Version:  2.0.40 2.2.26 2.4.37 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6

Linux/drivers/mtd/nand/mxc_nand.c

  1 /*
  2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
  3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
  4  *
  5  * This program is free software; you can redistribute it and/or
  6  * modify it under the terms of the GNU General Public License
  7  * as published by the Free Software Foundation; either version 2
  8  * of the License, or (at your option) any later version.
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, write to the Free Software
 16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 17  * MA 02110-1301, USA.
 18  */
 19 
 20 #include <linux/delay.h>
 21 #include <linux/slab.h>
 22 #include <linux/init.h>
 23 #include <linux/module.h>
 24 #include <linux/mtd/mtd.h>
 25 #include <linux/mtd/nand.h>
 26 #include <linux/mtd/partitions.h>
 27 #include <linux/interrupt.h>
 28 #include <linux/device.h>
 29 #include <linux/platform_device.h>
 30 #include <linux/clk.h>
 31 #include <linux/err.h>
 32 #include <linux/io.h>
 33 #include <linux/irq.h>
 34 #include <linux/completion.h>
 35 #include <linux/of.h>
 36 #include <linux/of_device.h>
 37 #include <linux/of_mtd.h>
 38 
 39 #include <asm/mach/flash.h>
 40 #include <linux/platform_data/mtd-mxc_nand.h>
 41 
 42 #define DRIVER_NAME "mxc_nand"
 43 
 44 /* Addresses for NFC registers */
 45 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
 46 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
 47 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
 48 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
 49 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
 50 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
 51 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
 52 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
 53 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
 54 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
 55 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
 56 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
 57 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
 58 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
 59 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
 60 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
 61 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
 62 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
 63 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
 64 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
 65 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
 66 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
 67 
 68 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
 69 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
 70 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
 71 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
 72 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
 73 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
 74 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
 75 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
 76 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
 77 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
 78 
 79 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
 80 
 81 /*
 82  * Operation modes for the NFC. Valid for v1, v2 and v3
 83  * type controllers.
 84  */
 85 #define NFC_CMD                         (1 << 0)
 86 #define NFC_ADDR                        (1 << 1)
 87 #define NFC_INPUT                       (1 << 2)
 88 #define NFC_OUTPUT                      (1 << 3)
 89 #define NFC_ID                          (1 << 4)
 90 #define NFC_STATUS                      (1 << 5)
 91 
 92 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
 93 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
 94 
 95 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
 96 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
 97 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
 98 
 99 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
100 
101 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
102 
103 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
104 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
105 #define NFC_V3_WRPROT_LOCK              (1 << 1)
106 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
107 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
108 
109 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
110 
111 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
112 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
113 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
114 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
115 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
116 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
117 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
118 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
119 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
120 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
121 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
122 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
123 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
124 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
125 
126 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
127 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
128 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
129 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
130 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
131 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
132 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
133 
134 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
135 #define NFC_V3_IPC_CREQ                 (1 << 0)
136 #define NFC_V3_IPC_INT                  (1 << 31)
137 
138 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
139 
140 struct mxc_nand_host;
141 
142 struct mxc_nand_devtype_data {
143         void (*preset)(struct mtd_info *);
144         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
145         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
146         void (*send_page)(struct mtd_info *, unsigned int);
147         void (*send_read_id)(struct mxc_nand_host *);
148         uint16_t (*get_dev_status)(struct mxc_nand_host *);
149         int (*check_int)(struct mxc_nand_host *);
150         void (*irq_control)(struct mxc_nand_host *, int);
151         u32 (*get_ecc_status)(struct mxc_nand_host *);
152         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
153         void (*select_chip)(struct mtd_info *mtd, int chip);
154         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
155                         u_char *read_ecc, u_char *calc_ecc);
156 
157         /*
158          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
159          * (CONFIG1:INT_MSK is set). To handle this the driver uses
160          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161          */
162         int irqpending_quirk;
163         int needs_ip;
164 
165         size_t regs_offset;
166         size_t spare0_offset;
167         size_t axi_offset;
168 
169         int spare_len;
170         int eccbytes;
171         int eccsize;
172         int ppb_shift;
173 };
174 
175 struct mxc_nand_host {
176         struct nand_chip        nand;
177         struct device           *dev;
178 
179         void __iomem            *spare0;
180         void __iomem            *main_area0;
181 
182         void __iomem            *base;
183         void __iomem            *regs;
184         void __iomem            *regs_axi;
185         void __iomem            *regs_ip;
186         int                     status_request;
187         struct clk              *clk;
188         int                     clk_act;
189         int                     irq;
190         int                     eccsize;
191         int                     used_oobsize;
192         int                     active_cs;
193 
194         struct completion       op_completion;
195 
196         uint8_t                 *data_buf;
197         unsigned int            buf_start;
198 
199         const struct mxc_nand_devtype_data *devtype_data;
200         struct mxc_nand_platform_data pdata;
201 };
202 
203 /* OOB placement block for use with hardware ecc generation */
204 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
205         .eccbytes = 5,
206         .eccpos = {6, 7, 8, 9, 10},
207         .oobfree = {{0, 5}, {12, 4}, }
208 };
209 
210 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
211         .eccbytes = 20,
212         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
213                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
214         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
215 };
216 
217 /* OOB description for 512 byte pages with 16 byte OOB */
218 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
219         .eccbytes = 1 * 9,
220         .eccpos = {
221                  7,  8,  9, 10, 11, 12, 13, 14, 15
222         },
223         .oobfree = {
224                 {.offset = 0, .length = 5}
225         }
226 };
227 
228 /* OOB description for 2048 byte pages with 64 byte OOB */
229 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
230         .eccbytes = 4 * 9,
231         .eccpos = {
232                  7,  8,  9, 10, 11, 12, 13, 14, 15,
233                 23, 24, 25, 26, 27, 28, 29, 30, 31,
234                 39, 40, 41, 42, 43, 44, 45, 46, 47,
235                 55, 56, 57, 58, 59, 60, 61, 62, 63
236         },
237         .oobfree = {
238                 {.offset = 2, .length = 4},
239                 {.offset = 16, .length = 7},
240                 {.offset = 32, .length = 7},
241                 {.offset = 48, .length = 7}
242         }
243 };
244 
245 /* OOB description for 4096 byte pages with 128 byte OOB */
246 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
247         .eccbytes = 8 * 9,
248         .eccpos = {
249                 7,  8,  9, 10, 11, 12, 13, 14, 15,
250                 23, 24, 25, 26, 27, 28, 29, 30, 31,
251                 39, 40, 41, 42, 43, 44, 45, 46, 47,
252                 55, 56, 57, 58, 59, 60, 61, 62, 63,
253                 71, 72, 73, 74, 75, 76, 77, 78, 79,
254                 87, 88, 89, 90, 91, 92, 93, 94, 95,
255                 103, 104, 105, 106, 107, 108, 109, 110, 111,
256                 119, 120, 121, 122, 123, 124, 125, 126, 127,
257         },
258         .oobfree = {
259                 {.offset = 2, .length = 4},
260                 {.offset = 16, .length = 7},
261                 {.offset = 32, .length = 7},
262                 {.offset = 48, .length = 7},
263                 {.offset = 64, .length = 7},
264                 {.offset = 80, .length = 7},
265                 {.offset = 96, .length = 7},
266                 {.offset = 112, .length = 7},
267         }
268 };
269 
270 static const char * const part_probes[] = {
271         "cmdlinepart", "RedBoot", "ofpart", NULL };
272 
273 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
274 {
275         int i;
276         u32 *t = trg;
277         const __iomem u32 *s = src;
278 
279         for (i = 0; i < (size >> 2); i++)
280                 *t++ = __raw_readl(s++);
281 }
282 
283 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
284 {
285         int i;
286         u16 *t = trg;
287         const __iomem u16 *s = src;
288 
289         /* We assume that src (IO) is always 32bit aligned */
290         if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
291                 memcpy32_fromio(trg, src, size);
292                 return;
293         }
294 
295         for (i = 0; i < (size >> 1); i++)
296                 *t++ = __raw_readw(s++);
297 }
298 
299 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
300 {
301         /* __iowrite32_copy use 32bit size values so divide by 4 */
302         __iowrite32_copy(trg, src, size / 4);
303 }
304 
305 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
306 {
307         int i;
308         __iomem u16 *t = trg;
309         const u16 *s = src;
310 
311         /* We assume that trg (IO) is always 32bit aligned */
312         if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
313                 memcpy32_toio(trg, src, size);
314                 return;
315         }
316 
317         for (i = 0; i < (size >> 1); i++)
318                 __raw_writew(*s++, t++);
319 }
320 
321 static int check_int_v3(struct mxc_nand_host *host)
322 {
323         uint32_t tmp;
324 
325         tmp = readl(NFC_V3_IPC);
326         if (!(tmp & NFC_V3_IPC_INT))
327                 return 0;
328 
329         tmp &= ~NFC_V3_IPC_INT;
330         writel(tmp, NFC_V3_IPC);
331 
332         return 1;
333 }
334 
335 static int check_int_v1_v2(struct mxc_nand_host *host)
336 {
337         uint32_t tmp;
338 
339         tmp = readw(NFC_V1_V2_CONFIG2);
340         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
341                 return 0;
342 
343         if (!host->devtype_data->irqpending_quirk)
344                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
345 
346         return 1;
347 }
348 
349 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
350 {
351         uint16_t tmp;
352 
353         tmp = readw(NFC_V1_V2_CONFIG1);
354 
355         if (activate)
356                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
357         else
358                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
359 
360         writew(tmp, NFC_V1_V2_CONFIG1);
361 }
362 
363 static void irq_control_v3(struct mxc_nand_host *host, int activate)
364 {
365         uint32_t tmp;
366 
367         tmp = readl(NFC_V3_CONFIG2);
368 
369         if (activate)
370                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
371         else
372                 tmp |= NFC_V3_CONFIG2_INT_MSK;
373 
374         writel(tmp, NFC_V3_CONFIG2);
375 }
376 
377 static void irq_control(struct mxc_nand_host *host, int activate)
378 {
379         if (host->devtype_data->irqpending_quirk) {
380                 if (activate)
381                         enable_irq(host->irq);
382                 else
383                         disable_irq_nosync(host->irq);
384         } else {
385                 host->devtype_data->irq_control(host, activate);
386         }
387 }
388 
389 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
390 {
391         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
392 }
393 
394 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
395 {
396         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
397 }
398 
399 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
400 {
401         return readl(NFC_V3_ECC_STATUS_RESULT);
402 }
403 
404 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
405 {
406         struct mxc_nand_host *host = dev_id;
407 
408         if (!host->devtype_data->check_int(host))
409                 return IRQ_NONE;
410 
411         irq_control(host, 0);
412 
413         complete(&host->op_completion);
414 
415         return IRQ_HANDLED;
416 }
417 
418 /* This function polls the NANDFC to wait for the basic operation to
419  * complete by checking the INT bit of config2 register.
420  */
421 static int wait_op_done(struct mxc_nand_host *host, int useirq)
422 {
423         int ret = 0;
424 
425         /*
426          * If operation is already complete, don't bother to setup an irq or a
427          * loop.
428          */
429         if (host->devtype_data->check_int(host))
430                 return 0;
431 
432         if (useirq) {
433                 unsigned long timeout;
434 
435                 reinit_completion(&host->op_completion);
436 
437                 irq_control(host, 1);
438 
439                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
440                 if (!timeout && !host->devtype_data->check_int(host)) {
441                         dev_dbg(host->dev, "timeout waiting for irq\n");
442                         ret = -ETIMEDOUT;
443                 }
444         } else {
445                 int max_retries = 8000;
446                 int done;
447 
448                 do {
449                         udelay(1);
450 
451                         done = host->devtype_data->check_int(host);
452                         if (done)
453                                 break;
454 
455                 } while (--max_retries);
456 
457                 if (!done) {
458                         dev_dbg(host->dev, "timeout polling for completion\n");
459                         ret = -ETIMEDOUT;
460                 }
461         }
462 
463         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
464 
465         return ret;
466 }
467 
468 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
469 {
470         /* fill command */
471         writel(cmd, NFC_V3_FLASH_CMD);
472 
473         /* send out command */
474         writel(NFC_CMD, NFC_V3_LAUNCH);
475 
476         /* Wait for operation to complete */
477         wait_op_done(host, useirq);
478 }
479 
480 /* This function issues the specified command to the NAND device and
481  * waits for completion. */
482 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
483 {
484         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
485 
486         writew(cmd, NFC_V1_V2_FLASH_CMD);
487         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
488 
489         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
490                 int max_retries = 100;
491                 /* Reset completion is indicated by NFC_CONFIG2 */
492                 /* being set to 0 */
493                 while (max_retries-- > 0) {
494                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
495                                 break;
496                         }
497                         udelay(1);
498                 }
499                 if (max_retries < 0)
500                         pr_debug("%s: RESET failed\n", __func__);
501         } else {
502                 /* Wait for operation to complete */
503                 wait_op_done(host, useirq);
504         }
505 }
506 
507 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
508 {
509         /* fill address */
510         writel(addr, NFC_V3_FLASH_ADDR0);
511 
512         /* send out address */
513         writel(NFC_ADDR, NFC_V3_LAUNCH);
514 
515         wait_op_done(host, 0);
516 }
517 
518 /* This function sends an address (or partial address) to the
519  * NAND device. The address is used to select the source/destination for
520  * a NAND command. */
521 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
522 {
523         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
524 
525         writew(addr, NFC_V1_V2_FLASH_ADDR);
526         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
527 
528         /* Wait for operation to complete */
529         wait_op_done(host, islast);
530 }
531 
532 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
533 {
534         struct nand_chip *nand_chip = mtd_to_nand(mtd);
535         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
536         uint32_t tmp;
537 
538         tmp = readl(NFC_V3_CONFIG1);
539         tmp &= ~(7 << 4);
540         writel(tmp, NFC_V3_CONFIG1);
541 
542         /* transfer data from NFC ram to nand */
543         writel(ops, NFC_V3_LAUNCH);
544 
545         wait_op_done(host, false);
546 }
547 
548 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
549 {
550         struct nand_chip *nand_chip = mtd_to_nand(mtd);
551         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
552 
553         /* NANDFC buffer 0 is used for page read/write */
554         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
555 
556         writew(ops, NFC_V1_V2_CONFIG2);
557 
558         /* Wait for operation to complete */
559         wait_op_done(host, true);
560 }
561 
562 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
563 {
564         struct nand_chip *nand_chip = mtd_to_nand(mtd);
565         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
566         int bufs, i;
567 
568         if (mtd->writesize > 512)
569                 bufs = 4;
570         else
571                 bufs = 1;
572 
573         for (i = 0; i < bufs; i++) {
574 
575                 /* NANDFC buffer 0 is used for page read/write */
576                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
577 
578                 writew(ops, NFC_V1_V2_CONFIG2);
579 
580                 /* Wait for operation to complete */
581                 wait_op_done(host, true);
582         }
583 }
584 
585 static void send_read_id_v3(struct mxc_nand_host *host)
586 {
587         /* Read ID into main buffer */
588         writel(NFC_ID, NFC_V3_LAUNCH);
589 
590         wait_op_done(host, true);
591 
592         memcpy32_fromio(host->data_buf, host->main_area0, 16);
593 }
594 
595 /* Request the NANDFC to perform a read of the NAND device ID. */
596 static void send_read_id_v1_v2(struct mxc_nand_host *host)
597 {
598         /* NANDFC buffer 0 is used for device ID output */
599         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
600 
601         writew(NFC_ID, NFC_V1_V2_CONFIG2);
602 
603         /* Wait for operation to complete */
604         wait_op_done(host, true);
605 
606         memcpy32_fromio(host->data_buf, host->main_area0, 16);
607 }
608 
609 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
610 {
611         writew(NFC_STATUS, NFC_V3_LAUNCH);
612         wait_op_done(host, true);
613 
614         return readl(NFC_V3_CONFIG1) >> 16;
615 }
616 
617 /* This function requests the NANDFC to perform a read of the
618  * NAND device status and returns the current status. */
619 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
620 {
621         void __iomem *main_buf = host->main_area0;
622         uint32_t store;
623         uint16_t ret;
624 
625         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
626 
627         /*
628          * The device status is stored in main_area0. To
629          * prevent corruption of the buffer save the value
630          * and restore it afterwards.
631          */
632         store = readl(main_buf);
633 
634         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
635         wait_op_done(host, true);
636 
637         ret = readw(main_buf);
638 
639         writel(store, main_buf);
640 
641         return ret;
642 }
643 
644 /* This functions is used by upper layer to checks if device is ready */
645 static int mxc_nand_dev_ready(struct mtd_info *mtd)
646 {
647         /*
648          * NFC handles R/B internally. Therefore, this function
649          * always returns status as ready.
650          */
651         return 1;
652 }
653 
654 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
655 {
656         /*
657          * If HW ECC is enabled, we turn it on during init. There is
658          * no need to enable again here.
659          */
660 }
661 
662 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
663                                  u_char *read_ecc, u_char *calc_ecc)
664 {
665         struct nand_chip *nand_chip = mtd_to_nand(mtd);
666         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
667 
668         /*
669          * 1-Bit errors are automatically corrected in HW.  No need for
670          * additional correction.  2-Bit errors cannot be corrected by
671          * HW ECC, so we need to return failure
672          */
673         uint16_t ecc_status = get_ecc_status_v1(host);
674 
675         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
676                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
677                 return -EBADMSG;
678         }
679 
680         return 0;
681 }
682 
683 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
684                                  u_char *read_ecc, u_char *calc_ecc)
685 {
686         struct nand_chip *nand_chip = mtd_to_nand(mtd);
687         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
688         u32 ecc_stat, err;
689         int no_subpages = 1;
690         int ret = 0;
691         u8 ecc_bit_mask, err_limit;
692 
693         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
694         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
695 
696         no_subpages = mtd->writesize >> 9;
697 
698         ecc_stat = host->devtype_data->get_ecc_status(host);
699 
700         do {
701                 err = ecc_stat & ecc_bit_mask;
702                 if (err > err_limit) {
703                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
704                         return -EBADMSG;
705                 } else {
706                         ret += err;
707                 }
708                 ecc_stat >>= 4;
709         } while (--no_subpages);
710 
711         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
712 
713         return ret;
714 }
715 
716 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
717                                   u_char *ecc_code)
718 {
719         return 0;
720 }
721 
722 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
723 {
724         struct nand_chip *nand_chip = mtd_to_nand(mtd);
725         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
726         uint8_t ret;
727 
728         /* Check for status request */
729         if (host->status_request)
730                 return host->devtype_data->get_dev_status(host) & 0xFF;
731 
732         if (nand_chip->options & NAND_BUSWIDTH_16) {
733                 /* only take the lower byte of each word */
734                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
735 
736                 host->buf_start += 2;
737         } else {
738                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
739                 host->buf_start++;
740         }
741 
742         pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
743         return ret;
744 }
745 
746 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
747 {
748         struct nand_chip *nand_chip = mtd_to_nand(mtd);
749         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
750         uint16_t ret;
751 
752         ret = *(uint16_t *)(host->data_buf + host->buf_start);
753         host->buf_start += 2;
754 
755         return ret;
756 }
757 
758 /* Write data of length len to buffer buf. The data to be
759  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
760  * Operation by the NFC, the data is written to NAND Flash */
761 static void mxc_nand_write_buf(struct mtd_info *mtd,
762                                 const u_char *buf, int len)
763 {
764         struct nand_chip *nand_chip = mtd_to_nand(mtd);
765         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
766         u16 col = host->buf_start;
767         int n = mtd->oobsize + mtd->writesize - col;
768 
769         n = min(n, len);
770 
771         memcpy(host->data_buf + col, buf, n);
772 
773         host->buf_start += n;
774 }
775 
776 /* Read the data buffer from the NAND Flash. To read the data from NAND
777  * Flash first the data output cycle is initiated by the NFC, which copies
778  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
779  */
780 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
781 {
782         struct nand_chip *nand_chip = mtd_to_nand(mtd);
783         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
784         u16 col = host->buf_start;
785         int n = mtd->oobsize + mtd->writesize - col;
786 
787         n = min(n, len);
788 
789         memcpy(buf, host->data_buf + col, n);
790 
791         host->buf_start += n;
792 }
793 
794 /* This function is used by upper layer for select and
795  * deselect of the NAND chip */
796 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
797 {
798         struct nand_chip *nand_chip = mtd_to_nand(mtd);
799         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
800 
801         if (chip == -1) {
802                 /* Disable the NFC clock */
803                 if (host->clk_act) {
804                         clk_disable_unprepare(host->clk);
805                         host->clk_act = 0;
806                 }
807                 return;
808         }
809 
810         if (!host->clk_act) {
811                 /* Enable the NFC clock */
812                 clk_prepare_enable(host->clk);
813                 host->clk_act = 1;
814         }
815 }
816 
817 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
818 {
819         struct nand_chip *nand_chip = mtd_to_nand(mtd);
820         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
821 
822         if (chip == -1) {
823                 /* Disable the NFC clock */
824                 if (host->clk_act) {
825                         clk_disable_unprepare(host->clk);
826                         host->clk_act = 0;
827                 }
828                 return;
829         }
830 
831         if (!host->clk_act) {
832                 /* Enable the NFC clock */
833                 clk_prepare_enable(host->clk);
834                 host->clk_act = 1;
835         }
836 
837         host->active_cs = chip;
838         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
839 }
840 
841 /*
842  * The controller splits a page into data chunks of 512 bytes + partial oob.
843  * There are writesize / 512 such chunks, the size of the partial oob parts is
844  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
845  * contains additionally the byte lost by rounding (if any).
846  * This function handles the needed shuffling between host->data_buf (which
847  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
848  * spare) and the NFC buffer.
849  */
850 static void copy_spare(struct mtd_info *mtd, bool bfrom)
851 {
852         struct nand_chip *this = mtd_to_nand(mtd);
853         struct mxc_nand_host *host = nand_get_controller_data(this);
854         u16 i, oob_chunk_size;
855         u16 num_chunks = mtd->writesize / 512;
856 
857         u8 *d = host->data_buf + mtd->writesize;
858         u8 __iomem *s = host->spare0;
859         u16 sparebuf_size = host->devtype_data->spare_len;
860 
861         /* size of oob chunk for all but possibly the last one */
862         oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
863 
864         if (bfrom) {
865                 for (i = 0; i < num_chunks - 1; i++)
866                         memcpy16_fromio(d + i * oob_chunk_size,
867                                         s + i * sparebuf_size,
868                                         oob_chunk_size);
869 
870                 /* the last chunk */
871                 memcpy16_fromio(d + i * oob_chunk_size,
872                                 s + i * sparebuf_size,
873                                 host->used_oobsize - i * oob_chunk_size);
874         } else {
875                 for (i = 0; i < num_chunks - 1; i++)
876                         memcpy16_toio(&s[i * sparebuf_size],
877                                       &d[i * oob_chunk_size],
878                                       oob_chunk_size);
879 
880                 /* the last chunk */
881                 memcpy16_toio(&s[i * sparebuf_size],
882                               &d[i * oob_chunk_size],
883                               host->used_oobsize - i * oob_chunk_size);
884         }
885 }
886 
887 /*
888  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
889  * the upper layers perform a read/write buf operation, the saved column address
890  * is used to index into the full page. So usually this function is called with
891  * column == 0 (unless no column cycle is needed indicated by column == -1)
892  */
893 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
894 {
895         struct nand_chip *nand_chip = mtd_to_nand(mtd);
896         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
897 
898         /* Write out column address, if necessary */
899         if (column != -1) {
900                 host->devtype_data->send_addr(host, column & 0xff,
901                                               page_addr == -1);
902                 if (mtd->writesize > 512)
903                         /* another col addr cycle for 2k page */
904                         host->devtype_data->send_addr(host,
905                                                       (column >> 8) & 0xff,
906                                                       false);
907         }
908 
909         /* Write out page address, if necessary */
910         if (page_addr != -1) {
911                 /* paddr_0 - p_addr_7 */
912                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
913 
914                 if (mtd->writesize > 512) {
915                         if (mtd->size >= 0x10000000) {
916                                 /* paddr_8 - paddr_15 */
917                                 host->devtype_data->send_addr(host,
918                                                 (page_addr >> 8) & 0xff,
919                                                 false);
920                                 host->devtype_data->send_addr(host,
921                                                 (page_addr >> 16) & 0xff,
922                                                 true);
923                         } else
924                                 /* paddr_8 - paddr_15 */
925                                 host->devtype_data->send_addr(host,
926                                                 (page_addr >> 8) & 0xff, true);
927                 } else {
928                         /* One more address cycle for higher density devices */
929                         if (mtd->size >= 0x4000000) {
930                                 /* paddr_8 - paddr_15 */
931                                 host->devtype_data->send_addr(host,
932                                                 (page_addr >> 8) & 0xff,
933                                                 false);
934                                 host->devtype_data->send_addr(host,
935                                                 (page_addr >> 16) & 0xff,
936                                                 true);
937                         } else
938                                 /* paddr_8 - paddr_15 */
939                                 host->devtype_data->send_addr(host,
940                                                 (page_addr >> 8) & 0xff, true);
941                 }
942         }
943 }
944 
945 /*
946  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
947  * on how much oob the nand chip has. For 8bit ecc we need at least
948  * 26 bytes of oob data per 512 byte block.
949  */
950 static int get_eccsize(struct mtd_info *mtd)
951 {
952         int oobbytes_per_512 = 0;
953 
954         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
955 
956         if (oobbytes_per_512 < 26)
957                 return 4;
958         else
959                 return 8;
960 }
961 
962 static void ecc_8bit_layout_4k(struct nand_ecclayout *layout)
963 {
964         int i, j;
965 
966         layout->eccbytes = 8*18;
967         for (i = 0; i < 8; i++)
968                 for (j = 0; j < 18; j++)
969                         layout->eccpos[i*18 + j] = i*26 + j + 7;
970 
971         layout->oobfree[0].offset = 2;
972         layout->oobfree[0].length = 4;
973         for (i = 1; i < 8; i++) {
974                 layout->oobfree[i].offset = i*26;
975                 layout->oobfree[i].length = 7;
976         }
977 }
978 
979 static void preset_v1(struct mtd_info *mtd)
980 {
981         struct nand_chip *nand_chip = mtd_to_nand(mtd);
982         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
983         uint16_t config1 = 0;
984 
985         if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
986                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
987 
988         if (!host->devtype_data->irqpending_quirk)
989                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
990 
991         host->eccsize = 1;
992 
993         writew(config1, NFC_V1_V2_CONFIG1);
994         /* preset operation */
995 
996         /* Unlock the internal RAM Buffer */
997         writew(0x2, NFC_V1_V2_CONFIG);
998 
999         /* Blocks to be unlocked */
1000         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1001         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1002 
1003         /* Unlock Block Command for given address range */
1004         writew(0x4, NFC_V1_V2_WRPROT);
1005 }
1006 
1007 static void preset_v2(struct mtd_info *mtd)
1008 {
1009         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1010         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1011         uint16_t config1 = 0;
1012 
1013         config1 |= NFC_V2_CONFIG1_FP_INT;
1014 
1015         if (!host->devtype_data->irqpending_quirk)
1016                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1017 
1018         if (mtd->writesize) {
1019                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1020 
1021                 if (nand_chip->ecc.mode == NAND_ECC_HW)
1022                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1023 
1024                 host->eccsize = get_eccsize(mtd);
1025                 if (host->eccsize == 4)
1026                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1027 
1028                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1029         } else {
1030                 host->eccsize = 1;
1031         }
1032 
1033         writew(config1, NFC_V1_V2_CONFIG1);
1034         /* preset operation */
1035 
1036         /* Unlock the internal RAM Buffer */
1037         writew(0x2, NFC_V1_V2_CONFIG);
1038 
1039         /* Blocks to be unlocked */
1040         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1041         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1042         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1043         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1044         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1045         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1046         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1047         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1048 
1049         /* Unlock Block Command for given address range */
1050         writew(0x4, NFC_V1_V2_WRPROT);
1051 }
1052 
1053 static void preset_v3(struct mtd_info *mtd)
1054 {
1055         struct nand_chip *chip = mtd_to_nand(mtd);
1056         struct mxc_nand_host *host = nand_get_controller_data(chip);
1057         uint32_t config2, config3;
1058         int i, addr_phases;
1059 
1060         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1061         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1062 
1063         /* Unlock the internal RAM Buffer */
1064         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1065                         NFC_V3_WRPROT);
1066 
1067         /* Blocks to be unlocked */
1068         for (i = 0; i < NAND_MAX_CHIPS; i++)
1069                 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1070 
1071         writel(0, NFC_V3_IPC);
1072 
1073         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1074                 NFC_V3_CONFIG2_2CMD_PHASES |
1075                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1076                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1077                 NFC_V3_CONFIG2_INT_MSK |
1078                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1079 
1080         addr_phases = fls(chip->pagemask) >> 3;
1081 
1082         if (mtd->writesize == 2048) {
1083                 config2 |= NFC_V3_CONFIG2_PS_2048;
1084                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1085         } else if (mtd->writesize == 4096) {
1086                 config2 |= NFC_V3_CONFIG2_PS_4096;
1087                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1088         } else {
1089                 config2 |= NFC_V3_CONFIG2_PS_512;
1090                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1091         }
1092 
1093         if (mtd->writesize) {
1094                 if (chip->ecc.mode == NAND_ECC_HW)
1095                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1096 
1097                 config2 |= NFC_V3_CONFIG2_PPB(
1098                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1099                                 host->devtype_data->ppb_shift);
1100                 host->eccsize = get_eccsize(mtd);
1101                 if (host->eccsize == 8)
1102                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1103         }
1104 
1105         writel(config2, NFC_V3_CONFIG2);
1106 
1107         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1108                         NFC_V3_CONFIG3_NO_SDMA |
1109                         NFC_V3_CONFIG3_RBB_MODE |
1110                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1111                         NFC_V3_CONFIG3_ADD_OP(0);
1112 
1113         if (!(chip->options & NAND_BUSWIDTH_16))
1114                 config3 |= NFC_V3_CONFIG3_FW8;
1115 
1116         writel(config3, NFC_V3_CONFIG3);
1117 
1118         writel(0, NFC_V3_DELAY_LINE);
1119 }
1120 
1121 /* Used by the upper layer to write command to NAND Flash for
1122  * different operations to be carried out on NAND Flash */
1123 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1124                                 int column, int page_addr)
1125 {
1126         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1127         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1128 
1129         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1130               command, column, page_addr);
1131 
1132         /* Reset command state information */
1133         host->status_request = false;
1134 
1135         /* Command pre-processing step */
1136         switch (command) {
1137         case NAND_CMD_RESET:
1138                 host->devtype_data->preset(mtd);
1139                 host->devtype_data->send_cmd(host, command, false);
1140                 break;
1141 
1142         case NAND_CMD_STATUS:
1143                 host->buf_start = 0;
1144                 host->status_request = true;
1145 
1146                 host->devtype_data->send_cmd(host, command, true);
1147                 WARN_ONCE(column != -1 || page_addr != -1,
1148                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1149                           command, column, page_addr);
1150                 mxc_do_addr_cycle(mtd, column, page_addr);
1151                 break;
1152 
1153         case NAND_CMD_READ0:
1154         case NAND_CMD_READOOB:
1155                 if (command == NAND_CMD_READ0)
1156                         host->buf_start = column;
1157                 else
1158                         host->buf_start = column + mtd->writesize;
1159 
1160                 command = NAND_CMD_READ0; /* only READ0 is valid */
1161 
1162                 host->devtype_data->send_cmd(host, command, false);
1163                 WARN_ONCE(column < 0,
1164                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1165                           command, column, page_addr);
1166                 mxc_do_addr_cycle(mtd, 0, page_addr);
1167 
1168                 if (mtd->writesize > 512)
1169                         host->devtype_data->send_cmd(host,
1170                                         NAND_CMD_READSTART, true);
1171 
1172                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1173 
1174                 memcpy32_fromio(host->data_buf, host->main_area0,
1175                                 mtd->writesize);
1176                 copy_spare(mtd, true);
1177                 break;
1178 
1179         case NAND_CMD_SEQIN:
1180                 if (column >= mtd->writesize)
1181                         /* call ourself to read a page */
1182                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1183 
1184                 host->buf_start = column;
1185 
1186                 host->devtype_data->send_cmd(host, command, false);
1187                 WARN_ONCE(column < -1,
1188                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1189                           command, column, page_addr);
1190                 mxc_do_addr_cycle(mtd, 0, page_addr);
1191                 break;
1192 
1193         case NAND_CMD_PAGEPROG:
1194                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1195                 copy_spare(mtd, false);
1196                 host->devtype_data->send_page(mtd, NFC_INPUT);
1197                 host->devtype_data->send_cmd(host, command, true);
1198                 WARN_ONCE(column != -1 || page_addr != -1,
1199                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1200                           command, column, page_addr);
1201                 mxc_do_addr_cycle(mtd, column, page_addr);
1202                 break;
1203 
1204         case NAND_CMD_READID:
1205                 host->devtype_data->send_cmd(host, command, true);
1206                 mxc_do_addr_cycle(mtd, column, page_addr);
1207                 host->devtype_data->send_read_id(host);
1208                 host->buf_start = 0;
1209                 break;
1210 
1211         case NAND_CMD_ERASE1:
1212         case NAND_CMD_ERASE2:
1213                 host->devtype_data->send_cmd(host, command, false);
1214                 WARN_ONCE(column != -1,
1215                           "Unexpected column value (cmd=%u, col=%d)\n",
1216                           command, column);
1217                 mxc_do_addr_cycle(mtd, column, page_addr);
1218 
1219                 break;
1220         case NAND_CMD_PARAM:
1221                 host->devtype_data->send_cmd(host, command, false);
1222                 mxc_do_addr_cycle(mtd, column, page_addr);
1223                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1224                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1225                 host->buf_start = 0;
1226                 break;
1227         default:
1228                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1229                           command);
1230                 break;
1231         }
1232 }
1233 
1234 /*
1235  * The generic flash bbt decriptors overlap with our ecc
1236  * hardware, so define some i.MX specific ones.
1237  */
1238 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '' };
1239 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1240 
1241 static struct nand_bbt_descr bbt_main_descr = {
1242         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1243             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1244         .offs = 0,
1245         .len = 4,
1246         .veroffs = 4,
1247         .maxblocks = 4,
1248         .pattern = bbt_pattern,
1249 };
1250 
1251 static struct nand_bbt_descr bbt_mirror_descr = {
1252         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1253             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1254         .offs = 0,
1255         .len = 4,
1256         .veroffs = 4,
1257         .maxblocks = 4,
1258         .pattern = mirror_pattern,
1259 };
1260 
1261 /* v1 + irqpending_quirk: i.MX21 */
1262 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1263         .preset = preset_v1,
1264         .send_cmd = send_cmd_v1_v2,
1265         .send_addr = send_addr_v1_v2,
1266         .send_page = send_page_v1,
1267         .send_read_id = send_read_id_v1_v2,
1268         .get_dev_status = get_dev_status_v1_v2,
1269         .check_int = check_int_v1_v2,
1270         .irq_control = irq_control_v1_v2,
1271         .get_ecc_status = get_ecc_status_v1,
1272         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1273         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1274         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1275         .select_chip = mxc_nand_select_chip_v1_v3,
1276         .correct_data = mxc_nand_correct_data_v1,
1277         .irqpending_quirk = 1,
1278         .needs_ip = 0,
1279         .regs_offset = 0xe00,
1280         .spare0_offset = 0x800,
1281         .spare_len = 16,
1282         .eccbytes = 3,
1283         .eccsize = 1,
1284 };
1285 
1286 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1287 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1288         .preset = preset_v1,
1289         .send_cmd = send_cmd_v1_v2,
1290         .send_addr = send_addr_v1_v2,
1291         .send_page = send_page_v1,
1292         .send_read_id = send_read_id_v1_v2,
1293         .get_dev_status = get_dev_status_v1_v2,
1294         .check_int = check_int_v1_v2,
1295         .irq_control = irq_control_v1_v2,
1296         .get_ecc_status = get_ecc_status_v1,
1297         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1298         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1299         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1300         .select_chip = mxc_nand_select_chip_v1_v3,
1301         .correct_data = mxc_nand_correct_data_v1,
1302         .irqpending_quirk = 0,
1303         .needs_ip = 0,
1304         .regs_offset = 0xe00,
1305         .spare0_offset = 0x800,
1306         .axi_offset = 0,
1307         .spare_len = 16,
1308         .eccbytes = 3,
1309         .eccsize = 1,
1310 };
1311 
1312 /* v21: i.MX25, i.MX35 */
1313 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1314         .preset = preset_v2,
1315         .send_cmd = send_cmd_v1_v2,
1316         .send_addr = send_addr_v1_v2,
1317         .send_page = send_page_v2,
1318         .send_read_id = send_read_id_v1_v2,
1319         .get_dev_status = get_dev_status_v1_v2,
1320         .check_int = check_int_v1_v2,
1321         .irq_control = irq_control_v1_v2,
1322         .get_ecc_status = get_ecc_status_v2,
1323         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1324         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1325         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1326         .select_chip = mxc_nand_select_chip_v2,
1327         .correct_data = mxc_nand_correct_data_v2_v3,
1328         .irqpending_quirk = 0,
1329         .needs_ip = 0,
1330         .regs_offset = 0x1e00,
1331         .spare0_offset = 0x1000,
1332         .axi_offset = 0,
1333         .spare_len = 64,
1334         .eccbytes = 9,
1335         .eccsize = 0,
1336 };
1337 
1338 /* v3.2a: i.MX51 */
1339 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1340         .preset = preset_v3,
1341         .send_cmd = send_cmd_v3,
1342         .send_addr = send_addr_v3,
1343         .send_page = send_page_v3,
1344         .send_read_id = send_read_id_v3,
1345         .get_dev_status = get_dev_status_v3,
1346         .check_int = check_int_v3,
1347         .irq_control = irq_control_v3,
1348         .get_ecc_status = get_ecc_status_v3,
1349         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1350         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1351         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1352         .select_chip = mxc_nand_select_chip_v1_v3,
1353         .correct_data = mxc_nand_correct_data_v2_v3,
1354         .irqpending_quirk = 0,
1355         .needs_ip = 1,
1356         .regs_offset = 0,
1357         .spare0_offset = 0x1000,
1358         .axi_offset = 0x1e00,
1359         .spare_len = 64,
1360         .eccbytes = 0,
1361         .eccsize = 0,
1362         .ppb_shift = 7,
1363 };
1364 
1365 /* v3.2b: i.MX53 */
1366 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1367         .preset = preset_v3,
1368         .send_cmd = send_cmd_v3,
1369         .send_addr = send_addr_v3,
1370         .send_page = send_page_v3,
1371         .send_read_id = send_read_id_v3,
1372         .get_dev_status = get_dev_status_v3,
1373         .check_int = check_int_v3,
1374         .irq_control = irq_control_v3,
1375         .get_ecc_status = get_ecc_status_v3,
1376         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1377         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1378         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1379         .select_chip = mxc_nand_select_chip_v1_v3,
1380         .correct_data = mxc_nand_correct_data_v2_v3,
1381         .irqpending_quirk = 0,
1382         .needs_ip = 1,
1383         .regs_offset = 0,
1384         .spare0_offset = 0x1000,
1385         .axi_offset = 0x1e00,
1386         .spare_len = 64,
1387         .eccbytes = 0,
1388         .eccsize = 0,
1389         .ppb_shift = 8,
1390 };
1391 
1392 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1393 {
1394         return host->devtype_data == &imx21_nand_devtype_data;
1395 }
1396 
1397 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1398 {
1399         return host->devtype_data == &imx27_nand_devtype_data;
1400 }
1401 
1402 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1403 {
1404         return host->devtype_data == &imx25_nand_devtype_data;
1405 }
1406 
1407 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1408 {
1409         return host->devtype_data == &imx51_nand_devtype_data;
1410 }
1411 
1412 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1413 {
1414         return host->devtype_data == &imx53_nand_devtype_data;
1415 }
1416 
1417 static const struct platform_device_id mxcnd_devtype[] = {
1418         {
1419                 .name = "imx21-nand",
1420                 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1421         }, {
1422                 .name = "imx27-nand",
1423                 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1424         }, {
1425                 .name = "imx25-nand",
1426                 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1427         }, {
1428                 .name = "imx51-nand",
1429                 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1430         }, {
1431                 .name = "imx53-nand",
1432                 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1433         }, {
1434                 /* sentinel */
1435         }
1436 };
1437 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1438 
1439 #ifdef CONFIG_OF_MTD
1440 static const struct of_device_id mxcnd_dt_ids[] = {
1441         {
1442                 .compatible = "fsl,imx21-nand",
1443                 .data = &imx21_nand_devtype_data,
1444         }, {
1445                 .compatible = "fsl,imx27-nand",
1446                 .data = &imx27_nand_devtype_data,
1447         }, {
1448                 .compatible = "fsl,imx25-nand",
1449                 .data = &imx25_nand_devtype_data,
1450         }, {
1451                 .compatible = "fsl,imx51-nand",
1452                 .data = &imx51_nand_devtype_data,
1453         }, {
1454                 .compatible = "fsl,imx53-nand",
1455                 .data = &imx53_nand_devtype_data,
1456         },
1457         { /* sentinel */ }
1458 };
1459 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1460 
1461 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1462 {
1463         struct device_node *np = host->dev->of_node;
1464         struct mxc_nand_platform_data *pdata = &host->pdata;
1465         const struct of_device_id *of_id =
1466                 of_match_device(mxcnd_dt_ids, host->dev);
1467         int buswidth;
1468 
1469         if (!np)
1470                 return 1;
1471 
1472         if (of_get_nand_ecc_mode(np) >= 0)
1473                 pdata->hw_ecc = 1;
1474 
1475         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1476 
1477         buswidth = of_get_nand_bus_width(np);
1478         if (buswidth < 0)
1479                 return buswidth;
1480 
1481         pdata->width = buswidth / 8;
1482 
1483         host->devtype_data = of_id->data;
1484 
1485         return 0;
1486 }
1487 #else
1488 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1489 {
1490         return 1;
1491 }
1492 #endif
1493 
1494 static int mxcnd_probe(struct platform_device *pdev)
1495 {
1496         struct nand_chip *this;
1497         struct mtd_info *mtd;
1498         struct mxc_nand_host *host;
1499         struct resource *res;
1500         int err = 0;
1501 
1502         /* Allocate memory for MTD device structure and private data */
1503         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1504                         GFP_KERNEL);
1505         if (!host)
1506                 return -ENOMEM;
1507 
1508         /* allocate a temporary buffer for the nand_scan_ident() */
1509         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1510         if (!host->data_buf)
1511                 return -ENOMEM;
1512 
1513         host->dev = &pdev->dev;
1514         /* structures must be linked */
1515         this = &host->nand;
1516         mtd = nand_to_mtd(this);
1517         mtd->dev.parent = &pdev->dev;
1518         mtd->name = DRIVER_NAME;
1519 
1520         /* 50 us command delay time */
1521         this->chip_delay = 5;
1522 
1523         nand_set_controller_data(this, host);
1524         nand_set_flash_node(this, pdev->dev.of_node),
1525         this->dev_ready = mxc_nand_dev_ready;
1526         this->cmdfunc = mxc_nand_command;
1527         this->read_byte = mxc_nand_read_byte;
1528         this->read_word = mxc_nand_read_word;
1529         this->write_buf = mxc_nand_write_buf;
1530         this->read_buf = mxc_nand_read_buf;
1531 
1532         host->clk = devm_clk_get(&pdev->dev, NULL);
1533         if (IS_ERR(host->clk))
1534                 return PTR_ERR(host->clk);
1535 
1536         err = mxcnd_probe_dt(host);
1537         if (err > 0) {
1538                 struct mxc_nand_platform_data *pdata =
1539                                         dev_get_platdata(&pdev->dev);
1540                 if (pdata) {
1541                         host->pdata = *pdata;
1542                         host->devtype_data = (struct mxc_nand_devtype_data *)
1543                                                 pdev->id_entry->driver_data;
1544                 } else {
1545                         err = -ENODEV;
1546                 }
1547         }
1548         if (err < 0)
1549                 return err;
1550 
1551         if (host->devtype_data->needs_ip) {
1552                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1553                 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1554                 if (IS_ERR(host->regs_ip))
1555                         return PTR_ERR(host->regs_ip);
1556 
1557                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1558         } else {
1559                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560         }
1561 
1562         host->base = devm_ioremap_resource(&pdev->dev, res);
1563         if (IS_ERR(host->base))
1564                 return PTR_ERR(host->base);
1565 
1566         host->main_area0 = host->base;
1567 
1568         if (host->devtype_data->regs_offset)
1569                 host->regs = host->base + host->devtype_data->regs_offset;
1570         host->spare0 = host->base + host->devtype_data->spare0_offset;
1571         if (host->devtype_data->axi_offset)
1572                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1573 
1574         this->ecc.bytes = host->devtype_data->eccbytes;
1575         host->eccsize = host->devtype_data->eccsize;
1576 
1577         this->select_chip = host->devtype_data->select_chip;
1578         this->ecc.size = 512;
1579         this->ecc.layout = host->devtype_data->ecclayout_512;
1580 
1581         if (host->pdata.hw_ecc) {
1582                 this->ecc.calculate = mxc_nand_calculate_ecc;
1583                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1584                 this->ecc.correct = host->devtype_data->correct_data;
1585                 this->ecc.mode = NAND_ECC_HW;
1586         } else {
1587                 this->ecc.mode = NAND_ECC_SOFT;
1588         }
1589 
1590         /* NAND bus width determines access functions used by upper layer */
1591         if (host->pdata.width == 2)
1592                 this->options |= NAND_BUSWIDTH_16;
1593 
1594         if (host->pdata.flash_bbt) {
1595                 this->bbt_td = &bbt_main_descr;
1596                 this->bbt_md = &bbt_mirror_descr;
1597                 /* update flash based bbt */
1598                 this->bbt_options |= NAND_BBT_USE_FLASH;
1599         }
1600 
1601         init_completion(&host->op_completion);
1602 
1603         host->irq = platform_get_irq(pdev, 0);
1604         if (host->irq < 0)
1605                 return host->irq;
1606 
1607         /*
1608          * Use host->devtype_data->irq_control() here instead of irq_control()
1609          * because we must not disable_irq_nosync without having requested the
1610          * irq.
1611          */
1612         host->devtype_data->irq_control(host, 0);
1613 
1614         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1615                         0, DRIVER_NAME, host);
1616         if (err)
1617                 return err;
1618 
1619         err = clk_prepare_enable(host->clk);
1620         if (err)
1621                 return err;
1622         host->clk_act = 1;
1623 
1624         /*
1625          * Now that we "own" the interrupt make sure the interrupt mask bit is
1626          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1627          * on this machine.
1628          */
1629         if (host->devtype_data->irqpending_quirk) {
1630                 disable_irq_nosync(host->irq);
1631                 host->devtype_data->irq_control(host, 1);
1632         }
1633 
1634         /* first scan to find the device and get the page size */
1635         if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1636                 err = -ENXIO;
1637                 goto escan;
1638         }
1639 
1640         /* allocate the right size buffer now */
1641         devm_kfree(&pdev->dev, (void *)host->data_buf);
1642         host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1643                                         GFP_KERNEL);
1644         if (!host->data_buf) {
1645                 err = -ENOMEM;
1646                 goto escan;
1647         }
1648 
1649         /* Call preset again, with correct writesize this time */
1650         host->devtype_data->preset(mtd);
1651 
1652         if (mtd->writesize == 2048)
1653                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1654         else if (mtd->writesize == 4096) {
1655                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1656                 if (get_eccsize(mtd) == 8)
1657                         ecc_8bit_layout_4k(this->ecc.layout);
1658         }
1659 
1660         /*
1661          * Experimentation shows that i.MX NFC can only handle up to 218 oob
1662          * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1663          * into copying invalid data to/from the spare IO buffer, as this
1664          * might cause ECC data corruption when doing sub-page write to a
1665          * partially written page.
1666          */
1667         host->used_oobsize = min(mtd->oobsize, 218U);
1668 
1669         if (this->ecc.mode == NAND_ECC_HW) {
1670                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1671                         this->ecc.strength = 1;
1672                 else
1673                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1674         }
1675 
1676         /* second phase scan */
1677         if (nand_scan_tail(mtd)) {
1678                 err = -ENXIO;
1679                 goto escan;
1680         }
1681 
1682         /* Register the partitions */
1683         mtd_device_parse_register(mtd, part_probes,
1684                         NULL,
1685                         host->pdata.parts,
1686                         host->pdata.nr_parts);
1687 
1688         platform_set_drvdata(pdev, host);
1689 
1690         return 0;
1691 
1692 escan:
1693         if (host->clk_act)
1694                 clk_disable_unprepare(host->clk);
1695 
1696         return err;
1697 }
1698 
1699 static int mxcnd_remove(struct platform_device *pdev)
1700 {
1701         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1702 
1703         nand_release(nand_to_mtd(&host->nand));
1704         if (host->clk_act)
1705                 clk_disable_unprepare(host->clk);
1706 
1707         return 0;
1708 }
1709 
1710 static struct platform_driver mxcnd_driver = {
1711         .driver = {
1712                    .name = DRIVER_NAME,
1713                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1714         },
1715         .id_table = mxcnd_devtype,
1716         .probe = mxcnd_probe,
1717         .remove = mxcnd_remove,
1718 };
1719 module_platform_driver(mxcnd_driver);
1720 
1721 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1722 MODULE_DESCRIPTION("MXC NAND MTD driver");
1723 MODULE_LICENSE("GPL");
1724 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us