Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5

Linux/drivers/mtd/nand/atmel_nand.c

  1 /*
  2  *  Copyright © 2003 Rick Bronson
  3  *
  4  *  Derived from drivers/mtd/nand/autcpu12.c
  5  *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
  6  *
  7  *  Derived from drivers/mtd/spia.c
  8  *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
  9  *
 10  *
 11  *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
 12  *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
 13  *
 14  *     Derived from Das U-Boot source code
 15  *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
 16  *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
 17  *
 18  *  Add Programmable Multibit ECC support for various AT91 SoC
 19  *     © Copyright 2012 ATMEL, Hong Xu
 20  *
 21  *  Add Nand Flash Controller support for SAMA5 SoC
 22  *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
 23  *
 24  * This program is free software; you can redistribute it and/or modify
 25  * it under the terms of the GNU General Public License version 2 as
 26  * published by the Free Software Foundation.
 27  *
 28  */
 29 
 30 #include <linux/clk.h>
 31 #include <linux/dma-mapping.h>
 32 #include <linux/slab.h>
 33 #include <linux/module.h>
 34 #include <linux/moduleparam.h>
 35 #include <linux/platform_device.h>
 36 #include <linux/of.h>
 37 #include <linux/of_device.h>
 38 #include <linux/of_gpio.h>
 39 #include <linux/of_mtd.h>
 40 #include <linux/mtd/mtd.h>
 41 #include <linux/mtd/nand.h>
 42 #include <linux/mtd/partitions.h>
 43 
 44 #include <linux/delay.h>
 45 #include <linux/dmaengine.h>
 46 #include <linux/gpio.h>
 47 #include <linux/interrupt.h>
 48 #include <linux/io.h>
 49 #include <linux/platform_data/atmel.h>
 50 
 51 static int use_dma = 1;
 52 module_param(use_dma, int, 0);
 53 
 54 static int on_flash_bbt = 0;
 55 module_param(on_flash_bbt, int, 0);
 56 
 57 /* Register access macros */
 58 #define ecc_readl(add, reg)                             \
 59         __raw_readl(add + ATMEL_ECC_##reg)
 60 #define ecc_writel(add, reg, value)                     \
 61         __raw_writel((value), add + ATMEL_ECC_##reg)
 62 
 63 #include "atmel_nand_ecc.h"     /* Hardware ECC registers */
 64 #include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
 65 
 66 struct atmel_nand_caps {
 67         bool pmecc_correct_erase_page;
 68 };
 69 
 70 /* oob layout for large page size
 71  * bad block info is on bytes 0 and 1
 72  * the bytes have to be consecutives to avoid
 73  * several NAND_CMD_RNDOUT during read
 74  */
 75 static struct nand_ecclayout atmel_oobinfo_large = {
 76         .eccbytes = 4,
 77         .eccpos = {60, 61, 62, 63},
 78         .oobfree = {
 79                 {2, 58}
 80         },
 81 };
 82 
 83 /* oob layout for small page size
 84  * bad block info is on bytes 4 and 5
 85  * the bytes have to be consecutives to avoid
 86  * several NAND_CMD_RNDOUT during read
 87  */
 88 static struct nand_ecclayout atmel_oobinfo_small = {
 89         .eccbytes = 4,
 90         .eccpos = {0, 1, 2, 3},
 91         .oobfree = {
 92                 {6, 10}
 93         },
 94 };
 95 
 96 struct atmel_nfc {
 97         void __iomem            *base_cmd_regs;
 98         void __iomem            *hsmc_regs;
 99         void                    *sram_bank0;
100         dma_addr_t              sram_bank0_phys;
101         bool                    use_nfc_sram;
102         bool                    write_by_sram;
103 
104         struct clk              *clk;
105 
106         bool                    is_initialized;
107         struct completion       comp_ready;
108         struct completion       comp_cmd_done;
109         struct completion       comp_xfer_done;
110 
111         /* Point to the sram bank which include readed data via NFC */
112         void                    *data_in_sram;
113         bool                    will_write_sram;
114 };
115 static struct atmel_nfc nand_nfc;
116 
117 struct atmel_nand_host {
118         struct nand_chip        nand_chip;
119         void __iomem            *io_base;
120         dma_addr_t              io_phys;
121         struct atmel_nand_data  board;
122         struct device           *dev;
123         void __iomem            *ecc;
124 
125         struct completion       comp;
126         struct dma_chan         *dma_chan;
127 
128         struct atmel_nfc        *nfc;
129 
130         const struct atmel_nand_caps    *caps;
131         bool                    has_pmecc;
132         u8                      pmecc_corr_cap;
133         u16                     pmecc_sector_size;
134         bool                    has_no_lookup_table;
135         u32                     pmecc_lookup_table_offset;
136         u32                     pmecc_lookup_table_offset_512;
137         u32                     pmecc_lookup_table_offset_1024;
138 
139         int                     pmecc_degree;   /* Degree of remainders */
140         int                     pmecc_cw_len;   /* Length of codeword */
141 
142         void __iomem            *pmerrloc_base;
143         void __iomem            *pmecc_rom_base;
144 
145         /* lookup table for alpha_to and index_of */
146         void __iomem            *pmecc_alpha_to;
147         void __iomem            *pmecc_index_of;
148 
149         /* data for pmecc computation */
150         int16_t                 *pmecc_partial_syn;
151         int16_t                 *pmecc_si;
152         int16_t                 *pmecc_smu;     /* Sigma table */
153         int16_t                 *pmecc_lmu;     /* polynomal order */
154         int                     *pmecc_mu;
155         int                     *pmecc_dmu;
156         int                     *pmecc_delta;
157 };
158 
159 static struct nand_ecclayout atmel_pmecc_oobinfo;
160 
161 /*
162  * Enable NAND.
163  */
164 static void atmel_nand_enable(struct atmel_nand_host *host)
165 {
166         if (gpio_is_valid(host->board.enable_pin))
167                 gpio_set_value(host->board.enable_pin, 0);
168 }
169 
170 /*
171  * Disable NAND.
172  */
173 static void atmel_nand_disable(struct atmel_nand_host *host)
174 {
175         if (gpio_is_valid(host->board.enable_pin))
176                 gpio_set_value(host->board.enable_pin, 1);
177 }
178 
179 /*
180  * Hardware specific access to control-lines
181  */
182 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
183 {
184         struct nand_chip *nand_chip = mtd_to_nand(mtd);
185         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
186 
187         if (ctrl & NAND_CTRL_CHANGE) {
188                 if (ctrl & NAND_NCE)
189                         atmel_nand_enable(host);
190                 else
191                         atmel_nand_disable(host);
192         }
193         if (cmd == NAND_CMD_NONE)
194                 return;
195 
196         if (ctrl & NAND_CLE)
197                 writeb(cmd, host->io_base + (1 << host->board.cle));
198         else
199                 writeb(cmd, host->io_base + (1 << host->board.ale));
200 }
201 
202 /*
203  * Read the Device Ready pin.
204  */
205 static int atmel_nand_device_ready(struct mtd_info *mtd)
206 {
207         struct nand_chip *nand_chip = mtd_to_nand(mtd);
208         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
209 
210         return gpio_get_value(host->board.rdy_pin) ^
211                 !!host->board.rdy_pin_active_low;
212 }
213 
214 /* Set up for hardware ready pin and enable pin. */
215 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
216 {
217         struct nand_chip *chip = mtd_to_nand(mtd);
218         struct atmel_nand_host *host = nand_get_controller_data(chip);
219         int res = 0;
220 
221         if (gpio_is_valid(host->board.rdy_pin)) {
222                 res = devm_gpio_request(host->dev,
223                                 host->board.rdy_pin, "nand_rdy");
224                 if (res < 0) {
225                         dev_err(host->dev,
226                                 "can't request rdy gpio %d\n",
227                                 host->board.rdy_pin);
228                         return res;
229                 }
230 
231                 res = gpio_direction_input(host->board.rdy_pin);
232                 if (res < 0) {
233                         dev_err(host->dev,
234                                 "can't request input direction rdy gpio %d\n",
235                                 host->board.rdy_pin);
236                         return res;
237                 }
238 
239                 chip->dev_ready = atmel_nand_device_ready;
240         }
241 
242         if (gpio_is_valid(host->board.enable_pin)) {
243                 res = devm_gpio_request(host->dev,
244                                 host->board.enable_pin, "nand_enable");
245                 if (res < 0) {
246                         dev_err(host->dev,
247                                 "can't request enable gpio %d\n",
248                                 host->board.enable_pin);
249                         return res;
250                 }
251 
252                 res = gpio_direction_output(host->board.enable_pin, 1);
253                 if (res < 0) {
254                         dev_err(host->dev,
255                                 "can't request output direction enable gpio %d\n",
256                                 host->board.enable_pin);
257                         return res;
258                 }
259         }
260 
261         return res;
262 }
263 
264 /*
265  * Minimal-overhead PIO for data access.
266  */
267 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
268 {
269         struct nand_chip        *nand_chip = mtd_to_nand(mtd);
270         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
271 
272         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
273                 memcpy(buf, host->nfc->data_in_sram, len);
274                 host->nfc->data_in_sram += len;
275         } else {
276                 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
277         }
278 }
279 
280 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
281 {
282         struct nand_chip        *nand_chip = mtd_to_nand(mtd);
283         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
284 
285         if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
286                 memcpy(buf, host->nfc->data_in_sram, len);
287                 host->nfc->data_in_sram += len;
288         } else {
289                 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
290         }
291 }
292 
293 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
294 {
295         struct nand_chip        *nand_chip = mtd_to_nand(mtd);
296 
297         __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
298 }
299 
300 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
301 {
302         struct nand_chip        *nand_chip = mtd_to_nand(mtd);
303 
304         __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
305 }
306 
307 static void dma_complete_func(void *completion)
308 {
309         complete(completion);
310 }
311 
312 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
313 {
314         /* NFC only has two banks. Must be 0 or 1 */
315         if (bank > 1)
316                 return -EINVAL;
317 
318         if (bank) {
319                 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
320 
321                 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
322                 if (mtd->writesize > 2048)
323                         return -EINVAL;
324                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
325         } else {
326                 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
327         }
328 
329         return 0;
330 }
331 
332 static uint nfc_get_sram_off(struct atmel_nand_host *host)
333 {
334         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
335                 return NFC_SRAM_BANK1_OFFSET;
336         else
337                 return 0;
338 }
339 
340 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
341 {
342         if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
343                 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
344         else
345                 return host->nfc->sram_bank0_phys;
346 }
347 
348 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
349                                int is_read)
350 {
351         struct dma_device *dma_dev;
352         enum dma_ctrl_flags flags;
353         dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
354         struct dma_async_tx_descriptor *tx = NULL;
355         dma_cookie_t cookie;
356         struct nand_chip *chip = mtd_to_nand(mtd);
357         struct atmel_nand_host *host = nand_get_controller_data(chip);
358         void *p = buf;
359         int err = -EIO;
360         enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
361         struct atmel_nfc *nfc = host->nfc;
362 
363         if (buf >= high_memory)
364                 goto err_buf;
365 
366         dma_dev = host->dma_chan->device;
367 
368         flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
369 
370         phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
371         if (dma_mapping_error(dma_dev->dev, phys_addr)) {
372                 dev_err(host->dev, "Failed to dma_map_single\n");
373                 goto err_buf;
374         }
375 
376         if (is_read) {
377                 if (nfc && nfc->data_in_sram)
378                         dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
379                                 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
380                 else
381                         dma_src_addr = host->io_phys;
382 
383                 dma_dst_addr = phys_addr;
384         } else {
385                 dma_src_addr = phys_addr;
386 
387                 if (nfc && nfc->write_by_sram)
388                         dma_dst_addr = nfc_sram_phys(host);
389                 else
390                         dma_dst_addr = host->io_phys;
391         }
392 
393         tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
394                                              dma_src_addr, len, flags);
395         if (!tx) {
396                 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
397                 goto err_dma;
398         }
399 
400         init_completion(&host->comp);
401         tx->callback = dma_complete_func;
402         tx->callback_param = &host->comp;
403 
404         cookie = tx->tx_submit(tx);
405         if (dma_submit_error(cookie)) {
406                 dev_err(host->dev, "Failed to do DMA tx_submit\n");
407                 goto err_dma;
408         }
409 
410         dma_async_issue_pending(host->dma_chan);
411         wait_for_completion(&host->comp);
412 
413         if (is_read && nfc && nfc->data_in_sram)
414                 /* After read data from SRAM, need to increase the position */
415                 nfc->data_in_sram += len;
416 
417         err = 0;
418 
419 err_dma:
420         dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
421 err_buf:
422         if (err != 0)
423                 dev_dbg(host->dev, "Fall back to CPU I/O\n");
424         return err;
425 }
426 
427 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
428 {
429         struct nand_chip *chip = mtd_to_nand(mtd);
430         struct atmel_nand_host *host = nand_get_controller_data(chip);
431 
432         if (use_dma && len > mtd->oobsize)
433                 /* only use DMA for bigger than oob size: better performances */
434                 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
435                         return;
436 
437         if (host->board.bus_width_16)
438                 atmel_read_buf16(mtd, buf, len);
439         else
440                 atmel_read_buf8(mtd, buf, len);
441 }
442 
443 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
444 {
445         struct nand_chip *chip = mtd_to_nand(mtd);
446         struct atmel_nand_host *host = nand_get_controller_data(chip);
447 
448         if (use_dma && len > mtd->oobsize)
449                 /* only use DMA for bigger than oob size: better performances */
450                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
451                         return;
452 
453         if (host->board.bus_width_16)
454                 atmel_write_buf16(mtd, buf, len);
455         else
456                 atmel_write_buf8(mtd, buf, len);
457 }
458 
459 /*
460  * Return number of ecc bytes per sector according to sector size and
461  * correction capability
462  *
463  * Following table shows what at91 PMECC supported:
464  * Correction Capability        Sector_512_bytes        Sector_1024_bytes
465  * =====================        ================        =================
466  *                2-bits                 4-bytes                  4-bytes
467  *                4-bits                 7-bytes                  7-bytes
468  *                8-bits                13-bytes                 14-bytes
469  *               12-bits                20-bytes                 21-bytes
470  *               24-bits                39-bytes                 42-bytes
471  */
472 static int pmecc_get_ecc_bytes(int cap, int sector_size)
473 {
474         int m = 12 + sector_size / 512;
475         return (m * cap + 7) / 8;
476 }
477 
478 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
479                                     int oobsize, int ecc_len)
480 {
481         int i;
482 
483         layout->eccbytes = ecc_len;
484 
485         /* ECC will occupy the last ecc_len bytes continuously */
486         for (i = 0; i < ecc_len; i++)
487                 layout->eccpos[i] = oobsize - ecc_len + i;
488 
489         layout->oobfree[0].offset = PMECC_OOB_RESERVED_BYTES;
490         layout->oobfree[0].length =
491                 oobsize - ecc_len - layout->oobfree[0].offset;
492 }
493 
494 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
495 {
496         int table_size;
497 
498         table_size = host->pmecc_sector_size == 512 ?
499                 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
500 
501         return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
502                         table_size * sizeof(int16_t);
503 }
504 
505 static int pmecc_data_alloc(struct atmel_nand_host *host)
506 {
507         const int cap = host->pmecc_corr_cap;
508         int size;
509 
510         size = (2 * cap + 1) * sizeof(int16_t);
511         host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
512         host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
513         host->pmecc_lmu = devm_kzalloc(host->dev,
514                         (cap + 1) * sizeof(int16_t), GFP_KERNEL);
515         host->pmecc_smu = devm_kzalloc(host->dev,
516                         (cap + 2) * size, GFP_KERNEL);
517 
518         size = (cap + 1) * sizeof(int);
519         host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
520         host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
521         host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
522 
523         if (!host->pmecc_partial_syn ||
524                 !host->pmecc_si ||
525                 !host->pmecc_lmu ||
526                 !host->pmecc_smu ||
527                 !host->pmecc_mu ||
528                 !host->pmecc_dmu ||
529                 !host->pmecc_delta)
530                 return -ENOMEM;
531 
532         return 0;
533 }
534 
535 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
536 {
537         struct nand_chip *nand_chip = mtd_to_nand(mtd);
538         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
539         int i;
540         uint32_t value;
541 
542         /* Fill odd syndromes */
543         for (i = 0; i < host->pmecc_corr_cap; i++) {
544                 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
545                 if (i & 1)
546                         value >>= 16;
547                 value &= 0xffff;
548                 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
549         }
550 }
551 
552 static void pmecc_substitute(struct mtd_info *mtd)
553 {
554         struct nand_chip *nand_chip = mtd_to_nand(mtd);
555         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
556         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
557         int16_t __iomem *index_of = host->pmecc_index_of;
558         int16_t *partial_syn = host->pmecc_partial_syn;
559         const int cap = host->pmecc_corr_cap;
560         int16_t *si;
561         int i, j;
562 
563         /* si[] is a table that holds the current syndrome value,
564          * an element of that table belongs to the field
565          */
566         si = host->pmecc_si;
567 
568         memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
569 
570         /* Computation 2t syndromes based on S(x) */
571         /* Odd syndromes */
572         for (i = 1; i < 2 * cap; i += 2) {
573                 for (j = 0; j < host->pmecc_degree; j++) {
574                         if (partial_syn[i] & ((unsigned short)0x1 << j))
575                                 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
576                 }
577         }
578         /* Even syndrome = (Odd syndrome) ** 2 */
579         for (i = 2, j = 1; j <= cap; i = ++j << 1) {
580                 if (si[j] == 0) {
581                         si[i] = 0;
582                 } else {
583                         int16_t tmp;
584 
585                         tmp = readw_relaxed(index_of + si[j]);
586                         tmp = (tmp * 2) % host->pmecc_cw_len;
587                         si[i] = readw_relaxed(alpha_to + tmp);
588                 }
589         }
590 
591         return;
592 }
593 
594 static void pmecc_get_sigma(struct mtd_info *mtd)
595 {
596         struct nand_chip *nand_chip = mtd_to_nand(mtd);
597         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
598 
599         int16_t *lmu = host->pmecc_lmu;
600         int16_t *si = host->pmecc_si;
601         int *mu = host->pmecc_mu;
602         int *dmu = host->pmecc_dmu;     /* Discrepancy */
603         int *delta = host->pmecc_delta; /* Delta order */
604         int cw_len = host->pmecc_cw_len;
605         const int16_t cap = host->pmecc_corr_cap;
606         const int num = 2 * cap + 1;
607         int16_t __iomem *index_of = host->pmecc_index_of;
608         int16_t __iomem *alpha_to = host->pmecc_alpha_to;
609         int i, j, k;
610         uint32_t dmu_0_count, tmp;
611         int16_t *smu = host->pmecc_smu;
612 
613         /* index of largest delta */
614         int ro;
615         int largest;
616         int diff;
617 
618         dmu_0_count = 0;
619 
620         /* First Row */
621 
622         /* Mu */
623         mu[0] = -1;
624 
625         memset(smu, 0, sizeof(int16_t) * num);
626         smu[0] = 1;
627 
628         /* discrepancy set to 1 */
629         dmu[0] = 1;
630         /* polynom order set to 0 */
631         lmu[0] = 0;
632         delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
633 
634         /* Second Row */
635 
636         /* Mu */
637         mu[1] = 0;
638         /* Sigma(x) set to 1 */
639         memset(&smu[num], 0, sizeof(int16_t) * num);
640         smu[num] = 1;
641 
642         /* discrepancy set to S1 */
643         dmu[1] = si[1];
644 
645         /* polynom order set to 0 */
646         lmu[1] = 0;
647 
648         delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
649 
650         /* Init the Sigma(x) last row */
651         memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
652 
653         for (i = 1; i <= cap; i++) {
654                 mu[i + 1] = i << 1;
655                 /* Begin Computing Sigma (Mu+1) and L(mu) */
656                 /* check if discrepancy is set to 0 */
657                 if (dmu[i] == 0) {
658                         dmu_0_count++;
659 
660                         tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
661                         if ((cap - (lmu[i] >> 1) - 1) & 0x1)
662                                 tmp += 2;
663                         else
664                                 tmp += 1;
665 
666                         if (dmu_0_count == tmp) {
667                                 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
668                                         smu[(cap + 1) * num + j] =
669                                                         smu[i * num + j];
670 
671                                 lmu[cap + 1] = lmu[i];
672                                 return;
673                         }
674 
675                         /* copy polynom */
676                         for (j = 0; j <= lmu[i] >> 1; j++)
677                                 smu[(i + 1) * num + j] = smu[i * num + j];
678 
679                         /* copy previous polynom order to the next */
680                         lmu[i + 1] = lmu[i];
681                 } else {
682                         ro = 0;
683                         largest = -1;
684                         /* find largest delta with dmu != 0 */
685                         for (j = 0; j < i; j++) {
686                                 if ((dmu[j]) && (delta[j] > largest)) {
687                                         largest = delta[j];
688                                         ro = j;
689                                 }
690                         }
691 
692                         /* compute difference */
693                         diff = (mu[i] - mu[ro]);
694 
695                         /* Compute degree of the new smu polynomial */
696                         if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
697                                 lmu[i + 1] = lmu[i];
698                         else
699                                 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
700 
701                         /* Init smu[i+1] with 0 */
702                         for (k = 0; k < num; k++)
703                                 smu[(i + 1) * num + k] = 0;
704 
705                         /* Compute smu[i+1] */
706                         for (k = 0; k <= lmu[ro] >> 1; k++) {
707                                 int16_t a, b, c;
708 
709                                 if (!(smu[ro * num + k] && dmu[i]))
710                                         continue;
711                                 a = readw_relaxed(index_of + dmu[i]);
712                                 b = readw_relaxed(index_of + dmu[ro]);
713                                 c = readw_relaxed(index_of + smu[ro * num + k]);
714                                 tmp = a + (cw_len - b) + c;
715                                 a = readw_relaxed(alpha_to + tmp % cw_len);
716                                 smu[(i + 1) * num + (k + diff)] = a;
717                         }
718 
719                         for (k = 0; k <= lmu[i] >> 1; k++)
720                                 smu[(i + 1) * num + k] ^= smu[i * num + k];
721                 }
722 
723                 /* End Computing Sigma (Mu+1) and L(mu) */
724                 /* In either case compute delta */
725                 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
726 
727                 /* Do not compute discrepancy for the last iteration */
728                 if (i >= cap)
729                         continue;
730 
731                 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
732                         tmp = 2 * (i - 1);
733                         if (k == 0) {
734                                 dmu[i + 1] = si[tmp + 3];
735                         } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
736                                 int16_t a, b, c;
737                                 a = readw_relaxed(index_of +
738                                                 smu[(i + 1) * num + k]);
739                                 b = si[2 * (i - 1) + 3 - k];
740                                 c = readw_relaxed(index_of + b);
741                                 tmp = a + c;
742                                 tmp %= cw_len;
743                                 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
744                                         dmu[i + 1];
745                         }
746                 }
747         }
748 
749         return;
750 }
751 
752 static int pmecc_err_location(struct mtd_info *mtd)
753 {
754         struct nand_chip *nand_chip = mtd_to_nand(mtd);
755         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
756         unsigned long end_time;
757         const int cap = host->pmecc_corr_cap;
758         const int num = 2 * cap + 1;
759         int sector_size = host->pmecc_sector_size;
760         int err_nbr = 0;        /* number of error */
761         int roots_nbr;          /* number of roots */
762         int i;
763         uint32_t val;
764         int16_t *smu = host->pmecc_smu;
765 
766         pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
767 
768         for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
769                 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
770                                       smu[(cap + 1) * num + i]);
771                 err_nbr++;
772         }
773 
774         val = (err_nbr - 1) << 16;
775         if (sector_size == 1024)
776                 val |= 1;
777 
778         pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
779         pmerrloc_writel(host->pmerrloc_base, ELEN,
780                         sector_size * 8 + host->pmecc_degree * cap);
781 
782         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
783         while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
784                  & PMERRLOC_CALC_DONE)) {
785                 if (unlikely(time_after(jiffies, end_time))) {
786                         dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
787                         return -1;
788                 }
789                 cpu_relax();
790         }
791 
792         roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
793                 & PMERRLOC_ERR_NUM_MASK) >> 8;
794         /* Number of roots == degree of smu hence <= cap */
795         if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
796                 return err_nbr - 1;
797 
798         /* Number of roots does not match the degree of smu
799          * unable to correct error */
800         return -1;
801 }
802 
803 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
804                 int sector_num, int extra_bytes, int err_nbr)
805 {
806         struct nand_chip *nand_chip = mtd_to_nand(mtd);
807         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
808         int i = 0;
809         int byte_pos, bit_pos, sector_size, pos;
810         uint32_t tmp;
811         uint8_t err_byte;
812 
813         sector_size = host->pmecc_sector_size;
814 
815         while (err_nbr) {
816                 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
817                 byte_pos = tmp / 8;
818                 bit_pos  = tmp % 8;
819 
820                 if (byte_pos >= (sector_size + extra_bytes))
821                         BUG();  /* should never happen */
822 
823                 if (byte_pos < sector_size) {
824                         err_byte = *(buf + byte_pos);
825                         *(buf + byte_pos) ^= (1 << bit_pos);
826 
827                         pos = sector_num * host->pmecc_sector_size + byte_pos;
828                         dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
829                                 pos, bit_pos, err_byte, *(buf + byte_pos));
830                 } else {
831                         /* Bit flip in OOB area */
832                         tmp = sector_num * nand_chip->ecc.bytes
833                                         + (byte_pos - sector_size);
834                         err_byte = ecc[tmp];
835                         ecc[tmp] ^= (1 << bit_pos);
836 
837                         pos = tmp + nand_chip->ecc.layout->eccpos[0];
838                         dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
839                                 pos, bit_pos, err_byte, ecc[tmp]);
840                 }
841 
842                 i++;
843                 err_nbr--;
844         }
845 
846         return;
847 }
848 
849 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
850         u8 *ecc)
851 {
852         struct nand_chip *nand_chip = mtd_to_nand(mtd);
853         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
854         int i, err_nbr;
855         uint8_t *buf_pos;
856         int max_bitflips = 0;
857 
858         /* If can correct bitfilps from erased page, do the normal check */
859         if (host->caps->pmecc_correct_erase_page)
860                 goto normal_check;
861 
862         for (i = 0; i < nand_chip->ecc.total; i++)
863                 if (ecc[i] != 0xff)
864                         goto normal_check;
865         /* Erased page, return OK */
866         return 0;
867 
868 normal_check:
869         for (i = 0; i < nand_chip->ecc.steps; i++) {
870                 err_nbr = 0;
871                 if (pmecc_stat & 0x1) {
872                         buf_pos = buf + i * host->pmecc_sector_size;
873 
874                         pmecc_gen_syndrome(mtd, i);
875                         pmecc_substitute(mtd);
876                         pmecc_get_sigma(mtd);
877 
878                         err_nbr = pmecc_err_location(mtd);
879                         if (err_nbr == -1) {
880                                 dev_err(host->dev, "PMECC: Too many errors\n");
881                                 mtd->ecc_stats.failed++;
882                                 return -EIO;
883                         } else {
884                                 pmecc_correct_data(mtd, buf_pos, ecc, i,
885                                         nand_chip->ecc.bytes, err_nbr);
886                                 mtd->ecc_stats.corrected += err_nbr;
887                                 max_bitflips = max_t(int, max_bitflips, err_nbr);
888                         }
889                 }
890                 pmecc_stat >>= 1;
891         }
892 
893         return max_bitflips;
894 }
895 
896 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
897 {
898         u32 val;
899 
900         if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
901                 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
902                 return;
903         }
904 
905         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
906         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
907         val = pmecc_readl_relaxed(host->ecc, CFG);
908 
909         if (ecc_op == NAND_ECC_READ)
910                 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
911                         | PMECC_CFG_AUTO_ENABLE);
912         else
913                 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
914                         & ~PMECC_CFG_AUTO_ENABLE);
915 
916         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
917         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
918 }
919 
920 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
921         struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
922 {
923         struct atmel_nand_host *host = nand_get_controller_data(chip);
924         int eccsize = chip->ecc.size * chip->ecc.steps;
925         uint8_t *oob = chip->oob_poi;
926         uint32_t *eccpos = chip->ecc.layout->eccpos;
927         uint32_t stat;
928         unsigned long end_time;
929         int bitflips = 0;
930 
931         if (!host->nfc || !host->nfc->use_nfc_sram)
932                 pmecc_enable(host, NAND_ECC_READ);
933 
934         chip->read_buf(mtd, buf, eccsize);
935         chip->read_buf(mtd, oob, mtd->oobsize);
936 
937         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
938         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
939                 if (unlikely(time_after(jiffies, end_time))) {
940                         dev_err(host->dev, "PMECC: Timeout to get error status.\n");
941                         return -EIO;
942                 }
943                 cpu_relax();
944         }
945 
946         stat = pmecc_readl_relaxed(host->ecc, ISR);
947         if (stat != 0) {
948                 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
949                 if (bitflips < 0)
950                         /* uncorrectable errors */
951                         return 0;
952         }
953 
954         return bitflips;
955 }
956 
957 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
958                 struct nand_chip *chip, const uint8_t *buf, int oob_required,
959                 int page)
960 {
961         struct atmel_nand_host *host = nand_get_controller_data(chip);
962         uint32_t *eccpos = chip->ecc.layout->eccpos;
963         int i, j;
964         unsigned long end_time;
965 
966         if (!host->nfc || !host->nfc->write_by_sram) {
967                 pmecc_enable(host, NAND_ECC_WRITE);
968                 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
969         }
970 
971         end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
972         while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
973                 if (unlikely(time_after(jiffies, end_time))) {
974                         dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
975                         return -EIO;
976                 }
977                 cpu_relax();
978         }
979 
980         for (i = 0; i < chip->ecc.steps; i++) {
981                 for (j = 0; j < chip->ecc.bytes; j++) {
982                         int pos;
983 
984                         pos = i * chip->ecc.bytes + j;
985                         chip->oob_poi[eccpos[pos]] =
986                                 pmecc_readb_ecc_relaxed(host->ecc, i, j);
987                 }
988         }
989         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
990 
991         return 0;
992 }
993 
994 static void atmel_pmecc_core_init(struct mtd_info *mtd)
995 {
996         struct nand_chip *nand_chip = mtd_to_nand(mtd);
997         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
998         uint32_t val = 0;
999         struct nand_ecclayout *ecc_layout;
1000 
1001         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1002         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1003 
1004         switch (host->pmecc_corr_cap) {
1005         case 2:
1006                 val = PMECC_CFG_BCH_ERR2;
1007                 break;
1008         case 4:
1009                 val = PMECC_CFG_BCH_ERR4;
1010                 break;
1011         case 8:
1012                 val = PMECC_CFG_BCH_ERR8;
1013                 break;
1014         case 12:
1015                 val = PMECC_CFG_BCH_ERR12;
1016                 break;
1017         case 24:
1018                 val = PMECC_CFG_BCH_ERR24;
1019                 break;
1020         }
1021 
1022         if (host->pmecc_sector_size == 512)
1023                 val |= PMECC_CFG_SECTOR512;
1024         else if (host->pmecc_sector_size == 1024)
1025                 val |= PMECC_CFG_SECTOR1024;
1026 
1027         switch (nand_chip->ecc.steps) {
1028         case 1:
1029                 val |= PMECC_CFG_PAGE_1SECTOR;
1030                 break;
1031         case 2:
1032                 val |= PMECC_CFG_PAGE_2SECTORS;
1033                 break;
1034         case 4:
1035                 val |= PMECC_CFG_PAGE_4SECTORS;
1036                 break;
1037         case 8:
1038                 val |= PMECC_CFG_PAGE_8SECTORS;
1039                 break;
1040         }
1041 
1042         val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1043                 | PMECC_CFG_AUTO_DISABLE);
1044         pmecc_writel(host->ecc, CFG, val);
1045 
1046         ecc_layout = nand_chip->ecc.layout;
1047         pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1048         pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1049         pmecc_writel(host->ecc, EADDR,
1050                         ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1051         /* See datasheet about PMECC Clock Control Register */
1052         pmecc_writel(host->ecc, CLK, 2);
1053         pmecc_writel(host->ecc, IDR, 0xff);
1054         pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1055 }
1056 
1057 /*
1058  * Get minimum ecc requirements from NAND.
1059  * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1060  * will set them according to minimum ecc requirement. Otherwise, use the
1061  * value in DTS file.
1062  * return 0 if success. otherwise return error code.
1063  */
1064 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1065                 int *cap, int *sector_size)
1066 {
1067         /* Get minimum ECC requirements */
1068         if (host->nand_chip.ecc_strength_ds) {
1069                 *cap = host->nand_chip.ecc_strength_ds;
1070                 *sector_size = host->nand_chip.ecc_step_ds;
1071                 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1072                                 *cap, *sector_size);
1073         } else {
1074                 *cap = 2;
1075                 *sector_size = 512;
1076                 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1077         }
1078 
1079         /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1080         if (host->pmecc_corr_cap == 0) {
1081                 /* use the most fitable ecc bits (the near bigger one ) */
1082                 if (*cap <= 2)
1083                         host->pmecc_corr_cap = 2;
1084                 else if (*cap <= 4)
1085                         host->pmecc_corr_cap = 4;
1086                 else if (*cap <= 8)
1087                         host->pmecc_corr_cap = 8;
1088                 else if (*cap <= 12)
1089                         host->pmecc_corr_cap = 12;
1090                 else if (*cap <= 24)
1091                         host->pmecc_corr_cap = 24;
1092                 else
1093                         return -EINVAL;
1094         }
1095         if (host->pmecc_sector_size == 0) {
1096                 /* use the most fitable sector size (the near smaller one ) */
1097                 if (*sector_size >= 1024)
1098                         host->pmecc_sector_size = 1024;
1099                 else if (*sector_size >= 512)
1100                         host->pmecc_sector_size = 512;
1101                 else
1102                         return -EINVAL;
1103         }
1104         return 0;
1105 }
1106 
1107 static inline int deg(unsigned int poly)
1108 {
1109         /* polynomial degree is the most-significant bit index */
1110         return fls(poly) - 1;
1111 }
1112 
1113 static int build_gf_tables(int mm, unsigned int poly,
1114                 int16_t *index_of, int16_t *alpha_to)
1115 {
1116         unsigned int i, x = 1;
1117         const unsigned int k = 1 << deg(poly);
1118         unsigned int nn = (1 << mm) - 1;
1119 
1120         /* primitive polynomial must be of degree m */
1121         if (k != (1u << mm))
1122                 return -EINVAL;
1123 
1124         for (i = 0; i < nn; i++) {
1125                 alpha_to[i] = x;
1126                 index_of[x] = i;
1127                 if (i && (x == 1))
1128                         /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1129                         return -EINVAL;
1130                 x <<= 1;
1131                 if (x & k)
1132                         x ^= poly;
1133         }
1134         alpha_to[nn] = 1;
1135         index_of[0] = 0;
1136 
1137         return 0;
1138 }
1139 
1140 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1141 {
1142         int degree = (sector_size == 512) ?
1143                         PMECC_GF_DIMENSION_13 :
1144                         PMECC_GF_DIMENSION_14;
1145         unsigned int poly = (sector_size == 512) ?
1146                         PMECC_GF_13_PRIMITIVE_POLY :
1147                         PMECC_GF_14_PRIMITIVE_POLY;
1148         int table_size = (sector_size == 512) ?
1149                         PMECC_LOOKUP_TABLE_SIZE_512 :
1150                         PMECC_LOOKUP_TABLE_SIZE_1024;
1151 
1152         int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1153                         GFP_KERNEL);
1154         if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1155                 return NULL;
1156 
1157         return addr;
1158 }
1159 
1160 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1161                                          struct atmel_nand_host *host)
1162 {
1163         struct nand_chip *nand_chip = &host->nand_chip;
1164         struct mtd_info *mtd = nand_to_mtd(nand_chip);
1165         struct resource *regs, *regs_pmerr, *regs_rom;
1166         uint16_t *galois_table;
1167         int cap, sector_size, err_no;
1168 
1169         err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1170         if (err_no) {
1171                 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1172                 return err_no;
1173         }
1174 
1175         if (cap > host->pmecc_corr_cap ||
1176                         sector_size != host->pmecc_sector_size)
1177                 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1178 
1179         cap = host->pmecc_corr_cap;
1180         sector_size = host->pmecc_sector_size;
1181         host->pmecc_lookup_table_offset = (sector_size == 512) ?
1182                         host->pmecc_lookup_table_offset_512 :
1183                         host->pmecc_lookup_table_offset_1024;
1184 
1185         dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1186                  cap, sector_size);
1187 
1188         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1189         if (!regs) {
1190                 dev_warn(host->dev,
1191                         "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1192                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1193                 return 0;
1194         }
1195 
1196         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1197         if (IS_ERR(host->ecc)) {
1198                 err_no = PTR_ERR(host->ecc);
1199                 goto err;
1200         }
1201 
1202         regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1203         host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1204         if (IS_ERR(host->pmerrloc_base)) {
1205                 err_no = PTR_ERR(host->pmerrloc_base);
1206                 goto err;
1207         }
1208 
1209         if (!host->has_no_lookup_table) {
1210                 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1211                 host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
1212                                                                 regs_rom);
1213                 if (IS_ERR(host->pmecc_rom_base)) {
1214                         dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1215                         host->has_no_lookup_table = true;
1216                 }
1217         }
1218 
1219         if (host->has_no_lookup_table) {
1220                 /* Build the look-up table in runtime */
1221                 galois_table = create_lookup_table(host->dev, sector_size);
1222                 if (!galois_table) {
1223                         dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1224                         err_no = -EINVAL;
1225                         goto err;
1226                 }
1227 
1228                 host->pmecc_rom_base = (void __iomem *)galois_table;
1229                 host->pmecc_lookup_table_offset = 0;
1230         }
1231 
1232         nand_chip->ecc.size = sector_size;
1233 
1234         /* set ECC page size and oob layout */
1235         switch (mtd->writesize) {
1236         case 512:
1237         case 1024:
1238         case 2048:
1239         case 4096:
1240         case 8192:
1241                 if (sector_size > mtd->writesize) {
1242                         dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1243                         err_no = -EINVAL;
1244                         goto err;
1245                 }
1246 
1247                 host->pmecc_degree = (sector_size == 512) ?
1248                         PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1249                 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1250                 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1251                 host->pmecc_index_of = host->pmecc_rom_base +
1252                         host->pmecc_lookup_table_offset;
1253 
1254                 nand_chip->ecc.strength = cap;
1255                 nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1256                 nand_chip->ecc.steps = mtd->writesize / sector_size;
1257                 nand_chip->ecc.total = nand_chip->ecc.bytes *
1258                         nand_chip->ecc.steps;
1259                 if (nand_chip->ecc.total >
1260                                 mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
1261                         dev_err(host->dev, "No room for ECC bytes\n");
1262                         err_no = -EINVAL;
1263                         goto err;
1264                 }
1265                 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1266                                         mtd->oobsize,
1267                                         nand_chip->ecc.total);
1268 
1269                 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1270                 break;
1271         default:
1272                 dev_warn(host->dev,
1273                         "Unsupported page size for PMECC, use Software ECC\n");
1274                 /* page size not handled by HW ECC */
1275                 /* switching back to soft ECC */
1276                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1277                 return 0;
1278         }
1279 
1280         /* Allocate data for PMECC computation */
1281         err_no = pmecc_data_alloc(host);
1282         if (err_no) {
1283                 dev_err(host->dev,
1284                                 "Cannot allocate memory for PMECC computation!\n");
1285                 goto err;
1286         }
1287 
1288         nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1289         nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1290         nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1291 
1292         atmel_pmecc_core_init(mtd);
1293 
1294         return 0;
1295 
1296 err:
1297         return err_no;
1298 }
1299 
1300 /*
1301  * Calculate HW ECC
1302  *
1303  * function called after a write
1304  *
1305  * mtd:        MTD block structure
1306  * dat:        raw data (unused)
1307  * ecc_code:   buffer for ECC
1308  */
1309 static int atmel_nand_calculate(struct mtd_info *mtd,
1310                 const u_char *dat, unsigned char *ecc_code)
1311 {
1312         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1313         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1314         unsigned int ecc_value;
1315 
1316         /* get the first 2 ECC bytes */
1317         ecc_value = ecc_readl(host->ecc, PR);
1318 
1319         ecc_code[0] = ecc_value & 0xFF;
1320         ecc_code[1] = (ecc_value >> 8) & 0xFF;
1321 
1322         /* get the last 2 ECC bytes */
1323         ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1324 
1325         ecc_code[2] = ecc_value & 0xFF;
1326         ecc_code[3] = (ecc_value >> 8) & 0xFF;
1327 
1328         return 0;
1329 }
1330 
1331 /*
1332  * HW ECC read page function
1333  *
1334  * mtd:        mtd info structure
1335  * chip:       nand chip info structure
1336  * buf:        buffer to store read data
1337  * oob_required:    caller expects OOB data read to chip->oob_poi
1338  */
1339 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1340                                 uint8_t *buf, int oob_required, int page)
1341 {
1342         int eccsize = chip->ecc.size;
1343         int eccbytes = chip->ecc.bytes;
1344         uint32_t *eccpos = chip->ecc.layout->eccpos;
1345         uint8_t *p = buf;
1346         uint8_t *oob = chip->oob_poi;
1347         uint8_t *ecc_pos;
1348         int stat;
1349         unsigned int max_bitflips = 0;
1350 
1351         /*
1352          * Errata: ALE is incorrectly wired up to the ECC controller
1353          * on the AP7000, so it will include the address cycles in the
1354          * ECC calculation.
1355          *
1356          * Workaround: Reset the parity registers before reading the
1357          * actual data.
1358          */
1359         struct atmel_nand_host *host = nand_get_controller_data(chip);
1360         if (host->board.need_reset_workaround)
1361                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1362 
1363         /* read the page */
1364         chip->read_buf(mtd, p, eccsize);
1365 
1366         /* move to ECC position if needed */
1367         if (eccpos[0] != 0) {
1368                 /* This only works on large pages
1369                  * because the ECC controller waits for
1370                  * NAND_CMD_RNDOUTSTART after the
1371                  * NAND_CMD_RNDOUT.
1372                  * anyway, for small pages, the eccpos[0] == 0
1373                  */
1374                 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1375                                 mtd->writesize + eccpos[0], -1);
1376         }
1377 
1378         /* the ECC controller needs to read the ECC just after the data */
1379         ecc_pos = oob + eccpos[0];
1380         chip->read_buf(mtd, ecc_pos, eccbytes);
1381 
1382         /* check if there's an error */
1383         stat = chip->ecc.correct(mtd, p, oob, NULL);
1384 
1385         if (stat < 0) {
1386                 mtd->ecc_stats.failed++;
1387         } else {
1388                 mtd->ecc_stats.corrected += stat;
1389                 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1390         }
1391 
1392         /* get back to oob start (end of page) */
1393         chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1394 
1395         /* read the oob */
1396         chip->read_buf(mtd, oob, mtd->oobsize);
1397 
1398         return max_bitflips;
1399 }
1400 
1401 /*
1402  * HW ECC Correction
1403  *
1404  * function called after a read
1405  *
1406  * mtd:        MTD block structure
1407  * dat:        raw data read from the chip
1408  * read_ecc:   ECC from the chip (unused)
1409  * isnull:     unused
1410  *
1411  * Detect and correct a 1 bit error for a page
1412  */
1413 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1414                 u_char *read_ecc, u_char *isnull)
1415 {
1416         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1417         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1418         unsigned int ecc_status;
1419         unsigned int ecc_word, ecc_bit;
1420 
1421         /* get the status from the Status Register */
1422         ecc_status = ecc_readl(host->ecc, SR);
1423 
1424         /* if there's no error */
1425         if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1426                 return 0;
1427 
1428         /* get error bit offset (4 bits) */
1429         ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1430         /* get word address (12 bits) */
1431         ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1432         ecc_word >>= 4;
1433 
1434         /* if there are multiple errors */
1435         if (ecc_status & ATMEL_ECC_MULERR) {
1436                 /* check if it is a freshly erased block
1437                  * (filled with 0xff) */
1438                 if ((ecc_bit == ATMEL_ECC_BITADDR)
1439                                 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1440                         /* the block has just been erased, return OK */
1441                         return 0;
1442                 }
1443                 /* it doesn't seems to be a freshly
1444                  * erased block.
1445                  * We can't correct so many errors */
1446                 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1447                                 " Unable to correct.\n");
1448                 return -EBADMSG;
1449         }
1450 
1451         /* if there's a single bit error : we can correct it */
1452         if (ecc_status & ATMEL_ECC_ECCERR) {
1453                 /* there's nothing much to do here.
1454                  * the bit error is on the ECC itself.
1455                  */
1456                 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1457                                 " Nothing to correct\n");
1458                 return 0;
1459         }
1460 
1461         dev_dbg(host->dev, "atmel_nand : one bit error on data."
1462                         " (word offset in the page :"
1463                         " 0x%x bit offset : 0x%x)\n",
1464                         ecc_word, ecc_bit);
1465         /* correct the error */
1466         if (nand_chip->options & NAND_BUSWIDTH_16) {
1467                 /* 16 bits words */
1468                 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1469         } else {
1470                 /* 8 bits words */
1471                 dat[ecc_word] ^= (1 << ecc_bit);
1472         }
1473         dev_dbg(host->dev, "atmel_nand : error corrected\n");
1474         return 1;
1475 }
1476 
1477 /*
1478  * Enable HW ECC : unused on most chips
1479  */
1480 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1481 {
1482         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1483         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1484 
1485         if (host->board.need_reset_workaround)
1486                 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1487 }
1488 
1489 static const struct of_device_id atmel_nand_dt_ids[];
1490 
1491 static int atmel_of_init_port(struct atmel_nand_host *host,
1492                               struct device_node *np)
1493 {
1494         u32 val;
1495         u32 offset[2];
1496         int ecc_mode;
1497         struct atmel_nand_data *board = &host->board;
1498         enum of_gpio_flags flags = 0;
1499 
1500         host->caps = (struct atmel_nand_caps *)
1501                 of_match_device(atmel_nand_dt_ids, host->dev)->data;
1502 
1503         if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1504                 if (val >= 32) {
1505                         dev_err(host->dev, "invalid addr-offset %u\n", val);
1506                         return -EINVAL;
1507                 }
1508                 board->ale = val;
1509         }
1510 
1511         if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1512                 if (val >= 32) {
1513                         dev_err(host->dev, "invalid cmd-offset %u\n", val);
1514                         return -EINVAL;
1515                 }
1516                 board->cle = val;
1517         }
1518 
1519         ecc_mode = of_get_nand_ecc_mode(np);
1520 
1521         board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1522 
1523         board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1524 
1525         board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1526 
1527         if (of_get_nand_bus_width(np) == 16)
1528                 board->bus_width_16 = 1;
1529 
1530         board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1531         board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1532 
1533         board->enable_pin = of_get_gpio(np, 1);
1534         board->det_pin = of_get_gpio(np, 2);
1535 
1536         host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1537 
1538         /* load the nfc driver if there is */
1539         of_platform_populate(np, NULL, NULL, host->dev);
1540 
1541         if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1542                 return 0;       /* Not using PMECC */
1543 
1544         /* use PMECC, get correction capability, sector size and lookup
1545          * table offset.
1546          * If correction bits and sector size are not specified, then find
1547          * them from NAND ONFI parameters.
1548          */
1549         if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1550                 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1551                                 (val != 24)) {
1552                         dev_err(host->dev,
1553                                 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1554                                 val);
1555                         return -EINVAL;
1556                 }
1557                 host->pmecc_corr_cap = (u8)val;
1558         }
1559 
1560         if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1561                 if ((val != 512) && (val != 1024)) {
1562                         dev_err(host->dev,
1563                                 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1564                                 val);
1565                         return -EINVAL;
1566                 }
1567                 host->pmecc_sector_size = (u16)val;
1568         }
1569 
1570         if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1571                         offset, 2) != 0) {
1572                 dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1573                 host->has_no_lookup_table = true;
1574                 /* Will build a lookup table and initialize the offset later */
1575                 return 0;
1576         }
1577         if (!offset[0] && !offset[1]) {
1578                 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1579                 return -EINVAL;
1580         }
1581         host->pmecc_lookup_table_offset_512 = offset[0];
1582         host->pmecc_lookup_table_offset_1024 = offset[1];
1583 
1584         return 0;
1585 }
1586 
1587 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1588                                          struct atmel_nand_host *host)
1589 {
1590         struct nand_chip *nand_chip = &host->nand_chip;
1591         struct mtd_info *mtd = nand_to_mtd(nand_chip);
1592         struct resource         *regs;
1593 
1594         regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1595         if (!regs) {
1596                 dev_err(host->dev,
1597                         "Can't get I/O resource regs, use software ECC\n");
1598                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1599                 return 0;
1600         }
1601 
1602         host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1603         if (IS_ERR(host->ecc))
1604                 return PTR_ERR(host->ecc);
1605 
1606         /* ECC is calculated for the whole page (1 step) */
1607         nand_chip->ecc.size = mtd->writesize;
1608 
1609         /* set ECC page size and oob layout */
1610         switch (mtd->writesize) {
1611         case 512:
1612                 nand_chip->ecc.layout = &atmel_oobinfo_small;
1613                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1614                 break;
1615         case 1024:
1616                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1617                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1618                 break;
1619         case 2048:
1620                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1621                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1622                 break;
1623         case 4096:
1624                 nand_chip->ecc.layout = &atmel_oobinfo_large;
1625                 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1626                 break;
1627         default:
1628                 /* page size not handled by HW ECC */
1629                 /* switching back to soft ECC */
1630                 nand_chip->ecc.mode = NAND_ECC_SOFT;
1631                 return 0;
1632         }
1633 
1634         /* set up for HW ECC */
1635         nand_chip->ecc.calculate = atmel_nand_calculate;
1636         nand_chip->ecc.correct = atmel_nand_correct;
1637         nand_chip->ecc.hwctl = atmel_nand_hwctl;
1638         nand_chip->ecc.read_page = atmel_nand_read_page;
1639         nand_chip->ecc.bytes = 4;
1640         nand_chip->ecc.strength = 1;
1641 
1642         return 0;
1643 }
1644 
1645 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1646 {
1647         u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1648         u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1649 
1650         if (unlikely(nfc_status & err_flags)) {
1651                 if (nfc_status & NFC_SR_DTOE)
1652                         dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1653                 else if (nfc_status & NFC_SR_UNDEF)
1654                         dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1655                 else if (nfc_status & NFC_SR_AWB)
1656                         dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1657                 else if (nfc_status & NFC_SR_ASE)
1658                         dev_err(host->dev, "NFC: Access memory Size Error\n");
1659         }
1660 
1661         return nfc_status;
1662 }
1663 
1664 /* SMC interrupt service routine */
1665 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1666 {
1667         struct atmel_nand_host *host = dev_id;
1668         u32 status, mask, pending;
1669         irqreturn_t ret = IRQ_NONE;
1670 
1671         status = nfc_read_status(host);
1672         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1673         pending = status & mask;
1674 
1675         if (pending & NFC_SR_XFR_DONE) {
1676                 complete(&host->nfc->comp_xfer_done);
1677                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1678                 ret = IRQ_HANDLED;
1679         }
1680         if (pending & NFC_SR_RB_EDGE) {
1681                 complete(&host->nfc->comp_ready);
1682                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1683                 ret = IRQ_HANDLED;
1684         }
1685         if (pending & NFC_SR_CMD_DONE) {
1686                 complete(&host->nfc->comp_cmd_done);
1687                 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1688                 ret = IRQ_HANDLED;
1689         }
1690 
1691         return ret;
1692 }
1693 
1694 /* NFC(Nand Flash Controller) related functions */
1695 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1696 {
1697         if (flag & NFC_SR_XFR_DONE)
1698                 init_completion(&host->nfc->comp_xfer_done);
1699 
1700         if (flag & NFC_SR_RB_EDGE)
1701                 init_completion(&host->nfc->comp_ready);
1702 
1703         if (flag & NFC_SR_CMD_DONE)
1704                 init_completion(&host->nfc->comp_cmd_done);
1705 
1706         /* Enable interrupt that need to wait for */
1707         nfc_writel(host->nfc->hsmc_regs, IER, flag);
1708 }
1709 
1710 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1711 {
1712         int i, index = 0;
1713         struct completion *comp[3];     /* Support 3 interrupt completion */
1714 
1715         if (flag & NFC_SR_XFR_DONE)
1716                 comp[index++] = &host->nfc->comp_xfer_done;
1717 
1718         if (flag & NFC_SR_RB_EDGE)
1719                 comp[index++] = &host->nfc->comp_ready;
1720 
1721         if (flag & NFC_SR_CMD_DONE)
1722                 comp[index++] = &host->nfc->comp_cmd_done;
1723 
1724         if (index == 0) {
1725                 dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
1726                 return -EINVAL;
1727         }
1728 
1729         for (i = 0; i < index; i++) {
1730                 if (wait_for_completion_timeout(comp[i],
1731                                 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1732                         continue;       /* wait for next completion */
1733                 else
1734                         goto err_timeout;
1735         }
1736 
1737         return 0;
1738 
1739 err_timeout:
1740         dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1741         /* Disable the interrupt as it is not handled by interrupt handler */
1742         nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1743         return -ETIMEDOUT;
1744 }
1745 
1746 static int nfc_send_command(struct atmel_nand_host *host,
1747         unsigned int cmd, unsigned int addr, unsigned char cycle0)
1748 {
1749         unsigned long timeout;
1750         u32 flag = NFC_SR_CMD_DONE;
1751         flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1752 
1753         dev_dbg(host->dev,
1754                 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1755                 cmd, addr, cycle0);
1756 
1757         timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1758         while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
1759                 if (time_after(jiffies, timeout)) {
1760                         dev_err(host->dev,
1761                                 "Time out to wait for NFC ready!\n");
1762                         return -ETIMEDOUT;
1763                 }
1764         }
1765 
1766         nfc_prepare_interrupt(host, flag);
1767         nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1768         nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1769         return nfc_wait_interrupt(host, flag);
1770 }
1771 
1772 static int nfc_device_ready(struct mtd_info *mtd)
1773 {
1774         u32 status, mask;
1775         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1776         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1777 
1778         status = nfc_read_status(host);
1779         mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1780 
1781         /* The mask should be 0. If not we may lost interrupts */
1782         if (unlikely(mask & status))
1783                 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1784                                 mask & status);
1785 
1786         return status & NFC_SR_RB_EDGE;
1787 }
1788 
1789 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1790 {
1791         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1792         struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1793 
1794         if (chip == -1)
1795                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1796         else
1797                 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1798 }
1799 
1800 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1801                 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1802 {
1803         struct nand_chip *chip = mtd_to_nand(mtd);
1804 
1805         int acycle = 0;
1806         unsigned char addr_bytes[8];
1807         int index = 0, bit_shift;
1808 
1809         BUG_ON(addr1234 == NULL || cycle0 == NULL);
1810 
1811         *cycle0 = 0;
1812         *addr1234 = 0;
1813 
1814         if (column != -1) {
1815                 if (chip->options & NAND_BUSWIDTH_16 &&
1816                                 !nand_opcode_8bits(command))
1817                         column >>= 1;
1818                 addr_bytes[acycle++] = column & 0xff;
1819                 if (mtd->writesize > 512)
1820                         addr_bytes[acycle++] = (column >> 8) & 0xff;
1821         }
1822 
1823         if (page_addr != -1) {
1824                 addr_bytes[acycle++] = page_addr & 0xff;
1825                 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1826                 if (chip->chipsize > (128 << 20))
1827                         addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1828         }
1829 
1830         if (acycle > 4)
1831                 *cycle0 = addr_bytes[index++];
1832 
1833         for (bit_shift = 0; index < acycle; bit_shift += 8)
1834                 *addr1234 += addr_bytes[index++] << bit_shift;
1835 
1836         /* return acycle in cmd register */
1837         return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1838 }
1839 
1840 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1841                                 int column, int page_addr)
1842 {
1843         struct nand_chip *chip = mtd_to_nand(mtd);
1844         struct atmel_nand_host *host = nand_get_controller_data(chip);
1845         unsigned long timeout;
1846         unsigned int nfc_addr_cmd = 0;
1847 
1848         unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1849 
1850         /* Set default settings: no cmd2, no addr cycle. read from nand */
1851         unsigned int cmd2 = 0;
1852         unsigned int vcmd2 = 0;
1853         int acycle = NFCADDR_CMD_ACYCLE_NONE;
1854         int csid = NFCADDR_CMD_CSID_3;
1855         int dataen = NFCADDR_CMD_DATADIS;
1856         int nfcwr = NFCADDR_CMD_NFCRD;
1857         unsigned int addr1234 = 0;
1858         unsigned int cycle0 = 0;
1859         bool do_addr = true;
1860         host->nfc->data_in_sram = NULL;
1861 
1862         dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1863              __func__, command, column, page_addr);
1864 
1865         switch (command) {
1866         case NAND_CMD_RESET:
1867                 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1868                 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1869                 udelay(chip->chip_delay);
1870 
1871                 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1872                 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1873                 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1874                         if (time_after(jiffies, timeout)) {
1875                                 dev_err(host->dev,
1876                                         "Time out to wait status ready!\n");
1877                                 break;
1878                         }
1879                 }
1880                 return;
1881         case NAND_CMD_STATUS:
1882                 do_addr = false;
1883                 break;
1884         case NAND_CMD_PARAM:
1885         case NAND_CMD_READID:
1886                 do_addr = false;
1887                 acycle = NFCADDR_CMD_ACYCLE_1;
1888                 if (column != -1)
1889                         addr1234 = column;
1890                 break;
1891         case NAND_CMD_RNDOUT:
1892                 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1893                 vcmd2 = NFCADDR_CMD_VCMD2;
1894                 break;
1895         case NAND_CMD_READ0:
1896         case NAND_CMD_READOOB:
1897                 if (command == NAND_CMD_READOOB) {
1898                         column += mtd->writesize;
1899                         command = NAND_CMD_READ0; /* only READ0 is valid */
1900                         cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1901                 }
1902                 if (host->nfc->use_nfc_sram) {
1903                         /* Enable Data transfer to sram */
1904                         dataen = NFCADDR_CMD_DATAEN;
1905 
1906                         /* Need enable PMECC now, since NFC will transfer
1907                          * data in bus after sending nfc read command.
1908                          */
1909                         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1910                                 pmecc_enable(host, NAND_ECC_READ);
1911                 }
1912 
1913                 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1914                 vcmd2 = NFCADDR_CMD_VCMD2;
1915                 break;
1916         /* For prgramming command, the cmd need set to write enable */
1917         case NAND_CMD_PAGEPROG:
1918         case NAND_CMD_SEQIN:
1919         case NAND_CMD_RNDIN:
1920                 nfcwr = NFCADDR_CMD_NFCWR;
1921                 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1922                         dataen = NFCADDR_CMD_DATAEN;
1923                 break;
1924         default:
1925                 break;
1926         }
1927 
1928         if (do_addr)
1929                 acycle = nfc_make_addr(mtd, command, column, page_addr,
1930                                 &addr1234, &cycle0);
1931 
1932         nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1933         nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1934 
1935         /*
1936          * Program and erase have their own busy handlers status, sequential
1937          * in, and deplete1 need no delay.
1938          */
1939         switch (command) {
1940         case NAND_CMD_CACHEDPROG:
1941         case NAND_CMD_PAGEPROG:
1942         case NAND_CMD_ERASE1:
1943         case NAND_CMD_ERASE2:
1944         case NAND_CMD_RNDIN:
1945         case NAND_CMD_STATUS:
1946         case NAND_CMD_RNDOUT:
1947         case NAND_CMD_SEQIN:
1948         case NAND_CMD_READID:
1949                 return;
1950 
1951         case NAND_CMD_READ0:
1952                 if (dataen == NFCADDR_CMD_DATAEN) {
1953                         host->nfc->data_in_sram = host->nfc->sram_bank0 +
1954                                 nfc_get_sram_off(host);
1955                         return;
1956                 }
1957                 /* fall through */
1958         default:
1959                 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1960                 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1961         }
1962 }
1963 
1964 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1965                         uint32_t offset, int data_len, const uint8_t *buf,
1966                         int oob_required, int page, int cached, int raw)
1967 {
1968         int cfg, len;
1969         int status = 0;
1970         struct atmel_nand_host *host = nand_get_controller_data(chip);
1971         void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1972 
1973         /* Subpage write is not supported */
1974         if (offset || (data_len < mtd->writesize))
1975                 return -EINVAL;
1976 
1977         len = mtd->writesize;
1978         /* Copy page data to sram that will write to nand via NFC */
1979         if (use_dma) {
1980                 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1981                         /* Fall back to use cpu copy */
1982                         memcpy(sram, buf, len);
1983         } else {
1984                 memcpy(sram, buf, len);
1985         }
1986 
1987         cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1988         if (unlikely(raw) && oob_required) {
1989                 memcpy(sram + len, chip->oob_poi, mtd->oobsize);
1990                 len += mtd->oobsize;
1991                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1992         } else {
1993                 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1994         }
1995 
1996         if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1997                 /*
1998                  * When use NFC sram, need set up PMECC before send
1999                  * NAND_CMD_SEQIN command. Since when the nand command
2000                  * is sent, nfc will do transfer from sram and nand.
2001                  */
2002                 pmecc_enable(host, NAND_ECC_WRITE);
2003 
2004         host->nfc->will_write_sram = true;
2005         chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2006         host->nfc->will_write_sram = false;
2007 
2008         if (likely(!raw))
2009                 /* Need to write ecc into oob */
2010                 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2011                                               page);
2012 
2013         if (status < 0)
2014                 return status;
2015 
2016         chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2017         status = chip->waitfunc(mtd, chip);
2018 
2019         if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2020                 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2021 
2022         if (status & NAND_STATUS_FAIL)
2023                 return -EIO;
2024 
2025         return 0;
2026 }
2027 
2028 static int nfc_sram_init(struct mtd_info *mtd)
2029 {
2030         struct nand_chip *chip = mtd_to_nand(mtd);
2031         struct atmel_nand_host *host = nand_get_controller_data(chip);
2032         int res = 0;
2033 
2034         /* Initialize the NFC CFG register */
2035         unsigned int cfg_nfc = 0;
2036 
2037         /* set page size and oob layout */
2038         switch (mtd->writesize) {
2039         case 512:
2040                 cfg_nfc = NFC_CFG_PAGESIZE_512;
2041                 break;
2042         case 1024:
2043                 cfg_nfc = NFC_CFG_PAGESIZE_1024;
2044                 break;
2045         case 2048:
2046                 cfg_nfc = NFC_CFG_PAGESIZE_2048;
2047                 break;
2048         case 4096:
2049                 cfg_nfc = NFC_CFG_PAGESIZE_4096;
2050                 break;
2051         case 8192:
2052                 cfg_nfc = NFC_CFG_PAGESIZE_8192;
2053                 break;
2054         default:
2055                 dev_err(host->dev, "Unsupported page size for NFC.\n");
2056                 res = -ENXIO;
2057                 return res;
2058         }
2059 
2060         /* oob bytes size = (NFCSPARESIZE + 1) * 4
2061          * Max support spare size is 512 bytes. */
2062         cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2063                 & NFC_CFG_NFC_SPARESIZE);
2064         /* default set a max timeout */
2065         cfg_nfc |= NFC_CFG_RSPARE |
2066                         NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2067 
2068         nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2069 
2070         host->nfc->will_write_sram = false;
2071         nfc_set_sram_bank(host, 0);
2072 
2073         /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2074         if (host->nfc->write_by_sram) {
2075                 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2076                                 chip->ecc.mode == NAND_ECC_NONE)
2077                         chip->write_page = nfc_sram_write_page;
2078                 else
2079                         host->nfc->write_by_sram = false;
2080         }
2081 
2082         dev_info(host->dev, "Using NFC Sram read %s\n",
2083                         host->nfc->write_by_sram ? "and write" : "");
2084         return 0;
2085 }
2086 
2087 static struct platform_driver atmel_nand_nfc_driver;
2088 /*
2089  * Probe for the NAND device.
2090  */
2091 static int atmel_nand_probe(struct platform_device *pdev)
2092 {
2093         struct atmel_nand_host *host;
2094         struct mtd_info *mtd;
2095         struct nand_chip *nand_chip;
2096         struct resource *mem;
2097         int res, irq;
2098 
2099         /* Allocate memory for the device structure (and zero it) */
2100         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2101         if (!host)
2102                 return -ENOMEM;
2103 
2104         res = platform_driver_register(&atmel_nand_nfc_driver);
2105         if (res)
2106                 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2107 
2108         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2109         host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2110         if (IS_ERR(host->io_base)) {
2111                 res = PTR_ERR(host->io_base);
2112                 goto err_nand_ioremap;
2113         }
2114         host->io_phys = (dma_addr_t)mem->start;
2115 
2116         nand_chip = &host->nand_chip;
2117         mtd = nand_to_mtd(nand_chip);
2118         host->dev = &pdev->dev;
2119         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2120                 nand_set_flash_node(nand_chip, pdev->dev.of_node);
2121                 /* Only when CONFIG_OF is enabled of_node can be parsed */
2122                 res = atmel_of_init_port(host, pdev->dev.of_node);
2123                 if (res)
2124                         goto err_nand_ioremap;
2125         } else {
2126                 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2127                        sizeof(struct atmel_nand_data));
2128         }
2129 
2130          /* link the private data structures */
2131         nand_set_controller_data(nand_chip, host);
2132         mtd->dev.parent = &pdev->dev;
2133 
2134         /* Set address of NAND IO lines */
2135         nand_chip->IO_ADDR_R = host->io_base;
2136         nand_chip->IO_ADDR_W = host->io_base;
2137 
2138         if (nand_nfc.is_initialized) {
2139                 /* NFC driver is probed and initialized */
2140                 host->nfc = &nand_nfc;
2141 
2142                 nand_chip->select_chip = nfc_select_chip;
2143                 nand_chip->dev_ready = nfc_device_ready;
2144                 nand_chip->cmdfunc = nfc_nand_command;
2145 
2146                 /* Initialize the interrupt for NFC */
2147                 irq = platform_get_irq(pdev, 0);
2148                 if (irq < 0) {
2149                         dev_err(host->dev, "Cannot get HSMC irq!\n");
2150                         res = irq;
2151                         goto err_nand_ioremap;
2152                 }
2153 
2154                 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2155                                 0, "hsmc", host);
2156                 if (res) {
2157                         dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2158                                 irq);
2159                         goto err_nand_ioremap;
2160                 }
2161         } else {
2162                 res = atmel_nand_set_enable_ready_pins(mtd);
2163                 if (res)
2164                         goto err_nand_ioremap;
2165 
2166                 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2167         }
2168 
2169         nand_chip->ecc.mode = host->board.ecc_mode;
2170         nand_chip->chip_delay = 40;             /* 40us command delay time */
2171 
2172         if (host->board.bus_width_16)   /* 16-bit bus width */
2173                 nand_chip->options |= NAND_BUSWIDTH_16;
2174 
2175         nand_chip->read_buf = atmel_read_buf;
2176         nand_chip->write_buf = atmel_write_buf;
2177 
2178         platform_set_drvdata(pdev, host);
2179         atmel_nand_enable(host);
2180 
2181         if (gpio_is_valid(host->board.det_pin)) {
2182                 res = devm_gpio_request(&pdev->dev,
2183                                 host->board.det_pin, "nand_det");
2184                 if (res < 0) {
2185                         dev_err(&pdev->dev,
2186                                 "can't request det gpio %d\n",
2187                                 host->board.det_pin);
2188                         goto err_no_card;
2189                 }
2190 
2191                 res = gpio_direction_input(host->board.det_pin);
2192                 if (res < 0) {
2193                         dev_err(&pdev->dev,
2194                                 "can't request input direction det gpio %d\n",
2195                                 host->board.det_pin);
2196                         goto err_no_card;
2197                 }
2198 
2199                 if (gpio_get_value(host->board.det_pin)) {
2200                         dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2201                         res = -ENXIO;
2202                         goto err_no_card;
2203                 }
2204         }
2205 
2206         if (host->board.on_flash_bbt || on_flash_bbt) {
2207                 dev_info(&pdev->dev, "Use On Flash BBT\n");
2208                 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2209         }
2210 
2211         if (!host->board.has_dma)
2212                 use_dma = 0;
2213 
2214         if (use_dma) {
2215                 dma_cap_mask_t mask;
2216 
2217                 dma_cap_zero(mask);
2218                 dma_cap_set(DMA_MEMCPY, mask);
2219                 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2220                 if (!host->dma_chan) {
2221                         dev_err(host->dev, "Failed to request DMA channel\n");
2222                         use_dma = 0;
2223                 }
2224         }
2225         if (use_dma)
2226                 dev_info(host->dev, "Using %s for DMA transfers.\n",
2227                                         dma_chan_name(host->dma_chan));
2228         else
2229                 dev_info(host->dev, "No DMA support for NAND access.\n");
2230 
2231         /* first scan to find the device and get the page size */
2232         if (nand_scan_ident(mtd, 1, NULL)) {
2233                 res = -ENXIO;
2234                 goto err_scan_ident;
2235         }
2236 
2237         if (nand_chip->ecc.mode == NAND_ECC_HW) {
2238                 if (host->has_pmecc)
2239                         res = atmel_pmecc_nand_init_params(pdev, host);
2240                 else
2241                         res = atmel_hw_nand_init_params(pdev, host);
2242 
2243                 if (res != 0)
2244                         goto err_hw_ecc;
2245         }
2246 
2247         /* initialize the nfc configuration register */
2248         if (host->nfc && host->nfc->use_nfc_sram) {
2249                 res = nfc_sram_init(mtd);
2250                 if (res) {
2251                         host->nfc->use_nfc_sram = false;
2252                         dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2253                 }
2254         }
2255 
2256         /* second phase scan */
2257         if (nand_scan_tail(mtd)) {
2258                 res = -ENXIO;
2259                 goto err_scan_tail;
2260         }
2261 
2262         mtd->name = "atmel_nand";
2263         res = mtd_device_register(mtd, host->board.parts,
2264                                   host->board.num_parts);
2265         if (!res)
2266                 return res;
2267 
2268 err_scan_tail:
2269         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2270                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2271 err_hw_ecc:
2272 err_scan_ident:
2273 err_no_card:
2274         atmel_nand_disable(host);
2275         if (host->dma_chan)
2276                 dma_release_channel(host->dma_chan);
2277 err_nand_ioremap:
2278         return res;
2279 }
2280 
2281 /*
2282  * Remove a NAND device.
2283  */
2284 static int atmel_nand_remove(struct platform_device *pdev)
2285 {
2286         struct atmel_nand_host *host = platform_get_drvdata(pdev);
2287         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
2288 
2289         nand_release(mtd);
2290 
2291         atmel_nand_disable(host);
2292 
2293         if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2294                 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2295                 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2296                                 PMERRLOC_DISABLE);
2297         }
2298 
2299         if (host->dma_chan)
2300                 dma_release_channel(host->dma_chan);
2301 
2302         platform_driver_unregister(&atmel_nand_nfc_driver);
2303 
2304         return 0;
2305 }
2306 
2307 static const struct atmel_nand_caps at91rm9200_caps = {
2308         .pmecc_correct_erase_page = false,
2309 };
2310 
2311 static const struct atmel_nand_caps sama5d4_caps = {
2312         .pmecc_correct_erase_page = true,
2313 };
2314 
2315 static const struct of_device_id atmel_nand_dt_ids[] = {
2316         { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
2317         { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
2318         { /* sentinel */ }
2319 };
2320 
2321 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2322 
2323 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2324 {
2325         struct atmel_nfc *nfc = &nand_nfc;
2326         struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2327         int ret;
2328 
2329         nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2330         nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2331         if (IS_ERR(nfc->base_cmd_regs))
2332                 return PTR_ERR(nfc->base_cmd_regs);
2333 
2334         nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2335         nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2336         if (IS_ERR(nfc->hsmc_regs))
2337                 return PTR_ERR(nfc->hsmc_regs);
2338 
2339         nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2340         if (nfc_sram) {
2341                 nfc->sram_bank0 = (void * __force)
2342                                 devm_ioremap_resource(&pdev->dev, nfc_sram);
2343                 if (IS_ERR(nfc->sram_bank0)) {
2344                         dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2345                                         PTR_ERR(nfc->sram_bank0));
2346                 } else {
2347                         nfc->use_nfc_sram = true;
2348                         nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2349 
2350                         if (pdev->dev.of_node)
2351                                 nfc->write_by_sram = of_property_read_bool(
2352                                                 pdev->dev.of_node,
2353                                                 "atmel,write-by-sram");
2354                 }
2355         }
2356 
2357         nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2358         nfc_readl(nfc->hsmc_regs, SR);  /* clear the NFC_SR */
2359 
2360         nfc->clk = devm_clk_get(&pdev->dev, NULL);
2361         if (!IS_ERR(nfc->clk)) {
2362                 ret = clk_prepare_enable(nfc->clk);
2363                 if (ret)
2364                         return ret;
2365         } else {
2366                 dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2367         }
2368 
2369         nfc->is_initialized = true;
2370         dev_info(&pdev->dev, "NFC is probed.\n");
2371 
2372         return 0;
2373 }
2374 
2375 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2376 {
2377         struct atmel_nfc *nfc = &nand_nfc;
2378 
2379         if (!IS_ERR(nfc->clk))
2380                 clk_disable_unprepare(nfc->clk);
2381 
2382         return 0;
2383 }
2384 
2385 static const struct of_device_id atmel_nand_nfc_match[] = {
2386         { .compatible = "atmel,sama5d3-nfc" },
2387         { /* sentinel */ }
2388 };
2389 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2390 
2391 static struct platform_driver atmel_nand_nfc_driver = {
2392         .driver = {
2393                 .name = "atmel_nand_nfc",
2394                 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2395         },
2396         .probe = atmel_nand_nfc_probe,
2397         .remove = atmel_nand_nfc_remove,
2398 };
2399 
2400 static struct platform_driver atmel_nand_driver = {
2401         .probe          = atmel_nand_probe,
2402         .remove         = atmel_nand_remove,
2403         .driver         = {
2404                 .name   = "atmel_nand",
2405                 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2406         },
2407 };
2408 
2409 module_platform_driver(atmel_nand_driver);
2410 
2411 MODULE_LICENSE("GPL");
2412 MODULE_AUTHOR("Rick Bronson");
2413 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2414 MODULE_ALIAS("platform:atmel_nand");
2415 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us