Version:  2.0.40 2.2.26 2.4.37 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2

Linux/drivers/mtd/nand/mxc_nand.c

  1 /*
  2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4  *
  5  * This program is free software; you can redistribute it and/or
  6  * modify it under the terms of the GNU General Public License
  7  * as published by the Free Software Foundation; either version 2
  8  * of the License, or (at your option) any later version.
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, write to the Free Software
 16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 17  * MA 02110-1301, USA.
 18  */
 19 
 20 #include <linux/delay.h>
 21 #include <linux/slab.h>
 22 #include <linux/init.h>
 23 #include <linux/module.h>
 24 #include <linux/mtd/mtd.h>
 25 #include <linux/mtd/nand.h>
 26 #include <linux/mtd/partitions.h>
 27 #include <linux/interrupt.h>
 28 #include <linux/device.h>
 29 #include <linux/platform_device.h>
 30 #include <linux/clk.h>
 31 #include <linux/err.h>
 32 #include <linux/io.h>
 33 #include <linux/irq.h>
 34 #include <linux/completion.h>
 35 #include <linux/of.h>
 36 #include <linux/of_device.h>
 37 #include <linux/of_mtd.h>
 38 
 39 #include <asm/mach/flash.h>
 40 #include <linux/platform_data/mtd-mxc_nand.h>
 41 
 42 #define DRIVER_NAME "mxc_nand"
 43 
 44 /* Addresses for NFC registers */
 45 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
 46 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
 47 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
 48 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
 49 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
 50 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
 51 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
 52 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
 53 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
 54 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
 55 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
 56 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
 57 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
 58 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
 59 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
 60 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
 61 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
 62 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
 63 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
 64 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
 65 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
 66 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
 67 
 68 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
 69 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
 70 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
 71 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
 72 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
 73 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
 74 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
 75 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
 76 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
 77 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
 78 
 79 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
 80 
 81 /*
 82  * Operation modes for the NFC. Valid for v1, v2 and v3
 83  * type controllers.
 84  */
 85 #define NFC_CMD                         (1 << 0)
 86 #define NFC_ADDR                        (1 << 1)
 87 #define NFC_INPUT                       (1 << 2)
 88 #define NFC_OUTPUT                      (1 << 3)
 89 #define NFC_ID                          (1 << 4)
 90 #define NFC_STATUS                      (1 << 5)
 91 
 92 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
 93 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
 94 
 95 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
 96 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
 97 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
 98 
 99 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
100 
101 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
102 
103 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
105 #define NFC_V3_WRPROT_LOCK              (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
108 
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110 
111 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
125 
126 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
133 
134 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ                 (1 << 0)
136 #define NFC_V3_IPC_INT                  (1 << 31)
137 
138 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
139 
140 struct mxc_nand_host;
141 
142 struct mxc_nand_devtype_data {
143         void (*preset)(struct mtd_info *);
144         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146         void (*send_page)(struct mtd_info *, unsigned int);
147         void (*send_read_id)(struct mxc_nand_host *);
148         uint16_t (*get_dev_status)(struct mxc_nand_host *);
149         int (*check_int)(struct mxc_nand_host *);
150         void (*irq_control)(struct mxc_nand_host *, int);
151         u32 (*get_ecc_status)(struct mxc_nand_host *);
152         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153         void (*select_chip)(struct mtd_info *mtd, int chip);
154         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155                         u_char *read_ecc, u_char *calc_ecc);
156 
157         /*
158          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159          * (CONFIG1:INT_MSK is set). To handle this the driver uses
160          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161          */
162         int irqpending_quirk;
163         int needs_ip;
164 
165         size_t regs_offset;
166         size_t spare0_offset;
167         size_t axi_offset;
168 
169         int spare_len;
170         int eccbytes;
171         int eccsize;
172         int ppb_shift;
173 };
174 
175 struct mxc_nand_host {
176         struct mtd_info         mtd;
177         struct nand_chip        nand;
178         struct device           *dev;
179 
180         void __iomem            *spare0;
181         void __iomem            *main_area0;
182 
183         void __iomem            *base;
184         void __iomem            *regs;
185         void __iomem            *regs_axi;
186         void __iomem            *regs_ip;
187         int                     status_request;
188         struct clk              *clk;
189         int                     clk_act;
190         int                     irq;
191         int                     eccsize;
192         int                     used_oobsize;
193         int                     active_cs;
194 
195         struct completion       op_completion;
196 
197         uint8_t                 *data_buf;
198         unsigned int            buf_start;
199 
200         const struct mxc_nand_devtype_data *devtype_data;
201         struct mxc_nand_platform_data pdata;
202 };
203 
204 /* OOB placement block for use with hardware ecc generation */
205 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
206         .eccbytes = 5,
207         .eccpos = {6, 7, 8, 9, 10},
208         .oobfree = {{0, 5}, {12, 4}, }
209 };
210 
211 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
212         .eccbytes = 20,
213         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
214                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
215         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
216 };
217 
218 /* OOB description for 512 byte pages with 16 byte OOB */
219 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
220         .eccbytes = 1 * 9,
221         .eccpos = {
222                  7,  8,  9, 10, 11, 12, 13, 14, 15
223         },
224         .oobfree = {
225                 {.offset = 0, .length = 5}
226         }
227 };
228 
229 /* OOB description for 2048 byte pages with 64 byte OOB */
230 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
231         .eccbytes = 4 * 9,
232         .eccpos = {
233                  7,  8,  9, 10, 11, 12, 13, 14, 15,
234                 23, 24, 25, 26, 27, 28, 29, 30, 31,
235                 39, 40, 41, 42, 43, 44, 45, 46, 47,
236                 55, 56, 57, 58, 59, 60, 61, 62, 63
237         },
238         .oobfree = {
239                 {.offset = 2, .length = 4},
240                 {.offset = 16, .length = 7},
241                 {.offset = 32, .length = 7},
242                 {.offset = 48, .length = 7}
243         }
244 };
245 
246 /* OOB description for 4096 byte pages with 128 byte OOB */
247 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
248         .eccbytes = 8 * 9,
249         .eccpos = {
250                 7,  8,  9, 10, 11, 12, 13, 14, 15,
251                 23, 24, 25, 26, 27, 28, 29, 30, 31,
252                 39, 40, 41, 42, 43, 44, 45, 46, 47,
253                 55, 56, 57, 58, 59, 60, 61, 62, 63,
254                 71, 72, 73, 74, 75, 76, 77, 78, 79,
255                 87, 88, 89, 90, 91, 92, 93, 94, 95,
256                 103, 104, 105, 106, 107, 108, 109, 110, 111,
257                 119, 120, 121, 122, 123, 124, 125, 126, 127,
258         },
259         .oobfree = {
260                 {.offset = 2, .length = 4},
261                 {.offset = 16, .length = 7},
262                 {.offset = 32, .length = 7},
263                 {.offset = 48, .length = 7},
264                 {.offset = 64, .length = 7},
265                 {.offset = 80, .length = 7},
266                 {.offset = 96, .length = 7},
267                 {.offset = 112, .length = 7},
268         }
269 };
270 
271 static const char * const part_probes[] = {
272         "cmdlinepart", "RedBoot", "ofpart", NULL };
273 
274 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
275 {
276         int i;
277         u32 *t = trg;
278         const __iomem u32 *s = src;
279 
280         for (i = 0; i < (size >> 2); i++)
281                 *t++ = __raw_readl(s++);
282 }
283 
284 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
285 {
286         int i;
287         u16 *t = trg;
288         const __iomem u16 *s = src;
289 
290         /* We assume that src (IO) is always 32bit aligned */
291         if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
292                 memcpy32_fromio(trg, src, size);
293                 return;
294         }
295 
296         for (i = 0; i < (size >> 1); i++)
297                 *t++ = __raw_readw(s++);
298 }
299 
300 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
301 {
302         /* __iowrite32_copy use 32bit size values so divide by 4 */
303         __iowrite32_copy(trg, src, size / 4);
304 }
305 
306 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
307 {
308         int i;
309         __iomem u16 *t = trg;
310         const u16 *s = src;
311 
312         /* We assume that trg (IO) is always 32bit aligned */
313         if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
314                 memcpy32_toio(trg, src, size);
315                 return;
316         }
317 
318         for (i = 0; i < (size >> 1); i++)
319                 __raw_writew(*s++, t++);
320 }
321 
322 static int check_int_v3(struct mxc_nand_host *host)
323 {
324         uint32_t tmp;
325 
326         tmp = readl(NFC_V3_IPC);
327         if (!(tmp & NFC_V3_IPC_INT))
328                 return 0;
329 
330         tmp &= ~NFC_V3_IPC_INT;
331         writel(tmp, NFC_V3_IPC);
332 
333         return 1;
334 }
335 
336 static int check_int_v1_v2(struct mxc_nand_host *host)
337 {
338         uint32_t tmp;
339 
340         tmp = readw(NFC_V1_V2_CONFIG2);
341         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
342                 return 0;
343 
344         if (!host->devtype_data->irqpending_quirk)
345                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
346 
347         return 1;
348 }
349 
350 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
351 {
352         uint16_t tmp;
353 
354         tmp = readw(NFC_V1_V2_CONFIG1);
355 
356         if (activate)
357                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
358         else
359                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
360 
361         writew(tmp, NFC_V1_V2_CONFIG1);
362 }
363 
364 static void irq_control_v3(struct mxc_nand_host *host, int activate)
365 {
366         uint32_t tmp;
367 
368         tmp = readl(NFC_V3_CONFIG2);
369 
370         if (activate)
371                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
372         else
373                 tmp |= NFC_V3_CONFIG2_INT_MSK;
374 
375         writel(tmp, NFC_V3_CONFIG2);
376 }
377 
378 static void irq_control(struct mxc_nand_host *host, int activate)
379 {
380         if (host->devtype_data->irqpending_quirk) {
381                 if (activate)
382                         enable_irq(host->irq);
383                 else
384                         disable_irq_nosync(host->irq);
385         } else {
386                 host->devtype_data->irq_control(host, activate);
387         }
388 }
389 
390 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
391 {
392         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
393 }
394 
395 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
396 {
397         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
398 }
399 
400 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
401 {
402         return readl(NFC_V3_ECC_STATUS_RESULT);
403 }
404 
405 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
406 {
407         struct mxc_nand_host *host = dev_id;
408 
409         if (!host->devtype_data->check_int(host))
410                 return IRQ_NONE;
411 
412         irq_control(host, 0);
413 
414         complete(&host->op_completion);
415 
416         return IRQ_HANDLED;
417 }
418 
419 /* This function polls the NANDFC to wait for the basic operation to
420  * complete by checking the INT bit of config2 register.
421  */
422 static int wait_op_done(struct mxc_nand_host *host, int useirq)
423 {
424         int ret = 0;
425 
426         /*
427          * If operation is already complete, don't bother to setup an irq or a
428          * loop.
429          */
430         if (host->devtype_data->check_int(host))
431                 return 0;
432 
433         if (useirq) {
434                 unsigned long timeout;
435 
436                 reinit_completion(&host->op_completion);
437 
438                 irq_control(host, 1);
439 
440                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
441                 if (!timeout && !host->devtype_data->check_int(host)) {
442                         dev_dbg(host->dev, "timeout waiting for irq\n");
443                         ret = -ETIMEDOUT;
444                 }
445         } else {
446                 int max_retries = 8000;
447                 int done;
448 
449                 do {
450                         udelay(1);
451 
452                         done = host->devtype_data->check_int(host);
453                         if (done)
454                                 break;
455 
456                 } while (--max_retries);
457 
458                 if (!done) {
459                         dev_dbg(host->dev, "timeout polling for completion\n");
460                         ret = -ETIMEDOUT;
461                 }
462         }
463 
464         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
465 
466         return ret;
467 }
468 
469 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
470 {
471         /* fill command */
472         writel(cmd, NFC_V3_FLASH_CMD);
473 
474         /* send out command */
475         writel(NFC_CMD, NFC_V3_LAUNCH);
476 
477         /* Wait for operation to complete */
478         wait_op_done(host, useirq);
479 }
480 
481 /* This function issues the specified command to the NAND device and
482  * waits for completion. */
483 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
484 {
485         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
486 
487         writew(cmd, NFC_V1_V2_FLASH_CMD);
488         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
489 
490         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
491                 int max_retries = 100;
492                 /* Reset completion is indicated by NFC_CONFIG2 */
493                 /* being set to 0 */
494                 while (max_retries-- > 0) {
495                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
496                                 break;
497                         }
498                         udelay(1);
499                 }
500                 if (max_retries < 0)
501                         pr_debug("%s: RESET failed\n", __func__);
502         } else {
503                 /* Wait for operation to complete */
504                 wait_op_done(host, useirq);
505         }
506 }
507 
508 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
509 {
510         /* fill address */
511         writel(addr, NFC_V3_FLASH_ADDR0);
512 
513         /* send out address */
514         writel(NFC_ADDR, NFC_V3_LAUNCH);
515 
516         wait_op_done(host, 0);
517 }
518 
519 /* This function sends an address (or partial address) to the
520  * NAND device. The address is used to select the source/destination for
521  * a NAND command. */
522 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
523 {
524         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
525 
526         writew(addr, NFC_V1_V2_FLASH_ADDR);
527         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
528 
529         /* Wait for operation to complete */
530         wait_op_done(host, islast);
531 }
532 
533 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
534 {
535         struct nand_chip *nand_chip = mtd->priv;
536         struct mxc_nand_host *host = nand_chip->priv;
537         uint32_t tmp;
538 
539         tmp = readl(NFC_V3_CONFIG1);
540         tmp &= ~(7 << 4);
541         writel(tmp, NFC_V3_CONFIG1);
542 
543         /* transfer data from NFC ram to nand */
544         writel(ops, NFC_V3_LAUNCH);
545 
546         wait_op_done(host, false);
547 }
548 
549 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
550 {
551         struct nand_chip *nand_chip = mtd->priv;
552         struct mxc_nand_host *host = nand_chip->priv;
553 
554         /* NANDFC buffer 0 is used for page read/write */
555         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
556 
557         writew(ops, NFC_V1_V2_CONFIG2);
558 
559         /* Wait for operation to complete */
560         wait_op_done(host, true);
561 }
562 
563 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
564 {
565         struct nand_chip *nand_chip = mtd->priv;
566         struct mxc_nand_host *host = nand_chip->priv;
567         int bufs, i;
568 
569         if (mtd->writesize > 512)
570                 bufs = 4;
571         else
572                 bufs = 1;
573 
574         for (i = 0; i < bufs; i++) {
575 
576                 /* NANDFC buffer 0 is used for page read/write */
577                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
578 
579                 writew(ops, NFC_V1_V2_CONFIG2);
580 
581                 /* Wait for operation to complete */
582                 wait_op_done(host, true);
583         }
584 }
585 
586 static void send_read_id_v3(struct mxc_nand_host *host)
587 {
588         /* Read ID into main buffer */
589         writel(NFC_ID, NFC_V3_LAUNCH);
590 
591         wait_op_done(host, true);
592 
593         memcpy32_fromio(host->data_buf, host->main_area0, 16);
594 }
595 
596 /* Request the NANDFC to perform a read of the NAND device ID. */
597 static void send_read_id_v1_v2(struct mxc_nand_host *host)
598 {
599         /* NANDFC buffer 0 is used for device ID output */
600         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
601 
602         writew(NFC_ID, NFC_V1_V2_CONFIG2);
603 
604         /* Wait for operation to complete */
605         wait_op_done(host, true);
606 
607         memcpy32_fromio(host->data_buf, host->main_area0, 16);
608 }
609 
610 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
611 {
612         writew(NFC_STATUS, NFC_V3_LAUNCH);
613         wait_op_done(host, true);
614 
615         return readl(NFC_V3_CONFIG1) >> 16;
616 }
617 
618 /* This function requests the NANDFC to perform a read of the
619  * NAND device status and returns the current status. */
620 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
621 {
622         void __iomem *main_buf = host->main_area0;
623         uint32_t store;
624         uint16_t ret;
625 
626         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
627 
628         /*
629          * The device status is stored in main_area0. To
630          * prevent corruption of the buffer save the value
631          * and restore it afterwards.
632          */
633         store = readl(main_buf);
634 
635         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
636         wait_op_done(host, true);
637 
638         ret = readw(main_buf);
639 
640         writel(store, main_buf);
641 
642         return ret;
643 }
644 
645 /* This functions is used by upper layer to checks if device is ready */
646 static int mxc_nand_dev_ready(struct mtd_info *mtd)
647 {
648         /*
649          * NFC handles R/B internally. Therefore, this function
650          * always returns status as ready.
651          */
652         return 1;
653 }
654 
655 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
656 {
657         /*
658          * If HW ECC is enabled, we turn it on during init. There is
659          * no need to enable again here.
660          */
661 }
662 
663 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
664                                  u_char *read_ecc, u_char *calc_ecc)
665 {
666         struct nand_chip *nand_chip = mtd->priv;
667         struct mxc_nand_host *host = nand_chip->priv;
668 
669         /*
670          * 1-Bit errors are automatically corrected in HW.  No need for
671          * additional correction.  2-Bit errors cannot be corrected by
672          * HW ECC, so we need to return failure
673          */
674         uint16_t ecc_status = get_ecc_status_v1(host);
675 
676         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
677                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
678                 return -1;
679         }
680 
681         return 0;
682 }
683 
684 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
685                                  u_char *read_ecc, u_char *calc_ecc)
686 {
687         struct nand_chip *nand_chip = mtd->priv;
688         struct mxc_nand_host *host = nand_chip->priv;
689         u32 ecc_stat, err;
690         int no_subpages = 1;
691         int ret = 0;
692         u8 ecc_bit_mask, err_limit;
693 
694         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
695         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
696 
697         no_subpages = mtd->writesize >> 9;
698 
699         ecc_stat = host->devtype_data->get_ecc_status(host);
700 
701         do {
702                 err = ecc_stat & ecc_bit_mask;
703                 if (err > err_limit) {
704                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
705                         return -1;
706                 } else {
707                         ret += err;
708                 }
709                 ecc_stat >>= 4;
710         } while (--no_subpages);
711 
712         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
713 
714         return ret;
715 }
716 
717 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
718                                   u_char *ecc_code)
719 {
720         return 0;
721 }
722 
723 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
724 {
725         struct nand_chip *nand_chip = mtd->priv;
726         struct mxc_nand_host *host = nand_chip->priv;
727         uint8_t ret;
728 
729         /* Check for status request */
730         if (host->status_request)
731                 return host->devtype_data->get_dev_status(host) & 0xFF;
732 
733         if (nand_chip->options & NAND_BUSWIDTH_16) {
734                 /* only take the lower byte of each word */
735                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
736 
737                 host->buf_start += 2;
738         } else {
739                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
740                 host->buf_start++;
741         }
742 
743         pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
744         return ret;
745 }
746 
747 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
748 {
749         struct nand_chip *nand_chip = mtd->priv;
750         struct mxc_nand_host *host = nand_chip->priv;
751         uint16_t ret;
752 
753         ret = *(uint16_t *)(host->data_buf + host->buf_start);
754         host->buf_start += 2;
755 
756         return ret;
757 }
758 
759 /* Write data of length len to buffer buf. The data to be
760  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
761  * Operation by the NFC, the data is written to NAND Flash */
762 static void mxc_nand_write_buf(struct mtd_info *mtd,
763                                 const u_char *buf, int len)
764 {
765         struct nand_chip *nand_chip = mtd->priv;
766         struct mxc_nand_host *host = nand_chip->priv;
767         u16 col = host->buf_start;
768         int n = mtd->oobsize + mtd->writesize - col;
769 
770         n = min(n, len);
771 
772         memcpy(host->data_buf + col, buf, n);
773 
774         host->buf_start += n;
775 }
776 
777 /* Read the data buffer from the NAND Flash. To read the data from NAND
778  * Flash first the data output cycle is initiated by the NFC, which copies
779  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
780  */
781 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
782 {
783         struct nand_chip *nand_chip = mtd->priv;
784         struct mxc_nand_host *host = nand_chip->priv;
785         u16 col = host->buf_start;
786         int n = mtd->oobsize + mtd->writesize - col;
787 
788         n = min(n, len);
789 
790         memcpy(buf, host->data_buf + col, n);
791 
792         host->buf_start += n;
793 }
794 
795 /* This function is used by upper layer for select and
796  * deselect of the NAND chip */
797 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
798 {
799         struct nand_chip *nand_chip = mtd->priv;
800         struct mxc_nand_host *host = nand_chip->priv;
801 
802         if (chip == -1) {
803                 /* Disable the NFC clock */
804                 if (host->clk_act) {
805                         clk_disable_unprepare(host->clk);
806                         host->clk_act = 0;
807                 }
808                 return;
809         }
810 
811         if (!host->clk_act) {
812                 /* Enable the NFC clock */
813                 clk_prepare_enable(host->clk);
814                 host->clk_act = 1;
815         }
816 }
817 
818 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
819 {
820         struct nand_chip *nand_chip = mtd->priv;
821         struct mxc_nand_host *host = nand_chip->priv;
822 
823         if (chip == -1) {
824                 /* Disable the NFC clock */
825                 if (host->clk_act) {
826                         clk_disable_unprepare(host->clk);
827                         host->clk_act = 0;
828                 }
829                 return;
830         }
831 
832         if (!host->clk_act) {
833                 /* Enable the NFC clock */
834                 clk_prepare_enable(host->clk);
835                 host->clk_act = 1;
836         }
837 
838         host->active_cs = chip;
839         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
840 }
841 
842 /*
843  * The controller splits a page into data chunks of 512 bytes + partial oob.
844  * There are writesize / 512 such chunks, the size of the partial oob parts is
845  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
846  * contains additionally the byte lost by rounding (if any).
847  * This function handles the needed shuffling between host->data_buf (which
848  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
849  * spare) and the NFC buffer.
850  */
851 static void copy_spare(struct mtd_info *mtd, bool bfrom)
852 {
853         struct nand_chip *this = mtd->priv;
854         struct mxc_nand_host *host = this->priv;
855         u16 i, oob_chunk_size;
856         u16 num_chunks = mtd->writesize / 512;
857 
858         u8 *d = host->data_buf + mtd->writesize;
859         u8 __iomem *s = host->spare0;
860         u16 sparebuf_size = host->devtype_data->spare_len;
861 
862         /* size of oob chunk for all but possibly the last one */
863         oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
864 
865         if (bfrom) {
866                 for (i = 0; i < num_chunks - 1; i++)
867                         memcpy16_fromio(d + i * oob_chunk_size,
868                                         s + i * sparebuf_size,
869                                         oob_chunk_size);
870 
871                 /* the last chunk */
872                 memcpy16_fromio(d + i * oob_chunk_size,
873                                 s + i * sparebuf_size,
874                                 host->used_oobsize - i * oob_chunk_size);
875         } else {
876                 for (i = 0; i < num_chunks - 1; i++)
877                         memcpy16_toio(&s[i * sparebuf_size],
878                                       &d[i * oob_chunk_size],
879                                       oob_chunk_size);
880 
881                 /* the last chunk */
882                 memcpy16_toio(&s[oob_chunk_size * sparebuf_size],
883                               &d[i * oob_chunk_size],
884                               host->used_oobsize - i * oob_chunk_size);
885         }
886 }
887 
888 /*
889  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
890  * the upper layers perform a read/write buf operation, the saved column address
891  * is used to index into the full page. So usually this function is called with
892  * column == 0 (unless no column cycle is needed indicated by column == -1)
893  */
894 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
895 {
896         struct nand_chip *nand_chip = mtd->priv;
897         struct mxc_nand_host *host = nand_chip->priv;
898 
899         /* Write out column address, if necessary */
900         if (column != -1) {
901                 host->devtype_data->send_addr(host, column & 0xff,
902                                               page_addr == -1);
903                 if (mtd->writesize > 512)
904                         /* another col addr cycle for 2k page */
905                         host->devtype_data->send_addr(host,
906                                                       (column >> 8) & 0xff,
907                                                       false);
908         }
909 
910         /* Write out page address, if necessary */
911         if (page_addr != -1) {
912                 /* paddr_0 - p_addr_7 */
913                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
914 
915                 if (mtd->writesize > 512) {
916                         if (mtd->size >= 0x10000000) {
917                                 /* paddr_8 - paddr_15 */
918                                 host->devtype_data->send_addr(host,
919                                                 (page_addr >> 8) & 0xff,
920                                                 false);
921                                 host->devtype_data->send_addr(host,
922                                                 (page_addr >> 16) & 0xff,
923                                                 true);
924                         } else
925                                 /* paddr_8 - paddr_15 */
926                                 host->devtype_data->send_addr(host,
927                                                 (page_addr >> 8) & 0xff, true);
928                 } else {
929                         /* One more address cycle for higher density devices */
930                         if (mtd->size >= 0x4000000) {
931                                 /* paddr_8 - paddr_15 */
932                                 host->devtype_data->send_addr(host,
933                                                 (page_addr >> 8) & 0xff,
934                                                 false);
935                                 host->devtype_data->send_addr(host,
936                                                 (page_addr >> 16) & 0xff,
937                                                 true);
938                         } else
939                                 /* paddr_8 - paddr_15 */
940                                 host->devtype_data->send_addr(host,
941                                                 (page_addr >> 8) & 0xff, true);
942                 }
943         }
944 }
945 
946 /*
947  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
948  * on how much oob the nand chip has. For 8bit ecc we need at least
949  * 26 bytes of oob data per 512 byte block.
950  */
951 static int get_eccsize(struct mtd_info *mtd)
952 {
953         int oobbytes_per_512 = 0;
954 
955         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
956 
957         if (oobbytes_per_512 < 26)
958                 return 4;
959         else
960                 return 8;
961 }
962 
963 static void ecc_8bit_layout_4k(struct nand_ecclayout *layout)
964 {
965         int i, j;
966 
967         layout->eccbytes = 8*18;
968         for (i = 0; i < 8; i++)
969                 for (j = 0; j < 18; j++)
970                         layout->eccpos[i*18 + j] = i*26 + j + 7;
971 
972         layout->oobfree[0].offset = 2;
973         layout->oobfree[0].length = 4;
974         for (i = 1; i < 8; i++) {
975                 layout->oobfree[i].offset = i*26;
976                 layout->oobfree[i].length = 7;
977         }
978 }
979 
980 static void preset_v1(struct mtd_info *mtd)
981 {
982         struct nand_chip *nand_chip = mtd->priv;
983         struct mxc_nand_host *host = nand_chip->priv;
984         uint16_t config1 = 0;
985 
986         if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
987                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
988 
989         if (!host->devtype_data->irqpending_quirk)
990                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
991 
992         host->eccsize = 1;
993 
994         writew(config1, NFC_V1_V2_CONFIG1);
995         /* preset operation */
996 
997         /* Unlock the internal RAM Buffer */
998         writew(0x2, NFC_V1_V2_CONFIG);
999 
1000         /* Blocks to be unlocked */
1001         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1002         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1003 
1004         /* Unlock Block Command for given address range */
1005         writew(0x4, NFC_V1_V2_WRPROT);
1006 }
1007 
1008 static void preset_v2(struct mtd_info *mtd)
1009 {
1010         struct nand_chip *nand_chip = mtd->priv;
1011         struct mxc_nand_host *host = nand_chip->priv;
1012         uint16_t config1 = 0;
1013 
1014         config1 |= NFC_V2_CONFIG1_FP_INT;
1015 
1016         if (!host->devtype_data->irqpending_quirk)
1017                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1018 
1019         if (mtd->writesize) {
1020                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1021 
1022                 if (nand_chip->ecc.mode == NAND_ECC_HW)
1023                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1024 
1025                 host->eccsize = get_eccsize(mtd);
1026                 if (host->eccsize == 4)
1027                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1028 
1029                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1030         } else {
1031                 host->eccsize = 1;
1032         }
1033 
1034         writew(config1, NFC_V1_V2_CONFIG1);
1035         /* preset operation */
1036 
1037         /* Unlock the internal RAM Buffer */
1038         writew(0x2, NFC_V1_V2_CONFIG);
1039 
1040         /* Blocks to be unlocked */
1041         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1042         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1043         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1044         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1045         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1046         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1047         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1048         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1049 
1050         /* Unlock Block Command for given address range */
1051         writew(0x4, NFC_V1_V2_WRPROT);
1052 }
1053 
1054 static void preset_v3(struct mtd_info *mtd)
1055 {
1056         struct nand_chip *chip = mtd->priv;
1057         struct mxc_nand_host *host = chip->priv;
1058         uint32_t config2, config3;
1059         int i, addr_phases;
1060 
1061         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1062         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1063 
1064         /* Unlock the internal RAM Buffer */
1065         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1066                         NFC_V3_WRPROT);
1067 
1068         /* Blocks to be unlocked */
1069         for (i = 0; i < NAND_MAX_CHIPS; i++)
1070                 writel(0x0 |    (0xffff << 16),
1071                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1072 
1073         writel(0, NFC_V3_IPC);
1074 
1075         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1076                 NFC_V3_CONFIG2_2CMD_PHASES |
1077                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1078                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1079                 NFC_V3_CONFIG2_INT_MSK |
1080                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1081 
1082         addr_phases = fls(chip->pagemask) >> 3;
1083 
1084         if (mtd->writesize == 2048) {
1085                 config2 |= NFC_V3_CONFIG2_PS_2048;
1086                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1087         } else if (mtd->writesize == 4096) {
1088                 config2 |= NFC_V3_CONFIG2_PS_4096;
1089                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1090         } else {
1091                 config2 |= NFC_V3_CONFIG2_PS_512;
1092                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1093         }
1094 
1095         if (mtd->writesize) {
1096                 if (chip->ecc.mode == NAND_ECC_HW)
1097                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1098 
1099                 config2 |= NFC_V3_CONFIG2_PPB(
1100                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1101                                 host->devtype_data->ppb_shift);
1102                 host->eccsize = get_eccsize(mtd);
1103                 if (host->eccsize == 8)
1104                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1105         }
1106 
1107         writel(config2, NFC_V3_CONFIG2);
1108 
1109         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1110                         NFC_V3_CONFIG3_NO_SDMA |
1111                         NFC_V3_CONFIG3_RBB_MODE |
1112                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1113                         NFC_V3_CONFIG3_ADD_OP(0);
1114 
1115         if (!(chip->options & NAND_BUSWIDTH_16))
1116                 config3 |= NFC_V3_CONFIG3_FW8;
1117 
1118         writel(config3, NFC_V3_CONFIG3);
1119 
1120         writel(0, NFC_V3_DELAY_LINE);
1121 }
1122 
1123 /* Used by the upper layer to write command to NAND Flash for
1124  * different operations to be carried out on NAND Flash */
1125 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1126                                 int column, int page_addr)
1127 {
1128         struct nand_chip *nand_chip = mtd->priv;
1129         struct mxc_nand_host *host = nand_chip->priv;
1130 
1131         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1132               command, column, page_addr);
1133 
1134         /* Reset command state information */
1135         host->status_request = false;
1136 
1137         /* Command pre-processing step */
1138         switch (command) {
1139         case NAND_CMD_RESET:
1140                 host->devtype_data->preset(mtd);
1141                 host->devtype_data->send_cmd(host, command, false);
1142                 break;
1143 
1144         case NAND_CMD_STATUS:
1145                 host->buf_start = 0;
1146                 host->status_request = true;
1147 
1148                 host->devtype_data->send_cmd(host, command, true);
1149                 WARN_ONCE(column != -1 || page_addr != -1,
1150                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1151                           command, column, page_addr);
1152                 mxc_do_addr_cycle(mtd, column, page_addr);
1153                 break;
1154 
1155         case NAND_CMD_READ0:
1156         case NAND_CMD_READOOB:
1157                 if (command == NAND_CMD_READ0)
1158                         host->buf_start = column;
1159                 else
1160                         host->buf_start = column + mtd->writesize;
1161 
1162                 command = NAND_CMD_READ0; /* only READ0 is valid */
1163 
1164                 host->devtype_data->send_cmd(host, command, false);
1165                 WARN_ONCE(column < 0,
1166                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1167                           command, column, page_addr);
1168                 mxc_do_addr_cycle(mtd, 0, page_addr);
1169 
1170                 if (mtd->writesize > 512)
1171                         host->devtype_data->send_cmd(host,
1172                                         NAND_CMD_READSTART, true);
1173 
1174                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1175 
1176                 memcpy32_fromio(host->data_buf, host->main_area0,
1177                                 mtd->writesize);
1178                 copy_spare(mtd, true);
1179                 break;
1180 
1181         case NAND_CMD_SEQIN:
1182                 if (column >= mtd->writesize)
1183                         /* call ourself to read a page */
1184                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1185 
1186                 host->buf_start = column;
1187 
1188                 host->devtype_data->send_cmd(host, command, false);
1189                 WARN_ONCE(column < -1,
1190                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1191                           command, column, page_addr);
1192                 mxc_do_addr_cycle(mtd, 0, page_addr);
1193                 break;
1194 
1195         case NAND_CMD_PAGEPROG:
1196                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1197                 copy_spare(mtd, false);
1198                 host->devtype_data->send_page(mtd, NFC_INPUT);
1199                 host->devtype_data->send_cmd(host, command, true);
1200                 WARN_ONCE(column != -1 || page_addr != -1,
1201                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1202                           command, column, page_addr);
1203                 mxc_do_addr_cycle(mtd, column, page_addr);
1204                 break;
1205 
1206         case NAND_CMD_READID:
1207                 host->devtype_data->send_cmd(host, command, true);
1208                 mxc_do_addr_cycle(mtd, column, page_addr);
1209                 host->devtype_data->send_read_id(host);
1210                 host->buf_start = 0;
1211                 break;
1212 
1213         case NAND_CMD_ERASE1:
1214         case NAND_CMD_ERASE2:
1215                 host->devtype_data->send_cmd(host, command, false);
1216                 WARN_ONCE(column != -1,
1217                           "Unexpected column value (cmd=%u, col=%d)\n",
1218                           command, column);
1219                 mxc_do_addr_cycle(mtd, column, page_addr);
1220 
1221                 break;
1222         case NAND_CMD_PARAM:
1223                 host->devtype_data->send_cmd(host, command, false);
1224                 mxc_do_addr_cycle(mtd, column, page_addr);
1225                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1226                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1227                 host->buf_start = 0;
1228                 break;
1229         default:
1230                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1231                           command);
1232                 break;
1233         }
1234 }
1235 
1236 /*
1237  * The generic flash bbt decriptors overlap with our ecc
1238  * hardware, so define some i.MX specific ones.
1239  */
1240 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '' };
1241 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1242 
1243 static struct nand_bbt_descr bbt_main_descr = {
1244         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1245             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1246         .offs = 0,
1247         .len = 4,
1248         .veroffs = 4,
1249         .maxblocks = 4,
1250         .pattern = bbt_pattern,
1251 };
1252 
1253 static struct nand_bbt_descr bbt_mirror_descr = {
1254         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1255             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1256         .offs = 0,
1257         .len = 4,
1258         .veroffs = 4,
1259         .maxblocks = 4,
1260         .pattern = mirror_pattern,
1261 };
1262 
1263 /* v1 + irqpending_quirk: i.MX21 */
1264 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1265         .preset = preset_v1,
1266         .send_cmd = send_cmd_v1_v2,
1267         .send_addr = send_addr_v1_v2,
1268         .send_page = send_page_v1,
1269         .send_read_id = send_read_id_v1_v2,
1270         .get_dev_status = get_dev_status_v1_v2,
1271         .check_int = check_int_v1_v2,
1272         .irq_control = irq_control_v1_v2,
1273         .get_ecc_status = get_ecc_status_v1,
1274         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1275         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1276         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1277         .select_chip = mxc_nand_select_chip_v1_v3,
1278         .correct_data = mxc_nand_correct_data_v1,
1279         .irqpending_quirk = 1,
1280         .needs_ip = 0,
1281         .regs_offset = 0xe00,
1282         .spare0_offset = 0x800,
1283         .spare_len = 16,
1284         .eccbytes = 3,
1285         .eccsize = 1,
1286 };
1287 
1288 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1289 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1290         .preset = preset_v1,
1291         .send_cmd = send_cmd_v1_v2,
1292         .send_addr = send_addr_v1_v2,
1293         .send_page = send_page_v1,
1294         .send_read_id = send_read_id_v1_v2,
1295         .get_dev_status = get_dev_status_v1_v2,
1296         .check_int = check_int_v1_v2,
1297         .irq_control = irq_control_v1_v2,
1298         .get_ecc_status = get_ecc_status_v1,
1299         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1300         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1301         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1302         .select_chip = mxc_nand_select_chip_v1_v3,
1303         .correct_data = mxc_nand_correct_data_v1,
1304         .irqpending_quirk = 0,
1305         .needs_ip = 0,
1306         .regs_offset = 0xe00,
1307         .spare0_offset = 0x800,
1308         .axi_offset = 0,
1309         .spare_len = 16,
1310         .eccbytes = 3,
1311         .eccsize = 1,
1312 };
1313 
1314 /* v21: i.MX25, i.MX35 */
1315 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1316         .preset = preset_v2,
1317         .send_cmd = send_cmd_v1_v2,
1318         .send_addr = send_addr_v1_v2,
1319         .send_page = send_page_v2,
1320         .send_read_id = send_read_id_v1_v2,
1321         .get_dev_status = get_dev_status_v1_v2,
1322         .check_int = check_int_v1_v2,
1323         .irq_control = irq_control_v1_v2,
1324         .get_ecc_status = get_ecc_status_v2,
1325         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1326         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1327         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1328         .select_chip = mxc_nand_select_chip_v2,
1329         .correct_data = mxc_nand_correct_data_v2_v3,
1330         .irqpending_quirk = 0,
1331         .needs_ip = 0,
1332         .regs_offset = 0x1e00,
1333         .spare0_offset = 0x1000,
1334         .axi_offset = 0,
1335         .spare_len = 64,
1336         .eccbytes = 9,
1337         .eccsize = 0,
1338 };
1339 
1340 /* v3.2a: i.MX51 */
1341 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1342         .preset = preset_v3,
1343         .send_cmd = send_cmd_v3,
1344         .send_addr = send_addr_v3,
1345         .send_page = send_page_v3,
1346         .send_read_id = send_read_id_v3,
1347         .get_dev_status = get_dev_status_v3,
1348         .check_int = check_int_v3,
1349         .irq_control = irq_control_v3,
1350         .get_ecc_status = get_ecc_status_v3,
1351         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1352         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1353         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1354         .select_chip = mxc_nand_select_chip_v1_v3,
1355         .correct_data = mxc_nand_correct_data_v2_v3,
1356         .irqpending_quirk = 0,
1357         .needs_ip = 1,
1358         .regs_offset = 0,
1359         .spare0_offset = 0x1000,
1360         .axi_offset = 0x1e00,
1361         .spare_len = 64,
1362         .eccbytes = 0,
1363         .eccsize = 0,
1364         .ppb_shift = 7,
1365 };
1366 
1367 /* v3.2b: i.MX53 */
1368 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1369         .preset = preset_v3,
1370         .send_cmd = send_cmd_v3,
1371         .send_addr = send_addr_v3,
1372         .send_page = send_page_v3,
1373         .send_read_id = send_read_id_v3,
1374         .get_dev_status = get_dev_status_v3,
1375         .check_int = check_int_v3,
1376         .irq_control = irq_control_v3,
1377         .get_ecc_status = get_ecc_status_v3,
1378         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1379         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1380         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1381         .select_chip = mxc_nand_select_chip_v1_v3,
1382         .correct_data = mxc_nand_correct_data_v2_v3,
1383         .irqpending_quirk = 0,
1384         .needs_ip = 1,
1385         .regs_offset = 0,
1386         .spare0_offset = 0x1000,
1387         .axi_offset = 0x1e00,
1388         .spare_len = 64,
1389         .eccbytes = 0,
1390         .eccsize = 0,
1391         .ppb_shift = 8,
1392 };
1393 
1394 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1395 {
1396         return host->devtype_data == &imx21_nand_devtype_data;
1397 }
1398 
1399 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1400 {
1401         return host->devtype_data == &imx27_nand_devtype_data;
1402 }
1403 
1404 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1405 {
1406         return host->devtype_data == &imx25_nand_devtype_data;
1407 }
1408 
1409 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1410 {
1411         return host->devtype_data == &imx51_nand_devtype_data;
1412 }
1413 
1414 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1415 {
1416         return host->devtype_data == &imx53_nand_devtype_data;
1417 }
1418 
1419 static const struct platform_device_id mxcnd_devtype[] = {
1420         {
1421                 .name = "imx21-nand",
1422                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1423         }, {
1424                 .name = "imx27-nand",
1425                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1426         }, {
1427                 .name = "imx25-nand",
1428                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1429         }, {
1430                 .name = "imx51-nand",
1431                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1432         }, {
1433                 .name = "imx53-nand",
1434                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1435         }, {
1436                 /* sentinel */
1437         }
1438 };
1439 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1440 
1441 #ifdef CONFIG_OF_MTD
1442 static const struct of_device_id mxcnd_dt_ids[] = {
1443         {
1444                 .compatible = "fsl,imx21-nand",
1445                 .data = &imx21_nand_devtype_data,
1446         }, {
1447                 .compatible = "fsl,imx27-nand",
1448                 .data = &imx27_nand_devtype_data,
1449         }, {
1450                 .compatible = "fsl,imx25-nand",
1451                 .data = &imx25_nand_devtype_data,
1452         }, {
1453                 .compatible = "fsl,imx51-nand",
1454                 .data = &imx51_nand_devtype_data,
1455         }, {
1456                 .compatible = "fsl,imx53-nand",
1457                 .data = &imx53_nand_devtype_data,
1458         },
1459         { /* sentinel */ }
1460 };
1461 
1462 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1463 {
1464         struct device_node *np = host->dev->of_node;
1465         struct mxc_nand_platform_data *pdata = &host->pdata;
1466         const struct of_device_id *of_id =
1467                 of_match_device(mxcnd_dt_ids, host->dev);
1468         int buswidth;
1469 
1470         if (!np)
1471                 return 1;
1472 
1473         if (of_get_nand_ecc_mode(np) >= 0)
1474                 pdata->hw_ecc = 1;
1475 
1476         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1477 
1478         buswidth = of_get_nand_bus_width(np);
1479         if (buswidth < 0)
1480                 return buswidth;
1481 
1482         pdata->width = buswidth / 8;
1483 
1484         host->devtype_data = of_id->data;
1485 
1486         return 0;
1487 }
1488 #else
1489 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1490 {
1491         return 1;
1492 }
1493 #endif
1494 
1495 static int mxcnd_probe(struct platform_device *pdev)
1496 {
1497         struct nand_chip *this;
1498         struct mtd_info *mtd;
1499         struct mxc_nand_host *host;
1500         struct resource *res;
1501         int err = 0;
1502 
1503         /* Allocate memory for MTD device structure and private data */
1504         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1505                         GFP_KERNEL);
1506         if (!host)
1507                 return -ENOMEM;
1508 
1509         /* allocate a temporary buffer for the nand_scan_ident() */
1510         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1511         if (!host->data_buf)
1512                 return -ENOMEM;
1513 
1514         host->dev = &pdev->dev;
1515         /* structures must be linked */
1516         this = &host->nand;
1517         mtd = &host->mtd;
1518         mtd->priv = this;
1519         mtd->owner = THIS_MODULE;
1520         mtd->dev.parent = &pdev->dev;
1521         mtd->name = DRIVER_NAME;
1522 
1523         /* 50 us command delay time */
1524         this->chip_delay = 5;
1525 
1526         this->priv = host;
1527         this->dev_ready = mxc_nand_dev_ready;
1528         this->cmdfunc = mxc_nand_command;
1529         this->read_byte = mxc_nand_read_byte;
1530         this->read_word = mxc_nand_read_word;
1531         this->write_buf = mxc_nand_write_buf;
1532         this->read_buf = mxc_nand_read_buf;
1533 
1534         host->clk = devm_clk_get(&pdev->dev, NULL);
1535         if (IS_ERR(host->clk))
1536                 return PTR_ERR(host->clk);
1537 
1538         err = mxcnd_probe_dt(host);
1539         if (err > 0) {
1540                 struct mxc_nand_platform_data *pdata =
1541                                         dev_get_platdata(&pdev->dev);
1542                 if (pdata) {
1543                         host->pdata = *pdata;
1544                         host->devtype_data = (struct mxc_nand_devtype_data *)
1545                                                 pdev->id_entry->driver_data;
1546                 } else {
1547                         err = -ENODEV;
1548                 }
1549         }
1550         if (err < 0)
1551                 return err;
1552 
1553         if (host->devtype_data->needs_ip) {
1554                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1555                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1556                 if (IS_ERR(host->regs_ip))
1557                         return PTR_ERR(host->regs_ip);
1558 
1559                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1560         } else {
1561                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1562         }
1563 
1564         host->base = devm_ioremap_resource(&pdev->dev, res);
1565         if (IS_ERR(host->base))
1566                 return PTR_ERR(host->base);
1567 
1568         host->main_area0 = host->base;
1569 
1570         if (host->devtype_data->regs_offset)
1571                 host->regs = host->base + host->devtype_data->regs_offset;
1572         host->spare0 = host->base + host->devtype_data->spare0_offset;
1573         if (host->devtype_data->axi_offset)
1574                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1575 
1576         this->ecc.bytes = host->devtype_data->eccbytes;
1577         host->eccsize = host->devtype_data->eccsize;
1578 
1579         this->select_chip = host->devtype_data->select_chip;
1580         this->ecc.size = 512;
1581         this->ecc.layout = host->devtype_data->ecclayout_512;
1582 
1583         if (host->pdata.hw_ecc) {
1584                 this->ecc.calculate = mxc_nand_calculate_ecc;
1585                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1586                 this->ecc.correct = host->devtype_data->correct_data;
1587                 this->ecc.mode = NAND_ECC_HW;
1588         } else {
1589                 this->ecc.mode = NAND_ECC_SOFT;
1590         }
1591 
1592         /* NAND bus width determines access functions used by upper layer */
1593         if (host->pdata.width == 2)
1594                 this->options |= NAND_BUSWIDTH_16;
1595 
1596         if (host->pdata.flash_bbt) {
1597                 this->bbt_td = &bbt_main_descr;
1598                 this->bbt_md = &bbt_mirror_descr;
1599                 /* update flash based bbt */
1600                 this->bbt_options |= NAND_BBT_USE_FLASH;
1601         }
1602 
1603         init_completion(&host->op_completion);
1604 
1605         host->irq = platform_get_irq(pdev, 0);
1606         if (host->irq < 0)
1607                 return host->irq;
1608 
1609         /*
1610          * Use host->devtype_data->irq_control() here instead of irq_control()
1611          * because we must not disable_irq_nosync without having requested the
1612          * irq.
1613          */
1614         host->devtype_data->irq_control(host, 0);
1615 
1616         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1617                         0, DRIVER_NAME, host);
1618         if (err)
1619                 return err;
1620 
1621         err = clk_prepare_enable(host->clk);
1622         if (err)
1623                 return err;
1624         host->clk_act = 1;
1625 
1626         /*
1627          * Now that we "own" the interrupt make sure the interrupt mask bit is
1628          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1629          * on this machine.
1630          */
1631         if (host->devtype_data->irqpending_quirk) {
1632                 disable_irq_nosync(host->irq);
1633                 host->devtype_data->irq_control(host, 1);
1634         }
1635 
1636         /* first scan to find the device and get the page size */
1637         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1638                 err = -ENXIO;
1639                 goto escan;
1640         }
1641 
1642         /* allocate the right size buffer now */
1643         devm_kfree(&pdev->dev, (void *)host->data_buf);
1644         host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1645                                         GFP_KERNEL);
1646         if (!host->data_buf) {
1647                 err = -ENOMEM;
1648                 goto escan;
1649         }
1650 
1651         /* Call preset again, with correct writesize this time */
1652         host->devtype_data->preset(mtd);
1653 
1654         if (mtd->writesize == 2048)
1655                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1656         else if (mtd->writesize == 4096) {
1657                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1658                 if (get_eccsize(mtd) == 8)
1659                         ecc_8bit_layout_4k(this->ecc.layout);
1660         }
1661 
1662         /*
1663          * Experimentation shows that i.MX NFC can only handle up to 218 oob
1664          * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1665          * into copying invalid data to/from the spare IO buffer, as this
1666          * might cause ECC data corruption when doing sub-page write to a
1667          * partially written page.
1668          */
1669         host->used_oobsize = min(mtd->oobsize, 218U);
1670 
1671         if (this->ecc.mode == NAND_ECC_HW) {
1672                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1673                         this->ecc.strength = 1;
1674                 else
1675                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1676         }
1677 
1678         /* second phase scan */
1679         if (nand_scan_tail(mtd)) {
1680                 err = -ENXIO;
1681                 goto escan;
1682         }
1683 
1684         /* Register the partitions */
1685         mtd_device_parse_register(mtd, part_probes,
1686                         &(struct mtd_part_parser_data){
1687                                 .of_node = pdev->dev.of_node,
1688                         },
1689                         host->pdata.parts,
1690                         host->pdata.nr_parts);
1691 
1692         platform_set_drvdata(pdev, host);
1693 
1694         return 0;
1695 
1696 escan:
1697         if (host->clk_act)
1698                 clk_disable_unprepare(host->clk);
1699 
1700         return err;
1701 }
1702 
1703 static int mxcnd_remove(struct platform_device *pdev)
1704 {
1705         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1706 
1707         nand_release(&host->mtd);
1708         if (host->clk_act)
1709                 clk_disable_unprepare(host->clk);
1710 
1711         return 0;
1712 }
1713 
1714 static struct platform_driver mxcnd_driver = {
1715         .driver = {
1716                    .name = DRIVER_NAME,
1717                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1718         },
1719         .id_table = mxcnd_devtype,
1720         .probe = mxcnd_probe,
1721         .remove = mxcnd_remove,
1722 };
1723 module_platform_driver(mxcnd_driver);
1724 
1725 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1726 MODULE_DESCRIPTION("MXC NAND MTD driver");
1727 MODULE_LICENSE("GPL");
1728 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us