Version:  2.0.40 2.2.26 2.4.37 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17

Linux/drivers/media/usb/gspca/ov534.c

  1 /*
  2  * ov534-ov7xxx gspca driver
  3  *
  4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
  5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
  6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
  7  *
  8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
  9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
 10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
 11  *
 12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
 13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
 14  *                  added by Max Thrun <bear24rw@gmail.com>
 15  *
 16  * This program is free software; you can redistribute it and/or modify
 17  * it under the terms of the GNU General Public License as published by
 18  * the Free Software Foundation; either version 2 of the License, or
 19  * any later version.
 20  *
 21  * This program is distributed in the hope that it will be useful,
 22  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 24  * GNU General Public License for more details.
 25  *
 26  * You should have received a copy of the GNU General Public License
 27  * along with this program; if not, write to the Free Software
 28  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 29  */
 30 
 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 32 
 33 #define MODULE_NAME "ov534"
 34 
 35 #include "gspca.h"
 36 
 37 #include <linux/fixp-arith.h>
 38 #include <media/v4l2-ctrls.h>
 39 
 40 #define OV534_REG_ADDRESS       0xf1    /* sensor address */
 41 #define OV534_REG_SUBADDR       0xf2
 42 #define OV534_REG_WRITE         0xf3
 43 #define OV534_REG_READ          0xf4
 44 #define OV534_REG_OPERATION     0xf5
 45 #define OV534_REG_STATUS        0xf6
 46 
 47 #define OV534_OP_WRITE_3        0x37
 48 #define OV534_OP_WRITE_2        0x33
 49 #define OV534_OP_READ_2         0xf9
 50 
 51 #define CTRL_TIMEOUT 500
 52 
 53 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
 54 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
 55 MODULE_LICENSE("GPL");
 56 
 57 /* specific webcam descriptor */
 58 struct sd {
 59         struct gspca_dev gspca_dev;     /* !! must be the first item */
 60 
 61         struct v4l2_ctrl_handler ctrl_handler;
 62         struct v4l2_ctrl *hue;
 63         struct v4l2_ctrl *saturation;
 64         struct v4l2_ctrl *brightness;
 65         struct v4l2_ctrl *contrast;
 66         struct { /* gain control cluster */
 67                 struct v4l2_ctrl *autogain;
 68                 struct v4l2_ctrl *gain;
 69         };
 70         struct v4l2_ctrl *autowhitebalance;
 71         struct { /* exposure control cluster */
 72                 struct v4l2_ctrl *autoexposure;
 73                 struct v4l2_ctrl *exposure;
 74         };
 75         struct v4l2_ctrl *sharpness;
 76         struct v4l2_ctrl *hflip;
 77         struct v4l2_ctrl *vflip;
 78         struct v4l2_ctrl *plfreq;
 79 
 80         __u32 last_pts;
 81         u16 last_fid;
 82         u8 frame_rate;
 83 
 84         u8 sensor;
 85 };
 86 enum sensors {
 87         SENSOR_OV767x,
 88         SENSOR_OV772x,
 89         NSENSORS
 90 };
 91 
 92 static int sd_start(struct gspca_dev *gspca_dev);
 93 static void sd_stopN(struct gspca_dev *gspca_dev);
 94 
 95 
 96 static const struct v4l2_pix_format ov772x_mode[] = {
 97         {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
 98          .bytesperline = 320 * 2,
 99          .sizeimage = 320 * 240 * 2,
100          .colorspace = V4L2_COLORSPACE_SRGB,
101          .priv = 1},
102         {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
103          .bytesperline = 640 * 2,
104          .sizeimage = 640 * 480 * 2,
105          .colorspace = V4L2_COLORSPACE_SRGB,
106          .priv = 0},
107 };
108 static const struct v4l2_pix_format ov767x_mode[] = {
109         {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
110                 .bytesperline = 320,
111                 .sizeimage = 320 * 240 * 3 / 8 + 590,
112                 .colorspace = V4L2_COLORSPACE_JPEG},
113         {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
114                 .bytesperline = 640,
115                 .sizeimage = 640 * 480 * 3 / 8 + 590,
116                 .colorspace = V4L2_COLORSPACE_JPEG},
117 };
118 
119 static const u8 qvga_rates[] = {125, 100, 75, 60, 50, 40, 30};
120 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
121 
122 static const struct framerates ov772x_framerates[] = {
123         { /* 320x240 */
124                 .rates = qvga_rates,
125                 .nrates = ARRAY_SIZE(qvga_rates),
126         },
127         { /* 640x480 */
128                 .rates = vga_rates,
129                 .nrates = ARRAY_SIZE(vga_rates),
130         },
131 };
132 
133 struct reg_array {
134         const u8 (*val)[2];
135         int len;
136 };
137 
138 static const u8 bridge_init_767x[][2] = {
139 /* comments from the ms-win file apollo7670.set */
140 /* str1 */
141         {0xf1, 0x42},
142         {0x88, 0xf8},
143         {0x89, 0xff},
144         {0x76, 0x03},
145         {0x92, 0x03},
146         {0x95, 0x10},
147         {0xe2, 0x00},
148         {0xe7, 0x3e},
149         {0x8d, 0x1c},
150         {0x8e, 0x00},
151         {0x8f, 0x00},
152         {0x1f, 0x00},
153         {0xc3, 0xf9},
154         {0x89, 0xff},
155         {0x88, 0xf8},
156         {0x76, 0x03},
157         {0x92, 0x01},
158         {0x93, 0x18},
159         {0x1c, 0x00},
160         {0x1d, 0x48},
161         {0x1d, 0x00},
162         {0x1d, 0xff},
163         {0x1d, 0x02},
164         {0x1d, 0x58},
165         {0x1d, 0x00},
166         {0x1c, 0x0a},
167         {0x1d, 0x0a},
168         {0x1d, 0x0e},
169         {0xc0, 0x50},   /* HSize 640 */
170         {0xc1, 0x3c},   /* VSize 480 */
171         {0x34, 0x05},   /* enable Audio Suspend mode */
172         {0xc2, 0x0c},   /* Input YUV */
173         {0xc3, 0xf9},   /* enable PRE */
174         {0x34, 0x05},   /* enable Audio Suspend mode */
175         {0xe7, 0x2e},   /* this solves failure of "SuspendResumeTest" */
176         {0x31, 0xf9},   /* enable 1.8V Suspend */
177         {0x35, 0x02},   /* turn on JPEG */
178         {0xd9, 0x10},
179         {0x25, 0x42},   /* GPIO[8]:Input */
180         {0x94, 0x11},   /* If the default setting is loaded when
181                          * system boots up, this flag is closed here */
182 };
183 static const u8 sensor_init_767x[][2] = {
184         {0x12, 0x80},
185         {0x11, 0x03},
186         {0x3a, 0x04},
187         {0x12, 0x00},
188         {0x17, 0x13},
189         {0x18, 0x01},
190         {0x32, 0xb6},
191         {0x19, 0x02},
192         {0x1a, 0x7a},
193         {0x03, 0x0a},
194         {0x0c, 0x00},
195         {0x3e, 0x00},
196         {0x70, 0x3a},
197         {0x71, 0x35},
198         {0x72, 0x11},
199         {0x73, 0xf0},
200         {0xa2, 0x02},
201         {0x7a, 0x2a},   /* set Gamma=1.6 below */
202         {0x7b, 0x12},
203         {0x7c, 0x1d},
204         {0x7d, 0x2d},
205         {0x7e, 0x45},
206         {0x7f, 0x50},
207         {0x80, 0x59},
208         {0x81, 0x62},
209         {0x82, 0x6b},
210         {0x83, 0x73},
211         {0x84, 0x7b},
212         {0x85, 0x8a},
213         {0x86, 0x98},
214         {0x87, 0xb2},
215         {0x88, 0xca},
216         {0x89, 0xe0},
217         {0x13, 0xe0},
218         {0x00, 0x00},
219         {0x10, 0x00},
220         {0x0d, 0x40},
221         {0x14, 0x38},   /* gain max 16x */
222         {0xa5, 0x05},
223         {0xab, 0x07},
224         {0x24, 0x95},
225         {0x25, 0x33},
226         {0x26, 0xe3},
227         {0x9f, 0x78},
228         {0xa0, 0x68},
229         {0xa1, 0x03},
230         {0xa6, 0xd8},
231         {0xa7, 0xd8},
232         {0xa8, 0xf0},
233         {0xa9, 0x90},
234         {0xaa, 0x94},
235         {0x13, 0xe5},
236         {0x0e, 0x61},
237         {0x0f, 0x4b},
238         {0x16, 0x02},
239         {0x21, 0x02},
240         {0x22, 0x91},
241         {0x29, 0x07},
242         {0x33, 0x0b},
243         {0x35, 0x0b},
244         {0x37, 0x1d},
245         {0x38, 0x71},
246         {0x39, 0x2a},
247         {0x3c, 0x78},
248         {0x4d, 0x40},
249         {0x4e, 0x20},
250         {0x69, 0x00},
251         {0x6b, 0x4a},
252         {0x74, 0x10},
253         {0x8d, 0x4f},
254         {0x8e, 0x00},
255         {0x8f, 0x00},
256         {0x90, 0x00},
257         {0x91, 0x00},
258         {0x96, 0x00},
259         {0x9a, 0x80},
260         {0xb0, 0x84},
261         {0xb1, 0x0c},
262         {0xb2, 0x0e},
263         {0xb3, 0x82},
264         {0xb8, 0x0a},
265         {0x43, 0x0a},
266         {0x44, 0xf0},
267         {0x45, 0x34},
268         {0x46, 0x58},
269         {0x47, 0x28},
270         {0x48, 0x3a},
271         {0x59, 0x88},
272         {0x5a, 0x88},
273         {0x5b, 0x44},
274         {0x5c, 0x67},
275         {0x5d, 0x49},
276         {0x5e, 0x0e},
277         {0x6c, 0x0a},
278         {0x6d, 0x55},
279         {0x6e, 0x11},
280         {0x6f, 0x9f},
281         {0x6a, 0x40},
282         {0x01, 0x40},
283         {0x02, 0x40},
284         {0x13, 0xe7},
285         {0x4f, 0x80},
286         {0x50, 0x80},
287         {0x51, 0x00},
288         {0x52, 0x22},
289         {0x53, 0x5e},
290         {0x54, 0x80},
291         {0x58, 0x9e},
292         {0x41, 0x08},
293         {0x3f, 0x00},
294         {0x75, 0x04},
295         {0x76, 0xe1},
296         {0x4c, 0x00},
297         {0x77, 0x01},
298         {0x3d, 0xc2},
299         {0x4b, 0x09},
300         {0xc9, 0x60},
301         {0x41, 0x38},   /* jfm: auto sharpness + auto de-noise  */
302         {0x56, 0x40},
303         {0x34, 0x11},
304         {0x3b, 0xc2},
305         {0xa4, 0x8a},   /* Night mode trigger point */
306         {0x96, 0x00},
307         {0x97, 0x30},
308         {0x98, 0x20},
309         {0x99, 0x20},
310         {0x9a, 0x84},
311         {0x9b, 0x29},
312         {0x9c, 0x03},
313         {0x9d, 0x4c},
314         {0x9e, 0x3f},
315         {0x78, 0x04},
316         {0x79, 0x01},
317         {0xc8, 0xf0},
318         {0x79, 0x0f},
319         {0xc8, 0x00},
320         {0x79, 0x10},
321         {0xc8, 0x7e},
322         {0x79, 0x0a},
323         {0xc8, 0x80},
324         {0x79, 0x0b},
325         {0xc8, 0x01},
326         {0x79, 0x0c},
327         {0xc8, 0x0f},
328         {0x79, 0x0d},
329         {0xc8, 0x20},
330         {0x79, 0x09},
331         {0xc8, 0x80},
332         {0x79, 0x02},
333         {0xc8, 0xc0},
334         {0x79, 0x03},
335         {0xc8, 0x20},
336         {0x79, 0x26},
337 };
338 static const u8 bridge_start_vga_767x[][2] = {
339 /* str59 JPG */
340         {0x94, 0xaa},
341         {0xf1, 0x42},
342         {0xe5, 0x04},
343         {0xc0, 0x50},
344         {0xc1, 0x3c},
345         {0xc2, 0x0c},
346         {0x35, 0x02},   /* turn on JPEG */
347         {0xd9, 0x10},
348         {0xda, 0x00},   /* for higher clock rate(30fps) */
349         {0x34, 0x05},   /* enable Audio Suspend mode */
350         {0xc3, 0xf9},   /* enable PRE */
351         {0x8c, 0x00},   /* CIF VSize LSB[2:0] */
352         {0x8d, 0x1c},   /* output YUV */
353 /*      {0x34, 0x05},    * enable Audio Suspend mode (?) */
354         {0x50, 0x00},   /* H/V divider=0 */
355         {0x51, 0xa0},   /* input H=640/4 */
356         {0x52, 0x3c},   /* input V=480/4 */
357         {0x53, 0x00},   /* offset X=0 */
358         {0x54, 0x00},   /* offset Y=0 */
359         {0x55, 0x00},   /* H/V size[8]=0 */
360         {0x57, 0x00},   /* H-size[9]=0 */
361         {0x5c, 0x00},   /* output size[9:8]=0 */
362         {0x5a, 0xa0},   /* output H=640/4 */
363         {0x5b, 0x78},   /* output V=480/4 */
364         {0x1c, 0x0a},
365         {0x1d, 0x0a},
366         {0x94, 0x11},
367 };
368 static const u8 sensor_start_vga_767x[][2] = {
369         {0x11, 0x01},
370         {0x1e, 0x04},
371         {0x19, 0x02},
372         {0x1a, 0x7a},
373 };
374 static const u8 bridge_start_qvga_767x[][2] = {
375 /* str86 JPG */
376         {0x94, 0xaa},
377         {0xf1, 0x42},
378         {0xe5, 0x04},
379         {0xc0, 0x80},
380         {0xc1, 0x60},
381         {0xc2, 0x0c},
382         {0x35, 0x02},   /* turn on JPEG */
383         {0xd9, 0x10},
384         {0xc0, 0x50},   /* CIF HSize 640 */
385         {0xc1, 0x3c},   /* CIF VSize 480 */
386         {0x8c, 0x00},   /* CIF VSize LSB[2:0] */
387         {0x8d, 0x1c},   /* output YUV */
388         {0x34, 0x05},   /* enable Audio Suspend mode */
389         {0xc2, 0x4c},   /* output YUV and Enable DCW */
390         {0xc3, 0xf9},   /* enable PRE */
391         {0x1c, 0x00},   /* indirect addressing */
392         {0x1d, 0x48},   /* output YUV422 */
393         {0x50, 0x89},   /* H/V divider=/2; plus DCW AVG */
394         {0x51, 0xa0},   /* DCW input H=640/4 */
395         {0x52, 0x78},   /* DCW input V=480/4 */
396         {0x53, 0x00},   /* offset X=0 */
397         {0x54, 0x00},   /* offset Y=0 */
398         {0x55, 0x00},   /* H/V size[8]=0 */
399         {0x57, 0x00},   /* H-size[9]=0 */
400         {0x5c, 0x00},   /* DCW output size[9:8]=0 */
401         {0x5a, 0x50},   /* DCW output H=320/4 */
402         {0x5b, 0x3c},   /* DCW output V=240/4 */
403         {0x1c, 0x0a},
404         {0x1d, 0x0a},
405         {0x94, 0x11},
406 };
407 static const u8 sensor_start_qvga_767x[][2] = {
408         {0x11, 0x01},
409         {0x1e, 0x04},
410         {0x19, 0x02},
411         {0x1a, 0x7a},
412 };
413 
414 static const u8 bridge_init_772x[][2] = {
415         { 0xc2, 0x0c },
416         { 0x88, 0xf8 },
417         { 0xc3, 0x69 },
418         { 0x89, 0xff },
419         { 0x76, 0x03 },
420         { 0x92, 0x01 },
421         { 0x93, 0x18 },
422         { 0x94, 0x10 },
423         { 0x95, 0x10 },
424         { 0xe2, 0x00 },
425         { 0xe7, 0x3e },
426 
427         { 0x96, 0x00 },
428 
429         { 0x97, 0x20 },
430         { 0x97, 0x20 },
431         { 0x97, 0x20 },
432         { 0x97, 0x0a },
433         { 0x97, 0x3f },
434         { 0x97, 0x4a },
435         { 0x97, 0x20 },
436         { 0x97, 0x15 },
437         { 0x97, 0x0b },
438 
439         { 0x8e, 0x40 },
440         { 0x1f, 0x81 },
441         { 0x34, 0x05 },
442         { 0xe3, 0x04 },
443         { 0x88, 0x00 },
444         { 0x89, 0x00 },
445         { 0x76, 0x00 },
446         { 0xe7, 0x2e },
447         { 0x31, 0xf9 },
448         { 0x25, 0x42 },
449         { 0x21, 0xf0 },
450 
451         { 0x1c, 0x00 },
452         { 0x1d, 0x40 },
453         { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
454         { 0x1d, 0x00 }, /* payload size */
455 
456         { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
457         { 0x1d, 0x58 }, /* frame size */
458         { 0x1d, 0x00 }, /* frame size */
459 
460         { 0x1c, 0x0a },
461         { 0x1d, 0x08 }, /* turn on UVC header */
462         { 0x1d, 0x0e }, /* .. */
463 
464         { 0x8d, 0x1c },
465         { 0x8e, 0x80 },
466         { 0xe5, 0x04 },
467 
468         { 0xc0, 0x50 },
469         { 0xc1, 0x3c },
470         { 0xc2, 0x0c },
471 };
472 static const u8 sensor_init_772x[][2] = {
473         { 0x12, 0x80 },
474         { 0x11, 0x01 },
475 /*fixme: better have a delay?*/
476         { 0x11, 0x01 },
477         { 0x11, 0x01 },
478         { 0x11, 0x01 },
479         { 0x11, 0x01 },
480         { 0x11, 0x01 },
481         { 0x11, 0x01 },
482         { 0x11, 0x01 },
483         { 0x11, 0x01 },
484         { 0x11, 0x01 },
485         { 0x11, 0x01 },
486 
487         { 0x3d, 0x03 },
488         { 0x17, 0x26 },
489         { 0x18, 0xa0 },
490         { 0x19, 0x07 },
491         { 0x1a, 0xf0 },
492         { 0x32, 0x00 },
493         { 0x29, 0xa0 },
494         { 0x2c, 0xf0 },
495         { 0x65, 0x20 },
496         { 0x11, 0x01 },
497         { 0x42, 0x7f },
498         { 0x63, 0xaa },         /* AWB - was e0 */
499         { 0x64, 0xff },
500         { 0x66, 0x00 },
501         { 0x13, 0xf0 },         /* com8 */
502         { 0x0d, 0x41 },
503         { 0x0f, 0xc5 },
504         { 0x14, 0x11 },
505 
506         { 0x22, 0x7f },
507         { 0x23, 0x03 },
508         { 0x24, 0x40 },
509         { 0x25, 0x30 },
510         { 0x26, 0xa1 },
511         { 0x2a, 0x00 },
512         { 0x2b, 0x00 },
513         { 0x6b, 0xaa },
514         { 0x13, 0xff },         /* AWB */
515 
516         { 0x90, 0x05 },
517         { 0x91, 0x01 },
518         { 0x92, 0x03 },
519         { 0x93, 0x00 },
520         { 0x94, 0x60 },
521         { 0x95, 0x3c },
522         { 0x96, 0x24 },
523         { 0x97, 0x1e },
524         { 0x98, 0x62 },
525         { 0x99, 0x80 },
526         { 0x9a, 0x1e },
527         { 0x9b, 0x08 },
528         { 0x9c, 0x20 },
529         { 0x9e, 0x81 },
530 
531         { 0xa6, 0x07 },
532         { 0x7e, 0x0c },
533         { 0x7f, 0x16 },
534         { 0x80, 0x2a },
535         { 0x81, 0x4e },
536         { 0x82, 0x61 },
537         { 0x83, 0x6f },
538         { 0x84, 0x7b },
539         { 0x85, 0x86 },
540         { 0x86, 0x8e },
541         { 0x87, 0x97 },
542         { 0x88, 0xa4 },
543         { 0x89, 0xaf },
544         { 0x8a, 0xc5 },
545         { 0x8b, 0xd7 },
546         { 0x8c, 0xe8 },
547         { 0x8d, 0x20 },
548 
549         { 0x0c, 0x90 },
550 
551         { 0x2b, 0x00 },
552         { 0x22, 0x7f },
553         { 0x23, 0x03 },
554         { 0x11, 0x01 },
555         { 0x0c, 0xd0 },
556         { 0x64, 0xff },
557         { 0x0d, 0x41 },
558 
559         { 0x14, 0x41 },
560         { 0x0e, 0xcd },
561         { 0xac, 0xbf },
562         { 0x8e, 0x00 },         /* De-noise threshold */
563         { 0x0c, 0xd0 }
564 };
565 static const u8 bridge_start_vga_772x[][2] = {
566         {0x1c, 0x00},
567         {0x1d, 0x40},
568         {0x1d, 0x02},
569         {0x1d, 0x00},
570         {0x1d, 0x02},
571         {0x1d, 0x58},
572         {0x1d, 0x00},
573         {0xc0, 0x50},
574         {0xc1, 0x3c},
575 };
576 static const u8 sensor_start_vga_772x[][2] = {
577         {0x12, 0x00},
578         {0x17, 0x26},
579         {0x18, 0xa0},
580         {0x19, 0x07},
581         {0x1a, 0xf0},
582         {0x29, 0xa0},
583         {0x2c, 0xf0},
584         {0x65, 0x20},
585 };
586 static const u8 bridge_start_qvga_772x[][2] = {
587         {0x1c, 0x00},
588         {0x1d, 0x40},
589         {0x1d, 0x02},
590         {0x1d, 0x00},
591         {0x1d, 0x01},
592         {0x1d, 0x4b},
593         {0x1d, 0x00},
594         {0xc0, 0x28},
595         {0xc1, 0x1e},
596 };
597 static const u8 sensor_start_qvga_772x[][2] = {
598         {0x12, 0x40},
599         {0x17, 0x3f},
600         {0x18, 0x50},
601         {0x19, 0x03},
602         {0x1a, 0x78},
603         {0x29, 0x50},
604         {0x2c, 0x78},
605         {0x65, 0x2f},
606 };
607 
608 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
609 {
610         struct usb_device *udev = gspca_dev->dev;
611         int ret;
612 
613         if (gspca_dev->usb_err < 0)
614                 return;
615 
616         PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
617         gspca_dev->usb_buf[0] = val;
618         ret = usb_control_msg(udev,
619                               usb_sndctrlpipe(udev, 0),
620                               0x01,
621                               USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
622                               0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
623         if (ret < 0) {
624                 pr_err("write failed %d\n", ret);
625                 gspca_dev->usb_err = ret;
626         }
627 }
628 
629 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
630 {
631         struct usb_device *udev = gspca_dev->dev;
632         int ret;
633 
634         if (gspca_dev->usb_err < 0)
635                 return 0;
636         ret = usb_control_msg(udev,
637                               usb_rcvctrlpipe(udev, 0),
638                               0x01,
639                               USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
640                               0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
641         PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
642         if (ret < 0) {
643                 pr_err("read failed %d\n", ret);
644                 gspca_dev->usb_err = ret;
645         }
646         return gspca_dev->usb_buf[0];
647 }
648 
649 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
650  * (direction and output)? */
651 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
652 {
653         u8 data;
654 
655         PDEBUG(D_CONF, "led status: %d", status);
656 
657         data = ov534_reg_read(gspca_dev, 0x21);
658         data |= 0x80;
659         ov534_reg_write(gspca_dev, 0x21, data);
660 
661         data = ov534_reg_read(gspca_dev, 0x23);
662         if (status)
663                 data |= 0x80;
664         else
665                 data &= ~0x80;
666 
667         ov534_reg_write(gspca_dev, 0x23, data);
668 
669         if (!status) {
670                 data = ov534_reg_read(gspca_dev, 0x21);
671                 data &= ~0x80;
672                 ov534_reg_write(gspca_dev, 0x21, data);
673         }
674 }
675 
676 static int sccb_check_status(struct gspca_dev *gspca_dev)
677 {
678         u8 data;
679         int i;
680 
681         for (i = 0; i < 5; i++) {
682                 msleep(10);
683                 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
684 
685                 switch (data) {
686                 case 0x00:
687                         return 1;
688                 case 0x04:
689                         return 0;
690                 case 0x03:
691                         break;
692                 default:
693                         PERR("sccb status 0x%02x, attempt %d/5",
694                                data, i + 1);
695                 }
696         }
697         return 0;
698 }
699 
700 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
701 {
702         PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
703         ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
704         ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
705         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
706 
707         if (!sccb_check_status(gspca_dev)) {
708                 pr_err("sccb_reg_write failed\n");
709                 gspca_dev->usb_err = -EIO;
710         }
711 }
712 
713 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
714 {
715         ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
716         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
717         if (!sccb_check_status(gspca_dev))
718                 pr_err("sccb_reg_read failed 1\n");
719 
720         ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
721         if (!sccb_check_status(gspca_dev))
722                 pr_err("sccb_reg_read failed 2\n");
723 
724         return ov534_reg_read(gspca_dev, OV534_REG_READ);
725 }
726 
727 /* output a bridge sequence (reg - val) */
728 static void reg_w_array(struct gspca_dev *gspca_dev,
729                         const u8 (*data)[2], int len)
730 {
731         while (--len >= 0) {
732                 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
733                 data++;
734         }
735 }
736 
737 /* output a sensor sequence (reg - val) */
738 static void sccb_w_array(struct gspca_dev *gspca_dev,
739                         const u8 (*data)[2], int len)
740 {
741         while (--len >= 0) {
742                 if ((*data)[0] != 0xff) {
743                         sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
744                 } else {
745                         sccb_reg_read(gspca_dev, (*data)[1]);
746                         sccb_reg_write(gspca_dev, 0xff, 0x00);
747                 }
748                 data++;
749         }
750 }
751 
752 /* ov772x specific controls */
753 static void set_frame_rate(struct gspca_dev *gspca_dev)
754 {
755         struct sd *sd = (struct sd *) gspca_dev;
756         int i;
757         struct rate_s {
758                 u8 fps;
759                 u8 r11;
760                 u8 r0d;
761                 u8 re5;
762         };
763         const struct rate_s *r;
764         static const struct rate_s rate_0[] = { /* 640x480 */
765                 {60, 0x01, 0xc1, 0x04},
766                 {50, 0x01, 0x41, 0x02},
767                 {40, 0x02, 0xc1, 0x04},
768                 {30, 0x04, 0x81, 0x02},
769                 {15, 0x03, 0x41, 0x04},
770         };
771         static const struct rate_s rate_1[] = { /* 320x240 */
772                 {125, 0x02, 0x81, 0x02},
773                 {100, 0x02, 0xc1, 0x04},
774                 {75, 0x03, 0xc1, 0x04},
775                 {60, 0x04, 0xc1, 0x04},
776                 {50, 0x02, 0x41, 0x04},
777                 {40, 0x03, 0x41, 0x04},
778                 {30, 0x04, 0x41, 0x04},
779         };
780 
781         if (sd->sensor != SENSOR_OV772x)
782                 return;
783         if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
784                 r = rate_0;
785                 i = ARRAY_SIZE(rate_0);
786         } else {
787                 r = rate_1;
788                 i = ARRAY_SIZE(rate_1);
789         }
790         while (--i > 0) {
791                 if (sd->frame_rate >= r->fps)
792                         break;
793                 r++;
794         }
795 
796         sccb_reg_write(gspca_dev, 0x11, r->r11);
797         sccb_reg_write(gspca_dev, 0x0d, r->r0d);
798         ov534_reg_write(gspca_dev, 0xe5, r->re5);
799 
800         PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
801 }
802 
803 static void sethue(struct gspca_dev *gspca_dev, s32 val)
804 {
805         struct sd *sd = (struct sd *) gspca_dev;
806 
807         if (sd->sensor == SENSOR_OV767x) {
808                 /* TBD */
809         } else {
810                 s16 huesin;
811                 s16 huecos;
812 
813                 /* fixp_sin and fixp_cos accept only positive values, while
814                  * our val is between -90 and 90
815                  */
816                 val += 360;
817 
818                 /* According to the datasheet the registers expect HUESIN and
819                  * HUECOS to be the result of the trigonometric functions,
820                  * scaled by 0x80.
821                  *
822                  * The 0x100 here represents the maximun absolute value
823                  * returned byt fixp_sin and fixp_cos, so the scaling will
824                  * consider the result like in the interval [-1.0, 1.0].
825                  */
826                 huesin = fixp_sin(val) * 0x80 / 0x100;
827                 huecos = fixp_cos(val) * 0x80 / 0x100;
828 
829                 if (huesin < 0) {
830                         sccb_reg_write(gspca_dev, 0xab,
831                                 sccb_reg_read(gspca_dev, 0xab) | 0x2);
832                         huesin = -huesin;
833                 } else {
834                         sccb_reg_write(gspca_dev, 0xab,
835                                 sccb_reg_read(gspca_dev, 0xab) & ~0x2);
836 
837                 }
838                 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
839                 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
840         }
841 }
842 
843 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
844 {
845         struct sd *sd = (struct sd *) gspca_dev;
846 
847         if (sd->sensor == SENSOR_OV767x) {
848                 int i;
849                 static u8 color_tb[][6] = {
850                         {0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
851                         {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
852                         {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
853                         {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
854                         {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
855                         {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
856                         {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
857                 };
858 
859                 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
860                         sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
861         } else {
862                 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
863                 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
864         }
865 }
866 
867 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
868 {
869         struct sd *sd = (struct sd *) gspca_dev;
870 
871         if (sd->sensor == SENSOR_OV767x) {
872                 if (val < 0)
873                         val = 0x80 - val;
874                 sccb_reg_write(gspca_dev, 0x55, val);   /* bright */
875         } else {
876                 sccb_reg_write(gspca_dev, 0x9b, val);
877         }
878 }
879 
880 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
881 {
882         struct sd *sd = (struct sd *) gspca_dev;
883 
884         if (sd->sensor == SENSOR_OV767x)
885                 sccb_reg_write(gspca_dev, 0x56, val);   /* contras */
886         else
887                 sccb_reg_write(gspca_dev, 0x9c, val);
888 }
889 
890 static void setgain(struct gspca_dev *gspca_dev, s32 val)
891 {
892         switch (val & 0x30) {
893         case 0x00:
894                 val &= 0x0f;
895                 break;
896         case 0x10:
897                 val &= 0x0f;
898                 val |= 0x30;
899                 break;
900         case 0x20:
901                 val &= 0x0f;
902                 val |= 0x70;
903                 break;
904         default:
905 /*      case 0x30: */
906                 val &= 0x0f;
907                 val |= 0xf0;
908                 break;
909         }
910         sccb_reg_write(gspca_dev, 0x00, val);
911 }
912 
913 static s32 getgain(struct gspca_dev *gspca_dev)
914 {
915         return sccb_reg_read(gspca_dev, 0x00);
916 }
917 
918 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
919 {
920         struct sd *sd = (struct sd *) gspca_dev;
921 
922         if (sd->sensor == SENSOR_OV767x) {
923 
924                 /* set only aec[9:2] */
925                 sccb_reg_write(gspca_dev, 0x10, val);   /* aech */
926         } else {
927 
928                 /* 'val' is one byte and represents half of the exposure value
929                  * we are going to set into registers, a two bytes value:
930                  *
931                  *    MSB: ((u16) val << 1) >> 8   == val >> 7
932                  *    LSB: ((u16) val << 1) & 0xff == val << 1
933                  */
934                 sccb_reg_write(gspca_dev, 0x08, val >> 7);
935                 sccb_reg_write(gspca_dev, 0x10, val << 1);
936         }
937 }
938 
939 static s32 getexposure(struct gspca_dev *gspca_dev)
940 {
941         struct sd *sd = (struct sd *) gspca_dev;
942 
943         if (sd->sensor == SENSOR_OV767x) {
944                 /* get only aec[9:2] */
945                 return sccb_reg_read(gspca_dev, 0x10);  /* aech */
946         } else {
947                 u8 hi = sccb_reg_read(gspca_dev, 0x08);
948                 u8 lo = sccb_reg_read(gspca_dev, 0x10);
949                 return (hi << 8 | lo) >> 1;
950         }
951 }
952 
953 static void setagc(struct gspca_dev *gspca_dev, s32 val)
954 {
955         if (val) {
956                 sccb_reg_write(gspca_dev, 0x13,
957                                 sccb_reg_read(gspca_dev, 0x13) | 0x04);
958                 sccb_reg_write(gspca_dev, 0x64,
959                                 sccb_reg_read(gspca_dev, 0x64) | 0x03);
960         } else {
961                 sccb_reg_write(gspca_dev, 0x13,
962                                 sccb_reg_read(gspca_dev, 0x13) & ~0x04);
963                 sccb_reg_write(gspca_dev, 0x64,
964                                 sccb_reg_read(gspca_dev, 0x64) & ~0x03);
965         }
966 }
967 
968 static void setawb(struct gspca_dev *gspca_dev, s32 val)
969 {
970         struct sd *sd = (struct sd *) gspca_dev;
971 
972         if (val) {
973                 sccb_reg_write(gspca_dev, 0x13,
974                                 sccb_reg_read(gspca_dev, 0x13) | 0x02);
975                 if (sd->sensor == SENSOR_OV772x)
976                         sccb_reg_write(gspca_dev, 0x63,
977                                 sccb_reg_read(gspca_dev, 0x63) | 0xc0);
978         } else {
979                 sccb_reg_write(gspca_dev, 0x13,
980                                 sccb_reg_read(gspca_dev, 0x13) & ~0x02);
981                 if (sd->sensor == SENSOR_OV772x)
982                         sccb_reg_write(gspca_dev, 0x63,
983                                 sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
984         }
985 }
986 
987 static void setaec(struct gspca_dev *gspca_dev, s32 val)
988 {
989         struct sd *sd = (struct sd *) gspca_dev;
990         u8 data;
991 
992         data = sd->sensor == SENSOR_OV767x ?
993                         0x05 :          /* agc + aec */
994                         0x01;           /* agc */
995         switch (val) {
996         case V4L2_EXPOSURE_AUTO:
997                 sccb_reg_write(gspca_dev, 0x13,
998                                 sccb_reg_read(gspca_dev, 0x13) | data);
999                 break;
1000         case V4L2_EXPOSURE_MANUAL:
1001                 sccb_reg_write(gspca_dev, 0x13,
1002                                 sccb_reg_read(gspca_dev, 0x13) & ~data);
1003                 break;
1004         }
1005 }
1006 
1007 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1008 {
1009         sccb_reg_write(gspca_dev, 0x91, val);   /* Auto de-noise threshold */
1010         sccb_reg_write(gspca_dev, 0x8e, val);   /* De-noise threshold */
1011 }
1012 
1013 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1014 {
1015         struct sd *sd = (struct sd *) gspca_dev;
1016         u8 val;
1017 
1018         if (sd->sensor == SENSOR_OV767x) {
1019                 val = sccb_reg_read(gspca_dev, 0x1e);   /* mvfp */
1020                 val &= ~0x30;
1021                 if (hflip)
1022                         val |= 0x20;
1023                 if (vflip)
1024                         val |= 0x10;
1025                 sccb_reg_write(gspca_dev, 0x1e, val);
1026         } else {
1027                 val = sccb_reg_read(gspca_dev, 0x0c);
1028                 val &= ~0xc0;
1029                 if (hflip == 0)
1030                         val |= 0x40;
1031                 if (vflip == 0)
1032                         val |= 0x80;
1033                 sccb_reg_write(gspca_dev, 0x0c, val);
1034         }
1035 }
1036 
1037 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1038 {
1039         struct sd *sd = (struct sd *) gspca_dev;
1040 
1041         val = val ? 0x9e : 0x00;
1042         if (sd->sensor == SENSOR_OV767x) {
1043                 sccb_reg_write(gspca_dev, 0x2a, 0x00);
1044                 if (val)
1045                         val = 0x9d;     /* insert dummy to 25fps for 50Hz */
1046         }
1047         sccb_reg_write(gspca_dev, 0x2b, val);
1048 }
1049 
1050 
1051 /* this function is called at probe time */
1052 static int sd_config(struct gspca_dev *gspca_dev,
1053                      const struct usb_device_id *id)
1054 {
1055         struct sd *sd = (struct sd *) gspca_dev;
1056         struct cam *cam;
1057 
1058         cam = &gspca_dev->cam;
1059 
1060         cam->cam_mode = ov772x_mode;
1061         cam->nmodes = ARRAY_SIZE(ov772x_mode);
1062 
1063         sd->frame_rate = 30;
1064 
1065         return 0;
1066 }
1067 
1068 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1069 {
1070         struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1071         struct gspca_dev *gspca_dev = &sd->gspca_dev;
1072 
1073         switch (ctrl->id) {
1074         case V4L2_CID_AUTOGAIN:
1075                 gspca_dev->usb_err = 0;
1076                 if (ctrl->val && sd->gain && gspca_dev->streaming)
1077                         sd->gain->val = getgain(gspca_dev);
1078                 return gspca_dev->usb_err;
1079 
1080         case V4L2_CID_EXPOSURE_AUTO:
1081                 gspca_dev->usb_err = 0;
1082                 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1083                     gspca_dev->streaming)
1084                         sd->exposure->val = getexposure(gspca_dev);
1085                 return gspca_dev->usb_err;
1086         }
1087         return -EINVAL;
1088 }
1089 
1090 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1091 {
1092         struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1093         struct gspca_dev *gspca_dev = &sd->gspca_dev;
1094 
1095         gspca_dev->usb_err = 0;
1096         if (!gspca_dev->streaming)
1097                 return 0;
1098 
1099         switch (ctrl->id) {
1100         case V4L2_CID_HUE:
1101                 sethue(gspca_dev, ctrl->val);
1102                 break;
1103         case V4L2_CID_SATURATION:
1104                 setsaturation(gspca_dev, ctrl->val);
1105                 break;
1106         case V4L2_CID_BRIGHTNESS:
1107                 setbrightness(gspca_dev, ctrl->val);
1108                 break;
1109         case V4L2_CID_CONTRAST:
1110                 setcontrast(gspca_dev, ctrl->val);
1111                 break;
1112         case V4L2_CID_AUTOGAIN:
1113         /* case V4L2_CID_GAIN: */
1114                 setagc(gspca_dev, ctrl->val);
1115                 if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1116                         setgain(gspca_dev, sd->gain->val);
1117                 break;
1118         case V4L2_CID_AUTO_WHITE_BALANCE:
1119                 setawb(gspca_dev, ctrl->val);
1120                 break;
1121         case V4L2_CID_EXPOSURE_AUTO:
1122         /* case V4L2_CID_EXPOSURE: */
1123                 setaec(gspca_dev, ctrl->val);
1124                 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1125                     sd->exposure)
1126                         setexposure(gspca_dev, sd->exposure->val);
1127                 break;
1128         case V4L2_CID_SHARPNESS:
1129                 setsharpness(gspca_dev, ctrl->val);
1130                 break;
1131         case V4L2_CID_HFLIP:
1132                 sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1133                 break;
1134         case V4L2_CID_VFLIP:
1135                 sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1136                 break;
1137         case V4L2_CID_POWER_LINE_FREQUENCY:
1138                 setlightfreq(gspca_dev, ctrl->val);
1139                 break;
1140         }
1141         return gspca_dev->usb_err;
1142 }
1143 
1144 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1145         .g_volatile_ctrl = ov534_g_volatile_ctrl,
1146         .s_ctrl = ov534_s_ctrl,
1147 };
1148 
1149 static int sd_init_controls(struct gspca_dev *gspca_dev)
1150 {
1151         struct sd *sd = (struct sd *) gspca_dev;
1152         struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1153         /* parameters with different values between the supported sensors */
1154         int saturation_min;
1155         int saturation_max;
1156         int saturation_def;
1157         int brightness_min;
1158         int brightness_max;
1159         int brightness_def;
1160         int contrast_max;
1161         int contrast_def;
1162         int exposure_min;
1163         int exposure_max;
1164         int exposure_def;
1165         int hflip_def;
1166 
1167         if (sd->sensor == SENSOR_OV767x) {
1168                 saturation_min = 0,
1169                 saturation_max = 6,
1170                 saturation_def = 3,
1171                 brightness_min = -127;
1172                 brightness_max = 127;
1173                 brightness_def = 0;
1174                 contrast_max = 0x80;
1175                 contrast_def = 0x40;
1176                 exposure_min = 0x08;
1177                 exposure_max = 0x60;
1178                 exposure_def = 0x13;
1179                 hflip_def = 1;
1180         } else {
1181                 saturation_min = 0,
1182                 saturation_max = 255,
1183                 saturation_def = 64,
1184                 brightness_min = 0;
1185                 brightness_max = 255;
1186                 brightness_def = 0;
1187                 contrast_max = 255;
1188                 contrast_def = 32;
1189                 exposure_min = 0;
1190                 exposure_max = 255;
1191                 exposure_def = 120;
1192                 hflip_def = 0;
1193         }
1194 
1195         gspca_dev->vdev.ctrl_handler = hdl;
1196 
1197         v4l2_ctrl_handler_init(hdl, 13);
1198 
1199         if (sd->sensor == SENSOR_OV772x)
1200                 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1201                                 V4L2_CID_HUE, -90, 90, 1, 0);
1202 
1203         sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1204                         V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1205                         saturation_def);
1206         sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1207                         V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1208                         brightness_def);
1209         sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1210                         V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1211 
1212         if (sd->sensor == SENSOR_OV772x) {
1213                 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1214                                 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1215                 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1216                                 V4L2_CID_GAIN, 0, 63, 1, 20);
1217         }
1218 
1219         sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1220                         V4L2_CID_EXPOSURE_AUTO,
1221                         V4L2_EXPOSURE_MANUAL, 0,
1222                         V4L2_EXPOSURE_AUTO);
1223         sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1224                         V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1225                         exposure_def);
1226 
1227         sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1228                         V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1229 
1230         if (sd->sensor == SENSOR_OV772x)
1231                 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1232                                 V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1233 
1234         sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1235                         V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1236         sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1237                         V4L2_CID_VFLIP, 0, 1, 1, 0);
1238         sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1239                         V4L2_CID_POWER_LINE_FREQUENCY,
1240                         V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1241                         V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1242 
1243         if (hdl->error) {
1244                 pr_err("Could not initialize controls\n");
1245                 return hdl->error;
1246         }
1247 
1248         if (sd->sensor == SENSOR_OV772x)
1249                 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1250 
1251         v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1252                                true);
1253 
1254         return 0;
1255 }
1256 
1257 /* this function is called at probe and resume time */
1258 static int sd_init(struct gspca_dev *gspca_dev)
1259 {
1260         struct sd *sd = (struct sd *) gspca_dev;
1261         u16 sensor_id;
1262         static const struct reg_array bridge_init[NSENSORS] = {
1263         [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1264         [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1265         };
1266         static const struct reg_array sensor_init[NSENSORS] = {
1267         [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1268         [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1269         };
1270 
1271         /* reset bridge */
1272         ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1273         ov534_reg_write(gspca_dev, 0xe0, 0x08);
1274         msleep(100);
1275 
1276         /* initialize the sensor address */
1277         ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1278 
1279         /* reset sensor */
1280         sccb_reg_write(gspca_dev, 0x12, 0x80);
1281         msleep(10);
1282 
1283         /* probe the sensor */
1284         sccb_reg_read(gspca_dev, 0x0a);
1285         sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1286         sccb_reg_read(gspca_dev, 0x0b);
1287         sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1288         PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1289 
1290         if ((sensor_id & 0xfff0) == 0x7670) {
1291                 sd->sensor = SENSOR_OV767x;
1292                 gspca_dev->cam.cam_mode = ov767x_mode;
1293                 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1294         } else {
1295                 sd->sensor = SENSOR_OV772x;
1296                 gspca_dev->cam.bulk = 1;
1297                 gspca_dev->cam.bulk_size = 16384;
1298                 gspca_dev->cam.bulk_nurbs = 2;
1299                 gspca_dev->cam.mode_framerates = ov772x_framerates;
1300         }
1301 
1302         /* initialize */
1303         reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1304                         bridge_init[sd->sensor].len);
1305         ov534_set_led(gspca_dev, 1);
1306         sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1307                         sensor_init[sd->sensor].len);
1308 
1309         sd_stopN(gspca_dev);
1310 /*      set_frame_rate(gspca_dev);      */
1311 
1312         return gspca_dev->usb_err;
1313 }
1314 
1315 static int sd_start(struct gspca_dev *gspca_dev)
1316 {
1317         struct sd *sd = (struct sd *) gspca_dev;
1318         int mode;
1319         static const struct reg_array bridge_start[NSENSORS][2] = {
1320         [SENSOR_OV767x] = {{bridge_start_qvga_767x,
1321                                         ARRAY_SIZE(bridge_start_qvga_767x)},
1322                         {bridge_start_vga_767x,
1323                                         ARRAY_SIZE(bridge_start_vga_767x)}},
1324         [SENSOR_OV772x] = {{bridge_start_qvga_772x,
1325                                         ARRAY_SIZE(bridge_start_qvga_772x)},
1326                         {bridge_start_vga_772x,
1327                                         ARRAY_SIZE(bridge_start_vga_772x)}},
1328         };
1329         static const struct reg_array sensor_start[NSENSORS][2] = {
1330         [SENSOR_OV767x] = {{sensor_start_qvga_767x,
1331                                         ARRAY_SIZE(sensor_start_qvga_767x)},
1332                         {sensor_start_vga_767x,
1333                                         ARRAY_SIZE(sensor_start_vga_767x)}},
1334         [SENSOR_OV772x] = {{sensor_start_qvga_772x,
1335                                         ARRAY_SIZE(sensor_start_qvga_772x)},
1336                         {sensor_start_vga_772x,
1337                                         ARRAY_SIZE(sensor_start_vga_772x)}},
1338         };
1339 
1340         /* (from ms-win trace) */
1341         if (sd->sensor == SENSOR_OV767x)
1342                 sccb_reg_write(gspca_dev, 0x1e, 0x04);
1343                                         /* black sun enable ? */
1344 
1345         mode = gspca_dev->curr_mode;    /* 0: 320x240, 1: 640x480 */
1346         reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1347                                 bridge_start[sd->sensor][mode].len);
1348         sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1349                                 sensor_start[sd->sensor][mode].len);
1350 
1351         set_frame_rate(gspca_dev);
1352 
1353         if (sd->hue)
1354                 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1355         setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1356         if (sd->autogain)
1357                 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1358         setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1359         setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1360         if (sd->gain)
1361                 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1362         setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1363         setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1364         setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1365         if (sd->sharpness)
1366                 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1367         sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1368                   v4l2_ctrl_g_ctrl(sd->vflip));
1369         setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1370 
1371         ov534_set_led(gspca_dev, 1);
1372         ov534_reg_write(gspca_dev, 0xe0, 0x00);
1373         return gspca_dev->usb_err;
1374 }
1375 
1376 static void sd_stopN(struct gspca_dev *gspca_dev)
1377 {
1378         ov534_reg_write(gspca_dev, 0xe0, 0x09);
1379         ov534_set_led(gspca_dev, 0);
1380 }
1381 
1382 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1383 #define UVC_STREAM_EOH  (1 << 7)
1384 #define UVC_STREAM_ERR  (1 << 6)
1385 #define UVC_STREAM_STI  (1 << 5)
1386 #define UVC_STREAM_RES  (1 << 4)
1387 #define UVC_STREAM_SCR  (1 << 3)
1388 #define UVC_STREAM_PTS  (1 << 2)
1389 #define UVC_STREAM_EOF  (1 << 1)
1390 #define UVC_STREAM_FID  (1 << 0)
1391 
1392 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1393                         u8 *data, int len)
1394 {
1395         struct sd *sd = (struct sd *) gspca_dev;
1396         __u32 this_pts;
1397         u16 this_fid;
1398         int remaining_len = len;
1399         int payload_len;
1400 
1401         payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1402         do {
1403                 len = min(remaining_len, payload_len);
1404 
1405                 /* Payloads are prefixed with a UVC-style header.  We
1406                    consider a frame to start when the FID toggles, or the PTS
1407                    changes.  A frame ends when EOF is set, and we've received
1408                    the correct number of bytes. */
1409 
1410                 /* Verify UVC header.  Header length is always 12 */
1411                 if (data[0] != 12 || len < 12) {
1412                         PDEBUG(D_PACK, "bad header");
1413                         goto discard;
1414                 }
1415 
1416                 /* Check errors */
1417                 if (data[1] & UVC_STREAM_ERR) {
1418                         PDEBUG(D_PACK, "payload error");
1419                         goto discard;
1420                 }
1421 
1422                 /* Extract PTS and FID */
1423                 if (!(data[1] & UVC_STREAM_PTS)) {
1424                         PDEBUG(D_PACK, "PTS not present");
1425                         goto discard;
1426                 }
1427                 this_pts = (data[5] << 24) | (data[4] << 16)
1428                                                 | (data[3] << 8) | data[2];
1429                 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1430 
1431                 /* If PTS or FID has changed, start a new frame. */
1432                 if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1433                         if (gspca_dev->last_packet_type == INTER_PACKET)
1434                                 gspca_frame_add(gspca_dev, LAST_PACKET,
1435                                                 NULL, 0);
1436                         sd->last_pts = this_pts;
1437                         sd->last_fid = this_fid;
1438                         gspca_frame_add(gspca_dev, FIRST_PACKET,
1439                                         data + 12, len - 12);
1440                 /* If this packet is marked as EOF, end the frame */
1441                 } else if (data[1] & UVC_STREAM_EOF) {
1442                         sd->last_pts = 0;
1443                         if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1444                          && gspca_dev->image_len + len - 12 !=
1445                                    gspca_dev->pixfmt.width *
1446                                         gspca_dev->pixfmt.height * 2) {
1447                                 PDEBUG(D_PACK, "wrong sized frame");
1448                                 goto discard;
1449                         }
1450                         gspca_frame_add(gspca_dev, LAST_PACKET,
1451                                         data + 12, len - 12);
1452                 } else {
1453 
1454                         /* Add the data from this payload */
1455                         gspca_frame_add(gspca_dev, INTER_PACKET,
1456                                         data + 12, len - 12);
1457                 }
1458 
1459                 /* Done this payload */
1460                 goto scan_next;
1461 
1462 discard:
1463                 /* Discard data until a new frame starts. */
1464                 gspca_dev->last_packet_type = DISCARD_PACKET;
1465 
1466 scan_next:
1467                 remaining_len -= len;
1468                 data += len;
1469         } while (remaining_len > 0);
1470 }
1471 
1472 /* get stream parameters (framerate) */
1473 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1474                              struct v4l2_streamparm *parm)
1475 {
1476         struct v4l2_captureparm *cp = &parm->parm.capture;
1477         struct v4l2_fract *tpf = &cp->timeperframe;
1478         struct sd *sd = (struct sd *) gspca_dev;
1479 
1480         cp->capability |= V4L2_CAP_TIMEPERFRAME;
1481         tpf->numerator = 1;
1482         tpf->denominator = sd->frame_rate;
1483 }
1484 
1485 /* set stream parameters (framerate) */
1486 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1487                              struct v4l2_streamparm *parm)
1488 {
1489         struct v4l2_captureparm *cp = &parm->parm.capture;
1490         struct v4l2_fract *tpf = &cp->timeperframe;
1491         struct sd *sd = (struct sd *) gspca_dev;
1492 
1493         /* Set requested framerate */
1494         sd->frame_rate = tpf->denominator / tpf->numerator;
1495         if (gspca_dev->streaming)
1496                 set_frame_rate(gspca_dev);
1497 
1498         /* Return the actual framerate */
1499         tpf->numerator = 1;
1500         tpf->denominator = sd->frame_rate;
1501 }
1502 
1503 /* sub-driver description */
1504 static const struct sd_desc sd_desc = {
1505         .name     = MODULE_NAME,
1506         .config   = sd_config,
1507         .init     = sd_init,
1508         .init_controls = sd_init_controls,
1509         .start    = sd_start,
1510         .stopN    = sd_stopN,
1511         .pkt_scan = sd_pkt_scan,
1512         .get_streamparm = sd_get_streamparm,
1513         .set_streamparm = sd_set_streamparm,
1514 };
1515 
1516 /* -- module initialisation -- */
1517 static const struct usb_device_id device_table[] = {
1518         {USB_DEVICE(0x1415, 0x2000)},
1519         {USB_DEVICE(0x06f8, 0x3002)},
1520         {}
1521 };
1522 
1523 MODULE_DEVICE_TABLE(usb, device_table);
1524 
1525 /* -- device connect -- */
1526 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1527 {
1528         return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1529                                 THIS_MODULE);
1530 }
1531 
1532 static struct usb_driver sd_driver = {
1533         .name       = MODULE_NAME,
1534         .id_table   = device_table,
1535         .probe      = sd_probe,
1536         .disconnect = gspca_disconnect,
1537 #ifdef CONFIG_PM
1538         .suspend    = gspca_suspend,
1539         .resume     = gspca_resume,
1540         .reset_resume = gspca_resume,
1541 #endif
1542 };
1543 
1544 module_usb_driver(sd_driver);
1545 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us