Version:  2.0.40 2.2.26 2.4.37 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19

Linux/drivers/mtd/devices/docg3.c

  1 /*
  2  * Handles the M-Systems DiskOnChip G3 chip
  3  *
  4  * Copyright (C) 2011 Robert Jarzmik
  5  *
  6  * This program is free software; you can redistribute it and/or modify
  7  * it under the terms of the GNU General Public License as published by
  8  * the Free Software Foundation; either version 2 of the License, or
  9  * (at your option) any later version.
 10  *
 11  * This program is distributed in the hope that it will be useful,
 12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14  * GNU General Public License for more details.
 15  *
 16  * You should have received a copy of the GNU General Public License
 17  * along with this program; if not, write to the Free Software
 18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 19  *
 20  */
 21 
 22 #include <linux/kernel.h>
 23 #include <linux/module.h>
 24 #include <linux/errno.h>
 25 #include <linux/of.h>
 26 #include <linux/platform_device.h>
 27 #include <linux/string.h>
 28 #include <linux/slab.h>
 29 #include <linux/io.h>
 30 #include <linux/delay.h>
 31 #include <linux/mtd/mtd.h>
 32 #include <linux/mtd/partitions.h>
 33 #include <linux/bitmap.h>
 34 #include <linux/bitrev.h>
 35 #include <linux/bch.h>
 36 
 37 #include <linux/debugfs.h>
 38 #include <linux/seq_file.h>
 39 
 40 #define CREATE_TRACE_POINTS
 41 #include "docg3.h"
 42 
 43 /*
 44  * This driver handles the DiskOnChip G3 flash memory.
 45  *
 46  * As no specification is available from M-Systems/Sandisk, this drivers lacks
 47  * several functions available on the chip, as :
 48  *  - IPL write
 49  *
 50  * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
 51  * the driver assumes a 16bits data bus.
 52  *
 53  * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
 54  *  - a 1 byte Hamming code stored in the OOB for each page
 55  *  - a 7 bytes BCH code stored in the OOB for each page
 56  * The BCH ECC is :
 57  *  - BCH is in GF(2^14)
 58  *  - BCH is over data of 520 bytes (512 page + 7 page_info bytes
 59  *                                   + 1 hamming byte)
 60  *  - BCH can correct up to 4 bits (t = 4)
 61  *  - BCH syndroms are calculated in hardware, and checked in hardware as well
 62  *
 63  */
 64 
 65 static unsigned int reliable_mode;
 66 module_param(reliable_mode, uint, 0);
 67 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
 68                  "2=reliable) : MLC normal operations are in normal mode");
 69 
 70 /**
 71  * struct docg3_oobinfo - DiskOnChip G3 OOB layout
 72  * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC)
 73  * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC)
 74  * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15
 75  * @oobavail: 8 available bytes remaining after ECC toll
 76  */
 77 static struct nand_ecclayout docg3_oobinfo = {
 78         .eccbytes = 8,
 79         .eccpos = {7, 8, 9, 10, 11, 12, 13, 14},
 80         .oobfree = {{0, 7}, {15, 1} },
 81         .oobavail = 8,
 82 };
 83 
 84 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
 85 {
 86         u8 val = readb(docg3->cascade->base + reg);
 87 
 88         trace_docg3_io(0, 8, reg, (int)val);
 89         return val;
 90 }
 91 
 92 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
 93 {
 94         u16 val = readw(docg3->cascade->base + reg);
 95 
 96         trace_docg3_io(0, 16, reg, (int)val);
 97         return val;
 98 }
 99 
100 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
101 {
102         writeb(val, docg3->cascade->base + reg);
103         trace_docg3_io(1, 8, reg, val);
104 }
105 
106 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
107 {
108         writew(val, docg3->cascade->base + reg);
109         trace_docg3_io(1, 16, reg, val);
110 }
111 
112 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
113 {
114         doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
115 }
116 
117 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
118 {
119         doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
120 }
121 
122 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
123 {
124         doc_writeb(docg3, addr, DOC_FLASHADDRESS);
125 }
126 
127 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
128 
129 static int doc_register_readb(struct docg3 *docg3, int reg)
130 {
131         u8 val;
132 
133         doc_writew(docg3, reg, DOC_READADDRESS);
134         val = doc_readb(docg3, reg);
135         doc_vdbg("Read register %04x : %02x\n", reg, val);
136         return val;
137 }
138 
139 static int doc_register_readw(struct docg3 *docg3, int reg)
140 {
141         u16 val;
142 
143         doc_writew(docg3, reg, DOC_READADDRESS);
144         val = doc_readw(docg3, reg);
145         doc_vdbg("Read register %04x : %04x\n", reg, val);
146         return val;
147 }
148 
149 /**
150  * doc_delay - delay docg3 operations
151  * @docg3: the device
152  * @nbNOPs: the number of NOPs to issue
153  *
154  * As no specification is available, the right timings between chip commands are
155  * unknown. The only available piece of information are the observed nops on a
156  * working docg3 chip.
157  * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
158  * friendlier msleep() functions or blocking mdelay().
159  */
160 static void doc_delay(struct docg3 *docg3, int nbNOPs)
161 {
162         int i;
163 
164         doc_vdbg("NOP x %d\n", nbNOPs);
165         for (i = 0; i < nbNOPs; i++)
166                 doc_writeb(docg3, 0, DOC_NOP);
167 }
168 
169 static int is_prot_seq_error(struct docg3 *docg3)
170 {
171         int ctrl;
172 
173         ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
174         return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
175 }
176 
177 static int doc_is_ready(struct docg3 *docg3)
178 {
179         int ctrl;
180 
181         ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
182         return ctrl & DOC_CTRL_FLASHREADY;
183 }
184 
185 static int doc_wait_ready(struct docg3 *docg3)
186 {
187         int maxWaitCycles = 100;
188 
189         do {
190                 doc_delay(docg3, 4);
191                 cpu_relax();
192         } while (!doc_is_ready(docg3) && maxWaitCycles--);
193         doc_delay(docg3, 2);
194         if (maxWaitCycles > 0)
195                 return 0;
196         else
197                 return -EIO;
198 }
199 
200 static int doc_reset_seq(struct docg3 *docg3)
201 {
202         int ret;
203 
204         doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
205         doc_flash_sequence(docg3, DOC_SEQ_RESET);
206         doc_flash_command(docg3, DOC_CMD_RESET);
207         doc_delay(docg3, 2);
208         ret = doc_wait_ready(docg3);
209 
210         doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
211         return ret;
212 }
213 
214 /**
215  * doc_read_data_area - Read data from data area
216  * @docg3: the device
217  * @buf: the buffer to fill in (might be NULL is dummy reads)
218  * @len: the length to read
219  * @first: first time read, DOC_READADDRESS should be set
220  *
221  * Reads bytes from flash data. Handles the single byte / even bytes reads.
222  */
223 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
224                                int first)
225 {
226         int i, cdr, len4;
227         u16 data16, *dst16;
228         u8 data8, *dst8;
229 
230         doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
231         cdr = len & 0x1;
232         len4 = len - cdr;
233 
234         if (first)
235                 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
236         dst16 = buf;
237         for (i = 0; i < len4; i += 2) {
238                 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
239                 if (dst16) {
240                         *dst16 = data16;
241                         dst16++;
242                 }
243         }
244 
245         if (cdr) {
246                 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
247                            DOC_READADDRESS);
248                 doc_delay(docg3, 1);
249                 dst8 = (u8 *)dst16;
250                 for (i = 0; i < cdr; i++) {
251                         data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
252                         if (dst8) {
253                                 *dst8 = data8;
254                                 dst8++;
255                         }
256                 }
257         }
258 }
259 
260 /**
261  * doc_write_data_area - Write data into data area
262  * @docg3: the device
263  * @buf: the buffer to get input bytes from
264  * @len: the length to write
265  *
266  * Writes bytes into flash data. Handles the single byte / even bytes writes.
267  */
268 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
269 {
270         int i, cdr, len4;
271         u16 *src16;
272         u8 *src8;
273 
274         doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
275         cdr = len & 0x3;
276         len4 = len - cdr;
277 
278         doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
279         src16 = (u16 *)buf;
280         for (i = 0; i < len4; i += 2) {
281                 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
282                 src16++;
283         }
284 
285         src8 = (u8 *)src16;
286         for (i = 0; i < cdr; i++) {
287                 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
288                            DOC_READADDRESS);
289                 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
290                 src8++;
291         }
292 }
293 
294 /**
295  * doc_set_data_mode - Sets the flash to normal or reliable data mode
296  * @docg3: the device
297  *
298  * The reliable data mode is a bit slower than the fast mode, but less errors
299  * occur.  Entering the reliable mode cannot be done without entering the fast
300  * mode first.
301  *
302  * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
303  * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
304  * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
305  * result, which is a logical and between bytes from page 0 and page 1 (which is
306  * consistent with the fact that writing to a page is _clearing_ bits of that
307  * page).
308  */
309 static void doc_set_reliable_mode(struct docg3 *docg3)
310 {
311         static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
312 
313         doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
314         switch (docg3->reliable) {
315         case 0:
316                 break;
317         case 1:
318                 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
319                 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
320                 break;
321         case 2:
322                 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
323                 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
324                 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
325                 break;
326         default:
327                 doc_err("doc_set_reliable_mode(): invalid mode\n");
328                 break;
329         }
330         doc_delay(docg3, 2);
331 }
332 
333 /**
334  * doc_set_asic_mode - Set the ASIC mode
335  * @docg3: the device
336  * @mode: the mode
337  *
338  * The ASIC can work in 3 modes :
339  *  - RESET: all registers are zeroed
340  *  - NORMAL: receives and handles commands
341  *  - POWERDOWN: minimal poweruse, flash parts shut off
342  */
343 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
344 {
345         int i;
346 
347         for (i = 0; i < 12; i++)
348                 doc_readb(docg3, DOC_IOSPACE_IPL);
349 
350         mode |= DOC_ASICMODE_MDWREN;
351         doc_dbg("doc_set_asic_mode(%02x)\n", mode);
352         doc_writeb(docg3, mode, DOC_ASICMODE);
353         doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
354         doc_delay(docg3, 1);
355 }
356 
357 /**
358  * doc_set_device_id - Sets the devices id for cascaded G3 chips
359  * @docg3: the device
360  * @id: the chip to select (amongst 0, 1, 2, 3)
361  *
362  * There can be 4 cascaded G3 chips. This function selects the one which will
363  * should be the active one.
364  */
365 static void doc_set_device_id(struct docg3 *docg3, int id)
366 {
367         u8 ctrl;
368 
369         doc_dbg("doc_set_device_id(%d)\n", id);
370         doc_writeb(docg3, id, DOC_DEVICESELECT);
371         ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
372 
373         ctrl &= ~DOC_CTRL_VIOLATION;
374         ctrl |= DOC_CTRL_CE;
375         doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
376 }
377 
378 /**
379  * doc_set_extra_page_mode - Change flash page layout
380  * @docg3: the device
381  *
382  * Normally, the flash page is split into the data (512 bytes) and the out of
383  * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
384  * leveling counters are stored.  To access this last area of 4 bytes, a special
385  * mode must be input to the flash ASIC.
386  *
387  * Returns 0 if no error occurred, -EIO else.
388  */
389 static int doc_set_extra_page_mode(struct docg3 *docg3)
390 {
391         int fctrl;
392 
393         doc_dbg("doc_set_extra_page_mode()\n");
394         doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
395         doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
396         doc_delay(docg3, 2);
397 
398         fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
399         if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
400                 return -EIO;
401         else
402                 return 0;
403 }
404 
405 /**
406  * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
407  * @docg3: the device
408  * @sector: the sector
409  */
410 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
411 {
412         doc_delay(docg3, 1);
413         doc_flash_address(docg3, sector & 0xff);
414         doc_flash_address(docg3, (sector >> 8) & 0xff);
415         doc_flash_address(docg3, (sector >> 16) & 0xff);
416         doc_delay(docg3, 1);
417 }
418 
419 /**
420  * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
421  * @docg3: the device
422  * @sector: the sector
423  * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
424  */
425 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
426 {
427         ofs = ofs >> 2;
428         doc_delay(docg3, 1);
429         doc_flash_address(docg3, ofs & 0xff);
430         doc_flash_address(docg3, sector & 0xff);
431         doc_flash_address(docg3, (sector >> 8) & 0xff);
432         doc_flash_address(docg3, (sector >> 16) & 0xff);
433         doc_delay(docg3, 1);
434 }
435 
436 /**
437  * doc_seek - Set both flash planes to the specified block, page for reading
438  * @docg3: the device
439  * @block0: the first plane block index
440  * @block1: the second plane block index
441  * @page: the page index within the block
442  * @wear: if true, read will occur on the 4 extra bytes of the wear area
443  * @ofs: offset in page to read
444  *
445  * Programs the flash even and odd planes to the specific block and page.
446  * Alternatively, programs the flash to the wear area of the specified page.
447  */
448 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
449                          int wear, int ofs)
450 {
451         int sector, ret = 0;
452 
453         doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
454                 block0, block1, page, ofs, wear);
455 
456         if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
457                 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
458                 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
459                 doc_delay(docg3, 2);
460         } else {
461                 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
462                 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
463                 doc_delay(docg3, 2);
464         }
465 
466         doc_set_reliable_mode(docg3);
467         if (wear)
468                 ret = doc_set_extra_page_mode(docg3);
469         if (ret)
470                 goto out;
471 
472         doc_flash_sequence(docg3, DOC_SEQ_READ);
473         sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
474         doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
475         doc_setup_addr_sector(docg3, sector);
476 
477         sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
478         doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
479         doc_setup_addr_sector(docg3, sector);
480         doc_delay(docg3, 1);
481 
482 out:
483         return ret;
484 }
485 
486 /**
487  * doc_write_seek - Set both flash planes to the specified block, page for writing
488  * @docg3: the device
489  * @block0: the first plane block index
490  * @block1: the second plane block index
491  * @page: the page index within the block
492  * @ofs: offset in page to write
493  *
494  * Programs the flash even and odd planes to the specific block and page.
495  * Alternatively, programs the flash to the wear area of the specified page.
496  */
497 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
498                          int ofs)
499 {
500         int ret = 0, sector;
501 
502         doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
503                 block0, block1, page, ofs);
504 
505         doc_set_reliable_mode(docg3);
506 
507         if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
508                 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
509                 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
510                 doc_delay(docg3, 2);
511         } else {
512                 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
513                 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
514                 doc_delay(docg3, 2);
515         }
516 
517         doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
518         doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
519 
520         sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
521         doc_setup_writeaddr_sector(docg3, sector, ofs);
522 
523         doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
524         doc_delay(docg3, 2);
525         ret = doc_wait_ready(docg3);
526         if (ret)
527                 goto out;
528 
529         doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
530         sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
531         doc_setup_writeaddr_sector(docg3, sector, ofs);
532         doc_delay(docg3, 1);
533 
534 out:
535         return ret;
536 }
537 
538 
539 /**
540  * doc_read_page_ecc_init - Initialize hardware ECC engine
541  * @docg3: the device
542  * @len: the number of bytes covered by the ECC (BCH covered)
543  *
544  * The function does initialize the hardware ECC engine to compute the Hamming
545  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
546  *
547  * Return 0 if succeeded, -EIO on error
548  */
549 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
550 {
551         doc_writew(docg3, DOC_ECCCONF0_READ_MODE
552                    | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
553                    | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
554                    DOC_ECCCONF0);
555         doc_delay(docg3, 4);
556         doc_register_readb(docg3, DOC_FLASHCONTROL);
557         return doc_wait_ready(docg3);
558 }
559 
560 /**
561  * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
562  * @docg3: the device
563  * @len: the number of bytes covered by the ECC (BCH covered)
564  *
565  * The function does initialize the hardware ECC engine to compute the Hamming
566  * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
567  *
568  * Return 0 if succeeded, -EIO on error
569  */
570 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
571 {
572         doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
573                    | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
574                    | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
575                    DOC_ECCCONF0);
576         doc_delay(docg3, 4);
577         doc_register_readb(docg3, DOC_FLASHCONTROL);
578         return doc_wait_ready(docg3);
579 }
580 
581 /**
582  * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
583  * @docg3: the device
584  *
585  * Disables the hardware ECC generator and checker, for unchecked reads (as when
586  * reading OOB only or write status byte).
587  */
588 static void doc_ecc_disable(struct docg3 *docg3)
589 {
590         doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
591         doc_delay(docg3, 4);
592 }
593 
594 /**
595  * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
596  * @docg3: the device
597  * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
598  *
599  * This function programs the ECC hardware to compute the hamming code on the
600  * last provided N bytes to the hardware generator.
601  */
602 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
603 {
604         u8 ecc_conf1;
605 
606         ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
607         ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
608         ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
609         doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
610 }
611 
612 /**
613  * doc_ecc_bch_fix_data - Fix if need be read data from flash
614  * @docg3: the device
615  * @buf: the buffer of read data (512 + 7 + 1 bytes)
616  * @hwecc: the hardware calculated ECC.
617  *         It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
618  *         area data, and calc_ecc the ECC calculated by the hardware generator.
619  *
620  * Checks if the received data matches the ECC, and if an error is detected,
621  * tries to fix the bit flips (at most 4) in the buffer buf.  As the docg3
622  * understands the (data, ecc, syndroms) in an inverted order in comparison to
623  * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
624  * bit6 and bit 1, ...) for all ECC data.
625  *
626  * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
627  * algorithm is used to decode this.  However the hw operates on page
628  * data in a bit order that is the reverse of that of the bch alg,
629  * requiring that the bits be reversed on the result.  Thanks to Ivan
630  * Djelic for his analysis.
631  *
632  * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
633  * errors were detected and cannot be fixed.
634  */
635 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
636 {
637         u8 ecc[DOC_ECC_BCH_SIZE];
638         int errorpos[DOC_ECC_BCH_T], i, numerrs;
639 
640         for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
641                 ecc[i] = bitrev8(hwecc[i]);
642         numerrs = decode_bch(docg3->cascade->bch, NULL,
643                              DOC_ECC_BCH_COVERED_BYTES,
644                              NULL, ecc, NULL, errorpos);
645         BUG_ON(numerrs == -EINVAL);
646         if (numerrs < 0)
647                 goto out;
648 
649         for (i = 0; i < numerrs; i++)
650                 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
651         for (i = 0; i < numerrs; i++)
652                 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
653                         /* error is located in data, correct it */
654                         change_bit(errorpos[i], buf);
655 out:
656         doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
657         return numerrs;
658 }
659 
660 
661 /**
662  * doc_read_page_prepare - Prepares reading data from a flash page
663  * @docg3: the device
664  * @block0: the first plane block index on flash memory
665  * @block1: the second plane block index on flash memory
666  * @page: the page index in the block
667  * @offset: the offset in the page (must be a multiple of 4)
668  *
669  * Prepares the page to be read in the flash memory :
670  *   - tell ASIC to map the flash pages
671  *   - tell ASIC to be in read mode
672  *
673  * After a call to this method, a call to doc_read_page_finish is mandatory,
674  * to end the read cycle of the flash.
675  *
676  * Read data from a flash page. The length to be read must be between 0 and
677  * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
678  * the extra bytes reading is not implemented).
679  *
680  * As pages are grouped by 2 (in 2 planes), reading from a page must be done
681  * in two steps:
682  *  - one read of 512 bytes at offset 0
683  *  - one read of 512 bytes at offset 512 + 16
684  *
685  * Returns 0 if successful, -EIO if a read error occurred.
686  */
687 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
688                                  int page, int offset)
689 {
690         int wear_area = 0, ret = 0;
691 
692         doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
693                 block0, block1, page, offset);
694         if (offset >= DOC_LAYOUT_WEAR_OFFSET)
695                 wear_area = 1;
696         if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
697                 return -EINVAL;
698 
699         doc_set_device_id(docg3, docg3->device_id);
700         ret = doc_reset_seq(docg3);
701         if (ret)
702                 goto err;
703 
704         /* Program the flash address block and page */
705         ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
706         if (ret)
707                 goto err;
708 
709         doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
710         doc_delay(docg3, 2);
711         doc_wait_ready(docg3);
712 
713         doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
714         doc_delay(docg3, 1);
715         if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
716                 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
717         doc_flash_address(docg3, offset >> 2);
718         doc_delay(docg3, 1);
719         doc_wait_ready(docg3);
720 
721         doc_flash_command(docg3, DOC_CMD_READ_FLASH);
722 
723         return 0;
724 err:
725         doc_writeb(docg3, 0, DOC_DATAEND);
726         doc_delay(docg3, 2);
727         return -EIO;
728 }
729 
730 /**
731  * doc_read_page_getbytes - Reads bytes from a prepared page
732  * @docg3: the device
733  * @len: the number of bytes to be read (must be a multiple of 4)
734  * @buf: the buffer to be filled in (or NULL is forget bytes)
735  * @first: 1 if first time read, DOC_READADDRESS should be set
736  * @last_odd: 1 if last read ended up on an odd byte
737  *
738  * Reads bytes from a prepared page. There is a trickery here : if the last read
739  * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
740  * planes, the first byte must be read apart. If a word (16bit) read was used,
741  * the read would return the byte of plane 2 as low *and* high endian, which
742  * will mess the read.
743  *
744  */
745 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
746                                   int first, int last_odd)
747 {
748         if (last_odd && len > 0) {
749                 doc_read_data_area(docg3, buf, 1, first);
750                 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
751         } else {
752                 doc_read_data_area(docg3, buf, len, first);
753         }
754         doc_delay(docg3, 2);
755         return len;
756 }
757 
758 /**
759  * doc_write_page_putbytes - Writes bytes into a prepared page
760  * @docg3: the device
761  * @len: the number of bytes to be written
762  * @buf: the buffer of input bytes
763  *
764  */
765 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
766                                     const u_char *buf)
767 {
768         doc_write_data_area(docg3, buf, len);
769         doc_delay(docg3, 2);
770 }
771 
772 /**
773  * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
774  * @docg3: the device
775  * @hwecc:  the array of 7 integers where the hardware ecc will be stored
776  */
777 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
778 {
779         int i;
780 
781         for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
782                 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
783 }
784 
785 /**
786  * doc_page_finish - Ends reading/writing of a flash page
787  * @docg3: the device
788  */
789 static void doc_page_finish(struct docg3 *docg3)
790 {
791         doc_writeb(docg3, 0, DOC_DATAEND);
792         doc_delay(docg3, 2);
793 }
794 
795 /**
796  * doc_read_page_finish - Ends reading of a flash page
797  * @docg3: the device
798  *
799  * As a side effect, resets the chip selector to 0. This ensures that after each
800  * read operation, the floor 0 is selected. Therefore, if the systems halts, the
801  * reboot will boot on floor 0, where the IPL is.
802  */
803 static void doc_read_page_finish(struct docg3 *docg3)
804 {
805         doc_page_finish(docg3);
806         doc_set_device_id(docg3, 0);
807 }
808 
809 /**
810  * calc_block_sector - Calculate blocks, pages and ofs.
811 
812  * @from: offset in flash
813  * @block0: first plane block index calculated
814  * @block1: second plane block index calculated
815  * @page: page calculated
816  * @ofs: offset in page
817  * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
818  * reliable mode.
819  *
820  * The calculation is based on the reliable/normal mode. In normal mode, the 64
821  * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
822  * clones, only 32 pages per block are available.
823  */
824 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
825                               int *ofs, int reliable)
826 {
827         uint sector, pages_biblock;
828 
829         pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
830         if (reliable == 1 || reliable == 2)
831                 pages_biblock /= 2;
832 
833         sector = from / DOC_LAYOUT_PAGE_SIZE;
834         *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
835         *block1 = *block0 + 1;
836         *page = sector % pages_biblock;
837         *page /= DOC_LAYOUT_NBPLANES;
838         if (reliable == 1 || reliable == 2)
839                 *page *= 2;
840         if (sector % 2)
841                 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
842         else
843                 *ofs = 0;
844 }
845 
846 /**
847  * doc_read_oob - Read out of band bytes from flash
848  * @mtd: the device
849  * @from: the offset from first block and first page, in bytes, aligned on page
850  *        size
851  * @ops: the mtd oob structure
852  *
853  * Reads flash memory OOB area of pages.
854  *
855  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
856  */
857 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
858                         struct mtd_oob_ops *ops)
859 {
860         struct docg3 *docg3 = mtd->priv;
861         int block0, block1, page, ret, skip, ofs = 0;
862         u8 *oobbuf = ops->oobbuf;
863         u8 *buf = ops->datbuf;
864         size_t len, ooblen, nbdata, nboob;
865         u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
866         int max_bitflips = 0;
867 
868         if (buf)
869                 len = ops->len;
870         else
871                 len = 0;
872         if (oobbuf)
873                 ooblen = ops->ooblen;
874         else
875                 ooblen = 0;
876 
877         if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
878                 oobbuf += ops->ooboffs;
879 
880         doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
881                 from, ops->mode, buf, len, oobbuf, ooblen);
882         if (ooblen % DOC_LAYOUT_OOB_SIZE)
883                 return -EINVAL;
884 
885         if (from + len > mtd->size)
886                 return -EINVAL;
887 
888         ops->oobretlen = 0;
889         ops->retlen = 0;
890         ret = 0;
891         skip = from % DOC_LAYOUT_PAGE_SIZE;
892         mutex_lock(&docg3->cascade->lock);
893         while (ret >= 0 && (len > 0 || ooblen > 0)) {
894                 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
895                         docg3->reliable);
896                 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
897                 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
898                 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
899                 if (ret < 0)
900                         goto out;
901                 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
902                 if (ret < 0)
903                         goto err_in_read;
904                 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
905                 if (ret < skip)
906                         goto err_in_read;
907                 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
908                 if (ret < nbdata)
909                         goto err_in_read;
910                 doc_read_page_getbytes(docg3,
911                                        DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
912                                        NULL, 0, (skip + nbdata) % 2);
913                 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
914                 if (ret < nboob)
915                         goto err_in_read;
916                 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
917                                        NULL, 0, nboob % 2);
918 
919                 doc_get_bch_hw_ecc(docg3, hwecc);
920                 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
921 
922                 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
923                         doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
924                         doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
925                         doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
926                         doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
927                 }
928                 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
929                 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
930 
931                 ret = -EIO;
932                 if (is_prot_seq_error(docg3))
933                         goto err_in_read;
934                 ret = 0;
935                 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
936                     (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
937                     (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
938                     (ops->mode != MTD_OPS_RAW) &&
939                     (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
940                         ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
941                         if (ret < 0) {
942                                 mtd->ecc_stats.failed++;
943                                 ret = -EBADMSG;
944                         }
945                         if (ret > 0) {
946                                 mtd->ecc_stats.corrected += ret;
947                                 max_bitflips = max(max_bitflips, ret);
948                                 ret = max_bitflips;
949                         }
950                 }
951 
952                 doc_read_page_finish(docg3);
953                 ops->retlen += nbdata;
954                 ops->oobretlen += nboob;
955                 buf += nbdata;
956                 oobbuf += nboob;
957                 len -= nbdata;
958                 ooblen -= nboob;
959                 from += DOC_LAYOUT_PAGE_SIZE;
960                 skip = 0;
961         }
962 
963 out:
964         mutex_unlock(&docg3->cascade->lock);
965         return ret;
966 err_in_read:
967         doc_read_page_finish(docg3);
968         goto out;
969 }
970 
971 /**
972  * doc_read - Read bytes from flash
973  * @mtd: the device
974  * @from: the offset from first block and first page, in bytes, aligned on page
975  *        size
976  * @len: the number of bytes to read (must be a multiple of 4)
977  * @retlen: the number of bytes actually read
978  * @buf: the filled in buffer
979  *
980  * Reads flash memory pages. This function does not read the OOB chunk, but only
981  * the page data.
982  *
983  * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
984  */
985 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
986              size_t *retlen, u_char *buf)
987 {
988         struct mtd_oob_ops ops;
989         size_t ret;
990 
991         memset(&ops, 0, sizeof(ops));
992         ops.datbuf = buf;
993         ops.len = len;
994         ops.mode = MTD_OPS_AUTO_OOB;
995 
996         ret = doc_read_oob(mtd, from, &ops);
997         *retlen = ops.retlen;
998         return ret;
999 }
1000 
1001 static int doc_reload_bbt(struct docg3 *docg3)
1002 {
1003         int block = DOC_LAYOUT_BLOCK_BBT;
1004         int ret = 0, nbpages, page;
1005         u_char *buf = docg3->bbt;
1006 
1007         nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
1008         for (page = 0; !ret && (page < nbpages); page++) {
1009                 ret = doc_read_page_prepare(docg3, block, block + 1,
1010                                             page + DOC_LAYOUT_PAGE_BBT, 0);
1011                 if (!ret)
1012                         ret = doc_read_page_ecc_init(docg3,
1013                                                      DOC_LAYOUT_PAGE_SIZE);
1014                 if (!ret)
1015                         doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
1016                                                buf, 1, 0);
1017                 buf += DOC_LAYOUT_PAGE_SIZE;
1018         }
1019         doc_read_page_finish(docg3);
1020         return ret;
1021 }
1022 
1023 /**
1024  * doc_block_isbad - Checks whether a block is good or not
1025  * @mtd: the device
1026  * @from: the offset to find the correct block
1027  *
1028  * Returns 1 if block is bad, 0 if block is good
1029  */
1030 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1031 {
1032         struct docg3 *docg3 = mtd->priv;
1033         int block0, block1, page, ofs, is_good;
1034 
1035         calc_block_sector(from, &block0, &block1, &page, &ofs,
1036                 docg3->reliable);
1037         doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1038                 from, block0, block1, page, ofs);
1039 
1040         if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1041                 return 0;
1042         if (block1 > docg3->max_block)
1043                 return -EINVAL;
1044 
1045         is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1046         return !is_good;
1047 }
1048 
1049 #if 0
1050 /**
1051  * doc_get_erase_count - Get block erase count
1052  * @docg3: the device
1053  * @from: the offset in which the block is.
1054  *
1055  * Get the number of times a block was erased. The number is the maximum of
1056  * erase times between first and second plane (which should be equal normally).
1057  *
1058  * Returns The number of erases, or -EINVAL or -EIO on error.
1059  */
1060 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1061 {
1062         u8 buf[DOC_LAYOUT_WEAR_SIZE];
1063         int ret, plane1_erase_count, plane2_erase_count;
1064         int block0, block1, page, ofs;
1065 
1066         doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1067         if (from % DOC_LAYOUT_PAGE_SIZE)
1068                 return -EINVAL;
1069         calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1070         if (block1 > docg3->max_block)
1071                 return -EINVAL;
1072 
1073         ret = doc_reset_seq(docg3);
1074         if (!ret)
1075                 ret = doc_read_page_prepare(docg3, block0, block1, page,
1076                                             ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1077         if (!ret)
1078                 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1079                                              buf, 1, 0);
1080         doc_read_page_finish(docg3);
1081 
1082         if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1083                 return -EIO;
1084         plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1085                 | ((u8)(~buf[5]) << 16);
1086         plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1087                 | ((u8)(~buf[7]) << 16);
1088 
1089         return max(plane1_erase_count, plane2_erase_count);
1090 }
1091 #endif
1092 
1093 /**
1094  * doc_get_op_status - get erase/write operation status
1095  * @docg3: the device
1096  *
1097  * Queries the status from the chip, and returns it
1098  *
1099  * Returns the status (bits DOC_PLANES_STATUS_*)
1100  */
1101 static int doc_get_op_status(struct docg3 *docg3)
1102 {
1103         u8 status;
1104 
1105         doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1106         doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1107         doc_delay(docg3, 5);
1108 
1109         doc_ecc_disable(docg3);
1110         doc_read_data_area(docg3, &status, 1, 1);
1111         return status;
1112 }
1113 
1114 /**
1115  * doc_write_erase_wait_status - wait for write or erase completion
1116  * @docg3: the device
1117  *
1118  * Wait for the chip to be ready again after erase or write operation, and check
1119  * erase/write status.
1120  *
1121  * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1122  * timeout
1123  */
1124 static int doc_write_erase_wait_status(struct docg3 *docg3)
1125 {
1126         int i, status, ret = 0;
1127 
1128         for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1129                 msleep(20);
1130         if (!doc_is_ready(docg3)) {
1131                 doc_dbg("Timeout reached and the chip is still not ready\n");
1132                 ret = -EAGAIN;
1133                 goto out;
1134         }
1135 
1136         status = doc_get_op_status(docg3);
1137         if (status & DOC_PLANES_STATUS_FAIL) {
1138                 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1139                         status);
1140                 ret = -EIO;
1141         }
1142 
1143 out:
1144         doc_page_finish(docg3);
1145         return ret;
1146 }
1147 
1148 /**
1149  * doc_erase_block - Erase a couple of blocks
1150  * @docg3: the device
1151  * @block0: the first block to erase (leftmost plane)
1152  * @block1: the second block to erase (rightmost plane)
1153  *
1154  * Erase both blocks, and return operation status
1155  *
1156  * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1157  * ready for too long
1158  */
1159 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1160 {
1161         int ret, sector;
1162 
1163         doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1164         ret = doc_reset_seq(docg3);
1165         if (ret)
1166                 return -EIO;
1167 
1168         doc_set_reliable_mode(docg3);
1169         doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1170 
1171         sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1172         doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1173         doc_setup_addr_sector(docg3, sector);
1174         sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1175         doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1176         doc_setup_addr_sector(docg3, sector);
1177         doc_delay(docg3, 1);
1178 
1179         doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1180         doc_delay(docg3, 2);
1181 
1182         if (is_prot_seq_error(docg3)) {
1183                 doc_err("Erase blocks %d,%d error\n", block0, block1);
1184                 return -EIO;
1185         }
1186 
1187         return doc_write_erase_wait_status(docg3);
1188 }
1189 
1190 /**
1191  * doc_erase - Erase a portion of the chip
1192  * @mtd: the device
1193  * @info: the erase info
1194  *
1195  * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1196  * split into 2 pages of 512 bytes on 2 contiguous blocks.
1197  *
1198  * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1199  * issue
1200  */
1201 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1202 {
1203         struct docg3 *docg3 = mtd->priv;
1204         uint64_t len;
1205         int block0, block1, page, ret, ofs = 0;
1206 
1207         doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1208 
1209         info->state = MTD_ERASE_PENDING;
1210         calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1211                           &ofs, docg3->reliable);
1212         ret = -EINVAL;
1213         if (info->addr + info->len > mtd->size || page || ofs)
1214                 goto reset_err;
1215 
1216         ret = 0;
1217         calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1218                           docg3->reliable);
1219         mutex_lock(&docg3->cascade->lock);
1220         doc_set_device_id(docg3, docg3->device_id);
1221         doc_set_reliable_mode(docg3);
1222         for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1223                 info->state = MTD_ERASING;
1224                 ret = doc_erase_block(docg3, block0, block1);
1225                 block0 += 2;
1226                 block1 += 2;
1227         }
1228         mutex_unlock(&docg3->cascade->lock);
1229 
1230         if (ret)
1231                 goto reset_err;
1232 
1233         info->state = MTD_ERASE_DONE;
1234         return 0;
1235 
1236 reset_err:
1237         info->state = MTD_ERASE_FAILED;
1238         return ret;
1239 }
1240 
1241 /**
1242  * doc_write_page - Write a single page to the chip
1243  * @docg3: the device
1244  * @to: the offset from first block and first page, in bytes, aligned on page
1245  *      size
1246  * @buf: buffer to get bytes from
1247  * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1248  *       written)
1249  * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1250  *           BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1251  *           remaining ones are filled with hardware Hamming and BCH
1252  *           computations. Its value is not meaningfull is oob == NULL.
1253  *
1254  * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1255  * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1256  * BCH generator if autoecc is not null.
1257  *
1258  * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1259  */
1260 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1261                           const u_char *oob, int autoecc)
1262 {
1263         int block0, block1, page, ret, ofs = 0;
1264         u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1265 
1266         doc_dbg("doc_write_page(to=%lld)\n", to);
1267         calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1268 
1269         doc_set_device_id(docg3, docg3->device_id);
1270         ret = doc_reset_seq(docg3);
1271         if (ret)
1272                 goto err;
1273 
1274         /* Program the flash address block and page */
1275         ret = doc_write_seek(docg3, block0, block1, page, ofs);
1276         if (ret)
1277                 goto err;
1278 
1279         doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1280         doc_delay(docg3, 2);
1281         doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1282 
1283         if (oob && autoecc) {
1284                 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1285                 doc_delay(docg3, 2);
1286                 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1287 
1288                 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1289                 doc_delay(docg3, 2);
1290                 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1291                                         &hamming);
1292                 doc_delay(docg3, 2);
1293 
1294                 doc_get_bch_hw_ecc(docg3, hwecc);
1295                 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1296                 doc_delay(docg3, 2);
1297 
1298                 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1299         }
1300         if (oob && !autoecc)
1301                 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1302 
1303         doc_delay(docg3, 2);
1304         doc_page_finish(docg3);
1305         doc_delay(docg3, 2);
1306         doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1307         doc_delay(docg3, 2);
1308 
1309         /*
1310          * The wait status will perform another doc_page_finish() call, but that
1311          * seems to please the docg3, so leave it.
1312          */
1313         ret = doc_write_erase_wait_status(docg3);
1314         return ret;
1315 err:
1316         doc_read_page_finish(docg3);
1317         return ret;
1318 }
1319 
1320 /**
1321  * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1322  * @ops: the oob operations
1323  *
1324  * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1325  */
1326 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1327 {
1328         int autoecc;
1329 
1330         switch (ops->mode) {
1331         case MTD_OPS_PLACE_OOB:
1332         case MTD_OPS_AUTO_OOB:
1333                 autoecc = 1;
1334                 break;
1335         case MTD_OPS_RAW:
1336                 autoecc = 0;
1337                 break;
1338         default:
1339                 autoecc = -EINVAL;
1340         }
1341         return autoecc;
1342 }
1343 
1344 /**
1345  * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1346  * @dst: the target 16 bytes OOB buffer
1347  * @oobsrc: the source 8 bytes non-ECC OOB buffer
1348  *
1349  */
1350 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1351 {
1352         memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1353         dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1354 }
1355 
1356 /**
1357  * doc_backup_oob - Backup OOB into docg3 structure
1358  * @docg3: the device
1359  * @to: the page offset in the chip
1360  * @ops: the OOB size and buffer
1361  *
1362  * As the docg3 should write a page with its OOB in one pass, and some userland
1363  * applications do write_oob() to setup the OOB and then write(), store the OOB
1364  * into a temporary storage. This is very dangerous, as 2 concurrent
1365  * applications could store an OOB, and then write their pages (which will
1366  * result into one having its OOB corrupted).
1367  *
1368  * The only reliable way would be for userland to call doc_write_oob() with both
1369  * the page data _and_ the OOB area.
1370  *
1371  * Returns 0 if success, -EINVAL if ops content invalid
1372  */
1373 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1374                           struct mtd_oob_ops *ops)
1375 {
1376         int ooblen = ops->ooblen, autoecc;
1377 
1378         if (ooblen != DOC_LAYOUT_OOB_SIZE)
1379                 return -EINVAL;
1380         autoecc = doc_guess_autoecc(ops);
1381         if (autoecc < 0)
1382                 return autoecc;
1383 
1384         docg3->oob_write_ofs = to;
1385         docg3->oob_autoecc = autoecc;
1386         if (ops->mode == MTD_OPS_AUTO_OOB) {
1387                 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1388                 ops->oobretlen = 8;
1389         } else {
1390                 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1391                 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1392         }
1393         return 0;
1394 }
1395 
1396 /**
1397  * doc_write_oob - Write out of band bytes to flash
1398  * @mtd: the device
1399  * @ofs: the offset from first block and first page, in bytes, aligned on page
1400  *       size
1401  * @ops: the mtd oob structure
1402  *
1403  * Either write OOB data into a temporary buffer, for the subsequent write
1404  * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1405  * as well, issue the page write.
1406  * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1407  * still be filled in if asked for).
1408  *
1409  * Returns 0 is successful, EINVAL if length is not 14 bytes
1410  */
1411 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1412                          struct mtd_oob_ops *ops)
1413 {
1414         struct docg3 *docg3 = mtd->priv;
1415         int ret, autoecc, oobdelta;
1416         u8 *oobbuf = ops->oobbuf;
1417         u8 *buf = ops->datbuf;
1418         size_t len, ooblen;
1419         u8 oob[DOC_LAYOUT_OOB_SIZE];
1420 
1421         if (buf)
1422                 len = ops->len;
1423         else
1424                 len = 0;
1425         if (oobbuf)
1426                 ooblen = ops->ooblen;
1427         else
1428                 ooblen = 0;
1429 
1430         if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1431                 oobbuf += ops->ooboffs;
1432 
1433         doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1434                 ofs, ops->mode, buf, len, oobbuf, ooblen);
1435         switch (ops->mode) {
1436         case MTD_OPS_PLACE_OOB:
1437         case MTD_OPS_RAW:
1438                 oobdelta = mtd->oobsize;
1439                 break;
1440         case MTD_OPS_AUTO_OOB:
1441                 oobdelta = mtd->ecclayout->oobavail;
1442                 break;
1443         default:
1444                 return -EINVAL;
1445         }
1446         if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1447             (ofs % DOC_LAYOUT_PAGE_SIZE))
1448                 return -EINVAL;
1449         if (len && ooblen &&
1450             (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1451                 return -EINVAL;
1452         if (ofs + len > mtd->size)
1453                 return -EINVAL;
1454 
1455         ops->oobretlen = 0;
1456         ops->retlen = 0;
1457         ret = 0;
1458         if (len == 0 && ooblen == 0)
1459                 return -EINVAL;
1460         if (len == 0 && ooblen > 0)
1461                 return doc_backup_oob(docg3, ofs, ops);
1462 
1463         autoecc = doc_guess_autoecc(ops);
1464         if (autoecc < 0)
1465                 return autoecc;
1466 
1467         mutex_lock(&docg3->cascade->lock);
1468         while (!ret && len > 0) {
1469                 memset(oob, 0, sizeof(oob));
1470                 if (ofs == docg3->oob_write_ofs)
1471                         memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1472                 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1473                         doc_fill_autooob(oob, oobbuf);
1474                 else if (ooblen > 0)
1475                         memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1476                 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1477 
1478                 ofs += DOC_LAYOUT_PAGE_SIZE;
1479                 len -= DOC_LAYOUT_PAGE_SIZE;
1480                 buf += DOC_LAYOUT_PAGE_SIZE;
1481                 if (ooblen) {
1482                         oobbuf += oobdelta;
1483                         ooblen -= oobdelta;
1484                         ops->oobretlen += oobdelta;
1485                 }
1486                 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1487         }
1488 
1489         doc_set_device_id(docg3, 0);
1490         mutex_unlock(&docg3->cascade->lock);
1491         return ret;
1492 }
1493 
1494 /**
1495  * doc_write - Write a buffer to the chip
1496  * @mtd: the device
1497  * @to: the offset from first block and first page, in bytes, aligned on page
1498  *      size
1499  * @len: the number of bytes to write (must be a full page size, ie. 512)
1500  * @retlen: the number of bytes actually written (0 or 512)
1501  * @buf: the buffer to get bytes from
1502  *
1503  * Writes data to the chip.
1504  *
1505  * Returns 0 if write successful, -EIO if write error
1506  */
1507 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
1508                      size_t *retlen, const u_char *buf)
1509 {
1510         struct docg3 *docg3 = mtd->priv;
1511         int ret;
1512         struct mtd_oob_ops ops;
1513 
1514         doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len);
1515         ops.datbuf = (char *)buf;
1516         ops.len = len;
1517         ops.mode = MTD_OPS_PLACE_OOB;
1518         ops.oobbuf = NULL;
1519         ops.ooblen = 0;
1520         ops.ooboffs = 0;
1521 
1522         ret = doc_write_oob(mtd, to, &ops);
1523         *retlen = ops.retlen;
1524         return ret;
1525 }
1526 
1527 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1528                                      struct device_attribute *attr)
1529 {
1530         int floor;
1531         struct platform_device *pdev = to_platform_device(dev);
1532         struct mtd_info **docg3_floors = platform_get_drvdata(pdev);
1533 
1534         floor = attr->attr.name[1] - '';
1535         if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1536                 return NULL;
1537         else
1538                 return docg3_floors[floor]->priv;
1539 }
1540 
1541 static ssize_t dps0_is_key_locked(struct device *dev,
1542                                   struct device_attribute *attr, char *buf)
1543 {
1544         struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1545         int dps0;
1546 
1547         mutex_lock(&docg3->cascade->lock);
1548         doc_set_device_id(docg3, docg3->device_id);
1549         dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1550         doc_set_device_id(docg3, 0);
1551         mutex_unlock(&docg3->cascade->lock);
1552 
1553         return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1554 }
1555 
1556 static ssize_t dps1_is_key_locked(struct device *dev,
1557                                   struct device_attribute *attr, char *buf)
1558 {
1559         struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1560         int dps1;
1561 
1562         mutex_lock(&docg3->cascade->lock);
1563         doc_set_device_id(docg3, docg3->device_id);
1564         dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1565         doc_set_device_id(docg3, 0);
1566         mutex_unlock(&docg3->cascade->lock);
1567 
1568         return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1569 }
1570 
1571 static ssize_t dps0_insert_key(struct device *dev,
1572                                struct device_attribute *attr,
1573                                const char *buf, size_t count)
1574 {
1575         struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1576         int i;
1577 
1578         if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1579                 return -EINVAL;
1580 
1581         mutex_lock(&docg3->cascade->lock);
1582         doc_set_device_id(docg3, docg3->device_id);
1583         for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1584                 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1585         doc_set_device_id(docg3, 0);
1586         mutex_unlock(&docg3->cascade->lock);
1587         return count;
1588 }
1589 
1590 static ssize_t dps1_insert_key(struct device *dev,
1591                                struct device_attribute *attr,
1592                                const char *buf, size_t count)
1593 {
1594         struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1595         int i;
1596 
1597         if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1598                 return -EINVAL;
1599 
1600         mutex_lock(&docg3->cascade->lock);
1601         doc_set_device_id(docg3, docg3->device_id);
1602         for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1603                 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1604         doc_set_device_id(docg3, 0);
1605         mutex_unlock(&docg3->cascade->lock);
1606         return count;
1607 }
1608 
1609 #define FLOOR_SYSFS(id) { \
1610         __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1611         __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1612         __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1613         __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1614 }
1615 
1616 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1617         FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1618 };
1619 
1620 static int doc_register_sysfs(struct platform_device *pdev,
1621                               struct docg3_cascade *cascade)
1622 {
1623         int ret = 0, floor, i = 0;
1624         struct device *dev = &pdev->dev;
1625 
1626         for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS &&
1627                      cascade->floors[floor]; floor++)
1628                 for (i = 0; !ret && i < 4; i++)
1629                         ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1630         if (!ret)
1631                 return 0;
1632         do {
1633                 while (--i >= 0)
1634                         device_remove_file(dev, &doc_sys_attrs[floor][i]);
1635                 i = 4;
1636         } while (--floor >= 0);
1637         return ret;
1638 }
1639 
1640 static void doc_unregister_sysfs(struct platform_device *pdev,
1641                                  struct docg3_cascade *cascade)
1642 {
1643         struct device *dev = &pdev->dev;
1644         int floor, i;
1645 
1646         for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1647              floor++)
1648                 for (i = 0; i < 4; i++)
1649                         device_remove_file(dev, &doc_sys_attrs[floor][i]);
1650 }
1651 
1652 /*
1653  * Debug sysfs entries
1654  */
1655 static int dbg_flashctrl_show(struct seq_file *s, void *p)
1656 {
1657         struct docg3 *docg3 = (struct docg3 *)s->private;
1658 
1659         u8 fctrl;
1660 
1661         mutex_lock(&docg3->cascade->lock);
1662         fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1663         mutex_unlock(&docg3->cascade->lock);
1664 
1665         seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1666                    fctrl,
1667                    fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1668                    fctrl & DOC_CTRL_CE ? "active" : "inactive",
1669                    fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1670                    fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1671                    fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1672 
1673         return 0;
1674 }
1675 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show);
1676 
1677 static int dbg_asicmode_show(struct seq_file *s, void *p)
1678 {
1679         struct docg3 *docg3 = (struct docg3 *)s->private;
1680 
1681         int pctrl, mode;
1682 
1683         mutex_lock(&docg3->cascade->lock);
1684         pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1685         mode = pctrl & 0x03;
1686         mutex_unlock(&docg3->cascade->lock);
1687 
1688         seq_printf(s,
1689                    "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1690                    pctrl,
1691                    pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1692                    pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1693                    pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1694                    pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1695                    pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1696                    mode >> 1, mode & 0x1);
1697 
1698         switch (mode) {
1699         case DOC_ASICMODE_RESET:
1700                 seq_puts(s, "reset");
1701                 break;
1702         case DOC_ASICMODE_NORMAL:
1703                 seq_puts(s, "normal");
1704                 break;
1705         case DOC_ASICMODE_POWERDOWN:
1706                 seq_puts(s, "powerdown");
1707                 break;
1708         }
1709         seq_puts(s, ")\n");
1710         return 0;
1711 }
1712 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
1713 
1714 static int dbg_device_id_show(struct seq_file *s, void *p)
1715 {
1716         struct docg3 *docg3 = (struct docg3 *)s->private;
1717         int id;
1718 
1719         mutex_lock(&docg3->cascade->lock);
1720         id = doc_register_readb(docg3, DOC_DEVICESELECT);
1721         mutex_unlock(&docg3->cascade->lock);
1722 
1723         seq_printf(s, "DeviceId = %d\n", id);
1724         return 0;
1725 }
1726 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show);
1727 
1728 static int dbg_protection_show(struct seq_file *s, void *p)
1729 {
1730         struct docg3 *docg3 = (struct docg3 *)s->private;
1731         int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1732 
1733         mutex_lock(&docg3->cascade->lock);
1734         protect = doc_register_readb(docg3, DOC_PROTECTION);
1735         dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1736         dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1737         dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1738         dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1739         dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1740         dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1741         mutex_unlock(&docg3->cascade->lock);
1742 
1743         seq_printf(s, "Protection = 0x%02x (", protect);
1744         if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1745                 seq_puts(s, "FOUNDRY_OTP_LOCK,");
1746         if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1747                 seq_puts(s, "CUSTOMER_OTP_LOCK,");
1748         if (protect & DOC_PROTECT_LOCK_INPUT)
1749                 seq_puts(s, "LOCK_INPUT,");
1750         if (protect & DOC_PROTECT_STICKY_LOCK)
1751                 seq_puts(s, "STICKY_LOCK,");
1752         if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1753                 seq_puts(s, "PROTECTION ON,");
1754         if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1755                 seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1756         if (protect & DOC_PROTECT_PROTECTION_ERROR)
1757                 seq_puts(s, "PROTECT_ERR,");
1758         else
1759                 seq_puts(s, "NO_PROTECT_ERR");
1760         seq_puts(s, ")\n");
1761 
1762         seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1763                    dps0, dps0_low, dps0_high,
1764                    !!(dps0 & DOC_DPS_OTP_PROTECTED),
1765                    !!(dps0 & DOC_DPS_READ_PROTECTED),
1766                    !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1767                    !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1768                    !!(dps0 & DOC_DPS_KEY_OK));
1769         seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1770                    dps1, dps1_low, dps1_high,
1771                    !!(dps1 & DOC_DPS_OTP_PROTECTED),
1772                    !!(dps1 & DOC_DPS_READ_PROTECTED),
1773                    !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1774                    !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1775                    !!(dps1 & DOC_DPS_KEY_OK));
1776         return 0;
1777 }
1778 DEBUGFS_RO_ATTR(protection, dbg_protection_show);
1779 
1780 static int __init doc_dbg_register(struct docg3 *docg3)
1781 {
1782         struct dentry *root, *entry;
1783 
1784         root = debugfs_create_dir("docg3", NULL);
1785         if (!root)
1786                 return -ENOMEM;
1787 
1788         entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3,
1789                                   &flashcontrol_fops);
1790         if (entry)
1791                 entry = debugfs_create_file("asic_mode", S_IRUSR, root,
1792                                             docg3, &asic_mode_fops);
1793         if (entry)
1794                 entry = debugfs_create_file("device_id", S_IRUSR, root,
1795                                             docg3, &device_id_fops);
1796         if (entry)
1797                 entry = debugfs_create_file("protection", S_IRUSR, root,
1798                                             docg3, &protection_fops);
1799         if (entry) {
1800                 docg3->debugfs_root = root;
1801                 return 0;
1802         } else {
1803                 debugfs_remove_recursive(root);
1804                 return -ENOMEM;
1805         }
1806 }
1807 
1808 static void __exit doc_dbg_unregister(struct docg3 *docg3)
1809 {
1810         debugfs_remove_recursive(docg3->debugfs_root);
1811 }
1812 
1813 /**
1814  * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1815  * @chip_id: The chip ID of the supported chip
1816  * @mtd: The structure to fill
1817  */
1818 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1819 {
1820         struct docg3 *docg3 = mtd->priv;
1821         int cfg;
1822 
1823         cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1824         docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1825         docg3->reliable = reliable_mode;
1826 
1827         switch (chip_id) {
1828         case DOC_CHIPID_G3:
1829                 mtd->name = kasprintf(GFP_KERNEL, "docg3.%d",
1830                                       docg3->device_id);
1831                 docg3->max_block = 2047;
1832                 break;
1833         }
1834         mtd->type = MTD_NANDFLASH;
1835         mtd->flags = MTD_CAP_NANDFLASH;
1836         mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1837         if (docg3->reliable == 2)
1838                 mtd->size /= 2;
1839         mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1840         if (docg3->reliable == 2)
1841                 mtd->erasesize /= 2;
1842         mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1843         mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1844         mtd->owner = THIS_MODULE;
1845         mtd->_erase = doc_erase;
1846         mtd->_read = doc_read;
1847         mtd->_write = doc_write;
1848         mtd->_read_oob = doc_read_oob;
1849         mtd->_write_oob = doc_write_oob;
1850         mtd->_block_isbad = doc_block_isbad;
1851         mtd->ecclayout = &docg3_oobinfo;
1852         mtd->ecc_strength = DOC_ECC_BCH_T;
1853 }
1854 
1855 /**
1856  * doc_probe_device - Check if a device is available
1857  * @base: the io space where the device is probed
1858  * @floor: the floor of the probed device
1859  * @dev: the device
1860  * @cascade: the cascade of chips this devices will belong to
1861  *
1862  * Checks whether a device at the specified IO range, and floor is available.
1863  *
1864  * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1865  * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1866  * launched.
1867  */
1868 static struct mtd_info * __init
1869 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1870 {
1871         int ret, bbt_nbpages;
1872         u16 chip_id, chip_id_inv;
1873         struct docg3 *docg3;
1874         struct mtd_info *mtd;
1875 
1876         ret = -ENOMEM;
1877         docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1878         if (!docg3)
1879                 goto nomem1;
1880         mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1881         if (!mtd)
1882                 goto nomem2;
1883         mtd->priv = docg3;
1884         bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1885                                    8 * DOC_LAYOUT_PAGE_SIZE);
1886         docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL);
1887         if (!docg3->bbt)
1888                 goto nomem3;
1889 
1890         docg3->dev = dev;
1891         docg3->device_id = floor;
1892         docg3->cascade = cascade;
1893         doc_set_device_id(docg3, docg3->device_id);
1894         if (!floor)
1895                 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1896         doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1897 
1898         chip_id = doc_register_readw(docg3, DOC_CHIPID);
1899         chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1900 
1901         ret = 0;
1902         if (chip_id != (u16)(~chip_id_inv)) {
1903                 goto nomem3;
1904         }
1905 
1906         switch (chip_id) {
1907         case DOC_CHIPID_G3:
1908                 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1909                          docg3->cascade->base, floor);
1910                 break;
1911         default:
1912                 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1913                 goto nomem3;
1914         }
1915 
1916         doc_set_driver_info(chip_id, mtd);
1917 
1918         doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1919         doc_reload_bbt(docg3);
1920         return mtd;
1921 
1922 nomem3:
1923         kfree(mtd);
1924 nomem2:
1925         kfree(docg3);
1926 nomem1:
1927         return ERR_PTR(ret);
1928 }
1929 
1930 /**
1931  * doc_release_device - Release a docg3 floor
1932  * @mtd: the device
1933  */
1934 static void doc_release_device(struct mtd_info *mtd)
1935 {
1936         struct docg3 *docg3 = mtd->priv;
1937 
1938         mtd_device_unregister(mtd);
1939         kfree(docg3->bbt);
1940         kfree(docg3);
1941         kfree(mtd->name);
1942         kfree(mtd);
1943 }
1944 
1945 /**
1946  * docg3_resume - Awakens docg3 floor
1947  * @pdev: platfrom device
1948  *
1949  * Returns 0 (always successful)
1950  */
1951 static int docg3_resume(struct platform_device *pdev)
1952 {
1953         int i;
1954         struct docg3_cascade *cascade;
1955         struct mtd_info **docg3_floors, *mtd;
1956         struct docg3 *docg3;
1957 
1958         cascade = platform_get_drvdata(pdev);
1959         docg3_floors = cascade->floors;
1960         mtd = docg3_floors[0];
1961         docg3 = mtd->priv;
1962 
1963         doc_dbg("docg3_resume()\n");
1964         for (i = 0; i < 12; i++)
1965                 doc_readb(docg3, DOC_IOSPACE_IPL);
1966         return 0;
1967 }
1968 
1969 /**
1970  * docg3_suspend - Put in low power mode the docg3 floor
1971  * @pdev: platform device
1972  * @state: power state
1973  *
1974  * Shuts off most of docg3 circuitery to lower power consumption.
1975  *
1976  * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1977  */
1978 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1979 {
1980         int floor, i;
1981         struct docg3_cascade *cascade;
1982         struct mtd_info **docg3_floors, *mtd;
1983         struct docg3 *docg3;
1984         u8 ctrl, pwr_down;
1985 
1986         cascade = platform_get_drvdata(pdev);
1987         docg3_floors = cascade->floors;
1988         for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1989                 mtd = docg3_floors[floor];
1990                 if (!mtd)
1991                         continue;
1992                 docg3 = mtd->priv;
1993 
1994                 doc_writeb(docg3, floor, DOC_DEVICESELECT);
1995                 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1996                 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1997                 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1998 
1999                 for (i = 0; i < 10; i++) {
2000                         usleep_range(3000, 4000);
2001                         pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
2002                         if (pwr_down & DOC_POWERDOWN_READY)
2003                                 break;
2004                 }
2005                 if (pwr_down & DOC_POWERDOWN_READY) {
2006                         doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
2007                                 floor);
2008                 } else {
2009                         doc_err("docg3_suspend(): floor %d powerdown failed\n",
2010                                 floor);
2011                         return -EIO;
2012                 }
2013         }
2014 
2015         mtd = docg3_floors[0];
2016         docg3 = mtd->priv;
2017         doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
2018         return 0;
2019 }
2020 
2021 /**
2022  * doc_probe - Probe the IO space for a DiskOnChip G3 chip
2023  * @pdev: platform device
2024  *
2025  * Probes for a G3 chip at the specified IO space in the platform data
2026  * ressources. The floor 0 must be available.
2027  *
2028  * Returns 0 on success, -ENOMEM, -ENXIO on error
2029  */
2030 static int __init docg3_probe(struct platform_device *pdev)
2031 {
2032         struct device *dev = &pdev->dev;
2033         struct mtd_info *mtd;
2034         struct resource *ress;
2035         void __iomem *base;
2036         int ret, floor, found = 0;
2037         struct docg3_cascade *cascade;
2038 
2039         ret = -ENXIO;
2040         ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2041         if (!ress) {
2042                 dev_err(dev, "No I/O memory resource defined\n");
2043                 return ret;
2044         }
2045         base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
2046 
2047         ret = -ENOMEM;
2048         cascade = devm_kzalloc(dev, sizeof(*cascade) * DOC_MAX_NBFLOORS,
2049                                GFP_KERNEL);
2050         if (!cascade)
2051                 return ret;
2052         cascade->base = base;
2053         mutex_init(&cascade->lock);
2054         cascade->bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
2055                              DOC_ECC_BCH_PRIMPOLY);
2056         if (!cascade->bch)
2057                 return ret;
2058 
2059         for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
2060                 mtd = doc_probe_device(cascade, floor, dev);
2061                 if (IS_ERR(mtd)) {
2062                         ret = PTR_ERR(mtd);
2063                         goto err_probe;
2064                 }
2065                 if (!mtd) {
2066                         if (floor == 0)
2067                                 goto notfound;
2068                         else
2069                                 continue;
2070                 }
2071                 cascade->floors[floor] = mtd;
2072                 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2073                                                 0);
2074                 if (ret)
2075                         goto err_probe;
2076                 found++;
2077         }
2078 
2079         ret = doc_register_sysfs(pdev, cascade);
2080         if (ret)
2081                 goto err_probe;
2082         if (!found)
2083                 goto notfound;
2084 
2085         platform_set_drvdata(pdev, cascade);
2086         doc_dbg_register(cascade->floors[0]->priv);
2087         return 0;
2088 
2089 notfound:
2090         ret = -ENODEV;
2091         dev_info(dev, "No supported DiskOnChip found\n");
2092 err_probe:
2093         free_bch(cascade->bch);
2094         for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2095                 if (cascade->floors[floor])
2096                         doc_release_device(cascade->floors[floor]);
2097         return ret;
2098 }
2099 
2100 /**
2101  * docg3_release - Release the driver
2102  * @pdev: the platform device
2103  *
2104  * Returns 0
2105  */
2106 static int __exit docg3_release(struct platform_device *pdev)
2107 {
2108         struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2109         struct docg3 *docg3 = cascade->floors[0]->priv;
2110         int floor;
2111 
2112         doc_unregister_sysfs(pdev, cascade);
2113         doc_dbg_unregister(docg3);
2114         for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2115                 if (cascade->floors[floor])
2116                         doc_release_device(cascade->floors[floor]);
2117 
2118         free_bch(docg3->cascade->bch);
2119         return 0;
2120 }
2121 
2122 #ifdef CONFIG_OF
2123 static struct of_device_id docg3_dt_ids[] = {
2124         { .compatible = "m-systems,diskonchip-g3" },
2125         {}
2126 };
2127 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2128 #endif
2129 
2130 static struct platform_driver g3_driver = {
2131         .driver         = {
2132                 .name   = "docg3",
2133                 .of_match_table = of_match_ptr(docg3_dt_ids),
2134         },
2135         .suspend        = docg3_suspend,
2136         .resume         = docg3_resume,
2137         .remove         = __exit_p(docg3_release),
2138 };
2139 
2140 module_platform_driver_probe(g3_driver, docg3_probe);
2141 
2142 MODULE_LICENSE("GPL");
2143 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2144 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");
2145 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us