Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/macintosh/therm_pm72.c

  1 /*
  2  * Device driver for the thermostats & fan controller of  the
  3  * Apple G5 "PowerMac7,2" desktop machines.
  4  *
  5  * (c) Copyright IBM Corp. 2003-2004
  6  *
  7  * Maintained by: Benjamin Herrenschmidt
  8  *                <benh@kernel.crashing.org>
  9  * 
 10  *
 11  * The algorithm used is the PID control algorithm, used the same
 12  * way the published Darwin code does, using the same values that
 13  * are present in the Darwin 7.0 snapshot property lists.
 14  *
 15  * As far as the CPUs control loops are concerned, I use the
 16  * calibration & PID constants provided by the EEPROM,
 17  * I do _not_ embed any value from the property lists, as the ones
 18  * provided by Darwin 7.0 seem to always have an older version that
 19  * what I've seen on the actual computers.
 20  * It would be interesting to verify that though. Darwin has a
 21  * version code of 1.0.0d11 for all control loops it seems, while
 22  * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
 23  *
 24  * Darwin doesn't provide source to all parts, some missing
 25  * bits like the AppleFCU driver or the actual scale of some
 26  * of the values returned by sensors had to be "guessed" some
 27  * way... or based on what Open Firmware does.
 28  *
 29  * I didn't yet figure out how to get the slots power consumption
 30  * out of the FCU, so that part has not been implemented yet and
 31  * the slots fan is set to a fixed 50% PWM, hoping this value is
 32  * safe enough ...
 33  *
 34  * Note: I have observed strange oscillations of the CPU control
 35  * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
 36  * oscillates slowly (over several minutes) between the minimum
 37  * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
 38  * this, it could be some incorrect constant or an error in the
 39  * way I ported the algorithm, or it could be just normal. I
 40  * don't have full understanding on the way Apple tweaked the PID
 41  * algorithm for the CPU control, it is definitely not a standard
 42  * implementation...
 43  *
 44  * TODO:  - Check MPU structure version/signature
 45  *        - Add things like /sbin/overtemp for non-critical
 46  *          overtemp conditions so userland can take some policy
 47  *          decisions, like slowing down CPUs
 48  *        - Deal with fan and i2c failures in a better way
 49  *        - Maybe do a generic PID based on params used for
 50  *          U3 and Drives ? Definitely need to factor code a bit
 51  *          better... also make sensor detection more robust using
 52  *          the device-tree to probe for them
 53  *        - Figure out how to get the slots consumption and set the
 54  *          slots fan accordingly
 55  *
 56  * History:
 57  *
 58  *  Nov. 13, 2003 : 0.5
 59  *      - First release
 60  *
 61  *  Nov. 14, 2003 : 0.6
 62  *      - Read fan speed from FCU, low level fan routines now deal
 63  *        with errors & check fan status, though higher level don't
 64  *        do much.
 65  *      - Move a bunch of definitions to .h file
 66  *
 67  *  Nov. 18, 2003 : 0.7
 68  *      - Fix build on ppc64 kernel
 69  *      - Move back statics definitions to .c file
 70  *      - Avoid calling schedule_timeout with a negative number
 71  *
 72  *  Dec. 18, 2003 : 0.8
 73  *      - Fix typo when reading back fan speed on 2 CPU machines
 74  *
 75  *  Mar. 11, 2004 : 0.9
 76  *      - Rework code accessing the ADC chips, make it more robust and
 77  *        closer to the chip spec. Also make sure it is configured properly,
 78  *        I've seen yet unexplained cases where on startup, I would have stale
 79  *        values in the configuration register
 80  *      - Switch back to use of target fan speed for PID, thus lowering
 81  *        pressure on i2c
 82  *
 83  *  Oct. 20, 2004 : 1.1
 84  *      - Add device-tree lookup for fan IDs, should detect liquid cooling
 85  *        pumps when present
 86  *      - Enable driver for PowerMac7,3 machines
 87  *      - Split the U3/Backside cooling on U3 & U3H versions as Darwin does
 88  *      - Add new CPU cooling algorithm for machines with liquid cooling
 89  *      - Workaround for some PowerMac7,3 with empty "fan" node in the devtree
 90  *      - Fix a signed/unsigned compare issue in some PID loops
 91  *
 92  *  Mar. 10, 2005 : 1.2
 93  *      - Add basic support for Xserve G5
 94  *      - Retrieve pumps min/max from EEPROM image in device-tree (broken)
 95  *      - Use min/max macros here or there
 96  *      - Latest darwin updated U3H min fan speed to 20% PWM
 97  *
 98  *  July. 06, 2006 : 1.3
 99  *      - Fix setting of RPM fans on Xserve G5 (they were going too fast)
100  *      - Add missing slots fan control loop for Xserve G5
101  *      - Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
102  *        still can't properly implement the control loop for these, so let's
103  *        reduce the noise a little bit, it appears that 40% still gives us
104  *        a pretty good air flow
105  *      - Add code to "tickle" the FCU regulary so it doesn't think that
106  *        we are gone while in fact, the machine just didn't need any fan
107  *        speed change lately
108  *
109  */
110 
111 #include <linux/types.h>
112 #include <linux/module.h>
113 #include <linux/errno.h>
114 #include <linux/kernel.h>
115 #include <linux/delay.h>
116 #include <linux/sched.h>
117 #include <linux/init.h>
118 #include <linux/spinlock.h>
119 #include <linux/wait.h>
120 #include <linux/reboot.h>
121 #include <linux/kmod.h>
122 #include <linux/i2c.h>
123 #include <linux/kthread.h>
124 #include <linux/mutex.h>
125 #include <linux/of_device.h>
126 #include <linux/of_platform.h>
127 #include <asm/prom.h>
128 #include <asm/machdep.h>
129 #include <asm/io.h>
130 #include <asm/sections.h>
131 #include <asm/macio.h>
132 
133 #include "therm_pm72.h"
134 
135 #define VERSION "1.3"
136 
137 #undef DEBUG
138 
139 #ifdef DEBUG
140 #define DBG(args...)    printk(args)
141 #else
142 #define DBG(args...)    do { } while(0)
143 #endif
144 
145 
146 /*
147  * Driver statics
148  */
149 
150 static struct platform_device *         of_dev;
151 static struct i2c_adapter *             u3_0;
152 static struct i2c_adapter *             u3_1;
153 static struct i2c_adapter *             k2;
154 static struct i2c_client *              fcu;
155 static struct cpu_pid_state             processor_state[2];
156 static struct basckside_pid_params      backside_params;
157 static struct backside_pid_state        backside_state;
158 static struct drives_pid_state          drives_state;
159 static struct dimm_pid_state            dimms_state;
160 static struct slots_pid_state           slots_state;
161 static int                              state;
162 static int                              cpu_count;
163 static int                              cpu_pid_type;
164 static struct task_struct               *ctrl_task;
165 static struct completion                ctrl_complete;
166 static int                              critical_state;
167 static int                              rackmac;
168 static s32                              dimm_output_clamp;
169 static int                              fcu_rpm_shift;
170 static int                              fcu_tickle_ticks;
171 static DEFINE_MUTEX(driver_lock);
172 
173 /*
174  * We have 3 types of CPU PID control. One is "split" old style control
175  * for intake & exhaust fans, the other is "combined" control for both
176  * CPUs that also deals with the pumps when present. To be "compatible"
177  * with OS X at this point, we only use "COMBINED" on the machines that
178  * are identified as having the pumps (though that identification is at
179  * least dodgy). Ultimately, we could probably switch completely to this
180  * algorithm provided we hack it to deal with the UP case
181  */
182 #define CPU_PID_TYPE_SPLIT      0
183 #define CPU_PID_TYPE_COMBINED   1
184 #define CPU_PID_TYPE_RACKMAC    2
185 
186 /*
187  * This table describes all fans in the FCU. The "id" and "type" values
188  * are defaults valid for all earlier machines. Newer machines will
189  * eventually override the table content based on the device-tree
190  */
191 struct fcu_fan_table
192 {
193         char*   loc;    /* location code */
194         int     type;   /* 0 = rpm, 1 = pwm, 2 = pump */
195         int     id;     /* id or -1 */
196 };
197 
198 #define FCU_FAN_RPM             0
199 #define FCU_FAN_PWM             1
200 
201 #define FCU_FAN_ABSENT_ID       -1
202 
203 #define FCU_FAN_COUNT           ARRAY_SIZE(fcu_fans)
204 
205 struct fcu_fan_table    fcu_fans[] = {
206         [BACKSIDE_FAN_PWM_INDEX] = {
207                 .loc    = "BACKSIDE,SYS CTRLR FAN",
208                 .type   = FCU_FAN_PWM,
209                 .id     = BACKSIDE_FAN_PWM_DEFAULT_ID,
210         },
211         [DRIVES_FAN_RPM_INDEX] = {
212                 .loc    = "DRIVE BAY",
213                 .type   = FCU_FAN_RPM,
214                 .id     = DRIVES_FAN_RPM_DEFAULT_ID,
215         },
216         [SLOTS_FAN_PWM_INDEX] = {
217                 .loc    = "SLOT,PCI FAN",
218                 .type   = FCU_FAN_PWM,
219                 .id     = SLOTS_FAN_PWM_DEFAULT_ID,
220         },
221         [CPUA_INTAKE_FAN_RPM_INDEX] = {
222                 .loc    = "CPU A INTAKE",
223                 .type   = FCU_FAN_RPM,
224                 .id     = CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
225         },
226         [CPUA_EXHAUST_FAN_RPM_INDEX] = {
227                 .loc    = "CPU A EXHAUST",
228                 .type   = FCU_FAN_RPM,
229                 .id     = CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
230         },
231         [CPUB_INTAKE_FAN_RPM_INDEX] = {
232                 .loc    = "CPU B INTAKE",
233                 .type   = FCU_FAN_RPM,
234                 .id     = CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
235         },
236         [CPUB_EXHAUST_FAN_RPM_INDEX] = {
237                 .loc    = "CPU B EXHAUST",
238                 .type   = FCU_FAN_RPM,
239                 .id     = CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
240         },
241         /* pumps aren't present by default, have to be looked up in the
242          * device-tree
243          */
244         [CPUA_PUMP_RPM_INDEX] = {
245                 .loc    = "CPU A PUMP",
246                 .type   = FCU_FAN_RPM,          
247                 .id     = FCU_FAN_ABSENT_ID,
248         },
249         [CPUB_PUMP_RPM_INDEX] = {
250                 .loc    = "CPU B PUMP",
251                 .type   = FCU_FAN_RPM,
252                 .id     = FCU_FAN_ABSENT_ID,
253         },
254         /* Xserve fans */
255         [CPU_A1_FAN_RPM_INDEX] = {
256                 .loc    = "CPU A 1",
257                 .type   = FCU_FAN_RPM,
258                 .id     = FCU_FAN_ABSENT_ID,
259         },
260         [CPU_A2_FAN_RPM_INDEX] = {
261                 .loc    = "CPU A 2",
262                 .type   = FCU_FAN_RPM,
263                 .id     = FCU_FAN_ABSENT_ID,
264         },
265         [CPU_A3_FAN_RPM_INDEX] = {
266                 .loc    = "CPU A 3",
267                 .type   = FCU_FAN_RPM,
268                 .id     = FCU_FAN_ABSENT_ID,
269         },
270         [CPU_B1_FAN_RPM_INDEX] = {
271                 .loc    = "CPU B 1",
272                 .type   = FCU_FAN_RPM,
273                 .id     = FCU_FAN_ABSENT_ID,
274         },
275         [CPU_B2_FAN_RPM_INDEX] = {
276                 .loc    = "CPU B 2",
277                 .type   = FCU_FAN_RPM,
278                 .id     = FCU_FAN_ABSENT_ID,
279         },
280         [CPU_B3_FAN_RPM_INDEX] = {
281                 .loc    = "CPU B 3",
282                 .type   = FCU_FAN_RPM,
283                 .id     = FCU_FAN_ABSENT_ID,
284         },
285 };
286 
287 static struct i2c_driver therm_pm72_driver;
288 
289 /*
290  * Utility function to create an i2c_client structure and
291  * attach it to one of u3 adapters
292  */
293 static struct i2c_client *attach_i2c_chip(int id, const char *name)
294 {
295         struct i2c_client *clt;
296         struct i2c_adapter *adap;
297         struct i2c_board_info info;
298 
299         if (id & 0x200)
300                 adap = k2;
301         else if (id & 0x100)
302                 adap = u3_1;
303         else
304                 adap = u3_0;
305         if (adap == NULL)
306                 return NULL;
307 
308         memset(&info, 0, sizeof(struct i2c_board_info));
309         info.addr = (id >> 1) & 0x7f;
310         strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
311         clt = i2c_new_device(adap, &info);
312         if (!clt) {
313                 printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
314                 return NULL;
315         }
316 
317         /*
318          * Let i2c-core delete that device on driver removal.
319          * This is safe because i2c-core holds the core_lock mutex for us.
320          */
321         list_add_tail(&clt->detected, &therm_pm72_driver.clients);
322         return clt;
323 }
324 
325 /*
326  * Here are the i2c chip access wrappers
327  */
328 
329 static void initialize_adc(struct cpu_pid_state *state)
330 {
331         int rc;
332         u8 buf[2];
333 
334         /* Read ADC the configuration register and cache it. We
335          * also make sure Config2 contains proper values, I've seen
336          * cases where we got stale grabage in there, thus preventing
337          * proper reading of conv. values
338          */
339 
340         /* Clear Config2 */
341         buf[0] = 5;
342         buf[1] = 0;
343         i2c_master_send(state->monitor, buf, 2);
344 
345         /* Read & cache Config1 */
346         buf[0] = 1;
347         rc = i2c_master_send(state->monitor, buf, 1);
348         if (rc > 0) {
349                 rc = i2c_master_recv(state->monitor, buf, 1);
350                 if (rc > 0) {
351                         state->adc_config = buf[0];
352                         DBG("ADC config reg: %02x\n", state->adc_config);
353                         /* Disable shutdown mode */
354                         state->adc_config &= 0xfe;
355                         buf[0] = 1;
356                         buf[1] = state->adc_config;
357                         rc = i2c_master_send(state->monitor, buf, 2);
358                 }
359         }
360         if (rc <= 0)
361                 printk(KERN_ERR "therm_pm72: Error reading ADC config"
362                        " register !\n");
363 }
364 
365 static int read_smon_adc(struct cpu_pid_state *state, int chan)
366 {
367         int rc, data, tries = 0;
368         u8 buf[2];
369 
370         for (;;) {
371                 /* Set channel */
372                 buf[0] = 1;
373                 buf[1] = (state->adc_config & 0x1f) | (chan << 5);
374                 rc = i2c_master_send(state->monitor, buf, 2);
375                 if (rc <= 0)
376                         goto error;
377                 /* Wait for conversion */
378                 msleep(1);
379                 /* Switch to data register */
380                 buf[0] = 4;
381                 rc = i2c_master_send(state->monitor, buf, 1);
382                 if (rc <= 0)
383                         goto error;
384                 /* Read result */
385                 rc = i2c_master_recv(state->monitor, buf, 2);
386                 if (rc < 0)
387                         goto error;
388                 data = ((u16)buf[0]) << 8 | (u16)buf[1];
389                 return data >> 6;
390         error:
391                 DBG("Error reading ADC, retrying...\n");
392                 if (++tries > 10) {
393                         printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
394                         return -1;
395                 }
396                 msleep(10);
397         }
398 }
399 
400 static int read_lm87_reg(struct i2c_client * chip, int reg)
401 {
402         int rc, tries = 0;
403         u8 buf;
404 
405         for (;;) {
406                 /* Set address */
407                 buf = (u8)reg;
408                 rc = i2c_master_send(chip, &buf, 1);
409                 if (rc <= 0)
410                         goto error;
411                 rc = i2c_master_recv(chip, &buf, 1);
412                 if (rc <= 0)
413                         goto error;
414                 return (int)buf;
415         error:
416                 DBG("Error reading LM87, retrying...\n");
417                 if (++tries > 10) {
418                         printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
419                         return -1;
420                 }
421                 msleep(10);
422         }
423 }
424 
425 static int fan_read_reg(int reg, unsigned char *buf, int nb)
426 {
427         int tries, nr, nw;
428 
429         buf[0] = reg;
430         tries = 0;
431         for (;;) {
432                 nw = i2c_master_send(fcu, buf, 1);
433                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
434                         break;
435                 msleep(10);
436                 ++tries;
437         }
438         if (nw <= 0) {
439                 printk(KERN_ERR "Failure writing address to FCU: %d", nw);
440                 return -EIO;
441         }
442         tries = 0;
443         for (;;) {
444                 nr = i2c_master_recv(fcu, buf, nb);
445                 if (nr > 0 || (nr < 0 && nr != -ENODEV) || tries >= 100)
446                         break;
447                 msleep(10);
448                 ++tries;
449         }
450         if (nr <= 0)
451                 printk(KERN_ERR "Failure reading data from FCU: %d", nw);
452         return nr;
453 }
454 
455 static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
456 {
457         int tries, nw;
458         unsigned char buf[16];
459 
460         buf[0] = reg;
461         memcpy(buf+1, ptr, nb);
462         ++nb;
463         tries = 0;
464         for (;;) {
465                 nw = i2c_master_send(fcu, buf, nb);
466                 if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
467                         break;
468                 msleep(10);
469                 ++tries;
470         }
471         if (nw < 0)
472                 printk(KERN_ERR "Failure writing to FCU: %d", nw);
473         return nw;
474 }
475 
476 static int start_fcu(void)
477 {
478         unsigned char buf = 0xff;
479         int rc;
480 
481         rc = fan_write_reg(0xe, &buf, 1);
482         if (rc < 0)
483                 return -EIO;
484         rc = fan_write_reg(0x2e, &buf, 1);
485         if (rc < 0)
486                 return -EIO;
487         rc = fan_read_reg(0, &buf, 1);
488         if (rc < 0)
489                 return -EIO;
490         fcu_rpm_shift = (buf == 1) ? 2 : 3;
491         printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
492                fcu_rpm_shift);
493 
494         return 0;
495 }
496 
497 static int set_rpm_fan(int fan_index, int rpm)
498 {
499         unsigned char buf[2];
500         int rc, id, min, max;
501 
502         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
503                 return -EINVAL;
504         id = fcu_fans[fan_index].id; 
505         if (id == FCU_FAN_ABSENT_ID)
506                 return -EINVAL;
507 
508         min = 2400 >> fcu_rpm_shift;
509         max = 56000 >> fcu_rpm_shift;
510 
511         if (rpm < min)
512                 rpm = min;
513         else if (rpm > max)
514                 rpm = max;
515         buf[0] = rpm >> (8 - fcu_rpm_shift);
516         buf[1] = rpm << fcu_rpm_shift;
517         rc = fan_write_reg(0x10 + (id * 2), buf, 2);
518         if (rc < 0)
519                 return -EIO;
520         return 0;
521 }
522 
523 static int get_rpm_fan(int fan_index, int programmed)
524 {
525         unsigned char failure;
526         unsigned char active;
527         unsigned char buf[2];
528         int rc, id, reg_base;
529 
530         if (fcu_fans[fan_index].type != FCU_FAN_RPM)
531                 return -EINVAL;
532         id = fcu_fans[fan_index].id; 
533         if (id == FCU_FAN_ABSENT_ID)
534                 return -EINVAL;
535 
536         rc = fan_read_reg(0xb, &failure, 1);
537         if (rc != 1)
538                 return -EIO;
539         if ((failure & (1 << id)) != 0)
540                 return -EFAULT;
541         rc = fan_read_reg(0xd, &active, 1);
542         if (rc != 1)
543                 return -EIO;
544         if ((active & (1 << id)) == 0)
545                 return -ENXIO;
546 
547         /* Programmed value or real current speed */
548         reg_base = programmed ? 0x10 : 0x11;
549         rc = fan_read_reg(reg_base + (id * 2), buf, 2);
550         if (rc != 2)
551                 return -EIO;
552 
553         return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
554 }
555 
556 static int set_pwm_fan(int fan_index, int pwm)
557 {
558         unsigned char buf[2];
559         int rc, id;
560 
561         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
562                 return -EINVAL;
563         id = fcu_fans[fan_index].id; 
564         if (id == FCU_FAN_ABSENT_ID)
565                 return -EINVAL;
566 
567         if (pwm < 10)
568                 pwm = 10;
569         else if (pwm > 100)
570                 pwm = 100;
571         pwm = (pwm * 2559) / 1000;
572         buf[0] = pwm;
573         rc = fan_write_reg(0x30 + (id * 2), buf, 1);
574         if (rc < 0)
575                 return rc;
576         return 0;
577 }
578 
579 static int get_pwm_fan(int fan_index)
580 {
581         unsigned char failure;
582         unsigned char active;
583         unsigned char buf[2];
584         int rc, id;
585 
586         if (fcu_fans[fan_index].type != FCU_FAN_PWM)
587                 return -EINVAL;
588         id = fcu_fans[fan_index].id; 
589         if (id == FCU_FAN_ABSENT_ID)
590                 return -EINVAL;
591 
592         rc = fan_read_reg(0x2b, &failure, 1);
593         if (rc != 1)
594                 return -EIO;
595         if ((failure & (1 << id)) != 0)
596                 return -EFAULT;
597         rc = fan_read_reg(0x2d, &active, 1);
598         if (rc != 1)
599                 return -EIO;
600         if ((active & (1 << id)) == 0)
601                 return -ENXIO;
602 
603         /* Programmed value or real current speed */
604         rc = fan_read_reg(0x30 + (id * 2), buf, 1);
605         if (rc != 1)
606                 return -EIO;
607 
608         return (buf[0] * 1000) / 2559;
609 }
610 
611 static void tickle_fcu(void)
612 {
613         int pwm;
614 
615         pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
616 
617         DBG("FCU Tickle, slots fan is: %d\n", pwm);
618         if (pwm < 0)
619                 pwm = 100;
620 
621         if (!rackmac) {
622                 pwm = SLOTS_FAN_DEFAULT_PWM;
623         } else if (pwm < SLOTS_PID_OUTPUT_MIN)
624                 pwm = SLOTS_PID_OUTPUT_MIN;
625 
626         /* That is hopefully enough to make the FCU happy */
627         set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
628 }
629 
630 
631 /*
632  * Utility routine to read the CPU calibration EEPROM data
633  * from the device-tree
634  */
635 static int read_eeprom(int cpu, struct mpu_data *out)
636 {
637         struct device_node *np;
638         char nodename[64];
639         const u8 *data;
640         int len;
641 
642         /* prom.c routine for finding a node by path is a bit brain dead
643          * and requires exact @xxx unit numbers. This is a bit ugly but
644          * will work for these machines
645          */
646         sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
647         np = of_find_node_by_path(nodename);
648         if (np == NULL) {
649                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
650                 return -ENODEV;
651         }
652         data = of_get_property(np, "cpuid", &len);
653         if (data == NULL) {
654                 printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
655                 of_node_put(np);
656                 return -ENODEV;
657         }
658         memcpy(out, data, sizeof(struct mpu_data));
659         of_node_put(np);
660         
661         return 0;
662 }
663 
664 static void fetch_cpu_pumps_minmax(void)
665 {
666         struct cpu_pid_state *state0 = &processor_state[0];
667         struct cpu_pid_state *state1 = &processor_state[1];
668         u16 pump_min = 0, pump_max = 0xffff;
669         u16 tmp[4];
670 
671         /* Try to fetch pumps min/max infos from eeprom */
672 
673         memcpy(&tmp, &state0->mpu.processor_part_num, 8);
674         if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
675                 pump_min = max(pump_min, tmp[0]);
676                 pump_max = min(pump_max, tmp[1]);
677         }
678         if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
679                 pump_min = max(pump_min, tmp[2]);
680                 pump_max = min(pump_max, tmp[3]);
681         }
682 
683         /* Double check the values, this _IS_ needed as the EEPROM on
684          * some dual 2.5Ghz G5s seem, at least, to have both min & max
685          * same to the same value ... (grrrr)
686          */
687         if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
688                 pump_min = CPU_PUMP_OUTPUT_MIN;
689                 pump_max = CPU_PUMP_OUTPUT_MAX;
690         }
691 
692         state0->pump_min = state1->pump_min = pump_min;
693         state0->pump_max = state1->pump_max = pump_max;
694 }
695 
696 /* 
697  * Now, unfortunately, sysfs doesn't give us a nice void * we could
698  * pass around to the attribute functions, so we don't really have
699  * choice but implement a bunch of them...
700  *
701  * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
702  * the input twice... I accept patches :)
703  */
704 #define BUILD_SHOW_FUNC_FIX(name, data)                         \
705 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
706 {                                                               \
707         ssize_t r;                                              \
708         mutex_lock(&driver_lock);                                       \
709         r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));        \
710         mutex_unlock(&driver_lock);                                     \
711         return r;                                               \
712 }
713 #define BUILD_SHOW_FUNC_INT(name, data)                         \
714 static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)        \
715 {                                                               \
716         return sprintf(buf, "%d", data);                        \
717 }
718 
719 BUILD_SHOW_FUNC_FIX(cpu0_temperature, processor_state[0].last_temp)
720 BUILD_SHOW_FUNC_FIX(cpu0_voltage, processor_state[0].voltage)
721 BUILD_SHOW_FUNC_FIX(cpu0_current, processor_state[0].current_a)
722 BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, processor_state[0].rpm)
723 BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, processor_state[0].intake_rpm)
724 
725 BUILD_SHOW_FUNC_FIX(cpu1_temperature, processor_state[1].last_temp)
726 BUILD_SHOW_FUNC_FIX(cpu1_voltage, processor_state[1].voltage)
727 BUILD_SHOW_FUNC_FIX(cpu1_current, processor_state[1].current_a)
728 BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, processor_state[1].rpm)
729 BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, processor_state[1].intake_rpm)
730 
731 BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
732 BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
733 
734 BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
735 BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
736 
737 BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
738 BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
739 
740 BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
741 
742 static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
743 static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
744 static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
745 static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
746 static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
747 
748 static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
749 static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
750 static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
751 static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
752 static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
753 
754 static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
755 static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
756 
757 static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
758 static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
759 
760 static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
761 static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
762 
763 static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
764 
765 /*
766  * CPUs fans control loop
767  */
768 
769 static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
770 {
771         s32 ltemp, volts, amps;
772         int index, rc = 0;
773 
774         /* Default (in case of error) */
775         *temp = state->cur_temp;
776         *power = state->cur_power;
777 
778         if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
779                 index = (state->index == 0) ?
780                         CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
781         else
782                 index = (state->index == 0) ?
783                         CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
784 
785         /* Read current fan status */
786         rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
787         if (rc < 0) {
788                 /* XXX What do we do now ? Nothing for now, keep old value, but
789                  * return error upstream
790                  */
791                 DBG("  cpu %d, fan reading error !\n", state->index);
792         } else {
793                 state->rpm = rc;
794                 DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
795         }
796 
797         /* Get some sensor readings and scale it */
798         ltemp = read_smon_adc(state, 1);
799         if (ltemp == -1) {
800                 /* XXX What do we do now ? */
801                 state->overtemp++;
802                 if (rc == 0)
803                         rc = -EIO;
804                 DBG("  cpu %d, temp reading error !\n", state->index);
805         } else {
806                 /* Fixup temperature according to diode calibration
807                  */
808                 DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
809                     state->index,
810                     ltemp, state->mpu.mdiode, state->mpu.bdiode);
811                 *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
812                 state->last_temp = *temp;
813                 DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
814         }
815 
816         /*
817          * Read voltage & current and calculate power
818          */
819         volts = read_smon_adc(state, 3);
820         amps = read_smon_adc(state, 4);
821 
822         /* Scale voltage and current raw sensor values according to fixed scales
823          * obtained in Darwin and calculate power from I and V
824          */
825         volts *= ADC_CPU_VOLTAGE_SCALE;
826         amps *= ADC_CPU_CURRENT_SCALE;
827         *power = (((u64)volts) * ((u64)amps)) >> 16;
828         state->voltage = volts;
829         state->current_a = amps;
830         state->last_power = *power;
831 
832         DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
833             state->index, FIX32TOPRINT(state->current_a),
834             FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
835 
836         return 0;
837 }
838 
839 static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
840 {
841         s32 power_target, integral, derivative, proportional, adj_in_target, sval;
842         s64 integ_p, deriv_p, prop_p, sum; 
843         int i;
844 
845         /* Calculate power target value (could be done once for all)
846          * and convert to a 16.16 fp number
847          */
848         power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
849         DBG("  power target: %d.%03d, error: %d.%03d\n",
850             FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
851 
852         /* Store temperature and power in history array */
853         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
854         state->temp_history[state->cur_temp] = temp;
855         state->cur_power = (state->cur_power + 1) % state->count_power;
856         state->power_history[state->cur_power] = power;
857         state->error_history[state->cur_power] = power_target - power;
858         
859         /* If first loop, fill the history table */
860         if (state->first) {
861                 for (i = 0; i < (state->count_power - 1); i++) {
862                         state->cur_power = (state->cur_power + 1) % state->count_power;
863                         state->power_history[state->cur_power] = power;
864                         state->error_history[state->cur_power] = power_target - power;
865                 }
866                 for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
867                         state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
868                         state->temp_history[state->cur_temp] = temp;                    
869                 }
870                 state->first = 0;
871         }
872 
873         /* Calculate the integral term normally based on the "power" values */
874         sum = 0;
875         integral = 0;
876         for (i = 0; i < state->count_power; i++)
877                 integral += state->error_history[i];
878         integral *= CPU_PID_INTERVAL;
879         DBG("  integral: %08x\n", integral);
880 
881         /* Calculate the adjusted input (sense value).
882          *   G_r is 12.20
883          *   integ is 16.16
884          *   so the result is 28.36
885          *
886          * input target is mpu.ttarget, input max is mpu.tmax
887          */
888         integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
889         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
890         sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
891         adj_in_target = (state->mpu.ttarget << 16);
892         if (adj_in_target > sval)
893                 adj_in_target = sval;
894         DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
895             state->mpu.ttarget);
896 
897         /* Calculate the derivative term */
898         derivative = state->temp_history[state->cur_temp] -
899                 state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
900                                     % CPU_TEMP_HISTORY_SIZE];
901         derivative /= CPU_PID_INTERVAL;
902         deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
903         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
904         sum += deriv_p;
905 
906         /* Calculate the proportional term */
907         proportional = temp - adj_in_target;
908         prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
909         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
910         sum += prop_p;
911 
912         /* Scale sum */
913         sum >>= 36;
914 
915         DBG("   sum: %d\n", (int)sum);
916         state->rpm += (s32)sum;
917 }
918 
919 static void do_monitor_cpu_combined(void)
920 {
921         struct cpu_pid_state *state0 = &processor_state[0];
922         struct cpu_pid_state *state1 = &processor_state[1];
923         s32 temp0, power0, temp1, power1;
924         s32 temp_combi, power_combi;
925         int rc, intake, pump;
926 
927         rc = do_read_one_cpu_values(state0, &temp0, &power0);
928         if (rc < 0) {
929                 /* XXX What do we do now ? */
930         }
931         state1->overtemp = 0;
932         rc = do_read_one_cpu_values(state1, &temp1, &power1);
933         if (rc < 0) {
934                 /* XXX What do we do now ? */
935         }
936         if (state1->overtemp)
937                 state0->overtemp++;
938 
939         temp_combi = max(temp0, temp1);
940         power_combi = max(power0, power1);
941 
942         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
943          * full blown immediately and try to trigger a shutdown
944          */
945         if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
946                 printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
947                        temp_combi >> 16);
948                 state0->overtemp += CPU_MAX_OVERTEMP / 4;
949         } else if (temp_combi > (state0->mpu.tmax << 16)) {
950                 state0->overtemp++;
951                 printk(KERN_WARNING "Temperature %d above max %d. overtemp %d\n",
952                        temp_combi >> 16, state0->mpu.tmax, state0->overtemp);
953         } else {
954                 if (state0->overtemp)
955                         printk(KERN_WARNING "Temperature back down to %d\n",
956                                temp_combi >> 16);
957                 state0->overtemp = 0;
958         }
959         if (state0->overtemp >= CPU_MAX_OVERTEMP)
960                 critical_state = 1;
961         if (state0->overtemp > 0) {
962                 state0->rpm = state0->mpu.rmaxn_exhaust_fan;
963                 state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
964                 pump = state0->pump_max;
965                 goto do_set_fans;
966         }
967 
968         /* Do the PID */
969         do_cpu_pid(state0, temp_combi, power_combi);
970 
971         /* Range check */
972         state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
973         state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
974 
975         /* Calculate intake fan speed */
976         intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
977         intake = max(intake, (int)state0->mpu.rminn_intake_fan);
978         intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
979         state0->intake_rpm = intake;
980 
981         /* Calculate pump speed */
982         pump = (state0->rpm * state0->pump_max) /
983                 state0->mpu.rmaxn_exhaust_fan;
984         pump = min(pump, state0->pump_max);
985         pump = max(pump, state0->pump_min);
986         
987  do_set_fans:
988         /* We copy values from state 0 to state 1 for /sysfs */
989         state1->rpm = state0->rpm;
990         state1->intake_rpm = state0->intake_rpm;
991 
992         DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
993             state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
994 
995         /* We should check for errors, shouldn't we ? But then, what
996          * do we do once the error occurs ? For FCU notified fan
997          * failures (-EFAULT) we probably want to notify userland
998          * some way...
999          */
1000         set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1001         set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1002         set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1003         set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
1004 
1005         if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1006                 set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
1007         if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
1008                 set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
1009 }
1010 
1011 static void do_monitor_cpu_split(struct cpu_pid_state *state)
1012 {
1013         s32 temp, power;
1014         int rc, intake;
1015 
1016         /* Read current fan status */
1017         rc = do_read_one_cpu_values(state, &temp, &power);
1018         if (rc < 0) {
1019                 /* XXX What do we do now ? */
1020         }
1021 
1022         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1023          * full blown immediately and try to trigger a shutdown
1024          */
1025         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1026                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1027                        " (%d) !\n",
1028                        state->index, temp >> 16);
1029                 state->overtemp += CPU_MAX_OVERTEMP / 4;
1030         } else if (temp > (state->mpu.tmax << 16)) {
1031                 state->overtemp++;
1032                 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1033                        state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1034         } else {
1035                 if (state->overtemp)
1036                         printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1037                                state->index, temp >> 16);
1038                 state->overtemp = 0;
1039         }
1040         if (state->overtemp >= CPU_MAX_OVERTEMP)
1041                 critical_state = 1;
1042         if (state->overtemp > 0) {
1043                 state->rpm = state->mpu.rmaxn_exhaust_fan;
1044                 state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
1045                 goto do_set_fans;
1046         }
1047 
1048         /* Do the PID */
1049         do_cpu_pid(state, temp, power);
1050 
1051         /* Range check */
1052         state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
1053         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
1054 
1055         /* Calculate intake fan */
1056         intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
1057         intake = max(intake, (int)state->mpu.rminn_intake_fan);
1058         intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
1059         state->intake_rpm = intake;
1060 
1061  do_set_fans:
1062         DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
1063             state->index, (int)state->rpm, intake, state->overtemp);
1064 
1065         /* We should check for errors, shouldn't we ? But then, what
1066          * do we do once the error occurs ? For FCU notified fan
1067          * failures (-EFAULT) we probably want to notify userland
1068          * some way...
1069          */
1070         if (state->index == 0) {
1071                 set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
1072                 set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
1073         } else {
1074                 set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
1075                 set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
1076         }
1077 }
1078 
1079 static void do_monitor_cpu_rack(struct cpu_pid_state *state)
1080 {
1081         s32 temp, power, fan_min;
1082         int rc;
1083 
1084         /* Read current fan status */
1085         rc = do_read_one_cpu_values(state, &temp, &power);
1086         if (rc < 0) {
1087                 /* XXX What do we do now ? */
1088         }
1089 
1090         /* Check tmax, increment overtemp if we are there. At tmax+8, we go
1091          * full blown immediately and try to trigger a shutdown
1092          */
1093         if (temp >= ((state->mpu.tmax + 8) << 16)) {
1094                 printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
1095                        " (%d) !\n",
1096                        state->index, temp >> 16);
1097                 state->overtemp = CPU_MAX_OVERTEMP / 4;
1098         } else if (temp > (state->mpu.tmax << 16)) {
1099                 state->overtemp++;
1100                 printk(KERN_WARNING "CPU %d temperature %d above max %d. overtemp %d\n",
1101                        state->index, temp >> 16, state->mpu.tmax, state->overtemp);
1102         } else {
1103                 if (state->overtemp)
1104                         printk(KERN_WARNING "CPU %d temperature back down to %d\n",
1105                                state->index, temp >> 16);
1106                 state->overtemp = 0;
1107         }
1108         if (state->overtemp >= CPU_MAX_OVERTEMP)
1109                 critical_state = 1;
1110         if (state->overtemp > 0) {
1111                 state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
1112                 goto do_set_fans;
1113         }
1114 
1115         /* Do the PID */
1116         do_cpu_pid(state, temp, power);
1117 
1118         /* Check clamp from dimms */
1119         fan_min = dimm_output_clamp;
1120         fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
1121 
1122         DBG(" CPU min mpu = %d, min dimm = %d\n",
1123             state->mpu.rminn_intake_fan, dimm_output_clamp);
1124 
1125         state->rpm = max(state->rpm, (int)fan_min);
1126         state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
1127         state->intake_rpm = state->rpm;
1128 
1129  do_set_fans:
1130         DBG("** CPU %d RPM: %d overtemp: %d\n",
1131             state->index, (int)state->rpm, state->overtemp);
1132 
1133         /* We should check for errors, shouldn't we ? But then, what
1134          * do we do once the error occurs ? For FCU notified fan
1135          * failures (-EFAULT) we probably want to notify userland
1136          * some way...
1137          */
1138         if (state->index == 0) {
1139                 set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
1140                 set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
1141                 set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
1142         } else {
1143                 set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
1144                 set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
1145                 set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
1146         }
1147 }
1148 
1149 /*
1150  * Initialize the state structure for one CPU control loop
1151  */
1152 static int init_processor_state(struct cpu_pid_state *state, int index)
1153 {
1154         int err;
1155 
1156         state->index = index;
1157         state->first = 1;
1158         state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
1159         state->overtemp = 0;
1160         state->adc_config = 0x00;
1161 
1162 
1163         if (index == 0)
1164                 state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
1165         else if (index == 1)
1166                 state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
1167         if (state->monitor == NULL)
1168                 goto fail;
1169 
1170         if (read_eeprom(index, &state->mpu))
1171                 goto fail;
1172 
1173         state->count_power = state->mpu.tguardband;
1174         if (state->count_power > CPU_POWER_HISTORY_SIZE) {
1175                 printk(KERN_WARNING "Warning ! too many power history slots\n");
1176                 state->count_power = CPU_POWER_HISTORY_SIZE;
1177         }
1178         DBG("CPU %d Using %d power history entries\n", index, state->count_power);
1179 
1180         if (index == 0) {
1181                 err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1182                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1183                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
1184                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1185                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1186         } else {
1187                 err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1188                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1189                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
1190                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1191                 err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1192         }
1193         if (err)
1194                 printk(KERN_WARNING "Failed to create some of the attribute"
1195                         "files for CPU %d\n", index);
1196 
1197         return 0;
1198  fail:
1199         state->monitor = NULL;
1200         
1201         return -ENODEV;
1202 }
1203 
1204 /*
1205  * Dispose of the state data for one CPU control loop
1206  */
1207 static void dispose_processor_state(struct cpu_pid_state *state)
1208 {
1209         if (state->monitor == NULL)
1210                 return;
1211 
1212         if (state->index == 0) {
1213                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
1214                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
1215                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
1216                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
1217                 device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
1218         } else {
1219                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
1220                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
1221                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
1222                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
1223                 device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
1224         }
1225 
1226         state->monitor = NULL;
1227 }
1228 
1229 /*
1230  * Motherboard backside & U3 heatsink fan control loop
1231  */
1232 static void do_monitor_backside(struct backside_pid_state *state)
1233 {
1234         s32 temp, integral, derivative, fan_min;
1235         s64 integ_p, deriv_p, prop_p, sum; 
1236         int i, rc;
1237 
1238         if (--state->ticks != 0)
1239                 return;
1240         state->ticks = backside_params.interval;
1241 
1242         DBG("backside:\n");
1243 
1244         /* Check fan status */
1245         rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
1246         if (rc < 0) {
1247                 printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
1248                 /* XXX What do we do now ? */
1249         } else
1250                 state->pwm = rc;
1251         DBG("  current pwm: %d\n", state->pwm);
1252 
1253         /* Get some sensor readings */
1254         temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
1255         state->last_temp = temp;
1256         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1257             FIX32TOPRINT(backside_params.input_target));
1258 
1259         /* Store temperature and error in history array */
1260         state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
1261         state->sample_history[state->cur_sample] = temp;
1262         state->error_history[state->cur_sample] = temp - backside_params.input_target;
1263         
1264         /* If first loop, fill the history table */
1265         if (state->first) {
1266                 for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
1267                         state->cur_sample = (state->cur_sample + 1) %
1268                                 BACKSIDE_PID_HISTORY_SIZE;
1269                         state->sample_history[state->cur_sample] = temp;
1270                         state->error_history[state->cur_sample] =
1271                                 temp - backside_params.input_target;
1272                 }
1273                 state->first = 0;
1274         }
1275 
1276         /* Calculate the integral term */
1277         sum = 0;
1278         integral = 0;
1279         for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
1280                 integral += state->error_history[i];
1281         integral *= backside_params.interval;
1282         DBG("  integral: %08x\n", integral);
1283         integ_p = ((s64)backside_params.G_r) * (s64)integral;
1284         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1285         sum += integ_p;
1286 
1287         /* Calculate the derivative term */
1288         derivative = state->error_history[state->cur_sample] -
1289                 state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
1290                                     % BACKSIDE_PID_HISTORY_SIZE];
1291         derivative /= backside_params.interval;
1292         deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
1293         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1294         sum += deriv_p;
1295 
1296         /* Calculate the proportional term */
1297         prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
1298         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1299         sum += prop_p;
1300 
1301         /* Scale sum */
1302         sum >>= 36;
1303 
1304         DBG("   sum: %d\n", (int)sum);
1305         if (backside_params.additive)
1306                 state->pwm += (s32)sum;
1307         else
1308                 state->pwm = sum;
1309 
1310         /* Check for clamp */
1311         fan_min = (dimm_output_clamp * 100) / 14000;
1312         fan_min = max(fan_min, backside_params.output_min);
1313 
1314         state->pwm = max(state->pwm, fan_min);
1315         state->pwm = min(state->pwm, backside_params.output_max);
1316 
1317         DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
1318         set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
1319 }
1320 
1321 /*
1322  * Initialize the state structure for the backside fan control loop
1323  */
1324 static int init_backside_state(struct backside_pid_state *state)
1325 {
1326         struct device_node *u3;
1327         int u3h = 1; /* conservative by default */
1328         int err;
1329 
1330         /*
1331          * There are different PID params for machines with U3 and machines
1332          * with U3H, pick the right ones now
1333          */
1334         u3 = of_find_node_by_path("/u3@0,f8000000");
1335         if (u3 != NULL) {
1336                 const u32 *vers = of_get_property(u3, "device-rev", NULL);
1337                 if (vers)
1338                         if (((*vers) & 0x3f) < 0x34)
1339                                 u3h = 0;
1340                 of_node_put(u3);
1341         }
1342 
1343         if (rackmac) {
1344                 backside_params.G_d = BACKSIDE_PID_RACK_G_d;
1345                 backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
1346                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1347                 backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
1348                 backside_params.G_p = BACKSIDE_PID_RACK_G_p;
1349                 backside_params.G_r = BACKSIDE_PID_G_r;
1350                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1351                 backside_params.additive = 0;
1352         } else if (u3h) {
1353                 backside_params.G_d = BACKSIDE_PID_U3H_G_d;
1354                 backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
1355                 backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
1356                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1357                 backside_params.G_p = BACKSIDE_PID_G_p;
1358                 backside_params.G_r = BACKSIDE_PID_G_r;
1359                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1360                 backside_params.additive = 1;
1361         } else {
1362                 backside_params.G_d = BACKSIDE_PID_U3_G_d;
1363                 backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
1364                 backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
1365                 backside_params.interval = BACKSIDE_PID_INTERVAL;
1366                 backside_params.G_p = BACKSIDE_PID_G_p;
1367                 backside_params.G_r = BACKSIDE_PID_G_r;
1368                 backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
1369                 backside_params.additive = 1;
1370         }
1371 
1372         state->ticks = 1;
1373         state->first = 1;
1374         state->pwm = 50;
1375 
1376         state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
1377         if (state->monitor == NULL)
1378                 return -ENODEV;
1379 
1380         err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
1381         err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1382         if (err)
1383                 printk(KERN_WARNING "Failed to create attribute file(s)"
1384                         " for backside fan\n");
1385 
1386         return 0;
1387 }
1388 
1389 /*
1390  * Dispose of the state data for the backside control loop
1391  */
1392 static void dispose_backside_state(struct backside_pid_state *state)
1393 {
1394         if (state->monitor == NULL)
1395                 return;
1396 
1397         device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
1398         device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
1399 
1400         state->monitor = NULL;
1401 }
1402  
1403 /*
1404  * Drives bay fan control loop
1405  */
1406 static void do_monitor_drives(struct drives_pid_state *state)
1407 {
1408         s32 temp, integral, derivative;
1409         s64 integ_p, deriv_p, prop_p, sum; 
1410         int i, rc;
1411 
1412         if (--state->ticks != 0)
1413                 return;
1414         state->ticks = DRIVES_PID_INTERVAL;
1415 
1416         DBG("drives:\n");
1417 
1418         /* Check fan status */
1419         rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
1420         if (rc < 0) {
1421                 printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
1422                 /* XXX What do we do now ? */
1423         } else
1424                 state->rpm = rc;
1425         DBG("  current rpm: %d\n", state->rpm);
1426 
1427         /* Get some sensor readings */
1428         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1429                                                     DS1775_TEMP)) << 8;
1430         state->last_temp = temp;
1431         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1432             FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
1433 
1434         /* Store temperature and error in history array */
1435         state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
1436         state->sample_history[state->cur_sample] = temp;
1437         state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
1438         
1439         /* If first loop, fill the history table */
1440         if (state->first) {
1441                 for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
1442                         state->cur_sample = (state->cur_sample + 1) %
1443                                 DRIVES_PID_HISTORY_SIZE;
1444                         state->sample_history[state->cur_sample] = temp;
1445                         state->error_history[state->cur_sample] =
1446                                 temp - DRIVES_PID_INPUT_TARGET;
1447                 }
1448                 state->first = 0;
1449         }
1450 
1451         /* Calculate the integral term */
1452         sum = 0;
1453         integral = 0;
1454         for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
1455                 integral += state->error_history[i];
1456         integral *= DRIVES_PID_INTERVAL;
1457         DBG("  integral: %08x\n", integral);
1458         integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
1459         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1460         sum += integ_p;
1461 
1462         /* Calculate the derivative term */
1463         derivative = state->error_history[state->cur_sample] -
1464                 state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
1465                                     % DRIVES_PID_HISTORY_SIZE];
1466         derivative /= DRIVES_PID_INTERVAL;
1467         deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
1468         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1469         sum += deriv_p;
1470 
1471         /* Calculate the proportional term */
1472         prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1473         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1474         sum += prop_p;
1475 
1476         /* Scale sum */
1477         sum >>= 36;
1478 
1479         DBG("   sum: %d\n", (int)sum);
1480         state->rpm += (s32)sum;
1481 
1482         state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
1483         state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
1484 
1485         DBG("** DRIVES RPM: %d\n", (int)state->rpm);
1486         set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
1487 }
1488 
1489 /*
1490  * Initialize the state structure for the drives bay fan control loop
1491  */
1492 static int init_drives_state(struct drives_pid_state *state)
1493 {
1494         int err;
1495 
1496         state->ticks = 1;
1497         state->first = 1;
1498         state->rpm = 1000;
1499 
1500         state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
1501         if (state->monitor == NULL)
1502                 return -ENODEV;
1503 
1504         err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
1505         err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1506         if (err)
1507                 printk(KERN_WARNING "Failed to create attribute file(s)"
1508                         " for drives bay fan\n");
1509 
1510         return 0;
1511 }
1512 
1513 /*
1514  * Dispose of the state data for the drives control loop
1515  */
1516 static void dispose_drives_state(struct drives_pid_state *state)
1517 {
1518         if (state->monitor == NULL)
1519                 return;
1520 
1521         device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
1522         device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
1523 
1524         state->monitor = NULL;
1525 }
1526 
1527 /*
1528  * DIMMs temp control loop
1529  */
1530 static void do_monitor_dimms(struct dimm_pid_state *state)
1531 {
1532         s32 temp, integral, derivative, fan_min;
1533         s64 integ_p, deriv_p, prop_p, sum;
1534         int i;
1535 
1536         if (--state->ticks != 0)
1537                 return;
1538         state->ticks = DIMM_PID_INTERVAL;
1539 
1540         DBG("DIMM:\n");
1541 
1542         DBG("  current value: %d\n", state->output);
1543 
1544         temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
1545         if (temp < 0)
1546                 return;
1547         temp <<= 16;
1548         state->last_temp = temp;
1549         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1550             FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
1551 
1552         /* Store temperature and error in history array */
1553         state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
1554         state->sample_history[state->cur_sample] = temp;
1555         state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
1556 
1557         /* If first loop, fill the history table */
1558         if (state->first) {
1559                 for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
1560                         state->cur_sample = (state->cur_sample + 1) %
1561                                 DIMM_PID_HISTORY_SIZE;
1562                         state->sample_history[state->cur_sample] = temp;
1563                         state->error_history[state->cur_sample] =
1564                                 temp - DIMM_PID_INPUT_TARGET;
1565                 }
1566                 state->first = 0;
1567         }
1568 
1569         /* Calculate the integral term */
1570         sum = 0;
1571         integral = 0;
1572         for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
1573                 integral += state->error_history[i];
1574         integral *= DIMM_PID_INTERVAL;
1575         DBG("  integral: %08x\n", integral);
1576         integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
1577         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1578         sum += integ_p;
1579 
1580         /* Calculate the derivative term */
1581         derivative = state->error_history[state->cur_sample] -
1582                 state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
1583                                     % DIMM_PID_HISTORY_SIZE];
1584         derivative /= DIMM_PID_INTERVAL;
1585         deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
1586         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1587         sum += deriv_p;
1588 
1589         /* Calculate the proportional term */
1590         prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1591         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1592         sum += prop_p;
1593 
1594         /* Scale sum */
1595         sum >>= 36;
1596 
1597         DBG("   sum: %d\n", (int)sum);
1598         state->output = (s32)sum;
1599         state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
1600         state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
1601         dimm_output_clamp = state->output;
1602 
1603         DBG("** DIMM clamp value: %d\n", (int)state->output);
1604 
1605         /* Backside PID is only every 5 seconds, force backside fan clamping now */
1606         fan_min = (dimm_output_clamp * 100) / 14000;
1607         fan_min = max(fan_min, backside_params.output_min);
1608         if (backside_state.pwm < fan_min) {
1609                 backside_state.pwm = fan_min;
1610                 DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
1611                 set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
1612         }
1613 }
1614 
1615 /*
1616  * Initialize the state structure for the DIMM temp control loop
1617  */
1618 static int init_dimms_state(struct dimm_pid_state *state)
1619 {
1620         state->ticks = 1;
1621         state->first = 1;
1622         state->output = 4000;
1623 
1624         state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
1625         if (state->monitor == NULL)
1626                 return -ENODEV;
1627 
1628         if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
1629                 printk(KERN_WARNING "Failed to create attribute file"
1630                         " for DIMM temperature\n");
1631 
1632         return 0;
1633 }
1634 
1635 /*
1636  * Dispose of the state data for the DIMM control loop
1637  */
1638 static void dispose_dimms_state(struct dimm_pid_state *state)
1639 {
1640         if (state->monitor == NULL)
1641                 return;
1642 
1643         device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
1644 
1645         state->monitor = NULL;
1646 }
1647 
1648 /*
1649  * Slots fan control loop
1650  */
1651 static void do_monitor_slots(struct slots_pid_state *state)
1652 {
1653         s32 temp, integral, derivative;
1654         s64 integ_p, deriv_p, prop_p, sum;
1655         int i, rc;
1656 
1657         if (--state->ticks != 0)
1658                 return;
1659         state->ticks = SLOTS_PID_INTERVAL;
1660 
1661         DBG("slots:\n");
1662 
1663         /* Check fan status */
1664         rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
1665         if (rc < 0) {
1666                 printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
1667                 /* XXX What do we do now ? */
1668         } else
1669                 state->pwm = rc;
1670         DBG("  current pwm: %d\n", state->pwm);
1671 
1672         /* Get some sensor readings */
1673         temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
1674                                                     DS1775_TEMP)) << 8;
1675         state->last_temp = temp;
1676         DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
1677             FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
1678 
1679         /* Store temperature and error in history array */
1680         state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
1681         state->sample_history[state->cur_sample] = temp;
1682         state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
1683 
1684         /* If first loop, fill the history table */
1685         if (state->first) {
1686                 for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
1687                         state->cur_sample = (state->cur_sample + 1) %
1688                                 SLOTS_PID_HISTORY_SIZE;
1689                         state->sample_history[state->cur_sample] = temp;
1690                         state->error_history[state->cur_sample] =
1691                                 temp - SLOTS_PID_INPUT_TARGET;
1692                 }
1693                 state->first = 0;
1694         }
1695 
1696         /* Calculate the integral term */
1697         sum = 0;
1698         integral = 0;
1699         for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
1700                 integral += state->error_history[i];
1701         integral *= SLOTS_PID_INTERVAL;
1702         DBG("  integral: %08x\n", integral);
1703         integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
1704         DBG("   integ_p: %d\n", (int)(integ_p >> 36));
1705         sum += integ_p;
1706 
1707         /* Calculate the derivative term */
1708         derivative = state->error_history[state->cur_sample] -
1709                 state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
1710                                     % SLOTS_PID_HISTORY_SIZE];
1711         derivative /= SLOTS_PID_INTERVAL;
1712         deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
1713         DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
1714         sum += deriv_p;
1715 
1716         /* Calculate the proportional term */
1717         prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
1718         DBG("   prop_p: %d\n", (int)(prop_p >> 36));
1719         sum += prop_p;
1720 
1721         /* Scale sum */
1722         sum >>= 36;
1723 
1724         DBG("   sum: %d\n", (int)sum);
1725         state->pwm = (s32)sum;
1726 
1727         state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
1728         state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
1729 
1730         DBG("** DRIVES PWM: %d\n", (int)state->pwm);
1731         set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
1732 }
1733 
1734 /*
1735  * Initialize the state structure for the slots bay fan control loop
1736  */
1737 static int init_slots_state(struct slots_pid_state *state)
1738 {
1739         int err;
1740 
1741         state->ticks = 1;
1742         state->first = 1;
1743         state->pwm = 50;
1744 
1745         state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
1746         if (state->monitor == NULL)
1747                 return -ENODEV;
1748 
1749         err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
1750         err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1751         if (err)
1752                 printk(KERN_WARNING "Failed to create attribute file(s)"
1753                         " for slots bay fan\n");
1754 
1755         return 0;
1756 }
1757 
1758 /*
1759  * Dispose of the state data for the slots control loop
1760  */
1761 static void dispose_slots_state(struct slots_pid_state *state)
1762 {
1763         if (state->monitor == NULL)
1764                 return;
1765 
1766         device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
1767         device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
1768 
1769         state->monitor = NULL;
1770 }
1771 
1772 
1773 static int call_critical_overtemp(void)
1774 {
1775         char *argv[] = { critical_overtemp_path, NULL };
1776         static char *envp[] = { "HOME=/",
1777                                 "TERM=linux",
1778                                 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
1779                                 NULL };
1780 
1781         return call_usermodehelper(critical_overtemp_path,
1782                                    argv, envp, UMH_WAIT_EXEC);
1783 }
1784 
1785 
1786 /*
1787  * Here's the kernel thread that calls the various control loops
1788  */
1789 static int main_control_loop(void *x)
1790 {
1791         DBG("main_control_loop started\n");
1792 
1793         mutex_lock(&driver_lock);
1794 
1795         if (start_fcu() < 0) {
1796                 printk(KERN_ERR "kfand: failed to start FCU\n");
1797                 mutex_unlock(&driver_lock);
1798                 goto out;
1799         }
1800 
1801         /* Set the PCI fan once for now on non-RackMac */
1802         if (!rackmac)
1803                 set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
1804 
1805         /* Initialize ADCs */
1806         initialize_adc(&processor_state[0]);
1807         if (processor_state[1].monitor != NULL)
1808                 initialize_adc(&processor_state[1]);
1809 
1810         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1811 
1812         mutex_unlock(&driver_lock);
1813 
1814         while (state == state_attached) {
1815                 unsigned long elapsed, start;
1816 
1817                 start = jiffies;
1818 
1819                 mutex_lock(&driver_lock);
1820 
1821                 /* Tickle the FCU just in case */
1822                 if (--fcu_tickle_ticks < 0) {
1823                         fcu_tickle_ticks = FCU_TICKLE_TICKS;
1824                         tickle_fcu();
1825                 }
1826 
1827                 /* First, we always calculate the new DIMMs state on an Xserve */
1828                 if (rackmac)
1829                         do_monitor_dimms(&dimms_state);
1830 
1831                 /* Then, the CPUs */
1832                 if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1833                         do_monitor_cpu_combined();
1834                 else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
1835                         do_monitor_cpu_rack(&processor_state[0]);
1836                         if (processor_state[1].monitor != NULL)
1837                                 do_monitor_cpu_rack(&processor_state[1]);
1838                         // better deal with UP
1839                 } else {
1840                         do_monitor_cpu_split(&processor_state[0]);
1841                         if (processor_state[1].monitor != NULL)
1842                                 do_monitor_cpu_split(&processor_state[1]);
1843                         // better deal with UP
1844                 }
1845                 /* Then, the rest */
1846                 do_monitor_backside(&backside_state);
1847                 if (rackmac)
1848                         do_monitor_slots(&slots_state);
1849                 else
1850                         do_monitor_drives(&drives_state);
1851                 mutex_unlock(&driver_lock);
1852 
1853                 if (critical_state == 1) {
1854                         printk(KERN_WARNING "Temperature control detected a critical condition\n");
1855                         printk(KERN_WARNING "Attempting to shut down...\n");
1856                         if (call_critical_overtemp()) {
1857                                 printk(KERN_WARNING "Can't call %s, power off now!\n",
1858                                        critical_overtemp_path);
1859                                 machine_power_off();
1860                         }
1861                 }
1862                 if (critical_state > 0)
1863                         critical_state++;
1864                 if (critical_state > MAX_CRITICAL_STATE) {
1865                         printk(KERN_WARNING "Shutdown timed out, power off now !\n");
1866                         machine_power_off();
1867                 }
1868 
1869                 // FIXME: Deal with signals
1870                 elapsed = jiffies - start;
1871                 if (elapsed < HZ)
1872                         schedule_timeout_interruptible(HZ - elapsed);
1873         }
1874 
1875  out:
1876         DBG("main_control_loop ended\n");
1877 
1878         ctrl_task = 0;
1879         complete_and_exit(&ctrl_complete, 0);
1880 }
1881 
1882 /*
1883  * Dispose the control loops when tearing down
1884  */
1885 static void dispose_control_loops(void)
1886 {
1887         dispose_processor_state(&processor_state[0]);
1888         dispose_processor_state(&processor_state[1]);
1889         dispose_backside_state(&backside_state);
1890         dispose_drives_state(&drives_state);
1891         dispose_slots_state(&slots_state);
1892         dispose_dimms_state(&dimms_state);
1893 }
1894 
1895 /*
1896  * Create the control loops. U3-0 i2c bus is up, so we can now
1897  * get to the various sensors
1898  */
1899 static int create_control_loops(void)
1900 {
1901         struct device_node *np;
1902 
1903         /* Count CPUs from the device-tree, we don't care how many are
1904          * actually used by Linux
1905          */
1906         cpu_count = 0;
1907         for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
1908                 cpu_count++;
1909 
1910         DBG("counted %d CPUs in the device-tree\n", cpu_count);
1911 
1912         /* Decide the type of PID algorithm to use based on the presence of
1913          * the pumps, though that may not be the best way, that is good enough
1914          * for now
1915          */
1916         if (rackmac)
1917                 cpu_pid_type = CPU_PID_TYPE_RACKMAC;
1918         else if (of_machine_is_compatible("PowerMac7,3")
1919             && (cpu_count > 1)
1920             && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
1921             && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
1922                 printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
1923                 cpu_pid_type = CPU_PID_TYPE_COMBINED;
1924         } else
1925                 cpu_pid_type = CPU_PID_TYPE_SPLIT;
1926 
1927         /* Create control loops for everything. If any fail, everything
1928          * fails
1929          */
1930         if (init_processor_state(&processor_state[0], 0))
1931                 goto fail;
1932         if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
1933                 fetch_cpu_pumps_minmax();
1934 
1935         if (cpu_count > 1 && init_processor_state(&processor_state[1], 1))
1936                 goto fail;
1937         if (init_backside_state(&backside_state))
1938                 goto fail;
1939         if (rackmac && init_dimms_state(&dimms_state))
1940                 goto fail;
1941         if (rackmac && init_slots_state(&slots_state))
1942                 goto fail;
1943         if (!rackmac && init_drives_state(&drives_state))
1944                 goto fail;
1945 
1946         DBG("all control loops up !\n");
1947 
1948         return 0;
1949         
1950  fail:
1951         DBG("failure creating control loops, disposing\n");
1952 
1953         dispose_control_loops();
1954 
1955         return -ENODEV;
1956 }
1957 
1958 /*
1959  * Start the control loops after everything is up, that is create
1960  * the thread that will make them run
1961  */
1962 static void start_control_loops(void)
1963 {
1964         init_completion(&ctrl_complete);
1965 
1966         ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
1967 }
1968 
1969 /*
1970  * Stop the control loops when tearing down
1971  */
1972 static void stop_control_loops(void)
1973 {
1974         if (ctrl_task)
1975                 wait_for_completion(&ctrl_complete);
1976 }
1977 
1978 /*
1979  * Attach to the i2c FCU after detecting U3-1 bus
1980  */
1981 static int attach_fcu(void)
1982 {
1983         fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
1984         if (fcu == NULL)
1985                 return -ENODEV;
1986 
1987         DBG("FCU attached\n");
1988 
1989         return 0;
1990 }
1991 
1992 /*
1993  * Detach from the i2c FCU when tearing down
1994  */
1995 static void detach_fcu(void)
1996 {
1997         fcu = NULL;
1998 }
1999 
2000 /*
2001  * Attach to the i2c controller. We probe the various chips based
2002  * on the device-tree nodes and build everything for the driver to
2003  * run, we then kick the driver monitoring thread
2004  */
2005 static int therm_pm72_attach(struct i2c_adapter *adapter)
2006 {
2007         mutex_lock(&driver_lock);
2008 
2009         /* Check state */
2010         if (state == state_detached)
2011                 state = state_attaching;
2012         if (state != state_attaching) {
2013                 mutex_unlock(&driver_lock);
2014                 return 0;
2015         }
2016 
2017         /* Check if we are looking for one of these */
2018         if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
2019                 u3_0 = adapter;
2020                 DBG("found U3-0\n");
2021                 if (k2 || !rackmac)
2022                         if (create_control_loops())
2023                                 u3_0 = NULL;
2024         } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
2025                 u3_1 = adapter;
2026                 DBG("found U3-1, attaching FCU\n");
2027                 if (attach_fcu())
2028                         u3_1 = NULL;
2029         } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
2030                 k2 = adapter;
2031                 DBG("Found K2\n");
2032                 if (u3_0 && rackmac)
2033                         if (create_control_loops())
2034                                 k2 = NULL;
2035         }
2036         /* We got all we need, start control loops */
2037         if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
2038                 DBG("everything up, starting control loops\n");
2039                 state = state_attached;
2040                 start_control_loops();
2041         }
2042         mutex_unlock(&driver_lock);
2043 
2044         return 0;
2045 }
2046 
2047 static int therm_pm72_probe(struct i2c_client *client,
2048                             const struct i2c_device_id *id)
2049 {
2050         /* Always succeed, the real work was done in therm_pm72_attach() */
2051         return 0;
2052 }
2053 
2054 /*
2055  * Called when any of the devices which participates into thermal management
2056  * is going away.
2057  */
2058 static int therm_pm72_remove(struct i2c_client *client)
2059 {
2060         struct i2c_adapter *adapter = client->adapter;
2061 
2062         mutex_lock(&driver_lock);
2063 
2064         if (state != state_detached)
2065                 state = state_detaching;
2066 
2067         /* Stop control loops if any */
2068         DBG("stopping control loops\n");
2069         mutex_unlock(&driver_lock);
2070         stop_control_loops();
2071         mutex_lock(&driver_lock);
2072 
2073         if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
2074                 DBG("lost U3-0, disposing control loops\n");
2075                 dispose_control_loops();
2076                 u3_0 = NULL;
2077         }
2078         
2079         if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
2080                 DBG("lost U3-1, detaching FCU\n");
2081                 detach_fcu();
2082                 u3_1 = NULL;
2083         }
2084         if (u3_0 == NULL && u3_1 == NULL)
2085                 state = state_detached;
2086 
2087         mutex_unlock(&driver_lock);
2088 
2089         return 0;
2090 }
2091 
2092 /*
2093  * i2c_driver structure to attach to the host i2c controller
2094  */
2095 
2096 static const struct i2c_device_id therm_pm72_id[] = {
2097         /*
2098          * Fake device name, thermal management is done by several
2099          * chips but we don't need to differentiate between them at
2100          * this point.
2101          */
2102         { "therm_pm72", 0 },
2103         { }
2104 };
2105 
2106 static struct i2c_driver therm_pm72_driver = {
2107         .driver = {
2108                 .name   = "therm_pm72",
2109         },
2110         .attach_adapter = therm_pm72_attach,
2111         .probe          = therm_pm72_probe,
2112         .remove         = therm_pm72_remove,
2113         .id_table       = therm_pm72_id,
2114 };
2115 
2116 static int fan_check_loc_match(const char *loc, int fan)
2117 {
2118         char    tmp[64];
2119         char    *c, *e;
2120 
2121         strlcpy(tmp, fcu_fans[fan].loc, 64);
2122 
2123         c = tmp;
2124         for (;;) {
2125                 e = strchr(c, ',');
2126                 if (e)
2127                         *e = 0;
2128                 if (strcmp(loc, c) == 0)
2129                         return 1;
2130                 if (e == NULL)
2131                         break;
2132                 c = e + 1;
2133         }
2134         return 0;
2135 }
2136 
2137 static void fcu_lookup_fans(struct device_node *fcu_node)
2138 {
2139         struct device_node *np = NULL;
2140         int i;
2141 
2142         /* The table is filled by default with values that are suitable
2143          * for the old machines without device-tree informations. We scan
2144          * the device-tree and override those values with whatever is
2145          * there
2146          */
2147 
2148         DBG("Looking up FCU controls in device-tree...\n");
2149 
2150         while ((np = of_get_next_child(fcu_node, np)) != NULL) {
2151                 int type = -1;
2152                 const char *loc;
2153                 const u32 *reg;
2154 
2155                 DBG(" control: %s, type: %s\n", np->name, np->type);
2156 
2157                 /* Detect control type */
2158                 if (!strcmp(np->type, "fan-rpm-control") ||
2159                     !strcmp(np->type, "fan-rpm"))
2160                         type = FCU_FAN_RPM;
2161                 if (!strcmp(np->type, "fan-pwm-control") ||
2162                     !strcmp(np->type, "fan-pwm"))
2163                         type = FCU_FAN_PWM;
2164                 /* Only care about fans for now */
2165                 if (type == -1)
2166                         continue;
2167 
2168                 /* Lookup for a matching location */
2169                 loc = of_get_property(np, "location", NULL);
2170                 reg = of_get_property(np, "reg", NULL);
2171                 if (loc == NULL || reg == NULL)
2172                         continue;
2173                 DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
2174 
2175                 for (i = 0; i < FCU_FAN_COUNT; i++) {
2176                         int fan_id;
2177 
2178                         if (!fan_check_loc_match(loc, i))
2179                                 continue;
2180                         DBG(" location match, index: %d\n", i);
2181                         fcu_fans[i].id = FCU_FAN_ABSENT_ID;
2182                         if (type != fcu_fans[i].type) {
2183                                 printk(KERN_WARNING "therm_pm72: Fan type mismatch "
2184                                        "in device-tree for %s\n", np->full_name);
2185                                 break;
2186                         }
2187                         if (type == FCU_FAN_RPM)
2188                                 fan_id = ((*reg) - 0x10) / 2;
2189                         else
2190                                 fan_id = ((*reg) - 0x30) / 2;
2191                         if (fan_id > 7) {
2192                                 printk(KERN_WARNING "therm_pm72: Can't parse "
2193                                        "fan ID in device-tree for %s\n", np->full_name);
2194                                 break;
2195                         }
2196                         DBG(" fan id -> %d, type -> %d\n", fan_id, type);
2197                         fcu_fans[i].id = fan_id;
2198                 }
2199         }
2200 
2201         /* Now dump the array */
2202         printk(KERN_INFO "Detected fan controls:\n");
2203         for (i = 0; i < FCU_FAN_COUNT; i++) {
2204                 if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
2205                         continue;
2206                 printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
2207                        fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
2208                        fcu_fans[i].id, fcu_fans[i].loc);
2209         }
2210 }
2211 
2212 static int fcu_of_probe(struct platform_device* dev)
2213 {
2214         state = state_detached;
2215         of_dev = dev;
2216 
2217         dev_info(&dev->dev, "PowerMac G5 Thermal control driver %s\n", VERSION);
2218 
2219         /* Lookup the fans in the device tree */
2220         fcu_lookup_fans(dev->dev.of_node);
2221 
2222         /* Add the driver */
2223         return i2c_add_driver(&therm_pm72_driver);
2224 }
2225 
2226 static int fcu_of_remove(struct platform_device* dev)
2227 {
2228         i2c_del_driver(&therm_pm72_driver);
2229 
2230         return 0;
2231 }
2232 
2233 static const struct of_device_id fcu_match[] = 
2234 {
2235         {
2236         .type           = "fcu",
2237         },
2238         {},
2239 };
2240 MODULE_DEVICE_TABLE(of, fcu_match);
2241 
2242 static struct platform_driver fcu_of_platform_driver = 
2243 {
2244         .driver = {
2245                 .name = "temperature",
2246                 .owner = THIS_MODULE,
2247                 .of_match_table = fcu_match,
2248         },
2249         .probe          = fcu_of_probe,
2250         .remove         = fcu_of_remove
2251 };
2252 
2253 /*
2254  * Check machine type, attach to i2c controller
2255  */
2256 static int __init therm_pm72_init(void)
2257 {
2258         rackmac = of_machine_is_compatible("RackMac3,1");
2259 
2260         if (!of_machine_is_compatible("PowerMac7,2") &&
2261             !of_machine_is_compatible("PowerMac7,3") &&
2262             !rackmac)
2263                 return -ENODEV;
2264 
2265         return platform_driver_register(&fcu_of_platform_driver);
2266 }
2267 
2268 static void __exit therm_pm72_exit(void)
2269 {
2270         platform_driver_unregister(&fcu_of_platform_driver);
2271 }
2272 
2273 module_init(therm_pm72_init);
2274 module_exit(therm_pm72_exit);
2275 
2276 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
2277 MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
2278 MODULE_LICENSE("GPL");
2279 
2280 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us