Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4

Linux/drivers/net/ethernet/broadcom/bcm63xx_enet.c

  1 /*
  2  * Driver for BCM963xx builtin Ethernet mac
  3  *
  4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
  5  *
  6  * This program is free software; you can redistribute it and/or modify
  7  * it under the terms of the GNU General Public License as published by
  8  * the Free Software Foundation; either version 2 of the License, or
  9  * (at your option) any later version.
 10  *
 11  * This program is distributed in the hope that it will be useful,
 12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14  * GNU General Public License for more details.
 15  *
 16  * You should have received a copy of the GNU General Public License
 17  * along with this program; if not, write to the Free Software
 18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19  */
 20 #include <linux/init.h>
 21 #include <linux/interrupt.h>
 22 #include <linux/module.h>
 23 #include <linux/clk.h>
 24 #include <linux/etherdevice.h>
 25 #include <linux/slab.h>
 26 #include <linux/delay.h>
 27 #include <linux/ethtool.h>
 28 #include <linux/crc32.h>
 29 #include <linux/err.h>
 30 #include <linux/dma-mapping.h>
 31 #include <linux/platform_device.h>
 32 #include <linux/if_vlan.h>
 33 
 34 #include <bcm63xx_dev_enet.h>
 35 #include "bcm63xx_enet.h"
 36 
 37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
 38 static char bcm_enet_driver_version[] = "1.0";
 39 
 40 static int copybreak __read_mostly = 128;
 41 module_param(copybreak, int, 0);
 42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
 43 
 44 /* io registers memory shared between all devices */
 45 static void __iomem *bcm_enet_shared_base[3];
 46 
 47 /*
 48  * io helpers to access mac registers
 49  */
 50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
 51 {
 52         return bcm_readl(priv->base + off);
 53 }
 54 
 55 static inline void enet_writel(struct bcm_enet_priv *priv,
 56                                u32 val, u32 off)
 57 {
 58         bcm_writel(val, priv->base + off);
 59 }
 60 
 61 /*
 62  * io helpers to access switch registers
 63  */
 64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
 65 {
 66         return bcm_readl(priv->base + off);
 67 }
 68 
 69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
 70                                  u32 val, u32 off)
 71 {
 72         bcm_writel(val, priv->base + off);
 73 }
 74 
 75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
 76 {
 77         return bcm_readw(priv->base + off);
 78 }
 79 
 80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
 81                                  u16 val, u32 off)
 82 {
 83         bcm_writew(val, priv->base + off);
 84 }
 85 
 86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
 87 {
 88         return bcm_readb(priv->base + off);
 89 }
 90 
 91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
 92                                  u8 val, u32 off)
 93 {
 94         bcm_writeb(val, priv->base + off);
 95 }
 96 
 97 
 98 /* io helpers to access shared registers */
 99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101         return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105                                        u32 val, u32 off)
106 {
107         bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112         return bcm_readl(bcm_enet_shared_base[1] +
113                 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117                                        u32 val, u32 off, int chan)
118 {
119         bcm_writel(val, bcm_enet_shared_base[1] +
120                 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125         return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129                                        u32 val, u32 off, int chan)
130 {
131         bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140         int limit;
141 
142         /* make sure mii interrupt status is cleared */
143         enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145         enet_writel(priv, data, ENET_MIIDATA_REG);
146         wmb();
147 
148         /* busy wait on mii interrupt bit, with timeout */
149         limit = 1000;
150         do {
151                 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152                         break;
153                 udelay(1);
154         } while (limit-- > 0);
155 
156         return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163                               int regnum)
164 {
165         u32 tmp, val;
166 
167         tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168         tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169         tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170         tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172         if (do_mdio_op(priv, tmp))
173                 return -1;
174 
175         val = enet_readl(priv, ENET_MIIDATA_REG);
176         val &= 0xffff;
177         return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184                                int regnum, u16 value)
185 {
186         u32 tmp;
187 
188         tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189         tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190         tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191         tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192         tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194         (void)do_mdio_op(priv, tmp);
195         return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202                                      int regnum)
203 {
204         return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211                                       int regnum, u16 value)
212 {
213         return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220                                   int regnum)
221 {
222         return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229                                     int regnum, int value)
230 {
231         bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239         struct bcm_enet_priv *priv;
240 
241         priv = netdev_priv(dev);
242 
243         while (priv->rx_desc_count < priv->rx_ring_size) {
244                 struct bcm_enet_desc *desc;
245                 struct sk_buff *skb;
246                 dma_addr_t p;
247                 int desc_idx;
248                 u32 len_stat;
249 
250                 desc_idx = priv->rx_dirty_desc;
251                 desc = &priv->rx_desc_cpu[desc_idx];
252 
253                 if (!priv->rx_skb[desc_idx]) {
254                         skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255                         if (!skb)
256                                 break;
257                         priv->rx_skb[desc_idx] = skb;
258                         p = dma_map_single(&priv->pdev->dev, skb->data,
259                                            priv->rx_skb_size,
260                                            DMA_FROM_DEVICE);
261                         desc->address = p;
262                 }
263 
264                 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265                 len_stat |= DMADESC_OWNER_MASK;
266                 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267                         len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268                         priv->rx_dirty_desc = 0;
269                 } else {
270                         priv->rx_dirty_desc++;
271                 }
272                 wmb();
273                 desc->len_stat = len_stat;
274 
275                 priv->rx_desc_count++;
276 
277                 /* tell dma engine we allocated one buffer */
278                 if (priv->dma_has_sram)
279                         enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280                 else
281                         enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282         }
283 
284         /* If rx ring is still empty, set a timer to try allocating
285          * again at a later time. */
286         if (priv->rx_desc_count == 0 && netif_running(dev)) {
287                 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288                 priv->rx_timeout.expires = jiffies + HZ;
289                 add_timer(&priv->rx_timeout);
290         }
291 
292         return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300         struct net_device *dev;
301         struct bcm_enet_priv *priv;
302 
303         dev = (struct net_device *)data;
304         priv = netdev_priv(dev);
305 
306         spin_lock(&priv->rx_lock);
307         bcm_enet_refill_rx((struct net_device *)data);
308         spin_unlock(&priv->rx_lock);
309 }
310 
311 /*
312  * extract packet from rx queue
313  */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316         struct bcm_enet_priv *priv;
317         struct device *kdev;
318         int processed;
319 
320         priv = netdev_priv(dev);
321         kdev = &priv->pdev->dev;
322         processed = 0;
323 
324         /* don't scan ring further than number of refilled
325          * descriptor */
326         if (budget > priv->rx_desc_count)
327                 budget = priv->rx_desc_count;
328 
329         do {
330                 struct bcm_enet_desc *desc;
331                 struct sk_buff *skb;
332                 int desc_idx;
333                 u32 len_stat;
334                 unsigned int len;
335 
336                 desc_idx = priv->rx_curr_desc;
337                 desc = &priv->rx_desc_cpu[desc_idx];
338 
339                 /* make sure we actually read the descriptor status at
340                  * each loop */
341                 rmb();
342 
343                 len_stat = desc->len_stat;
344 
345                 /* break if dma ownership belongs to hw */
346                 if (len_stat & DMADESC_OWNER_MASK)
347                         break;
348 
349                 processed++;
350                 priv->rx_curr_desc++;
351                 if (priv->rx_curr_desc == priv->rx_ring_size)
352                         priv->rx_curr_desc = 0;
353                 priv->rx_desc_count--;
354 
355                 /* if the packet does not have start of packet _and_
356                  * end of packet flag set, then just recycle it */
357                 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358                         (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359                         dev->stats.rx_dropped++;
360                         continue;
361                 }
362 
363                 /* recycle packet if it's marked as bad */
364                 if (!priv->enet_is_sw &&
365                     unlikely(len_stat & DMADESC_ERR_MASK)) {
366                         dev->stats.rx_errors++;
367 
368                         if (len_stat & DMADESC_OVSIZE_MASK)
369                                 dev->stats.rx_length_errors++;
370                         if (len_stat & DMADESC_CRC_MASK)
371                                 dev->stats.rx_crc_errors++;
372                         if (len_stat & DMADESC_UNDER_MASK)
373                                 dev->stats.rx_frame_errors++;
374                         if (len_stat & DMADESC_OV_MASK)
375                                 dev->stats.rx_fifo_errors++;
376                         continue;
377                 }
378 
379                 /* valid packet */
380                 skb = priv->rx_skb[desc_idx];
381                 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382                 /* don't include FCS */
383                 len -= 4;
384 
385                 if (len < copybreak) {
386                         struct sk_buff *nskb;
387 
388                         nskb = napi_alloc_skb(&priv->napi, len);
389                         if (!nskb) {
390                                 /* forget packet, just rearm desc */
391                                 dev->stats.rx_dropped++;
392                                 continue;
393                         }
394 
395                         dma_sync_single_for_cpu(kdev, desc->address,
396                                                 len, DMA_FROM_DEVICE);
397                         memcpy(nskb->data, skb->data, len);
398                         dma_sync_single_for_device(kdev, desc->address,
399                                                    len, DMA_FROM_DEVICE);
400                         skb = nskb;
401                 } else {
402                         dma_unmap_single(&priv->pdev->dev, desc->address,
403                                          priv->rx_skb_size, DMA_FROM_DEVICE);
404                         priv->rx_skb[desc_idx] = NULL;
405                 }
406 
407                 skb_put(skb, len);
408                 skb->protocol = eth_type_trans(skb, dev);
409                 dev->stats.rx_packets++;
410                 dev->stats.rx_bytes += len;
411                 netif_receive_skb(skb);
412 
413         } while (--budget > 0);
414 
415         if (processed || !priv->rx_desc_count) {
416                 bcm_enet_refill_rx(dev);
417 
418                 /* kick rx dma */
419                 enet_dmac_writel(priv, priv->dma_chan_en_mask,
420                                          ENETDMAC_CHANCFG, priv->rx_chan);
421         }
422 
423         return processed;
424 }
425 
426 
427 /*
428  * try to or force reclaim of transmitted buffers
429  */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432         struct bcm_enet_priv *priv;
433         int released;
434 
435         priv = netdev_priv(dev);
436         released = 0;
437 
438         while (priv->tx_desc_count < priv->tx_ring_size) {
439                 struct bcm_enet_desc *desc;
440                 struct sk_buff *skb;
441 
442                 /* We run in a bh and fight against start_xmit, which
443                  * is called with bh disabled  */
444                 spin_lock(&priv->tx_lock);
445 
446                 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447 
448                 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449                         spin_unlock(&priv->tx_lock);
450                         break;
451                 }
452 
453                 /* ensure other field of the descriptor were not read
454                  * before we checked ownership */
455                 rmb();
456 
457                 skb = priv->tx_skb[priv->tx_dirty_desc];
458                 priv->tx_skb[priv->tx_dirty_desc] = NULL;
459                 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460                                  DMA_TO_DEVICE);
461 
462                 priv->tx_dirty_desc++;
463                 if (priv->tx_dirty_desc == priv->tx_ring_size)
464                         priv->tx_dirty_desc = 0;
465                 priv->tx_desc_count++;
466 
467                 spin_unlock(&priv->tx_lock);
468 
469                 if (desc->len_stat & DMADESC_UNDER_MASK)
470                         dev->stats.tx_errors++;
471 
472                 dev_kfree_skb(skb);
473                 released++;
474         }
475 
476         if (netif_queue_stopped(dev) && released)
477                 netif_wake_queue(dev);
478 
479         return released;
480 }
481 
482 /*
483  * poll func, called by network core
484  */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487         struct bcm_enet_priv *priv;
488         struct net_device *dev;
489         int rx_work_done;
490 
491         priv = container_of(napi, struct bcm_enet_priv, napi);
492         dev = priv->net_dev;
493 
494         /* ack interrupts */
495         enet_dmac_writel(priv, priv->dma_chan_int_mask,
496                          ENETDMAC_IR, priv->rx_chan);
497         enet_dmac_writel(priv, priv->dma_chan_int_mask,
498                          ENETDMAC_IR, priv->tx_chan);
499 
500         /* reclaim sent skb */
501         bcm_enet_tx_reclaim(dev, 0);
502 
503         spin_lock(&priv->rx_lock);
504         rx_work_done = bcm_enet_receive_queue(dev, budget);
505         spin_unlock(&priv->rx_lock);
506 
507         if (rx_work_done >= budget) {
508                 /* rx queue is not yet empty/clean */
509                 return rx_work_done;
510         }
511 
512         /* no more packet in rx/tx queue, remove device from poll
513          * queue */
514         napi_complete(napi);
515 
516         /* restore rx/tx interrupt */
517         enet_dmac_writel(priv, priv->dma_chan_int_mask,
518                          ENETDMAC_IRMASK, priv->rx_chan);
519         enet_dmac_writel(priv, priv->dma_chan_int_mask,
520                          ENETDMAC_IRMASK, priv->tx_chan);
521 
522         return rx_work_done;
523 }
524 
525 /*
526  * mac interrupt handler
527  */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530         struct net_device *dev;
531         struct bcm_enet_priv *priv;
532         u32 stat;
533 
534         dev = dev_id;
535         priv = netdev_priv(dev);
536 
537         stat = enet_readl(priv, ENET_IR_REG);
538         if (!(stat & ENET_IR_MIB))
539                 return IRQ_NONE;
540 
541         /* clear & mask interrupt */
542         enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543         enet_writel(priv, 0, ENET_IRMASK_REG);
544 
545         /* read mib registers in workqueue */
546         schedule_work(&priv->mib_update_task);
547 
548         return IRQ_HANDLED;
549 }
550 
551 /*
552  * rx/tx dma interrupt handler
553  */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556         struct net_device *dev;
557         struct bcm_enet_priv *priv;
558 
559         dev = dev_id;
560         priv = netdev_priv(dev);
561 
562         /* mask rx/tx interrupts */
563         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565 
566         napi_schedule(&priv->napi);
567 
568         return IRQ_HANDLED;
569 }
570 
571 /*
572  * tx request callback
573  */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576         struct bcm_enet_priv *priv;
577         struct bcm_enet_desc *desc;
578         u32 len_stat;
579         int ret;
580 
581         priv = netdev_priv(dev);
582 
583         /* lock against tx reclaim */
584         spin_lock(&priv->tx_lock);
585 
586         /* make sure  the tx hw queue  is not full,  should not happen
587          * since we stop queue before it's the case */
588         if (unlikely(!priv->tx_desc_count)) {
589                 netif_stop_queue(dev);
590                 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591                         "available?\n");
592                 ret = NETDEV_TX_BUSY;
593                 goto out_unlock;
594         }
595 
596         /* pad small packets sent on a switch device */
597         if (priv->enet_is_sw && skb->len < 64) {
598                 int needed = 64 - skb->len;
599                 char *data;
600 
601                 if (unlikely(skb_tailroom(skb) < needed)) {
602                         struct sk_buff *nskb;
603 
604                         nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605                         if (!nskb) {
606                                 ret = NETDEV_TX_BUSY;
607                                 goto out_unlock;
608                         }
609                         dev_kfree_skb(skb);
610                         skb = nskb;
611                 }
612                 data = skb_put(skb, needed);
613                 memset(data, 0, needed);
614         }
615 
616         /* point to the next available desc */
617         desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618         priv->tx_skb[priv->tx_curr_desc] = skb;
619 
620         /* fill descriptor */
621         desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622                                        DMA_TO_DEVICE);
623 
624         len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625         len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626                 DMADESC_APPEND_CRC |
627                 DMADESC_OWNER_MASK;
628 
629         priv->tx_curr_desc++;
630         if (priv->tx_curr_desc == priv->tx_ring_size) {
631                 priv->tx_curr_desc = 0;
632                 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633         }
634         priv->tx_desc_count--;
635 
636         /* dma might be already polling, make sure we update desc
637          * fields in correct order */
638         wmb();
639         desc->len_stat = len_stat;
640         wmb();
641 
642         /* kick tx dma */
643         enet_dmac_writel(priv, priv->dma_chan_en_mask,
644                                  ENETDMAC_CHANCFG, priv->tx_chan);
645 
646         /* stop queue if no more desc available */
647         if (!priv->tx_desc_count)
648                 netif_stop_queue(dev);
649 
650         dev->stats.tx_bytes += skb->len;
651         dev->stats.tx_packets++;
652         ret = NETDEV_TX_OK;
653 
654 out_unlock:
655         spin_unlock(&priv->tx_lock);
656         return ret;
657 }
658 
659 /*
660  * Change the interface's mac address.
661  */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664         struct bcm_enet_priv *priv;
665         struct sockaddr *addr = p;
666         u32 val;
667 
668         priv = netdev_priv(dev);
669         memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670 
671         /* use perfect match register 0 to store my mac address */
672         val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673                 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
674         enet_writel(priv, val, ENET_PML_REG(0));
675 
676         val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677         val |= ENET_PMH_DATAVALID_MASK;
678         enet_writel(priv, val, ENET_PMH_REG(0));
679 
680         return 0;
681 }
682 
683 /*
684  * Change rx mode (promiscuous/allmulti) and update multicast list
685  */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688         struct bcm_enet_priv *priv;
689         struct netdev_hw_addr *ha;
690         u32 val;
691         int i;
692 
693         priv = netdev_priv(dev);
694 
695         val = enet_readl(priv, ENET_RXCFG_REG);
696 
697         if (dev->flags & IFF_PROMISC)
698                 val |= ENET_RXCFG_PROMISC_MASK;
699         else
700                 val &= ~ENET_RXCFG_PROMISC_MASK;
701 
702         /* only 3 perfect match registers left, first one is used for
703          * own mac address */
704         if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705                 val |= ENET_RXCFG_ALLMCAST_MASK;
706         else
707                 val &= ~ENET_RXCFG_ALLMCAST_MASK;
708 
709         /* no need to set perfect match registers if we catch all
710          * multicast */
711         if (val & ENET_RXCFG_ALLMCAST_MASK) {
712                 enet_writel(priv, val, ENET_RXCFG_REG);
713                 return;
714         }
715 
716         i = 0;
717         netdev_for_each_mc_addr(ha, dev) {
718                 u8 *dmi_addr;
719                 u32 tmp;
720 
721                 if (i == 3)
722                         break;
723                 /* update perfect match registers */
724                 dmi_addr = ha->addr;
725                 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726                         (dmi_addr[4] << 8) | dmi_addr[5];
727                 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728 
729                 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730                 tmp |= ENET_PMH_DATAVALID_MASK;
731                 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732         }
733 
734         for (; i < 3; i++) {
735                 enet_writel(priv, 0, ENET_PML_REG(i + 1));
736                 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737         }
738 
739         enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741 
742 /*
743  * set mac duplex parameters
744  */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747         u32 val;
748 
749         val = enet_readl(priv, ENET_TXCTL_REG);
750         if (fullduplex)
751                 val |= ENET_TXCTL_FD_MASK;
752         else
753                 val &= ~ENET_TXCTL_FD_MASK;
754         enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756 
757 /*
758  * set mac flow control parameters
759  */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762         u32 val;
763 
764         /* rx flow control (pause frame handling) */
765         val = enet_readl(priv, ENET_RXCFG_REG);
766         if (rx_en)
767                 val |= ENET_RXCFG_ENFLOW_MASK;
768         else
769                 val &= ~ENET_RXCFG_ENFLOW_MASK;
770         enet_writel(priv, val, ENET_RXCFG_REG);
771 
772         if (!priv->dma_has_sram)
773                 return;
774 
775         /* tx flow control (pause frame generation) */
776         val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777         if (tx_en)
778                 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779         else
780                 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781         enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783 
784 /*
785  * link changed callback (from phylib)
786  */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789         struct bcm_enet_priv *priv;
790         struct phy_device *phydev;
791         int status_changed;
792 
793         priv = netdev_priv(dev);
794         phydev = priv->phydev;
795         status_changed = 0;
796 
797         if (priv->old_link != phydev->link) {
798                 status_changed = 1;
799                 priv->old_link = phydev->link;
800         }
801 
802         /* reflect duplex change in mac configuration */
803         if (phydev->link && phydev->duplex != priv->old_duplex) {
804                 bcm_enet_set_duplex(priv,
805                                     (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806                 status_changed = 1;
807                 priv->old_duplex = phydev->duplex;
808         }
809 
810         /* enable flow control if remote advertise it (trust phylib to
811          * check that duplex is full */
812         if (phydev->link && phydev->pause != priv->old_pause) {
813                 int rx_pause_en, tx_pause_en;
814 
815                 if (phydev->pause) {
816                         /* pause was advertised by lpa and us */
817                         rx_pause_en = 1;
818                         tx_pause_en = 1;
819                 } else if (!priv->pause_auto) {
820                         /* pause setting overrided by user */
821                         rx_pause_en = priv->pause_rx;
822                         tx_pause_en = priv->pause_tx;
823                 } else {
824                         rx_pause_en = 0;
825                         tx_pause_en = 0;
826                 }
827 
828                 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829                 status_changed = 1;
830                 priv->old_pause = phydev->pause;
831         }
832 
833         if (status_changed) {
834                 pr_info("%s: link %s", dev->name, phydev->link ?
835                         "UP" : "DOWN");
836                 if (phydev->link)
837                         pr_cont(" - %d/%s - flow control %s", phydev->speed,
838                                DUPLEX_FULL == phydev->duplex ? "full" : "half",
839                                phydev->pause == 1 ? "rx&tx" : "off");
840 
841                 pr_cont("\n");
842         }
843 }
844 
845 /*
846  * link changed callback (if phylib is not used)
847  */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850         struct bcm_enet_priv *priv;
851 
852         priv = netdev_priv(dev);
853         bcm_enet_set_duplex(priv, priv->force_duplex_full);
854         bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855         netif_carrier_on(dev);
856 
857         pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858                 dev->name,
859                 priv->force_speed_100 ? 100 : 10,
860                 priv->force_duplex_full ? "full" : "half",
861                 priv->pause_rx ? "rx" : "off",
862                 priv->pause_tx ? "tx" : "off");
863 }
864 
865 /*
866  * open callback, allocate dma rings & buffers and start rx operation
867  */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870         struct bcm_enet_priv *priv;
871         struct sockaddr addr;
872         struct device *kdev;
873         struct phy_device *phydev;
874         int i, ret;
875         unsigned int size;
876         char phy_id[MII_BUS_ID_SIZE + 3];
877         void *p;
878         u32 val;
879 
880         priv = netdev_priv(dev);
881         kdev = &priv->pdev->dev;
882 
883         if (priv->has_phy) {
884                 /* connect to PHY */
885                 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886                          priv->mii_bus->id, priv->phy_id);
887 
888                 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889                                      PHY_INTERFACE_MODE_MII);
890 
891                 if (IS_ERR(phydev)) {
892                         dev_err(kdev, "could not attach to PHY\n");
893                         return PTR_ERR(phydev);
894                 }
895 
896                 /* mask with MAC supported features */
897                 phydev->supported &= (SUPPORTED_10baseT_Half |
898                                       SUPPORTED_10baseT_Full |
899                                       SUPPORTED_100baseT_Half |
900                                       SUPPORTED_100baseT_Full |
901                                       SUPPORTED_Autoneg |
902                                       SUPPORTED_Pause |
903                                       SUPPORTED_MII);
904                 phydev->advertising = phydev->supported;
905 
906                 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907                         phydev->advertising |= SUPPORTED_Pause;
908                 else
909                         phydev->advertising &= ~SUPPORTED_Pause;
910 
911                 dev_info(kdev, "attached PHY at address %d [%s]\n",
912                          phydev->addr, phydev->drv->name);
913 
914                 priv->old_link = 0;
915                 priv->old_duplex = -1;
916                 priv->old_pause = -1;
917                 priv->phydev = phydev;
918         }
919 
920         /* mask all interrupts and request them */
921         enet_writel(priv, 0, ENET_IRMASK_REG);
922         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
923         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
924 
925         ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
926         if (ret)
927                 goto out_phy_disconnect;
928 
929         ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
930                           dev->name, dev);
931         if (ret)
932                 goto out_freeirq;
933 
934         ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
935                           0, dev->name, dev);
936         if (ret)
937                 goto out_freeirq_rx;
938 
939         /* initialize perfect match registers */
940         for (i = 0; i < 4; i++) {
941                 enet_writel(priv, 0, ENET_PML_REG(i));
942                 enet_writel(priv, 0, ENET_PMH_REG(i));
943         }
944 
945         /* write device mac address */
946         memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
947         bcm_enet_set_mac_address(dev, &addr);
948 
949         /* allocate rx dma ring */
950         size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
951         p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
952         if (!p) {
953                 ret = -ENOMEM;
954                 goto out_freeirq_tx;
955         }
956 
957         priv->rx_desc_alloc_size = size;
958         priv->rx_desc_cpu = p;
959 
960         /* allocate tx dma ring */
961         size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
962         p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
963         if (!p) {
964                 ret = -ENOMEM;
965                 goto out_free_rx_ring;
966         }
967 
968         priv->tx_desc_alloc_size = size;
969         priv->tx_desc_cpu = p;
970 
971         priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
972                                GFP_KERNEL);
973         if (!priv->tx_skb) {
974                 ret = -ENOMEM;
975                 goto out_free_tx_ring;
976         }
977 
978         priv->tx_desc_count = priv->tx_ring_size;
979         priv->tx_dirty_desc = 0;
980         priv->tx_curr_desc = 0;
981         spin_lock_init(&priv->tx_lock);
982 
983         /* init & fill rx ring with skbs */
984         priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
985                                GFP_KERNEL);
986         if (!priv->rx_skb) {
987                 ret = -ENOMEM;
988                 goto out_free_tx_skb;
989         }
990 
991         priv->rx_desc_count = 0;
992         priv->rx_dirty_desc = 0;
993         priv->rx_curr_desc = 0;
994 
995         /* initialize flow control buffer allocation */
996         if (priv->dma_has_sram)
997                 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
998                                 ENETDMA_BUFALLOC_REG(priv->rx_chan));
999         else
1000                 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1001                                 ENETDMAC_BUFALLOC, priv->rx_chan);
1002 
1003         if (bcm_enet_refill_rx(dev)) {
1004                 dev_err(kdev, "cannot allocate rx skb queue\n");
1005                 ret = -ENOMEM;
1006                 goto out;
1007         }
1008 
1009         /* write rx & tx ring addresses */
1010         if (priv->dma_has_sram) {
1011                 enet_dmas_writel(priv, priv->rx_desc_dma,
1012                                  ENETDMAS_RSTART_REG, priv->rx_chan);
1013                 enet_dmas_writel(priv, priv->tx_desc_dma,
1014                          ENETDMAS_RSTART_REG, priv->tx_chan);
1015         } else {
1016                 enet_dmac_writel(priv, priv->rx_desc_dma,
1017                                 ENETDMAC_RSTART, priv->rx_chan);
1018                 enet_dmac_writel(priv, priv->tx_desc_dma,
1019                                 ENETDMAC_RSTART, priv->tx_chan);
1020         }
1021 
1022         /* clear remaining state ram for rx & tx channel */
1023         if (priv->dma_has_sram) {
1024                 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1025                 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1026                 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1027                 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1028                 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1029                 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1030         } else {
1031                 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1032                 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1033         }
1034 
1035         /* set max rx/tx length */
1036         enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1037         enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1038 
1039         /* set dma maximum burst len */
1040         enet_dmac_writel(priv, priv->dma_maxburst,
1041                          ENETDMAC_MAXBURST, priv->rx_chan);
1042         enet_dmac_writel(priv, priv->dma_maxburst,
1043                          ENETDMAC_MAXBURST, priv->tx_chan);
1044 
1045         /* set correct transmit fifo watermark */
1046         enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1047 
1048         /* set flow control low/high threshold to 1/3 / 2/3 */
1049         if (priv->dma_has_sram) {
1050                 val = priv->rx_ring_size / 3;
1051                 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1052                 val = (priv->rx_ring_size * 2) / 3;
1053                 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1054         } else {
1055                 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1056                 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1057                 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1058         }
1059 
1060         /* all set, enable mac and interrupts, start dma engine and
1061          * kick rx dma channel */
1062         wmb();
1063         val = enet_readl(priv, ENET_CTL_REG);
1064         val |= ENET_CTL_ENABLE_MASK;
1065         enet_writel(priv, val, ENET_CTL_REG);
1066         enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1067         enet_dmac_writel(priv, priv->dma_chan_en_mask,
1068                          ENETDMAC_CHANCFG, priv->rx_chan);
1069 
1070         /* watch "mib counters about to overflow" interrupt */
1071         enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1072         enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1073 
1074         /* watch "packet transferred" interrupt in rx and tx */
1075         enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076                          ENETDMAC_IR, priv->rx_chan);
1077         enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078                          ENETDMAC_IR, priv->tx_chan);
1079 
1080         /* make sure we enable napi before rx interrupt  */
1081         napi_enable(&priv->napi);
1082 
1083         enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084                          ENETDMAC_IRMASK, priv->rx_chan);
1085         enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086                          ENETDMAC_IRMASK, priv->tx_chan);
1087 
1088         if (priv->has_phy)
1089                 phy_start(priv->phydev);
1090         else
1091                 bcm_enet_adjust_link(dev);
1092 
1093         netif_start_queue(dev);
1094         return 0;
1095 
1096 out:
1097         for (i = 0; i < priv->rx_ring_size; i++) {
1098                 struct bcm_enet_desc *desc;
1099 
1100                 if (!priv->rx_skb[i])
1101                         continue;
1102 
1103                 desc = &priv->rx_desc_cpu[i];
1104                 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1105                                  DMA_FROM_DEVICE);
1106                 kfree_skb(priv->rx_skb[i]);
1107         }
1108         kfree(priv->rx_skb);
1109 
1110 out_free_tx_skb:
1111         kfree(priv->tx_skb);
1112 
1113 out_free_tx_ring:
1114         dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1115                           priv->tx_desc_cpu, priv->tx_desc_dma);
1116 
1117 out_free_rx_ring:
1118         dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1119                           priv->rx_desc_cpu, priv->rx_desc_dma);
1120 
1121 out_freeirq_tx:
1122         free_irq(priv->irq_tx, dev);
1123 
1124 out_freeirq_rx:
1125         free_irq(priv->irq_rx, dev);
1126 
1127 out_freeirq:
1128         free_irq(dev->irq, dev);
1129 
1130 out_phy_disconnect:
1131         phy_disconnect(priv->phydev);
1132 
1133         return ret;
1134 }
1135 
1136 /*
1137  * disable mac
1138  */
1139 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1140 {
1141         int limit;
1142         u32 val;
1143 
1144         val = enet_readl(priv, ENET_CTL_REG);
1145         val |= ENET_CTL_DISABLE_MASK;
1146         enet_writel(priv, val, ENET_CTL_REG);
1147 
1148         limit = 1000;
1149         do {
1150                 u32 val;
1151 
1152                 val = enet_readl(priv, ENET_CTL_REG);
1153                 if (!(val & ENET_CTL_DISABLE_MASK))
1154                         break;
1155                 udelay(1);
1156         } while (limit--);
1157 }
1158 
1159 /*
1160  * disable dma in given channel
1161  */
1162 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1163 {
1164         int limit;
1165 
1166         enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1167 
1168         limit = 1000;
1169         do {
1170                 u32 val;
1171 
1172                 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1173                 if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1174                         break;
1175                 udelay(1);
1176         } while (limit--);
1177 }
1178 
1179 /*
1180  * stop callback
1181  */
1182 static int bcm_enet_stop(struct net_device *dev)
1183 {
1184         struct bcm_enet_priv *priv;
1185         struct device *kdev;
1186         int i;
1187 
1188         priv = netdev_priv(dev);
1189         kdev = &priv->pdev->dev;
1190 
1191         netif_stop_queue(dev);
1192         napi_disable(&priv->napi);
1193         if (priv->has_phy)
1194                 phy_stop(priv->phydev);
1195         del_timer_sync(&priv->rx_timeout);
1196 
1197         /* mask all interrupts */
1198         enet_writel(priv, 0, ENET_IRMASK_REG);
1199         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1200         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1201 
1202         /* make sure no mib update is scheduled */
1203         cancel_work_sync(&priv->mib_update_task);
1204 
1205         /* disable dma & mac */
1206         bcm_enet_disable_dma(priv, priv->tx_chan);
1207         bcm_enet_disable_dma(priv, priv->rx_chan);
1208         bcm_enet_disable_mac(priv);
1209 
1210         /* force reclaim of all tx buffers */
1211         bcm_enet_tx_reclaim(dev, 1);
1212 
1213         /* free the rx skb ring */
1214         for (i = 0; i < priv->rx_ring_size; i++) {
1215                 struct bcm_enet_desc *desc;
1216 
1217                 if (!priv->rx_skb[i])
1218                         continue;
1219 
1220                 desc = &priv->rx_desc_cpu[i];
1221                 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1222                                  DMA_FROM_DEVICE);
1223                 kfree_skb(priv->rx_skb[i]);
1224         }
1225 
1226         /* free remaining allocated memory */
1227         kfree(priv->rx_skb);
1228         kfree(priv->tx_skb);
1229         dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1230                           priv->rx_desc_cpu, priv->rx_desc_dma);
1231         dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1232                           priv->tx_desc_cpu, priv->tx_desc_dma);
1233         free_irq(priv->irq_tx, dev);
1234         free_irq(priv->irq_rx, dev);
1235         free_irq(dev->irq, dev);
1236 
1237         /* release phy */
1238         if (priv->has_phy) {
1239                 phy_disconnect(priv->phydev);
1240                 priv->phydev = NULL;
1241         }
1242 
1243         return 0;
1244 }
1245 
1246 /*
1247  * ethtool callbacks
1248  */
1249 struct bcm_enet_stats {
1250         char stat_string[ETH_GSTRING_LEN];
1251         int sizeof_stat;
1252         int stat_offset;
1253         int mib_reg;
1254 };
1255 
1256 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),             \
1257                      offsetof(struct bcm_enet_priv, m)
1258 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),          \
1259                      offsetof(struct net_device_stats, m)
1260 
1261 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1262         { "rx_packets", DEV_STAT(rx_packets), -1 },
1263         { "tx_packets", DEV_STAT(tx_packets), -1 },
1264         { "rx_bytes", DEV_STAT(rx_bytes), -1 },
1265         { "tx_bytes", DEV_STAT(tx_bytes), -1 },
1266         { "rx_errors", DEV_STAT(rx_errors), -1 },
1267         { "tx_errors", DEV_STAT(tx_errors), -1 },
1268         { "rx_dropped", DEV_STAT(rx_dropped), -1 },
1269         { "tx_dropped", DEV_STAT(tx_dropped), -1 },
1270 
1271         { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1272         { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1273         { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1274         { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1275         { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1276         { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1277         { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1278         { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1279         { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1280         { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1281         { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1282         { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1283         { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1284         { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1285         { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1286         { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1287         { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1288         { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1289         { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1290         { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1291         { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1292 
1293         { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1294         { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1295         { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1296         { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1297         { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1298         { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1299         { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1300         { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1301         { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1302         { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1303         { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1304         { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1305         { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1306         { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1307         { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1308         { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1309         { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1310         { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1311         { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1312         { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1313         { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1314         { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1315 
1316 };
1317 
1318 #define BCM_ENET_STATS_LEN      ARRAY_SIZE(bcm_enet_gstrings_stats)
1319 
1320 static const u32 unused_mib_regs[] = {
1321         ETH_MIB_TX_ALL_OCTETS,
1322         ETH_MIB_TX_ALL_PKTS,
1323         ETH_MIB_RX_ALL_OCTETS,
1324         ETH_MIB_RX_ALL_PKTS,
1325 };
1326 
1327 
1328 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1329                                  struct ethtool_drvinfo *drvinfo)
1330 {
1331         strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1332         strlcpy(drvinfo->version, bcm_enet_driver_version,
1333                 sizeof(drvinfo->version));
1334         strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1335         strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1336 }
1337 
1338 static int bcm_enet_get_sset_count(struct net_device *netdev,
1339                                         int string_set)
1340 {
1341         switch (string_set) {
1342         case ETH_SS_STATS:
1343                 return BCM_ENET_STATS_LEN;
1344         default:
1345                 return -EINVAL;
1346         }
1347 }
1348 
1349 static void bcm_enet_get_strings(struct net_device *netdev,
1350                                  u32 stringset, u8 *data)
1351 {
1352         int i;
1353 
1354         switch (stringset) {
1355         case ETH_SS_STATS:
1356                 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1357                         memcpy(data + i * ETH_GSTRING_LEN,
1358                                bcm_enet_gstrings_stats[i].stat_string,
1359                                ETH_GSTRING_LEN);
1360                 }
1361                 break;
1362         }
1363 }
1364 
1365 static void update_mib_counters(struct bcm_enet_priv *priv)
1366 {
1367         int i;
1368 
1369         for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1370                 const struct bcm_enet_stats *s;
1371                 u32 val;
1372                 char *p;
1373 
1374                 s = &bcm_enet_gstrings_stats[i];
1375                 if (s->mib_reg == -1)
1376                         continue;
1377 
1378                 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1379                 p = (char *)priv + s->stat_offset;
1380 
1381                 if (s->sizeof_stat == sizeof(u64))
1382                         *(u64 *)p += val;
1383                 else
1384                         *(u32 *)p += val;
1385         }
1386 
1387         /* also empty unused mib counters to make sure mib counter
1388          * overflow interrupt is cleared */
1389         for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1390                 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1391 }
1392 
1393 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1394 {
1395         struct bcm_enet_priv *priv;
1396 
1397         priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1398         mutex_lock(&priv->mib_update_lock);
1399         update_mib_counters(priv);
1400         mutex_unlock(&priv->mib_update_lock);
1401 
1402         /* reenable mib interrupt */
1403         if (netif_running(priv->net_dev))
1404                 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1405 }
1406 
1407 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1408                                        struct ethtool_stats *stats,
1409                                        u64 *data)
1410 {
1411         struct bcm_enet_priv *priv;
1412         int i;
1413 
1414         priv = netdev_priv(netdev);
1415 
1416         mutex_lock(&priv->mib_update_lock);
1417         update_mib_counters(priv);
1418 
1419         for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1420                 const struct bcm_enet_stats *s;
1421                 char *p;
1422 
1423                 s = &bcm_enet_gstrings_stats[i];
1424                 if (s->mib_reg == -1)
1425                         p = (char *)&netdev->stats;
1426                 else
1427                         p = (char *)priv;
1428                 p += s->stat_offset;
1429                 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1430                         *(u64 *)p : *(u32 *)p;
1431         }
1432         mutex_unlock(&priv->mib_update_lock);
1433 }
1434 
1435 static int bcm_enet_nway_reset(struct net_device *dev)
1436 {
1437         struct bcm_enet_priv *priv;
1438 
1439         priv = netdev_priv(dev);
1440         if (priv->has_phy) {
1441                 if (!priv->phydev)
1442                         return -ENODEV;
1443                 return genphy_restart_aneg(priv->phydev);
1444         }
1445 
1446         return -EOPNOTSUPP;
1447 }
1448 
1449 static int bcm_enet_get_settings(struct net_device *dev,
1450                                  struct ethtool_cmd *cmd)
1451 {
1452         struct bcm_enet_priv *priv;
1453 
1454         priv = netdev_priv(dev);
1455 
1456         cmd->maxrxpkt = 0;
1457         cmd->maxtxpkt = 0;
1458 
1459         if (priv->has_phy) {
1460                 if (!priv->phydev)
1461                         return -ENODEV;
1462                 return phy_ethtool_gset(priv->phydev, cmd);
1463         } else {
1464                 cmd->autoneg = 0;
1465                 ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
1466                                             ? SPEED_100 : SPEED_10));
1467                 cmd->duplex = (priv->force_duplex_full) ?
1468                         DUPLEX_FULL : DUPLEX_HALF;
1469                 cmd->supported = ADVERTISED_10baseT_Half  |
1470                         ADVERTISED_10baseT_Full |
1471                         ADVERTISED_100baseT_Half |
1472                         ADVERTISED_100baseT_Full;
1473                 cmd->advertising = 0;
1474                 cmd->port = PORT_MII;
1475                 cmd->transceiver = XCVR_EXTERNAL;
1476         }
1477         return 0;
1478 }
1479 
1480 static int bcm_enet_set_settings(struct net_device *dev,
1481                                  struct ethtool_cmd *cmd)
1482 {
1483         struct bcm_enet_priv *priv;
1484 
1485         priv = netdev_priv(dev);
1486         if (priv->has_phy) {
1487                 if (!priv->phydev)
1488                         return -ENODEV;
1489                 return phy_ethtool_sset(priv->phydev, cmd);
1490         } else {
1491 
1492                 if (cmd->autoneg ||
1493                     (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1494                     cmd->port != PORT_MII)
1495                         return -EINVAL;
1496 
1497                 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1498                 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1499 
1500                 if (netif_running(dev))
1501                         bcm_enet_adjust_link(dev);
1502                 return 0;
1503         }
1504 }
1505 
1506 static void bcm_enet_get_ringparam(struct net_device *dev,
1507                                    struct ethtool_ringparam *ering)
1508 {
1509         struct bcm_enet_priv *priv;
1510 
1511         priv = netdev_priv(dev);
1512 
1513         /* rx/tx ring is actually only limited by memory */
1514         ering->rx_max_pending = 8192;
1515         ering->tx_max_pending = 8192;
1516         ering->rx_pending = priv->rx_ring_size;
1517         ering->tx_pending = priv->tx_ring_size;
1518 }
1519 
1520 static int bcm_enet_set_ringparam(struct net_device *dev,
1521                                   struct ethtool_ringparam *ering)
1522 {
1523         struct bcm_enet_priv *priv;
1524         int was_running;
1525 
1526         priv = netdev_priv(dev);
1527 
1528         was_running = 0;
1529         if (netif_running(dev)) {
1530                 bcm_enet_stop(dev);
1531                 was_running = 1;
1532         }
1533 
1534         priv->rx_ring_size = ering->rx_pending;
1535         priv->tx_ring_size = ering->tx_pending;
1536 
1537         if (was_running) {
1538                 int err;
1539 
1540                 err = bcm_enet_open(dev);
1541                 if (err)
1542                         dev_close(dev);
1543                 else
1544                         bcm_enet_set_multicast_list(dev);
1545         }
1546         return 0;
1547 }
1548 
1549 static void bcm_enet_get_pauseparam(struct net_device *dev,
1550                                     struct ethtool_pauseparam *ecmd)
1551 {
1552         struct bcm_enet_priv *priv;
1553 
1554         priv = netdev_priv(dev);
1555         ecmd->autoneg = priv->pause_auto;
1556         ecmd->rx_pause = priv->pause_rx;
1557         ecmd->tx_pause = priv->pause_tx;
1558 }
1559 
1560 static int bcm_enet_set_pauseparam(struct net_device *dev,
1561                                    struct ethtool_pauseparam *ecmd)
1562 {
1563         struct bcm_enet_priv *priv;
1564 
1565         priv = netdev_priv(dev);
1566 
1567         if (priv->has_phy) {
1568                 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1569                         /* asymetric pause mode not supported,
1570                          * actually possible but integrated PHY has RO
1571                          * asym_pause bit */
1572                         return -EINVAL;
1573                 }
1574         } else {
1575                 /* no pause autoneg on direct mii connection */
1576                 if (ecmd->autoneg)
1577                         return -EINVAL;
1578         }
1579 
1580         priv->pause_auto = ecmd->autoneg;
1581         priv->pause_rx = ecmd->rx_pause;
1582         priv->pause_tx = ecmd->tx_pause;
1583 
1584         return 0;
1585 }
1586 
1587 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1588         .get_strings            = bcm_enet_get_strings,
1589         .get_sset_count         = bcm_enet_get_sset_count,
1590         .get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1591         .nway_reset             = bcm_enet_nway_reset,
1592         .get_settings           = bcm_enet_get_settings,
1593         .set_settings           = bcm_enet_set_settings,
1594         .get_drvinfo            = bcm_enet_get_drvinfo,
1595         .get_link               = ethtool_op_get_link,
1596         .get_ringparam          = bcm_enet_get_ringparam,
1597         .set_ringparam          = bcm_enet_set_ringparam,
1598         .get_pauseparam         = bcm_enet_get_pauseparam,
1599         .set_pauseparam         = bcm_enet_set_pauseparam,
1600 };
1601 
1602 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1603 {
1604         struct bcm_enet_priv *priv;
1605 
1606         priv = netdev_priv(dev);
1607         if (priv->has_phy) {
1608                 if (!priv->phydev)
1609                         return -ENODEV;
1610                 return phy_mii_ioctl(priv->phydev, rq, cmd);
1611         } else {
1612                 struct mii_if_info mii;
1613 
1614                 mii.dev = dev;
1615                 mii.mdio_read = bcm_enet_mdio_read_mii;
1616                 mii.mdio_write = bcm_enet_mdio_write_mii;
1617                 mii.phy_id = 0;
1618                 mii.phy_id_mask = 0x3f;
1619                 mii.reg_num_mask = 0x1f;
1620                 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1621         }
1622 }
1623 
1624 /*
1625  * calculate actual hardware mtu
1626  */
1627 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1628 {
1629         int actual_mtu;
1630 
1631         actual_mtu = mtu;
1632 
1633         /* add ethernet header + vlan tag size */
1634         actual_mtu += VLAN_ETH_HLEN;
1635 
1636         if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1637                 return -EINVAL;
1638 
1639         /*
1640          * setup maximum size before we get overflow mark in
1641          * descriptor, note that this will not prevent reception of
1642          * big frames, they will be split into multiple buffers
1643          * anyway
1644          */
1645         priv->hw_mtu = actual_mtu;
1646 
1647         /*
1648          * align rx buffer size to dma burst len, account FCS since
1649          * it's appended
1650          */
1651         priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1652                                   priv->dma_maxburst * 4);
1653         return 0;
1654 }
1655 
1656 /*
1657  * adjust mtu, can't be called while device is running
1658  */
1659 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1660 {
1661         int ret;
1662 
1663         if (netif_running(dev))
1664                 return -EBUSY;
1665 
1666         ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1667         if (ret)
1668                 return ret;
1669         dev->mtu = new_mtu;
1670         return 0;
1671 }
1672 
1673 /*
1674  * preinit hardware to allow mii operation while device is down
1675  */
1676 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1677 {
1678         u32 val;
1679         int limit;
1680 
1681         /* make sure mac is disabled */
1682         bcm_enet_disable_mac(priv);
1683 
1684         /* soft reset mac */
1685         val = ENET_CTL_SRESET_MASK;
1686         enet_writel(priv, val, ENET_CTL_REG);
1687         wmb();
1688 
1689         limit = 1000;
1690         do {
1691                 val = enet_readl(priv, ENET_CTL_REG);
1692                 if (!(val & ENET_CTL_SRESET_MASK))
1693                         break;
1694                 udelay(1);
1695         } while (limit--);
1696 
1697         /* select correct mii interface */
1698         val = enet_readl(priv, ENET_CTL_REG);
1699         if (priv->use_external_mii)
1700                 val |= ENET_CTL_EPHYSEL_MASK;
1701         else
1702                 val &= ~ENET_CTL_EPHYSEL_MASK;
1703         enet_writel(priv, val, ENET_CTL_REG);
1704 
1705         /* turn on mdc clock */
1706         enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1707                     ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1708 
1709         /* set mib counters to self-clear when read */
1710         val = enet_readl(priv, ENET_MIBCTL_REG);
1711         val |= ENET_MIBCTL_RDCLEAR_MASK;
1712         enet_writel(priv, val, ENET_MIBCTL_REG);
1713 }
1714 
1715 static const struct net_device_ops bcm_enet_ops = {
1716         .ndo_open               = bcm_enet_open,
1717         .ndo_stop               = bcm_enet_stop,
1718         .ndo_start_xmit         = bcm_enet_start_xmit,
1719         .ndo_set_mac_address    = bcm_enet_set_mac_address,
1720         .ndo_set_rx_mode        = bcm_enet_set_multicast_list,
1721         .ndo_do_ioctl           = bcm_enet_ioctl,
1722         .ndo_change_mtu         = bcm_enet_change_mtu,
1723 };
1724 
1725 /*
1726  * allocate netdevice, request register memory and register device.
1727  */
1728 static int bcm_enet_probe(struct platform_device *pdev)
1729 {
1730         struct bcm_enet_priv *priv;
1731         struct net_device *dev;
1732         struct bcm63xx_enet_platform_data *pd;
1733         struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1734         struct mii_bus *bus;
1735         const char *clk_name;
1736         int i, ret;
1737 
1738         /* stop if shared driver failed, assume driver->probe will be
1739          * called in the same order we register devices (correct ?) */
1740         if (!bcm_enet_shared_base[0])
1741                 return -ENODEV;
1742 
1743         res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1744         res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1745         res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1746         if (!res_irq || !res_irq_rx || !res_irq_tx)
1747                 return -ENODEV;
1748 
1749         ret = 0;
1750         dev = alloc_etherdev(sizeof(*priv));
1751         if (!dev)
1752                 return -ENOMEM;
1753         priv = netdev_priv(dev);
1754 
1755         priv->enet_is_sw = false;
1756         priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1757 
1758         ret = compute_hw_mtu(priv, dev->mtu);
1759         if (ret)
1760                 goto out;
1761 
1762         res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1763         priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1764         if (IS_ERR(priv->base)) {
1765                 ret = PTR_ERR(priv->base);
1766                 goto out;
1767         }
1768 
1769         dev->irq = priv->irq = res_irq->start;
1770         priv->irq_rx = res_irq_rx->start;
1771         priv->irq_tx = res_irq_tx->start;
1772         priv->mac_id = pdev->id;
1773 
1774         /* get rx & tx dma channel id for this mac */
1775         if (priv->mac_id == 0) {
1776                 priv->rx_chan = 0;
1777                 priv->tx_chan = 1;
1778                 clk_name = "enet0";
1779         } else {
1780                 priv->rx_chan = 2;
1781                 priv->tx_chan = 3;
1782                 clk_name = "enet1";
1783         }
1784 
1785         priv->mac_clk = clk_get(&pdev->dev, clk_name);
1786         if (IS_ERR(priv->mac_clk)) {
1787                 ret = PTR_ERR(priv->mac_clk);
1788                 goto out;
1789         }
1790         clk_prepare_enable(priv->mac_clk);
1791 
1792         /* initialize default and fetch platform data */
1793         priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1794         priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1795 
1796         pd = dev_get_platdata(&pdev->dev);
1797         if (pd) {
1798                 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1799                 priv->has_phy = pd->has_phy;
1800                 priv->phy_id = pd->phy_id;
1801                 priv->has_phy_interrupt = pd->has_phy_interrupt;
1802                 priv->phy_interrupt = pd->phy_interrupt;
1803                 priv->use_external_mii = !pd->use_internal_phy;
1804                 priv->pause_auto = pd->pause_auto;
1805                 priv->pause_rx = pd->pause_rx;
1806                 priv->pause_tx = pd->pause_tx;
1807                 priv->force_duplex_full = pd->force_duplex_full;
1808                 priv->force_speed_100 = pd->force_speed_100;
1809                 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1810                 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1811                 priv->dma_chan_width = pd->dma_chan_width;
1812                 priv->dma_has_sram = pd->dma_has_sram;
1813                 priv->dma_desc_shift = pd->dma_desc_shift;
1814         }
1815 
1816         if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1817                 /* using internal PHY, enable clock */
1818                 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1819                 if (IS_ERR(priv->phy_clk)) {
1820                         ret = PTR_ERR(priv->phy_clk);
1821                         priv->phy_clk = NULL;
1822                         goto out_put_clk_mac;
1823                 }
1824                 clk_prepare_enable(priv->phy_clk);
1825         }
1826 
1827         /* do minimal hardware init to be able to probe mii bus */
1828         bcm_enet_hw_preinit(priv);
1829 
1830         /* MII bus registration */
1831         if (priv->has_phy) {
1832 
1833                 priv->mii_bus = mdiobus_alloc();
1834                 if (!priv->mii_bus) {
1835                         ret = -ENOMEM;
1836                         goto out_uninit_hw;
1837                 }
1838 
1839                 bus = priv->mii_bus;
1840                 bus->name = "bcm63xx_enet MII bus";
1841                 bus->parent = &pdev->dev;
1842                 bus->priv = priv;
1843                 bus->read = bcm_enet_mdio_read_phylib;
1844                 bus->write = bcm_enet_mdio_write_phylib;
1845                 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1846 
1847                 /* only probe bus where we think the PHY is, because
1848                  * the mdio read operation return 0 instead of 0xffff
1849                  * if a slave is not present on hw */
1850                 bus->phy_mask = ~(1 << priv->phy_id);
1851 
1852                 bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR,
1853                                         GFP_KERNEL);
1854                 if (!bus->irq) {
1855                         ret = -ENOMEM;
1856                         goto out_free_mdio;
1857                 }
1858 
1859                 if (priv->has_phy_interrupt)
1860                         bus->irq[priv->phy_id] = priv->phy_interrupt;
1861                 else
1862                         bus->irq[priv->phy_id] = PHY_POLL;
1863 
1864                 ret = mdiobus_register(bus);
1865                 if (ret) {
1866                         dev_err(&pdev->dev, "unable to register mdio bus\n");
1867                         goto out_free_mdio;
1868                 }
1869         } else {
1870 
1871                 /* run platform code to initialize PHY device */
1872                 if (pd->mii_config &&
1873                     pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1874                                    bcm_enet_mdio_write_mii)) {
1875                         dev_err(&pdev->dev, "unable to configure mdio bus\n");
1876                         goto out_uninit_hw;
1877                 }
1878         }
1879 
1880         spin_lock_init(&priv->rx_lock);
1881 
1882         /* init rx timeout (used for oom) */
1883         init_timer(&priv->rx_timeout);
1884         priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1885         priv->rx_timeout.data = (unsigned long)dev;
1886 
1887         /* init the mib update lock&work */
1888         mutex_init(&priv->mib_update_lock);
1889         INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1890 
1891         /* zero mib counters */
1892         for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1893                 enet_writel(priv, 0, ENET_MIB_REG(i));
1894 
1895         /* register netdevice */
1896         dev->netdev_ops = &bcm_enet_ops;
1897         netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1898 
1899         dev->ethtool_ops = &bcm_enet_ethtool_ops;
1900         SET_NETDEV_DEV(dev, &pdev->dev);
1901 
1902         ret = register_netdev(dev);
1903         if (ret)
1904                 goto out_unregister_mdio;
1905 
1906         netif_carrier_off(dev);
1907         platform_set_drvdata(pdev, dev);
1908         priv->pdev = pdev;
1909         priv->net_dev = dev;
1910 
1911         return 0;
1912 
1913 out_unregister_mdio:
1914         if (priv->mii_bus)
1915                 mdiobus_unregister(priv->mii_bus);
1916 
1917 out_free_mdio:
1918         if (priv->mii_bus)
1919                 mdiobus_free(priv->mii_bus);
1920 
1921 out_uninit_hw:
1922         /* turn off mdc clock */
1923         enet_writel(priv, 0, ENET_MIISC_REG);
1924         if (priv->phy_clk) {
1925                 clk_disable_unprepare(priv->phy_clk);
1926                 clk_put(priv->phy_clk);
1927         }
1928 
1929 out_put_clk_mac:
1930         clk_disable_unprepare(priv->mac_clk);
1931         clk_put(priv->mac_clk);
1932 out:
1933         free_netdev(dev);
1934         return ret;
1935 }
1936 
1937 
1938 /*
1939  * exit func, stops hardware and unregisters netdevice
1940  */
1941 static int bcm_enet_remove(struct platform_device *pdev)
1942 {
1943         struct bcm_enet_priv *priv;
1944         struct net_device *dev;
1945 
1946         /* stop netdevice */
1947         dev = platform_get_drvdata(pdev);
1948         priv = netdev_priv(dev);
1949         unregister_netdev(dev);
1950 
1951         /* turn off mdc clock */
1952         enet_writel(priv, 0, ENET_MIISC_REG);
1953 
1954         if (priv->has_phy) {
1955                 mdiobus_unregister(priv->mii_bus);
1956                 mdiobus_free(priv->mii_bus);
1957         } else {
1958                 struct bcm63xx_enet_platform_data *pd;
1959 
1960                 pd = dev_get_platdata(&pdev->dev);
1961                 if (pd && pd->mii_config)
1962                         pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1963                                        bcm_enet_mdio_write_mii);
1964         }
1965 
1966         /* disable hw block clocks */
1967         if (priv->phy_clk) {
1968                 clk_disable_unprepare(priv->phy_clk);
1969                 clk_put(priv->phy_clk);
1970         }
1971         clk_disable_unprepare(priv->mac_clk);
1972         clk_put(priv->mac_clk);
1973 
1974         free_netdev(dev);
1975         return 0;
1976 }
1977 
1978 struct platform_driver bcm63xx_enet_driver = {
1979         .probe  = bcm_enet_probe,
1980         .remove = bcm_enet_remove,
1981         .driver = {
1982                 .name   = "bcm63xx_enet",
1983                 .owner  = THIS_MODULE,
1984         },
1985 };
1986 
1987 /*
1988  * switch mii access callbacks
1989  */
1990 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1991                                 int ext, int phy_id, int location)
1992 {
1993         u32 reg;
1994         int ret;
1995 
1996         spin_lock_bh(&priv->enetsw_mdio_lock);
1997         enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1998 
1999         reg = ENETSW_MDIOC_RD_MASK |
2000                 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2001                 (location << ENETSW_MDIOC_REG_SHIFT);
2002 
2003         if (ext)
2004                 reg |= ENETSW_MDIOC_EXT_MASK;
2005 
2006         enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2007         udelay(50);
2008         ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2009         spin_unlock_bh(&priv->enetsw_mdio_lock);
2010         return ret;
2011 }
2012 
2013 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2014                                  int ext, int phy_id, int location,
2015                                  uint16_t data)
2016 {
2017         u32 reg;
2018 
2019         spin_lock_bh(&priv->enetsw_mdio_lock);
2020         enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2021 
2022         reg = ENETSW_MDIOC_WR_MASK |
2023                 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2024                 (location << ENETSW_MDIOC_REG_SHIFT);
2025 
2026         if (ext)
2027                 reg |= ENETSW_MDIOC_EXT_MASK;
2028 
2029         reg |= data;
2030 
2031         enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2032         udelay(50);
2033         spin_unlock_bh(&priv->enetsw_mdio_lock);
2034 }
2035 
2036 static inline int bcm_enet_port_is_rgmii(int portid)
2037 {
2038         return portid >= ENETSW_RGMII_PORT0;
2039 }
2040 
2041 /*
2042  * enet sw PHY polling
2043  */
2044 static void swphy_poll_timer(unsigned long data)
2045 {
2046         struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2047         unsigned int i;
2048 
2049         for (i = 0; i < priv->num_ports; i++) {
2050                 struct bcm63xx_enetsw_port *port;
2051                 int val, j, up, advertise, lpa, speed, duplex, media;
2052                 int external_phy = bcm_enet_port_is_rgmii(i);
2053                 u8 override;
2054 
2055                 port = &priv->used_ports[i];
2056                 if (!port->used)
2057                         continue;
2058 
2059                 if (port->bypass_link)
2060                         continue;
2061 
2062                 /* dummy read to clear */
2063                 for (j = 0; j < 2; j++)
2064                         val = bcmenet_sw_mdio_read(priv, external_phy,
2065                                                    port->phy_id, MII_BMSR);
2066 
2067                 if (val == 0xffff)
2068                         continue;
2069 
2070                 up = (val & BMSR_LSTATUS) ? 1 : 0;
2071                 if (!(up ^ priv->sw_port_link[i]))
2072                         continue;
2073 
2074                 priv->sw_port_link[i] = up;
2075 
2076                 /* link changed */
2077                 if (!up) {
2078                         dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2079                                  port->name);
2080                         enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2081                                       ENETSW_PORTOV_REG(i));
2082                         enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2083                                       ENETSW_PTCTRL_TXDIS_MASK,
2084                                       ENETSW_PTCTRL_REG(i));
2085                         continue;
2086                 }
2087 
2088                 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2089                                                  port->phy_id, MII_ADVERTISE);
2090 
2091                 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2092                                            MII_LPA);
2093 
2094                 /* figure out media and duplex from advertise and LPA values */
2095                 media = mii_nway_result(lpa & advertise);
2096                 duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2097 
2098                 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2099                         speed = 100;
2100                 else
2101                         speed = 10;
2102 
2103                 if (val & BMSR_ESTATEN) {
2104                         advertise = bcmenet_sw_mdio_read(priv, external_phy,
2105                                                 port->phy_id, MII_CTRL1000);
2106 
2107                         lpa = bcmenet_sw_mdio_read(priv, external_phy,
2108                                                 port->phy_id, MII_STAT1000);
2109 
2110                         if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2111                                         && lpa & (LPA_1000FULL | LPA_1000HALF)) {
2112                                 speed = 1000;
2113                                 duplex = (lpa & LPA_1000FULL);
2114                         }
2115                 }
2116 
2117                 dev_info(&priv->pdev->dev,
2118                          "link UP on %s, %dMbps, %s-duplex\n",
2119                          port->name, speed, duplex ? "full" : "half");
2120 
2121                 override = ENETSW_PORTOV_ENABLE_MASK |
2122                         ENETSW_PORTOV_LINKUP_MASK;
2123 
2124                 if (speed == 1000)
2125                         override |= ENETSW_IMPOV_1000_MASK;
2126                 else if (speed == 100)
2127                         override |= ENETSW_IMPOV_100_MASK;
2128                 if (duplex)
2129                         override |= ENETSW_IMPOV_FDX_MASK;
2130 
2131                 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2132                 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2133         }
2134 
2135         priv->swphy_poll.expires = jiffies + HZ;
2136         add_timer(&priv->swphy_poll);
2137 }
2138 
2139 /*
2140  * open callback, allocate dma rings & buffers and start rx operation
2141  */
2142 static int bcm_enetsw_open(struct net_device *dev)
2143 {
2144         struct bcm_enet_priv *priv;
2145         struct device *kdev;
2146         int i, ret;
2147         unsigned int size;
2148         void *p;
2149         u32 val;
2150 
2151         priv = netdev_priv(dev);
2152         kdev = &priv->pdev->dev;
2153 
2154         /* mask all interrupts and request them */
2155         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2156         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2157 
2158         ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2159                           0, dev->name, dev);
2160         if (ret)
2161                 goto out_freeirq;
2162 
2163         if (priv->irq_tx != -1) {
2164                 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2165                                   0, dev->name, dev);
2166                 if (ret)
2167                         goto out_freeirq_rx;
2168         }
2169 
2170         /* allocate rx dma ring */
2171         size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2172         p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2173         if (!p) {
2174                 dev_err(kdev, "cannot allocate rx ring %u\n", size);
2175                 ret = -ENOMEM;
2176                 goto out_freeirq_tx;
2177         }
2178 
2179         memset(p, 0, size);
2180         priv->rx_desc_alloc_size = size;
2181         priv->rx_desc_cpu = p;
2182 
2183         /* allocate tx dma ring */
2184         size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2185         p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2186         if (!p) {
2187                 dev_err(kdev, "cannot allocate tx ring\n");
2188                 ret = -ENOMEM;
2189                 goto out_free_rx_ring;
2190         }
2191 
2192         memset(p, 0, size);
2193         priv->tx_desc_alloc_size = size;
2194         priv->tx_desc_cpu = p;
2195 
2196         priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2197                                GFP_KERNEL);
2198         if (!priv->tx_skb) {
2199                 dev_err(kdev, "cannot allocate rx skb queue\n");
2200                 ret = -ENOMEM;
2201                 goto out_free_tx_ring;
2202         }
2203 
2204         priv->tx_desc_count = priv->tx_ring_size;
2205         priv->tx_dirty_desc = 0;
2206         priv->tx_curr_desc = 0;
2207         spin_lock_init(&priv->tx_lock);
2208 
2209         /* init & fill rx ring with skbs */
2210         priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2211                                GFP_KERNEL);
2212         if (!priv->rx_skb) {
2213                 dev_err(kdev, "cannot allocate rx skb queue\n");
2214                 ret = -ENOMEM;
2215                 goto out_free_tx_skb;
2216         }
2217 
2218         priv->rx_desc_count = 0;
2219         priv->rx_dirty_desc = 0;
2220         priv->rx_curr_desc = 0;
2221 
2222         /* disable all ports */
2223         for (i = 0; i < priv->num_ports; i++) {
2224                 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2225                               ENETSW_PORTOV_REG(i));
2226                 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2227                               ENETSW_PTCTRL_TXDIS_MASK,
2228                               ENETSW_PTCTRL_REG(i));
2229 
2230                 priv->sw_port_link[i] = 0;
2231         }
2232 
2233         /* reset mib */
2234         val = enetsw_readb(priv, ENETSW_GMCR_REG);
2235         val |= ENETSW_GMCR_RST_MIB_MASK;
2236         enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2237         mdelay(1);
2238         val &= ~ENETSW_GMCR_RST_MIB_MASK;
2239         enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2240         mdelay(1);
2241 
2242         /* force CPU port state */
2243         val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2244         val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2245         enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2246 
2247         /* enable switch forward engine */
2248         val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2249         val |= ENETSW_SWMODE_FWD_EN_MASK;
2250         enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2251 
2252         /* enable jumbo on all ports */
2253         enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2254         enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2255 
2256         /* initialize flow control buffer allocation */
2257         enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2258                         ENETDMA_BUFALLOC_REG(priv->rx_chan));
2259 
2260         if (bcm_enet_refill_rx(dev)) {
2261                 dev_err(kdev, "cannot allocate rx skb queue\n");
2262                 ret = -ENOMEM;
2263                 goto out;
2264         }
2265 
2266         /* write rx & tx ring addresses */
2267         enet_dmas_writel(priv, priv->rx_desc_dma,
2268                          ENETDMAS_RSTART_REG, priv->rx_chan);
2269         enet_dmas_writel(priv, priv->tx_desc_dma,
2270                          ENETDMAS_RSTART_REG, priv->tx_chan);
2271 
2272         /* clear remaining state ram for rx & tx channel */
2273         enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2274         enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2275         enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2276         enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2277         enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2278         enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2279 
2280         /* set dma maximum burst len */
2281         enet_dmac_writel(priv, priv->dma_maxburst,
2282                          ENETDMAC_MAXBURST, priv->rx_chan);
2283         enet_dmac_writel(priv, priv->dma_maxburst,
2284                          ENETDMAC_MAXBURST, priv->tx_chan);
2285 
2286         /* set flow control low/high threshold to 1/3 / 2/3 */
2287         val = priv->rx_ring_size / 3;
2288         enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2289         val = (priv->rx_ring_size * 2) / 3;
2290         enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2291 
2292         /* all set, enable mac and interrupts, start dma engine and
2293          * kick rx dma channel
2294          */
2295         wmb();
2296         enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2297         enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2298                          ENETDMAC_CHANCFG, priv->rx_chan);
2299 
2300         /* watch "packet transferred" interrupt in rx and tx */
2301         enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2302                          ENETDMAC_IR, priv->rx_chan);
2303         enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2304                          ENETDMAC_IR, priv->tx_chan);
2305 
2306         /* make sure we enable napi before rx interrupt  */
2307         napi_enable(&priv->napi);
2308 
2309         enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2310                          ENETDMAC_IRMASK, priv->rx_chan);
2311         enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2312                          ENETDMAC_IRMASK, priv->tx_chan);
2313 
2314         netif_carrier_on(dev);
2315         netif_start_queue(dev);
2316 
2317         /* apply override config for bypass_link ports here. */
2318         for (i = 0; i < priv->num_ports; i++) {
2319                 struct bcm63xx_enetsw_port *port;
2320                 u8 override;
2321                 port = &priv->used_ports[i];
2322                 if (!port->used)
2323                         continue;
2324 
2325                 if (!port->bypass_link)
2326                         continue;
2327 
2328                 override = ENETSW_PORTOV_ENABLE_MASK |
2329                         ENETSW_PORTOV_LINKUP_MASK;
2330 
2331                 switch (port->force_speed) {
2332                 case 1000:
2333                         override |= ENETSW_IMPOV_1000_MASK;
2334                         break;
2335                 case 100:
2336                         override |= ENETSW_IMPOV_100_MASK;
2337                         break;
2338                 case 10:
2339                         break;
2340                 default:
2341                         pr_warn("invalid forced speed on port %s: assume 10\n",
2342                                port->name);
2343                         break;
2344                 }
2345 
2346                 if (port->force_duplex_full)
2347                         override |= ENETSW_IMPOV_FDX_MASK;
2348 
2349 
2350                 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2351                 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2352         }
2353 
2354         /* start phy polling timer */
2355         init_timer(&priv->swphy_poll);
2356         priv->swphy_poll.function = swphy_poll_timer;
2357         priv->swphy_poll.data = (unsigned long)priv;
2358         priv->swphy_poll.expires = jiffies;
2359         add_timer(&priv->swphy_poll);
2360         return 0;
2361 
2362 out:
2363         for (i = 0; i < priv->rx_ring_size; i++) {
2364                 struct bcm_enet_desc *desc;
2365 
2366                 if (!priv->rx_skb[i])
2367                         continue;
2368 
2369                 desc = &priv->rx_desc_cpu[i];
2370                 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2371                                  DMA_FROM_DEVICE);
2372                 kfree_skb(priv->rx_skb[i]);
2373         }
2374         kfree(priv->rx_skb);
2375 
2376 out_free_tx_skb:
2377         kfree(priv->tx_skb);
2378 
2379 out_free_tx_ring:
2380         dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2381                           priv->tx_desc_cpu, priv->tx_desc_dma);
2382 
2383 out_free_rx_ring:
2384         dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2385                           priv->rx_desc_cpu, priv->rx_desc_dma);
2386 
2387 out_freeirq_tx:
2388         if (priv->irq_tx != -1)
2389                 free_irq(priv->irq_tx, dev);
2390 
2391 out_freeirq_rx:
2392         free_irq(priv->irq_rx, dev);
2393 
2394 out_freeirq:
2395         return ret;
2396 }
2397 
2398 /* stop callback */
2399 static int bcm_enetsw_stop(struct net_device *dev)
2400 {
2401         struct bcm_enet_priv *priv;
2402         struct device *kdev;
2403         int i;
2404 
2405         priv = netdev_priv(dev);
2406         kdev = &priv->pdev->dev;
2407 
2408         del_timer_sync(&priv->swphy_poll);
2409         netif_stop_queue(dev);
2410         napi_disable(&priv->napi);
2411         del_timer_sync(&priv->rx_timeout);
2412 
2413         /* mask all interrupts */
2414         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2415         enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2416 
2417         /* disable dma & mac */
2418         bcm_enet_disable_dma(priv, priv->tx_chan);
2419         bcm_enet_disable_dma(priv, priv->rx_chan);
2420 
2421         /* force reclaim of all tx buffers */
2422         bcm_enet_tx_reclaim(dev, 1);
2423 
2424         /* free the rx skb ring */
2425         for (i = 0; i < priv->rx_ring_size; i++) {
2426                 struct bcm_enet_desc *desc;
2427 
2428                 if (!priv->rx_skb[i])
2429                         continue;
2430 
2431                 desc = &priv->rx_desc_cpu[i];
2432                 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2433                                  DMA_FROM_DEVICE);
2434                 kfree_skb(priv->rx_skb[i]);
2435         }
2436 
2437         /* free remaining allocated memory */
2438         kfree(priv->rx_skb);
2439         kfree(priv->tx_skb);
2440         dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2441                           priv->rx_desc_cpu, priv->rx_desc_dma);
2442         dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2443                           priv->tx_desc_cpu, priv->tx_desc_dma);
2444         if (priv->irq_tx != -1)
2445                 free_irq(priv->irq_tx, dev);
2446         free_irq(priv->irq_rx, dev);
2447 
2448         return 0;
2449 }
2450 
2451 /* try to sort out phy external status by walking the used_port field
2452  * in the bcm_enet_priv structure. in case the phy address is not
2453  * assigned to any physical port on the switch, assume it is external
2454  * (and yell at the user).
2455  */
2456 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2457 {
2458         int i;
2459 
2460         for (i = 0; i < priv->num_ports; ++i) {
2461                 if (!priv->used_ports[i].used)
2462                         continue;
2463                 if (priv->used_ports[i].phy_id == phy_id)
2464                         return bcm_enet_port_is_rgmii(i);
2465         }
2466 
2467         printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2468                     phy_id);
2469         return 1;
2470 }
2471 
2472 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2473  * external/internal status of the given phy_id first.
2474  */
2475 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2476                                     int location)
2477 {
2478         struct bcm_enet_priv *priv;
2479 
2480         priv = netdev_priv(dev);
2481         return bcmenet_sw_mdio_read(priv,
2482                                     bcm_enetsw_phy_is_external(priv, phy_id),
2483                                     phy_id, location);
2484 }
2485 
2486 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2487  * external/internal status of the given phy_id first.
2488  */
2489 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2490                                       int location,
2491                                       int val)
2492 {
2493         struct bcm_enet_priv *priv;
2494 
2495         priv = netdev_priv(dev);
2496         bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2497                               phy_id, location, val);
2498 }
2499 
2500 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2501 {
2502         struct mii_if_info mii;
2503 
2504         mii.dev = dev;
2505         mii.mdio_read = bcm_enetsw_mii_mdio_read;
2506         mii.mdio_write = bcm_enetsw_mii_mdio_write;
2507         mii.phy_id = 0;
2508         mii.phy_id_mask = 0x3f;
2509         mii.reg_num_mask = 0x1f;
2510         return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2511 
2512 }
2513 
2514 static const struct net_device_ops bcm_enetsw_ops = {
2515         .ndo_open               = bcm_enetsw_open,
2516         .ndo_stop               = bcm_enetsw_stop,
2517         .ndo_start_xmit         = bcm_enet_start_xmit,
2518         .ndo_change_mtu         = bcm_enet_change_mtu,
2519         .ndo_do_ioctl           = bcm_enetsw_ioctl,
2520 };
2521 
2522 
2523 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2524         { "rx_packets", DEV_STAT(rx_packets), -1 },
2525         { "tx_packets", DEV_STAT(tx_packets), -1 },
2526         { "rx_bytes", DEV_STAT(rx_bytes), -1 },
2527         { "tx_bytes", DEV_STAT(tx_bytes), -1 },
2528         { "rx_errors", DEV_STAT(rx_errors), -1 },
2529         { "tx_errors", DEV_STAT(tx_errors), -1 },
2530         { "rx_dropped", DEV_STAT(rx_dropped), -1 },
2531         { "tx_dropped", DEV_STAT(tx_dropped), -1 },
2532 
2533         { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2534         { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2535         { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2536         { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2537         { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2538         { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2539         { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2540         { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2541         { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2542         { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2543           ETHSW_MIB_RX_1024_1522 },
2544         { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2545           ETHSW_MIB_RX_1523_2047 },
2546         { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2547           ETHSW_MIB_RX_2048_4095 },
2548         { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2549           ETHSW_MIB_RX_4096_8191 },
2550         { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2551           ETHSW_MIB_RX_8192_9728 },
2552         { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2553         { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2554         { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2555         { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2556         { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2557 
2558         { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2559         { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2560         { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2561         { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2562         { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2563         { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2564 
2565 };
2566 
2567 #define BCM_ENETSW_STATS_LEN    \
2568         (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2569 
2570 static void bcm_enetsw_get_strings(struct net_device *netdev,
2571                                    u32 stringset, u8 *data)
2572 {
2573         int i;
2574 
2575         switch (stringset) {
2576         case ETH_SS_STATS:
2577                 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2578                         memcpy(data + i * ETH_GSTRING_LEN,
2579                                bcm_enetsw_gstrings_stats[i].stat_string,
2580                                ETH_GSTRING_LEN);
2581                 }
2582                 break;
2583         }
2584 }
2585 
2586 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2587                                      int string_set)
2588 {
2589         switch (string_set) {
2590         case ETH_SS_STATS:
2591                 return BCM_ENETSW_STATS_LEN;
2592         default:
2593                 return -EINVAL;
2594         }
2595 }
2596 
2597 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2598                                    struct ethtool_drvinfo *drvinfo)
2599 {
2600         strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2601         strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2602         strncpy(drvinfo->fw_version, "N/A", 32);
2603         strncpy(drvinfo->bus_info, "bcm63xx", 32);
2604 }
2605 
2606 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2607                                          struct ethtool_stats *stats,
2608                                          u64 *data)
2609 {
2610         struct bcm_enet_priv *priv;
2611         int i;
2612 
2613         priv = netdev_priv(netdev);
2614 
2615         for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2616                 const struct bcm_enet_stats *s;
2617                 u32 lo, hi;
2618                 char *p;
2619                 int reg;
2620 
2621                 s = &bcm_enetsw_gstrings_stats[i];
2622 
2623                 reg = s->mib_reg;
2624                 if (reg == -1)
2625                         continue;
2626 
2627                 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2628                 p = (char *)priv + s->stat_offset;
2629 
2630                 if (s->sizeof_stat == sizeof(u64)) {
2631                         hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2632                         *(u64 *)p = ((u64)hi << 32 | lo);
2633                 } else {
2634                         *(u32 *)p = lo;
2635                 }
2636         }
2637 
2638         for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2639                 const struct bcm_enet_stats *s;
2640                 char *p;
2641 
2642                 s = &bcm_enetsw_gstrings_stats[i];
2643 
2644                 if (s->mib_reg == -1)
2645                         p = (char *)&netdev->stats + s->stat_offset;
2646                 else
2647                         p = (char *)priv + s->stat_offset;
2648 
2649                 data[i] = (s->sizeof_stat == sizeof(u64)) ?
2650                         *(u64 *)p : *(u32 *)p;
2651         }
2652 }
2653 
2654 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2655                                      struct ethtool_ringparam *ering)
2656 {
2657         struct bcm_enet_priv *priv;
2658 
2659         priv = netdev_priv(dev);
2660 
2661         /* rx/tx ring is actually only limited by memory */
2662         ering->rx_max_pending = 8192;
2663         ering->tx_max_pending = 8192;
2664         ering->rx_mini_max_pending = 0;
2665         ering->rx_jumbo_max_pending = 0;
2666         ering->rx_pending = priv->rx_ring_size;
2667         ering->tx_pending = priv->tx_ring_size;
2668 }
2669 
2670 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2671                                     struct ethtool_ringparam *ering)
2672 {
2673         struct bcm_enet_priv *priv;
2674         int was_running;
2675 
2676         priv = netdev_priv(dev);
2677 
2678         was_running = 0;
2679         if (netif_running(dev)) {
2680                 bcm_enetsw_stop(dev);
2681                 was_running = 1;
2682         }
2683 
2684         priv->rx_ring_size = ering->rx_pending;
2685         priv->tx_ring_size = ering->tx_pending;
2686 
2687         if (was_running) {
2688                 int err;
2689 
2690                 err = bcm_enetsw_open(dev);
2691                 if (err)
2692                         dev_close(dev);
2693         }
2694         return 0;
2695 }
2696 
2697 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2698         .get_strings            = bcm_enetsw_get_strings,
2699         .get_sset_count         = bcm_enetsw_get_sset_count,
2700         .get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2701         .get_drvinfo            = bcm_enetsw_get_drvinfo,
2702         .get_ringparam          = bcm_enetsw_get_ringparam,
2703         .set_ringparam          = bcm_enetsw_set_ringparam,
2704 };
2705 
2706 /* allocate netdevice, request register memory and register device. */
2707 static int bcm_enetsw_probe(struct platform_device *pdev)
2708 {
2709         struct bcm_enet_priv *priv;
2710         struct net_device *dev;
2711         struct bcm63xx_enetsw_platform_data *pd;
2712         struct resource *res_mem;
2713         int ret, irq_rx, irq_tx;
2714 
2715         /* stop if shared driver failed, assume driver->probe will be
2716          * called in the same order we register devices (correct ?)
2717          */
2718         if (!bcm_enet_shared_base[0])
2719                 return -ENODEV;
2720 
2721         res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2722         irq_rx = platform_get_irq(pdev, 0);
2723         irq_tx = platform_get_irq(pdev, 1);
2724         if (!res_mem || irq_rx < 0)
2725                 return -ENODEV;
2726 
2727         ret = 0;
2728         dev = alloc_etherdev(sizeof(*priv));
2729         if (!dev)
2730                 return -ENOMEM;
2731         priv = netdev_priv(dev);
2732         memset(priv, 0, sizeof(*priv));
2733 
2734         /* initialize default and fetch platform data */
2735         priv->enet_is_sw = true;
2736         priv->irq_rx = irq_rx;
2737         priv->irq_tx = irq_tx;
2738         priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2739         priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2740         priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2741 
2742         pd = dev_get_platdata(&pdev->dev);
2743         if (pd) {
2744                 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2745                 memcpy(priv->used_ports, pd->used_ports,
2746                        sizeof(pd->used_ports));
2747                 priv->num_ports = pd->num_ports;
2748                 priv->dma_has_sram = pd->dma_has_sram;
2749                 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2750                 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2751                 priv->dma_chan_width = pd->dma_chan_width;
2752         }
2753 
2754         ret = compute_hw_mtu(priv, dev->mtu);
2755         if (ret)
2756                 goto out;
2757 
2758         if (!request_mem_region(res_mem->start, resource_size(res_mem),
2759                                 "bcm63xx_enetsw")) {
2760                 ret = -EBUSY;
2761                 goto out;
2762         }
2763 
2764         priv->base = ioremap(res_mem->start, resource_size(res_mem));
2765         if (priv->base == NULL) {
2766                 ret = -ENOMEM;
2767                 goto out_release_mem;
2768         }
2769 
2770         priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2771         if (IS_ERR(priv->mac_clk)) {
2772                 ret = PTR_ERR(priv->mac_clk);
2773                 goto out_unmap;
2774         }
2775         clk_enable(priv->mac_clk);
2776 
2777         priv->rx_chan = 0;
2778         priv->tx_chan = 1;
2779         spin_lock_init(&priv->rx_lock);
2780 
2781         /* init rx timeout (used for oom) */
2782         init_timer(&priv->rx_timeout);
2783         priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2784         priv->rx_timeout.data = (unsigned long)dev;
2785 
2786         /* register netdevice */
2787         dev->netdev_ops = &bcm_enetsw_ops;
2788         netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2789         dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2790         SET_NETDEV_DEV(dev, &pdev->dev);
2791 
2792         spin_lock_init(&priv->enetsw_mdio_lock);
2793 
2794         ret = register_netdev(dev);
2795         if (ret)
2796                 goto out_put_clk;
2797 
2798         netif_carrier_off(dev);
2799         platform_set_drvdata(pdev, dev);
2800         priv->pdev = pdev;
2801         priv->net_dev = dev;
2802 
2803         return 0;
2804 
2805 out_put_clk:
2806         clk_put(priv->mac_clk);
2807 
2808 out_unmap:
2809         iounmap(priv->base);
2810 
2811 out_release_mem:
2812         release_mem_region(res_mem->start, resource_size(res_mem));
2813 out:
2814         free_netdev(dev);
2815         return ret;
2816 }
2817 
2818 
2819 /* exit func, stops hardware and unregisters netdevice */
2820 static int bcm_enetsw_remove(struct platform_device *pdev)
2821 {
2822         struct bcm_enet_priv *priv;
2823         struct net_device *dev;
2824         struct resource *res;
2825 
2826         /* stop netdevice */
2827         dev = platform_get_drvdata(pdev);
2828         priv = netdev_priv(dev);
2829         unregister_netdev(dev);
2830 
2831         /* release device resources */
2832         iounmap(priv->base);
2833         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2834         release_mem_region(res->start, resource_size(res));
2835 
2836         free_netdev(dev);
2837         return 0;
2838 }
2839 
2840 struct platform_driver bcm63xx_enetsw_driver = {
2841         .probe  = bcm_enetsw_probe,
2842         .remove = bcm_enetsw_remove,
2843         .driver = {
2844                 .name   = "bcm63xx_enetsw",
2845                 .owner  = THIS_MODULE,
2846         },
2847 };
2848 
2849 /* reserve & remap memory space shared between all macs */
2850 static int bcm_enet_shared_probe(struct platform_device *pdev)
2851 {
2852         struct resource *res;
2853         void __iomem *p[3];
2854         unsigned int i;
2855 
2856         memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2857 
2858         for (i = 0; i < 3; i++) {
2859                 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2860                 p[i] = devm_ioremap_resource(&pdev->dev, res);
2861                 if (IS_ERR(p[i]))
2862                         return PTR_ERR(p[i]);
2863         }
2864 
2865         memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2866 
2867         return 0;
2868 }
2869 
2870 static int bcm_enet_shared_remove(struct platform_device *pdev)
2871 {
2872         return 0;
2873 }
2874 
2875 /* this "shared" driver is needed because both macs share a single
2876  * address space
2877  */
2878 struct platform_driver bcm63xx_enet_shared_driver = {
2879         .probe  = bcm_enet_shared_probe,
2880         .remove = bcm_enet_shared_remove,
2881         .driver = {
2882                 .name   = "bcm63xx_enet_shared",
2883                 .owner  = THIS_MODULE,
2884         },
2885 };
2886 
2887 /* entry point */
2888 static int __init bcm_enet_init(void)
2889 {
2890         int ret;
2891 
2892         ret = platform_driver_register(&bcm63xx_enet_shared_driver);
2893         if (ret)
2894                 return ret;
2895 
2896         ret = platform_driver_register(&bcm63xx_enet_driver);
2897         if (ret)
2898                 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2899 
2900         ret = platform_driver_register(&bcm63xx_enetsw_driver);
2901         if (ret) {
2902                 platform_driver_unregister(&bcm63xx_enet_driver);
2903                 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2904         }
2905 
2906         return ret;
2907 }
2908 
2909 static void __exit bcm_enet_exit(void)
2910 {
2911         platform_driver_unregister(&bcm63xx_enet_driver);
2912         platform_driver_unregister(&bcm63xx_enetsw_driver);
2913         platform_driver_unregister(&bcm63xx_enet_shared_driver);
2914 }
2915 
2916 
2917 module_init(bcm_enet_init);
2918 module_exit(bcm_enet_exit);
2919 
2920 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2921 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2922 MODULE_LICENSE("GPL");
2923 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us