         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
603         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
604         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
605         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
606         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
607         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
608         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
609         /* UniMAC RUNT counters */
610         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
611         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
612         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
613         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
614         /* Misc UniMAC counters */
615         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
616                         UMAC_RBUF_OVFL_CNT),
617         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
618         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
619         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
620         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
621         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
622 };
623 
624 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
625 
626 static void bcmgenet_get_drvinfo(struct net_device *dev,
627                                  struct ethtool_drvinfo *info)
628 {
629         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
630         strlcpy(info->version, "v2.0", sizeof(info->version));
631         info->n_stats = BCMGENET_STATS_LEN;
632 }
633 
634 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
635 {
636         switch (string_set) {
637         case ETH_SS_STATS:
638                 return BCMGENET_STATS_LEN;
639         default:
640                 return -EOPNOTSUPP;
641         }
642 }
643 
644 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
645                                  u8 *data)
646 {
647         int i;
648 
649         switch (stringset) {
650         case ETH_SS_STATS:
651                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
652                         memcpy(data + i * ETH_GSTRING_LEN,
653                                bcmgenet_gstrings_stats[i].stat_string,
654                                ETH_GSTRING_LEN);
655                 }
656                 break;
657         }
658 }
659 
660 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
661 {
662         int i, j = 0;
663 
664         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
665                 const struct bcmgenet_stats *s;
666                 u8 offset = 0;
667                 u32 val = 0;
668                 char *p;
669 
670                 s = &bcmgenet_gstrings_stats[i];
671                 switch (s->type) {
672                 case BCMGENET_STAT_NETDEV:
673                 case BCMGENET_STAT_SOFT:
674                         continue;
675                 case BCMGENET_STAT_MIB_RX:
676                 case BCMGENET_STAT_MIB_TX:
677                 case BCMGENET_STAT_RUNT:
678                         if (s->type != BCMGENET_STAT_MIB_RX)
679                                 offset = BCMGENET_STAT_OFFSET;
680                         val = bcmgenet_umac_readl(priv,
681                                                   UMAC_MIB_START + j + offset);
682                         break;
683                 case BCMGENET_STAT_MISC:
684                         val = bcmgenet_umac_readl(priv, s->reg_offset);
685                         /* clear if overflowed */
686                         if (val == ~0)
687                                 bcmgenet_umac_writel(priv, 0, s->reg_offset);
688                         break;
689                 }
690 
691                 j += s->stat_sizeof;
692                 p = (char *)priv + s->stat_offset;
693                 *(u32 *)p = val;
694         }
695 }
696 
697 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
698                                        struct ethtool_stats *stats,
699                                        u64 *data)
700 {
701         struct bcmgenet_priv *priv = netdev_priv(dev);
702         int i;
703 
704         if (netif_running(dev))
705                 bcmgenet_update_mib_counters(priv);
706 
707         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
708                 const struct bcmgenet_stats *s;
709                 char *p;
710 
711                 s = &bcmgenet_gstrings_stats[i];
712                 if (s->type == BCMGENET_STAT_NETDEV)
713                         p = (char *)&dev->stats;
714                 else
715                         p = (char *)priv;
716                 p += s->stat_offset;
717                 data[i] = *(u32 *)p;
718         }
719 }
720 
721 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
722 {
723         struct bcmgenet_priv *priv = netdev_priv(dev);
724         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
725         u32 reg;
726 
727         if (enable && !priv->clk_eee_enabled) {
728                 clk_prepare_enable(priv->clk_eee);
729                 priv->clk_eee_enabled = true;
730         }
731 
732         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
733         if (enable)
734                 reg |= EEE_EN;
735         else
736                 reg &= ~EEE_EN;
737         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
738 
739         /* Enable EEE and switch to a 27Mhz clock automatically */
740         reg = __raw_readl(priv->base + off);
741         if (enable)
742                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
743         else
744                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
745         __raw_writel(reg, priv->base + off);
746 
747         /* Do the same for thing for RBUF */
748         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
749         if (enable)
750                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
751         else
752                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
753         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
754 
755         if (!enable && priv->clk_eee_enabled) {
756                 clk_disable_unprepare(priv->clk_eee);
757                 priv->clk_eee_enabled = false;
758         }
759 
760         priv->eee.eee_enabled = enable;
761         priv->eee.eee_active = enable;
762 }
763 
764 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
765 {
766         struct bcmgenet_priv *priv = netdev_priv(dev);
767         struct ethtool_eee *p = &priv->eee;
768 
769         if (GENET_IS_V1(priv))
770                 return -EOPNOTSUPP;
771 
772         e->eee_enabled = p->eee_enabled;
773         e->eee_active = p->eee_active;
774         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
775 
776         return phy_ethtool_get_eee(priv->phydev, e);
777 }
778 
779 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
780 {
781         struct bcmgenet_priv *priv = netdev_priv(dev);
782         struct ethtool_eee *p = &priv->eee;
783         int ret = 0;
784 
785         if (GENET_IS_V1(priv))
786                 return -EOPNOTSUPP;
787 
788         p->eee_enabled = e->eee_enabled;
789 
790         if (!p->eee_enabled) {
791                 bcmgenet_eee_enable_set(dev, false);
792         } else {
793                 ret = phy_init_eee(priv->phydev, 0);
794                 if (ret) {
795                         netif_err(priv, hw, dev, "EEE initialization failed\n");
796                         return ret;
797                 }
798 
799                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
800                 bcmgenet_eee_enable_set(dev, true);
801         }
802 
803         return phy_ethtool_set_eee(priv->phydev, e);
804 }
805 
806 static int bcmgenet_nway_reset(struct net_device *dev)
807 {
808         struct bcmgenet_priv *priv = netdev_priv(dev);
809 
810         return genphy_restart_aneg(priv->phydev);
811 }
812 
813 /* standard ethtool support functions. */
814 static struct ethtool_ops bcmgenet_ethtool_ops = {
815         .get_strings            = bcmgenet_get_strings,
816         .get_sset_count         = bcmgenet_get_sset_count,
817         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
818         .get_settings           = bcmgenet_get_settings,
819         .set_settings           = bcmgenet_set_settings,
820         .get_drvinfo            = bcmgenet_get_drvinfo,
821         .get_link               = ethtool_op_get_link,
822         .get_msglevel           = bcmgenet_get_msglevel,
823         .set_msglevel           = bcmgenet_set_msglevel,
824         .get_wol                = bcmgenet_get_wol,
825         .set_wol                = bcmgenet_set_wol,
826         .get_eee                = bcmgenet_get_eee,
827         .set_eee                = bcmgenet_set_eee,
828         .nway_reset             = bcmgenet_nway_reset,
829 };
830 
831 /* Power down the unimac, based on mode. */
832 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
833                                 enum bcmgenet_power_mode mode)
834 {
835         u32 reg;
836 
837         switch (mode) {
838         case GENET_POWER_CABLE_SENSE:
839                 phy_detach(priv->phydev);
840                 break;
841 
842         case GENET_POWER_WOL_MAGIC:
843                 bcmgenet_wol_power_down_cfg(priv, mode);
844                 break;
845 
846         case GENET_POWER_PASSIVE:
847                 /* Power down LED */
848                 if (priv->hw_params->flags & GENET_HAS_EXT) {
849                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
850                         reg |= (EXT_PWR_DOWN_PHY |
851                                 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
852                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
853                 }
854                 break;
855         default:
856                 break;
857         }
858 }
859 
860 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
861                               enum bcmgenet_power_mode mode)
862 {
863         u32 reg;
864 
865         if (!(priv->hw_params->flags & GENET_HAS_EXT))
866                 return;
867 
868         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
869 
870         switch (mode) {
871         case GENET_POWER_PASSIVE:
872                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
873                                 EXT_PWR_DOWN_BIAS);
874                 /* fallthrough */
875         case GENET_POWER_CABLE_SENSE:
876                 /* enable APD */
877                 reg |= EXT_PWR_DN_EN_LD;
878                 break;
879         case GENET_POWER_WOL_MAGIC:
880                 bcmgenet_wol_power_up_cfg(priv, mode);
881                 return;
882         default:
883                 break;
884         }
885 
886         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
887 
888         if (mode == GENET_POWER_PASSIVE)
889                 bcmgenet_mii_reset(priv->dev);
890 }
891 
892 /* ioctl handle special commands that are not present in ethtool. */
893 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
894 {
895         struct bcmgenet_priv *priv = netdev_priv(dev);
896         int val = 0;
897 
898         if (!netif_running(dev))
899                 return -EINVAL;
900 
901         switch (cmd) {
902         case SIOCGMIIPHY:
903         case SIOCGMIIREG:
904         case SIOCSMIIREG:
905                 if (!priv->phydev)
906                         val = -ENODEV;
907                 else
908                         val = phy_mii_ioctl(priv->phydev, rq, cmd);
909                 break;
910 
911         default:
912                 val = -EINVAL;
913                 break;
914         }
915 
916         return val;
917 }
918 
919 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
920                                          struct bcmgenet_tx_ring *ring)
921 {
922         struct enet_cb *tx_cb_ptr;
923 
924         tx_cb_ptr = ring->cbs;
925         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
926         tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE;
927         /* Advancing local write pointer */
928         if (ring->write_ptr == ring->end_ptr)
929                 ring->write_ptr = ring->cb_ptr;
930         else
931                 ring->write_ptr++;
932 
933         return tx_cb_ptr;
934 }
935 
936 /* Simple helper to free a control block's resources */
937 static void bcmgenet_free_cb(struct enet_cb *cb)
938 {
939         dev_kfree_skb_any(cb->skb);
940         cb->skb = NULL;
941         dma_unmap_addr_set(cb, dma_addr, 0);
942 }
943 
944 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
945                                                   struct bcmgenet_tx_ring *ring)
946 {
947         bcmgenet_intrl2_0_writel(priv,
948                                  UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
949                                  INTRL2_CPU_MASK_SET);
950 }
951 
952 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
953                                                  struct bcmgenet_tx_ring *ring)
954 {
955         bcmgenet_intrl2_0_writel(priv,
956                                  UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
957                                  INTRL2_CPU_MASK_CLEAR);
958 }
959 
960 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
961                                                struct bcmgenet_tx_ring *ring)
962 {
963         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
964                                  INTRL2_CPU_MASK_CLEAR);
965         priv->int1_mask &= ~(1 << ring->index);
966 }
967 
968 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
969                                                 struct bcmgenet_tx_ring *ring)
970 {
971         bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
972                                  INTRL2_CPU_MASK_SET);
973         priv->int1_mask |= (1 << ring->index);
974 }
975 
976 /* Unlocked version of the reclaim routine */
977 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
978                                           struct bcmgenet_tx_ring *ring)
979 {
980         struct bcmgenet_priv *priv = netdev_priv(dev);
981         int last_tx_cn, last_c_index, num_tx_bds;
982         struct enet_cb *tx_cb_ptr;
983         struct netdev_queue *txq;
984         unsigned int pkts_compl = 0;
985         unsigned int bds_compl;
986         unsigned int c_index;
987 
988         /* Compute how many buffers are transmitted since last xmit call */
989         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
990         txq = netdev_get_tx_queue(dev, ring->queue);
991 
992         last_c_index = ring->c_index;
993         num_tx_bds = ring->size;
994 
995         c_index &= (num_tx_bds - 1);
996 
997         if (c_index >= last_c_index)
998                 last_tx_cn = c_index - last_c_index;
999         else
1000                 last_tx_cn = num_tx_bds - last_c_index + c_index;
1001 
1002         netif_dbg(priv, tx_done, dev,
1003                   "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n",
1004                   __func__, ring->index,
1005                   c_index, last_tx_cn, last_c_index);
1006 
1007         /* Reclaim transmitted buffers */
1008         while (last_tx_cn-- > 0) {
1009                 tx_cb_ptr = ring->cbs + last_c_index;
1010                 bds_compl = 0;
1011                 if (tx_cb_ptr->skb) {
1012                         pkts_compl++;
1013                         bds_compl = skb_shinfo(tx_cb_ptr->skb)->nr_frags + 1;
1014                         dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1015                         dma_unmap_single(&dev->dev,
1016                                          dma_unmap_addr(tx_cb_ptr, dma_addr),
1017                                          tx_cb_ptr->skb->len,
1018                                          DMA_TO_DEVICE);
1019                         bcmgenet_free_cb(tx_cb_ptr);
1020                 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1021                         dev->stats.tx_bytes +=
1022                                 dma_unmap_len(tx_cb_ptr, dma_len);
1023                         dma_unmap_page(&dev->dev,
1024                                        dma_unmap_addr(tx_cb_ptr, dma_addr),
1025                                        dma_unmap_len(tx_cb_ptr, dma_len),
1026                                        DMA_TO_DEVICE);
1027                         dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1028                 }
1029                 dev->stats.tx_packets++;
1030                 ring->free_bds += bds_compl;
1031 
1032                 last_c_index++;
1033                 last_c_index &= (num_tx_bds - 1);
1034         }
1035 
1036         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1037                 if (netif_tx_queue_stopped(txq))
1038                         netif_tx_wake_queue(txq);
1039         }
1040 
1041         ring->c_index = c_index;
1042 
1043         return pkts_compl;
1044 }
1045 
1046 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1047                                 struct bcmgenet_tx_ring *ring)
1048 {
1049         unsigned int released;
1050         unsigned long flags;
1051 
1052         spin_lock_irqsave(&ring->lock, flags);
1053         released = __bcmgenet_tx_reclaim(dev, ring);
1054         spin_unlock_irqrestore(&ring->lock, flags);
1055 
1056         return released;
1057 }
1058 
1059 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1060 {
1061         struct bcmgenet_tx_ring *ring =
1062                 container_of(napi, struct bcmgenet_tx_ring, napi);
1063         unsigned int work_done = 0;
1064 
1065         work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1066 
1067         if (work_done == 0) {
1068                 napi_complete(napi);
1069                 ring->int_enable(ring->priv, ring);
1070 
1071                 return 0;
1072         }
1073 
1074         return budget;
1075 }
1076 
1077 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1078 {
1079         struct bcmgenet_priv *priv = netdev_priv(dev);
1080         int i;
1081 
1082         if (netif_is_multiqueue(dev)) {
1083                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1084                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1085         }
1086 
1087         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1088 }
1089 
1090 /* Transmits a single SKB (either head of a fragment or a single SKB)
1091  * caller must hold priv->lock
1092  */
1093 static int bcmgenet_xmit_single(struct net_device *dev,
1094                                 struct sk_buff *skb,
1095                                 u16 dma_desc_flags,
1096                                 struct bcmgenet_tx_ring *ring)
1097 {
1098         struct bcmgenet_priv *priv = netdev_priv(dev);
1099         struct device *kdev = &priv->pdev->dev;
1100         struct enet_cb *tx_cb_ptr;
1101         unsigned int skb_len;
1102         dma_addr_t mapping;
1103         u32 length_status;
1104         int ret;
1105 
1106         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1107 
1108         if (unlikely(!tx_cb_ptr))
1109                 BUG();
1110 
1111         tx_cb_ptr->skb = skb;
1112 
1113         skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1114 
1115         mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1116         ret = dma_mapping_error(kdev, mapping);
1117         if (ret) {
1118                 priv->mib.tx_dma_failed++;
1119                 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1120                 dev_kfree_skb(skb);
1121                 return ret;
1122         }
1123 
1124         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1125         dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1126         length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1127                         (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1128                         DMA_TX_APPEND_CRC;
1129 
1130         if (skb->ip_summed == CHECKSUM_PARTIAL)
1131                 length_status |= DMA_TX_DO_CSUM;
1132 
1133         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1134 
1135         /* Decrement total BD count and advance our write pointer */
1136         ring->free_bds -= 1;
1137         ring->prod_index += 1;
1138         ring->prod_index &= DMA_P_INDEX_MASK;
1139 
1140         return 0;
1141 }
1142 
1143 /* Transmit a SKB fragment */
1144 static int bcmgenet_xmit_frag(struct net_device *dev,
1145                               skb_frag_t *frag,
1146                               u16 dma_desc_flags,
1147                               struct bcmgenet_tx_ring *ring)
1148 {
1149         struct bcmgenet_priv *priv = netdev_priv(dev);
1150         struct device *kdev = &priv->pdev->dev;
1151         struct enet_cb *tx_cb_ptr;
1152         dma_addr_t mapping;
1153         int ret;
1154 
1155         tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1156 
1157         if (unlikely(!tx_cb_ptr))
1158                 BUG();
1159         tx_cb_ptr->skb = NULL;
1160 
1161         mapping = skb_frag_dma_map(kdev, frag, 0,
1162                                    skb_frag_size(frag), DMA_TO_DEVICE);
1163         ret = dma_mapping_error(kdev, mapping);
1164         if (ret) {
1165                 priv->mib.tx_dma_failed++;
1166                 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1167                           __func__);
1168                 return ret;
1169         }
1170 
1171         dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1172         dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1173 
1174         dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1175                     (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1176                     (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1177 
1178 
1179         ring->free_bds -= 1;
1180         ring->prod_index += 1;
1181         ring->prod_index &= DMA_P_INDEX_MASK;
1182 
1183         return 0;
1184 }
1185 
1186 /* Reallocate the SKB to put enough headroom in front of it and insert
1187  * the transmit checksum offsets in the descriptors
1188  */
1189 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1190                                             struct sk_buff *skb)
1191 {
1192         struct status_64 *status = NULL;
1193         struct sk_buff *new_skb;
1194         u16 offset;
1195         u8 ip_proto;
1196         u16 ip_ver;
1197         u32 tx_csum_info;
1198 
1199         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1200                 /* If 64 byte status block enabled, must make sure skb has
1201                  * enough headroom for us to insert 64B status block.
1202                  */
1203                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1204                 dev_kfree_skb(skb);
1205                 if (!new_skb) {
1206                         dev->stats.tx_errors++;
1207                         dev->stats.tx_dropped++;
1208                         return NULL;
1209                 }
1210                 skb = new_skb;
1211         }
1212 
1213         skb_push(skb, sizeof(*status));
1214         status = (struct status_64 *)skb->data;
1215 
1216         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1217                 ip_ver = htons(skb->protocol);
1218                 switch (ip_ver) {
1219                 case ETH_P_IP:
1220                         ip_proto = ip_hdr(skb)->protocol;
1221                         break;
1222                 case ETH_P_IPV6:
1223                         ip_proto = ipv6_hdr(skb)->nexthdr;
1224                         break;
1225                 default:
1226                         return skb;
1227                 }
1228 
1229                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1230                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1231                                 (offset + skb->csum_offset);
1232 
1233                 /* Set the length valid bit for TCP and UDP and just set
1234                  * the special UDP flag for IPv4, else just set to 0.
1235                  */
1236                 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1237                         tx_csum_info |= STATUS_TX_CSUM_LV;
1238                         if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1239                                 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1240                 } else {
1241                         tx_csum_info = 0;
1242                 }
1243 
1244                 status->tx_csum_info = tx_csum_info;
1245         }
1246 
1247         return skb;
1248 }
1249 
1250 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1251 {
1252         struct bcmgenet_priv *priv = netdev_priv(dev);
1253         struct bcmgenet_tx_ring *ring = NULL;
1254         struct netdev_queue *txq;
1255         unsigned long flags = 0;
1256         int nr_frags, index;
1257         u16 dma_desc_flags;
1258         int ret;
1259         int i;
1260 
1261         index = skb_get_queue_mapping(skb);
1262         /* Mapping strategy:
1263          * queue_mapping = 0, unclassified, packet xmited through ring16
1264          * queue_mapping = 1, goes to ring 0. (highest priority queue
1265          * queue_mapping = 2, goes to ring 1.
1266          * queue_mapping = 3, goes to ring 2.
1267          * queue_mapping = 4, goes to ring 3.
1268          */
1269         if (index == 0)
1270                 index = DESC_INDEX;
1271         else
1272                 index -= 1;
1273 
1274         nr_frags = skb_shinfo(skb)->nr_frags;
1275         ring = &priv->tx_rings[index];
1276         txq = netdev_get_tx_queue(dev, ring->queue);
1277 
1278         spin_lock_irqsave(&ring->lock, flags);
1279         if (ring->free_bds <= nr_frags + 1) {
1280                 netif_tx_stop_queue(txq);
1281                 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1282                            __func__, index, ring->queue);
1283                 ret = NETDEV_TX_BUSY;
1284                 goto out;
1285         }
1286 
1287         if (skb_padto(skb, ETH_ZLEN)) {
1288                 ret = NETDEV_TX_OK;
1289                 goto out;
1290         }
1291 
1292         /* set the SKB transmit checksum */
1293         if (priv->desc_64b_en) {
1294                 skb = bcmgenet_put_tx_csum(dev, skb);
1295                 if (!skb) {
1296                         ret = NETDEV_TX_OK;
1297                         goto out;
1298                 }
1299         }
1300 
1301         dma_desc_flags = DMA_SOP;
1302         if (nr_frags == 0)
1303                 dma_desc_flags |= DMA_EOP;
1304 
1305         /* Transmit single SKB or head of fragment list */
1306         ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1307         if (ret) {
1308                 ret = NETDEV_TX_OK;
1309                 goto out;
1310         }
1311 
1312         /* xmit fragment */
1313         for (i = 0; i < nr_frags; i++) {
1314                 ret = bcmgenet_xmit_frag(dev,
1315                                          &skb_shinfo(skb)->frags[i],
1316                                          (i == nr_frags - 1) ? DMA_EOP : 0,
1317                                          ring);
1318                 if (ret) {
1319                         ret = NETDEV_TX_OK;
1320                         goto out;
1321                 }
1322         }
1323 
1324         skb_tx_timestamp(skb);
1325 
1326         /* we kept a software copy of how much we should advance the TDMA
1327          * producer index, now write it down to the hardware
1328          */
1329         bcmgenet_tdma_ring_writel(priv, ring->index,
1330                                   ring->prod_index, TDMA_PROD_INDEX);
1331 
1332         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1333                 netif_tx_stop_queue(txq);
1334 
1335 out:
1336         spin_unlock_irqrestore(&ring->lock, flags);
1337 
1338         return ret;
1339 }
1340 
1341 
1342 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1343 {
1344         struct device *kdev = &priv->pdev->dev;
1345         struct sk_buff *skb;
1346         dma_addr_t mapping;
1347         int ret;
1348 
1349         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1350         if (!skb)
1351                 return -ENOMEM;
1352 
1353         /* a caller did not release this control block */
1354         WARN_ON(cb->skb != NULL);
1355         cb->skb = skb;
1356         mapping = dma_map_single(kdev, skb->data,
1357                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1358         ret = dma_mapping_error(kdev, mapping);
1359         if (ret) {
1360                 priv->mib.rx_dma_failed++;
1361                 bcmgenet_free_cb(cb);
1362                 netif_err(priv, rx_err, priv->dev,
1363                           "%s DMA map failed\n", __func__);
1364                 return ret;
1365         }
1366 
1367         dma_unmap_addr_set(cb, dma_addr, mapping);
1368         /* assign packet, prepare descriptor, and advance pointer */
1369 
1370         dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1371 
1372         /* turn on the newly assigned BD for DMA to use */
1373         priv->rx_bd_assign_index++;
1374         priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1375 
1376         priv->rx_bd_assign_ptr = priv->rx_bds +
1377                 (priv->rx_bd_assign_index * DMA_DESC_SIZE);
1378 
1379         return 0;
1380 }
1381 
1382 /* bcmgenet_desc_rx - descriptor based rx process.
1383  * this could be called from bottom half, or from NAPI polling method.
1384  */
1385 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1386                                      unsigned int budget)
1387 {
1388         struct net_device *dev = priv->dev;
1389         struct enet_cb *cb;
1390         struct sk_buff *skb;
1391         u32 dma_length_status;
1392         unsigned long dma_flag;
1393         int len, err;
1394         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1395         unsigned int p_index;
1396         unsigned int chksum_ok = 0;
1397 
1398         p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1399         p_index &= DMA_P_INDEX_MASK;
1400 
1401         if (p_index < priv->rx_c_index)
1402                 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1403                         priv->rx_c_index + p_index;
1404         else
1405                 rxpkttoprocess = p_index - priv->rx_c_index;
1406 
1407         netif_dbg(priv, rx_status, dev,
1408                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1409 
1410         while ((rxpktprocessed < rxpkttoprocess) &&
1411                (rxpktprocessed < budget)) {
1412                 cb = &priv->rx_cbs[priv->rx_read_ptr];
1413                 skb = cb->skb;
1414 
1415                 /* We do not have a backing SKB, so we do not have a
1416                  * corresponding DMA mapping for this incoming packet since
1417                  * bcmgenet_rx_refill always either has both skb and mapping or
1418                  * none.
1419                  */
1420                 if (unlikely(!skb)) {
1421                         dev->stats.rx_dropped++;
1422                         dev->stats.rx_errors++;
1423                         goto refill;
1424                 }
1425 
1426                 /* Unmap the packet contents such that we can use the
1427                  * RSV from the 64 bytes descriptor when enabled and save
1428                  * a 32-bits register read
1429                  */
1430                 dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1431                                  priv->rx_buf_len, DMA_FROM_DEVICE);
1432 
1433                 if (!priv->desc_64b_en) {
1434                         dma_length_status =
1435                                 dmadesc_get_length_status(priv,
1436                                                           priv->rx_bds +
1437                                                           (priv->rx_read_ptr *
1438                                                            DMA_DESC_SIZE));
1439                 } else {
1440                         struct status_64 *status;
1441 
1442                         status = (struct status_64 *)skb->data;
1443                         dma_length_status = status->length_status;
1444                 }
1445 
1446                 /* DMA flags and length are still valid no matter how
1447                  * we got the Receive Status Vector (64B RSB or register)
1448                  */
1449                 dma_flag = dma_length_status & 0xffff;
1450                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1451 
1452                 netif_dbg(priv, rx_status, dev,
1453                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1454                           __func__, p_index, priv->rx_c_index,
1455                           priv->rx_read_ptr, dma_length_status);
1456 
1457                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1458                         netif_err(priv, rx_status, dev,
1459                                   "dropping fragmented packet!\n");
1460                         dev->stats.rx_dropped++;
1461                         dev->stats.rx_errors++;
1462                         dev_kfree_skb_any(cb->skb);
1463                         cb->skb = NULL;
1464                         goto refill;
1465                 }
1466                 /* report errors */
1467                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1468                                                 DMA_RX_OV |
1469                                                 DMA_RX_NO |
1470                                                 DMA_RX_LG |
1471                                                 DMA_RX_RXER))) {
1472                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1473                                   (unsigned int)dma_flag);
1474                         if (dma_flag & DMA_RX_CRC_ERROR)
1475                                 dev->stats.rx_crc_errors++;
1476                         if (dma_flag & DMA_RX_OV)
1477                                 dev->stats.rx_over_errors++;
1478                         if (dma_flag & DMA_RX_NO)
1479                                 dev->stats.rx_frame_errors++;
1480                         if (dma_flag & DMA_RX_LG)
1481                                 dev->stats.rx_length_errors++;
1482                         dev->stats.rx_dropped++;
1483                         dev->stats.rx_errors++;
1484 
1485                         /* discard the packet and advance consumer index.*/
1486                         dev_kfree_skb_any(cb->skb);
1487                         cb->skb = NULL;
1488                         goto refill;
1489                 } /* error packet */
1490 
1491                 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1492                              priv->desc_rxchk_en;
1493 
1494                 skb_put(skb, len);
1495                 if (priv->desc_64b_en) {
1496                         skb_pull(skb, 64);
1497                         len -= 64;
1498                 }
1499 
1500                 if (likely(chksum_ok))
1501                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 
1503                 /* remove hardware 2bytes added for IP alignment */
1504                 skb_pull(skb, 2);
1505                 len -= 2;
1506 
1507                 if (priv->crc_fwd_en) {
1508                         skb_trim(skb, len - ETH_FCS_LEN);
1509                         len -= ETH_FCS_LEN;
1510                 }
1511 
1512                 /*Finish setting up the received SKB and send it to the kernel*/
1513                 skb->protocol = eth_type_trans(skb, priv->dev);
1514                 dev->stats.rx_packets++;
1515                 dev->stats.rx_bytes += len;
1516                 if (dma_flag & DMA_RX_MULT)
1517                         dev->stats.multicast++;
1518 
1519                 /* Notify kernel */
1520                 napi_gro_receive(&priv->napi, skb);
1521                 cb->skb = NULL;
1522                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1523 
1524                 /* refill RX path on the current control block */
1525 refill:
1526                 err = bcmgenet_rx_refill(priv, cb);
1527                 if (err) {
1528                         priv->mib.alloc_rx_buff_failed++;
1529                         netif_err(priv, rx_err, dev, "Rx refill failed\n");
1530                 }
1531 
1532                 rxpktprocessed++;
1533                 priv->rx_read_ptr++;
1534                 priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1535         }
1536 
1537         return rxpktprocessed;
1538 }
1539 
1540 /* Assign skb to RX DMA descriptor. */
1541 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1542 {
1543         struct enet_cb *cb;
1544         int ret = 0;
1545         int i;
1546 
1547         netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1548 
1549         /* loop here for each buffer needing assign */
1550         for (i = 0; i < priv->num_rx_bds; i++) {
1551                 cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1552                 if (cb->skb)
1553                         continue;
1554 
1555                 ret = bcmgenet_rx_refill(priv, cb);
1556                 if (ret)
1557                         break;
1558         }
1559 
1560         return ret;
1561 }
1562 
1563 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1564 {
1565         struct enet_cb *cb;
1566         int i;
1567 
1568         for (i = 0; i < priv->num_rx_bds; i++) {
1569                 cb = &priv->rx_cbs[i];
1570 
1571                 if (dma_unmap_addr(cb, dma_addr)) {
1572                         dma_unmap_single(&priv->dev->dev,
1573                                          dma_unmap_addr(cb, dma_addr),
1574                                          priv->rx_buf_len, DMA_FROM_DEVICE);
1575                         dma_unmap_addr_set(cb, dma_addr, 0);
1576                 }
1577 
1578                 if (cb->skb)
1579                         bcmgenet_free_cb(cb);
1580         }
1581 }
1582 
1583 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1584 {
1585         u32 reg;
1586 
1587         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1588         if (enable)
1589                 reg |= mask;
1590         else
1591                 reg &= ~mask;
1592         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1593 
1594         /* UniMAC stops on a packet boundary, wait for a full-size packet
1595          * to be processed
1596          */
1597         if (enable == 0)
1598                 usleep_range(1000, 2000);
1599 }
1600 
1601 static int reset_umac(struct bcmgenet_priv *priv)
1602 {
1603         struct device *kdev = &priv->pdev->dev;
1604         unsigned int timeout = 0;
1605         u32 reg;
1606 
1607         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1608         bcmgenet_rbuf_ctrl_set(priv, 0);
1609         udelay(10);
1610 
1611         /* disable MAC while updating its registers */
1612         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1613 
1614         /* issue soft reset, wait for it to complete */
1615         bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1616         while (timeout++ < 1000) {
1617                 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1618                 if (!(reg & CMD_SW_RESET))
1619                         return 0;
1620 
1621                 udelay(1);
1622         }
1623 
1624         if (timeout == 1000) {
1625                 dev_err(kdev,
1626                         "timeout waiting for MAC to come out of reset\n");
1627                 return -ETIMEDOUT;
1628         }
1629 
1630         return 0;
1631 }
1632 
1633 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1634 {
1635         /* Mask all interrupts.*/
1636         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1637         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1638         bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1639         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1640         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1641         bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1642 }
1643 
1644 static int init_umac(struct bcmgenet_priv *priv)
1645 {
1646         struct device *kdev = &priv->pdev->dev;
1647         int ret;
1648         u32 reg, cpu_mask_clear;
1649         int index;
1650 
1651         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1652 
1653         ret = reset_umac(priv);
1654         if (ret)
1655                 return ret;
1656 
1657         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1658         /* clear tx/rx counter */
1659         bcmgenet_umac_writel(priv,
1660                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1661                              UMAC_MIB_CTRL);
1662         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1663 
1664         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1665 
1666         /* init rx registers, enable ip header optimization */
1667         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1668         reg |= RBUF_ALIGN_2B;
1669         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1670 
1671         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1672                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1673 
1674         bcmgenet_intr_disable(priv);
1675 
1676         cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_TXDMA_BDONE;
1677 
1678         dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1679 
1680         /* Monitor cable plug/unplugged event for internal PHY */
1681         if (phy_is_internal(priv->phydev)) {
1682                 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1683         } else if (priv->ext_phy) {
1684                 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1685         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1686                 reg = bcmgenet_bp_mc_get(priv);
1687                 reg |= BIT(priv->hw_params->bp_in_en_shift);
1688 
1689                 /* bp_mask: back pressure mask */
1690                 if (netif_is_multiqueue(priv->dev))
1691                         reg |= priv->hw_params->bp_in_mask;
1692                 else
1693                         reg &= ~priv->hw_params->bp_in_mask;
1694                 bcmgenet_bp_mc_set(priv, reg);
1695         }
1696 
1697         /* Enable MDIO interrupts on GENET v3+ */
1698         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1699                 cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1700 
1701         bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1702 
1703         for (index = 0; index < priv->hw_params->tx_queues; index++)
1704                 bcmgenet_intrl2_1_writel(priv, (1 << index),
1705                                          INTRL2_CPU_MASK_CLEAR);
1706 
1707         /* Enable rx/tx engine.*/
1708         dev_dbg(kdev, "done init umac\n");
1709 
1710         return 0;
1711 }
1712 
1713 /* Initialize all house-keeping variables for a TX ring, along
1714  * with corresponding hardware registers
1715  */
1716 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1717                                   unsigned int index, unsigned int size,
1718                                   unsigned int write_ptr, unsigned int end_ptr)
1719 {
1720         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1721         u32 words_per_bd = WORDS_PER_BD(priv);
1722         u32 flow_period_val = 0;
1723         unsigned int first_bd;
1724 
1725         spin_lock_init(&ring->lock);
1726         ring->priv = priv;
1727         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1728         ring->index = index;
1729         if (index == DESC_INDEX) {
1730                 ring->queue = 0;
1731                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1732                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1733         } else {
1734                 ring->queue = index + 1;
1735                 ring->int_enable = bcmgenet_tx_ring_int_enable;
1736                 ring->int_disable = bcmgenet_tx_ring_int_disable;
1737         }
1738         ring->cbs = priv->tx_cbs + write_ptr;
1739         ring->size = size;
1740         ring->c_index = 0;
1741         ring->free_bds = size;
1742         ring->write_ptr = write_ptr;
1743         ring->cb_ptr = write_ptr;
1744         ring->end_ptr = end_ptr - 1;
1745         ring->prod_index = 0;
1746 
1747         /* Set flow period for ring != 16 */
1748         if (index != DESC_INDEX)
1749                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1750 
1751         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1752         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1753         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1754         /* Disable rate control for now */
1755         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1756                                   TDMA_FLOW_PERIOD);
1757         /* Unclassified traffic goes to ring 16 */
1758         bcmgenet_tdma_ring_writel(priv, index,
1759                                   ((size << DMA_RING_SIZE_SHIFT) |
1760                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1761 
1762         first_bd = write_ptr;
1763 
1764         /* Set start and end address, read and write pointers */
1765         bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1766                                   DMA_START_ADDR);
1767         bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1768                                   TDMA_READ_PTR);
1769         bcmgenet_tdma_ring_writel(priv, index, first_bd,
1770                                   TDMA_WRITE_PTR);
1771         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1772                                   DMA_END_ADDR);
1773 
1774         napi_enable(&ring->napi);
1775 }
1776 
1777 static void bcmgenet_fini_tx_ring(struct bcmgenet_priv *priv,
1778                                   unsigned int index)
1779 {
1780         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1781 
1782         napi_disable(&ring->napi);
1783         netif_napi_del(&ring->napi);
1784 }
1785 
1786 /* Initialize a RDMA ring */
1787 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1788                                  unsigned int index, unsigned int size)
1789 {
1790         u32 words_per_bd = WORDS_PER_BD(priv);
1791         int ret;
1792 
1793         priv->num_rx_bds = TOTAL_DESC;
1794         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1795         priv->rx_bd_assign_ptr = priv->rx_bds;
1796         priv->rx_bd_assign_index = 0;
1797         priv->rx_c_index = 0;
1798         priv->rx_read_ptr = 0;
1799         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1800                                GFP_KERNEL);
1801         if (!priv->rx_cbs)
1802                 return -ENOMEM;
1803 
1804         ret = bcmgenet_alloc_rx_buffers(priv);
1805         if (ret) {
1806                 kfree(priv->rx_cbs);
1807                 return ret;
1808         }
1809 
1810         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1811         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1812         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1813         bcmgenet_rdma_ring_writel(priv, index,
1814                                   ((size << DMA_RING_SIZE_SHIFT) |
1815                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1816         bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1817         bcmgenet_rdma_ring_writel(priv, index,
1818                                   words_per_bd * size - 1, DMA_END_ADDR);
1819         bcmgenet_rdma_ring_writel(priv, index,
1820                                   (DMA_FC_THRESH_LO <<
1821                                    DMA_XOFF_THRESHOLD_SHIFT) |
1822                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1823         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1824 
1825         return ret;
1826 }
1827 
1828 /* init multi xmit queues, only available for GENET2+
1829  * the queue is partitioned as follows:
1830  *
1831  * queue 0 - 3 is priority based, each one has 32 descriptors,
1832  * with queue 0 being the highest priority queue.
1833  *
1834  * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT
1835  * descriptors: 256 - (number of tx queues * bds per queues) = 128
1836  * descriptors.
1837  *
1838  * The transmit control block pool is then partitioned as following:
1839  * - tx_cbs[0...127] are for queue 16
1840  * - tx_ring_cbs[0] points to tx_cbs[128..159]
1841  * - tx_ring_cbs[1] points to tx_cbs[160..191]
1842  * - tx_ring_cbs[2] points to tx_cbs[192..223]
1843  * - tx_ring_cbs[3] points to tx_cbs[224..255]
1844  */
1845 static void bcmgenet_init_multiq(struct net_device *dev)
1846 {
1847         struct bcmgenet_priv *priv = netdev_priv(dev);
1848         unsigned int i, dma_enable;
1849         u32 reg, dma_ctrl, ring_cfg = 0;
1850         u32 dma_priority[3] = {0, 0, 0};
1851 
1852         if (!netif_is_multiqueue(dev)) {
1853                 netdev_warn(dev, "called with non multi queue aware HW\n");
1854                 return;
1855         }
1856 
1857         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1858         dma_enable = dma_ctrl & DMA_EN;
1859         dma_ctrl &= ~DMA_EN;
1860         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1861 
1862         /* Enable strict priority arbiter mode */
1863         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1864 
1865         for (i = 0; i < priv->hw_params->tx_queues; i++) {
1866                 /* first 64 tx_cbs are reserved for default tx queue
1867                  * (ring 16)
1868                  */
1869                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt,
1870                                       i * priv->hw_params->bds_cnt,
1871                                       (i + 1) * priv->hw_params->bds_cnt);
1872 
1873                 /* Configure ring as descriptor ring and setup priority */
1874                 ring_cfg |= 1 << i;
1875                 dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT);
1876 
1877                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1878                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1879         }
1880 
1881         /* Set ring 16 priority and program the hardware registers */
1882         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1883                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1884                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
1885         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1886         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1887         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1888 
1889         /* Enable rings */
1890         reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG);
1891         reg |= ring_cfg;
1892         bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG);
1893 
1894         /* Configure ring as descriptor ring and re-enable DMA if enabled */
1895         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1896         reg |= dma_ctrl;
1897         if (dma_enable)
1898                 reg |= DMA_EN;
1899         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1900 }
1901 
1902 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1903 {
1904         int ret = 0;
1905         int timeout = 0;
1906         u32 reg;
1907 
1908         /* Disable TDMA to stop add more frames in TX DMA */
1909         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1910         reg &= ~DMA_EN;
1911         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1912 
1913         /* Check TDMA status register to confirm TDMA is disabled */
1914         while (timeout++ < DMA_TIMEOUT_VAL) {
1915                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1916                 if (reg & DMA_DISABLED)
1917                         break;
1918 
1919                 udelay(1);
1920         }
1921 
1922         if (timeout == DMA_TIMEOUT_VAL) {
1923                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1924                 ret = -ETIMEDOUT;
1925         }
1926 
1927         /* Wait 10ms for packet drain in both tx and rx dma */
1928         usleep_range(10000, 20000);
1929 
1930         /* Disable RDMA */
1931         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1932         reg &= ~DMA_EN;
1933         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1934 
1935         timeout = 0;
1936         /* Check RDMA status register to confirm RDMA is disabled */
1937         while (timeout++ < DMA_TIMEOUT_VAL) {
1938                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1939                 if (reg & DMA_DISABLED)
1940                         break;
1941 
1942                 udelay(1);
1943         }
1944 
1945         if (timeout == DMA_TIMEOUT_VAL) {
1946                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1947                 ret = -ETIMEDOUT;
1948         }
1949 
1950         return ret;
1951 }
1952 
1953 static void __bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1954 {
1955         int i;
1956 
1957         /* disable DMA */
1958         bcmgenet_dma_teardown(priv);
1959 
1960         for (i = 0; i < priv->num_tx_bds; i++) {
1961                 if (priv->tx_cbs[i].skb != NULL) {
1962                         dev_kfree_skb(priv->tx_cbs[i].skb);
1963                         priv->tx_cbs[i].skb = NULL;
1964                 }
1965         }
1966 
1967         bcmgenet_free_rx_buffers(priv);
1968         kfree(priv->rx_cbs);
1969         kfree(priv->tx_cbs);
1970 }
1971 
1972 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1973 {
1974         int i;
1975 
1976         bcmgenet_fini_tx_ring(priv, DESC_INDEX);
1977 
1978         for (i = 0; i < priv->hw_params->tx_queues; i++)
1979                 bcmgenet_fini_tx_ring(priv, i);
1980 
1981         __bcmgenet_fini_dma(priv);
1982 }
1983 
1984 /* init_edma: Initialize DMA control register */
1985 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1986 {
1987         int ret;
1988 
1989         netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1990 
1991         /* by default, enable ring 16 (descriptor based) */
1992         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1993         if (ret) {
1994                 netdev_err(priv->dev, "failed to initialize RX ring\n");
1995                 return ret;
1996         }
1997 
1998         /* init rDma */
1999         bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2000 
2001         /* Init tDma */
2002         bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2003 
2004         /* Initialize common TX ring structures */
2005         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2006         priv->num_tx_bds = TOTAL_DESC;
2007         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2008                                GFP_KERNEL);
2009         if (!priv->tx_cbs) {
2010                 __bcmgenet_fini_dma(priv);
2011                 return -ENOMEM;
2012         }
2013 
2014         /* initialize multi xmit queue */
2015         bcmgenet_init_multiq(priv->dev);
2016 
2017         /* initialize special ring 16 */
2018         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT,
2019                               priv->hw_params->tx_queues *
2020                               priv->hw_params->bds_cnt,
2021                               TOTAL_DESC);
2022 
2023         return 0;
2024 }
2025 
2026 /* NAPI polling method*/
2027 static int bcmgenet_poll(struct napi_struct *napi, int budget)
2028 {
2029         struct bcmgenet_priv *priv = container_of(napi,
2030                         struct bcmgenet_priv, napi);
2031         unsigned int work_done;
2032 
2033         work_done = bcmgenet_desc_rx(priv, budget);
2034 
2035         /* Advancing our consumer index*/
2036         priv->rx_c_index += work_done;
2037         priv->rx_c_index &= DMA_C_INDEX_MASK;
2038         bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
2039                                   priv->rx_c_index, RDMA_CONS_INDEX);
2040         if (work_done < budget) {
2041                 napi_complete(napi);
2042                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2043                                          INTRL2_CPU_MASK_CLEAR);
2044         }
2045 
2046         return work_done;
2047 }
2048 
2049 /* Interrupt bottom half */
2050 static void bcmgenet_irq_task(struct work_struct *work)
2051 {
2052         struct bcmgenet_priv *priv = container_of(
2053                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2054 
2055         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2056 
2057         if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2058                 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2059                 netif_dbg(priv, wol, priv->dev,
2060                           "magic packet detected, waking up\n");
2061                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2062         }
2063 
2064         /* Link UP/DOWN event */
2065         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2066             (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2067                 phy_mac_interrupt(priv->phydev,
2068                                   priv->irq0_stat & UMAC_IRQ_LINK_UP);
2069                 priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2070         }
2071 }
2072 
2073 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2074 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2075 {
2076         struct bcmgenet_priv *priv = dev_id;
2077         struct bcmgenet_tx_ring *ring;
2078         unsigned int index;
2079 
2080         /* Save irq status for bottom-half processing. */
2081         priv->irq1_stat =
2082                 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2083                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2084         /* clear interrupts */
2085         bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2086 
2087         netif_dbg(priv, intr, priv->dev,
2088                   "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2089 
2090         /* Check the MBDONE interrupts.
2091          * packet is done, reclaim descriptors
2092          */
2093         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2094                 if (!(priv->irq1_stat & BIT(index)))
2095                         continue;
2096 
2097                 ring = &priv->tx_rings[index];
2098 
2099                 if (likely(napi_schedule_prep(&ring->napi))) {
2100                         ring->int_disable(priv, ring);
2101                         __napi_schedule(&ring->napi);
2102                 }
2103         }
2104 
2105         return IRQ_HANDLED;
2106 }
2107 
2108 /* bcmgenet_isr0: Handle various interrupts. */
2109 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2110 {
2111         struct bcmgenet_priv *priv = dev_id;
2112 
2113         /* Save irq status for bottom-half processing. */
2114         priv->irq0_stat =
2115                 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2116                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2117         /* clear interrupts */
2118         bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2119 
2120         netif_dbg(priv, intr, priv->dev,
2121                   "IRQ=0x%x\n", priv->irq0_stat);
2122 
2123         if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2124                 /* We use NAPI(software interrupt throttling, if
2125                  * Rx Descriptor throttling is not used.
2126                  * Disable interrupt, will be enabled in the poll method.
2127                  */
2128                 if (likely(napi_schedule_prep(&priv->napi))) {
2129                         bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2130                                                  INTRL2_CPU_MASK_SET);
2131                         __napi_schedule(&priv->napi);
2132                 }
2133         }
2134         if (priv->irq0_stat &
2135                         (UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2136                 struct bcmgenet_tx_ring *ring = &priv->tx_rings[DESC_INDEX];
2137 
2138                 if (likely(napi_schedule_prep(&ring->napi))) {
2139                         ring->int_disable(priv, ring);
2140                         __napi_schedule(&ring->napi);
2141                 }
2142         }
2143         if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2144                                 UMAC_IRQ_PHY_DET_F |
2145                                 UMAC_IRQ_LINK_UP |
2146                                 UMAC_IRQ_LINK_DOWN |
2147                                 UMAC_IRQ_HFB_SM |
2148                                 UMAC_IRQ_HFB_MM |
2149                                 UMAC_IRQ_MPD_R)) {
2150                 /* all other interested interrupts handled in bottom half */
2151                 schedule_work(&priv->bcmgenet_irq_work);
2152         }
2153 
2154         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2155             priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2156                 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2157                 wake_up(&priv->wq);
2158         }
2159 
2160         return IRQ_HANDLED;
2161 }
2162 
2163 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2164 {
2165         struct bcmgenet_priv *priv = dev_id;
2166 
2167         pm_wakeup_event(&priv->pdev->dev, 0);
2168 
2169         return IRQ_HANDLED;
2170 }
2171 
2172 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2173 {
2174         u32 reg;
2175 
2176         reg = bcmgenet_rbuf_ctrl_get(priv);
2177         reg |= BIT(1);
2178         bcmgenet_rbuf_ctrl_set(priv, reg);
2179         udelay(10);
2180 
2181         reg &= ~BIT(1);
2182         bcmgenet_rbuf_ctrl_set(priv, reg);
2183         udelay(10);
2184 }
2185 
2186 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2187                                  unsigned char *addr)
2188 {
2189         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2190                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2191         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2192 }
2193 
2194 /* Returns a reusable dma control register value */
2195 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2196 {
2197         u32 reg;
2198         u32 dma_ctrl;
2199 
2200         /* disable DMA */
2201         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2202         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2203         reg &= ~dma_ctrl;
2204         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2205 
2206         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2207         reg &= ~dma_ctrl;
2208         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2209 
2210         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2211         udelay(10);
2212         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2213 
2214         return dma_ctrl;
2215 }
2216 
2217 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2218 {
2219         u32 reg;
2220 
2221         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2222         reg |= dma_ctrl;
2223         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2224 
2225         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2226         reg |= dma_ctrl;
2227         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2228 }
2229 
2230 static void bcmgenet_netif_start(struct net_device *dev)
2231 {
2232         struct bcmgenet_priv *priv = netdev_priv(dev);
2233 
2234         /* Start the network engine */
2235         napi_enable(&priv->napi);
2236 
2237         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2238 
2239         if (phy_is_internal(priv->phydev))
2240                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2241 
2242         netif_tx_start_all_queues(dev);
2243 
2244         phy_start(priv->phydev);
2245 }
2246 
2247 static int bcmgenet_open(struct net_device *dev)
2248 {
2249         struct bcmgenet_priv *priv = netdev_priv(dev);
2250         unsigned long dma_ctrl;
2251         u32 reg;
2252         int ret;
2253 
2254         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2255 
2256         /* Turn on the clock */
2257         if (!IS_ERR(priv->clk))
2258                 clk_prepare_enable(priv->clk);
2259 
2260         /* take MAC out of reset */
2261         bcmgenet_umac_reset(priv);
2262 
2263         ret = init_umac(priv);
2264         if (ret)
2265                 goto err_clk_disable;
2266 
2267         /* disable ethernet MAC while updating its registers */
2268         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2269 
2270         /* Make sure we reflect the value of CRC_CMD_FWD */
2271         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2272         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2273 
2274         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2275 
2276         if (phy_is_internal(priv->phydev)) {
2277                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2278                 reg |= EXT_ENERGY_DET_MASK;
2279                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2280         }
2281 
2282         /* Disable RX/TX DMA and flush TX queues */
2283         dma_ctrl = bcmgenet_dma_disable(priv);
2284 
2285         /* Reinitialize TDMA and RDMA and SW housekeeping */
2286         ret = bcmgenet_init_dma(priv);
2287         if (ret) {
2288                 netdev_err(dev, "failed to initialize DMA\n");
2289                 goto err_fini_dma;
2290         }
2291 
2292         /* Always enable ring 16 - descriptor ring */
2293         bcmgenet_enable_dma(priv, dma_ctrl);
2294 
2295         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2296                           dev->name, priv);
2297         if (ret < 0) {
2298                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2299                 goto err_fini_dma;
2300         }
2301 
2302         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2303                           dev->name, priv);
2304         if (ret < 0) {
2305                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2306                 goto err_irq0;
2307         }
2308 
2309         /* Re-configure the port multiplexer towards the PHY device */
2310         bcmgenet_mii_config(priv->dev, false);
2311 
2312         phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2313                            priv->phy_interface);
2314 
2315         bcmgenet_netif_start(dev);
2316 
2317         return 0;
2318 
2319 err_irq0:
2320         free_irq(priv->irq0, dev);
2321 err_fini_dma:
2322         bcmgenet_fini_dma(priv);
2323 err_clk_disable:
2324         if (!IS_ERR(priv->clk))
2325                 clk_disable_unprepare(priv->clk);
2326         return ret;
2327 }
2328 
2329 static void bcmgenet_netif_stop(struct net_device *dev)
2330 {
2331         struct bcmgenet_priv *priv = netdev_priv(dev);
2332 
2333         netif_tx_stop_all_queues(dev);
2334         napi_disable(&priv->napi);
2335         phy_stop(priv->phydev);
2336 
2337         bcmgenet_intr_disable(priv);
2338 
2339         /* Wait for pending work items to complete. Since interrupts are
2340          * disabled no new work will be scheduled.
2341          */
2342         cancel_work_sync(&priv->bcmgenet_irq_work);
2343 
2344         priv->old_link = -1;
2345         priv->old_speed = -1;
2346         priv->old_duplex = -1;
2347         priv->old_pause = -1;
2348 }
2349 
2350 static int bcmgenet_close(struct net_device *dev)
2351 {
2352         struct bcmgenet_priv *priv = netdev_priv(dev);
2353         int ret;
2354 
2355         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2356 
2357         bcmgenet_netif_stop(dev);
2358 
2359         /* Really kill the PHY state machine and disconnect from it */
2360         phy_disconnect(priv->phydev);
2361 
2362         /* Disable MAC receive */
2363         umac_enable_set(priv, CMD_RX_EN, false);
2364 
2365         ret = bcmgenet_dma_teardown(priv);
2366         if (ret)
2367                 return ret;
2368 
2369         /* Disable MAC transmit. TX DMA disabled have to done before this */
2370         umac_enable_set(priv, CMD_TX_EN, false);
2371 
2372         /* tx reclaim */
2373         bcmgenet_tx_reclaim_all(dev);
2374         bcmgenet_fini_dma(priv);
2375 
2376         free_irq(priv->irq0, priv);
2377         free_irq(priv->irq1, priv);
2378 
2379         if (phy_is_internal(priv->phydev))
2380                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2381 
2382         if (!IS_ERR(priv->clk))
2383                 clk_disable_unprepare(priv->clk);
2384 
2385         return 0;
2386 }
2387 
2388 static void bcmgenet_timeout(struct net_device *dev)
2389 {
2390         struct bcmgenet_priv *priv = netdev_priv(dev);
2391 
2392         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2393 
2394         dev->trans_start = jiffies;
2395 
2396         dev->stats.tx_errors++;
2397 
2398         netif_tx_wake_all_queues(dev);
2399 }
2400 
2401 #define MAX_MC_COUNT    16
2402 
2403 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2404                                          unsigned char *addr,
2405                                          int *i,
2406                                          int *mc)
2407 {
2408         u32 reg;
2409 
2410         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2411                              UMAC_MDF_ADDR + (*i * 4));
2412         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2413                              addr[4] << 8 | addr[5],
2414                              UMAC_MDF_ADDR + ((*i + 1) * 4));
2415         reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2416         reg |= (1 << (MAX_MC_COUNT - *mc));
2417         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2418         *i += 2;
2419         (*mc)++;
2420 }
2421 
2422 static void bcmgenet_set_rx_mode(struct net_device *dev)
2423 {
2424         struct bcmgenet_priv *priv = netdev_priv(dev);
2425         struct netdev_hw_addr *ha;
2426         int i, mc;
2427         u32 reg;
2428 
2429         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2430 
2431         /* Promiscuous mode */
2432         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2433         if (dev->flags & IFF_PROMISC) {
2434                 reg |= CMD_PROMISC;
2435                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2436                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2437                 return;
2438         } else {
2439                 reg &= ~CMD_PROMISC;
2440                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2441         }
2442 
2443         /* UniMac doesn't support ALLMULTI */
2444         if (dev->flags & IFF_ALLMULTI) {
2445                 netdev_warn(dev, "ALLMULTI is not supported\n");
2446                 return;
2447         }
2448 
2449         /* update MDF filter */
2450         i = 0;
2451         mc = 0;
2452         /* Broadcast */
2453         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2454         /* my own address.*/
2455         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2456         /* Unicast list*/
2457         if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2458                 return;
2459 
2460         if (!netdev_uc_empty(dev))
2461                 netdev_for_each_uc_addr(ha, dev)
2462                         bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2463         /* Multicast */
2464         if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2465                 return;
2466 
2467         netdev_for_each_mc_addr(ha, dev)
2468                 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2469 }
2470 
2471 /* Set the hardware MAC address. */
2472 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2473 {
2474         struct sockaddr *addr = p;
2475 
2476         /* Setting the MAC address at the hardware level is not possible
2477          * without disabling the UniMAC RX/TX enable bits.
2478          */
2479         if (netif_running(dev))
2480                 return -EBUSY;
2481 
2482         ether_addr_copy(dev->dev_addr, addr->sa_data);
2483 
2484         return 0;
2485 }
2486 
2487 static const struct net_device_ops bcmgenet_netdev_ops = {
2488         .ndo_open               = bcmgenet_open,
2489         .ndo_stop               = bcmgenet_close,
2490         .ndo_start_xmit         = bcmgenet_xmit,
2491         .ndo_tx_timeout         = bcmgenet_timeout,
2492         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
2493         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
2494         .ndo_do_ioctl           = bcmgenet_ioctl,
2495         .ndo_set_features       = bcmgenet_set_features,
2496 };
2497 
2498 /* Array of GENET hardware parameters/characteristics */
2499 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2500         [GENET_V1] = {
2501                 .tx_queues = 0,
2502                 .rx_queues = 0,
2503                 .bds_cnt = 0,
2504                 .bp_in_en_shift = 16,
2505                 .bp_in_mask = 0xffff,
2506                 .hfb_filter_cnt = 16,
2507                 .qtag_mask = 0x1F,
2508                 .hfb_offset = 0x1000,
2509                 .rdma_offset = 0x2000,
2510                 .tdma_offset = 0x3000,
2511                 .words_per_bd = 2,
2512         },
2513         [GENET_V2] = {
2514                 .tx_queues = 4,
2515                 .rx_queues = 4,
2516                 .bds_cnt = 32,
2517                 .bp_in_en_shift = 16,
2518                 .bp_in_mask = 0xffff,
2519                 .hfb_filter_cnt = 16,
2520                 .qtag_mask = 0x1F,
2521                 .tbuf_offset = 0x0600,
2522                 .hfb_offset = 0x1000,
2523                 .hfb_reg_offset = 0x2000,
2524                 .rdma_offset = 0x3000,
2525                 .tdma_offset = 0x4000,
2526                 .words_per_bd = 2,
2527                 .flags = GENET_HAS_EXT,
2528         },
2529         [GENET_V3] = {
2530                 .tx_queues = 4,
2531                 .rx_queues = 4,
2532                 .bds_cnt = 32,
2533                 .bp_in_en_shift = 17,
2534                 .bp_in_mask = 0x1ffff,
2535                 .hfb_filter_cnt = 48,
2536                 .qtag_mask = 0x3F,
2537                 .tbuf_offset = 0x0600,
2538                 .hfb_offset = 0x8000,
2539                 .hfb_reg_offset = 0xfc00,
2540                 .rdma_offset = 0x10000,
2541                 .tdma_offset = 0x11000,
2542                 .words_per_bd = 2,
2543                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2544         },
2545         [GENET_V4] = {
2546                 .tx_queues = 4,
2547                 .rx_queues = 4,
2548                 .bds_cnt = 32,
2549                 .bp_in_en_shift = 17,
2550                 .bp_in_mask = 0x1ffff,
2551                 .hfb_filter_cnt = 48,
2552                 .qtag_mask = 0x3F,
2553                 .tbuf_offset = 0x0600,
2554                 .hfb_offset = 0x8000,
2555                 .hfb_reg_offset = 0xfc00,
2556                 .rdma_offset = 0x2000,
2557                 .tdma_offset = 0x4000,
2558                 .words_per_bd = 3,
2559                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2560         },
2561 };
2562 
2563 /* Infer hardware parameters from the detected GENET version */
2564 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2565 {
2566         struct bcmgenet_hw_params *params;
2567         u32 reg;
2568         u8 major;
2569         u16 gphy_rev;
2570 
2571         if (GENET_IS_V4(priv)) {
2572                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2573                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
2574                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2575                 priv->version = GENET_V4;
2576         } else if (GENET_IS_V3(priv)) {
2577                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2578                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2579                 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2580                 priv->version = GENET_V3;
2581         } else if (GENET_IS_V2(priv)) {
2582                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2583                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2584                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2585                 priv->version = GENET_V2;
2586         } else if (GENET_IS_V1(priv)) {
2587                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2588                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2589                 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2590                 priv->version = GENET_V1;
2591         }
2592 
2593         /* enum genet_version starts at 1 */
2594         priv->hw_params = &bcmgenet_hw_params[priv->version];
2595         params = priv->hw_params;
2596 
2597         /* Read GENET HW version */
2598         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2599         major = (reg >> 24 & 0x0f);
2600         if (major == 5)
2601                 major = 4;
2602         else if (major == 0)
2603                 major = 1;
2604         if (major != priv->version) {
2605                 dev_err(&priv->pdev->dev,
2606                         "GENET version mismatch, got: %d, configured for: %d\n",
2607                         major, priv->version);
2608         }
2609 
2610         /* Print the GENET core version */
2611         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2612                  major, (reg >> 16) & 0x0f, reg & 0xffff);
2613 
2614         /* Store the integrated PHY revision for the MDIO probing function
2615          * to pass this information to the PHY driver. The PHY driver expects
2616          * to find the PHY major revision in bits 15:8 while the GENET register
2617          * stores that information in bits 7:0, account for that.
2618          *
2619          * On newer chips, starting with PHY revision G0, a new scheme is
2620          * deployed similar to the Starfighter 2 switch with GPHY major
2621          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2622          * is reserved as well as special value 0x01ff, we have a small
2623          * heuristic to check for the new GPHY revision and re-arrange things
2624          * so the GPHY driver is happy.
2625          */
2626         gphy_rev = reg & 0xffff;
2627 
2628         /* This is the good old scheme, just GPHY major, no minor nor patch */
2629         if ((gphy_rev & 0xf0) != 0)
2630                 priv->gphy_rev = gphy_rev << 8;
2631 
2632         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2633         else if ((gphy_rev & 0xff00) != 0)
2634                 priv->gphy_rev = gphy_rev;
2635 
2636         /* This is reserved so should require special treatment */
2637         else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2638                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2639                 return;
2640         }
2641 
2642 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2643         if (!(params->flags & GENET_HAS_40BITS))
2644                 pr_warn("GENET does not support 40-bits PA\n");
2645 #endif
2646 
2647         pr_debug("Configuration for version: %d\n"
2648                 "TXq: %1d, RXq: %1d, BDs: %1d\n"
2649                 "BP << en: %2d, BP msk: 0x%05x\n"
2650                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
2651                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2652                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
2653                 "Words/BD: %d\n",
2654                 priv->version,
2655                 params->tx_queues, params->rx_queues, params->bds_cnt,
2656                 params->bp_in_en_shift, params->bp_in_mask,
2657                 params->hfb_filter_cnt, params->qtag_mask,
2658                 params->tbuf_offset, params->hfb_offset,
2659                 params->hfb_reg_offset,
2660                 params->rdma_offset, params->tdma_offset,
2661                 params->words_per_bd);
2662 }
2663 
2664 static const struct of_device_id bcmgenet_match[] = {
2665         { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2666         { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2667         { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2668         { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2669         { },
2670 };
2671 
2672 static int bcmgenet_probe(struct platform_device *pdev)
2673 {
2674         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2675         struct device_node *dn = pdev->dev.of_node;
2676         const struct of_device_id *of_id = NULL;
2677         struct bcmgenet_priv *priv;
2678         struct net_device *dev;
2679         const void *macaddr;
2680         struct resource *r;
2681         int err = -EIO;
2682 
2683         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2684         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2685         if (!dev) {
2686                 dev_err(&pdev->dev, "can't allocate net device\n");
2687                 return -ENOMEM;
2688         }
2689 
2690         if (dn) {
2691                 of_id = of_match_node(bcmgenet_match, dn);
2692                 if (!of_id)
2693                         return -EINVAL;
2694         }
2695 
2696         priv = netdev_priv(dev);
2697         priv->irq0 = platform_get_irq(pdev, 0);
2698         priv->irq1 = platform_get_irq(pdev, 1);
2699         priv->wol_irq = platform_get_irq(pdev, 2);
2700         if (!priv->irq0 || !priv->irq1) {
2701                 dev_err(&pdev->dev, "can't find IRQs\n");
2702                 err = -EINVAL;
2703                 goto err;
2704         }
2705 
2706         if (dn) {
2707                 macaddr = of_get_mac_address(dn);
2708                 if (!macaddr) {
2709                         dev_err(&pdev->dev, "can't find MAC address\n");
2710                         err = -EINVAL;
2711                         goto err;
2712                 }
2713         } else {
2714                 macaddr = pd->mac_address;
2715         }
2716 
2717         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2718         priv->base = devm_ioremap_resource(&pdev->dev, r);
2719         if (IS_ERR(priv->base)) {
2720                 err = PTR_ERR(priv->base);
2721                 goto err;
2722         }
2723 
2724         SET_NETDEV_DEV(dev, &pdev->dev);
2725         dev_set_drvdata(&pdev->dev, dev);
2726         ether_addr_copy(dev->dev_addr, macaddr);
2727         dev->watchdog_timeo = 2 * HZ;
2728         dev->ethtool_ops = &bcmgenet_ethtool_ops;
2729         dev->netdev_ops = &bcmgenet_netdev_ops;
2730         netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2731 
2732         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2733 
2734         /* Set hardware features */
2735         dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2736                 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2737 
2738         /* Request the WOL interrupt and advertise suspend if available */
2739         priv->wol_irq_disabled = true;
2740         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2741                                dev->name, priv);
2742         if (!err)
2743                 device_set_wakeup_capable(&pdev->dev, 1);
2744 
2745         /* Set the needed headroom to account for any possible
2746          * features enabling/disabling at runtime
2747          */
2748         dev->needed_headroom += 64;
2749 
2750         netdev_boot_setup_check(dev);
2751 
2752         priv->dev = dev;
2753         priv->pdev = pdev;
2754         if (of_id)
2755                 priv->version = (enum bcmgenet_version)of_id->data;
2756         else
2757                 priv->version = pd->genet_version;
2758 
2759         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2760         if (IS_ERR(priv->clk))
2761                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2762 
2763         if (!IS_ERR(priv->clk))
2764                 clk_prepare_enable(priv->clk);
2765 
2766         bcmgenet_set_hw_params(priv);
2767 
2768         /* Mii wait queue */
2769         init_waitqueue_head(&priv->wq);
2770         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2771         priv->rx_buf_len = RX_BUF_LENGTH;
2772         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2773 
2774         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2775         if (IS_ERR(priv->clk_wol))
2776                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2777 
2778         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2779         if (IS_ERR(priv->clk_eee)) {
2780                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2781                 priv->clk_eee = NULL;
2782         }
2783 
2784         err = reset_umac(priv);
2785         if (err)
2786                 goto err_clk_disable;
2787 
2788         err = bcmgenet_mii_init(dev);
2789         if (err)
2790                 goto err_clk_disable;
2791 
2792         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2793          * just the ring 16 descriptor based TX
2794          */
2795         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2796         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2797 
2798         /* libphy will determine the link state */
2799         netif_carrier_off(dev);
2800 
2801         /* Turn off the main clock, WOL clock is handled separately */
2802         if (!IS_ERR(priv->clk))
2803                 clk_disable_unprepare(priv->clk);
2804 
2805         err = register_netdev(dev);
2806         if (err)
2807                 goto err;
2808 
2809         return err;
2810 
2811 err_clk_disable:
2812         if (!IS_ERR(priv->clk))
2813                 clk_disable_unprepare(priv->clk);
2814 err:
2815         free_netdev(dev);
2816         return err;
2817 }
2818 
2819 static int bcmgenet_remove(struct platform_device *pdev)
2820 {
2821         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2822 
2823         dev_set_drvdata(&pdev->dev, NULL);
2824         unregister_netdev(priv->dev);
2825         bcmgenet_mii_exit(priv->dev);
2826         free_netdev(priv->dev);
2827 
2828         return 0;
2829 }
2830 
2831 #ifdef CONFIG_PM_SLEEP
2832 static int bcmgenet_suspend(struct device *d)
2833 {
2834         struct net_device *dev = dev_get_drvdata(d);
2835         struct bcmgenet_priv *priv = netdev_priv(dev);
2836         int ret;
2837 
2838         if (!netif_running(dev))
2839                 return 0;
2840 
2841         bcmgenet_netif_stop(dev);
2842 
2843         phy_suspend(priv->phydev);
2844 
2845         netif_device_detach(dev);
2846 
2847         /* Disable MAC receive */
2848         umac_enable_set(priv, CMD_RX_EN, false);
2849 
2850         ret = bcmgenet_dma_teardown(priv);
2851         if (ret)
2852                 return ret;
2853 
2854         /* Disable MAC transmit. TX DMA disabled have to done before this */
2855         umac_enable_set(priv, CMD_TX_EN, false);
2856 
2857         /* tx reclaim */
2858         bcmgenet_tx_reclaim_all(dev);
2859         bcmgenet_fini_dma(priv);
2860 
2861         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
2862         if (device_may_wakeup(d) && priv->wolopts) {
2863                 bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2864                 clk_prepare_enable(priv->clk_wol);
2865         }
2866 
2867         /* Turn off the clocks */
2868         clk_disable_unprepare(priv->clk);
2869 
2870         return 0;
2871 }
2872 
2873 static int bcmgenet_resume(struct device *d)
2874 {
2875         struct net_device *dev = dev_get_drvdata(d);
2876         struct bcmgenet_priv *priv = netdev_priv(dev);
2877         unsigned long dma_ctrl;
2878         int ret;
2879         u32 reg;
2880 
2881         if (!netif_running(dev))
2882                 return 0;
2883 
2884         /* Turn on the clock */
2885         ret = clk_prepare_enable(priv->clk);
2886         if (ret)
2887                 return ret;
2888 
2889         bcmgenet_umac_reset(priv);
2890 
2891         ret = init_umac(priv);
2892         if (ret)
2893                 goto out_clk_disable;
2894 
2895         /* From WOL-enabled suspend, switch to regular clock */
2896         if (priv->wolopts)
2897                 clk_disable_unprepare(priv->clk_wol);
2898 
2899         phy_init_hw(priv->phydev);
2900         /* Speed settings must be restored */
2901         bcmgenet_mii_config(priv->dev, false);
2902 
2903         /* disable ethernet MAC while updating its registers */
2904         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2905 
2906         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2907 
2908         if (phy_is_internal(priv->phydev)) {
2909                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2910                 reg |= EXT_ENERGY_DET_MASK;
2911                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2912         }
2913 
2914         if (priv->wolopts)
2915                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2916 
2917         /* Disable RX/TX DMA and flush TX queues */
2918         dma_ctrl = bcmgenet_dma_disable(priv);
2919 
2920         /* Reinitialize TDMA and RDMA and SW housekeeping */
2921         ret = bcmgenet_init_dma(priv);
2922         if (ret) {
2923                 netdev_err(dev, "failed to initialize DMA\n");
2924                 goto out_clk_disable;
2925         }
2926 
2927         /* Always enable ring 16 - descriptor ring */
2928         bcmgenet_enable_dma(priv, dma_ctrl);
2929 
2930         netif_device_attach(dev);
2931 
2932         phy_resume(priv->phydev);
2933 
2934         if (priv->eee.eee_enabled)
2935                 bcmgenet_eee_enable_set(dev, true);
2936 
2937         bcmgenet_netif_start(dev);
2938 
2939         return 0;
2940 
2941 out_clk_disable:
2942         clk_disable_unprepare(priv->clk);
2943         return ret;
2944 }
2945 #endif /* CONFIG_PM_SLEEP */
2946 
2947 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2948 
2949 static struct platform_driver bcmgenet_driver = {
2950         .probe  = bcmgenet_probe,
2951         .remove = bcmgenet_remove,
2952         .driver = {
2953                 .name   = "bcmgenet",
2954                 .of_match_table = bcmgenet_match,
2955                 .pm     = &bcmgenet_pm_ops,
2956         },
2957 };
2958 module_platform_driver(bcmgenet_driver);
2959 
2960 MODULE_AUTHOR("Broadcom Corporation");
2961 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2962 MODULE_ALIAS("platform:bcmgenet");
2963 MODULE_LICENSE("GPL");
2964 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us