Version:  2.0.40 2.2.26 2.4.37 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Linux/drivers/isdn/hardware/mISDN/hfcmulti.c

  1 /*
  2  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
  3  *
  4  * Author       Andreas Eversberg (jolly@eversberg.eu)
  5  * ported to mqueue mechanism:
  6  *              Peter Sprenger (sprengermoving-bytes.de)
  7  *
  8  * inspired by existing hfc-pci driver:
  9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
 10  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
 11  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
 12  *
 13  * This program is free software; you can redistribute it and/or modify
 14  * it under the terms of the GNU General Public License as published by
 15  * the Free Software Foundation; either version 2, or (at your option)
 16  * any later version.
 17  *
 18  * This program is distributed in the hope that it will be useful,
 19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 21  * GNU General Public License for more details.
 22  *
 23  * You should have received a copy of the GNU General Public License
 24  * along with this program; if not, write to the Free Software
 25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 26  *
 27  *
 28  * Thanks to Cologne Chip AG for this great controller!
 29  */
 30 
 31 /*
 32  * module parameters:
 33  * type:
 34  *      By default (0), the card is automatically detected.
 35  *      Or use the following combinations:
 36  *      Bit 0-7   = 0x00001 = HFC-E1 (1 port)
 37  * or   Bit 0-7   = 0x00004 = HFC-4S (4 ports)
 38  * or   Bit 0-7   = 0x00008 = HFC-8S (8 ports)
 39  *      Bit 8     = 0x00100 = uLaw (instead of aLaw)
 40  *      Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
 41  *      Bit 10    = spare
 42  *      Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
 43  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
 44  *      Bit 13    = spare
 45  *      Bit 14    = 0x04000 = Use external ram (128K)
 46  *      Bit 15    = 0x08000 = Use external ram (512K)
 47  *      Bit 16    = 0x10000 = Use 64 timeslots instead of 32
 48  * or   Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
 49  *      Bit 18    = spare
 50  *      Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
 51  * (all other bits are reserved and shall be 0)
 52  *      example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
 53  *               bus (PCM master)
 54  *
 55  * port: (optional or required for all ports on all installed cards)
 56  *      HFC-4S/HFC-8S only bits:
 57  *      Bit 0     = 0x001 = Use master clock for this S/T interface
 58  *                          (ony once per chip).
 59  *      Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
 60  *                          Don't use this unless you know what you are doing!
 61  *      Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
 62  *      example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
 63  *               received from port 1
 64  *
 65  *      HFC-E1 only bits:
 66  *      Bit 0     = 0x0001 = interface: 0=copper, 1=optical
 67  *      Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
 68  *      Bit 2     = 0x0004 = Report LOS
 69  *      Bit 3     = 0x0008 = Report AIS
 70  *      Bit 4     = 0x0010 = Report SLIP
 71  *      Bit 5     = 0x0020 = Report RDI
 72  *      Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
 73  *                           mode instead.
 74  *      Bit 9     = 0x0200 = Force get clock from interface, even in NT mode.
 75  * or   Bit 10    = 0x0400 = Force put clock to interface, even in TE mode.
 76  *      Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
 77  *                           (E1 only)
 78  *      Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
 79  *                           for default.
 80  * (all other bits are reserved and shall be 0)
 81  *
 82  * debug:
 83  *      NOTE: only one debug value must be given for all cards
 84  *      enable debugging (see hfc_multi.h for debug options)
 85  *
 86  * poll:
 87  *      NOTE: only one poll value must be given for all cards
 88  *      Give the number of samples for each fifo process.
 89  *      By default 128 is used. Decrease to reduce delay, increase to
 90  *      reduce cpu load. If unsure, don't mess with it!
 91  *      Valid is 8, 16, 32, 64, 128, 256.
 92  *
 93  * pcm:
 94  *      NOTE: only one pcm value must be given for every card.
 95  *      The PCM bus id tells the mISDNdsp module about the connected PCM bus.
 96  *      By default (0), the PCM bus id is 100 for the card that is PCM master.
 97  *      If multiple cards are PCM master (because they are not interconnected),
 98  *      each card with PCM master will have increasing PCM id.
 99  *      All PCM busses with the same ID are expected to be connected and have
100  *      common time slots slots.
101  *      Only one chip of the PCM bus must be master, the others slave.
102  *      -1 means no support of PCM bus not even.
103  *      Omit this value, if all cards are interconnected or none is connected.
104  *      If unsure, don't give this parameter.
105  *
106  * dmask and bmask:
107  *      NOTE: One dmask value must be given for every HFC-E1 card.
108  *      If omitted, the E1 card has D-channel on time slot 16, which is default.
109  *      dmask is a 32 bit mask. The bit must be set for an alternate time slot.
110  *      If multiple bits are set, multiple virtual card fragments are created.
111  *      For each bit set, a bmask value must be given. Each bit on the bmask
112  *      value stands for a B-channel. The bmask may not overlap with dmask or
113  *      with other bmask values for that card.
114  *      Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
115  *              This will create one fragment with D-channel on slot 1 with
116  *              B-channels on slots 2..15, and a second fragment with D-channel
117  *              on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
118  *      If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
119  *      not function.
120  *      Example: dmask=0x00000001 bmask=0xfffffffe
121  *              This will create a port with all 31 usable timeslots as
122  *              B-channels.
123  *      If no bits are set on bmask, no B-channel is created for that fragment.
124  *      Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
125  *              This will create 31 ports with one D-channel only.
126  *      If you don't know how to use it, you don't need it!
127  *
128  * iomode:
129  *      NOTE: only one mode value must be given for every card.
130  *      -> See hfc_multi.h for HFC_IO_MODE_* values
131  *      By default, the IO mode is pci memory IO (MEMIO).
132  *      Some cards require specific IO mode, so it cannot be changed.
133  *      It may be useful to set IO mode to register io (REGIO) to solve
134  *      PCI bridge problems.
135  *      If unsure, don't give this parameter.
136  *
137  * clockdelay_nt:
138  *      NOTE: only one clockdelay_nt value must be given once for all cards.
139  *      Give the value of the clock control register (A_ST_CLK_DLY)
140  *      of the S/T interfaces in NT mode.
141  *      This register is needed for the TBR3 certification, so don't change it.
142  *
143  * clockdelay_te:
144  *      NOTE: only one clockdelay_te value must be given once
145  *      Give the value of the clock control register (A_ST_CLK_DLY)
146  *      of the S/T interfaces in TE mode.
147  *      This register is needed for the TBR3 certification, so don't change it.
148  *
149  * clock:
150  *      NOTE: only one clock value must be given once
151  *      Selects interface with clock source for mISDN and applications.
152  *      Set to card number starting with 1. Set to -1 to disable.
153  *      By default, the first card is used as clock source.
154  *
155  * hwid:
156  *      NOTE: only one hwid value must be given once
157  *      Enable special embedded devices with XHFC controllers.
158  */
159 
160 /*
161  * debug register access (never use this, it will flood your system log)
162  * #define HFC_REGISTER_DEBUG
163  */
164 
165 #define HFC_MULTI_VERSION       "2.03"
166 
167 #include <linux/interrupt.h>
168 #include <linux/module.h>
169 #include <linux/slab.h>
170 #include <linux/pci.h>
171 #include <linux/delay.h>
172 #include <linux/mISDNhw.h>
173 #include <linux/mISDNdsp.h>
174 
175 /*
176   #define IRQCOUNT_DEBUG
177   #define IRQ_DEBUG
178 */
179 
180 #include "hfc_multi.h"
181 #ifdef ECHOPREP
182 #include "gaintab.h"
183 #endif
184 
185 #define MAX_CARDS       8
186 #define MAX_PORTS       (8 * MAX_CARDS)
187 #define MAX_FRAGS       (32 * MAX_CARDS)
188 
189 static LIST_HEAD(HFClist);
190 static spinlock_t HFClock; /* global hfc list lock */
191 
192 static void ph_state_change(struct dchannel *);
193 
194 static struct hfc_multi *syncmaster;
195 static int plxsd_master; /* if we have a master card (yet) */
196 static spinlock_t plx_lock; /* may not acquire other lock inside */
197 
198 #define TYP_E1          1
199 #define TYP_4S          4
200 #define TYP_8S          8
201 
202 static int poll_timer = 6;      /* default = 128 samples = 16ms */
203 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
204 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
205 #define CLKDEL_TE       0x0f    /* CLKDEL in TE mode */
206 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode
207                                    (0x60 MUST be included!) */
208 
209 #define DIP_4S  0x1             /* DIP Switches for Beronet 1S/2S/4S cards */
210 #define DIP_8S  0x2             /* DIP Switches for Beronet 8S+ cards */
211 #define DIP_E1  0x3             /* DIP Switches for Beronet E1 cards */
212 
213 /*
214  * module stuff
215  */
216 
217 static uint     type[MAX_CARDS];
218 static int      pcm[MAX_CARDS];
219 static uint     dmask[MAX_CARDS];
220 static uint     bmask[MAX_FRAGS];
221 static uint     iomode[MAX_CARDS];
222 static uint     port[MAX_PORTS];
223 static uint     debug;
224 static uint     poll;
225 static int      clock;
226 static uint     timer;
227 static uint     clockdelay_te = CLKDEL_TE;
228 static uint     clockdelay_nt = CLKDEL_NT;
229 #define HWID_NONE       0
230 #define HWID_MINIP4     1
231 #define HWID_MINIP8     2
232 #define HWID_MINIP16    3
233 static uint     hwid = HWID_NONE;
234 
235 static int      HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
236 
237 MODULE_AUTHOR("Andreas Eversberg");
238 MODULE_LICENSE("GPL");
239 MODULE_VERSION(HFC_MULTI_VERSION);
240 module_param(debug, uint, S_IRUGO | S_IWUSR);
241 module_param(poll, uint, S_IRUGO | S_IWUSR);
242 module_param(clock, int, S_IRUGO | S_IWUSR);
243 module_param(timer, uint, S_IRUGO | S_IWUSR);
244 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
245 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
246 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
247 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
248 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
249 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
250 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
251 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
252 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
253 
254 #ifdef HFC_REGISTER_DEBUG
255 #define HFC_outb(hc, reg, val)                                  \
256         (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
257 #define HFC_outb_nodebug(hc, reg, val)                                  \
258         (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
259 #define HFC_inb(hc, reg)                                \
260         (hc->HFC_inb(hc, reg, __func__, __LINE__))
261 #define HFC_inb_nodebug(hc, reg)                                \
262         (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
263 #define HFC_inw(hc, reg)                                \
264         (hc->HFC_inw(hc, reg, __func__, __LINE__))
265 #define HFC_inw_nodebug(hc, reg)                                \
266         (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
267 #define HFC_wait(hc)                            \
268         (hc->HFC_wait(hc, __func__, __LINE__))
269 #define HFC_wait_nodebug(hc)                            \
270         (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
271 #else
272 #define HFC_outb(hc, reg, val)          (hc->HFC_outb(hc, reg, val))
273 #define HFC_outb_nodebug(hc, reg, val)  (hc->HFC_outb_nodebug(hc, reg, val))
274 #define HFC_inb(hc, reg)                (hc->HFC_inb(hc, reg))
275 #define HFC_inb_nodebug(hc, reg)        (hc->HFC_inb_nodebug(hc, reg))
276 #define HFC_inw(hc, reg)                (hc->HFC_inw(hc, reg))
277 #define HFC_inw_nodebug(hc, reg)        (hc->HFC_inw_nodebug(hc, reg))
278 #define HFC_wait(hc)                    (hc->HFC_wait(hc))
279 #define HFC_wait_nodebug(hc)            (hc->HFC_wait_nodebug(hc))
280 #endif
281 
282 #ifdef CONFIG_MISDN_HFCMULTI_8xx
283 #include "hfc_multi_8xx.h"
284 #endif
285 
286 /* HFC_IO_MODE_PCIMEM */
287 static void
288 #ifdef HFC_REGISTER_DEBUG
289 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
290                 const char *function, int line)
291 #else
292         HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
293 #endif
294 {
295         writeb(val, hc->pci_membase + reg);
296 }
297 static u_char
298 #ifdef HFC_REGISTER_DEBUG
299 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
300 #else
301         HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
302 #endif
303 {
304         return readb(hc->pci_membase + reg);
305 }
306 static u_short
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
309 #else
310         HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
311 #endif
312 {
313         return readw(hc->pci_membase + reg);
314 }
315 static void
316 #ifdef HFC_REGISTER_DEBUG
317 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
318 #else
319         HFC_wait_pcimem(struct hfc_multi *hc)
320 #endif
321 {
322         while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
323                 cpu_relax();
324 }
325 
326 /* HFC_IO_MODE_REGIO */
327 static void
328 #ifdef HFC_REGISTER_DEBUG
329 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
330                const char *function, int line)
331 #else
332         HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
333 #endif
334 {
335         outb(reg, hc->pci_iobase + 4);
336         outb(val, hc->pci_iobase);
337 }
338 static u_char
339 #ifdef HFC_REGISTER_DEBUG
340 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
341 #else
342         HFC_inb_regio(struct hfc_multi *hc, u_char reg)
343 #endif
344 {
345         outb(reg, hc->pci_iobase + 4);
346         return inb(hc->pci_iobase);
347 }
348 static u_short
349 #ifdef HFC_REGISTER_DEBUG
350 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
351 #else
352         HFC_inw_regio(struct hfc_multi *hc, u_char reg)
353 #endif
354 {
355         outb(reg, hc->pci_iobase + 4);
356         return inw(hc->pci_iobase);
357 }
358 static void
359 #ifdef HFC_REGISTER_DEBUG
360 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
361 #else
362         HFC_wait_regio(struct hfc_multi *hc)
363 #endif
364 {
365         outb(R_STATUS, hc->pci_iobase + 4);
366         while (inb(hc->pci_iobase) & V_BUSY)
367                 cpu_relax();
368 }
369 
370 #ifdef HFC_REGISTER_DEBUG
371 static void
372 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
373                const char *function, int line)
374 {
375         char regname[256] = "", bits[9] = "xxxxxxxx";
376         int i;
377 
378         i = -1;
379         while (hfc_register_names[++i].name) {
380                 if (hfc_register_names[i].reg == reg)
381                         strcat(regname, hfc_register_names[i].name);
382         }
383         if (regname[0] == '\0')
384                 strcpy(regname, "register");
385 
386         bits[7] = '' + (!!(val & 1));
387         bits[6] = '' + (!!(val & 2));
388         bits[5] = '' + (!!(val & 4));
389         bits[4] = '' + (!!(val & 8));
390         bits[3] = '' + (!!(val & 16));
391         bits[2] = '' + (!!(val & 32));
392         bits[1] = '' + (!!(val & 64));
393         bits[0] = '' + (!!(val & 128));
394         printk(KERN_DEBUG
395                "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
396                hc->id, reg, regname, val, bits, function, line);
397         HFC_outb_nodebug(hc, reg, val);
398 }
399 static u_char
400 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
401 {
402         char regname[256] = "", bits[9] = "xxxxxxxx";
403         u_char val = HFC_inb_nodebug(hc, reg);
404         int i;
405 
406         i = 0;
407         while (hfc_register_names[i++].name)
408                 ;
409         while (hfc_register_names[++i].name) {
410                 if (hfc_register_names[i].reg == reg)
411                         strcat(regname, hfc_register_names[i].name);
412         }
413         if (regname[0] == '\0')
414                 strcpy(regname, "register");
415 
416         bits[7] = '' + (!!(val & 1));
417         bits[6] = '' + (!!(val & 2));
418         bits[5] = '' + (!!(val & 4));
419         bits[4] = '' + (!!(val & 8));
420         bits[3] = '' + (!!(val & 16));
421         bits[2] = '' + (!!(val & 32));
422         bits[1] = '' + (!!(val & 64));
423         bits[0] = '' + (!!(val & 128));
424         printk(KERN_DEBUG
425                "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
426                hc->id, reg, regname, val, bits, function, line);
427         return val;
428 }
429 static u_short
430 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
431 {
432         char regname[256] = "";
433         u_short val = HFC_inw_nodebug(hc, reg);
434         int i;
435 
436         i = 0;
437         while (hfc_register_names[i++].name)
438                 ;
439         while (hfc_register_names[++i].name) {
440                 if (hfc_register_names[i].reg == reg)
441                         strcat(regname, hfc_register_names[i].name);
442         }
443         if (regname[0] == '\0')
444                 strcpy(regname, "register");
445 
446         printk(KERN_DEBUG
447                "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
448                hc->id, reg, regname, val, function, line);
449         return val;
450 }
451 static void
452 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
453 {
454         printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
455                hc->id, function, line);
456         HFC_wait_nodebug(hc);
457 }
458 #endif
459 
460 /* write fifo data (REGIO) */
461 static void
462 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
463 {
464         outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
465         while (len >> 2) {
466                 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
467                 data += 4;
468                 len -= 4;
469         }
470         while (len >> 1) {
471                 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
472                 data += 2;
473                 len -= 2;
474         }
475         while (len) {
476                 outb(*data, hc->pci_iobase);
477                 data++;
478                 len--;
479         }
480 }
481 /* write fifo data (PCIMEM) */
482 static void
483 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
484 {
485         while (len >> 2) {
486                 writel(cpu_to_le32(*(u32 *)data),
487                        hc->pci_membase + A_FIFO_DATA0);
488                 data += 4;
489                 len -= 4;
490         }
491         while (len >> 1) {
492                 writew(cpu_to_le16(*(u16 *)data),
493                        hc->pci_membase + A_FIFO_DATA0);
494                 data += 2;
495                 len -= 2;
496         }
497         while (len) {
498                 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
499                 data++;
500                 len--;
501         }
502 }
503 
504 /* read fifo data (REGIO) */
505 static void
506 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
507 {
508         outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
509         while (len >> 2) {
510                 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
511                 data += 4;
512                 len -= 4;
513         }
514         while (len >> 1) {
515                 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
516                 data += 2;
517                 len -= 2;
518         }
519         while (len) {
520                 *data = inb(hc->pci_iobase);
521                 data++;
522                 len--;
523         }
524 }
525 
526 /* read fifo data (PCIMEM) */
527 static void
528 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
529 {
530         while (len >> 2) {
531                 *(u32 *)data =
532                         le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
533                 data += 4;
534                 len -= 4;
535         }
536         while (len >> 1) {
537                 *(u16 *)data =
538                         le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
539                 data += 2;
540                 len -= 2;
541         }
542         while (len) {
543                 *data = readb(hc->pci_membase + A_FIFO_DATA0);
544                 data++;
545                 len--;
546         }
547 }
548 
549 static void
550 enable_hwirq(struct hfc_multi *hc)
551 {
552         hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
553         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
554 }
555 
556 static void
557 disable_hwirq(struct hfc_multi *hc)
558 {
559         hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
560         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
561 }
562 
563 #define NUM_EC 2
564 #define MAX_TDM_CHAN 32
565 
566 
567 inline void
568 enablepcibridge(struct hfc_multi *c)
569 {
570         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
571 }
572 
573 inline void
574 disablepcibridge(struct hfc_multi *c)
575 {
576         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
577 }
578 
579 inline unsigned char
580 readpcibridge(struct hfc_multi *hc, unsigned char address)
581 {
582         unsigned short cipv;
583         unsigned char data;
584 
585         if (!hc->pci_iobase)
586                 return 0;
587 
588         /* slow down a PCI read access by 1 PCI clock cycle */
589         HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
590 
591         if (address == 0)
592                 cipv = 0x4000;
593         else
594                 cipv = 0x5800;
595 
596         /* select local bridge port address by writing to CIP port */
597         /* data = HFC_inb(c, cipv); * was _io before */
598         outw(cipv, hc->pci_iobase + 4);
599         data = inb(hc->pci_iobase);
600 
601         /* restore R_CTRL for normal PCI read cycle speed */
602         HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
603 
604         return data;
605 }
606 
607 inline void
608 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
609 {
610         unsigned short cipv;
611         unsigned int datav;
612 
613         if (!hc->pci_iobase)
614                 return;
615 
616         if (address == 0)
617                 cipv = 0x4000;
618         else
619                 cipv = 0x5800;
620 
621         /* select local bridge port address by writing to CIP port */
622         outw(cipv, hc->pci_iobase + 4);
623         /* define a 32 bit dword with 4 identical bytes for write sequence */
624         datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
625                 ((__u32) data << 24);
626 
627         /*
628          * write this 32 bit dword to the bridge data port
629          * this will initiate a write sequence of up to 4 writes to the same
630          * address on the local bus interface the number of write accesses
631          * is undefined but >=1 and depends on the next PCI transaction
632          * during write sequence on the local bus
633          */
634         outl(datav, hc->pci_iobase);
635 }
636 
637 inline void
638 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
639 {
640         /* Do data pin read low byte */
641         HFC_outb(hc, R_GPIO_OUT1, reg);
642 }
643 
644 inline void
645 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
646 {
647         cpld_set_reg(hc, reg);
648 
649         enablepcibridge(hc);
650         writepcibridge(hc, 1, val);
651         disablepcibridge(hc);
652 
653         return;
654 }
655 
656 inline unsigned char
657 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
658 {
659         unsigned char bytein;
660 
661         cpld_set_reg(hc, reg);
662 
663         /* Do data pin read low byte */
664         HFC_outb(hc, R_GPIO_OUT1, reg);
665 
666         enablepcibridge(hc);
667         bytein = readpcibridge(hc, 1);
668         disablepcibridge(hc);
669 
670         return bytein;
671 }
672 
673 inline void
674 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
675 {
676         cpld_write_reg(hc, 0, 0xff & addr);
677         cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
678 }
679 
680 inline unsigned short
681 vpm_read_address(struct hfc_multi *c)
682 {
683         unsigned short addr;
684         unsigned short highbit;
685 
686         addr = cpld_read_reg(c, 0);
687         highbit = cpld_read_reg(c, 1);
688 
689         addr = addr | (highbit << 8);
690 
691         return addr & 0x1ff;
692 }
693 
694 inline unsigned char
695 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
696 {
697         unsigned char res;
698 
699         vpm_write_address(c, addr);
700 
701         if (!which)
702                 cpld_set_reg(c, 2);
703         else
704                 cpld_set_reg(c, 3);
705 
706         enablepcibridge(c);
707         res = readpcibridge(c, 1);
708         disablepcibridge(c);
709 
710         cpld_set_reg(c, 0);
711 
712         return res;
713 }
714 
715 inline void
716 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
717         unsigned char data)
718 {
719         vpm_write_address(c, addr);
720 
721         enablepcibridge(c);
722 
723         if (!which)
724                 cpld_set_reg(c, 2);
725         else
726                 cpld_set_reg(c, 3);
727 
728         writepcibridge(c, 1, data);
729 
730         cpld_set_reg(c, 0);
731 
732         disablepcibridge(c);
733 
734         {
735                 unsigned char regin;
736                 regin = vpm_in(c, which, addr);
737                 if (regin != data)
738                         printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
739                                "0x%x\n", data, addr, regin);
740         }
741 
742 }
743 
744 
745 static void
746 vpm_init(struct hfc_multi *wc)
747 {
748         unsigned char reg;
749         unsigned int mask;
750         unsigned int i, x, y;
751         unsigned int ver;
752 
753         for (x = 0; x < NUM_EC; x++) {
754                 /* Setup GPIO's */
755                 if (!x) {
756                         ver = vpm_in(wc, x, 0x1a0);
757                         printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
758                 }
759 
760                 for (y = 0; y < 4; y++) {
761                         vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
762                         vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
763                         vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
764                 }
765 
766                 /* Setup TDM path - sets fsync and tdm_clk as inputs */
767                 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
768                 vpm_out(wc, x, 0x1a3, reg & ~2);
769 
770                 /* Setup Echo length (256 taps) */
771                 vpm_out(wc, x, 0x022, 1);
772                 vpm_out(wc, x, 0x023, 0xff);
773 
774                 /* Setup timeslots */
775                 vpm_out(wc, x, 0x02f, 0x00);
776                 mask = 0x02020202 << (x * 4);
777 
778                 /* Setup the tdm channel masks for all chips */
779                 for (i = 0; i < 4; i++)
780                         vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
781 
782                 /* Setup convergence rate */
783                 printk(KERN_DEBUG "VPM: A-law mode\n");
784                 reg = 0x00 | 0x10 | 0x01;
785                 vpm_out(wc, x, 0x20, reg);
786                 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
787                 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
788 
789                 vpm_out(wc, x, 0x24, 0x02);
790                 reg = vpm_in(wc, x, 0x24);
791                 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
792 
793                 /* Initialize echo cans */
794                 for (i = 0; i < MAX_TDM_CHAN; i++) {
795                         if (mask & (0x00000001 << i))
796                                 vpm_out(wc, x, i, 0x00);
797                 }
798 
799                 /*
800                  * ARM arch at least disallows a udelay of
801                  * more than 2ms... it gives a fake "__bad_udelay"
802                  * reference at link-time.
803                  * long delays in kernel code are pretty sucky anyway
804                  * for now work around it using 5 x 2ms instead of 1 x 10ms
805                  */
806 
807                 udelay(2000);
808                 udelay(2000);
809                 udelay(2000);
810                 udelay(2000);
811                 udelay(2000);
812 
813                 /* Put in bypass mode */
814                 for (i = 0; i < MAX_TDM_CHAN; i++) {
815                         if (mask & (0x00000001 << i))
816                                 vpm_out(wc, x, i, 0x01);
817                 }
818 
819                 /* Enable bypass */
820                 for (i = 0; i < MAX_TDM_CHAN; i++) {
821                         if (mask & (0x00000001 << i))
822                                 vpm_out(wc, x, 0x78 + i, 0x01);
823                 }
824 
825         }
826 }
827 
828 #ifdef UNUSED
829 static void
830 vpm_check(struct hfc_multi *hctmp)
831 {
832         unsigned char gpi2;
833 
834         gpi2 = HFC_inb(hctmp, R_GPI_IN2);
835 
836         if ((gpi2 & 0x3) != 0x3)
837                 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
838 }
839 #endif /* UNUSED */
840 
841 
842 /*
843  * Interface to enable/disable the HW Echocan
844  *
845  * these functions are called within a spin_lock_irqsave on
846  * the channel instance lock, so we are not disturbed by irqs
847  *
848  * we can later easily change the interface to make  other
849  * things configurable, for now we configure the taps
850  *
851  */
852 
853 static void
854 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
855 {
856         unsigned int timeslot;
857         unsigned int unit;
858         struct bchannel *bch = hc->chan[ch].bch;
859 #ifdef TXADJ
860         int txadj = -4;
861         struct sk_buff *skb;
862 #endif
863         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864                 return;
865 
866         if (!bch)
867                 return;
868 
869 #ifdef TXADJ
870         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871                                sizeof(int), &txadj, GFP_ATOMIC);
872         if (skb)
873                 recv_Bchannel_skb(bch, skb);
874 #endif
875 
876         timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
877         unit = ch % 4;
878 
879         printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
880                taps, timeslot);
881 
882         vpm_out(hc, unit, timeslot, 0x7e);
883 }
884 
885 static void
886 vpm_echocan_off(struct hfc_multi *hc, int ch)
887 {
888         unsigned int timeslot;
889         unsigned int unit;
890         struct bchannel *bch = hc->chan[ch].bch;
891 #ifdef TXADJ
892         int txadj = 0;
893         struct sk_buff *skb;
894 #endif
895 
896         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
897                 return;
898 
899         if (!bch)
900                 return;
901 
902 #ifdef TXADJ
903         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
904                                sizeof(int), &txadj, GFP_ATOMIC);
905         if (skb)
906                 recv_Bchannel_skb(bch, skb);
907 #endif
908 
909         timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
910         unit = ch % 4;
911 
912         printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
913                timeslot);
914         /* FILLME */
915         vpm_out(hc, unit, timeslot, 0x01);
916 }
917 
918 
919 /*
920  * Speech Design resync feature
921  * NOTE: This is called sometimes outside interrupt handler.
922  * We must lock irqsave, so no other interrupt (other card) will occur!
923  * Also multiple interrupts may nest, so must lock each access (lists, card)!
924  */
925 static inline void
926 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
927 {
928         struct hfc_multi *hc, *next, *pcmmaster = NULL;
929         void __iomem *plx_acc_32;
930         u_int pv;
931         u_long flags;
932 
933         spin_lock_irqsave(&HFClock, flags);
934         spin_lock(&plx_lock); /* must be locked inside other locks */
935 
936         if (debug & DEBUG_HFCMULTI_PLXSD)
937                 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
938                        __func__, syncmaster);
939 
940         /* select new master */
941         if (newmaster) {
942                 if (debug & DEBUG_HFCMULTI_PLXSD)
943                         printk(KERN_DEBUG "using provided controller\n");
944         } else {
945                 list_for_each_entry_safe(hc, next, &HFClist, list) {
946                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
947                                 if (hc->syncronized) {
948                                         newmaster = hc;
949                                         break;
950                                 }
951                         }
952                 }
953         }
954 
955         /* Disable sync of all cards */
956         list_for_each_entry_safe(hc, next, &HFClist, list) {
957                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
958                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
959                         pv = readl(plx_acc_32);
960                         pv &= ~PLX_SYNC_O_EN;
961                         writel(pv, plx_acc_32);
962                         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
963                                 pcmmaster = hc;
964                                 if (hc->ctype == HFC_TYPE_E1) {
965                                         if (debug & DEBUG_HFCMULTI_PLXSD)
966                                                 printk(KERN_DEBUG
967                                                        "Schedule SYNC_I\n");
968                                         hc->e1_resync |= 1; /* get SYNC_I */
969                                 }
970                         }
971                 }
972         }
973 
974         if (newmaster) {
975                 hc = newmaster;
976                 if (debug & DEBUG_HFCMULTI_PLXSD)
977                         printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
978                                "interface.\n", hc->id, hc);
979                 /* Enable new sync master */
980                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
981                 pv = readl(plx_acc_32);
982                 pv |= PLX_SYNC_O_EN;
983                 writel(pv, plx_acc_32);
984                 /* switch to jatt PLL, if not disabled by RX_SYNC */
985                 if (hc->ctype == HFC_TYPE_E1
986                     && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
987                         if (debug & DEBUG_HFCMULTI_PLXSD)
988                                 printk(KERN_DEBUG "Schedule jatt PLL\n");
989                         hc->e1_resync |= 2; /* switch to jatt */
990                 }
991         } else {
992                 if (pcmmaster) {
993                         hc = pcmmaster;
994                         if (debug & DEBUG_HFCMULTI_PLXSD)
995                                 printk(KERN_DEBUG
996                                        "id=%d (0x%p) = PCM master syncronized "
997                                        "with QUARTZ\n", hc->id, hc);
998                         if (hc->ctype == HFC_TYPE_E1) {
999                                 /* Use the crystal clock for the PCM
1000                                    master card */
1001                                 if (debug & DEBUG_HFCMULTI_PLXSD)
1002                                         printk(KERN_DEBUG
1003                                                "Schedule QUARTZ for HFC-E1\n");
1004                                 hc->e1_resync |= 4; /* switch quartz */
1005                         } else {
1006                                 if (debug & DEBUG_HFCMULTI_PLXSD)
1007                                         printk(KERN_DEBUG
1008                                                "QUARTZ is automatically "
1009                                                "enabled by HFC-%dS\n", hc->ctype);
1010                         }
1011                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1012                         pv = readl(plx_acc_32);
1013                         pv |= PLX_SYNC_O_EN;
1014                         writel(pv, plx_acc_32);
1015                 } else
1016                         if (!rm)
1017                                 printk(KERN_ERR "%s no pcm master, this MUST "
1018                                        "not happen!\n", __func__);
1019         }
1020         syncmaster = newmaster;
1021 
1022         spin_unlock(&plx_lock);
1023         spin_unlock_irqrestore(&HFClock, flags);
1024 }
1025 
1026 /* This must be called AND hc must be locked irqsave!!! */
1027 inline void
1028 plxsd_checksync(struct hfc_multi *hc, int rm)
1029 {
1030         if (hc->syncronized) {
1031                 if (syncmaster == NULL) {
1032                         if (debug & DEBUG_HFCMULTI_PLXSD)
1033                                 printk(KERN_DEBUG "%s: GOT sync on card %d"
1034                                        " (id=%d)\n", __func__, hc->id + 1,
1035                                        hc->id);
1036                         hfcmulti_resync(hc, hc, rm);
1037                 }
1038         } else {
1039                 if (syncmaster == hc) {
1040                         if (debug & DEBUG_HFCMULTI_PLXSD)
1041                                 printk(KERN_DEBUG "%s: LOST sync on card %d"
1042                                        " (id=%d)\n", __func__, hc->id + 1,
1043                                        hc->id);
1044                         hfcmulti_resync(hc, NULL, rm);
1045                 }
1046         }
1047 }
1048 
1049 
1050 /*
1051  * free hardware resources used by driver
1052  */
1053 static void
1054 release_io_hfcmulti(struct hfc_multi *hc)
1055 {
1056         void __iomem *plx_acc_32;
1057         u_int   pv;
1058         u_long  plx_flags;
1059 
1060         if (debug & DEBUG_HFCMULTI_INIT)
1061                 printk(KERN_DEBUG "%s: entered\n", __func__);
1062 
1063         /* soft reset also masks all interrupts */
1064         hc->hw.r_cirm |= V_SRES;
1065         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1066         udelay(1000);
1067         hc->hw.r_cirm &= ~V_SRES;
1068         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1069         udelay(1000); /* instead of 'wait' that may cause locking */
1070 
1071         /* release Speech Design card, if PLX was initialized */
1072         if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1073                 if (debug & DEBUG_HFCMULTI_PLXSD)
1074                         printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1075                                __func__, hc->id + 1);
1076                 spin_lock_irqsave(&plx_lock, plx_flags);
1077                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1078                 writel(PLX_GPIOC_INIT, plx_acc_32);
1079                 pv = readl(plx_acc_32);
1080                 /* Termination off */
1081                 pv &= ~PLX_TERM_ON;
1082                 /* Disconnect the PCM */
1083                 pv |= PLX_SLAVE_EN_N;
1084                 pv &= ~PLX_MASTER_EN;
1085                 pv &= ~PLX_SYNC_O_EN;
1086                 /* Put the DSP in Reset */
1087                 pv &= ~PLX_DSP_RES_N;
1088                 writel(pv, plx_acc_32);
1089                 if (debug & DEBUG_HFCMULTI_INIT)
1090                         printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1091                                __func__, pv);
1092                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1093         }
1094 
1095         /* disable memory mapped ports / io ports */
1096         test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1097         if (hc->pci_dev)
1098                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1099         if (hc->pci_membase)
1100                 iounmap(hc->pci_membase);
1101         if (hc->plx_membase)
1102                 iounmap(hc->plx_membase);
1103         if (hc->pci_iobase)
1104                 release_region(hc->pci_iobase, 8);
1105         if (hc->xhfc_membase)
1106                 iounmap((void *)hc->xhfc_membase);
1107 
1108         if (hc->pci_dev) {
1109                 pci_disable_device(hc->pci_dev);
1110                 pci_set_drvdata(hc->pci_dev, NULL);
1111         }
1112         if (debug & DEBUG_HFCMULTI_INIT)
1113                 printk(KERN_DEBUG "%s: done\n", __func__);
1114 }
1115 
1116 /*
1117  * function called to reset the HFC chip. A complete software reset of chip
1118  * and fifos is done. All configuration of the chip is done.
1119  */
1120 
1121 static int
1122 init_chip(struct hfc_multi *hc)
1123 {
1124         u_long                  flags, val, val2 = 0, rev;
1125         int                     i, err = 0;
1126         u_char                  r_conf_en, rval;
1127         void __iomem            *plx_acc_32;
1128         u_int                   pv;
1129         u_long                  plx_flags, hfc_flags;
1130         int                     plx_count;
1131         struct hfc_multi        *pos, *next, *plx_last_hc;
1132 
1133         spin_lock_irqsave(&hc->lock, flags);
1134         /* reset all registers */
1135         memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1136 
1137         /* revision check */
1138         if (debug & DEBUG_HFCMULTI_INIT)
1139                 printk(KERN_DEBUG "%s: entered\n", __func__);
1140         val = HFC_inb(hc, R_CHIP_ID);
1141         if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1142             (val >> 1) != 0x31) {
1143                 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1144                 err = -EIO;
1145                 goto out;
1146         }
1147         rev = HFC_inb(hc, R_CHIP_RV);
1148         printk(KERN_INFO
1149                "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1150                val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1151                " (old FIFO handling)" : "");
1152         if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1153                 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1154                 printk(KERN_WARNING
1155                        "HFC_multi: NOTE: Your chip is revision 0, "
1156                        "ask Cologne Chip for update. Newer chips "
1157                        "have a better FIFO handling. Old chips "
1158                        "still work but may have slightly lower "
1159                        "HDLC transmit performance.\n");
1160         }
1161         if (rev > 1) {
1162                 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1163                        "consider chip revision = %ld. The chip / "
1164                        "bridge may not work.\n", rev);
1165         }
1166 
1167         /* set s-ram size */
1168         hc->Flen = 0x10;
1169         hc->Zmin = 0x80;
1170         hc->Zlen = 384;
1171         hc->DTMFbase = 0x1000;
1172         if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1173                 if (debug & DEBUG_HFCMULTI_INIT)
1174                         printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1175                                __func__);
1176                 hc->hw.r_ctrl |= V_EXT_RAM;
1177                 hc->hw.r_ram_sz = 1;
1178                 hc->Flen = 0x20;
1179                 hc->Zmin = 0xc0;
1180                 hc->Zlen = 1856;
1181                 hc->DTMFbase = 0x2000;
1182         }
1183         if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1184                 if (debug & DEBUG_HFCMULTI_INIT)
1185                         printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1186                                __func__);
1187                 hc->hw.r_ctrl |= V_EXT_RAM;
1188                 hc->hw.r_ram_sz = 2;
1189                 hc->Flen = 0x20;
1190                 hc->Zmin = 0xc0;
1191                 hc->Zlen = 8000;
1192                 hc->DTMFbase = 0x2000;
1193         }
1194         if (hc->ctype == HFC_TYPE_XHFC) {
1195                 hc->Flen = 0x8;
1196                 hc->Zmin = 0x0;
1197                 hc->Zlen = 64;
1198                 hc->DTMFbase = 0x0;
1199         }
1200         hc->max_trans = poll << 1;
1201         if (hc->max_trans > hc->Zlen)
1202                 hc->max_trans = hc->Zlen;
1203 
1204         /* Speech Design PLX bridge */
1205         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1206                 if (debug & DEBUG_HFCMULTI_PLXSD)
1207                         printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1208                                __func__, hc->id + 1);
1209                 spin_lock_irqsave(&plx_lock, plx_flags);
1210                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1211                 writel(PLX_GPIOC_INIT, plx_acc_32);
1212                 pv = readl(plx_acc_32);
1213                 /* The first and the last cards are terminating the PCM bus */
1214                 pv |= PLX_TERM_ON; /* hc is currently the last */
1215                 /* Disconnect the PCM */
1216                 pv |= PLX_SLAVE_EN_N;
1217                 pv &= ~PLX_MASTER_EN;
1218                 pv &= ~PLX_SYNC_O_EN;
1219                 /* Put the DSP in Reset */
1220                 pv &= ~PLX_DSP_RES_N;
1221                 writel(pv, plx_acc_32);
1222                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1223                 if (debug & DEBUG_HFCMULTI_INIT)
1224                         printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1225                                __func__, pv);
1226                 /*
1227                  * If we are the 3rd PLXSD card or higher, we must turn
1228                  * termination of last PLXSD card off.
1229                  */
1230                 spin_lock_irqsave(&HFClock, hfc_flags);
1231                 plx_count = 0;
1232                 plx_last_hc = NULL;
1233                 list_for_each_entry_safe(pos, next, &HFClist, list) {
1234                         if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1235                                 plx_count++;
1236                                 if (pos != hc)
1237                                         plx_last_hc = pos;
1238                         }
1239                 }
1240                 if (plx_count >= 3) {
1241                         if (debug & DEBUG_HFCMULTI_PLXSD)
1242                                 printk(KERN_DEBUG "%s: card %d is between, so "
1243                                        "we disable termination\n",
1244                                        __func__, plx_last_hc->id + 1);
1245                         spin_lock_irqsave(&plx_lock, plx_flags);
1246                         plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1247                         pv = readl(plx_acc_32);
1248                         pv &= ~PLX_TERM_ON;
1249                         writel(pv, plx_acc_32);
1250                         spin_unlock_irqrestore(&plx_lock, plx_flags);
1251                         if (debug & DEBUG_HFCMULTI_INIT)
1252                                 printk(KERN_DEBUG
1253                                        "%s: term off: PLX_GPIO=%x\n",
1254                                        __func__, pv);
1255                 }
1256                 spin_unlock_irqrestore(&HFClock, hfc_flags);
1257                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1258         }
1259 
1260         if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1261                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1262 
1263         /* we only want the real Z2 read-pointer for revision > 0 */
1264         if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1265                 hc->hw.r_ram_sz |= V_FZ_MD;
1266 
1267         /* select pcm mode */
1268         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1269                 if (debug & DEBUG_HFCMULTI_INIT)
1270                         printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1271                                __func__);
1272         } else
1273                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1274                         if (debug & DEBUG_HFCMULTI_INIT)
1275                                 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1276                                        __func__);
1277                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1278                 } else {
1279                         if (debug & DEBUG_HFCMULTI_INIT)
1280                                 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1281                                        __func__);
1282                 }
1283 
1284         /* soft reset */
1285         HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1286         if (hc->ctype == HFC_TYPE_XHFC)
1287                 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1288                          0x11 /* 16 Bytes TX/RX */);
1289         else
1290                 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1291         HFC_outb(hc, R_FIFO_MD, 0);
1292         if (hc->ctype == HFC_TYPE_XHFC)
1293                 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1294         else
1295                 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1296                         | V_RLD_EPR;
1297         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1298         udelay(100);
1299         hc->hw.r_cirm = 0;
1300         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1301         udelay(100);
1302         if (hc->ctype != HFC_TYPE_XHFC)
1303                 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1304 
1305         /* Speech Design PLX bridge pcm and sync mode */
1306         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1307                 spin_lock_irqsave(&plx_lock, plx_flags);
1308                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1309                 pv = readl(plx_acc_32);
1310                 /* Connect PCM */
1311                 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1312                         pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1313                         pv |= PLX_SYNC_O_EN;
1314                         if (debug & DEBUG_HFCMULTI_INIT)
1315                                 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1316                                        __func__, pv);
1317                 } else {
1318                         pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1319                         pv &= ~PLX_SYNC_O_EN;
1320                         if (debug & DEBUG_HFCMULTI_INIT)
1321                                 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1322                                        __func__, pv);
1323                 }
1324                 writel(pv, plx_acc_32);
1325                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1326         }
1327 
1328         /* PCM setup */
1329         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1330         if (hc->slots == 32)
1331                 HFC_outb(hc, R_PCM_MD1, 0x00);
1332         if (hc->slots == 64)
1333                 HFC_outb(hc, R_PCM_MD1, 0x10);
1334         if (hc->slots == 128)
1335                 HFC_outb(hc, R_PCM_MD1, 0x20);
1336         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1337         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1338                 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1339         else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1340                 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1341         else
1342                 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1343         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1344         for (i = 0; i < 256; i++) {
1345                 HFC_outb_nodebug(hc, R_SLOT, i);
1346                 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1347                 if (hc->ctype != HFC_TYPE_XHFC)
1348                         HFC_outb_nodebug(hc, A_CONF, 0);
1349                 hc->slot_owner[i] = -1;
1350         }
1351 
1352         /* set clock speed */
1353         if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1354                 if (debug & DEBUG_HFCMULTI_INIT)
1355                         printk(KERN_DEBUG
1356                                "%s: setting double clock\n", __func__);
1357                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1358         }
1359 
1360         if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1361                 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1362 
1363         /* B410P GPIO */
1364         if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1365                 printk(KERN_NOTICE "Setting GPIOs\n");
1366                 HFC_outb(hc, R_GPIO_SEL, 0x30);
1367                 HFC_outb(hc, R_GPIO_EN1, 0x3);
1368                 udelay(1000);
1369                 printk(KERN_NOTICE "calling vpm_init\n");
1370                 vpm_init(hc);
1371         }
1372 
1373         /* check if R_F0_CNT counts (8 kHz frame count) */
1374         val = HFC_inb(hc, R_F0_CNTL);
1375         val += HFC_inb(hc, R_F0_CNTH) << 8;
1376         if (debug & DEBUG_HFCMULTI_INIT)
1377                 printk(KERN_DEBUG
1378                        "HFC_multi F0_CNT %ld after reset\n", val);
1379         spin_unlock_irqrestore(&hc->lock, flags);
1380         set_current_state(TASK_UNINTERRUPTIBLE);
1381         schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1382         spin_lock_irqsave(&hc->lock, flags);
1383         val2 = HFC_inb(hc, R_F0_CNTL);
1384         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1385         if (debug & DEBUG_HFCMULTI_INIT)
1386                 printk(KERN_DEBUG
1387                        "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1388                        val2);
1389         if (val2 >= val + 8) { /* 1 ms */
1390                 /* it counts, so we keep the pcm mode */
1391                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1392                         printk(KERN_INFO "controller is PCM bus MASTER\n");
1393                 else
1394                         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1395                                 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1396                         else {
1397                                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1398                                 printk(KERN_INFO "controller is PCM bus SLAVE "
1399                                        "(auto detected)\n");
1400                         }
1401         } else {
1402                 /* does not count */
1403                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1404                 controller_fail:
1405                         printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1406                                "pulse. Seems that controller fails.\n");
1407                         err = -EIO;
1408                         goto out;
1409                 }
1410                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1411                         printk(KERN_INFO "controller is PCM bus SLAVE "
1412                                "(ignoring missing PCM clock)\n");
1413                 } else {
1414                         /* only one pcm master */
1415                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1416                             && plxsd_master) {
1417                                 printk(KERN_ERR "HFC_multi ERROR, no clock "
1418                                        "on another Speech Design card found. "
1419                                        "Please be sure to connect PCM cable.\n");
1420                                 err = -EIO;
1421                                 goto out;
1422                         }
1423                         /* retry with master clock */
1424                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1425                                 spin_lock_irqsave(&plx_lock, plx_flags);
1426                                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1427                                 pv = readl(plx_acc_32);
1428                                 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1429                                 pv |= PLX_SYNC_O_EN;
1430                                 writel(pv, plx_acc_32);
1431                                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1432                                 if (debug & DEBUG_HFCMULTI_INIT)
1433                                         printk(KERN_DEBUG "%s: master: "
1434                                                "PLX_GPIO=%x\n", __func__, pv);
1435                         }
1436                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1437                         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1438                         spin_unlock_irqrestore(&hc->lock, flags);
1439                         set_current_state(TASK_UNINTERRUPTIBLE);
1440                         schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1441                         spin_lock_irqsave(&hc->lock, flags);
1442                         val2 = HFC_inb(hc, R_F0_CNTL);
1443                         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1444                         if (debug & DEBUG_HFCMULTI_INIT)
1445                                 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1446                                        "10 ms (2nd try)\n", val2);
1447                         if (val2 >= val + 8) { /* 1 ms */
1448                                 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1449                                                  &hc->chip);
1450                                 printk(KERN_INFO "controller is PCM bus MASTER "
1451                                        "(auto detected)\n");
1452                         } else
1453                                 goto controller_fail;
1454                 }
1455         }
1456 
1457         /* Release the DSP Reset */
1458         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1459                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1460                         plxsd_master = 1;
1461                 spin_lock_irqsave(&plx_lock, plx_flags);
1462                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1463                 pv = readl(plx_acc_32);
1464                 pv |=  PLX_DSP_RES_N;
1465                 writel(pv, plx_acc_32);
1466                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1467                 if (debug & DEBUG_HFCMULTI_INIT)
1468                         printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1469                                __func__, pv);
1470         }
1471 
1472         /* pcm id */
1473         if (hc->pcm)
1474                 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1475                        hc->pcm);
1476         else {
1477                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1478                     || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1479                         PCM_cnt++; /* SD has proprietary bridging */
1480                 }
1481                 hc->pcm = PCM_cnt;
1482                 printk(KERN_INFO "controller has PCM BUS ID %d "
1483                        "(auto selected)\n", hc->pcm);
1484         }
1485 
1486         /* set up timer */
1487         HFC_outb(hc, R_TI_WD, poll_timer);
1488         hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1489 
1490         /* set E1 state machine IRQ */
1491         if (hc->ctype == HFC_TYPE_E1)
1492                 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1493 
1494         /* set DTMF detection */
1495         if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1496                 if (debug & DEBUG_HFCMULTI_INIT)
1497                         printk(KERN_DEBUG "%s: enabling DTMF detection "
1498                                "for all B-channel\n", __func__);
1499                 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1500                 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1501                         hc->hw.r_dtmf |= V_ULAW_SEL;
1502                 HFC_outb(hc, R_DTMF_N, 102 - 1);
1503                 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1504         }
1505 
1506         /* conference engine */
1507         if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1508                 r_conf_en = V_CONF_EN | V_ULAW;
1509         else
1510                 r_conf_en = V_CONF_EN;
1511         if (hc->ctype != HFC_TYPE_XHFC)
1512                 HFC_outb(hc, R_CONF_EN, r_conf_en);
1513 
1514         /* setting leds */
1515         switch (hc->leds) {
1516         case 1: /* HFC-E1 OEM */
1517                 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1518                         HFC_outb(hc, R_GPIO_SEL, 0x32);
1519                 else
1520                         HFC_outb(hc, R_GPIO_SEL, 0x30);
1521 
1522                 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1523                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1524 
1525                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1526                 break;
1527 
1528         case 2: /* HFC-4S OEM */
1529         case 3:
1530                 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1531                 HFC_outb(hc, R_GPIO_EN1, 0xff);
1532                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1533                 break;
1534         }
1535 
1536         if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1537                 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1538                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1539         }
1540 
1541         /* set master clock */
1542         if (hc->masterclk >= 0) {
1543                 if (debug & DEBUG_HFCMULTI_INIT)
1544                         printk(KERN_DEBUG "%s: setting ST master clock "
1545                                "to port %d (0..%d)\n",
1546                                __func__, hc->masterclk, hc->ports - 1);
1547                 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1548                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1549         }
1550 
1551 
1552 
1553         /* setting misc irq */
1554         HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1555         if (debug & DEBUG_HFCMULTI_INIT)
1556                 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1557                        hc->hw.r_irqmsk_misc);
1558 
1559         /* RAM access test */
1560         HFC_outb(hc, R_RAM_ADDR0, 0);
1561         HFC_outb(hc, R_RAM_ADDR1, 0);
1562         HFC_outb(hc, R_RAM_ADDR2, 0);
1563         for (i = 0; i < 256; i++) {
1564                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1565                 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1566         }
1567         for (i = 0; i < 256; i++) {
1568                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1569                 HFC_inb_nodebug(hc, R_RAM_DATA);
1570                 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1571                 if (rval != ((i * 3) & 0xff)) {
1572                         printk(KERN_DEBUG
1573                                "addr:%x val:%x should:%x\n", i, rval,
1574                                (i * 3) & 0xff);
1575                         err++;
1576                 }
1577         }
1578         if (err) {
1579                 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1580                 err = -EIO;
1581                 goto out;
1582         }
1583 
1584         if (debug & DEBUG_HFCMULTI_INIT)
1585                 printk(KERN_DEBUG "%s: done\n", __func__);
1586 out:
1587         spin_unlock_irqrestore(&hc->lock, flags);
1588         return err;
1589 }
1590 
1591 
1592 /*
1593  * control the watchdog
1594  */
1595 static void
1596 hfcmulti_watchdog(struct hfc_multi *hc)
1597 {
1598         hc->wdcount++;
1599 
1600         if (hc->wdcount > 10) {
1601                 hc->wdcount = 0;
1602                 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1603                         V_GPIO_OUT3 : V_GPIO_OUT2;
1604 
1605                 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1606                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1607                 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1608         }
1609 }
1610 
1611 
1612 
1613 /*
1614  * output leds
1615  */
1616 static void
1617 hfcmulti_leds(struct hfc_multi *hc)
1618 {
1619         unsigned long lled;
1620         unsigned long leddw;
1621         int i, state, active, leds;
1622         struct dchannel *dch;
1623         int led[4];
1624 
1625         switch (hc->leds) {
1626         case 1: /* HFC-E1 OEM */
1627                 /* 2 red steady:       LOS
1628                  * 1 red steady:       L1 not active
1629                  * 2 green steady:     L1 active
1630                  * 1st green flashing: activity on TX
1631                  * 2nd green flashing: activity on RX
1632                  */
1633                 led[0] = 0;
1634                 led[1] = 0;
1635                 led[2] = 0;
1636                 led[3] = 0;
1637                 dch = hc->chan[hc->dnum[0]].dch;
1638                 if (dch) {
1639                         if (hc->chan[hc->dnum[0]].los)
1640                                 led[1] = 1;
1641                         if (hc->e1_state != 1) {
1642                                 led[0] = 1;
1643                                 hc->flash[2] = 0;
1644                                 hc->flash[3] = 0;
1645                         } else {
1646                                 led[2] = 1;
1647                                 led[3] = 1;
1648                                 if (!hc->flash[2] && hc->activity_tx)
1649                                         hc->flash[2] = poll;
1650                                 if (!hc->flash[3] && hc->activity_rx)
1651                                         hc->flash[3] = poll;
1652                                 if (hc->flash[2] && hc->flash[2] < 1024)
1653                                         led[2] = 0;
1654                                 if (hc->flash[3] && hc->flash[3] < 1024)
1655                                         led[3] = 0;
1656                                 if (hc->flash[2] >= 2048)
1657                                         hc->flash[2] = 0;
1658                                 if (hc->flash[3] >= 2048)
1659                                         hc->flash[3] = 0;
1660                                 if (hc->flash[2])
1661                                         hc->flash[2] += poll;
1662                                 if (hc->flash[3])
1663                                         hc->flash[3] += poll;
1664                         }
1665                 }
1666                 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1667                 /* leds are inverted */
1668                 if (leds != (int)hc->ledstate) {
1669                         HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1670                         hc->ledstate = leds;
1671                 }
1672                 break;
1673 
1674         case 2: /* HFC-4S OEM */
1675                 /* red steady:     PH_DEACTIVATE
1676                  * green steady:   PH_ACTIVATE
1677                  * green flashing: activity on TX
1678                  */
1679                 for (i = 0; i < 4; i++) {
1680                         state = 0;
1681                         active = -1;
1682                         dch = hc->chan[(i << 2) | 2].dch;
1683                         if (dch) {
1684                                 state = dch->state;
1685                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1686                                         active = 3;
1687                                 else
1688                                         active = 7;
1689                         }
1690                         if (state) {
1691                                 if (state == active) {
1692                                         led[i] = 1; /* led green */
1693                                         hc->activity_tx |= hc->activity_rx;
1694                                         if (!hc->flash[i] &&
1695                                                 (hc->activity_tx & (1 << i)))
1696                                                         hc->flash[i] = poll;
1697                                         if (hc->flash[i] && hc->flash[i] < 1024)
1698                                                 led[i] = 0; /* led off */
1699                                         if (hc->flash[i] >= 2048)
1700                                                 hc->flash[i] = 0;
1701                                         if (hc->flash[i])
1702                                                 hc->flash[i] += poll;
1703                                 } else {
1704                                         led[i] = 2; /* led red */
1705                                         hc->flash[i] = 0;
1706                                 }
1707                         } else
1708                                 led[i] = 0; /* led off */
1709                 }
1710                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1711                         leds = 0;
1712                         for (i = 0; i < 4; i++) {
1713                                 if (led[i] == 1) {
1714                                         /*green*/
1715                                         leds |= (0x2 << (i * 2));
1716                                 } else if (led[i] == 2) {
1717                                         /*red*/
1718                                         leds |= (0x1 << (i * 2));
1719                                 }
1720                         }
1721                         if (leds != (int)hc->ledstate) {
1722                                 vpm_out(hc, 0, 0x1a8 + 3, leds);
1723                                 hc->ledstate = leds;
1724                         }
1725                 } else {
1726                         leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1727                                 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1728                                 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1729                                 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1730                         if (leds != (int)hc->ledstate) {
1731                                 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1732                                 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1733                                 hc->ledstate = leds;
1734                         }
1735                 }
1736                 break;
1737 
1738         case 3: /* HFC 1S/2S Beronet */
1739                 /* red steady:     PH_DEACTIVATE
1740                  * green steady:   PH_ACTIVATE
1741                  * green flashing: activity on TX
1742                  */
1743                 for (i = 0; i < 2; i++) {
1744                         state = 0;
1745                         active = -1;
1746                         dch = hc->chan[(i << 2) | 2].dch;
1747                         if (dch) {
1748                                 state = dch->state;
1749                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1750                                         active = 3;
1751                                 else
1752                                         active = 7;
1753                         }
1754                         if (state) {
1755                                 if (state == active) {
1756                                         led[i] = 1; /* led green */
1757                                         hc->activity_tx |= hc->activity_rx;
1758                                         if (!hc->flash[i] &&
1759                                                 (hc->activity_tx & (1 << i)))
1760                                                         hc->flash[i] = poll;
1761                                         if (hc->flash[i] < 1024)
1762                                                 led[i] = 0; /* led off */
1763                                         if (hc->flash[i] >= 2048)
1764                                                 hc->flash[i] = 0;
1765                                         if (hc->flash[i])
1766                                                 hc->flash[i] += poll;
1767                                 } else {
1768                                         led[i] = 2; /* led red */
1769                                         hc->flash[i] = 0;
1770                                 }
1771                         } else
1772                                 led[i] = 0; /* led off */
1773                 }
1774                 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1775                         | ((led[1]&1) << 3);
1776                 if (leds != (int)hc->ledstate) {
1777                         HFC_outb_nodebug(hc, R_GPIO_EN1,
1778                                          ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1779                         HFC_outb_nodebug(hc, R_GPIO_OUT1,
1780                                          ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1781                         hc->ledstate = leds;
1782                 }
1783                 break;
1784         case 8: /* HFC 8S+ Beronet */
1785                 /* off:      PH_DEACTIVATE
1786                  * steady:   PH_ACTIVATE
1787                  * flashing: activity on TX
1788                  */
1789                 lled = 0xff; /* leds off */
1790                 for (i = 0; i < 8; i++) {
1791                         state = 0;
1792                         active = -1;
1793                         dch = hc->chan[(i << 2) | 2].dch;
1794                         if (dch) {
1795                                 state = dch->state;
1796                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1797                                         active = 3;
1798                                 else
1799                                         active = 7;
1800                         }
1801                         if (state) {
1802                                 if (state == active) {
1803                                         lled &= ~(1 << i); /* led on */
1804                                         hc->activity_tx |= hc->activity_rx;
1805                                         if (!hc->flash[i] &&
1806                                                 (hc->activity_tx & (1 << i)))
1807                                                         hc->flash[i] = poll;
1808                                         if (hc->flash[i] < 1024)
1809                                                 lled |= 1 << i; /* led off */
1810                                         if (hc->flash[i] >= 2048)
1811                                                 hc->flash[i] = 0;
1812                                         if (hc->flash[i])
1813                                                 hc->flash[i] += poll;
1814                                 } else
1815                                         hc->flash[i] = 0;
1816                         }
1817                 }
1818                 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1819                 if (leddw != hc->ledstate) {
1820                         /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1821                            HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1822                         /* was _io before */
1823                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1824                         outw(0x4000, hc->pci_iobase + 4);
1825                         outl(leddw, hc->pci_iobase);
1826                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1827                         hc->ledstate = leddw;
1828                 }
1829                 break;
1830         }
1831         hc->activity_tx = 0;
1832         hc->activity_rx = 0;
1833 }
1834 /*
1835  * read dtmf coefficients
1836  */
1837 
1838 static void
1839 hfcmulti_dtmf(struct hfc_multi *hc)
1840 {
1841         s32             *coeff;
1842         u_int           mantissa;
1843         int             co, ch;
1844         struct bchannel *bch = NULL;
1845         u8              exponent;
1846         int             dtmf = 0;
1847         int             addr;
1848         u16             w_float;
1849         struct sk_buff  *skb;
1850         struct mISDNhead *hh;
1851 
1852         if (debug & DEBUG_HFCMULTI_DTMF)
1853                 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1854         for (ch = 0; ch <= 31; ch++) {
1855                 /* only process enabled B-channels */
1856                 bch = hc->chan[ch].bch;
1857                 if (!bch)
1858                         continue;
1859                 if (!hc->created[hc->chan[ch].port])
1860                         continue;
1861                 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1862                         continue;
1863                 if (debug & DEBUG_HFCMULTI_DTMF)
1864                         printk(KERN_DEBUG "%s: dtmf channel %d:",
1865                                __func__, ch);
1866                 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1867                 dtmf = 1;
1868                 for (co = 0; co < 8; co++) {
1869                         /* read W(n-1) coefficient */
1870                         addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1871                         HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1872                         HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1873                         HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1874                                          | V_ADDR_INC);
1875                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1876                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1877                         if (debug & DEBUG_HFCMULTI_DTMF)
1878                                 printk(" %04x", w_float);
1879 
1880                         /* decode float (see chip doc) */
1881                         mantissa = w_float & 0x0fff;
1882                         if (w_float & 0x8000)
1883                                 mantissa |= 0xfffff000;
1884                         exponent = (w_float >> 12) & 0x7;
1885                         if (exponent) {
1886                                 mantissa ^= 0x1000;
1887                                 mantissa <<= (exponent - 1);
1888                         }
1889 
1890                         /* store coefficient */
1891                         coeff[co << 1] = mantissa;
1892 
1893                         /* read W(n) coefficient */
1894                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1895                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1896                         if (debug & DEBUG_HFCMULTI_DTMF)
1897                                 printk(" %04x", w_float);
1898 
1899                         /* decode float (see chip doc) */
1900                         mantissa = w_float & 0x0fff;
1901                         if (w_float & 0x8000)
1902                                 mantissa |= 0xfffff000;
1903                         exponent = (w_float >> 12) & 0x7;
1904                         if (exponent) {
1905                                 mantissa ^= 0x1000;
1906                                 mantissa <<= (exponent - 1);
1907                         }
1908 
1909                         /* store coefficient */
1910                         coeff[(co << 1) | 1] = mantissa;
1911                 }
1912                 if (debug & DEBUG_HFCMULTI_DTMF)
1913                         printk(" DTMF ready %08x %08x %08x %08x "
1914                                "%08x %08x %08x %08x\n",
1915                                coeff[0], coeff[1], coeff[2], coeff[3],
1916                                coeff[4], coeff[5], coeff[6], coeff[7]);
1917                 hc->chan[ch].coeff_count++;
1918                 if (hc->chan[ch].coeff_count == 8) {
1919                         hc->chan[ch].coeff_count = 0;
1920                         skb = mI_alloc_skb(512, GFP_ATOMIC);
1921                         if (!skb) {
1922                                 printk(KERN_DEBUG "%s: No memory for skb\n",
1923                                        __func__);
1924                                 continue;
1925                         }
1926                         hh = mISDN_HEAD_P(skb);
1927                         hh->prim = PH_CONTROL_IND;
1928                         hh->id = DTMF_HFC_COEF;
1929                         memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1930                         recv_Bchannel_skb(bch, skb);
1931                 }
1932         }
1933 
1934         /* restart DTMF processing */
1935         hc->dtmf = dtmf;
1936         if (dtmf)
1937                 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1938 }
1939 
1940 
1941 /*
1942  * fill fifo as much as possible
1943  */
1944 
1945 static void
1946 hfcmulti_tx(struct hfc_multi *hc, int ch)
1947 {
1948         int i, ii, temp, len = 0;
1949         int Zspace, z1, z2; /* must be int for calculation */
1950         int Fspace, f1, f2;
1951         u_char *d;
1952         int *txpending, slot_tx;
1953         struct  bchannel *bch;
1954         struct  dchannel *dch;
1955         struct  sk_buff **sp = NULL;
1956         int *idxp;
1957 
1958         bch = hc->chan[ch].bch;
1959         dch = hc->chan[ch].dch;
1960         if ((!dch) && (!bch))
1961                 return;
1962 
1963         txpending = &hc->chan[ch].txpending;
1964         slot_tx = hc->chan[ch].slot_tx;
1965         if (dch) {
1966                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1967                         return;
1968                 sp = &dch->tx_skb;
1969                 idxp = &dch->tx_idx;
1970         } else {
1971                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1972                         return;
1973                 sp = &bch->tx_skb;
1974                 idxp = &bch->tx_idx;
1975         }
1976         if (*sp)
1977                 len = (*sp)->len;
1978 
1979         if ((!len) && *txpending != 1)
1980                 return; /* no data */
1981 
1982         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1983             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1984             (hc->chan[ch].slot_rx < 0) &&
1985             (hc->chan[ch].slot_tx < 0))
1986                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1987         else
1988                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1989         HFC_wait_nodebug(hc);
1990 
1991         if (*txpending == 2) {
1992                 /* reset fifo */
1993                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1994                 HFC_wait_nodebug(hc);
1995                 HFC_outb(hc, A_SUBCH_CFG, 0);
1996                 *txpending = 1;
1997         }
1998 next_frame:
1999         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2000                 f1 = HFC_inb_nodebug(hc, A_F1);
2001                 f2 = HFC_inb_nodebug(hc, A_F2);
2002                 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
2003                         if (debug & DEBUG_HFCMULTI_FIFO)
2004                                 printk(KERN_DEBUG
2005                                        "%s(card %d): reread f2 because %d!=%d\n",
2006                                        __func__, hc->id + 1, temp, f2);
2007                         f2 = temp; /* repeat until F2 is equal */
2008                 }
2009                 Fspace = f2 - f1 - 1;
2010                 if (Fspace < 0)
2011                         Fspace += hc->Flen;
2012                 /*
2013                  * Old FIFO handling doesn't give us the current Z2 read
2014                  * pointer, so we cannot send the next frame before the fifo
2015                  * is empty. It makes no difference except for a slightly
2016                  * lower performance.
2017                  */
2018                 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
2019                         if (f1 != f2)
2020                                 Fspace = 0;
2021                         else
2022                                 Fspace = 1;
2023                 }
2024                 /* one frame only for ST D-channels, to allow resending */
2025                 if (hc->ctype != HFC_TYPE_E1 && dch) {
2026                         if (f1 != f2)
2027                                 Fspace = 0;
2028                 }
2029                 /* F-counter full condition */
2030                 if (Fspace == 0)
2031                         return;
2032         }
2033         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2034         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2035         while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2036                 if (debug & DEBUG_HFCMULTI_FIFO)
2037                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2038                                "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2039                 z2 = temp; /* repeat unti Z2 is equal */
2040         }
2041         hc->chan[ch].Zfill = z1 - z2;
2042         if (hc->chan[ch].Zfill < 0)
2043                 hc->chan[ch].Zfill += hc->Zlen;
2044         Zspace = z2 - z1;
2045         if (Zspace <= 0)
2046                 Zspace += hc->Zlen;
2047         Zspace -= 4; /* keep not too full, so pointers will not overrun */
2048         /* fill transparent data only to maxinum transparent load (minus 4) */
2049         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2050                 Zspace = Zspace - hc->Zlen + hc->max_trans;
2051         if (Zspace <= 0) /* no space of 4 bytes */
2052                 return;
2053 
2054         /* if no data */
2055         if (!len) {
2056                 if (z1 == z2) { /* empty */
2057                         /* if done with FIFO audio data during PCM connection */
2058                         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2059                             *txpending && slot_tx >= 0) {
2060                                 if (debug & DEBUG_HFCMULTI_MODE)
2061                                         printk(KERN_DEBUG
2062                                                "%s: reconnecting PCM due to no "
2063                                                "more FIFO data: channel %d "
2064                                                "slot_tx %d\n",
2065                                                __func__, ch, slot_tx);
2066                                 /* connect slot */
2067                                 if (hc->ctype == HFC_TYPE_XHFC)
2068                                         HFC_outb(hc, A_CON_HDLC, 0xc0
2069                                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2070                                 /* Enable FIFO, no interrupt */
2071                                 else
2072                                         HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2073                                                  V_HDLC_TRP | V_IFF);
2074                                 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2075                                 HFC_wait_nodebug(hc);
2076                                 if (hc->ctype == HFC_TYPE_XHFC)
2077                                         HFC_outb(hc, A_CON_HDLC, 0xc0
2078                                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2079                                 /* Enable FIFO, no interrupt */
2080                                 else
2081                                         HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2082                                                  V_HDLC_TRP | V_IFF);
2083                                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2084                                 HFC_wait_nodebug(hc);
2085                         }
2086                         *txpending = 0;
2087                 }
2088                 return; /* no data */
2089         }
2090 
2091         /* "fill fifo if empty" feature */
2092         if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2093             && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2094                 if (debug & DEBUG_HFCMULTI_FILL)
2095                         printk(KERN_DEBUG "%s: buffer empty, so we have "
2096                                "underrun\n", __func__);
2097                 /* fill buffer, to prevent future underrun */
2098                 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2099                 Zspace -= (poll >> 1);
2100         }
2101 
2102         /* if audio data and connected slot */
2103         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2104             && slot_tx >= 0) {
2105                 if (debug & DEBUG_HFCMULTI_MODE)
2106                         printk(KERN_DEBUG "%s: disconnecting PCM due to "
2107                                "FIFO data: channel %d slot_tx %d\n",
2108                                __func__, ch, slot_tx);
2109                 /* disconnect slot */
2110                 if (hc->ctype == HFC_TYPE_XHFC)
2111                         HFC_outb(hc, A_CON_HDLC, 0x80
2112                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2113                 /* Enable FIFO, no interrupt */
2114                 else
2115                         HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2116                                  V_HDLC_TRP | V_IFF);
2117                 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2118                 HFC_wait_nodebug(hc);
2119                 if (hc->ctype == HFC_TYPE_XHFC)
2120                         HFC_outb(hc, A_CON_HDLC, 0x80
2121                                  | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2122                 /* Enable FIFO, no interrupt */
2123                 else
2124                         HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2125                                  V_HDLC_TRP | V_IFF);
2126                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2127                 HFC_wait_nodebug(hc);
2128         }
2129         *txpending = 1;
2130 
2131         /* show activity */
2132         if (dch)
2133                 hc->activity_tx |= 1 << hc->chan[ch].port;
2134 
2135         /* fill fifo to what we have left */
2136         ii = len;
2137         if (dch || test_bit(FLG_HDLC, &bch->Flags))
2138                 temp = 1;
2139         else
2140                 temp = 0;
2141         i = *idxp;
2142         d = (*sp)->data + i;
2143         if (ii - i > Zspace)
2144                 ii = Zspace + i;
2145         if (debug & DEBUG_HFCMULTI_FIFO)
2146                 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2147                        "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2148                        __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2149                        temp ? "HDLC" : "TRANS");
2150 
2151         /* Have to prep the audio data */
2152         hc->write_fifo(hc, d, ii - i);
2153         hc->chan[ch].Zfill += ii - i;
2154         *idxp = ii;
2155 
2156         /* if not all data has been written */
2157         if (ii != len) {
2158                 /* NOTE: fifo is started by the calling function */
2159                 return;
2160         }
2161 
2162         /* if all data has been written, terminate frame */
2163         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2164                 /* increment f-counter */
2165                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2166                 HFC_wait_nodebug(hc);
2167         }
2168 
2169         dev_kfree_skb(*sp);
2170         /* check for next frame */
2171         if (bch && get_next_bframe(bch)) {
2172                 len = (*sp)->len;
2173                 goto next_frame;
2174         }
2175         if (dch && get_next_dframe(dch)) {
2176                 len = (*sp)->len;
2177                 goto next_frame;
2178         }
2179 
2180         /*
2181          * now we have no more data, so in case of transparent,
2182          * we set the last byte in fifo to 'silence' in case we will get
2183          * no more data at all. this prevents sending an undefined value.
2184          */
2185         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2186                 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2187 }
2188 
2189 
2190 /* NOTE: only called if E1 card is in active state */
2191 static void
2192 hfcmulti_rx(struct hfc_multi *hc, int ch)
2193 {
2194         int temp;
2195         int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2196         int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2197         int again = 0;
2198         struct  bchannel *bch;
2199         struct  dchannel *dch = NULL;
2200         struct sk_buff  *skb, **sp = NULL;
2201         int     maxlen;
2202 
2203         bch = hc->chan[ch].bch;
2204         if (bch) {
2205                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2206                         return;
2207         } else if (hc->chan[ch].dch) {
2208                 dch = hc->chan[ch].dch;
2209                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2210                         return;
2211         } else {
2212                 return;
2213         }
2214 next_frame:
2215         /* on first AND before getting next valid frame, R_FIFO must be written
2216            to. */
2217         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2218             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2219             (hc->chan[ch].slot_rx < 0) &&
2220             (hc->chan[ch].slot_tx < 0))
2221                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2222         else
2223                 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2224         HFC_wait_nodebug(hc);
2225 
2226         /* ignore if rx is off BUT change fifo (above) to start pending TX */
2227         if (hc->chan[ch].rx_off) {
2228                 if (bch)
2229                         bch->dropcnt += poll; /* not exact but fair enough */
2230                 return;
2231         }
2232 
2233         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2234                 f1 = HFC_inb_nodebug(hc, A_F1);
2235                 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2236                         if (debug & DEBUG_HFCMULTI_FIFO)
2237                                 printk(KERN_DEBUG
2238                                        "%s(card %d): reread f1 because %d!=%d\n",
2239                                        __func__, hc->id + 1, temp, f1);
2240                         f1 = temp; /* repeat until F1 is equal */
2241                 }
2242                 f2 = HFC_inb_nodebug(hc, A_F2);
2243         }
2244         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2245         while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2246                 if (debug & DEBUG_HFCMULTI_FIFO)
2247                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2248                                "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2249                 z1 = temp; /* repeat until Z1 is equal */
2250         }
2251         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2252         Zsize = z1 - z2;
2253         if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2254                 /* complete hdlc frame */
2255                 Zsize++;
2256         if (Zsize < 0)
2257                 Zsize += hc->Zlen;
2258         /* if buffer is empty */
2259         if (Zsize <= 0)
2260                 return;
2261 
2262         if (bch) {
2263                 maxlen = bchannel_get_rxbuf(bch, Zsize);
2264                 if (maxlen < 0) {
2265                         pr_warning("card%d.B%d: No bufferspace for %d bytes\n",
2266                                    hc->id + 1, bch->nr, Zsize);
2267                         return;
2268                 }
2269                 sp = &bch->rx_skb;
2270                 maxlen = bch->maxlen;
2271         } else { /* Dchannel */
2272                 sp = &dch->rx_skb;
2273                 maxlen = dch->maxlen + 3;
2274                 if (*sp == NULL) {
2275                         *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2276                         if (*sp == NULL) {
2277                                 pr_warning("card%d: No mem for dch rx_skb\n",
2278                                            hc->id + 1);
2279                                 return;
2280                         }
2281                 }
2282         }
2283         /* show activity */
2284         if (dch)
2285                 hc->activity_rx |= 1 << hc->chan[ch].port;
2286 
2287         /* empty fifo with what we have */
2288         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2289                 if (debug & DEBUG_HFCMULTI_FIFO)
2290                         printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2291                                "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2292                                "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2293                                Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2294                                f1, f2, Zsize + (*sp)->len, again);
2295                 /* HDLC */
2296                 if ((Zsize + (*sp)->len) > maxlen) {
2297                         if (debug & DEBUG_HFCMULTI_FIFO)
2298                                 printk(KERN_DEBUG
2299                                        "%s(card %d): hdlc-frame too large.\n",
2300                                        __func__, hc->id + 1);
2301                         skb_trim(*sp, 0);
2302                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2303                         HFC_wait_nodebug(hc);
2304                         return;
2305                 }
2306 
2307                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2308 
2309                 if (f1 != f2) {
2310                         /* increment Z2,F2-counter */
2311                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2312                         HFC_wait_nodebug(hc);
2313                         /* check size */
2314                         if ((*sp)->len < 4) {
2315                                 if (debug & DEBUG_HFCMULTI_FIFO)
2316                                         printk(KERN_DEBUG
2317                                                "%s(card %d): Frame below minimum "
2318                                                "size\n", __func__, hc->id + 1);
2319                                 skb_trim(*sp, 0);
2320                                 goto next_frame;
2321                         }
2322                         /* there is at least one complete frame, check crc */
2323                         if ((*sp)->data[(*sp)->len - 1]) {
2324                                 if (debug & DEBUG_HFCMULTI_CRC)
2325                                         printk(KERN_DEBUG
2326                                                "%s: CRC-error\n", __func__);
2327                                 skb_trim(*sp, 0);
2328                                 goto next_frame;
2329                         }
2330                         skb_trim(*sp, (*sp)->len - 3);
2331                         if ((*sp)->len < MISDN_COPY_SIZE) {
2332                                 skb = *sp;
2333                                 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2334                                 if (*sp) {
2335                                         memcpy(skb_put(*sp, skb->len),
2336                                                skb->data, skb->len);
2337                                         skb_trim(skb, 0);
2338                                 } else {
2339                                         printk(KERN_DEBUG "%s: No mem\n",
2340                                                __func__);
2341                                         *sp = skb;
2342                                         skb = NULL;
2343                                 }
2344                         } else {
2345                                 skb = NULL;
2346                         }
2347                         if (debug & DEBUG_HFCMULTI_FIFO) {
2348                                 printk(KERN_DEBUG "%s(card %d):",
2349                                        __func__, hc->id + 1);
2350                                 temp = 0;
2351                                 while (temp < (*sp)->len)
2352                                         printk(" %02x", (*sp)->data[temp++]);
2353                                 printk("\n");
2354                         }
2355                         if (dch)
2356                                 recv_Dchannel(dch);
2357                         else
2358                                 recv_Bchannel(bch, MISDN_ID_ANY, false);
2359                         *sp = skb;
2360                         again++;
2361                         goto next_frame;
2362                 }
2363                 /* there is an incomplete frame */
2364         } else {
2365                 /* transparent */
2366                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2367                 if (debug & DEBUG_HFCMULTI_FIFO)
2368                         printk(KERN_DEBUG
2369                                "%s(card %d): fifo(%d) reading %d bytes "
2370                                "(z1=%04x, z2=%04x) TRANS\n",
2371                                __func__, hc->id + 1, ch, Zsize, z1, z2);
2372                 /* only bch is transparent */
2373                 recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2374         }
2375 }
2376 
2377 
2378 /*
2379  * Interrupt handler
2380  */
2381 static void
2382 signal_state_up(struct dchannel *dch, int info, char *msg)
2383 {
2384         struct sk_buff  *skb;
2385         int             id, data = info;
2386 
2387         if (debug & DEBUG_HFCMULTI_STATE)
2388                 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2389 
2390         id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2391 
2392         skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2393                                GFP_ATOMIC);
2394         if (!skb)
2395                 return;
2396         recv_Dchannel_skb(dch, skb);
2397 }
2398 
2399 static inline void
2400 handle_timer_irq(struct hfc_multi *hc)
2401 {
2402         int             ch, temp;
2403         struct dchannel *dch;
2404         u_long          flags;
2405 
2406         /* process queued resync jobs */
2407         if (hc->e1_resync) {
2408                 /* lock, so e1_resync gets not changed */
2409                 spin_lock_irqsave(&HFClock, flags);
2410                 if (hc->e1_resync & 1) {
2411                         if (debug & DEBUG_HFCMULTI_PLXSD)
2412                                 printk(KERN_DEBUG "Enable SYNC_I\n");
2413                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2414                         /* disable JATT, if RX_SYNC is set */
2415                         if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2416                                 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2417                 }
2418                 if (hc->e1_resync & 2) {
2419                         if (debug & DEBUG_HFCMULTI_PLXSD)
2420                                 printk(KERN_DEBUG "Enable jatt PLL\n");
2421                         HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2422                 }
2423                 if (hc->e1_resync & 4) {
2424                         if (debug & DEBUG_HFCMULTI_PLXSD)
2425                                 printk(KERN_DEBUG
2426                                        "Enable QUARTZ for HFC-E1\n");
2427                         /* set jatt to quartz */
2428                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2429                                  | V_JATT_OFF);
2430                         /* switch to JATT, in case it is not already */
2431                         HFC_outb(hc, R_SYNC_OUT, 0);
2432                 }
2433                 hc->e1_resync = 0;
2434                 spin_unlock_irqrestore(&HFClock, flags);
2435         }
2436 
2437         if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2438                 for (ch = 0; ch <= 31; ch++) {
2439                         if (hc->created[hc->chan[ch].port]) {
2440                                 hfcmulti_tx(hc, ch);
2441                                 /* fifo is started when switching to rx-fifo */
2442                                 hfcmulti_rx(hc, ch);
2443                                 if (hc->chan[ch].dch &&
2444                                     hc->chan[ch].nt_timer > -1) {
2445                                         dch = hc->chan[ch].dch;
2446                                         if (!(--hc->chan[ch].nt_timer)) {
2447                                                 schedule_event(dch,
2448                                                                FLG_PHCHANGE);
2449                                                 if (debug &
2450                                                     DEBUG_HFCMULTI_STATE)
2451                                                         printk(KERN_DEBUG
2452                                                                "%s: nt_timer at "
2453                                                                "state %x\n",
2454                                                                __func__,
2455                                                                dch->state);
2456                                         }
2457                                 }
2458                         }
2459                 }
2460         if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2461                 dch = hc->chan[hc->dnum[0]].dch;
2462                 /* LOS */
2463                 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2464                 hc->chan[hc->dnum[0]].los = temp;
2465                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2466                         if (!temp && hc->chan[hc->dnum[0]].los)
2467                                 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2468                                                 "LOS detected");
2469                         if (temp && !hc->chan[hc->dnum[0]].los)
2470                                 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2471                                                 "LOS gone");
2472                 }
2473                 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2474                         /* AIS */
2475                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2476                         if (!temp && hc->chan[hc->dnum[0]].ais)
2477                                 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2478                                                 "AIS detected");
2479                         if (temp && !hc->chan[hc->dnum[0]].ais)
2480                                 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2481                                                 "AIS gone");
2482                         hc->chan[hc->dnum[0]].ais = temp;
2483                 }
2484                 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2485                         /* SLIP */
2486                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2487                         if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2488                                 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2489                                                 " bit SLIP detected RX");
2490                         hc->chan[hc->dnum[0]].slip_rx = temp;
2491                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2492                         if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2493                                 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2494                                                 " bit SLIP detected TX");
2495                         hc->chan[hc->dnum[0]].slip_tx = temp;
2496                 }
2497                 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2498                         /* RDI */
2499                         temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2500                         if (!temp && hc->chan[hc->dnum[0]].rdi)
2501                                 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2502                                                 "RDI detected");
2503                         if (temp && !hc->chan[hc->dnum[0]].rdi)
2504                                 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2505                                                 "RDI gone");
2506                         hc->chan[hc->dnum[0]].rdi = temp;
2507                 }
2508                 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2509                 switch (hc->chan[hc->dnum[0]].sync) {
2510                 case 0:
2511                         if ((temp & 0x60) == 0x60) {
2512                                 if (debug & DEBUG_HFCMULTI_SYNC)
2513                                         printk(KERN_DEBUG
2514                                                "%s: (id=%d) E1 now "
2515                                                "in clock sync\n",
2516                                                __func__, hc->id);
2517                                 HFC_outb(hc, R_RX_OFF,
2518                                     hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2519                                 HFC_outb(hc, R_TX_OFF,
2520                                     hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2521                                 hc->chan[hc->dnum[0]].sync = 1;
2522                                 goto check_framesync;
2523                         }
2524                         break;
2525                 case 1:
2526                         if ((temp & 0x60) != 0x60) {
2527                                 if (debug & DEBUG_HFCMULTI_SYNC)
2528                                         printk(KERN_DEBUG
2529                                                "%s: (id=%d) E1 "
2530                                                "lost clock sync\n",
2531                                                __func__, hc->id);
2532                                 hc->chan[hc->dnum[0]].sync = 0;
2533                                 break;
2534                         }
2535                 check_framesync:
2536                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2537                         if (temp == 0x27) {
2538                                 if (debug & DEBUG_HFCMULTI_SYNC)
2539                                         printk(KERN_DEBUG
2540                                                "%s: (id=%d) E1 "
2541                                                "now in frame sync\n",
2542                                                __func__, hc->id);
2543                                 hc->chan[hc->dnum[0]].sync = 2;
2544                         }
2545                         break;
2546                 case 2:
2547                         if ((temp & 0x60) != 0x60) {
2548                                 if (debug & DEBUG_HFCMULTI_SYNC)
2549                                         printk(KERN_DEBUG
2550                                                "%s: (id=%d) E1 lost "
2551                                                "clock & frame sync\n",
2552                                                __func__, hc->id);
2553                                 hc->chan[hc->dnum[0]].sync = 0;
2554                                 break;
2555                         }
2556                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2557                         if (temp != 0x27) {
2558                                 if (debug & DEBUG_HFCMULTI_SYNC)
2559                                         printk(KERN_DEBUG
2560                                                "%s: (id=%d) E1 "
2561                                                "lost frame sync\n",
2562                                                __func__, hc->id);
2563                                 hc->chan[hc->dnum[0]].sync = 1;
2564                         }
2565                         break;
2566                 }
2567         }
2568 
2569         if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2570                 hfcmulti_watchdog(hc);
2571 
2572         if (hc->leds)
2573                 hfcmulti_leds(hc);
2574 }
2575 
2576 static void
2577 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2578 {
2579         struct dchannel *dch;
2580         int             ch;
2581         int             active;
2582         u_char          st_status, temp;
2583 
2584         /* state machine */
2585         for (ch = 0; ch <= 31; ch++) {
2586                 if (hc->chan[ch].dch) {
2587                         dch = hc->chan[ch].dch;
2588                         if (r_irq_statech & 1) {
2589                                 HFC_outb_nodebug(hc, R_ST_SEL,
2590                                                  hc->chan[ch].port);
2591                                 /* undocumented: delay after R_ST_SEL */
2592                                 udelay(1);
2593                                 /* undocumented: status changes during read */
2594                                 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2595                                 while (st_status != (temp =
2596                                                      HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2597                                         if (debug & DEBUG_HFCMULTI_STATE)
2598                                                 printk(KERN_DEBUG "%s: reread "
2599                                                        "STATE because %d!=%d\n",
2600                                                        __func__, temp,
2601                                                        st_status);
2602                                         st_status = temp; /* repeat */
2603                                 }
2604 
2605                                 /* Speech Design TE-sync indication */
2606                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2607                                     dch->dev.D.protocol == ISDN_P_TE_S0) {
2608                                         if (st_status & V_FR_SYNC_ST)
2609                                                 hc->syncronized |=
2610                                                         (1 << hc->chan[ch].port);
2611                                         else
2612                                                 hc->syncronized &=
2613                                                         ~(1 << hc->chan[ch].port);
2614                                 }
2615                                 dch->state = st_status & 0x0f;
2616                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2617                                         active = 3;
2618                                 else
2619                                         active = 7;
2620                                 if (dch->state == active) {
2621                                         HFC_outb_nodebug(hc, R_FIFO,
2622                                                          (ch << 1) | 1);
2623                                         HFC_wait_nodebug(hc);
2624                                         HFC_outb_nodebug(hc,
2625                                                          R_INC_RES_FIFO, V_RES_F);
2626                                         HFC_wait_nodebug(hc);
2627                                         dch->tx_idx = 0;
2628                                 }
2629                                 schedule_event(dch, FLG_PHCHANGE);
2630                                 if (debug & DEBUG_HFCMULTI_STATE)
2631                                         printk(KERN_DEBUG
2632                                                "%s: S/T newstate %x port %d\n",
2633                                                __func__, dch->state,
2634                                                hc->chan[ch].port);
2635                         }
2636                         r_irq_statech >>= 1;
2637                 }
2638         }
2639         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2640                 plxsd_checksync(hc, 0);
2641 }
2642 
2643 static void
2644 fifo_irq(struct hfc_multi *hc, int block)
2645 {
2646         int     ch, j;
2647         struct dchannel *dch;
2648         struct bchannel *bch;
2649         u_char r_irq_fifo_bl;
2650 
2651         r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2652         j = 0;
2653         while (j < 8) {
2654                 ch = (block << 2) + (j >> 1);
2655                 dch = hc->chan[ch].dch;
2656                 bch = hc->chan[ch].bch;
2657                 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2658                         j += 2;
2659                         continue;
2660                 }
2661                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2662                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2663                         hfcmulti_tx(hc, ch);
2664                         /* start fifo */
2665                         HFC_outb_nodebug(hc, R_FIFO, 0);
2666                         HFC_wait_nodebug(hc);
2667                 }
2668                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2669                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2670                         hfcmulti_tx(hc, ch);
2671                         /* start fifo */
2672                         HFC_outb_nodebug(hc, R_FIFO, 0);
2673                         HFC_wait_nodebug(hc);
2674                 }
2675                 j++;
2676                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2677                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2678                         hfcmulti_rx(hc, ch);
2679                 }
2680                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2681                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2682                         hfcmulti_rx(hc, ch);
2683                 }
2684                 j++;
2685         }
2686 }
2687 
2688 #ifdef IRQ_DEBUG
2689 int irqsem;
2690 #endif
2691 static irqreturn_t
2692 hfcmulti_interrupt(int intno, void *dev_id)
2693 {
2694 #ifdef IRQCOUNT_DEBUG
2695         static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2696                 iq5 = 0, iq6 = 0, iqcnt = 0;
2697 #endif
2698         struct hfc_multi        *hc = dev_id;
2699         struct dchannel         *dch;
2700         u_char                  r_irq_statech, status, r_irq_misc, r_irq_oview;
2701         int                     i;
2702         void __iomem            *plx_acc;
2703         u_short                 wval;
2704         u_char                  e1_syncsta, temp, temp2;
2705         u_long                  flags;
2706 
2707         if (!hc) {
2708                 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2709                 return IRQ_NONE;
2710         }
2711 
2712         spin_lock(&hc->lock);
2713 
2714 #ifdef IRQ_DEBUG
2715         if (irqsem)
2716                 printk(KERN_ERR "irq for card %d during irq from "
2717                        "card %d, this is no bug.\n", hc->id + 1, irqsem);
2718         irqsem = hc->id + 1;
2719 #endif
2720 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2721         if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2722                 goto irq_notforus;
2723 #endif
2724         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2725                 spin_lock_irqsave(&plx_lock, flags);
2726                 plx_acc = hc->plx_membase + PLX_INTCSR;
2727                 wval = readw(plx_acc);
2728                 spin_unlock_irqrestore(&plx_lock, flags);
2729                 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2730                         goto irq_notforus;
2731         }
2732 
2733         status = HFC_inb_nodebug(hc, R_STATUS);
2734         r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2735 #ifdef IRQCOUNT_DEBUG
2736         if (r_irq_statech)
2737                 iq1++;
2738         if (status & V_DTMF_STA)
2739                 iq2++;
2740         if (status & V_LOST_STA)
2741                 iq3++;
2742         if (status & V_EXT_IRQSTA)
2743                 iq4++;
2744         if (status & V_MISC_IRQSTA)
2745                 iq5++;
2746         if (status & V_FR_IRQSTA)
2747                 iq6++;
2748         if (iqcnt++ > 5000) {
2749                 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2750                        iq1, iq2, iq3, iq4, iq5, iq6);
2751                 iqcnt = 0;
2752         }
2753 #endif
2754 
2755         if (!r_irq_statech &&
2756             !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2757                         V_MISC_IRQSTA | V_FR_IRQSTA))) {
2758                 /* irq is not for us */
2759                 goto irq_notforus;
2760         }
2761         hc->irqcnt++;
2762         if (r_irq_statech) {
2763                 if (hc->ctype != HFC_TYPE_E1)
2764                         ph_state_irq(hc, r_irq_statech);
2765         }
2766         if (status & V_EXT_IRQSTA)
2767                 ; /* external IRQ */
2768         if (status & V_LOST_STA) {
2769                 /* LOST IRQ */
2770                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2771         }
2772         if (status & V_MISC_IRQSTA) {
2773                 /* misc IRQ */
2774                 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2775                 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2776                 if (r_irq_misc & V_STA_IRQ) {
2777                         if (hc->ctype == HFC_TYPE_E1) {
2778                                 /* state machine */
2779                                 dch = hc->chan[hc->dnum[0]].dch;
2780                                 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2781                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2782                                     && hc->e1_getclock) {
2783                                         if (e1_syncsta & V_FR_SYNC_E1)
2784                                                 hc->syncronized = 1;
2785                                         else
2786                                                 hc->syncronized = 0;
2787                                 }
2788                                 /* undocumented: status changes during read */
2789                                 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2790                                 while (temp != (temp2 =
2791                                                       HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2792                                         if (debug & DEBUG_HFCMULTI_STATE)
2793                                                 printk(KERN_DEBUG "%s: reread "
2794                                                        "STATE because %d!=%d\n",
2795                                                     __func__, temp, temp2);
2796                                         temp = temp2; /* repeat */
2797                                 }
2798                                 /* broadcast state change to all fragments */
2799                                 if (debug & DEBUG_HFCMULTI_STATE)
2800                                         printk(KERN_DEBUG
2801                                                "%s: E1 (id=%d) newstate %x\n",
2802                                             __func__, hc->id, temp & 0x7);
2803                                 for (i = 0; i < hc->ports; i++) {
2804                                         dch = hc->chan[hc->dnum[i]].dch;
2805                                         dch->state = temp & 0x7;
2806                                         schedule_event(dch, FLG_PHCHANGE);
2807                                 }
2808 
2809                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2810                                         plxsd_checksync(hc, 0);
2811                         }
2812                 }
2813                 if (r_irq_misc & V_TI_IRQ) {
2814                         if (hc->iclock_on)
2815                                 mISDN_clock_update(hc->iclock, poll, NULL);
2816                         handle_timer_irq(hc);
2817                 }
2818 
2819                 if (r_irq_misc & V_DTMF_IRQ)
2820                         hfcmulti_dtmf(hc);
2821 
2822                 if (r_irq_misc & V_IRQ_PROC) {
2823                         static int irq_proc_cnt;
2824                         if (!irq_proc_cnt++)
2825                                 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2826                                        " this should not happen\n", __func__);
2827                 }
2828 
2829         }
2830         if (status & V_FR_IRQSTA) {
2831                 /* FIFO IRQ */
2832                 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2833                 for (i = 0; i < 8; i++) {
2834                         if (r_irq_oview & (1 << i))
2835                                 fifo_irq(hc, i);
2836                 }
2837         }
2838 
2839 #ifdef IRQ_DEBUG
2840         irqsem = 0;
2841 #endif
2842         spin_unlock(&hc->lock);
2843         return IRQ_HANDLED;
2844 
2845 irq_notforus:
2846 #ifdef IRQ_DEBUG
2847         irqsem = 0;
2848 #endif
2849         spin_unlock(&hc->lock);
2850         return IRQ_NONE;
2851 }
2852 
2853 
2854 /*
2855  * timer callback for D-chan busy resolution. Currently no function
2856  */
2857 
2858 static void
2859 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2860 {
2861 }
2862 
2863 
2864 /*
2865  * activate/deactivate hardware for selected channels and mode
2866  *
2867  * configure B-channel with the given protocol
2868  * ch eqals to the HFC-channel (0-31)
2869  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2870  * for S/T, 1-31 for E1)
2871  * the hdlc interrupts will be set/unset
2872  */
2873 static int
2874 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2875               int bank_tx, int slot_rx, int bank_rx)
2876 {
2877         int flow_tx = 0, flow_rx = 0, routing = 0;
2878         int oslot_tx, oslot_rx;
2879         int conf;
2880 
2881         if (ch < 0 || ch > 31)
2882                 return -EINVAL;
2883         oslot_tx = hc->chan[ch].slot_tx;
2884         oslot_rx = hc->chan[ch].slot_rx;
2885         conf = hc->chan[ch].conf;
2886 
2887         if (debug & DEBUG_HFCMULTI_MODE)
2888                 printk(KERN_DEBUG
2889                        "%s: card %d channel %d protocol %x slot old=%d new=%d "
2890                        "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2891                        __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2892                        bank_tx, oslot_rx, slot_rx, bank_rx);
2893 
2894         if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2895                 /* remove from slot */
2896                 if (debug & DEBUG_HFCMULTI_MODE)
2897                         printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2898                                __func__, oslot_tx);
2899                 if (hc->slot_owner[oslot_tx << 1] == ch) {
2900                         HFC_outb(hc, R_SLOT, oslot_tx << 1);
2901                         HFC_outb(hc, A_SL_CFG, 0);
2902                         if (hc->ctype != HFC_TYPE_XHFC)
2903                                 HFC_outb(hc, A_CONF, 0);
2904                         hc->slot_owner[oslot_tx << 1] = -1;
2905                 } else {
2906                         if (debug & DEBUG_HFCMULTI_MODE)
2907                                 printk(KERN_DEBUG
2908                                        "%s: we are not owner of this tx slot "
2909                                        "anymore, channel %d is.\n",
2910                                        __func__, hc->slot_owner[oslot_tx << 1]);
2911                 }
2912         }
2913 
2914         if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2915                 /* remove from slot */
2916                 if (debug & DEBUG_HFCMULTI_MODE)
2917                         printk(KERN_DEBUG
2918                                "%s: remove from slot %d (RX)\n",
2919                                __func__, oslot_rx);
2920                 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2921                         HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2922                         HFC_outb(hc, A_SL_CFG, 0);
2923                         hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2924                 } else {
2925                         if (debug & DEBUG_HFCMULTI_MODE)
2926                                 printk(KERN_DEBUG
2927                                        "%s: we are not owner of this rx slot "
2928                                        "anymore, channel %d is.\n",
2929                                        __func__,
2930                                        hc->slot_owner[(oslot_rx << 1) | 1]);
2931                 }
2932         }
2933 
2934         if (slot_tx < 0) {
2935                 flow_tx = 0x80; /* FIFO->ST */
2936                 /* disable pcm slot */
2937                 hc->chan[ch].slot_tx = -1;
2938                 hc->chan[ch].bank_tx = 0;
2939         } else {
2940                 /* set pcm slot */
2941                 if (hc->chan[ch].txpending)
2942                         flow_tx = 0x80; /* FIFO->ST */
2943                 else
2944                         flow_tx = 0xc0; /* PCM->ST */
2945                 /* put on slot */
2946                 routing = bank_tx ? 0xc0 : 0x80;
2947                 if (conf >= 0 || bank_tx > 1)
2948                         routing = 0x40; /* loop */
2949                 if (debug & DEBUG_HFCMULTI_MODE)
2950                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2951                                " %d flow %02x routing %02x conf %d (TX)\n",
2952                                __func__, ch, slot_tx, bank_tx,
2953                                flow_tx, routing, conf);
2954                 HFC_outb(hc, R_SLOT, slot_tx << 1);
2955                 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2956                 if (hc->ctype != HFC_TYPE_XHFC)
2957                         HFC_outb(hc, A_CONF,
2958                                  (conf < 0) ? 0 : (conf | V_CONF_SL));
2959                 hc->slot_owner[slot_tx << 1] = ch;
2960                 hc->chan[ch].slot_tx = slot_tx;
2961                 hc->chan[ch].bank_tx = bank_tx;
2962         }
2963         if (slot_rx < 0) {
2964                 /* disable pcm slot */
2965                 flow_rx = 0x80; /* ST->FIFO */
2966                 hc->chan[ch].slot_rx = -1;
2967                 hc->chan[ch].bank_rx = 0;
2968         } else {
2969                 /* set pcm slot */
2970                 if (hc->chan[ch].txpending)
2971                         flow_rx = 0x80; /* ST->FIFO */
2972                 else
2973                         flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2974                 /* put on slot */
2975                 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2976                 if (conf >= 0 || bank_rx > 1)
2977                         routing = 0x40; /* loop */
2978                 if (debug & DEBUG_HFCMULTI_MODE)
2979                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2980                                " %d flow %02x routing %02x conf %d (RX)\n",
2981                                __func__, ch, slot_rx, bank_rx,
2982                                flow_rx, routing, conf);
2983                 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2984                 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2985                 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2986                 hc->chan[ch].slot_rx = slot_rx;
2987                 hc->chan[ch].bank_rx = bank_rx;
2988         }
2989 
2990         switch (protocol) {
2991         case (ISDN_P_NONE):
2992                 /* disable TX fifo */
2993                 HFC_outb(hc, R_FIFO, ch << 1);
2994                 HFC_wait(hc);
2995                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2996                 HFC_outb(hc, A_SUBCH_CFG, 0);
2997                 HFC_outb(hc, A_IRQ_MSK, 0);
2998                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2999                 HFC_wait(hc);
3000                 /* disable RX fifo */
3001                 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3002                 HFC_wait(hc);
3003                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
3004                 HFC_outb(hc, A_SUBCH_CFG, 0);
3005                 HFC_outb(hc, A_IRQ_MSK, 0);
3006                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3007                 HFC_wait(hc);
3008                 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
3009                         hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
3010                                 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
3011                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3012                         /* undocumented: delay after R_ST_SEL */
3013                         udelay(1);
3014                         HFC_outb(hc, A_ST_CTRL0,
3015                                  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3016                 }
3017                 if (hc->chan[ch].bch) {
3018                         test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3019                         test_and_clear_bit(FLG_TRANSPARENT,
3020                                            &hc->chan[ch].bch->Flags);
3021                 }
3022                 break;
3023         case (ISDN_P_B_RAW): /* B-channel */
3024 
3025                 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
3026                     (hc->chan[ch].slot_rx < 0) &&
3027                     (hc->chan[ch].slot_tx < 0)) {
3028 
3029                         printk(KERN_DEBUG
3030                                "Setting B-channel %d to echo cancelable "
3031                                "state on PCM slot %d\n", ch,
3032                                ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3033                         printk(KERN_DEBUG
3034                                "Enabling pass through for channel\n");
3035                         vpm_out(hc, ch, ((ch / 4) * 8) +
3036                                 ((ch % 4) * 4) + 1, 0x01);
3037                         /* rx path */
3038                         /* S/T -> PCM */
3039                         HFC_outb(hc, R_FIFO, (ch << 1));
3040                         HFC_wait(hc);
3041                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3042                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3043                                               ((ch % 4) * 4) + 1) << 1);
3044                         HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3045 
3046                         /* PCM -> FIFO */
3047                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3048                         HFC_wait(hc);
3049                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3050                         HFC_outb(hc, A_SUBCH_CFG, 0);
3051                         HFC_outb(hc, A_IRQ_MSK, 0);
3052                         if (hc->chan[ch].protocol != protocol) {
3053                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3054                                 HFC_wait(hc);
3055                         }
3056                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3057                                                ((ch % 4) * 4) + 1) << 1) | 1);
3058                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3059 
3060                         /* tx path */
3061                         /* PCM -> S/T */
3062                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3063                         HFC_wait(hc);
3064                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3065                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3066                                                ((ch % 4) * 4)) << 1) | 1);
3067                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3068 
3069                         /* FIFO -> PCM */
3070                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3071                         HFC_wait(hc);
3072                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3073                         HFC_outb(hc, A_SUBCH_CFG, 0);
3074                         HFC_outb(hc, A_IRQ_MSK, 0);
3075                         if (hc->chan[ch].protocol != protocol) {
3076                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3077                                 HFC_wait(hc);
3078                         }
3079                         /* tx silence */
3080                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3081                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3082                                               ((ch % 4) * 4)) << 1);
3083                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3084                 } else {
3085                         /* enable TX fifo */
3086                         HFC_outb(hc, R_FIFO, ch << 1);
3087                         HFC_wait(hc);
3088                         if (hc->ctype == HFC_TYPE_XHFC)
3089                                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3090                                          V_HDLC_TRP | V_IFF);
3091                         /* Enable FIFO, no interrupt */
3092                         else
3093                                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3094                                          V_HDLC_TRP | V_IFF);
3095                         HFC_outb(hc, A_SUBCH_CFG, 0);
3096                         HFC_outb(hc, A_IRQ_MSK, 0);
3097                         if (hc->chan[ch].protocol != protocol) {
3098                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3099                                 HFC_wait(hc);
3100                         }
3101                         /* tx silence */
3102                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3103                         /* enable RX fifo */
3104                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3105                         HFC_wait(hc);
3106                         if (hc->ctype == HFC_TYPE_XHFC)
3107                                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3108                                          V_HDLC_TRP);
3109                         /* Enable FIFO, no interrupt*/
3110                         else
3111                                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3112                                          V_HDLC_TRP);
3113                         HFC_outb(hc, A_SUBCH_CFG, 0);
3114                         HFC_outb(hc, A_IRQ_MSK, 0);
3115                         if (hc->chan[ch].protocol != protocol) {
3116                                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3117                                 HFC_wait(hc);
3118                         }
3119                 }
3120                 if (hc->ctype != HFC_TYPE_E1) {
3121                         hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3122                                 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3123                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3124                         /* undocumented: delay after R_ST_SEL */
3125                         udelay(1);
3126                         HFC_outb(hc, A_ST_CTRL0,
3127                                  hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3128                 }
3129                 if (hc->chan[ch].bch)
3130                         test_and_set_bit(FLG_TRANSPARENT,
3131                                          &hc->chan[ch].bch->Flags);
3132                 break;
3133         case (ISDN_P_B_HDLC): /* B-channel */
3134         case (ISDN_P_TE_S0): /* D-channel */
3135         case (ISDN_P_NT_S0):
3136         case (ISDN_P_TE_E1):
3137         case (ISDN_P_NT_E1):
3138                 /* enable TX fifo */
3139                 HFC_outb(hc, R_FIFO, ch << 1);
3140                 HFC_wait(hc);
3141                 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3142                         /* E1 or B-channel */
3143                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3144                         HFC_outb(hc, A_SUBCH_CFG, 0);
3145                 } else {
3146                         /* D-Channel without HDLC fill flags */
3147                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3148                         HFC_outb(hc, A_SUBCH_CFG, 2);
3149                 }
3150                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3151                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3152                 HFC_wait(hc);
3153                 /* enable RX fifo */
3154                 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3155                 HFC_wait(hc);
3156                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3157                 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3158                         HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3159                 else
3160                         HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3161                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3162                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3163                 HFC_wait(hc);
3164                 if (hc->chan[ch].bch) {
3165                         test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3166                         if (hc->ctype != HFC_TYPE_E1) {
3167                                 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3168                                         ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3169                                 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3170                                 /* undocumented: delay after R_ST_SEL */
3171                                 udelay(1);
3172                                 HFC_outb(hc, A_ST_CTRL0,
3173                                          hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3174                         }
3175                 }
3176                 break;
3177         default:
3178                 printk(KERN_DEBUG "%s: protocol not known %x\n",
3179                        __func__, protocol);
3180                 hc->chan[ch].protocol = ISDN_P_NONE;
3181                 return -ENOPROTOOPT;
3182         }
3183         hc->chan[ch].protocol = protocol;
3184         return 0;
3185 }
3186 
3187 
3188 /*
3189  * connect/disconnect PCM
3190  */
3191 
3192 static void
3193 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3194              int slot_rx, int bank_rx)
3195 {
3196         if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3197                 /* disable PCM */
3198                 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3199                 return;
3200         }
3201 
3202         /* enable pcm */
3203         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3204                       slot_rx, bank_rx);
3205 }
3206 
3207 /*
3208  * set/disable conference
3209  */
3210 
3211 static void
3212 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3213 {
3214         if (num >= 0 && num <= 7)
3215                 hc->chan[ch].conf = num;
3216         else
3217                 hc->chan[ch].conf = -1;
3218         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3219                       hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3220                       hc->chan[ch].bank_rx);
3221 }
3222 
3223 
3224 /*
3225  * set/disable sample loop
3226  */
3227 
3228 /* NOTE: this function is experimental and therefore disabled */
3229 
3230 /*
3231  * Layer 1 callback function
3232  */
3233 static int
3234 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3235 {
3236         struct hfc_multi        *hc = dch->hw;
3237         u_long  flags;
3238 
3239         switch (cmd) {
3240         case INFO3_P8:
3241         case INFO3_P10:
3242                 break;
3243         case HW_RESET_REQ:
3244                 /* start activation */
3245                 spin_lock_irqsave(&hc->lock, flags);
3246                 if (hc->ctype == HFC_TYPE_E1) {
3247                         if (debug & DEBUG_HFCMULTI_MSG)
3248                                 printk(KERN_DEBUG
3249                                        "%s: HW_RESET_REQ no BRI\n",
3250                                        __func__);
3251                 } else {
3252                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3253                         /* undocumented: delay after R_ST_SEL */
3254                         udelay(1);
3255                         HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3256                         udelay(6); /* wait at least 5,21us */
3257                         HFC_outb(hc, A_ST_WR_STATE, 3);
3258                         HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3259                         /* activate */
3260                 }
3261                 spin_unlock_irqrestore(&hc->lock, flags);
3262                 l1_event(dch->l1, HW_POWERUP_IND);
3263                 break;
3264         case HW_DEACT_REQ:
3265                 /* start deactivation */
3266                 spin_lock_irqsave(&hc->lock, flags);
3267                 if (hc->ctype == HFC_TYPE_E1) {
3268                         if (debug & DEBUG_HFCMULTI_MSG)
3269                                 printk(KERN_DEBUG
3270                                        "%s: HW_DEACT_REQ no BRI\n",
3271                                        __func__);
3272                 } else {
3273                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3274                         /* undocumented: delay after R_ST_SEL */
3275                         udelay(1);
3276                         HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3277                         /* deactivate */
3278                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3279                                 hc->syncronized &=
3280                                         ~(1 << hc->chan[dch->slot].port);
3281                                 plxsd_checksync(hc, 0);
3282                         }
3283                 }
3284                 skb_queue_purge(&dch->squeue);
3285                 if (dch->tx_skb) {
3286                         dev_kfree_skb(dch->tx_skb);
3287                         dch->tx_skb = NULL;
3288                 }
3289                 dch->tx_idx = 0;
3290                 if (dch->rx_skb) {
3291                         dev_kfree_skb(dch->rx_skb);
3292                         dch->rx_skb = NULL;
3293                 }
3294                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3295                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3296                         del_timer(&dch->timer);
3297                 spin_unlock_irqrestore(&hc->lock, flags);
3298                 break;
3299         case HW_POWERUP_REQ:
3300                 spin_lock_irqsave(&hc->lock, flags);
3301                 if (hc->ctype == HFC_TYPE_E1) {
3302                         if (debug & DEBUG_HFCMULTI_MSG)
3303                                 printk(KERN_DEBUG
3304                                        "%s: HW_POWERUP_REQ no BRI\n",
3305                                        __func__);
3306                 } else {
3307                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3308                         /* undocumented: delay after R_ST_SEL */
3309                         udelay(1);
3310                         HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3311                         udelay(6); /* wait at least 5,21us */
3312                         HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3313                 }
3314                 spin_unlock_irqrestore(&hc->lock, flags);
3315                 break;
3316         case PH_ACTIVATE_IND:
3317                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3318                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3319                             GFP_ATOMIC);
3320                 break;
3321         case PH_DEACTIVATE_IND:
3322                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3323                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3324                             GFP_ATOMIC);
3325                 break;
3326         default:
3327                 if (dch->debug & DEBUG_HW)
3328                         printk(KERN_DEBUG "%s: unknown command %x\n",
3329                                __func__, cmd);
3330                 return -1;
3331         }
3332         return 0;
3333 }
3334 
3335 /*
3336  * Layer2 -> Layer 1 Transfer
3337  */
3338 
3339 static int
3340 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3341 {
3342         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
3343         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
3344         struct hfc_multi        *hc = dch->hw;
3345         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3346         int                     ret = -EINVAL;
3347         unsigned int            id;
3348         u_long                  flags;
3349 
3350         switch (hh->prim) {
3351         case PH_DATA_REQ:
3352                 if (skb->len < 1)
3353                         break;
3354                 spin_lock_irqsave(&hc->lock, flags);
3355                 ret = dchannel_senddata(dch, skb);
3356                 if (ret > 0) { /* direct TX */
3357                         id = hh->id; /* skb can be freed */
3358                         hfcmulti_tx(hc, dch->slot);
3359                         ret = 0;
3360                         /* start fifo */
3361                         HFC_outb(hc, R_FIFO, 0);
3362                         HFC_wait(hc);
3363                         spin_unlock_irqrestore(&hc->lock, flags);
3364                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3365                 } else
3366                         spin_unlock_irqrestore(&hc->lock, flags);
3367                 return ret;
3368         case PH_ACTIVATE_REQ:
3369                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3370                         spin_lock_irqsave(&hc->lock, flags);
3371                         ret = 0;
3372                         if (debug & DEBUG_HFCMULTI_MSG)
3373                                 printk(KERN_DEBUG
3374                                        "%s: PH_ACTIVATE port %d (0..%d)\n",
3375                                        __func__, hc->chan[dch->slot].port,
3376                                        hc->ports - 1);
3377                         /* start activation */
3378                         if (hc->ctype == HFC_TYPE_E1) {
3379                                 ph_state_change(dch);
3380                                 if (debug & DEBUG_HFCMULTI_STATE)
3381                                         printk(KERN_DEBUG
3382                                                "%s: E1 report state %x \n",
3383                                                __func__, dch->state);
3384                         } else {
3385                                 HFC_outb(hc, R_ST_SEL,
3386                                          hc->chan[dch->slot].port);
3387                                 /* undocumented: delay after R_ST_SEL */
3388                                 udelay(1);
3389                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3390                                 /* G1 */
3391                                 udelay(6); /* wait at least 5,21us */
3392                                 HFC_outb(hc, A_ST_WR_STATE, 1);
3393                                 HFC_outb(hc, A_ST_WR_STATE, 1 |
3394                                          (V_ST_ACT * 3)); /* activate */
3395                                 dch->state = 1;
3396                         }
3397                         spin_unlock_irqrestore(&hc->lock, flags);
3398                 } else
3399                         ret = l1_event(dch->l1, hh->prim);
3400                 break;
3401         case PH_DEACTIVATE_REQ:
3402                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3403                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3404                         spin_lock_irqsave(&hc->lock, flags);
3405                         if (debug & DEBUG_HFCMULTI_MSG)
3406                                 printk(KERN_DEBUG
3407                                        "%s: PH_DEACTIVATE port %d (0..%d)\n",
3408                                        __func__, hc->chan[dch->slot].port,
3409                                        hc->ports - 1);
3410                         /* start deactivation */
3411                         if (hc->ctype == HFC_TYPE_E1) {
3412                                 if (debug & DEBUG_HFCMULTI_MSG)
3413                                         printk(KERN_DEBUG
3414                                                "%s: PH_DEACTIVATE no BRI\n",
3415                                                __func__);
3416                         } else {
3417                                 HFC_outb(hc, R_ST_SEL,
3418                                          hc->chan[dch->slot].port);
3419                                 /* undocumented: delay after R_ST_SEL */
3420                                 udelay(1);
3421                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3422                                 /* deactivate */
3423                                 dch->state = 1;
3424                         }
3425                         skb_queue_purge(&dch->squeue);
3426                         if (dch->tx_skb) {
3427                                 dev_kfree_skb(dch->tx_skb);
3428                                 dch->tx_skb = NULL;
3429                         }
3430                         dch->tx_idx = 0;
3431                         if (dch->rx_skb) {
3432                                 dev_kfree_skb(dch->rx_skb);
3433                                 dch->rx_skb = NULL;
3434                         }
3435                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3436                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3437                                 del_timer(&dch->timer);
3438 #ifdef FIXME
3439                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3440                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3441 #endif
3442                         ret = 0;
3443                         spin_unlock_irqrestore(&hc->lock, flags);
3444                 } else
3445                         ret = l1_event(dch->l1, hh->prim);
3446                 break;
3447         }
3448         if (!ret)
3449                 dev_kfree_skb(skb);
3450         return ret;
3451 }
3452 
3453 static void
3454 deactivate_bchannel(struct bchannel *bch)
3455 {
3456         struct hfc_multi        *hc = bch->hw;
3457         u_long                  flags;
3458 
3459         spin_lock_irqsave(&hc->lock, flags);
3460         mISDN_clear_bchannel(bch);
3461         hc->chan[bch->slot].coeff_count = 0;
3462         hc->chan[bch->slot].rx_off = 0;
3463         hc->chan[bch->slot].conf = -1;
3464         mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3465         spin_unlock_irqrestore(&hc->lock, flags);
3466 }
3467 
3468 static int
3469 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3470 {
3471         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3472         struct hfc_multi        *hc = bch->hw;
3473         int                     ret = -EINVAL;
3474         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3475         unsigned long           flags;
3476 
3477         switch (hh->prim) {
3478         case PH_DATA_REQ:
3479                 if (!skb->len)
3480                         break;
3481                 spin_lock_irqsave(&hc->lock, flags);
3482                 ret = bchannel_senddata(bch, skb);
3483                 if (ret > 0) { /* direct TX */
3484                         hfcmulti_tx(hc, bch->slot);
3485                         ret = 0;
3486                         /* start fifo */
3487                         HFC_outb_nodebug(hc, R_FIFO, 0);
3488                         HFC_wait_nodebug(hc);
3489                 }
3490                 spin_unlock_irqrestore(&hc->lock, flags);
3491                 return ret;
3492         case PH_ACTIVATE_REQ:
3493                 if (debug & DEBUG_HFCMULTI_MSG)
3494                         printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3495                                __func__, bch->slot);
3496                 spin_lock_irqsave(&hc->lock, flags);
3497                 /* activate B-channel if not already activated */
3498                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3499                         hc->chan[bch->slot].txpending = 0;
3500                         ret = mode_hfcmulti(hc, bch->slot,
3501                                             ch->protocol,
3502                                             hc->chan[bch->slot].slot_tx,
3503                                             hc->chan[bch->slot].bank_tx,
3504                                             hc->chan[bch->slot].slot_rx,
3505                                             hc->chan[bch->slot].bank_rx);
3506                         if (!ret) {
3507                                 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3508                                     && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3509                                         /* start decoder */
3510                                         hc->dtmf = 1;
3511                                         if (debug & DEBUG_HFCMULTI_DTMF)
3512                                                 printk(KERN_DEBUG
3513                                                        "%s: start dtmf decoder\n",
3514                                                        __func__);
3515                                         HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3516                                                  V_RST_DTMF);
3517                                 }
3518                         }
3519                 } else
3520                         ret = 0;
3521                 spin_unlock_irqrestore(&hc->lock, flags);
3522                 if (!ret)
3523                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3524                                     GFP_KERNEL);
3525                 break;
3526         case PH_CONTROL_REQ:
3527                 spin_lock_irqsave(&hc->lock, flags);
3528                 switch (hh->id) {
3529                 case HFC_SPL_LOOP_ON: /* set sample loop */
3530                         if (debug & DEBUG_HFCMULTI_MSG)
3531                                 printk(KERN_DEBUG
3532                                        "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3533                                        __func__, skb->len);
3534                         ret = 0;
3535                         break;
3536                 case HFC_SPL_LOOP_OFF: /* set silence */
3537                         if (debug & DEBUG_HFCMULTI_MSG)
3538                                 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3539                                        __func__);
3540                         ret = 0;
3541                         break;
3542                 default:
3543                         printk(KERN_ERR
3544                                "%s: unknown PH_CONTROL_REQ info %x\n",
3545                                __func__, hh->id);
3546                         ret = -EINVAL;
3547                 }
3548                 spin_unlock_irqrestore(&hc->lock, flags);
3549                 break;
3550         case PH_DEACTIVATE_REQ:
3551                 deactivate_bchannel(bch); /* locked there */
3552                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3553                             GFP_KERNEL);
3554                 ret = 0;
3555                 break;
3556         }
3557         if (!ret)
3558                 dev_kfree_skb(skb);
3559         return ret;
3560 }
3561 
3562 /*
3563  * bchannel control function
3564  */
3565 static int
3566 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3567 {
3568         int                     ret = 0;
3569         struct dsp_features     *features =
3570                 (struct dsp_features *)(*((u_long *)&cq->p1));
3571         struct hfc_multi        *hc = bch->hw;
3572         int                     slot_tx;
3573         int                     bank_tx;
3574         int                     slot_rx;
3575         int                     bank_rx;
3576         int                     num;
3577 
3578         switch (cq->op) {
3579         case MISDN_CTRL_GETOP:
3580                 ret = mISDN_ctrl_bchannel(bch, cq);
3581                 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3582                 break;
3583         case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3584                 ret = mISDN_ctrl_bchannel(bch, cq);
3585                 hc->chan[bch->slot].rx_off = !!cq->p1;
3586                 if (!hc->chan[bch->slot].rx_off) {
3587                         /* reset fifo on rx on */
3588                         HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3589                         HFC_wait_nodebug(hc);
3590                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3591                         HFC_wait_nodebug(hc);
3592                 }
3593                 if (debug & DEBUG_HFCMULTI_MSG)
3594                         printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3595                                __func__, bch->nr, hc->chan[bch->slot].rx_off);
3596                 break;
3597         case MISDN_CTRL_FILL_EMPTY:
3598                 ret = mISDN_ctrl_bchannel(bch, cq);
3599                 hc->silence = bch->fill[0];
3600                 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3601                 break;
3602         case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3603                 if (debug & DEBUG_HFCMULTI_MSG)
3604                         printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3605                                __func__);
3606                 /* create confirm */
3607                 features->hfc_id = hc->id;
3608                 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3609                         features->hfc_dtmf = 1;
3610                 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3611                         features->hfc_conf = 1;
3612                 features->hfc_loops = 0;
3613                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3614                         features->hfc_echocanhw = 1;
3615                 } else {
3616                         features->pcm_id = hc->pcm;
3617                         features->pcm_slots = hc->slots;
3618                         features->pcm_banks = 2;
3619                 }
3620                 break;
3621         case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3622                 slot_tx = cq->p1 & 0xff;
3623                 bank_tx = cq->p1 >> 8;
3624                 slot_rx = cq->p2 & 0xff;
3625                 bank_rx = cq->p2 >> 8;
3626                 if (debug & DEBUG_HFCMULTI_MSG)
3627                         printk(KERN_DEBUG
3628                                "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3629                                "slot %d bank %d (RX)\n",
3630                                __func__, slot_tx, bank_tx,
3631                                slot_rx, bank_rx);
3632                 if (slot_tx < hc->slots && bank_tx <= 2 &&
3633                     slot_rx < hc->slots && bank_rx <= 2)
3634                         hfcmulti_pcm(hc, bch->slot,
3635                                      slot_tx, bank_tx, slot_rx, bank_rx);
3636                 else {
3637                         printk(KERN_WARNING
3638                                "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3639                                "slot %d bank %d (RX) out of range\n",
3640                                __func__, slot_tx, bank_tx,
3641                                slot_rx, bank_rx);
3642                         ret = -EINVAL;
3643                 }
3644                 break;
3645         case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3646                 if (debug & DEBUG_HFCMULTI_MSG)
3647                         printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3648                                __func__);
3649                 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3650                 break;
3651         case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3652                 num = cq->p1 & 0xff;
3653                 if (debug & DEBUG_HFCMULTI_MSG)
3654                         printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3655                                __func__, num);
3656                 if (num <= 7)
3657                         hfcmulti_conf(hc, bch->slot, num);
3658                 else {
3659                         printk(KERN_WARNING
3660                                "%s: HW_CONF_JOIN conf %d out of range\n",
3661                                __func__, num);
3662                         ret = -EINVAL;
3663                 }
3664                 break;
3665         case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3666                 if (debug & DEBUG_HFCMULTI_MSG)
3667                         printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3668                 hfcmulti_conf(hc, bch->slot, -1);
3669                 break;
3670         case MISDN_CTRL_HFC_ECHOCAN_ON:
3671                 if (debug & DEBUG_HFCMULTI_MSG)
3672                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3673                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3674                         vpm_echocan_on(hc, bch->slot, cq->p1);
3675                 else
3676                         ret = -EINVAL;
3677                 break;
3678 
3679         case MISDN_CTRL_HFC_ECHOCAN_OFF:
3680                 if (debug & DEBUG_HFCMULTI_MSG)
3681                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3682                                __func__);
3683                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3684                         vpm_echocan_off(hc, bch->slot);
3685                 else
3686                         ret = -EINVAL;
3687                 break;
3688         default:
3689                 ret = mISDN_ctrl_bchannel(bch, cq);
3690                 break;
3691         }
3692         return ret;
3693 }
3694 
3695 static int
3696 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3697 {
3698         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3699         struct hfc_multi        *hc = bch->hw;
3700         int                     err = -EINVAL;
3701         u_long  flags;
3702 
3703         if (bch->debug & DEBUG_HW)
3704                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3705                        __func__, cmd, arg);
3706         switch (cmd) {
3707         case CLOSE_CHANNEL:
3708                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3709                 deactivate_bchannel(bch); /* locked there */
3710                 ch->protocol = ISDN_P_NONE;
3711                 ch->peer = NULL;
3712                 module_put(THIS_MODULE);
3713                 err = 0;
3714                 break;
3715         case CONTROL_CHANNEL:
3716                 spin_lock_irqsave(&hc->lock, flags);
3717                 err = channel_bctrl(bch, arg);
3718                 spin_unlock_irqrestore(&hc->lock, flags);
3719                 break;
3720         default:
3721                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3722                        __func__, cmd);
3723         }
3724         return err;
3725 }
3726 
3727 /*
3728  * handle D-channel events
3729  *
3730  * handle state change event
3731  */
3732 static void
3733 ph_state_change(struct dchannel *dch)
3734 {
3735         struct hfc_multi *hc;
3736         int ch, i;
3737 
3738         if (!dch) {
3739                 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3740                 return;
3741         }
3742         hc = dch->hw;
3743         ch = dch->slot;
3744 
3745         if (hc->ctype == HFC_TYPE_E1) {
3746                 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3747                         if (debug & DEBUG_HFCMULTI_STATE)
3748                                 printk(KERN_DEBUG
3749                                        "%s: E1 TE (id=%d) newstate %x\n",
3750                                        __func__, hc->id, dch->state);
3751                 } else {
3752                         if (debug & DEBUG_HFCMULTI_STATE)
3753                                 printk(KERN_DEBUG
3754                                        "%s: E1 NT (id=%d) newstate %x\n",
3755                                        __func__, hc->id, dch->state);
3756                 }
3757                 switch (dch->state) {
3758                 case (1):
3759                         if (hc->e1_state != 1) {
3760                                 for (i = 1; i <= 31; i++) {
3761                                         /* reset fifos on e1 activation */
3762                                         HFC_outb_nodebug(hc, R_FIFO,
3763                                                          (i << 1) | 1);
3764                                         HFC_wait_nodebug(hc);
3765                                         HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3766                                                          V_RES_F);
3767                                         HFC_wait_nodebug(hc);
3768                                 }
3769                         }
3770                         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3771                         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3772                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3773                         break;
3774 
3775                 default:
3776                         if (hc->e1_state != 1)
3777                                 return;
3778                         test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3779                         _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3780                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3781                 }
3782                 hc->e1_state = dch->state;
3783         } else {
3784                 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3785                         if (debug & DEBUG_HFCMULTI_STATE)
3786                                 printk(KERN_DEBUG
3787                                        "%s: S/T TE newstate %x\n",
3788                                        __func__, dch->state);
3789                         switch (dch->state) {
3790                         case (0):
3791                                 l1_event(dch->l1, HW_RESET_IND);
3792                                 break;
3793                         case (3):
3794                                 l1_event(dch->l1, HW_DEACT_IND);
3795                                 break;
3796                         case (5):
3797                         case (8):
3798                                 l1_event(dch->l1, ANYSIGNAL);
3799                                 break;
3800                         case (6):
3801                                 l1_event(dch->l1, INFO2);
3802                                 break;
3803                         case (7):
3804                                 l1_event(dch->l1, INFO4_P8);
3805                                 break;
3806                         }
3807                 } else {
3808                         if (debug & DEBUG_HFCMULTI_STATE)
3809                                 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3810                                        __func__, dch->state);
3811                         switch (dch->state) {
3812                         case (2):
3813                                 if (hc->chan[ch].nt_timer == 0) {
3814                                         hc->chan[ch].nt_timer = -1;
3815                                         HFC_outb(hc, R_ST_SEL,
3816                                                  hc->chan[ch].port);
3817                                         /* undocumented: delay after R_ST_SEL */
3818                                         udelay(1);
3819                                         HFC_outb(hc, A_ST_WR_STATE, 4 |
3820                                                  V_ST_LD_STA); /* G4 */
3821                                         udelay(6); /* wait at least 5,21us */
3822                                         HFC_outb(hc, A_ST_WR_STATE, 4);
3823                                         dch->state = 4;
3824                                 } else {
3825                                         /* one extra count for the next event */
3826                                         hc->chan[ch].nt_timer =
3827                                                 nt_t1_count[poll_timer] + 1;
3828                                         HFC_outb(hc, R_ST_SEL,
3829                                                  hc->chan[ch].port);
3830                                         /* undocumented: delay after R_ST_SEL */
3831                                         udelay(1);
3832                                         /* allow G2 -> G3 transition */
3833                                         HFC_outb(hc, A_ST_WR_STATE, 2 |
3834                                                  V_SET_G2_G3);
3835                                 }
3836                                 break;
3837                         case (1):
3838                                 hc->chan[ch].nt_timer = -1;
3839                                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3840                                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3841                                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3842                                 break;
3843                         case (4):
3844                                 hc->chan[ch].nt_timer = -1;
3845                                 break;
3846                         case (3):
3847                                 hc->chan[ch].nt_timer = -1;
3848                                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3849                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3850                                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3851                                 break;
3852                         }
3853                 }
3854         }
3855 }
3856 
3857 /*
3858  * called for card mode init message
3859  */
3860 
3861 static void
3862 hfcmulti_initmode(struct dchannel *dch)
3863 {
3864         struct hfc_multi *hc = dch->hw;
3865         u_char          a_st_wr_state, r_e1_wr_sta;
3866         int             i, pt;
3867 
3868         if (debug & DEBUG_HFCMULTI_INIT)
3869                 printk(KERN_DEBUG "%s: entered\n", __func__);
3870 
3871         i = dch->slot;
3872         pt = hc->chan[i].port;
3873         if (hc->ctype == HFC_TYPE_E1) {
3874                 /* E1 */
3875                 hc->chan[hc->dnum[pt]].slot_tx = -1;
3876                 hc->chan[hc->dnum[pt]].slot_rx = -1;
3877                 hc->chan[hc->dnum[pt]].conf = -1;
3878                 if (hc->dnum[pt]) {
3879                         mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3880                                       -1, 0, -1, 0);
3881                         dch->timer.function = (void *) hfcmulti_dbusy_timer;
3882                         dch->timer.data = (long) dch;
3883                         init_timer(&dch->timer);
3884                 }
3885                 for (i = 1; i <= 31; i++) {
3886                         if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3887                                 continue;
3888                         hc->chan[i].slot_tx = -1;
3889                         hc->chan[i].slot_rx = -1;
3890                         hc->chan[i].conf = -1;
3891                         mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3892                 }
3893         }
3894         if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3895                 /* E1, port 0 */
3896                 dch = hc->chan[hc->dnum[0]].dch;
3897                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3898                         HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3899                         HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3900                 }
3901                 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3902                         HFC_outb(hc, R_RX0, 0);
3903                         hc->hw.r_tx0 = 0 | V_OUT_EN;
3904                 } else {
3905                         HFC_outb(hc, R_RX0, 1);
3906                         hc->hw.r_tx0 = 1 | V_OUT_EN;
3907                 }
3908                 hc->hw.r_tx1 = V_ATX | V_NTRI;
3909                 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3910                 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3911                 HFC_outb(hc, R_TX_FR0, 0x00);
3912                 HFC_outb(hc, R_TX_FR1, 0xf8);
3913 
3914                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3915                         HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3916 
3917                 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3918 
3919                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3920                         HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3921 
3922                 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3923                         if (debug & DEBUG_HFCMULTI_INIT)
3924                                 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3925                                        __func__);
3926                         r_e1_wr_sta = 0; /* G0 */
3927                         hc->e1_getclock = 0;
3928                 } else {
3929                         if (debug & DEBUG_HFCMULTI_INIT)
3930                                 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3931                                        __func__);
3932                         r_e1_wr_sta = 0; /* F0 */
3933                         hc->e1_getclock = 1;
3934                 }
3935                 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3936                         HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3937                 else
3938                         HFC_outb(hc, R_SYNC_OUT, 0);
3939                 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3940                         hc->e1_getclock = 1;
3941                 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3942                         hc->e1_getclock = 0;
3943                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3944                         /* SLAVE (clock master) */
3945                         if (debug & DEBUG_HFCMULTI_INIT)
3946                                 printk(KERN_DEBUG
3947                                        "%s: E1 port is clock master "
3948                                        "(clock from PCM)\n", __func__);
3949                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3950                 } else {
3951                         if (hc->e1_getclock) {
3952                                 /* MASTER (clock slave) */
3953                                 if (debug & DEBUG_HFCMULTI_INIT)
3954                                         printk(KERN_DEBUG
3955                                                "%s: E1 port is clock slave "
3956                                                "(clock to PCM)\n", __func__);
3957                                 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3958                         } else {
3959                                 /* MASTER (clock master) */
3960                                 if (debug & DEBUG_HFCMULTI_INIT)
3961                                         printk(KERN_DEBUG "%s: E1 port is "
3962                                                "clock master "
3963                                                "(clock from QUARTZ)\n",
3964                                                __func__);
3965                                 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3966                                          V_PCM_SYNC | V_JATT_OFF);
3967                                 HFC_outb(hc, R_SYNC_OUT, 0);
3968                         }
3969                 }
3970                 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3971                 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3972                 HFC_outb(hc, R_PWM0, 0x50);
3973                 HFC_outb(hc, R_PWM1, 0xff);
3974                 /* state machine setup */
3975                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3976                 udelay(6); /* wait at least 5,21us */
3977                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3978                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3979                         hc->syncronized = 0;
3980                         plxsd_checksync(hc, 0);
3981                 }
3982         }
3983         if (hc->ctype != HFC_TYPE_E1) {
3984                 /* ST */
3985                 hc->chan[i].slot_tx = -1;
3986                 hc->chan[i].slot_rx = -1;
3987                 hc->chan[i].conf = -1;
3988                 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3989                 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3990                 dch->timer.data = (long) dch;
3991                 init_timer(&dch->timer);
3992                 hc->chan[i - 2].slot_tx = -1;
3993                 hc->chan[i - 2].slot_rx = -1;
3994                 hc->chan[i - 2].conf = -1;
3995                 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3996                 hc->chan[i - 1].slot_tx = -1;
3997                 hc->chan[i - 1].slot_rx = -1;
3998                 hc->chan[i - 1].conf = -1;
3999                 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
4000                 /* select interface */
4001                 HFC_outb(hc, R_ST_SEL, pt);
4002                 /* undocumented: delay after R_ST_SEL */
4003                 udelay(1);
4004                 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
4005                         if (debug & DEBUG_HFCMULTI_INIT)
4006                                 printk(KERN_DEBUG
4007                                        "%s: ST port %d is NT-mode\n",
4008                                        __func__, pt);
4009                         /* clock delay */
4010                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
4011                         a_st_wr_state = 1; /* G1 */
4012                         hc->hw.a_st_ctrl0[pt] = V_ST_MD;
4013                 } else {
4014                         if (debug & DEBUG_HFCMULTI_INIT)
4015                                 printk(KERN_DEBUG
4016                                        "%s: ST port %d is TE-mode\n",
4017                                        __func__, pt);
4018                         /* clock delay */
4019                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
4020                         a_st_wr_state = 2; /* F2 */
4021                         hc->hw.a_st_ctrl0[pt] = 0;
4022                 }
4023                 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
4024                         hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
4025                 if (hc->ctype == HFC_TYPE_XHFC) {
4026                         hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
4027                         HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
4028                                  0x7c << 1 /* V_ST_PULSE */);
4029                 }
4030                 /* line setup */
4031                 HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
4032                 /* disable E-channel */
4033                 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4034                     test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4035                         HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4036                 else
4037                         HFC_outb(hc, A_ST_CTRL1, 0);
4038                 /* enable B-channel receive */
4039                 HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
4040                 /* state machine setup */
4041                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4042                 udelay(6); /* wait at least 5,21us */
4043                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4044                 hc->hw.r_sci_msk |= 1 << pt;
4045                 /* state machine interrupts */
4046                 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4047                 /* unset sync on port */
4048                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4049                         hc->syncronized &=
4050                                 ~(1 << hc->chan[dch->slot].port);
4051                         plxsd_checksync(hc, 0);
4052                 }
4053         }
4054         if (debug & DEBUG_HFCMULTI_INIT)
4055                 printk("%s: done\n", __func__);
4056 }
4057 
4058 
4059 static int
4060 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4061               struct channel_req *rq)
4062 {
4063         int     err = 0;
4064         u_long  flags;
4065 
4066         if (debug & DEBUG_HW_OPEN)
4067                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4068                        dch->dev.id, __builtin_return_address(0));
4069         if (rq->protocol == ISDN_P_NONE)
4070                 return -EINVAL;
4071         if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4072             (dch->dev.D.protocol != rq->protocol)) {
4073                 if (debug & DEBUG_HFCMULTI_MODE)
4074                         printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4075                                __func__, dch->dev.D.protocol, rq->protocol);
4076         }
4077         if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4078             (rq->protocol != ISDN_P_TE_S0))
4079                 l1_event(dch->l1, CLOSE_CHANNEL);
4080         if (dch->dev.D.protocol != rq->protocol) {
4081                 if (rq->protocol == ISDN_P_TE_S0) {
4082                         err = create_l1(dch, hfcm_l1callback);
4083                         if (err)
4084                                 return err;
4085                 }
4086                 dch->dev.D.protocol = rq->protocol;
4087                 spin_lock_irqsave(&hc->lock, flags);
4088                 hfcmulti_initmode(dch);
4089                 spin_unlock_irqrestore(&hc->lock, flags);
4090         }
4091         if (test_bit(FLG_ACTIVE, &dch->Flags))
4092                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4093                             0, NULL, GFP_KERNEL);
4094         rq->ch = &dch->dev.D;
4095         if (!try_module_get(THIS_MODULE))
4096                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4097         return 0;
4098 }
4099 
4100 static int
4101 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4102               struct channel_req *rq)
4103 {
4104         struct bchannel *bch;
4105         int             ch;
4106 
4107         if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4108                 return -EINVAL;
4109         if (rq->protocol == ISDN_P_NONE)
4110                 return -EINVAL;
4111         if (hc->ctype == HFC_TYPE_E1)
4112                 ch = rq->adr.channel;
4113         else
4114                 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4115         bch = hc->chan[ch].bch;
4116         if (!bch) {
4117                 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4118                        __func__, ch);
4119                 return -EINVAL;
4120         }
4121         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4122                 return -EBUSY; /* b-channel can be only open once */
4123         bch->ch.protocol = rq->protocol;
4124         hc->chan[ch].rx_off = 0;
4125         rq->ch = &bch->ch;
4126         if (!try_module_get(THIS_MODULE))
4127                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4128         return 0;
4129 }
4130 
4131 /*
4132  * device control function
4133  */
4134 static int
4135 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4136 {
4137         struct hfc_multi        *hc = dch->hw;
4138         int     ret = 0;
4139         int     wd_mode, wd_cnt;
4140 
4141         switch (cq->op) {
4142         case MISDN_CTRL_GETOP:
4143                 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4144                 break;
4145         case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4146                 wd_cnt = cq->p1 & 0xf;
4147                 wd_mode = !!(cq->p1 >> 4);
4148                 if (debug & DEBUG_HFCMULTI_MSG)
4149                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4150                                ", counter 0x%x\n", __func__,
4151                                wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4152                 /* set the watchdog timer */
4153                 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4154                 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4155                 if (hc->ctype == HFC_TYPE_XHFC)
4156                         hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4157                 /* init the watchdog register and reset the counter */
4158                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4159                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4160                         /* enable the watchdog output for Speech-Design */
4161                         HFC_outb(hc, R_GPIO_SEL,  V_GPIO_SEL7);
4162                         HFC_outb(hc, R_GPIO_EN1,  V_GPIO_EN15);
4163                         HFC_outb(hc, R_GPIO_OUT1, 0);
4164                         HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4165                 }
4166                 break;
4167         case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4168                 if (debug & DEBUG_HFCMULTI_MSG)
4169                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4170                                __func__);
4171                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4172                 break;
4173         case MISDN_CTRL_L1_TIMER3:
4174                 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4175                 break;
4176         default:
4177                 printk(KERN_WARNING "%s: unknown Op %x\n",
4178                        __func__, cq->op);
4179                 ret = -EINVAL;
4180                 break;
4181         }
4182         return ret;
4183 }
4184 
4185 static int
4186 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4187 {
4188         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
4189         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
4190         struct hfc_multi        *hc = dch->hw;
4191         struct channel_req      *rq;
4192         int                     err = 0;
4193         u_long                  flags;
4194 
4195         if (dch->debug & DEBUG_HW)
4196                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4197                        __func__, cmd, arg);
4198         switch (cmd) {
4199         case OPEN_CHANNEL:
4200                 rq = arg;
4201                 switch (rq->protocol) {
4202                 case ISDN_P_TE_S0:
4203                 case ISDN_P_NT_S0:
4204                         if (hc->ctype == HFC_TYPE_E1) {
4205                                 err = -EINVAL;
4206                                 break;
4207                         }
4208                         err = open_dchannel(hc, dch, rq); /* locked there */
4209                         break;
4210                 case ISDN_P_TE_E1:
4211                 case ISDN_P_NT_E1:
4212                         if (hc->ctype != HFC_TYPE_E1) {
4213                                 err = -EINVAL;
4214                                 break;
4215                         }
4216                         err = open_dchannel(hc, dch, rq); /* locked there */
4217                         break;
4218                 default:
4219                         spin_lock_irqsave(&hc->lock, flags);
4220                         err = open_bchannel(hc, dch, rq);
4221                         spin_unlock_irqrestore(&hc->lock, flags);
4222                 }
4223                 break;
4224         case CLOSE_CHANNEL:
4225                 if (debug & DEBUG_HW_OPEN)
4226                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4227                                __func__, dch->dev.id,
4228                                __builtin_return_address(0));
4229                 module_put(THIS_MODULE);
4230                 break;
4231         case CONTROL_CHANNEL:
4232                 spin_lock_irqsave(&hc->lock, flags);
4233                 err = channel_dctrl(dch, arg);
4234                 spin_unlock_irqrestore(&hc->lock, flags);
4235                 break;
4236         default:
4237                 if (dch->debug & DEBUG_HW)
4238                         printk(KERN_DEBUG "%s: unknown command %x\n",
4239                                __func__, cmd);
4240                 err = -EINVAL;
4241         }
4242         return err;
4243 }
4244 
4245 static int
4246 clockctl(void *priv, int enable)
4247 {
4248         struct hfc_multi *hc = priv;
4249 
4250         hc->iclock_on = enable;
4251         return 0;
4252 }
4253 
4254 /*
4255  * initialize the card
4256  */
4257 
4258 /*
4259  * start timer irq, wait some time and check if we have interrupts.
4260  * if not, reset chip and try again.
4261  */
4262 static int
4263 init_card(struct hfc_multi *hc)
4264 {
4265         int     err = -EIO;
4266         u_long  flags;
4267         void    __iomem *plx_acc;
4268         u_long  plx_flags;
4269 
4270         if (debug & DEBUG_HFCMULTI_INIT)
4271                 printk(KERN_DEBUG "%s: entered\n", __func__);
4272 
4273         spin_lock_irqsave(&hc->lock, flags);
4274         /* set interrupts but leave global interrupt disabled */
4275         hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4276         disable_hwirq(hc);
4277         spin_unlock_irqrestore(&hc->lock, flags);
4278 
4279         if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4280                         "HFC-multi", hc)) {
4281                 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4282                        hc->irq);
4283                 hc->irq = 0;
4284                 return -EIO;
4285         }
4286 
4287         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4288                 spin_lock_irqsave(&plx_lock, plx_flags);
4289                 plx_acc = hc->plx_membase + PLX_INTCSR;
4290                 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4291                        plx_acc); /* enable PCI & LINT1 irq */
4292                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4293         }
4294 
4295         if (debug & DEBUG_HFCMULTI_INIT)
4296                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4297                        __func__, hc->irq, hc->irqcnt);
4298         err = init_chip(hc);
4299         if (err)
4300                 goto error;
4301         /*
4302          * Finally enable IRQ output
4303          * this is only allowed, if an IRQ routine is already
4304          * established for this HFC, so don't do that earlier
4305          */
4306         spin_lock_irqsave(&hc->lock, flags);
4307         enable_hwirq(hc);
4308         spin_unlock_irqrestore(&hc->lock, flags);
4309         /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4310         set_current_state(TASK_UNINTERRUPTIBLE);
4311         schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4312         /* turn IRQ off until chip is completely initialized */
4313         spin_lock_irqsave(&hc->lock, flags);
4314         disable_hwirq(hc);
4315         spin_unlock_irqrestore(&hc->lock, flags);
4316         if (debug & DEBUG_HFCMULTI_INIT)
4317                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4318                        __func__, hc->irq, hc->irqcnt);
4319         if (hc->irqcnt) {
4320                 if (debug & DEBUG_HFCMULTI_INIT)
4321                         printk(KERN_DEBUG "%s: done\n", __func__);
4322 
4323                 return 0;
4324         }
4325         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4326                 printk(KERN_INFO "ignoring missing interrupts\n");
4327                 return 0;
4328         }
4329 
4330         printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4331                hc->irq);
4332 
4333         err = -EIO;
4334 
4335 error:
4336         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4337                 spin_lock_irqsave(&plx_lock, plx_flags);
4338                 plx_acc = hc->plx_membase + PLX_INTCSR;
4339                 writew(0x00, plx_acc); /*disable IRQs*/
4340                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4341         }
4342 
4343         if (debug & DEBUG_HFCMULTI_INIT)
4344                 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4345         if (hc->irq) {
4346                 free_irq(hc->irq, hc);
4347                 hc->irq = 0;
4348         }
4349 
4350         if (debug & DEBUG_HFCMULTI_INIT)
4351                 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4352         return err;
4353 }
4354 
4355 /*
4356  * find pci device and set it up
4357  */
4358 
4359 static int
4360 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4361           const struct pci_device_id *ent)
4362 {
4363         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4364 
4365         printk(KERN_INFO
4366                "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4367                m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4368 
4369         hc->pci_dev = pdev;
4370         if (m->clock2)
4371                 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4372 
4373         if (ent->device == 0xB410) {
4374                 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4375                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4376                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4377                 hc->slots = 32;
4378         }
4379 
4380         if (hc->pci_dev->irq <= 0) {
4381                 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4382                 return -EIO;
4383         }
4384         if (pci_enable_device(hc->pci_dev)) {
4385                 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4386                 return -EIO;
4387         }
4388         hc->leds = m->leds;
4389         hc->ledstate = 0xAFFEAFFE;
4390         hc->opticalsupport = m->opticalsupport;
4391 
4392         hc->pci_iobase = 0;
4393         hc->pci_membase = NULL;
4394         hc->plx_membase = NULL;
4395 
4396         /* set memory access methods */
4397         if (m->io_mode) /* use mode from card config */
4398                 hc->io_mode = m->io_mode;
4399         switch (hc->io_mode) {
4400         case HFC_IO_MODE_PLXSD:
4401                 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4402                 hc->slots = 128; /* required */
4403                 hc->HFC_outb = HFC_outb_pcimem;
4404                 hc->HFC_inb = HFC_inb_pcimem;
4405                 hc->HFC_inw = HFC_inw_pcimem;
4406                 hc->HFC_wait = HFC_wait_pcimem;
4407                 hc->read_fifo = read_fifo_pcimem;
4408                 hc->write_fifo = write_fifo_pcimem;
4409                 hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4410                 /* MEMBASE 1 is PLX PCI Bridge */
4411 
4412                 if (!hc->plx_origmembase) {
4413                         printk(KERN_WARNING
4414                                "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4415                         pci_disable_device(hc->pci_dev);
4416                         return -EIO;
4417                 }
4418 
4419                 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4420                 if (!hc->plx_membase) {
4421                         printk(KERN_WARNING
4422                                "HFC-multi: failed to remap plx address space. "
4423                                "(internal error)\n");
4424                         pci_disable_device(hc->pci_dev);
4425                         return -EIO;
4426                 }
4427                 printk(KERN_INFO
4428                        "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4429                        (u_long)hc->plx_membase, hc->plx_origmembase);
4430 
4431                 hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4432                 /* MEMBASE 1 is PLX PCI Bridge */
4433                 if (!hc->pci_origmembase) {
4434                         printk(KERN_WARNING
4435                                "HFC-multi: No IO-Memory for PCI card found\n");
4436                         pci_disable_device(hc->pci_dev);
4437                         return -EIO;
4438                 }
4439 
4440                 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4441                 if (!hc->pci_membase) {
4442                         printk(KERN_WARNING "HFC-multi: failed to remap io "
4443                                "address space. (internal error)\n");
4444                         pci_disable_device(hc->pci_dev);
4445                         return -EIO;
4446                 }
4447 
4448                 printk(KERN_INFO
4449                        "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4450                        "leds-type %d\n",
4451                        hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4452                        hc->pci_dev->irq, HZ, hc->leds);
4453                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4454                 break;
4455         case HFC_IO_MODE_PCIMEM:
4456                 hc->HFC_outb = HFC_outb_pcimem;
4457                 hc->HFC_inb = HFC_inb_pcimem;
4458                 hc->HFC_inw = HFC_inw_pcimem;
4459                 hc->HFC_wait = HFC_wait_pcimem;
4460                 hc->read_fifo = read_fifo_pcimem;
4461                 hc->write_fifo = write_fifo_pcimem;
4462                 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4463                 if (!hc->pci_origmembase) {
4464                         printk(KERN_WARNING
4465                                "HFC-multi: No IO-Memory for PCI card found\n");
4466                         pci_disable_device(hc->pci_dev);
4467                         return -EIO;
4468                 }
4469 
4470                 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4471                 if (!hc->pci_membase) {
4472                         printk(KERN_WARNING
4473                                "HFC-multi: failed to remap io address space. "
4474                                "(internal error)\n");
4475                         pci_disable_device(hc->pci_dev);
4476                         return -EIO;
4477                 }
4478                 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4479                        "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4480                        hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4481                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4482                 break;
4483         case HFC_IO_MODE_REGIO:
4484                 hc->HFC_outb = HFC_outb_regio;
4485                 hc->HFC_inb = HFC_inb_regio;
4486                 hc->HFC_inw = HFC_inw_regio;
4487                 hc->HFC_wait = HFC_wait_regio;
4488                 hc->read_fifo = read_fifo_regio;
4489                 hc->write_fifo = write_fifo_regio;
4490                 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4491                 if (!hc->pci_iobase) {
4492                         printk(KERN_WARNING
4493                                "HFC-multi: No IO for PCI card found\n");
4494                         pci_disable_device(hc->pci_dev);
4495                         return -EIO;
4496                 }
4497 
4498                 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4499                         printk(KERN_WARNING "HFC-multi: failed to request "
4500                                "address space at 0x%08lx (internal error)\n",
4501                                hc->pci_iobase);
4502                         pci_disable_device(hc->pci_dev);
4503                         return -EIO;
4504                 }
4505 
4506                 printk(KERN_INFO
4507                        "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4508                        m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4509                        hc->pci_dev->irq, HZ, hc->leds);
4510                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4511                 break;
4512         default:
4513                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4514                 pci_disable_device(hc->pci_dev);
4515                 return -EIO;
4516         }
4517 
4518         pci_set_drvdata(hc->pci_dev, hc);
4519 
4520         /* At this point the needed PCI config is done */
4521         /* fifos are still not enabled */
4522         return 0;
4523 }
4524 
4525 
4526 /*
4527  * remove port
4528  */
4529 
4530 static void
4531 release_port(struct hfc_multi *hc, struct dchannel *dch)
4532 {
4533         int     pt, ci, i = 0;
4534         u_long  flags;
4535         struct bchannel *pb;
4536 
4537         ci = dch->slot;
4538         pt = hc->chan[ci].port;
4539 
4540         if (debug & DEBUG_HFCMULTI_INIT)
4541                 printk(KERN_DEBUG "%s: entered for port %d\n",
4542                        __func__, pt + 1);
4543 
4544         if (pt >= hc->ports) {
4545                 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4546                        __func__, pt + 1);
4547                 return;
4548         }
4549 
4550         if (debug & DEBUG_HFCMULTI_INIT)
4551                 printk(KERN_DEBUG "%s: releasing port=%d\n",
4552                        __func__, pt + 1);
4553 
4554         if (dch->dev.D.protocol == ISDN_P_TE_S0)
4555                 l1_event(dch->l1, CLOSE_CHANNEL);
4556 
4557         hc->chan[ci].dch = NULL;
4558 
4559         if (hc->created[pt]) {
4560                 hc->created[pt] = 0;
4561                 mISDN_unregister_device(&dch->dev);
4562         }
4563 
4564         spin_lock_irqsave(&hc->lock, flags);
4565 
4566         if (dch->timer.function) {
4567                 del_timer(&dch->timer);
4568                 dch->timer.function = NULL;
4569         }
4570 
4571         if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4572                 /* remove sync */
4573                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4574                         hc->syncronized = 0;
4575                         plxsd_checksync(hc, 1);
4576                 }
4577                 /* free channels */
4578                 for (i = 0; i <= 31; i++) {
4579                         if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4580                                 continue;
4581                         if (hc->chan[i].bch) {
4582                                 if (debug & DEBUG_HFCMULTI_INIT)
4583                                         printk(KERN_DEBUG
4584                                                "%s: free port %d channel %d\n",
4585                                                __func__, hc->chan[i].port + 1, i);
4586                                 pb = hc->chan[i].bch;
4587                                 hc->chan[i].bch = NULL;
4588                                 spin_unlock_irqrestore(&hc->lock, flags);
4589                                 mISDN_freebchannel(pb);
4590                                 kfree(pb);
4591                                 kfree(hc->chan[i].coeff);
4592                                 spin_lock_irqsave(&hc->lock, flags);
4593                         }
4594                 }
4595         } else {
4596                 /* remove sync */
4597                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4598                         hc->syncronized &=
4599                                 ~(1 << hc->chan[ci].port);
4600                         plxsd_checksync(hc, 1);
4601                 }
4602                 /* free channels */
4603                 if (hc->chan[ci - 2].bch) {
4604                         if (debug & DEBUG_HFCMULTI_INIT)
4605                                 printk(KERN_DEBUG
4606                                        "%s: free port %d channel %d\n",
4607                                        __func__, hc->chan[ci - 2].port + 1,
4608                                        ci - 2);
4609                         pb = hc->chan[ci - 2].bch;
4610                         hc->chan[ci - 2].bch = NULL;
4611                         spin_unlock_irqrestore(&hc->lock, flags);
4612                         mISDN_freebchannel(pb);
4613                         kfree(pb);
4614                         kfree(hc->chan[ci - 2].coeff);
4615                         spin_lock_irqsave(&hc->lock, flags);
4616                 }
4617                 if (hc->chan[ci - 1].bch) {
4618                         if (debug & DEBUG_HFCMULTI_INIT)
4619                                 printk(KERN_DEBUG
4620                                        "%s: free port %d channel %d\n",
4621                                        __func__, hc->chan[ci - 1].port + 1,
4622                                        ci - 1);
4623                         pb = hc->chan[ci - 1].bch;
4624                         hc->chan[ci - 1].bch = NULL;
4625                         spin_unlock_irqrestore(&hc->lock, flags);
4626                         mISDN_freebchannel(pb);
4627                         kfree(pb);
4628                         kfree(hc->chan[ci - 1].coeff);
4629                         spin_lock_irqsave(&hc->lock, flags);
4630                 }
4631         }
4632 
4633         spin_unlock_irqrestore(&hc->lock, flags);
4634 
4635         if (debug & DEBUG_HFCMULTI_INIT)
4636                 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4637                         pt+1, ci);
4638         mISDN_freedchannel(dch);
4639         kfree(dch);
4640 
4641         if (debug & DEBUG_HFCMULTI_INIT)
4642                 printk(KERN_DEBUG "%s: done!\n", __func__);
4643 }
4644 
4645 static void
4646 release_card(struct hfc_multi *hc)
4647 {
4648         u_long  flags;
4649         int     ch;
4650 
4651         if (debug & DEBUG_HFCMULTI_INIT)
4652                 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4653                        __func__, hc->id);
4654 
4655         /* unregister clock source */
4656         if (hc->iclock)
4657                 mISDN_unregister_clock(hc->iclock);
4658 
4659         /* disable and free irq */
4660         spin_lock_irqsave(&hc->lock, flags);
4661         disable_hwirq(hc);
4662         spin_unlock_irqrestore(&hc->lock, flags);
4663         udelay(1000);
4664         if (hc->irq) {
4665                 if (debug & DEBUG_HFCMULTI_INIT)
4666                         printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4667                             __func__, hc->irq, hc);
4668                 free_irq(hc->irq, hc);
4669                 hc->irq = 0;
4670 
4671         }
4672 
4673         /* disable D-channels & B-channels */
4674         if (debug & DEBUG_HFCMULTI_INIT)
4675                 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4676                        __func__);
4677         for (ch = 0; ch <= 31; ch++) {
4678                 if (hc->chan[ch].dch)
4679                         release_port(hc, hc->chan[ch].dch);
4680         }
4681 
4682         /* dimm leds */
4683         if (hc->leds)
4684                 hfcmulti_leds(hc);
4685 
4686         /* release hardware */
4687         release_io_hfcmulti(hc);
4688 
4689         if (debug & DEBUG_HFCMULTI_INIT)
4690                 printk(KERN_DEBUG "%s: remove instance from list\n",
4691                        __func__);
4692         list_del(&hc->list);
4693 
4694         if (debug & DEBUG_HFCMULTI_INIT)
4695                 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4696         if (hc == syncmaster)
4697                 syncmaster = NULL;
4698         kfree(hc);
4699         if (debug & DEBUG_HFCMULTI_INIT)
4700                 printk(KERN_DEBUG "%s: card successfully removed\n",
4701                        __func__);
4702 }
4703 
4704 static void
4705 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4706 {
4707         /* set optical line type */
4708         if (port[Port_cnt] & 0x001) {
4709                 if (!m->opticalsupport)  {
4710                         printk(KERN_INFO
4711                                "This board has no optical "
4712                                "support\n");
4713                 } else {
4714                         if (debug & DEBUG_HFCMULTI_INIT)
4715                                 printk(KERN_DEBUG
4716                                        "%s: PORT set optical "
4717                                        "interfacs: card(%d) "
4718                                        "port(%d)\n",
4719                                        __func__,
4720                                        HFC_cnt + 1, 1);
4721                         test_and_set_bit(HFC_CFG_OPTICAL,
4722                             &hc->chan[hc->dnum[0]].cfg);
4723                 }
4724         }
4725         /* set LOS report */
4726         if (port[Port_cnt] & 0x004) {
4727                 if (debug & DEBUG_HFCMULTI_INIT)
4728                         printk(KERN_DEBUG "%s: PORT set "
4729                                "LOS report: card(%d) port(%d)\n",
4730                                __func__, HFC_cnt + 1, 1);
4731                 test_and_set_bit(HFC_CFG_REPORT_LOS,
4732                     &hc->chan[hc->dnum[0]].cfg);
4733         }
4734         /* set AIS report */
4735         if (port[Port_cnt] & 0x008) {
4736                 if (debug & DEBUG_HFCMULTI_INIT)
4737                         printk(KERN_DEBUG "%s: PORT set "
4738                                "AIS report: card(%d) port(%d)\n",
4739                                __func__, HFC_cnt + 1, 1);
4740                 test_and_set_bit(HFC_CFG_REPORT_AIS,
4741                     &hc->chan[hc->dnum[0]].cfg);
4742         }
4743         /* set SLIP report */
4744         if (port[Port_cnt] & 0x010) {
4745                 if (debug & DEBUG_HFCMULTI_INIT)
4746                         printk(KERN_DEBUG
4747                                "%s: PORT set SLIP report: "
4748                                "card(%d) port(%d)\n",
4749                                __func__, HFC_cnt + 1, 1);
4750                 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4751                     &hc->chan[hc->dnum[0]].cfg);
4752         }
4753         /* set RDI report */
4754         if (port[Port_cnt] & 0x020) {
4755                 if (debug & DEBUG_HFCMULTI_INIT)
4756                         printk(KERN_DEBUG
4757                                "%s: PORT set RDI report: "
4758                                "card(%d) port(%d)\n",
4759                                __func__, HFC_cnt + 1, 1);
4760                 test_and_set_bit(HFC_CFG_REPORT_RDI,
4761                     &hc->chan[hc->dnum[0]].cfg);
4762         }
4763         /* set CRC-4 Mode */
4764         if (!(port[Port_cnt] & 0x100)) {
4765                 if (debug & DEBUG_HFCMULTI_INIT)
4766                         printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4767                                " card(%d) port(%d)\n",
4768                                __func__, HFC_cnt + 1, 1);
4769                 test_and_set_bit(HFC_CFG_CRC4,
4770                     &hc->chan[hc->dnum[0]].cfg);
4771         } else {
4772                 if (debug & DEBUG_HFCMULTI_INIT)
4773                         printk(KERN_DEBUG "%s: PORT turn off CRC4"
4774                                " report: card(%d) port(%d)\n",
4775                                __func__, HFC_cnt + 1, 1);
4776         }
4777         /* set forced clock */
4778         if (port[Port_cnt] & 0x0200) {
4779                 if (debug & DEBUG_HFCMULTI_INIT)
4780                         printk(KERN_DEBUG "%s: PORT force getting clock from "
4781                                "E1: card(%d) port(%d)\n",
4782                                __func__, HFC_cnt + 1, 1);
4783                 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4784         } else
4785                 if (port[Port_cnt] & 0x0400) {
4786                         if (debug & DEBUG_HFCMULTI_INIT)
4787                                 printk(KERN_DEBUG "%s: PORT force putting clock to "
4788                                        "E1: card(%d) port(%d)\n",
4789                                        __func__, HFC_cnt + 1, 1);
4790                         test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4791                 }
4792         /* set JATT PLL */
4793         if (port[Port_cnt] & 0x0800) {
4794                 if (debug & DEBUG_HFCMULTI_INIT)
4795                         printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4796                                "E1: card(%d) port(%d)\n",
4797                                __func__, HFC_cnt + 1, 1);
4798                 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4799         }
4800         /* set elastic jitter buffer */
4801         if (port[Port_cnt] & 0x3000) {
4802                 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4803                 if (debug & DEBUG_HFCMULTI_INIT)
4804                         printk(KERN_DEBUG
4805                                "%s: PORT set elastic "
4806                                "buffer to %d: card(%d) port(%d)\n",
4807                             __func__, hc->chan[hc->dnum[0]].jitter,
4808                                HFC_cnt + 1, 1);
4809         } else
4810                 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4811 }
4812 
4813 static int
4814 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4815 {
4816         struct dchannel *dch;
4817         struct bchannel *bch;
4818         int             ch, ret = 0;
4819         char            name[MISDN_MAX_IDLEN];
4820         int             bcount = 0;
4821 
4822         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4823         if (!dch)
4824                 return -ENOMEM;
4825         dch->debug = debug;
4826         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4827         dch->hw = hc;
4828         dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4829         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4830             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4831         dch->dev.D.send = handle_dmsg;
4832         dch->dev.D.ctrl = hfcm_dctrl;
4833         dch->slot = hc->dnum[pt];
4834         hc->chan[hc->dnum[pt]].dch = dch;
4835         hc->chan[hc->dnum[pt]].port = pt;
4836         hc->chan[hc->dnum[pt]].nt_timer = -1;
4837         for (ch = 1; ch <= 31; ch++) {
4838                 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4839                         continue;
4840                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4841                 if (!bch) {
4842                         printk(KERN_ERR "%s: no memory for bchannel\n",
4843                             __func__);
4844                         ret = -ENOMEM;
4845                         goto free_chan;
4846                 }
4847                 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4848                 if (!hc->chan[ch].coeff) {
4849                         printk(KERN_ERR "%s: no memory for coeffs\n",
4850                             __func__);
4851                         ret = -ENOMEM;
4852                         kfree(bch);
4853                         goto free_chan;
4854                 }
4855                 bch->nr = ch;
4856                 bch->slot = ch;
4857                 bch->debug = debug;
4858                 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4859                 bch->hw = hc;
4860                 bch->ch.send = handle_bmsg;
4861                 bch->ch.ctrl = hfcm_bctrl;
4862                 bch->ch.nr = ch;
4863                 list_add(&bch->ch.list, &dch->dev.bchannels);
4864                 hc->chan[ch].bch = bch;
4865                 hc->chan[ch].port = pt;
4866                 set_channelmap(bch->nr, dch->dev.channelmap);
4867                 bcount++;
4868         }
4869         dch->dev.nrbchan = bcount;
4870         if (pt == 0)
4871                 init_e1_port_hw(hc, m);
4872         if (hc->ports > 1)
4873                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4874                                 HFC_cnt + 1, pt+1);
4875         else
4876                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4877         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4878         if (ret)
4879                 goto free_chan;
4880         hc->created[pt] = 1;
4881         return ret;
4882 free_chan:
4883         release_port(hc, dch);
4884         return ret;
4885 }
4886 
4887 static int
4888 init_multi_port(struct hfc_multi *hc, int pt)
4889 {
4890         struct dchannel *dch;
4891         struct bchannel *bch;
4892         int             ch, i, ret = 0;
4893         char            name[MISDN_MAX_IDLEN];
4894 
4895         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4896         if (!dch)
4897                 return -ENOMEM;
4898         dch->debug = debug;
4899         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4900         dch->hw = hc;
4901         dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4902         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4903                 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4904         dch->dev.D.send = handle_dmsg;
4905         dch->dev.D.ctrl = hfcm_dctrl;
4906         dch->dev.nrbchan = 2;
4907         i = pt << 2;
4908         dch->slot = i + 2;
4909         hc->chan[i + 2].dch = dch;
4910         hc->chan[i + 2].port = pt;
4911         hc->chan[i + 2].nt_timer = -1;
4912         for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4913                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4914                 if (!bch) {
4915                         printk(KERN_ERR "%s: no memory for bchannel\n",
4916                                __func__);
4917                         ret = -ENOMEM;
4918                         goto free_chan;
4919                 }
4920                 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4921                 if (!hc->chan[i + ch].coeff) {
4922                         printk(KERN_ERR "%s: no memory for coeffs\n",
4923                                __func__);
4924                         ret = -ENOMEM;
4925                         kfree(bch);
4926                         goto free_chan;
4927                 }
4928                 bch->nr = ch + 1;
4929                 bch->slot = i + ch;
4930                 bch->debug = debug;
4931                 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4932                 bch->hw = hc;
4933                 bch->ch.send = handle_bmsg;
4934                 bch->ch.ctrl = hfcm_bctrl;
4935                 bch->ch.nr = ch + 1;
4936                 list_add(&bch->ch.list, &dch->dev.bchannels);
4937                 hc->chan[i + ch].bch = bch;
4938                 hc->chan[i + ch].port = pt;
4939                 set_channelmap(bch->nr, dch->dev.channelmap);
4940         }
4941         /* set master clock */
4942         if (port[Port_cnt] & 0x001) {
4943                 if (debug & DEBUG_HFCMULTI_INIT)
4944                         printk(KERN_DEBUG
4945                                "%s: PROTOCOL set master clock: "
4946                                "card(%d) port(%d)\n",
4947                                __func__, HFC_cnt + 1, pt + 1);
4948                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4949                         printk(KERN_ERR "Error: Master clock "
4950                                "for port(%d) of card(%d) is only"
4951                                " possible with TE-mode\n",
4952                                pt + 1, HFC_cnt + 1);
4953                         ret = -EINVAL;
4954                         goto free_chan;
4955                 }
4956                 if (hc->masterclk >= 0) {
4957                         printk(KERN_ERR "Error: Master clock "
4958                                "for port(%d) of card(%d) already "
4959                                "defined for port(%d)\n",
4960                                pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4961                         ret = -EINVAL;
4962                         goto free_chan;
4963                 }
4964                 hc->masterclk = pt;
4965         }
4966         /* set transmitter line to non capacitive */
4967         if (port[Port_cnt] & 0x002) {
4968                 if (debug & DEBUG_HFCMULTI_INIT)
4969                         printk(KERN_DEBUG
4970                                "%s: PROTOCOL set non capacitive "
4971                                "transmitter: card(%d) port(%d)\n",
4972                                __func__, HFC_cnt + 1, pt + 1);
4973                 test_and_set_bit(HFC_CFG_NONCAP_TX,
4974                                  &hc->chan[i + 2].cfg);
4975         }
4976         /* disable E-channel */
4977         if (port[Port_cnt] & 0x004) {
4978                 if (debug & DEBUG_HFCMULTI_INIT)
4979                         printk(KERN_DEBUG
4980                                "%s: PROTOCOL disable E-channel: "
4981                                "card(%d) port(%d)\n",
4982                                __func__, HFC_cnt + 1, pt + 1);
4983                 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4984                                  &hc->chan[i + 2].cfg);
4985         }
4986         if (hc->ctype == HFC_TYPE_XHFC) {
4987                 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4988                          HFC_cnt + 1, pt + 1);
4989                 ret = mISDN_register_device(&dch->dev, NULL, name);
4990         } else {
4991                 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4992                          hc->ctype, HFC_cnt + 1, pt + 1);
4993                 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4994         }
4995         if (ret)
4996                 goto free_chan;
4997         hc->created[pt] = 1;
4998         return ret;
4999 free_chan:
5000         release_port(hc, dch);
5001         return ret;
5002 }
5003 
5004 static int
5005 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
5006               const struct pci_device_id *ent)
5007 {
5008         int             ret_err = 0;
5009         int             pt;
5010         struct hfc_multi        *hc;
5011         u_long          flags;
5012         u_char          dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
5013         int             i, ch;
5014         u_int           maskcheck;
5015 
5016         if (HFC_cnt >= MAX_CARDS) {
5017                 printk(KERN_ERR "too many cards (max=%d).\n",
5018                        MAX_CARDS);
5019                 return -EINVAL;
5020         }
5021         if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
5022                 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
5023                        "type[%d] %d was supplied as module parameter\n",
5024                        m->vendor_name, m->card_name, m->type, HFC_cnt,
5025                        type[HFC_cnt] & 0xff);
5026                 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
5027                        "first, to see cards and their types.");
5028                 return -EINVAL;
5029         }
5030         if (debug & DEBUG_HFCMULTI_INIT)
5031                 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
5032                        __func__, m->vendor_name, m->card_name, m->type,
5033                        type[HFC_cnt]);
5034 
5035         /* allocate card+fifo structure */
5036         hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
5037         if (!hc) {
5038                 printk(KERN_ERR "No kmem for HFC-Multi card\n");
5039                 return -ENOMEM;
5040         }
5041         spin_lock_init(&hc->lock);
5042         hc->mtyp = m;
5043         hc->ctype =  m->type;
5044         hc->ports = m->ports;
5045         hc->id = HFC_cnt;
5046         hc->pcm = pcm[HFC_cnt];
5047         hc->io_mode = iomode[HFC_cnt];
5048         if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5049                 /* fragment card */
5050                 pt = 0;
5051                 maskcheck = 0;
5052                 for (ch = 0; ch <= 31; ch++) {
5053                         if (!((1 << ch) & dmask[E1_cnt]))
5054                                 continue;
5055                         hc->dnum[pt] = ch;
5056                         hc->bmask[pt] = bmask[bmask_cnt++];
5057                         if ((maskcheck & hc->bmask[pt])
5058                          || (dmask[E1_cnt] & hc->bmask[pt])) {
5059                                 printk(KERN_INFO
5060                                        "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5061                                        E1_cnt + 1, pt);
5062                                 kfree(hc);
5063                                 return -EINVAL;
5064                         }
5065                         maskcheck |= hc->bmask[pt];
5066                         printk(KERN_INFO
5067                                "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5068                                 E1_cnt + 1, ch, hc->bmask[pt]);
5069                         pt++;
5070                 }
5071                 hc->ports = pt;
5072         }
5073         if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5074                 /* default card layout */
5075                 hc->dnum[0] = 16;
5076                 hc->bmask[0] = 0xfffefffe;
5077                 hc->ports = 1;
5078         }
5079 
5080         /* set chip specific features */
5081         hc->masterclk = -1;
5082         if (type[HFC_cnt] & 0x100) {
5083                 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5084                 hc->silence = 0xff; /* ulaw silence */
5085         } else
5086                 hc->silence = 0x2a; /* alaw silence */
5087         if ((poll >> 1) > sizeof(hc->silence_data)) {
5088                 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5089                        "please fix\n");
5090                 kfree(hc);
5091                 return -EINVAL;
5092         }
5093         for (i = 0; i < (poll >> 1); i++)
5094                 hc->silence_data[i] = hc->silence;
5095 
5096         if (hc->ctype != HFC_TYPE_XHFC) {
5097                 if (!(type[HFC_cnt] & 0x200))
5098                         test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5099                 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5100         }
5101 
5102         if (type[HFC_cnt] & 0x800)
5103                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5104         if (type[HFC_cnt] & 0x1000) {
5105                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5106                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5107         }
5108         if (type[HFC_cnt] & 0x4000)
5109                 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5110         if (type[HFC_cnt] & 0x8000)
5111                 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5112         hc->slots = 32;
5113         if (type[HFC_cnt] & 0x10000)
5114                 hc->slots = 64;
5115         if (type[HFC_cnt] & 0x20000)
5116                 hc->slots = 128;
5117         if (type[HFC_cnt] & 0x80000) {
5118                 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5119                 hc->wdcount = 0;
5120                 hc->wdbyte = V_GPIO_OUT2;
5121                 printk(KERN_NOTICE "Watchdog enabled\n");
5122         }
5123 
5124         if (pdev && ent)
5125                 /* setup pci, hc->slots may change due to PLXSD */
5126                 ret_err = setup_pci(hc, pdev, ent);
5127         else
5128 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5129                 ret_err = setup_embedded(hc, m);
5130 #else
5131         {
5132                 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5133                 ret_err = -EIO;
5134         }
5135 #endif
5136         if (ret_err) {
5137                 if (hc == syncmaster)
5138                         syncmaster = NULL;
5139                 kfree(hc);
5140                 return ret_err;
5141         }
5142 
5143         hc->HFC_outb_nodebug = hc->HFC_outb;
5144         hc->HFC_inb_nodebug = hc->HFC_inb;
5145         hc->HFC_inw_nodebug = hc->HFC_inw;
5146         hc->HFC_wait_nodebug = hc->HFC_wait;
5147 #ifdef HFC_REGISTER_DEBUG
5148         hc->HFC_outb = HFC_outb_debug;
5149         hc->HFC_inb = HFC_inb_debug;
5150         hc->HFC_inw = HFC_inw_debug;
5151         hc->HFC_wait = HFC_wait_debug;
5152 #endif
5153         /* create channels */
5154         for (pt = 0; pt < hc->ports; pt++) {
5155                 if (Port_cnt >= MAX_PORTS) {
5156                         printk(KERN_ERR "too many ports (max=%d).\n",
5157                                MAX_PORTS);
5158                         ret_err = -EINVAL;
5159                         goto free_card;
5160                 }
5161                 if (hc->ctype == HFC_TYPE_E1)
5162                         ret_err = init_e1_port(hc, m, pt);
5163                 else
5164                         ret_err = init_multi_port(hc, pt);
5165                 if (debug & DEBUG_HFCMULTI_INIT)
5166                         printk(KERN_DEBUG
5167                             "%s: Registering D-channel, card(%d) port(%d) "
5168                                "result %d\n",
5169                             __func__, HFC_cnt + 1, pt + 1, ret_err);
5170 
5171                 if (ret_err) {
5172                         while (pt) { /* release already registered ports */
5173                                 pt--;
5174                                 if (hc->ctype == HFC_TYPE_E1)
5175                                         release_port(hc,
5176                                                 hc->chan[hc->dnum[pt]].dch);
5177                                 else
5178                                         release_port(hc,
5179                                                 hc->chan[(pt << 2) + 2].dch);
5180                         }
5181                         goto free_card;
5182                 }
5183                 if (hc->ctype != HFC_TYPE_E1)
5184                         Port_cnt++; /* for each S0 port */
5185         }
5186         if (hc->ctype == HFC_TYPE_E1) {
5187                 Port_cnt++; /* for each E1 port */
5188                 E1_cnt++;
5189         }
5190 
5191         /* disp switches */
5192         switch (m->dip_type) {
5193         case DIP_4S:
5194                 /*
5195                  * Get DIP setting for beroNet 1S/2S/4S cards
5196                  * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5197                  * GPI 19/23 (R_GPI_IN2))
5198                  */
5199                 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5200                         ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5201                         (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5202 
5203                 /* Port mode (TE/NT) jumpers */
5204                 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5205 
5206                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5207                         pmj = ~pmj & 0xf;
5208 
5209                 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5210                        m->vendor_name, m->card_name, dips, pmj);
5211                 break;
5212         case DIP_8S:
5213                 /*
5214                  * Get DIP Setting for beroNet 8S0+ cards
5215                  * Enable PCI auxbridge function
5216                  */
5217                 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5218                 /* prepare access to auxport */
5219                 outw(0x4000, hc->pci_iobase + 4);
5220                 /*
5221                  * some dummy reads are required to
5222                  * read valid DIP switch data
5223                  */
5224                 dips = inb(hc->pci_iobase);
5225                 dips = inb(hc->pci_iobase);
5226                 dips = inb(hc->pci_iobase);
5227                 dips = ~inb(hc->pci_iobase) & 0x3F;
5228                 outw(0x0, hc->pci_iobase + 4);
5229                 /* disable PCI auxbridge function */
5230                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5231                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5232                        m->vendor_name, m->card_name, dips);
5233                 break;
5234         case DIP_E1:
5235                 /*
5236                  * get DIP Setting for beroNet E1 cards
5237                  * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5238                  */
5239                 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5240                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5241                        m->vendor_name, m->card_name, dips);
5242                 break;
5243         }
5244 
5245         /* add to list */
5246         spin_lock_irqsave(&HFClock, flags);
5247         list_add_tail(&hc->list, &HFClist);
5248         spin_unlock_irqrestore(&HFClock, flags);
5249 
5250         /* use as clock source */
5251         if (clock == HFC_cnt + 1)
5252                 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5253 
5254         /* initialize hardware */
5255         hc->irq = (m->irq) ? : hc->pci_dev->irq;
5256         ret_err = init_card(hc);
5257         if (ret_err) {
5258                 printk(KERN_ERR "init card returns %d\n", ret_err);
5259                 release_card(hc);
5260                 return ret_err;
5261         }
5262 
5263         /* start IRQ and return */
5264         spin_lock_irqsave(&hc->lock, flags);
5265         enable_hwirq(hc);
5266         spin_unlock_irqrestore(&hc->lock, flags);
5267         return 0;
5268 
5269 free_card:
5270         release_io_hfcmulti(hc);
5271         if (hc == syncmaster)
5272                 syncmaster = NULL;
5273         kfree(hc);
5274         return ret_err;
5275 }
5276 
5277 static void hfc_remove_pci(struct pci_dev *pdev)
5278 {
5279         struct hfc_multi        *card = pci_get_drvdata(pdev);
5280         u_long                  flags;
5281 
5282         if (debug)
5283                 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5284                        "device:%x subvendor:%x subdevice:%x\n",
5285                        pdev->vendor, pdev->device,
5286                        pdev->subsystem_vendor, pdev->subsystem_device);
5287 
5288         if (card) {
5289                 spin_lock_irqsave(&HFClock, flags);
5290                 release_card(card);
5291                 spin_unlock_irqrestore(&HFClock, flags);
5292         }  else {
5293                 if (debug)
5294                         printk(KERN_DEBUG "%s: drvdata already removed\n",
5295                                __func__);
5296         }
5297 }
5298 
5299 #define VENDOR_CCD      "Cologne Chip AG"
5300 #define VENDOR_BN       "beroNet GmbH"
5301 #define VENDOR_DIG      "Digium Inc."
5302 #define VENDOR_JH       "Junghanns.NET GmbH"
5303 #define VENDOR_PRIM     "PrimuX"
5304 
5305 static const struct hm_map hfcm_map[] = {
5306         /**/   {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5307         /*1*/   {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5308         /*2*/   {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5309         /*3*/   {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5310         /*4*/   {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5311         /*5*/   {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5312         /*6*/   {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5313         /*7*/   {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5314         /*8*/   {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5315         /*9*/   {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5316         /*10*/  {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5317         /*11*/  {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5318 
5319         /*12*/  {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5320         /*13*/  {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5321                  HFC_IO_MODE_REGIO, 0},
5322         /*14*/  {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5323         /*15*/  {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5324 
5325         /*16*/  {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5326         /*17*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5327         /*18*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5328 
5329         /*19*/  {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5330         /*20*/  {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5331         /*21*/  {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5332         /*22*/  {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5333 
5334         /*23*/  {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5335         /*24*/  {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5336         /*25*/  {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5337 
5338         /*26*/  {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5339                  HFC_IO_MODE_PLXSD, 0},
5340         /*27*/  {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5341                  HFC_IO_MODE_PLXSD, 0},
5342         /*28*/  {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5343         /*29*/  {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5344         /*30*/  {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5345         /*31*/  {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5346                  HFC_IO_MODE_EMBSD, XHFC_IRQ},
5347         /*32*/  {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5348         /*33*/  {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5349         /*34*/  {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5350 };
5351 
5352 #undef H
5353 #define H(x)    ((unsigned long)&hfcm_map[x])
5354 static struct pci_device_id hfmultipci_ids[] = {
5355 
5356         /* Cards with HFC-4S Chip */
5357         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5358           PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5359         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5360           PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5361         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5362           PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5363         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5364           PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5365         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5366           PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5367         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5368           PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5369         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5370           PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5371         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5372           PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5373         { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5374           PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5375         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5376           PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5377         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5378           PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5379         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5380           PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5381         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5382           PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5383         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5384           PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5385         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5386           0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5387         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5388           0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5389 
5390         /* Cards with HFC-8S Chip */
5391         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5392           PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5393         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5394           PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5395         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5396           PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5397         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5398           PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5399         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5400           PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5401         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5402           PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5403         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5404           PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5405         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5406           PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5407         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5408           PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S  */
5409 
5410 
5411         /* Cards with HFC-E1 Chip */
5412         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5413           PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5414         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5415           PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5416         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5417           PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5418         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5419           PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5420 
5421         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5422           PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5423         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5424           PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5425         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5426           PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5427 
5428         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5429           PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5430         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5431           PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5432 
5433         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5434           PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5435 
5436         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5437         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5438         { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5439         {0, }
5440 };
5441 #undef H
5442 
5443 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5444 
5445 static int
5446 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5447 {
5448         struct hm_map   *m = (struct hm_map *)ent->driver_data;
5449         int             ret;
5450 
5451         if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5452                     ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5453                     ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5454                     ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5455                 printk(KERN_ERR
5456                        "Unknown HFC multiport controller (vendor:%04x device:%04x "
5457                        "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5458                        pdev->device, pdev->subsystem_vendor,
5459                        pdev->subsystem_device);
5460                 printk(KERN_ERR
5461                        "Please contact the driver maintainer for support.\n");
5462                 return -ENODEV;
5463         }
5464         ret = hfcmulti_init(m, pdev, ent);
5465         if (ret)
5466                 return ret;
5467         HFC_cnt++;
5468         printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5469         return 0;
5470 }
5471 
5472 static struct pci_driver hfcmultipci_driver = {
5473         .name           = "hfc_multi",
5474         .probe          = hfcmulti_probe,
5475         .remove         = hfc_remove_pci,
5476         .id_table       = hfmultipci_ids,
5477 };
5478 
5479 static void __exit
5480 HFCmulti_cleanup(void)
5481 {
5482         struct hfc_multi *card, *next;
5483 
5484         /* get rid of all devices of this driver */
5485         list_for_each_entry_safe(card, next, &HFClist, list)
5486                 release_card(card);
5487         pci_unregister_driver(&hfcmultipci_driver);
5488 }
5489 
5490 static int __init
5491 HFCmulti_init(void)
5492 {
5493         int err;
5494         int i, xhfc = 0;
5495         struct hm_map m;
5496 
5497         printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5498 
5499 #ifdef IRQ_DEBUG
5500         printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5501 #endif
5502 
5503         spin_lock_init(&HFClock);
5504         spin_lock_init(&plx_lock);
5505 
5506         if (debug & DEBUG_HFCMULTI_INIT)
5507                 printk(KERN_DEBUG "%s: init entered\n", __func__);
5508 
5509         switch (poll) {
5510         case 0:
5511                 poll_timer = 6;
5512                 poll = 128;
5513                 break;
5514         case 8:
5515                 poll_timer = 2;
5516                 break;
5517         case 16:
5518                 poll_timer = 3;
5519                 break;
5520         case 32:
5521                 poll_timer = 4;
5522                 break;
5523         case 64:
5524                 poll_timer = 5;
5525                 break;
5526         case 128:
5527                 poll_timer = 6;
5528                 break;
5529         case 256:
5530                 poll_timer = 7;
5531                 break;
5532         default:
5533                 printk(KERN_ERR
5534                        "%s: Wrong poll value (%d).\n", __func__, poll);
5535                 err = -EINVAL;
5536                 return err;
5537 
5538         }
5539 
5540         if (!clock)
5541                 clock = 1;
5542 
5543         /* Register the embedded devices.
5544          * This should be done before the PCI cards registration */
5545         switch (hwid) {
5546         case HWID_MINIP4:
5547                 xhfc = 1;
5548                 m = hfcm_map[31];
5549                 break;
5550         case HWID_MINIP8:
5551                 xhfc = 2;
5552                 m = hfcm_map[31];
5553                 break;
5554         case HWID_MINIP16:
5555                 xhfc = 4;
5556                 m = hfcm_map[31];
5557                 break;
5558         default:
5559                 xhfc = 0;
5560         }
5561 
5562         for (i = 0; i < xhfc; ++i) {
5563                 err = hfcmulti_init(&m, NULL, NULL);
5564                 if (err) {
5565                         printk(KERN_ERR "error registering embedded driver: "
5566                                "%x\n", err);
5567                         return err;
5568                 }
5569                 HFC_cnt++;
5570                 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5571         }
5572 
5573         /* Register the PCI cards */
5574         err = pci_register_driver(&hfcmultipci_driver);
5575         if (err < 0) {
5576                 printk(KERN_ERR "error registering pci driver: %x\n", err);
5577                 return err;
5578         }
5579 
5580         return 0;
5581 }
5582 
5583 
5584 module_init(HFCmulti_init);
5585 module_exit(HFCmulti_cleanup);
5586 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us