Version:  2.0.40 2.2.26 2.4.37 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16

Linux/drivers/iommu/arm-smmu.c

  1 /*
  2  * IOMMU API for ARM architected SMMU implementations.
  3  *
  4  * This program is free software; you can redistribute it and/or modify
  5  * it under the terms of the GNU General Public License version 2 as
  6  * published by the Free Software Foundation.
  7  *
  8  * This program is distributed in the hope that it will be useful,
  9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11  * GNU General Public License for more details.
 12  *
 13  * You should have received a copy of the GNU General Public License
 14  * along with this program; if not, write to the Free Software
 15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 16  *
 17  * Copyright (C) 2013 ARM Limited
 18  *
 19  * Author: Will Deacon <will.deacon@arm.com>
 20  *
 21  * This driver currently supports:
 22  *      - SMMUv1 and v2 implementations
 23  *      - Stream-matching and stream-indexing
 24  *      - v7/v8 long-descriptor format
 25  *      - Non-secure access to the SMMU
 26  *      - 4k and 64k pages, with contiguous pte hints.
 27  *      - Up to 42-bit addressing (dependent on VA_BITS)
 28  *      - Context fault reporting
 29  */
 30 
 31 #define pr_fmt(fmt) "arm-smmu: " fmt
 32 
 33 #include <linux/delay.h>
 34 #include <linux/dma-mapping.h>
 35 #include <linux/err.h>
 36 #include <linux/interrupt.h>
 37 #include <linux/io.h>
 38 #include <linux/iommu.h>
 39 #include <linux/mm.h>
 40 #include <linux/module.h>
 41 #include <linux/of.h>
 42 #include <linux/platform_device.h>
 43 #include <linux/slab.h>
 44 #include <linux/spinlock.h>
 45 
 46 #include <linux/amba/bus.h>
 47 
 48 #include <asm/pgalloc.h>
 49 
 50 /* Maximum number of stream IDs assigned to a single device */
 51 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
 52 
 53 /* Maximum number of context banks per SMMU */
 54 #define ARM_SMMU_MAX_CBS                128
 55 
 56 /* Maximum number of mapping groups per SMMU */
 57 #define ARM_SMMU_MAX_SMRS               128
 58 
 59 /* SMMU global address space */
 60 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
 61 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (smmu)->pagesize)
 62 
 63 /*
 64  * SMMU global address space with conditional offset to access secure
 65  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 66  * nsGFSYNR0: 0x450)
 67  */
 68 #define ARM_SMMU_GR0_NS(smmu)                                           \
 69         ((smmu)->base +                                                 \
 70                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
 71                         ? 0x400 : 0))
 72 
 73 /* Page table bits */
 74 #define ARM_SMMU_PTE_XN                 (((pteval_t)3) << 53)
 75 #define ARM_SMMU_PTE_CONT               (((pteval_t)1) << 52)
 76 #define ARM_SMMU_PTE_AF                 (((pteval_t)1) << 10)
 77 #define ARM_SMMU_PTE_SH_NS              (((pteval_t)0) << 8)
 78 #define ARM_SMMU_PTE_SH_OS              (((pteval_t)2) << 8)
 79 #define ARM_SMMU_PTE_SH_IS              (((pteval_t)3) << 8)
 80 #define ARM_SMMU_PTE_PAGE               (((pteval_t)3) << 0)
 81 
 82 #if PAGE_SIZE == SZ_4K
 83 #define ARM_SMMU_PTE_CONT_ENTRIES       16
 84 #elif PAGE_SIZE == SZ_64K
 85 #define ARM_SMMU_PTE_CONT_ENTRIES       32
 86 #else
 87 #define ARM_SMMU_PTE_CONT_ENTRIES       1
 88 #endif
 89 
 90 #define ARM_SMMU_PTE_CONT_SIZE          (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
 91 #define ARM_SMMU_PTE_CONT_MASK          (~(ARM_SMMU_PTE_CONT_SIZE - 1))
 92 
 93 /* Stage-1 PTE */
 94 #define ARM_SMMU_PTE_AP_UNPRIV          (((pteval_t)1) << 6)
 95 #define ARM_SMMU_PTE_AP_RDONLY          (((pteval_t)2) << 6)
 96 #define ARM_SMMU_PTE_ATTRINDX_SHIFT     2
 97 #define ARM_SMMU_PTE_nG                 (((pteval_t)1) << 11)
 98 
 99 /* Stage-2 PTE */
100 #define ARM_SMMU_PTE_HAP_FAULT          (((pteval_t)0) << 6)
101 #define ARM_SMMU_PTE_HAP_READ           (((pteval_t)1) << 6)
102 #define ARM_SMMU_PTE_HAP_WRITE          (((pteval_t)2) << 6)
103 #define ARM_SMMU_PTE_MEMATTR_OIWB       (((pteval_t)0xf) << 2)
104 #define ARM_SMMU_PTE_MEMATTR_NC         (((pteval_t)0x5) << 2)
105 #define ARM_SMMU_PTE_MEMATTR_DEV        (((pteval_t)0x1) << 2)
106 
107 /* Configuration registers */
108 #define ARM_SMMU_GR0_sCR0               0x0
109 #define sCR0_CLIENTPD                   (1 << 0)
110 #define sCR0_GFRE                       (1 << 1)
111 #define sCR0_GFIE                       (1 << 2)
112 #define sCR0_GCFGFRE                    (1 << 4)
113 #define sCR0_GCFGFIE                    (1 << 5)
114 #define sCR0_USFCFG                     (1 << 10)
115 #define sCR0_VMIDPNE                    (1 << 11)
116 #define sCR0_PTM                        (1 << 12)
117 #define sCR0_FB                         (1 << 13)
118 #define sCR0_BSU_SHIFT                  14
119 #define sCR0_BSU_MASK                   0x3
120 
121 /* Identification registers */
122 #define ARM_SMMU_GR0_ID0                0x20
123 #define ARM_SMMU_GR0_ID1                0x24
124 #define ARM_SMMU_GR0_ID2                0x28
125 #define ARM_SMMU_GR0_ID3                0x2c
126 #define ARM_SMMU_GR0_ID4                0x30
127 #define ARM_SMMU_GR0_ID5                0x34
128 #define ARM_SMMU_GR0_ID6                0x38
129 #define ARM_SMMU_GR0_ID7                0x3c
130 #define ARM_SMMU_GR0_sGFSR              0x48
131 #define ARM_SMMU_GR0_sGFSYNR0           0x50
132 #define ARM_SMMU_GR0_sGFSYNR1           0x54
133 #define ARM_SMMU_GR0_sGFSYNR2           0x58
134 #define ARM_SMMU_GR0_PIDR0              0xfe0
135 #define ARM_SMMU_GR0_PIDR1              0xfe4
136 #define ARM_SMMU_GR0_PIDR2              0xfe8
137 
138 #define ID0_S1TS                        (1 << 30)
139 #define ID0_S2TS                        (1 << 29)
140 #define ID0_NTS                         (1 << 28)
141 #define ID0_SMS                         (1 << 27)
142 #define ID0_PTFS_SHIFT                  24
143 #define ID0_PTFS_MASK                   0x2
144 #define ID0_PTFS_V8_ONLY                0x2
145 #define ID0_CTTW                        (1 << 14)
146 #define ID0_NUMIRPT_SHIFT               16
147 #define ID0_NUMIRPT_MASK                0xff
148 #define ID0_NUMSMRG_SHIFT               0
149 #define ID0_NUMSMRG_MASK                0xff
150 
151 #define ID1_PAGESIZE                    (1 << 31)
152 #define ID1_NUMPAGENDXB_SHIFT           28
153 #define ID1_NUMPAGENDXB_MASK            7
154 #define ID1_NUMS2CB_SHIFT               16
155 #define ID1_NUMS2CB_MASK                0xff
156 #define ID1_NUMCB_SHIFT                 0
157 #define ID1_NUMCB_MASK                  0xff
158 
159 #define ID2_OAS_SHIFT                   4
160 #define ID2_OAS_MASK                    0xf
161 #define ID2_IAS_SHIFT                   0
162 #define ID2_IAS_MASK                    0xf
163 #define ID2_UBS_SHIFT                   8
164 #define ID2_UBS_MASK                    0xf
165 #define ID2_PTFS_4K                     (1 << 12)
166 #define ID2_PTFS_16K                    (1 << 13)
167 #define ID2_PTFS_64K                    (1 << 14)
168 
169 #define PIDR2_ARCH_SHIFT                4
170 #define PIDR2_ARCH_MASK                 0xf
171 
172 /* Global TLB invalidation */
173 #define ARM_SMMU_GR0_STLBIALL           0x60
174 #define ARM_SMMU_GR0_TLBIVMID           0x64
175 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
176 #define ARM_SMMU_GR0_TLBIALLH           0x6c
177 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
178 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
179 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
180 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
181 
182 /* Stream mapping registers */
183 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
184 #define SMR_VALID                       (1 << 31)
185 #define SMR_MASK_SHIFT                  16
186 #define SMR_MASK_MASK                   0x7fff
187 #define SMR_ID_SHIFT                    0
188 #define SMR_ID_MASK                     0x7fff
189 
190 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
191 #define S2CR_CBNDX_SHIFT                0
192 #define S2CR_CBNDX_MASK                 0xff
193 #define S2CR_TYPE_SHIFT                 16
194 #define S2CR_TYPE_MASK                  0x3
195 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
196 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
197 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
198 
199 /* Context bank attribute registers */
200 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
201 #define CBAR_VMID_SHIFT                 0
202 #define CBAR_VMID_MASK                  0xff
203 #define CBAR_S1_BPSHCFG_SHIFT           8
204 #define CBAR_S1_BPSHCFG_MASK            3
205 #define CBAR_S1_BPSHCFG_NSH             3
206 #define CBAR_S1_MEMATTR_SHIFT           12
207 #define CBAR_S1_MEMATTR_MASK            0xf
208 #define CBAR_S1_MEMATTR_WB              0xf
209 #define CBAR_TYPE_SHIFT                 16
210 #define CBAR_TYPE_MASK                  0x3
211 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
212 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
213 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
214 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
215 #define CBAR_IRPTNDX_SHIFT              24
216 #define CBAR_IRPTNDX_MASK               0xff
217 
218 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
219 #define CBA2R_RW64_32BIT                (0 << 0)
220 #define CBA2R_RW64_64BIT                (1 << 0)
221 
222 /* Translation context bank */
223 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
224 #define ARM_SMMU_CB(smmu, n)            ((n) * (smmu)->pagesize)
225 
226 #define ARM_SMMU_CB_SCTLR               0x0
227 #define ARM_SMMU_CB_RESUME              0x8
228 #define ARM_SMMU_CB_TTBCR2              0x10
229 #define ARM_SMMU_CB_TTBR0_LO            0x20
230 #define ARM_SMMU_CB_TTBR0_HI            0x24
231 #define ARM_SMMU_CB_TTBCR               0x30
232 #define ARM_SMMU_CB_S1_MAIR0            0x38
233 #define ARM_SMMU_CB_FSR                 0x58
234 #define ARM_SMMU_CB_FAR_LO              0x60
235 #define ARM_SMMU_CB_FAR_HI              0x64
236 #define ARM_SMMU_CB_FSYNR0              0x68
237 #define ARM_SMMU_CB_S1_TLBIASID         0x610
238 
239 #define SCTLR_S1_ASIDPNE                (1 << 12)
240 #define SCTLR_CFCFG                     (1 << 7)
241 #define SCTLR_CFIE                      (1 << 6)
242 #define SCTLR_CFRE                      (1 << 5)
243 #define SCTLR_E                         (1 << 4)
244 #define SCTLR_AFE                       (1 << 2)
245 #define SCTLR_TRE                       (1 << 1)
246 #define SCTLR_M                         (1 << 0)
247 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
248 
249 #define RESUME_RETRY                    (0 << 0)
250 #define RESUME_TERMINATE                (1 << 0)
251 
252 #define TTBCR_EAE                       (1 << 31)
253 
254 #define TTBCR_PASIZE_SHIFT              16
255 #define TTBCR_PASIZE_MASK               0x7
256 
257 #define TTBCR_TG0_4K                    (0 << 14)
258 #define TTBCR_TG0_64K                   (1 << 14)
259 
260 #define TTBCR_SH0_SHIFT                 12
261 #define TTBCR_SH0_MASK                  0x3
262 #define TTBCR_SH_NS                     0
263 #define TTBCR_SH_OS                     2
264 #define TTBCR_SH_IS                     3
265 
266 #define TTBCR_ORGN0_SHIFT               10
267 #define TTBCR_IRGN0_SHIFT               8
268 #define TTBCR_RGN_MASK                  0x3
269 #define TTBCR_RGN_NC                    0
270 #define TTBCR_RGN_WBWA                  1
271 #define TTBCR_RGN_WT                    2
272 #define TTBCR_RGN_WB                    3
273 
274 #define TTBCR_SL0_SHIFT                 6
275 #define TTBCR_SL0_MASK                  0x3
276 #define TTBCR_SL0_LVL_2                 0
277 #define TTBCR_SL0_LVL_1                 1
278 
279 #define TTBCR_T1SZ_SHIFT                16
280 #define TTBCR_T0SZ_SHIFT                0
281 #define TTBCR_SZ_MASK                   0xf
282 
283 #define TTBCR2_SEP_SHIFT                15
284 #define TTBCR2_SEP_MASK                 0x7
285 
286 #define TTBCR2_PASIZE_SHIFT             0
287 #define TTBCR2_PASIZE_MASK              0x7
288 
289 /* Common definitions for PASize and SEP fields */
290 #define TTBCR2_ADDR_32                  0
291 #define TTBCR2_ADDR_36                  1
292 #define TTBCR2_ADDR_40                  2
293 #define TTBCR2_ADDR_42                  3
294 #define TTBCR2_ADDR_44                  4
295 #define TTBCR2_ADDR_48                  5
296 
297 #define TTBRn_HI_ASID_SHIFT             16
298 
299 #define MAIR_ATTR_SHIFT(n)              ((n) << 3)
300 #define MAIR_ATTR_MASK                  0xff
301 #define MAIR_ATTR_DEVICE                0x04
302 #define MAIR_ATTR_NC                    0x44
303 #define MAIR_ATTR_WBRWA                 0xff
304 #define MAIR_ATTR_IDX_NC                0
305 #define MAIR_ATTR_IDX_CACHE             1
306 #define MAIR_ATTR_IDX_DEV               2
307 
308 #define FSR_MULTI                       (1 << 31)
309 #define FSR_SS                          (1 << 30)
310 #define FSR_UUT                         (1 << 8)
311 #define FSR_ASF                         (1 << 7)
312 #define FSR_TLBLKF                      (1 << 6)
313 #define FSR_TLBMCF                      (1 << 5)
314 #define FSR_EF                          (1 << 4)
315 #define FSR_PF                          (1 << 3)
316 #define FSR_AFF                         (1 << 2)
317 #define FSR_TF                          (1 << 1)
318 
319 #define FSR_IGN                         (FSR_AFF | FSR_ASF | FSR_TLBMCF |       \
320                                          FSR_TLBLKF)
321 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT |         \
322                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
323 
324 #define FSYNR0_WNR                      (1 << 4)
325 
326 struct arm_smmu_smr {
327         u8                              idx;
328         u16                             mask;
329         u16                             id;
330 };
331 
332 struct arm_smmu_master {
333         struct device_node              *of_node;
334 
335         /*
336          * The following is specific to the master's position in the
337          * SMMU chain.
338          */
339         struct rb_node                  node;
340         int                             num_streamids;
341         u16                             streamids[MAX_MASTER_STREAMIDS];
342 
343         /*
344          * We only need to allocate these on the root SMMU, as we
345          * configure unmatched streams to bypass translation.
346          */
347         struct arm_smmu_smr             *smrs;
348 };
349 
350 struct arm_smmu_device {
351         struct device                   *dev;
352         struct device_node              *parent_of_node;
353 
354         void __iomem                    *base;
355         unsigned long                   size;
356         unsigned long                   pagesize;
357 
358 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
359 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
360 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
361 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
362 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
363         u32                             features;
364 
365 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
366         u32                             options;
367         int                             version;
368 
369         u32                             num_context_banks;
370         u32                             num_s2_context_banks;
371         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
372         atomic_t                        irptndx;
373 
374         u32                             num_mapping_groups;
375         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
376 
377         unsigned long                   input_size;
378         unsigned long                   s1_output_size;
379         unsigned long                   s2_output_size;
380 
381         u32                             num_global_irqs;
382         u32                             num_context_irqs;
383         unsigned int                    *irqs;
384 
385         struct list_head                list;
386         struct rb_root                  masters;
387 };
388 
389 struct arm_smmu_cfg {
390         struct arm_smmu_device          *smmu;
391         u8                              cbndx;
392         u8                              irptndx;
393         u32                             cbar;
394         pgd_t                           *pgd;
395 };
396 #define INVALID_IRPTNDX                 0xff
397 
398 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
399 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
400 
401 struct arm_smmu_domain {
402         /*
403          * A domain can span across multiple, chained SMMUs and requires
404          * all devices within the domain to follow the same translation
405          * path.
406          */
407         struct arm_smmu_device          *leaf_smmu;
408         struct arm_smmu_cfg             root_cfg;
409         phys_addr_t                     output_mask;
410 
411         spinlock_t                      lock;
412 };
413 
414 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
415 static LIST_HEAD(arm_smmu_devices);
416 
417 struct arm_smmu_option_prop {
418         u32 opt;
419         const char *prop;
420 };
421 
422 static struct arm_smmu_option_prop arm_smmu_options [] = {
423         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
424         { 0, NULL},
425 };
426 
427 static void parse_driver_options(struct arm_smmu_device *smmu)
428 {
429         int i = 0;
430         do {
431                 if (of_property_read_bool(smmu->dev->of_node,
432                                                 arm_smmu_options[i].prop)) {
433                         smmu->options |= arm_smmu_options[i].opt;
434                         dev_notice(smmu->dev, "option %s\n",
435                                 arm_smmu_options[i].prop);
436                 }
437         } while (arm_smmu_options[++i].opt);
438 }
439 
440 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
441                                                 struct device_node *dev_node)
442 {
443         struct rb_node *node = smmu->masters.rb_node;
444 
445         while (node) {
446                 struct arm_smmu_master *master;
447                 master = container_of(node, struct arm_smmu_master, node);
448 
449                 if (dev_node < master->of_node)
450                         node = node->rb_left;
451                 else if (dev_node > master->of_node)
452                         node = node->rb_right;
453                 else
454                         return master;
455         }
456 
457         return NULL;
458 }
459 
460 static int insert_smmu_master(struct arm_smmu_device *smmu,
461                               struct arm_smmu_master *master)
462 {
463         struct rb_node **new, *parent;
464 
465         new = &smmu->masters.rb_node;
466         parent = NULL;
467         while (*new) {
468                 struct arm_smmu_master *this;
469                 this = container_of(*new, struct arm_smmu_master, node);
470 
471                 parent = *new;
472                 if (master->of_node < this->of_node)
473                         new = &((*new)->rb_left);
474                 else if (master->of_node > this->of_node)
475                         new = &((*new)->rb_right);
476                 else
477                         return -EEXIST;
478         }
479 
480         rb_link_node(&master->node, parent, new);
481         rb_insert_color(&master->node, &smmu->masters);
482         return 0;
483 }
484 
485 static int register_smmu_master(struct arm_smmu_device *smmu,
486                                 struct device *dev,
487                                 struct of_phandle_args *masterspec)
488 {
489         int i;
490         struct arm_smmu_master *master;
491 
492         master = find_smmu_master(smmu, masterspec->np);
493         if (master) {
494                 dev_err(dev,
495                         "rejecting multiple registrations for master device %s\n",
496                         masterspec->np->name);
497                 return -EBUSY;
498         }
499 
500         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
501                 dev_err(dev,
502                         "reached maximum number (%d) of stream IDs for master device %s\n",
503                         MAX_MASTER_STREAMIDS, masterspec->np->name);
504                 return -ENOSPC;
505         }
506 
507         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
508         if (!master)
509                 return -ENOMEM;
510 
511         master->of_node         = masterspec->np;
512         master->num_streamids   = masterspec->args_count;
513 
514         for (i = 0; i < master->num_streamids; ++i)
515                 master->streamids[i] = masterspec->args[i];
516 
517         return insert_smmu_master(smmu, master);
518 }
519 
520 static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
521 {
522         struct arm_smmu_device *parent;
523 
524         if (!smmu->parent_of_node)
525                 return NULL;
526 
527         spin_lock(&arm_smmu_devices_lock);
528         list_for_each_entry(parent, &arm_smmu_devices, list)
529                 if (parent->dev->of_node == smmu->parent_of_node)
530                         goto out_unlock;
531 
532         parent = NULL;
533         dev_warn(smmu->dev,
534                  "Failed to find SMMU parent despite parent in DT\n");
535 out_unlock:
536         spin_unlock(&arm_smmu_devices_lock);
537         return parent;
538 }
539 
540 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
541 {
542         int idx;
543 
544         do {
545                 idx = find_next_zero_bit(map, end, start);
546                 if (idx == end)
547                         return -ENOSPC;
548         } while (test_and_set_bit(idx, map));
549 
550         return idx;
551 }
552 
553 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
554 {
555         clear_bit(idx, map);
556 }
557 
558 /* Wait for any pending TLB invalidations to complete */
559 static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
560 {
561         int count = 0;
562         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
563 
564         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
565         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
566                & sTLBGSTATUS_GSACTIVE) {
567                 cpu_relax();
568                 if (++count == TLB_LOOP_TIMEOUT) {
569                         dev_err_ratelimited(smmu->dev,
570                         "TLB sync timed out -- SMMU may be deadlocked\n");
571                         return;
572                 }
573                 udelay(1);
574         }
575 }
576 
577 static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
578 {
579         struct arm_smmu_device *smmu = cfg->smmu;
580         void __iomem *base = ARM_SMMU_GR0(smmu);
581         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
582 
583         if (stage1) {
584                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
585                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
586                                base + ARM_SMMU_CB_S1_TLBIASID);
587         } else {
588                 base = ARM_SMMU_GR0(smmu);
589                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
590                                base + ARM_SMMU_GR0_TLBIVMID);
591         }
592 
593         arm_smmu_tlb_sync(smmu);
594 }
595 
596 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
597 {
598         int flags, ret;
599         u32 fsr, far, fsynr, resume;
600         unsigned long iova;
601         struct iommu_domain *domain = dev;
602         struct arm_smmu_domain *smmu_domain = domain->priv;
603         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
604         struct arm_smmu_device *smmu = root_cfg->smmu;
605         void __iomem *cb_base;
606 
607         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
608         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
609 
610         if (!(fsr & FSR_FAULT))
611                 return IRQ_NONE;
612 
613         if (fsr & FSR_IGN)
614                 dev_err_ratelimited(smmu->dev,
615                                     "Unexpected context fault (fsr 0x%u)\n",
616                                     fsr);
617 
618         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
619         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
620 
621         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
622         iova = far;
623 #ifdef CONFIG_64BIT
624         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
625         iova |= ((unsigned long)far << 32);
626 #endif
627 
628         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
629                 ret = IRQ_HANDLED;
630                 resume = RESUME_RETRY;
631         } else {
632                 dev_err_ratelimited(smmu->dev,
633                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
634                     iova, fsynr, root_cfg->cbndx);
635                 ret = IRQ_NONE;
636                 resume = RESUME_TERMINATE;
637         }
638 
639         /* Clear the faulting FSR */
640         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
641 
642         /* Retry or terminate any stalled transactions */
643         if (fsr & FSR_SS)
644                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
645 
646         return ret;
647 }
648 
649 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
650 {
651         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
652         struct arm_smmu_device *smmu = dev;
653         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
654 
655         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
656         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
657         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
658         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
659 
660         if (!gfsr)
661                 return IRQ_NONE;
662 
663         dev_err_ratelimited(smmu->dev,
664                 "Unexpected global fault, this could be serious\n");
665         dev_err_ratelimited(smmu->dev,
666                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
667                 gfsr, gfsynr0, gfsynr1, gfsynr2);
668 
669         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
670         return IRQ_HANDLED;
671 }
672 
673 static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
674                                    size_t size)
675 {
676         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
677 
678 
679         /* Ensure new page tables are visible to the hardware walker */
680         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
681                 dsb(ishst);
682         } else {
683                 /*
684                  * If the SMMU can't walk tables in the CPU caches, treat them
685                  * like non-coherent DMA since we need to flush the new entries
686                  * all the way out to memory. There's no possibility of
687                  * recursion here as the SMMU table walker will not be wired
688                  * through another SMMU.
689                  */
690                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
691                                 DMA_TO_DEVICE);
692         }
693 }
694 
695 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
696 {
697         u32 reg;
698         bool stage1;
699         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
700         struct arm_smmu_device *smmu = root_cfg->smmu;
701         void __iomem *cb_base, *gr0_base, *gr1_base;
702 
703         gr0_base = ARM_SMMU_GR0(smmu);
704         gr1_base = ARM_SMMU_GR1(smmu);
705         stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
706         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
707 
708         /* CBAR */
709         reg = root_cfg->cbar;
710         if (smmu->version == 1)
711               reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;
712 
713         /*
714          * Use the weakest shareability/memory types, so they are
715          * overridden by the ttbcr/pte.
716          */
717         if (stage1) {
718                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
719                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
720         } else {
721                 reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT;
722         }
723         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));
724 
725         if (smmu->version > 1) {
726                 /* CBA2R */
727 #ifdef CONFIG_64BIT
728                 reg = CBA2R_RW64_64BIT;
729 #else
730                 reg = CBA2R_RW64_32BIT;
731 #endif
732                 writel_relaxed(reg,
733                                gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));
734 
735                 /* TTBCR2 */
736                 switch (smmu->input_size) {
737                 case 32:
738                         reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
739                         break;
740                 case 36:
741                         reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
742                         break;
743                 case 39:
744                         reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
745                         break;
746                 case 42:
747                         reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
748                         break;
749                 case 44:
750                         reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
751                         break;
752                 case 48:
753                         reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
754                         break;
755                 }
756 
757                 switch (smmu->s1_output_size) {
758                 case 32:
759                         reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
760                         break;
761                 case 36:
762                         reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
763                         break;
764                 case 39:
765                         reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
766                         break;
767                 case 42:
768                         reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
769                         break;
770                 case 44:
771                         reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
772                         break;
773                 case 48:
774                         reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
775                         break;
776                 }
777 
778                 if (stage1)
779                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
780         }
781 
782         /* TTBR0 */
783         arm_smmu_flush_pgtable(smmu, root_cfg->pgd,
784                                PTRS_PER_PGD * sizeof(pgd_t));
785         reg = __pa(root_cfg->pgd);
786         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
787         reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
788         if (stage1)
789                 reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT;
790         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
791 
792         /*
793          * TTBCR
794          * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
795          */
796         if (smmu->version > 1) {
797                 if (PAGE_SIZE == SZ_4K)
798                         reg = TTBCR_TG0_4K;
799                 else
800                         reg = TTBCR_TG0_64K;
801 
802                 if (!stage1) {
803                         switch (smmu->s2_output_size) {
804                         case 32:
805                                 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
806                                 break;
807                         case 36:
808                                 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
809                                 break;
810                         case 40:
811                                 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
812                                 break;
813                         case 42:
814                                 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
815                                 break;
816                         case 44:
817                                 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
818                                 break;
819                         case 48:
820                                 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
821                                 break;
822                         }
823                 } else {
824                         reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
825                 }
826         } else {
827                 reg = 0;
828         }
829 
830         reg |= TTBCR_EAE |
831               (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
832               (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
833               (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
834               (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
835         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
836 
837         /* MAIR0 (stage-1 only) */
838         if (stage1) {
839                 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
840                       (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
841                       (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
842                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
843         }
844 
845         /* SCTLR */
846         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
847         if (stage1)
848                 reg |= SCTLR_S1_ASIDPNE;
849 #ifdef __BIG_ENDIAN
850         reg |= SCTLR_E;
851 #endif
852         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
853 }
854 
855 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
856                                         struct device *dev)
857 {
858         int irq, ret, start;
859         struct arm_smmu_domain *smmu_domain = domain->priv;
860         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
861         struct arm_smmu_device *smmu, *parent;
862 
863         /*
864          * Walk the SMMU chain to find the root device for this chain.
865          * We assume that no masters have translations which terminate
866          * early, and therefore check that the root SMMU does indeed have
867          * a StreamID for the master in question.
868          */
869         parent = dev->archdata.iommu;
870         smmu_domain->output_mask = -1;
871         do {
872                 smmu = parent;
873                 smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
874         } while ((parent = find_parent_smmu(smmu)));
875 
876         if (!find_smmu_master(smmu, dev->of_node)) {
877                 dev_err(dev, "unable to find root SMMU for device\n");
878                 return -ENODEV;
879         }
880 
881         if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
882                 /*
883                  * We will likely want to change this if/when KVM gets
884                  * involved.
885                  */
886                 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
887                 start = smmu->num_s2_context_banks;
888         } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
889                 root_cfg->cbar = CBAR_TYPE_S2_TRANS;
890                 start = 0;
891         } else {
892                 root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
893                 start = smmu->num_s2_context_banks;
894         }
895 
896         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
897                                       smmu->num_context_banks);
898         if (IS_ERR_VALUE(ret))
899                 return ret;
900 
901         root_cfg->cbndx = ret;
902         if (smmu->version == 1) {
903                 root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
904                 root_cfg->irptndx %= smmu->num_context_irqs;
905         } else {
906                 root_cfg->irptndx = root_cfg->cbndx;
907         }
908 
909         irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
910         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
911                           "arm-smmu-context-fault", domain);
912         if (IS_ERR_VALUE(ret)) {
913                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
914                         root_cfg->irptndx, irq);
915                 root_cfg->irptndx = INVALID_IRPTNDX;
916                 goto out_free_context;
917         }
918 
919         root_cfg->smmu = smmu;
920         arm_smmu_init_context_bank(smmu_domain);
921         return ret;
922 
923 out_free_context:
924         __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
925         return ret;
926 }
927 
928 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
929 {
930         struct arm_smmu_domain *smmu_domain = domain->priv;
931         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
932         struct arm_smmu_device *smmu = root_cfg->smmu;
933         void __iomem *cb_base;
934         int irq;
935 
936         if (!smmu)
937                 return;
938 
939         /* Disable the context bank and nuke the TLB before freeing it. */
940         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
941         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
942         arm_smmu_tlb_inv_context(root_cfg);
943 
944         if (root_cfg->irptndx != INVALID_IRPTNDX) {
945                 irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
946                 free_irq(irq, domain);
947         }
948 
949         __arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
950 }
951 
952 static int arm_smmu_domain_init(struct iommu_domain *domain)
953 {
954         struct arm_smmu_domain *smmu_domain;
955         pgd_t *pgd;
956 
957         /*
958          * Allocate the domain and initialise some of its data structures.
959          * We can't really do anything meaningful until we've added a
960          * master.
961          */
962         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
963         if (!smmu_domain)
964                 return -ENOMEM;
965 
966         pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
967         if (!pgd)
968                 goto out_free_domain;
969         smmu_domain->root_cfg.pgd = pgd;
970 
971         spin_lock_init(&smmu_domain->lock);
972         domain->priv = smmu_domain;
973         return 0;
974 
975 out_free_domain:
976         kfree(smmu_domain);
977         return -ENOMEM;
978 }
979 
980 static void arm_smmu_free_ptes(pmd_t *pmd)
981 {
982         pgtable_t table = pmd_pgtable(*pmd);
983         pgtable_page_dtor(table);
984         __free_page(table);
985 }
986 
987 static void arm_smmu_free_pmds(pud_t *pud)
988 {
989         int i;
990         pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
991 
992         pmd = pmd_base;
993         for (i = 0; i < PTRS_PER_PMD; ++i) {
994                 if (pmd_none(*pmd))
995                         continue;
996 
997                 arm_smmu_free_ptes(pmd);
998                 pmd++;
999         }
1000 
1001         pmd_free(NULL, pmd_base);
1002 }
1003 
1004 static void arm_smmu_free_puds(pgd_t *pgd)
1005 {
1006         int i;
1007         pud_t *pud, *pud_base = pud_offset(pgd, 0);
1008 
1009         pud = pud_base;
1010         for (i = 0; i < PTRS_PER_PUD; ++i) {
1011                 if (pud_none(*pud))
1012                         continue;
1013 
1014                 arm_smmu_free_pmds(pud);
1015                 pud++;
1016         }
1017 
1018         pud_free(NULL, pud_base);
1019 }
1020 
1021 static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1022 {
1023         int i;
1024         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1025         pgd_t *pgd, *pgd_base = root_cfg->pgd;
1026 
1027         /*
1028          * Recursively free the page tables for this domain. We don't
1029          * care about speculative TLB filling because the tables should
1030          * not be active in any context bank at this point (SCTLR.M is 0).
1031          */
1032         pgd = pgd_base;
1033         for (i = 0; i < PTRS_PER_PGD; ++i) {
1034                 if (pgd_none(*pgd))
1035                         continue;
1036                 arm_smmu_free_puds(pgd);
1037                 pgd++;
1038         }
1039 
1040         kfree(pgd_base);
1041 }
1042 
1043 static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1044 {
1045         struct arm_smmu_domain *smmu_domain = domain->priv;
1046 
1047         /*
1048          * Free the domain resources. We assume that all devices have
1049          * already been detached.
1050          */
1051         arm_smmu_destroy_domain_context(domain);
1052         arm_smmu_free_pgtables(smmu_domain);
1053         kfree(smmu_domain);
1054 }
1055 
1056 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1057                                           struct arm_smmu_master *master)
1058 {
1059         int i;
1060         struct arm_smmu_smr *smrs;
1061         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1062 
1063         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1064                 return 0;
1065 
1066         if (master->smrs)
1067                 return -EEXIST;
1068 
1069         smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
1070         if (!smrs) {
1071                 dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
1072                         master->num_streamids, master->of_node->name);
1073                 return -ENOMEM;
1074         }
1075 
1076         /* Allocate the SMRs on the root SMMU */
1077         for (i = 0; i < master->num_streamids; ++i) {
1078                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1079                                                   smmu->num_mapping_groups);
1080                 if (IS_ERR_VALUE(idx)) {
1081                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1082                         goto err_free_smrs;
1083                 }
1084 
1085                 smrs[i] = (struct arm_smmu_smr) {
1086                         .idx    = idx,
1087                         .mask   = 0, /* We don't currently share SMRs */
1088                         .id     = master->streamids[i],
1089                 };
1090         }
1091 
1092         /* It worked! Now, poke the actual hardware */
1093         for (i = 0; i < master->num_streamids; ++i) {
1094                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1095                           smrs[i].mask << SMR_MASK_SHIFT;
1096                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1097         }
1098 
1099         master->smrs = smrs;
1100         return 0;
1101 
1102 err_free_smrs:
1103         while (--i >= 0)
1104                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1105         kfree(smrs);
1106         return -ENOSPC;
1107 }
1108 
1109 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1110                                       struct arm_smmu_master *master)
1111 {
1112         int i;
1113         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1114         struct arm_smmu_smr *smrs = master->smrs;
1115 
1116         /* Invalidate the SMRs before freeing back to the allocator */
1117         for (i = 0; i < master->num_streamids; ++i) {
1118                 u8 idx = smrs[i].idx;
1119                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1120                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1121         }
1122 
1123         master->smrs = NULL;
1124         kfree(smrs);
1125 }
1126 
1127 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
1128                                            struct arm_smmu_master *master)
1129 {
1130         int i;
1131         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1132 
1133         for (i = 0; i < master->num_streamids; ++i) {
1134                 u16 sid = master->streamids[i];
1135                 writel_relaxed(S2CR_TYPE_BYPASS,
1136                                gr0_base + ARM_SMMU_GR0_S2CR(sid));
1137         }
1138 }
1139 
1140 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1141                                       struct arm_smmu_master *master)
1142 {
1143         int i, ret;
1144         struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
1145         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1146 
1147         ret = arm_smmu_master_configure_smrs(smmu, master);
1148         if (ret)
1149                 return ret;
1150 
1151         /* Bypass the leaves */
1152         smmu = smmu_domain->leaf_smmu;
1153         while ((parent = find_parent_smmu(smmu))) {
1154                 /*
1155                  * We won't have a StreamID match for anything but the root
1156                  * smmu, so we only need to worry about StreamID indexing,
1157                  * where we must install bypass entries in the S2CRs.
1158                  */
1159                 if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
1160                         continue;
1161 
1162                 arm_smmu_bypass_stream_mapping(smmu, master);
1163                 smmu = parent;
1164         }
1165 
1166         /* Now we're at the root, time to point at our context bank */
1167         for (i = 0; i < master->num_streamids; ++i) {
1168                 u32 idx, s2cr;
1169                 idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
1170                 s2cr = S2CR_TYPE_TRANS |
1171                        (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
1172                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1173         }
1174 
1175         return 0;
1176 }
1177 
1178 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1179                                           struct arm_smmu_master *master)
1180 {
1181         struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;
1182 
1183         /*
1184          * We *must* clear the S2CR first, because freeing the SMR means
1185          * that it can be re-allocated immediately.
1186          */
1187         arm_smmu_bypass_stream_mapping(smmu, master);
1188         arm_smmu_master_free_smrs(smmu, master);
1189 }
1190 
1191 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1192 {
1193         int ret = -EINVAL;
1194         struct arm_smmu_domain *smmu_domain = domain->priv;
1195         struct arm_smmu_device *device_smmu = dev->archdata.iommu;
1196         struct arm_smmu_master *master;
1197         unsigned long flags;
1198 
1199         if (!device_smmu) {
1200                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1201                 return -ENXIO;
1202         }
1203 
1204         /*
1205          * Sanity check the domain. We don't currently support domains
1206          * that cross between different SMMU chains.
1207          */
1208         spin_lock_irqsave(&smmu_domain->lock, flags);
1209         if (!smmu_domain->leaf_smmu) {
1210                 /* Now that we have a master, we can finalise the domain */
1211                 ret = arm_smmu_init_domain_context(domain, dev);
1212                 if (IS_ERR_VALUE(ret))
1213                         goto err_unlock;
1214 
1215                 smmu_domain->leaf_smmu = device_smmu;
1216         } else if (smmu_domain->leaf_smmu != device_smmu) {
1217                 dev_err(dev,
1218                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1219                         dev_name(smmu_domain->leaf_smmu->dev),
1220                         dev_name(device_smmu->dev));
1221                 goto err_unlock;
1222         }
1223         spin_unlock_irqrestore(&smmu_domain->lock, flags);
1224 
1225         /* Looks ok, so add the device to the domain */
1226         master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1227         if (!master)
1228                 return -ENODEV;
1229 
1230         return arm_smmu_domain_add_master(smmu_domain, master);
1231 
1232 err_unlock:
1233         spin_unlock_irqrestore(&smmu_domain->lock, flags);
1234         return ret;
1235 }
1236 
1237 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1238 {
1239         struct arm_smmu_domain *smmu_domain = domain->priv;
1240         struct arm_smmu_master *master;
1241 
1242         master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
1243         if (master)
1244                 arm_smmu_domain_remove_master(smmu_domain, master);
1245 }
1246 
1247 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1248                                              unsigned long end)
1249 {
1250         return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1251                 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1252 }
1253 
1254 static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1255                                    unsigned long addr, unsigned long end,
1256                                    unsigned long pfn, int prot, int stage)
1257 {
1258         pte_t *pte, *start;
1259         pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
1260 
1261         if (pmd_none(*pmd)) {
1262                 /* Allocate a new set of tables */
1263                 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
1264                 if (!table)
1265                         return -ENOMEM;
1266 
1267                 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
1268                 if (!pgtable_page_ctor(table)) {
1269                         __free_page(table);
1270                         return -ENOMEM;
1271                 }
1272                 pmd_populate(NULL, pmd, table);
1273                 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1274         }
1275 
1276         if (stage == 1) {
1277                 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
1278                 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
1279                         pteval |= ARM_SMMU_PTE_AP_RDONLY;
1280 
1281                 if (prot & IOMMU_CACHE)
1282                         pteval |= (MAIR_ATTR_IDX_CACHE <<
1283                                    ARM_SMMU_PTE_ATTRINDX_SHIFT);
1284         } else {
1285                 pteval |= ARM_SMMU_PTE_HAP_FAULT;
1286                 if (prot & IOMMU_READ)
1287                         pteval |= ARM_SMMU_PTE_HAP_READ;
1288                 if (prot & IOMMU_WRITE)
1289                         pteval |= ARM_SMMU_PTE_HAP_WRITE;
1290                 if (prot & IOMMU_CACHE)
1291                         pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1292                 else
1293                         pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1294         }
1295 
1296         /* If no access, create a faulting entry to avoid TLB fills */
1297         if (prot & IOMMU_EXEC)
1298                 pteval &= ~ARM_SMMU_PTE_XN;
1299         else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
1300                 pteval &= ~ARM_SMMU_PTE_PAGE;
1301 
1302         pteval |= ARM_SMMU_PTE_SH_IS;
1303         start = pmd_page_vaddr(*pmd) + pte_index(addr);
1304         pte = start;
1305 
1306         /*
1307          * Install the page table entries. This is fairly complicated
1308          * since we attempt to make use of the contiguous hint in the
1309          * ptes where possible. The contiguous hint indicates a series
1310          * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1311          * contiguous region with the following constraints:
1312          *
1313          *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1314          *   - Each pte in the region has the contiguous hint bit set
1315          *
1316          * This complicates unmapping (also handled by this code, when
1317          * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1318          * possible, yet highly unlikely, that a client may unmap only
1319          * part of a contiguous range. This requires clearing of the
1320          * contiguous hint bits in the range before installing the new
1321          * faulting entries.
1322          *
1323          * Note that re-mapping an address range without first unmapping
1324          * it is not supported, so TLB invalidation is not required here
1325          * and is instead performed at unmap and domain-init time.
1326          */
1327         do {
1328                 int i = 1;
1329                 pteval &= ~ARM_SMMU_PTE_CONT;
1330 
1331                 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1332                         i = ARM_SMMU_PTE_CONT_ENTRIES;
1333                         pteval |= ARM_SMMU_PTE_CONT;
1334                 } else if (pte_val(*pte) &
1335                            (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1336                         int j;
1337                         pte_t *cont_start;
1338                         unsigned long idx = pte_index(addr);
1339 
1340                         idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1341                         cont_start = pmd_page_vaddr(*pmd) + idx;
1342                         for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
1343                                 pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;
1344 
1345                         arm_smmu_flush_pgtable(smmu, cont_start,
1346                                                sizeof(*pte) *
1347                                                ARM_SMMU_PTE_CONT_ENTRIES);
1348                 }
1349 
1350                 do {
1351                         *pte = pfn_pte(pfn, __pgprot(pteval));
1352                 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1353         } while (addr != end);
1354 
1355         arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1356         return 0;
1357 }
1358 
1359 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1360                                    unsigned long addr, unsigned long end,
1361                                    phys_addr_t phys, int prot, int stage)
1362 {
1363         int ret;
1364         pmd_t *pmd;
1365         unsigned long next, pfn = __phys_to_pfn(phys);
1366 
1367 #ifndef __PAGETABLE_PMD_FOLDED
1368         if (pud_none(*pud)) {
1369                 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
1370                 if (!pmd)
1371                         return -ENOMEM;
1372 
1373                 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
1374                 pud_populate(NULL, pud, pmd);
1375                 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1376 
1377                 pmd += pmd_index(addr);
1378         } else
1379 #endif
1380                 pmd = pmd_offset(pud, addr);
1381 
1382         do {
1383                 next = pmd_addr_end(addr, end);
1384                 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
1385                                               prot, stage);
1386                 phys += next - addr;
1387         } while (pmd++, addr = next, addr < end);
1388 
1389         return ret;
1390 }
1391 
1392 static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1393                                    unsigned long addr, unsigned long end,
1394                                    phys_addr_t phys, int prot, int stage)
1395 {
1396         int ret = 0;
1397         pud_t *pud;
1398         unsigned long next;
1399 
1400 #ifndef __PAGETABLE_PUD_FOLDED
1401         if (pgd_none(*pgd)) {
1402                 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
1403                 if (!pud)
1404                         return -ENOMEM;
1405 
1406                 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
1407                 pgd_populate(NULL, pgd, pud);
1408                 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1409 
1410                 pud += pud_index(addr);
1411         } else
1412 #endif
1413                 pud = pud_offset(pgd, addr);
1414 
1415         do {
1416                 next = pud_addr_end(addr, end);
1417                 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
1418                                               prot, stage);
1419                 phys += next - addr;
1420         } while (pud++, addr = next, addr < end);
1421 
1422         return ret;
1423 }
1424 
1425 static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1426                                    unsigned long iova, phys_addr_t paddr,
1427                                    size_t size, int prot)
1428 {
1429         int ret, stage;
1430         unsigned long end;
1431         phys_addr_t input_mask, output_mask;
1432         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1433         pgd_t *pgd = root_cfg->pgd;
1434         struct arm_smmu_device *smmu = root_cfg->smmu;
1435         unsigned long flags;
1436 
1437         if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
1438                 stage = 2;
1439                 output_mask = (1ULL << smmu->s2_output_size) - 1;
1440         } else {
1441                 stage = 1;
1442                 output_mask = (1ULL << smmu->s1_output_size) - 1;
1443         }
1444 
1445         if (!pgd)
1446                 return -EINVAL;
1447 
1448         if (size & ~PAGE_MASK)
1449                 return -EINVAL;
1450 
1451         input_mask = (1ULL << smmu->input_size) - 1;
1452         if ((phys_addr_t)iova & ~input_mask)
1453                 return -ERANGE;
1454 
1455         if (paddr & ~output_mask)
1456                 return -ERANGE;
1457 
1458         spin_lock_irqsave(&smmu_domain->lock, flags);
1459         pgd += pgd_index(iova);
1460         end = iova + size;
1461         do {
1462                 unsigned long next = pgd_addr_end(iova, end);
1463 
1464                 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
1465                                               prot, stage);
1466                 if (ret)
1467                         goto out_unlock;
1468 
1469                 paddr += next - iova;
1470                 iova = next;
1471         } while (pgd++, iova != end);
1472 
1473 out_unlock:
1474         spin_unlock_irqrestore(&smmu_domain->lock, flags);
1475 
1476         return ret;
1477 }
1478 
1479 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1480                         phys_addr_t paddr, size_t size, int prot)
1481 {
1482         struct arm_smmu_domain *smmu_domain = domain->priv;
1483 
1484         if (!smmu_domain)
1485                 return -ENODEV;
1486 
1487         /* Check for silent address truncation up the SMMU chain. */
1488         if ((phys_addr_t)iova & ~smmu_domain->output_mask)
1489                 return -ERANGE;
1490 
1491         return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
1492 }
1493 
1494 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1495                              size_t size)
1496 {
1497         int ret;
1498         struct arm_smmu_domain *smmu_domain = domain->priv;
1499 
1500         ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
1501         arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
1502         return ret ? 0 : size;
1503 }
1504 
1505 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1506                                          dma_addr_t iova)
1507 {
1508         pgd_t *pgdp, pgd;
1509         pud_t pud;
1510         pmd_t pmd;
1511         pte_t pte;
1512         struct arm_smmu_domain *smmu_domain = domain->priv;
1513         struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
1514 
1515         pgdp = root_cfg->pgd;
1516         if (!pgdp)
1517                 return 0;
1518 
1519         pgd = *(pgdp + pgd_index(iova));
1520         if (pgd_none(pgd))
1521                 return 0;
1522 
1523         pud = *pud_offset(&pgd, iova);
1524         if (pud_none(pud))
1525                 return 0;
1526 
1527         pmd = *pmd_offset(&pud, iova);
1528         if (pmd_none(pmd))
1529                 return 0;
1530 
1531         pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
1532         if (pte_none(pte))
1533                 return 0;
1534 
1535         return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
1536 }
1537 
1538 static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1539                                    unsigned long cap)
1540 {
1541         unsigned long caps = 0;
1542         struct arm_smmu_domain *smmu_domain = domain->priv;
1543 
1544         if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
1545                 caps |= IOMMU_CAP_CACHE_COHERENCY;
1546 
1547         return !!(cap & caps);
1548 }
1549 
1550 static int arm_smmu_add_device(struct device *dev)
1551 {
1552         struct arm_smmu_device *child, *parent, *smmu;
1553         struct arm_smmu_master *master = NULL;
1554         struct iommu_group *group;
1555         int ret;
1556 
1557         if (dev->archdata.iommu) {
1558                 dev_warn(dev, "IOMMU driver already assigned to device\n");
1559                 return -EINVAL;
1560         }
1561 
1562         spin_lock(&arm_smmu_devices_lock);
1563         list_for_each_entry(parent, &arm_smmu_devices, list) {
1564                 smmu = parent;
1565 
1566                 /* Try to find a child of the current SMMU. */
1567                 list_for_each_entry(child, &arm_smmu_devices, list) {
1568                         if (child->parent_of_node == parent->dev->of_node) {
1569                                 /* Does the child sit above our master? */
1570                                 master = find_smmu_master(child, dev->of_node);
1571                                 if (master) {
1572                                         smmu = NULL;
1573                                         break;
1574                                 }
1575                         }
1576                 }
1577 
1578                 /* We found some children, so keep searching. */
1579                 if (!smmu) {
1580                         master = NULL;
1581                         continue;
1582                 }
1583 
1584                 master = find_smmu_master(smmu, dev->of_node);
1585                 if (master)
1586                         break;
1587         }
1588         spin_unlock(&arm_smmu_devices_lock);
1589 
1590         if (!master)
1591                 return -ENODEV;
1592 
1593         group = iommu_group_alloc();
1594         if (IS_ERR(group)) {
1595                 dev_err(dev, "Failed to allocate IOMMU group\n");
1596                 return PTR_ERR(group);
1597         }
1598 
1599         ret = iommu_group_add_device(group, dev);
1600         iommu_group_put(group);
1601         dev->archdata.iommu = smmu;
1602 
1603         return ret;
1604 }
1605 
1606 static void arm_smmu_remove_device(struct device *dev)
1607 {
1608         dev->archdata.iommu = NULL;
1609         iommu_group_remove_device(dev);
1610 }
1611 
1612 static struct iommu_ops arm_smmu_ops = {
1613         .domain_init    = arm_smmu_domain_init,
1614         .domain_destroy = arm_smmu_domain_destroy,
1615         .attach_dev     = arm_smmu_attach_dev,
1616         .detach_dev     = arm_smmu_detach_dev,
1617         .map            = arm_smmu_map,
1618         .unmap          = arm_smmu_unmap,
1619         .iova_to_phys   = arm_smmu_iova_to_phys,
1620         .domain_has_cap = arm_smmu_domain_has_cap,
1621         .add_device     = arm_smmu_add_device,
1622         .remove_device  = arm_smmu_remove_device,
1623         .pgsize_bitmap  = (SECTION_SIZE |
1624                            ARM_SMMU_PTE_CONT_SIZE |
1625                            PAGE_SIZE),
1626 };
1627 
1628 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1629 {
1630         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1631         void __iomem *cb_base;
1632         int i = 0;
1633         u32 reg;
1634 
1635         /* clear global FSR */
1636         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1637         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1638 
1639         /* Mark all SMRn as invalid and all S2CRn as bypass */
1640         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1641                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
1642                 writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
1643         }
1644 
1645         /* Make sure all context banks are disabled and clear CB_FSR  */
1646         for (i = 0; i < smmu->num_context_banks; ++i) {
1647                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1648                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1649                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1650         }
1651 
1652         /* Invalidate the TLB, just in case */
1653         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1654         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1655         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1656 
1657         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1658 
1659         /* Enable fault reporting */
1660         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1661 
1662         /* Disable TLB broadcasting. */
1663         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1664 
1665         /* Enable client access, but bypass when no mapping is found */
1666         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1667 
1668         /* Disable forced broadcasting */
1669         reg &= ~sCR0_FB;
1670 
1671         /* Don't upgrade barriers */
1672         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1673 
1674         /* Push the button */
1675         arm_smmu_tlb_sync(smmu);
1676         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1677 }
1678 
1679 static int arm_smmu_id_size_to_bits(int size)
1680 {
1681         switch (size) {
1682         case 0:
1683                 return 32;
1684         case 1:
1685                 return 36;
1686         case 2:
1687                 return 40;
1688         case 3:
1689                 return 42;
1690         case 4:
1691                 return 44;
1692         case 5:
1693         default:
1694                 return 48;
1695         }
1696 }
1697 
1698 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1699 {
1700         unsigned long size;
1701         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1702         u32 id;
1703 
1704         dev_notice(smmu->dev, "probing hardware configuration...\n");
1705 
1706         /* Primecell ID */
1707         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1708         smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1709         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1710 
1711         /* ID0 */
1712         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1713 #ifndef CONFIG_64BIT
1714         if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1715                 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1716                 return -ENODEV;
1717         }
1718 #endif
1719         if (id & ID0_S1TS) {
1720                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1721                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1722         }
1723 
1724         if (id & ID0_S2TS) {
1725                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1726                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1727         }
1728 
1729         if (id & ID0_NTS) {
1730                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1731                 dev_notice(smmu->dev, "\tnested translation\n");
1732         }
1733 
1734         if (!(smmu->features &
1735                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
1736                  ARM_SMMU_FEAT_TRANS_NESTED))) {
1737                 dev_err(smmu->dev, "\tno translation support!\n");
1738                 return -ENODEV;
1739         }
1740 
1741         if (id & ID0_CTTW) {
1742                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1743                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1744         }
1745 
1746         if (id & ID0_SMS) {
1747                 u32 smr, sid, mask;
1748 
1749                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1750                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1751                                            ID0_NUMSMRG_MASK;
1752                 if (smmu->num_mapping_groups == 0) {
1753                         dev_err(smmu->dev,
1754                                 "stream-matching supported, but no SMRs present!\n");
1755                         return -ENODEV;
1756                 }
1757 
1758                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1759                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1760                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1761                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1762 
1763                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1764                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1765                 if ((mask & sid) != sid) {
1766                         dev_err(smmu->dev,
1767                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1768                                 mask, sid);
1769                         return -ENODEV;
1770                 }
1771 
1772                 dev_notice(smmu->dev,
1773                            "\tstream matching with %u register groups, mask 0x%x",
1774                            smmu->num_mapping_groups, mask);
1775         }
1776 
1777         /* ID1 */
1778         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1779         smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1780 
1781         /* Check for size mismatch of SMMU address space from mapped region */
1782         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1783         size *= (smmu->pagesize << 1);
1784         if (smmu->size != size)
1785                 dev_warn(smmu->dev, "SMMU address space size (0x%lx) differs "
1786                         "from mapped region size (0x%lx)!\n", size, smmu->size);
1787 
1788         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1789                                       ID1_NUMS2CB_MASK;
1790         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1791         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1792                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1793                 return -ENODEV;
1794         }
1795         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1796                    smmu->num_context_banks, smmu->num_s2_context_banks);
1797 
1798         /* ID2 */
1799         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1800         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1801 
1802         /*
1803          * Stage-1 output limited by stage-2 input size due to pgd
1804          * allocation (PTRS_PER_PGD).
1805          */
1806 #ifdef CONFIG_64BIT
1807         smmu->s1_output_size = min((unsigned long)VA_BITS, size);
1808 #else
1809         smmu->s1_output_size = min(32UL, size);
1810 #endif
1811 
1812         /* The stage-2 output mask is also applied for bypass */
1813         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1814         smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);
1815 
1816         if (smmu->version == 1) {
1817                 smmu->input_size = 32;
1818         } else {
1819 #ifdef CONFIG_64BIT
1820                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1821                 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
1822 #else
1823                 size = 32;
1824 #endif
1825                 smmu->input_size = size;
1826 
1827                 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1828                     (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1829                     (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1830                         dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1831                                 PAGE_SIZE);
1832                         return -ENODEV;
1833                 }
1834         }
1835 
1836         dev_notice(smmu->dev,
1837                    "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1838                    smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
1839         return 0;
1840 }
1841 
1842 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1843 {
1844         struct resource *res;
1845         struct arm_smmu_device *smmu;
1846         struct device_node *dev_node;
1847         struct device *dev = &pdev->dev;
1848         struct rb_node *node;
1849         struct of_phandle_args masterspec;
1850         int num_irqs, i, err;
1851 
1852         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1853         if (!smmu) {
1854                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1855                 return -ENOMEM;
1856         }
1857         smmu->dev = dev;
1858 
1859         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1860         smmu->base = devm_ioremap_resource(dev, res);
1861         if (IS_ERR(smmu->base))
1862                 return PTR_ERR(smmu->base);
1863         smmu->size = resource_size(res);
1864 
1865         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1866                                  &smmu->num_global_irqs)) {
1867                 dev_err(dev, "missing #global-interrupts property\n");
1868                 return -ENODEV;
1869         }
1870 
1871         num_irqs = 0;
1872         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1873                 num_irqs++;
1874                 if (num_irqs > smmu->num_global_irqs)
1875                         smmu->num_context_irqs++;
1876         }
1877 
1878         if (!smmu->num_context_irqs) {
1879                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1880                         num_irqs, smmu->num_global_irqs + 1);
1881                 return -ENODEV;
1882         }
1883 
1884         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1885                                   GFP_KERNEL);
1886         if (!smmu->irqs) {
1887                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1888                 return -ENOMEM;
1889         }
1890 
1891         for (i = 0; i < num_irqs; ++i) {
1892                 int irq = platform_get_irq(pdev, i);
1893                 if (irq < 0) {
1894                         dev_err(dev, "failed to get irq index %d\n", i);
1895                         return -ENODEV;
1896                 }
1897                 smmu->irqs[i] = irq;
1898         }
1899 
1900         i = 0;
1901         smmu->masters = RB_ROOT;
1902         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1903                                            "#stream-id-cells", i,
1904                                            &masterspec)) {
1905                 err = register_smmu_master(smmu, dev, &masterspec);
1906                 if (err) {
1907                         dev_err(dev, "failed to add master %s\n",
1908                                 masterspec.np->name);
1909                         goto out_put_masters;
1910                 }
1911 
1912                 i++;
1913         }
1914         dev_notice(dev, "registered %d master devices\n", i);
1915 
1916         if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
1917                 smmu->parent_of_node = dev_node;
1918 
1919         err = arm_smmu_device_cfg_probe(smmu);
1920         if (err)
1921                 goto out_put_parent;
1922 
1923         parse_driver_options(smmu);
1924 
1925         if (smmu->version > 1 &&
1926             smmu->num_context_banks != smmu->num_context_irqs) {
1927                 dev_err(dev,
1928                         "found only %d context interrupt(s) but %d required\n",
1929                         smmu->num_context_irqs, smmu->num_context_banks);
1930                 err = -ENODEV;
1931                 goto out_put_parent;
1932         }
1933 
1934         for (i = 0; i < smmu->num_global_irqs; ++i) {
1935                 err = request_irq(smmu->irqs[i],
1936                                   arm_smmu_global_fault,
1937                                   IRQF_SHARED,
1938                                   "arm-smmu global fault",
1939                                   smmu);
1940                 if (err) {
1941                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1942                                 i, smmu->irqs[i]);
1943                         goto out_free_irqs;
1944                 }
1945         }
1946 
1947         INIT_LIST_HEAD(&smmu->list);
1948         spin_lock(&arm_smmu_devices_lock);
1949         list_add(&smmu->list, &arm_smmu_devices);
1950         spin_unlock(&arm_smmu_devices_lock);
1951 
1952         arm_smmu_device_reset(smmu);
1953         return 0;
1954 
1955 out_free_irqs:
1956         while (i--)
1957                 free_irq(smmu->irqs[i], smmu);
1958 
1959 out_put_parent:
1960         if (smmu->parent_of_node)
1961                 of_node_put(smmu->parent_of_node);
1962 
1963 out_put_masters:
1964         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1965                 struct arm_smmu_master *master;
1966                 master = container_of(node, struct arm_smmu_master, node);
1967                 of_node_put(master->of_node);
1968         }
1969 
1970         return err;
1971 }
1972 
1973 static int arm_smmu_device_remove(struct platform_device *pdev)
1974 {
1975         int i;
1976         struct device *dev = &pdev->dev;
1977         struct arm_smmu_device *curr, *smmu = NULL;
1978         struct rb_node *node;
1979 
1980         spin_lock(&arm_smmu_devices_lock);
1981         list_for_each_entry(curr, &arm_smmu_devices, list) {
1982                 if (curr->dev == dev) {
1983                         smmu = curr;
1984                         list_del(&smmu->list);
1985                         break;
1986                 }
1987         }
1988         spin_unlock(&arm_smmu_devices_lock);
1989 
1990         if (!smmu)
1991                 return -ENODEV;
1992 
1993         if (smmu->parent_of_node)
1994                 of_node_put(smmu->parent_of_node);
1995 
1996         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1997                 struct arm_smmu_master *master;
1998                 master = container_of(node, struct arm_smmu_master, node);
1999                 of_node_put(master->of_node);
2000         }
2001 
2002         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2003                 dev_err(dev, "removing device with active domains!\n");
2004 
2005         for (i = 0; i < smmu->num_global_irqs; ++i)
2006                 free_irq(smmu->irqs[i], smmu);
2007 
2008         /* Turn the thing off */
2009         writel(sCR0_CLIENTPD,ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
2010         return 0;
2011 }
2012 
2013 #ifdef CONFIG_OF
2014 static struct of_device_id arm_smmu_of_match[] = {
2015         { .compatible = "arm,smmu-v1", },
2016         { .compatible = "arm,smmu-v2", },
2017         { .compatible = "arm,mmu-400", },
2018         { .compatible = "arm,mmu-500", },
2019         { },
2020 };
2021 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2022 #endif
2023 
2024 static struct platform_driver arm_smmu_driver = {
2025         .driver = {
2026                 .owner          = THIS_MODULE,
2027                 .name           = "arm-smmu",
2028                 .of_match_table = of_match_ptr(arm_smmu_of_match),
2029         },
2030         .probe  = arm_smmu_device_dt_probe,
2031         .remove = arm_smmu_device_remove,
2032 };
2033 
2034 static int __init arm_smmu_init(void)
2035 {
2036         int ret;
2037 
2038         ret = platform_driver_register(&arm_smmu_driver);
2039         if (ret)
2040                 return ret;
2041 
2042         /* Oh, for a proper bus abstraction */
2043         if (!iommu_present(&platform_bus_type))
2044                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2045 
2046 #ifdef CONFIG_ARM_AMBA
2047         if (!iommu_present(&amba_bustype))
2048                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
2049 #endif
2050 
2051         return 0;
2052 }
2053 
2054 static void __exit arm_smmu_exit(void)
2055 {
2056         return platform_driver_unregister(&arm_smmu_driver);
2057 }
2058 
2059 subsys_initcall(arm_smmu_init);
2060 module_exit(arm_smmu_exit);
2061 
2062 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2063 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2064 MODULE_LICENSE("GPL v2");
2065 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us