Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5

Linux/drivers/iommu/arm-smmu.c

  1 /*
  2  * IOMMU API for ARM architected SMMU implementations.
  3  *
  4  * This program is free software; you can redistribute it and/or modify
  5  * it under the terms of the GNU General Public License version 2 as
  6  * published by the Free Software Foundation.
  7  *
  8  * This program is distributed in the hope that it will be useful,
  9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11  * GNU General Public License for more details.
 12  *
 13  * You should have received a copy of the GNU General Public License
 14  * along with this program; if not, write to the Free Software
 15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 16  *
 17  * Copyright (C) 2013 ARM Limited
 18  *
 19  * Author: Will Deacon <will.deacon@arm.com>
 20  *
 21  * This driver currently supports:
 22  *      - SMMUv1 and v2 implementations
 23  *      - Stream-matching and stream-indexing
 24  *      - v7/v8 long-descriptor format
 25  *      - Non-secure access to the SMMU
 26  *      - Context fault reporting
 27  */
 28 
 29 #define pr_fmt(fmt) "arm-smmu: " fmt
 30 
 31 #include <linux/delay.h>
 32 #include <linux/dma-mapping.h>
 33 #include <linux/err.h>
 34 #include <linux/interrupt.h>
 35 #include <linux/io.h>
 36 #include <linux/iommu.h>
 37 #include <linux/iopoll.h>
 38 #include <linux/module.h>
 39 #include <linux/of.h>
 40 #include <linux/of_address.h>
 41 #include <linux/pci.h>
 42 #include <linux/platform_device.h>
 43 #include <linux/slab.h>
 44 #include <linux/spinlock.h>
 45 
 46 #include <linux/amba/bus.h>
 47 
 48 #include "io-pgtable.h"
 49 
 50 /* Maximum number of stream IDs assigned to a single device */
 51 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
 52 
 53 /* Maximum number of context banks per SMMU */
 54 #define ARM_SMMU_MAX_CBS                128
 55 
 56 /* Maximum number of mapping groups per SMMU */
 57 #define ARM_SMMU_MAX_SMRS               128
 58 
 59 /* SMMU global address space */
 60 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
 61 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
 62 
 63 /*
 64  * SMMU global address space with conditional offset to access secure
 65  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
 66  * nsGFSYNR0: 0x450)
 67  */
 68 #define ARM_SMMU_GR0_NS(smmu)                                           \
 69         ((smmu)->base +                                                 \
 70                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
 71                         ? 0x400 : 0))
 72 
 73 #ifdef CONFIG_64BIT
 74 #define smmu_writeq     writeq_relaxed
 75 #else
 76 #define smmu_writeq(reg64, addr)                                \
 77         do {                                                    \
 78                 u64 __val = (reg64);                            \
 79                 void __iomem *__addr = (addr);                  \
 80                 writel_relaxed(__val >> 32, __addr + 4);        \
 81                 writel_relaxed(__val, __addr);                  \
 82         } while (0)
 83 #endif
 84 
 85 /* Configuration registers */
 86 #define ARM_SMMU_GR0_sCR0               0x0
 87 #define sCR0_CLIENTPD                   (1 << 0)
 88 #define sCR0_GFRE                       (1 << 1)
 89 #define sCR0_GFIE                       (1 << 2)
 90 #define sCR0_GCFGFRE                    (1 << 4)
 91 #define sCR0_GCFGFIE                    (1 << 5)
 92 #define sCR0_USFCFG                     (1 << 10)
 93 #define sCR0_VMIDPNE                    (1 << 11)
 94 #define sCR0_PTM                        (1 << 12)
 95 #define sCR0_FB                         (1 << 13)
 96 #define sCR0_BSU_SHIFT                  14
 97 #define sCR0_BSU_MASK                   0x3
 98 
 99 /* Identification registers */
100 #define ARM_SMMU_GR0_ID0                0x20
101 #define ARM_SMMU_GR0_ID1                0x24
102 #define ARM_SMMU_GR0_ID2                0x28
103 #define ARM_SMMU_GR0_ID3                0x2c
104 #define ARM_SMMU_GR0_ID4                0x30
105 #define ARM_SMMU_GR0_ID5                0x34
106 #define ARM_SMMU_GR0_ID6                0x38
107 #define ARM_SMMU_GR0_ID7                0x3c
108 #define ARM_SMMU_GR0_sGFSR              0x48
109 #define ARM_SMMU_GR0_sGFSYNR0           0x50
110 #define ARM_SMMU_GR0_sGFSYNR1           0x54
111 #define ARM_SMMU_GR0_sGFSYNR2           0x58
112 
113 #define ID0_S1TS                        (1 << 30)
114 #define ID0_S2TS                        (1 << 29)
115 #define ID0_NTS                         (1 << 28)
116 #define ID0_SMS                         (1 << 27)
117 #define ID0_ATOSNS                      (1 << 26)
118 #define ID0_CTTW                        (1 << 14)
119 #define ID0_NUMIRPT_SHIFT               16
120 #define ID0_NUMIRPT_MASK                0xff
121 #define ID0_NUMSIDB_SHIFT               9
122 #define ID0_NUMSIDB_MASK                0xf
123 #define ID0_NUMSMRG_SHIFT               0
124 #define ID0_NUMSMRG_MASK                0xff
125 
126 #define ID1_PAGESIZE                    (1 << 31)
127 #define ID1_NUMPAGENDXB_SHIFT           28
128 #define ID1_NUMPAGENDXB_MASK            7
129 #define ID1_NUMS2CB_SHIFT               16
130 #define ID1_NUMS2CB_MASK                0xff
131 #define ID1_NUMCB_SHIFT                 0
132 #define ID1_NUMCB_MASK                  0xff
133 
134 #define ID2_OAS_SHIFT                   4
135 #define ID2_OAS_MASK                    0xf
136 #define ID2_IAS_SHIFT                   0
137 #define ID2_IAS_MASK                    0xf
138 #define ID2_UBS_SHIFT                   8
139 #define ID2_UBS_MASK                    0xf
140 #define ID2_PTFS_4K                     (1 << 12)
141 #define ID2_PTFS_16K                    (1 << 13)
142 #define ID2_PTFS_64K                    (1 << 14)
143 
144 /* Global TLB invalidation */
145 #define ARM_SMMU_GR0_TLBIVMID           0x64
146 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
147 #define ARM_SMMU_GR0_TLBIALLH           0x6c
148 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
149 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
150 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
151 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
152 
153 /* Stream mapping registers */
154 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
155 #define SMR_VALID                       (1 << 31)
156 #define SMR_MASK_SHIFT                  16
157 #define SMR_MASK_MASK                   0x7fff
158 #define SMR_ID_SHIFT                    0
159 #define SMR_ID_MASK                     0x7fff
160 
161 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
162 #define S2CR_CBNDX_SHIFT                0
163 #define S2CR_CBNDX_MASK                 0xff
164 #define S2CR_TYPE_SHIFT                 16
165 #define S2CR_TYPE_MASK                  0x3
166 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
167 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
168 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
169 
170 /* Context bank attribute registers */
171 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
172 #define CBAR_VMID_SHIFT                 0
173 #define CBAR_VMID_MASK                  0xff
174 #define CBAR_S1_BPSHCFG_SHIFT           8
175 #define CBAR_S1_BPSHCFG_MASK            3
176 #define CBAR_S1_BPSHCFG_NSH             3
177 #define CBAR_S1_MEMATTR_SHIFT           12
178 #define CBAR_S1_MEMATTR_MASK            0xf
179 #define CBAR_S1_MEMATTR_WB              0xf
180 #define CBAR_TYPE_SHIFT                 16
181 #define CBAR_TYPE_MASK                  0x3
182 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
183 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
184 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
185 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
186 #define CBAR_IRPTNDX_SHIFT              24
187 #define CBAR_IRPTNDX_MASK               0xff
188 
189 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
190 #define CBA2R_RW64_32BIT                (0 << 0)
191 #define CBA2R_RW64_64BIT                (1 << 0)
192 
193 /* Translation context bank */
194 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
195 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
196 
197 #define ARM_SMMU_CB_SCTLR               0x0
198 #define ARM_SMMU_CB_RESUME              0x8
199 #define ARM_SMMU_CB_TTBCR2              0x10
200 #define ARM_SMMU_CB_TTBR0               0x20
201 #define ARM_SMMU_CB_TTBR1               0x28
202 #define ARM_SMMU_CB_TTBCR               0x30
203 #define ARM_SMMU_CB_S1_MAIR0            0x38
204 #define ARM_SMMU_CB_S1_MAIR1            0x3c
205 #define ARM_SMMU_CB_PAR_LO              0x50
206 #define ARM_SMMU_CB_PAR_HI              0x54
207 #define ARM_SMMU_CB_FSR                 0x58
208 #define ARM_SMMU_CB_FAR_LO              0x60
209 #define ARM_SMMU_CB_FAR_HI              0x64
210 #define ARM_SMMU_CB_FSYNR0              0x68
211 #define ARM_SMMU_CB_S1_TLBIVA           0x600
212 #define ARM_SMMU_CB_S1_TLBIASID         0x610
213 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
214 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
215 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
216 #define ARM_SMMU_CB_ATS1PR              0x800
217 #define ARM_SMMU_CB_ATSR                0x8f0
218 
219 #define SCTLR_S1_ASIDPNE                (1 << 12)
220 #define SCTLR_CFCFG                     (1 << 7)
221 #define SCTLR_CFIE                      (1 << 6)
222 #define SCTLR_CFRE                      (1 << 5)
223 #define SCTLR_E                         (1 << 4)
224 #define SCTLR_AFE                       (1 << 2)
225 #define SCTLR_TRE                       (1 << 1)
226 #define SCTLR_M                         (1 << 0)
227 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
228 
229 #define CB_PAR_F                        (1 << 0)
230 
231 #define ATSR_ACTIVE                     (1 << 0)
232 
233 #define RESUME_RETRY                    (0 << 0)
234 #define RESUME_TERMINATE                (1 << 0)
235 
236 #define TTBCR2_SEP_SHIFT                15
237 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
238 
239 #define TTBRn_ASID_SHIFT                48
240 
241 #define FSR_MULTI                       (1 << 31)
242 #define FSR_SS                          (1 << 30)
243 #define FSR_UUT                         (1 << 8)
244 #define FSR_ASF                         (1 << 7)
245 #define FSR_TLBLKF                      (1 << 6)
246 #define FSR_TLBMCF                      (1 << 5)
247 #define FSR_EF                          (1 << 4)
248 #define FSR_PF                          (1 << 3)
249 #define FSR_AFF                         (1 << 2)
250 #define FSR_TF                          (1 << 1)
251 
252 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
253                                          FSR_TLBMCF | FSR_TLBLKF)
254 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
255                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
256 
257 #define FSYNR0_WNR                      (1 << 4)
258 
259 static int force_stage;
260 module_param_named(force_stage, force_stage, int, S_IRUGO);
261 MODULE_PARM_DESC(force_stage,
262         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
263 
264 enum arm_smmu_arch_version {
265         ARM_SMMU_V1 = 1,
266         ARM_SMMU_V2,
267 };
268 
269 struct arm_smmu_smr {
270         u8                              idx;
271         u16                             mask;
272         u16                             id;
273 };
274 
275 struct arm_smmu_master_cfg {
276         int                             num_streamids;
277         u16                             streamids[MAX_MASTER_STREAMIDS];
278         struct arm_smmu_smr             *smrs;
279 };
280 
281 struct arm_smmu_master {
282         struct device_node              *of_node;
283         struct rb_node                  node;
284         struct arm_smmu_master_cfg      cfg;
285 };
286 
287 struct arm_smmu_device {
288         struct device                   *dev;
289 
290         void __iomem                    *base;
291         unsigned long                   size;
292         unsigned long                   pgshift;
293 
294 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
295 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
296 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
297 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
298 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
299 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
300         u32                             features;
301 
302 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
303         u32                             options;
304         enum arm_smmu_arch_version      version;
305 
306         u32                             num_context_banks;
307         u32                             num_s2_context_banks;
308         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
309         atomic_t                        irptndx;
310 
311         u32                             num_mapping_groups;
312         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
313 
314         unsigned long                   va_size;
315         unsigned long                   ipa_size;
316         unsigned long                   pa_size;
317 
318         u32                             num_global_irqs;
319         u32                             num_context_irqs;
320         unsigned int                    *irqs;
321 
322         struct list_head                list;
323         struct rb_root                  masters;
324 };
325 
326 struct arm_smmu_cfg {
327         u8                              cbndx;
328         u8                              irptndx;
329         u32                             cbar;
330 };
331 #define INVALID_IRPTNDX                 0xff
332 
333 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
334 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
335 
336 enum arm_smmu_domain_stage {
337         ARM_SMMU_DOMAIN_S1 = 0,
338         ARM_SMMU_DOMAIN_S2,
339         ARM_SMMU_DOMAIN_NESTED,
340 };
341 
342 struct arm_smmu_domain {
343         struct arm_smmu_device          *smmu;
344         struct io_pgtable_ops           *pgtbl_ops;
345         spinlock_t                      pgtbl_lock;
346         struct arm_smmu_cfg             cfg;
347         enum arm_smmu_domain_stage      stage;
348         struct mutex                    init_mutex; /* Protects smmu pointer */
349         struct iommu_domain             domain;
350 };
351 
352 static struct iommu_ops arm_smmu_ops;
353 
354 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
355 static LIST_HEAD(arm_smmu_devices);
356 
357 struct arm_smmu_option_prop {
358         u32 opt;
359         const char *prop;
360 };
361 
362 static struct arm_smmu_option_prop arm_smmu_options[] = {
363         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
364         { 0, NULL},
365 };
366 
367 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
368 {
369         return container_of(dom, struct arm_smmu_domain, domain);
370 }
371 
372 static void parse_driver_options(struct arm_smmu_device *smmu)
373 {
374         int i = 0;
375 
376         do {
377                 if (of_property_read_bool(smmu->dev->of_node,
378                                                 arm_smmu_options[i].prop)) {
379                         smmu->options |= arm_smmu_options[i].opt;
380                         dev_notice(smmu->dev, "option %s\n",
381                                 arm_smmu_options[i].prop);
382                 }
383         } while (arm_smmu_options[++i].opt);
384 }
385 
386 static struct device_node *dev_get_dev_node(struct device *dev)
387 {
388         if (dev_is_pci(dev)) {
389                 struct pci_bus *bus = to_pci_dev(dev)->bus;
390 
391                 while (!pci_is_root_bus(bus))
392                         bus = bus->parent;
393                 return bus->bridge->parent->of_node;
394         }
395 
396         return dev->of_node;
397 }
398 
399 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
400                                                 struct device_node *dev_node)
401 {
402         struct rb_node *node = smmu->masters.rb_node;
403 
404         while (node) {
405                 struct arm_smmu_master *master;
406 
407                 master = container_of(node, struct arm_smmu_master, node);
408 
409                 if (dev_node < master->of_node)
410                         node = node->rb_left;
411                 else if (dev_node > master->of_node)
412                         node = node->rb_right;
413                 else
414                         return master;
415         }
416 
417         return NULL;
418 }
419 
420 static struct arm_smmu_master_cfg *
421 find_smmu_master_cfg(struct device *dev)
422 {
423         struct arm_smmu_master_cfg *cfg = NULL;
424         struct iommu_group *group = iommu_group_get(dev);
425 
426         if (group) {
427                 cfg = iommu_group_get_iommudata(group);
428                 iommu_group_put(group);
429         }
430 
431         return cfg;
432 }
433 
434 static int insert_smmu_master(struct arm_smmu_device *smmu,
435                               struct arm_smmu_master *master)
436 {
437         struct rb_node **new, *parent;
438 
439         new = &smmu->masters.rb_node;
440         parent = NULL;
441         while (*new) {
442                 struct arm_smmu_master *this
443                         = container_of(*new, struct arm_smmu_master, node);
444 
445                 parent = *new;
446                 if (master->of_node < this->of_node)
447                         new = &((*new)->rb_left);
448                 else if (master->of_node > this->of_node)
449                         new = &((*new)->rb_right);
450                 else
451                         return -EEXIST;
452         }
453 
454         rb_link_node(&master->node, parent, new);
455         rb_insert_color(&master->node, &smmu->masters);
456         return 0;
457 }
458 
459 static int register_smmu_master(struct arm_smmu_device *smmu,
460                                 struct device *dev,
461                                 struct of_phandle_args *masterspec)
462 {
463         int i;
464         struct arm_smmu_master *master;
465 
466         master = find_smmu_master(smmu, masterspec->np);
467         if (master) {
468                 dev_err(dev,
469                         "rejecting multiple registrations for master device %s\n",
470                         masterspec->np->name);
471                 return -EBUSY;
472         }
473 
474         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
475                 dev_err(dev,
476                         "reached maximum number (%d) of stream IDs for master device %s\n",
477                         MAX_MASTER_STREAMIDS, masterspec->np->name);
478                 return -ENOSPC;
479         }
480 
481         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
482         if (!master)
483                 return -ENOMEM;
484 
485         master->of_node                 = masterspec->np;
486         master->cfg.num_streamids       = masterspec->args_count;
487 
488         for (i = 0; i < master->cfg.num_streamids; ++i) {
489                 u16 streamid = masterspec->args[i];
490 
491                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
492                      (streamid >= smmu->num_mapping_groups)) {
493                         dev_err(dev,
494                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
495                                 masterspec->np->name, smmu->num_mapping_groups);
496                         return -ERANGE;
497                 }
498                 master->cfg.streamids[i] = streamid;
499         }
500         return insert_smmu_master(smmu, master);
501 }
502 
503 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
504 {
505         struct arm_smmu_device *smmu;
506         struct arm_smmu_master *master = NULL;
507         struct device_node *dev_node = dev_get_dev_node(dev);
508 
509         spin_lock(&arm_smmu_devices_lock);
510         list_for_each_entry(smmu, &arm_smmu_devices, list) {
511                 master = find_smmu_master(smmu, dev_node);
512                 if (master)
513                         break;
514         }
515         spin_unlock(&arm_smmu_devices_lock);
516 
517         return master ? smmu : NULL;
518 }
519 
520 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
521 {
522         int idx;
523 
524         do {
525                 idx = find_next_zero_bit(map, end, start);
526                 if (idx == end)
527                         return -ENOSPC;
528         } while (test_and_set_bit(idx, map));
529 
530         return idx;
531 }
532 
533 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
534 {
535         clear_bit(idx, map);
536 }
537 
538 /* Wait for any pending TLB invalidations to complete */
539 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
540 {
541         int count = 0;
542         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
543 
544         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
545         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
546                & sTLBGSTATUS_GSACTIVE) {
547                 cpu_relax();
548                 if (++count == TLB_LOOP_TIMEOUT) {
549                         dev_err_ratelimited(smmu->dev,
550                         "TLB sync timed out -- SMMU may be deadlocked\n");
551                         return;
552                 }
553                 udelay(1);
554         }
555 }
556 
557 static void arm_smmu_tlb_sync(void *cookie)
558 {
559         struct arm_smmu_domain *smmu_domain = cookie;
560         __arm_smmu_tlb_sync(smmu_domain->smmu);
561 }
562 
563 static void arm_smmu_tlb_inv_context(void *cookie)
564 {
565         struct arm_smmu_domain *smmu_domain = cookie;
566         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
567         struct arm_smmu_device *smmu = smmu_domain->smmu;
568         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
569         void __iomem *base;
570 
571         if (stage1) {
572                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
573                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
574                                base + ARM_SMMU_CB_S1_TLBIASID);
575         } else {
576                 base = ARM_SMMU_GR0(smmu);
577                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
578                                base + ARM_SMMU_GR0_TLBIVMID);
579         }
580 
581         __arm_smmu_tlb_sync(smmu);
582 }
583 
584 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
585                                           size_t granule, bool leaf, void *cookie)
586 {
587         struct arm_smmu_domain *smmu_domain = cookie;
588         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
589         struct arm_smmu_device *smmu = smmu_domain->smmu;
590         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
591         void __iomem *reg;
592 
593         if (stage1) {
594                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
595                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
596 
597                 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
598                         iova &= ~12UL;
599                         iova |= ARM_SMMU_CB_ASID(cfg);
600                         do {
601                                 writel_relaxed(iova, reg);
602                                 iova += granule;
603                         } while (size -= granule);
604 #ifdef CONFIG_64BIT
605                 } else {
606                         iova >>= 12;
607                         iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
608                         do {
609                                 writeq_relaxed(iova, reg);
610                                 iova += granule >> 12;
611                         } while (size -= granule);
612 #endif
613                 }
614 #ifdef CONFIG_64BIT
615         } else if (smmu->version == ARM_SMMU_V2) {
616                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
617                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
618                               ARM_SMMU_CB_S2_TLBIIPAS2;
619                 iova >>= 12;
620                 do {
621                         writeq_relaxed(iova, reg);
622                         iova += granule >> 12;
623                 } while (size -= granule);
624 #endif
625         } else {
626                 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
627                 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
628         }
629 }
630 
631 static struct iommu_gather_ops arm_smmu_gather_ops = {
632         .tlb_flush_all  = arm_smmu_tlb_inv_context,
633         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
634         .tlb_sync       = arm_smmu_tlb_sync,
635 };
636 
637 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
638 {
639         int flags, ret;
640         u32 fsr, far, fsynr, resume;
641         unsigned long iova;
642         struct iommu_domain *domain = dev;
643         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
644         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
645         struct arm_smmu_device *smmu = smmu_domain->smmu;
646         void __iomem *cb_base;
647 
648         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
649         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
650 
651         if (!(fsr & FSR_FAULT))
652                 return IRQ_NONE;
653 
654         if (fsr & FSR_IGN)
655                 dev_err_ratelimited(smmu->dev,
656                                     "Unexpected context fault (fsr 0x%x)\n",
657                                     fsr);
658 
659         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
660         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
661 
662         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
663         iova = far;
664 #ifdef CONFIG_64BIT
665         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
666         iova |= ((unsigned long)far << 32);
667 #endif
668 
669         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
670                 ret = IRQ_HANDLED;
671                 resume = RESUME_RETRY;
672         } else {
673                 dev_err_ratelimited(smmu->dev,
674                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
675                     iova, fsynr, cfg->cbndx);
676                 ret = IRQ_NONE;
677                 resume = RESUME_TERMINATE;
678         }
679 
680         /* Clear the faulting FSR */
681         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
682 
683         /* Retry or terminate any stalled transactions */
684         if (fsr & FSR_SS)
685                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
686 
687         return ret;
688 }
689 
690 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
691 {
692         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
693         struct arm_smmu_device *smmu = dev;
694         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
695 
696         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
697         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
698         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
699         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
700 
701         if (!gfsr)
702                 return IRQ_NONE;
703 
704         dev_err_ratelimited(smmu->dev,
705                 "Unexpected global fault, this could be serious\n");
706         dev_err_ratelimited(smmu->dev,
707                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
708                 gfsr, gfsynr0, gfsynr1, gfsynr2);
709 
710         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
711         return IRQ_HANDLED;
712 }
713 
714 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
715                                        struct io_pgtable_cfg *pgtbl_cfg)
716 {
717         u32 reg;
718         u64 reg64;
719         bool stage1;
720         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
721         struct arm_smmu_device *smmu = smmu_domain->smmu;
722         void __iomem *cb_base, *gr1_base;
723 
724         gr1_base = ARM_SMMU_GR1(smmu);
725         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
726         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
727 
728         if (smmu->version > ARM_SMMU_V1) {
729                 /*
730                  * CBA2R.
731                  * *Must* be initialised before CBAR thanks to VMID16
732                  * architectural oversight affected some implementations.
733                  */
734 #ifdef CONFIG_64BIT
735                 reg = CBA2R_RW64_64BIT;
736 #else
737                 reg = CBA2R_RW64_32BIT;
738 #endif
739                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
740         }
741 
742         /* CBAR */
743         reg = cfg->cbar;
744         if (smmu->version == ARM_SMMU_V1)
745                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
746 
747         /*
748          * Use the weakest shareability/memory types, so they are
749          * overridden by the ttbcr/pte.
750          */
751         if (stage1) {
752                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
753                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
754         } else {
755                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
756         }
757         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
758 
759         /* TTBRs */
760         if (stage1) {
761                 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
762 
763                 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
764                 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
765 
766                 reg64 = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
767                 reg64 |= ((u64)ARM_SMMU_CB_ASID(cfg)) << TTBRn_ASID_SHIFT;
768                 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR1);
769         } else {
770                 reg64 = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
771                 smmu_writeq(reg64, cb_base + ARM_SMMU_CB_TTBR0);
772         }
773 
774         /* TTBCR */
775         if (stage1) {
776                 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
777                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
778                 if (smmu->version > ARM_SMMU_V1) {
779                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
780                         reg |= TTBCR2_SEP_UPSTREAM;
781                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
782                 }
783         } else {
784                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
785                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
786         }
787 
788         /* MAIRs (stage-1 only) */
789         if (stage1) {
790                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
791                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
792                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
793                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
794         }
795 
796         /* SCTLR */
797         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
798         if (stage1)
799                 reg |= SCTLR_S1_ASIDPNE;
800 #ifdef __BIG_ENDIAN
801         reg |= SCTLR_E;
802 #endif
803         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
804 }
805 
806 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
807                                         struct arm_smmu_device *smmu)
808 {
809         int irq, start, ret = 0;
810         unsigned long ias, oas;
811         struct io_pgtable_ops *pgtbl_ops;
812         struct io_pgtable_cfg pgtbl_cfg;
813         enum io_pgtable_fmt fmt;
814         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
815         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
816 
817         mutex_lock(&smmu_domain->init_mutex);
818         if (smmu_domain->smmu)
819                 goto out_unlock;
820 
821         /*
822          * Mapping the requested stage onto what we support is surprisingly
823          * complicated, mainly because the spec allows S1+S2 SMMUs without
824          * support for nested translation. That means we end up with the
825          * following table:
826          *
827          * Requested        Supported        Actual
828          *     S1               N              S1
829          *     S1             S1+S2            S1
830          *     S1               S2             S2
831          *     S1               S1             S1
832          *     N                N              N
833          *     N              S1+S2            S2
834          *     N                S2             S2
835          *     N                S1             S1
836          *
837          * Note that you can't actually request stage-2 mappings.
838          */
839         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
840                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
841         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
842                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
843 
844         switch (smmu_domain->stage) {
845         case ARM_SMMU_DOMAIN_S1:
846                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
847                 start = smmu->num_s2_context_banks;
848                 ias = smmu->va_size;
849                 oas = smmu->ipa_size;
850                 if (IS_ENABLED(CONFIG_64BIT))
851                         fmt = ARM_64_LPAE_S1;
852                 else
853                         fmt = ARM_32_LPAE_S1;
854                 break;
855         case ARM_SMMU_DOMAIN_NESTED:
856                 /*
857                  * We will likely want to change this if/when KVM gets
858                  * involved.
859                  */
860         case ARM_SMMU_DOMAIN_S2:
861                 cfg->cbar = CBAR_TYPE_S2_TRANS;
862                 start = 0;
863                 ias = smmu->ipa_size;
864                 oas = smmu->pa_size;
865                 if (IS_ENABLED(CONFIG_64BIT))
866                         fmt = ARM_64_LPAE_S2;
867                 else
868                         fmt = ARM_32_LPAE_S2;
869                 break;
870         default:
871                 ret = -EINVAL;
872                 goto out_unlock;
873         }
874 
875         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
876                                       smmu->num_context_banks);
877         if (IS_ERR_VALUE(ret))
878                 goto out_unlock;
879 
880         cfg->cbndx = ret;
881         if (smmu->version == ARM_SMMU_V1) {
882                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
883                 cfg->irptndx %= smmu->num_context_irqs;
884         } else {
885                 cfg->irptndx = cfg->cbndx;
886         }
887 
888         pgtbl_cfg = (struct io_pgtable_cfg) {
889                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
890                 .ias            = ias,
891                 .oas            = oas,
892                 .tlb            = &arm_smmu_gather_ops,
893                 .iommu_dev      = smmu->dev,
894         };
895 
896         smmu_domain->smmu = smmu;
897         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
898         if (!pgtbl_ops) {
899                 ret = -ENOMEM;
900                 goto out_clear_smmu;
901         }
902 
903         /* Update our support page sizes to reflect the page table format */
904         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
905 
906         /* Initialise the context bank with our page table cfg */
907         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
908 
909         /*
910          * Request context fault interrupt. Do this last to avoid the
911          * handler seeing a half-initialised domain state.
912          */
913         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
914         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
915                           "arm-smmu-context-fault", domain);
916         if (IS_ERR_VALUE(ret)) {
917                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
918                         cfg->irptndx, irq);
919                 cfg->irptndx = INVALID_IRPTNDX;
920         }
921 
922         mutex_unlock(&smmu_domain->init_mutex);
923 
924         /* Publish page table ops for map/unmap */
925         smmu_domain->pgtbl_ops = pgtbl_ops;
926         return 0;
927 
928 out_clear_smmu:
929         smmu_domain->smmu = NULL;
930 out_unlock:
931         mutex_unlock(&smmu_domain->init_mutex);
932         return ret;
933 }
934 
935 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
936 {
937         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
938         struct arm_smmu_device *smmu = smmu_domain->smmu;
939         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
940         void __iomem *cb_base;
941         int irq;
942 
943         if (!smmu)
944                 return;
945 
946         /*
947          * Disable the context bank and free the page tables before freeing
948          * it.
949          */
950         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
951         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
952 
953         if (cfg->irptndx != INVALID_IRPTNDX) {
954                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
955                 free_irq(irq, domain);
956         }
957 
958         free_io_pgtable_ops(smmu_domain->pgtbl_ops);
959         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
960 }
961 
962 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
963 {
964         struct arm_smmu_domain *smmu_domain;
965 
966         if (type != IOMMU_DOMAIN_UNMANAGED)
967                 return NULL;
968         /*
969          * Allocate the domain and initialise some of its data structures.
970          * We can't really do anything meaningful until we've added a
971          * master.
972          */
973         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
974         if (!smmu_domain)
975                 return NULL;
976 
977         mutex_init(&smmu_domain->init_mutex);
978         spin_lock_init(&smmu_domain->pgtbl_lock);
979 
980         return &smmu_domain->domain;
981 }
982 
983 static void arm_smmu_domain_free(struct iommu_domain *domain)
984 {
985         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
986 
987         /*
988          * Free the domain resources. We assume that all devices have
989          * already been detached.
990          */
991         arm_smmu_destroy_domain_context(domain);
992         kfree(smmu_domain);
993 }
994 
995 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
996                                           struct arm_smmu_master_cfg *cfg)
997 {
998         int i;
999         struct arm_smmu_smr *smrs;
1000         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1001 
1002         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1003                 return 0;
1004 
1005         if (cfg->smrs)
1006                 return -EEXIST;
1007 
1008         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1009         if (!smrs) {
1010                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1011                         cfg->num_streamids);
1012                 return -ENOMEM;
1013         }
1014 
1015         /* Allocate the SMRs on the SMMU */
1016         for (i = 0; i < cfg->num_streamids; ++i) {
1017                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1018                                                   smmu->num_mapping_groups);
1019                 if (IS_ERR_VALUE(idx)) {
1020                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1021                         goto err_free_smrs;
1022                 }
1023 
1024                 smrs[i] = (struct arm_smmu_smr) {
1025                         .idx    = idx,
1026                         .mask   = 0, /* We don't currently share SMRs */
1027                         .id     = cfg->streamids[i],
1028                 };
1029         }
1030 
1031         /* It worked! Now, poke the actual hardware */
1032         for (i = 0; i < cfg->num_streamids; ++i) {
1033                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1034                           smrs[i].mask << SMR_MASK_SHIFT;
1035                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1036         }
1037 
1038         cfg->smrs = smrs;
1039         return 0;
1040 
1041 err_free_smrs:
1042         while (--i >= 0)
1043                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1044         kfree(smrs);
1045         return -ENOSPC;
1046 }
1047 
1048 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1049                                       struct arm_smmu_master_cfg *cfg)
1050 {
1051         int i;
1052         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1053         struct arm_smmu_smr *smrs = cfg->smrs;
1054 
1055         if (!smrs)
1056                 return;
1057 
1058         /* Invalidate the SMRs before freeing back to the allocator */
1059         for (i = 0; i < cfg->num_streamids; ++i) {
1060                 u8 idx = smrs[i].idx;
1061 
1062                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1063                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1064         }
1065 
1066         cfg->smrs = NULL;
1067         kfree(smrs);
1068 }
1069 
1070 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1071                                       struct arm_smmu_master_cfg *cfg)
1072 {
1073         int i, ret;
1074         struct arm_smmu_device *smmu = smmu_domain->smmu;
1075         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1076 
1077         /* Devices in an IOMMU group may already be configured */
1078         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1079         if (ret)
1080                 return ret == -EEXIST ? 0 : ret;
1081 
1082         for (i = 0; i < cfg->num_streamids; ++i) {
1083                 u32 idx, s2cr;
1084 
1085                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1086                 s2cr = S2CR_TYPE_TRANS |
1087                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1088                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1089         }
1090 
1091         return 0;
1092 }
1093 
1094 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1095                                           struct arm_smmu_master_cfg *cfg)
1096 {
1097         int i;
1098         struct arm_smmu_device *smmu = smmu_domain->smmu;
1099         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1100 
1101         /* An IOMMU group is torn down by the first device to be removed */
1102         if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1103                 return;
1104 
1105         /*
1106          * We *must* clear the S2CR first, because freeing the SMR means
1107          * that it can be re-allocated immediately.
1108          */
1109         for (i = 0; i < cfg->num_streamids; ++i) {
1110                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1111 
1112                 writel_relaxed(S2CR_TYPE_BYPASS,
1113                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1114         }
1115 
1116         arm_smmu_master_free_smrs(smmu, cfg);
1117 }
1118 
1119 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1120 {
1121         int ret;
1122         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1123         struct arm_smmu_device *smmu;
1124         struct arm_smmu_master_cfg *cfg;
1125 
1126         smmu = find_smmu_for_device(dev);
1127         if (!smmu) {
1128                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1129                 return -ENXIO;
1130         }
1131 
1132         if (dev->archdata.iommu) {
1133                 dev_err(dev, "already attached to IOMMU domain\n");
1134                 return -EEXIST;
1135         }
1136 
1137         /* Ensure that the domain is finalised */
1138         ret = arm_smmu_init_domain_context(domain, smmu);
1139         if (IS_ERR_VALUE(ret))
1140                 return ret;
1141 
1142         /*
1143          * Sanity check the domain. We don't support domains across
1144          * different SMMUs.
1145          */
1146         if (smmu_domain->smmu != smmu) {
1147                 dev_err(dev,
1148                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1149                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1150                 return -EINVAL;
1151         }
1152 
1153         /* Looks ok, so add the device to the domain */
1154         cfg = find_smmu_master_cfg(dev);
1155         if (!cfg)
1156                 return -ENODEV;
1157 
1158         ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1159         if (!ret)
1160                 dev->archdata.iommu = domain;
1161         return ret;
1162 }
1163 
1164 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1165 {
1166         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1167         struct arm_smmu_master_cfg *cfg;
1168 
1169         cfg = find_smmu_master_cfg(dev);
1170         if (!cfg)
1171                 return;
1172 
1173         dev->archdata.iommu = NULL;
1174         arm_smmu_domain_remove_master(smmu_domain, cfg);
1175 }
1176 
1177 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1178                         phys_addr_t paddr, size_t size, int prot)
1179 {
1180         int ret;
1181         unsigned long flags;
1182         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1183         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1184 
1185         if (!ops)
1186                 return -ENODEV;
1187 
1188         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1189         ret = ops->map(ops, iova, paddr, size, prot);
1190         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1191         return ret;
1192 }
1193 
1194 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1195                              size_t size)
1196 {
1197         size_t ret;
1198         unsigned long flags;
1199         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1200         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1201 
1202         if (!ops)
1203                 return 0;
1204 
1205         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1206         ret = ops->unmap(ops, iova, size);
1207         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1208         return ret;
1209 }
1210 
1211 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1212                                               dma_addr_t iova)
1213 {
1214         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1215         struct arm_smmu_device *smmu = smmu_domain->smmu;
1216         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1217         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1218         struct device *dev = smmu->dev;
1219         void __iomem *cb_base;
1220         u32 tmp;
1221         u64 phys;
1222         unsigned long va;
1223 
1224         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1225 
1226         /* ATS1 registers can only be written atomically */
1227         va = iova & ~0xfffUL;
1228         if (smmu->version == ARM_SMMU_V2)
1229                 smmu_writeq(va, cb_base + ARM_SMMU_CB_ATS1PR);
1230         else
1231                 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1232 
1233         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1234                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1235                 dev_err(dev,
1236                         "iova to phys timed out on %pad. Falling back to software table walk.\n",
1237                         &iova);
1238                 return ops->iova_to_phys(ops, iova);
1239         }
1240 
1241         phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1242         phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1243 
1244         if (phys & CB_PAR_F) {
1245                 dev_err(dev, "translation fault!\n");
1246                 dev_err(dev, "PAR = 0x%llx\n", phys);
1247                 return 0;
1248         }
1249 
1250         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1251 }
1252 
1253 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1254                                         dma_addr_t iova)
1255 {
1256         phys_addr_t ret;
1257         unsigned long flags;
1258         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1259         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1260 
1261         if (!ops)
1262                 return 0;
1263 
1264         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1265         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1266                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1267                 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1268         } else {
1269                 ret = ops->iova_to_phys(ops, iova);
1270         }
1271 
1272         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1273 
1274         return ret;
1275 }
1276 
1277 static bool arm_smmu_capable(enum iommu_cap cap)
1278 {
1279         switch (cap) {
1280         case IOMMU_CAP_CACHE_COHERENCY:
1281                 /*
1282                  * Return true here as the SMMU can always send out coherent
1283                  * requests.
1284                  */
1285                 return true;
1286         case IOMMU_CAP_INTR_REMAP:
1287                 return true; /* MSIs are just memory writes */
1288         case IOMMU_CAP_NOEXEC:
1289                 return true;
1290         default:
1291                 return false;
1292         }
1293 }
1294 
1295 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1296 {
1297         *((u16 *)data) = alias;
1298         return 0; /* Continue walking */
1299 }
1300 
1301 static void __arm_smmu_release_pci_iommudata(void *data)
1302 {
1303         kfree(data);
1304 }
1305 
1306 static int arm_smmu_init_pci_device(struct pci_dev *pdev,
1307                                     struct iommu_group *group)
1308 {
1309         struct arm_smmu_master_cfg *cfg;
1310         u16 sid;
1311         int i;
1312 
1313         cfg = iommu_group_get_iommudata(group);
1314         if (!cfg) {
1315                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1316                 if (!cfg)
1317                         return -ENOMEM;
1318 
1319                 iommu_group_set_iommudata(group, cfg,
1320                                           __arm_smmu_release_pci_iommudata);
1321         }
1322 
1323         if (cfg->num_streamids >= MAX_MASTER_STREAMIDS)
1324                 return -ENOSPC;
1325 
1326         /*
1327          * Assume Stream ID == Requester ID for now.
1328          * We need a way to describe the ID mappings in FDT.
1329          */
1330         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1331         for (i = 0; i < cfg->num_streamids; ++i)
1332                 if (cfg->streamids[i] == sid)
1333                         break;
1334 
1335         /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1336         if (i == cfg->num_streamids)
1337                 cfg->streamids[cfg->num_streamids++] = sid;
1338 
1339         return 0;
1340 }
1341 
1342 static int arm_smmu_init_platform_device(struct device *dev,
1343                                          struct iommu_group *group)
1344 {
1345         struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1346         struct arm_smmu_master *master;
1347 
1348         if (!smmu)
1349                 return -ENODEV;
1350 
1351         master = find_smmu_master(smmu, dev->of_node);
1352         if (!master)
1353                 return -ENODEV;
1354 
1355         iommu_group_set_iommudata(group, &master->cfg, NULL);
1356 
1357         return 0;
1358 }
1359 
1360 static int arm_smmu_add_device(struct device *dev)
1361 {
1362         struct iommu_group *group;
1363 
1364         group = iommu_group_get_for_dev(dev);
1365         if (IS_ERR(group))
1366                 return PTR_ERR(group);
1367 
1368         iommu_group_put(group);
1369         return 0;
1370 }
1371 
1372 static void arm_smmu_remove_device(struct device *dev)
1373 {
1374         iommu_group_remove_device(dev);
1375 }
1376 
1377 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1378 {
1379         struct iommu_group *group;
1380         int ret;
1381 
1382         if (dev_is_pci(dev))
1383                 group = pci_device_group(dev);
1384         else
1385                 group = generic_device_group(dev);
1386 
1387         if (IS_ERR(group))
1388                 return group;
1389 
1390         if (dev_is_pci(dev))
1391                 ret = arm_smmu_init_pci_device(to_pci_dev(dev), group);
1392         else
1393                 ret = arm_smmu_init_platform_device(dev, group);
1394 
1395         if (ret) {
1396                 iommu_group_put(group);
1397                 group = ERR_PTR(ret);
1398         }
1399 
1400         return group;
1401 }
1402 
1403 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1404                                     enum iommu_attr attr, void *data)
1405 {
1406         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1407 
1408         switch (attr) {
1409         case DOMAIN_ATTR_NESTING:
1410                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1411                 return 0;
1412         default:
1413                 return -ENODEV;
1414         }
1415 }
1416 
1417 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1418                                     enum iommu_attr attr, void *data)
1419 {
1420         int ret = 0;
1421         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1422 
1423         mutex_lock(&smmu_domain->init_mutex);
1424 
1425         switch (attr) {
1426         case DOMAIN_ATTR_NESTING:
1427                 if (smmu_domain->smmu) {
1428                         ret = -EPERM;
1429                         goto out_unlock;
1430                 }
1431 
1432                 if (*(int *)data)
1433                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1434                 else
1435                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1436 
1437                 break;
1438         default:
1439                 ret = -ENODEV;
1440         }
1441 
1442 out_unlock:
1443         mutex_unlock(&smmu_domain->init_mutex);
1444         return ret;
1445 }
1446 
1447 static struct iommu_ops arm_smmu_ops = {
1448         .capable                = arm_smmu_capable,
1449         .domain_alloc           = arm_smmu_domain_alloc,
1450         .domain_free            = arm_smmu_domain_free,
1451         .attach_dev             = arm_smmu_attach_dev,
1452         .detach_dev             = arm_smmu_detach_dev,
1453         .map                    = arm_smmu_map,
1454         .unmap                  = arm_smmu_unmap,
1455         .map_sg                 = default_iommu_map_sg,
1456         .iova_to_phys           = arm_smmu_iova_to_phys,
1457         .add_device             = arm_smmu_add_device,
1458         .remove_device          = arm_smmu_remove_device,
1459         .device_group           = arm_smmu_device_group,
1460         .domain_get_attr        = arm_smmu_domain_get_attr,
1461         .domain_set_attr        = arm_smmu_domain_set_attr,
1462         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1463 };
1464 
1465 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1466 {
1467         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1468         void __iomem *cb_base;
1469         int i = 0;
1470         u32 reg;
1471 
1472         /* clear global FSR */
1473         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1474         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1475 
1476         /* Mark all SMRn as invalid and all S2CRn as bypass */
1477         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1478                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1479                 writel_relaxed(S2CR_TYPE_BYPASS,
1480                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1481         }
1482 
1483         /* Make sure all context banks are disabled and clear CB_FSR  */
1484         for (i = 0; i < smmu->num_context_banks; ++i) {
1485                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1486                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1487                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1488         }
1489 
1490         /* Invalidate the TLB, just in case */
1491         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1492         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1493 
1494         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1495 
1496         /* Enable fault reporting */
1497         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1498 
1499         /* Disable TLB broadcasting. */
1500         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1501 
1502         /* Enable client access, but bypass when no mapping is found */
1503         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1504 
1505         /* Disable forced broadcasting */
1506         reg &= ~sCR0_FB;
1507 
1508         /* Don't upgrade barriers */
1509         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1510 
1511         /* Push the button */
1512         __arm_smmu_tlb_sync(smmu);
1513         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1514 }
1515 
1516 static int arm_smmu_id_size_to_bits(int size)
1517 {
1518         switch (size) {
1519         case 0:
1520                 return 32;
1521         case 1:
1522                 return 36;
1523         case 2:
1524                 return 40;
1525         case 3:
1526                 return 42;
1527         case 4:
1528                 return 44;
1529         case 5:
1530         default:
1531                 return 48;
1532         }
1533 }
1534 
1535 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1536 {
1537         unsigned long size;
1538         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1539         u32 id;
1540         bool cttw_dt, cttw_reg;
1541 
1542         dev_notice(smmu->dev, "probing hardware configuration...\n");
1543         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1544 
1545         /* ID0 */
1546         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1547 
1548         /* Restrict available stages based on module parameter */
1549         if (force_stage == 1)
1550                 id &= ~(ID0_S2TS | ID0_NTS);
1551         else if (force_stage == 2)
1552                 id &= ~(ID0_S1TS | ID0_NTS);
1553 
1554         if (id & ID0_S1TS) {
1555                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1556                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1557         }
1558 
1559         if (id & ID0_S2TS) {
1560                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1561                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1562         }
1563 
1564         if (id & ID0_NTS) {
1565                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1566                 dev_notice(smmu->dev, "\tnested translation\n");
1567         }
1568 
1569         if (!(smmu->features &
1570                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1571                 dev_err(smmu->dev, "\tno translation support!\n");
1572                 return -ENODEV;
1573         }
1574 
1575         if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1576                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1577                 dev_notice(smmu->dev, "\taddress translation ops\n");
1578         }
1579 
1580         /*
1581          * In order for DMA API calls to work properly, we must defer to what
1582          * the DT says about coherency, regardless of what the hardware claims.
1583          * Fortunately, this also opens up a workaround for systems where the
1584          * ID register value has ended up configured incorrectly.
1585          */
1586         cttw_dt = of_dma_is_coherent(smmu->dev->of_node);
1587         cttw_reg = !!(id & ID0_CTTW);
1588         if (cttw_dt)
1589                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1590         if (cttw_dt || cttw_reg)
1591                 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1592                            cttw_dt ? "" : "non-");
1593         if (cttw_dt != cttw_reg)
1594                 dev_notice(smmu->dev,
1595                            "\t(IDR0.CTTW overridden by dma-coherent property)\n");
1596 
1597         if (id & ID0_SMS) {
1598                 u32 smr, sid, mask;
1599 
1600                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1601                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1602                                            ID0_NUMSMRG_MASK;
1603                 if (smmu->num_mapping_groups == 0) {
1604                         dev_err(smmu->dev,
1605                                 "stream-matching supported, but no SMRs present!\n");
1606                         return -ENODEV;
1607                 }
1608 
1609                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1610                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1611                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1612                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1613 
1614                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1615                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1616                 if ((mask & sid) != sid) {
1617                         dev_err(smmu->dev,
1618                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1619                                 mask, sid);
1620                         return -ENODEV;
1621                 }
1622 
1623                 dev_notice(smmu->dev,
1624                            "\tstream matching with %u register groups, mask 0x%x",
1625                            smmu->num_mapping_groups, mask);
1626         } else {
1627                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1628                                            ID0_NUMSIDB_MASK;
1629         }
1630 
1631         /* ID1 */
1632         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1633         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1634 
1635         /* Check for size mismatch of SMMU address space from mapped region */
1636         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1637         size *= 2 << smmu->pgshift;
1638         if (smmu->size != size)
1639                 dev_warn(smmu->dev,
1640                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1641                         size, smmu->size);
1642 
1643         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1644         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1645         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1646                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1647                 return -ENODEV;
1648         }
1649         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1650                    smmu->num_context_banks, smmu->num_s2_context_banks);
1651 
1652         /* ID2 */
1653         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1654         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1655         smmu->ipa_size = size;
1656 
1657         /* The output mask is also applied for bypass */
1658         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1659         smmu->pa_size = size;
1660 
1661         /*
1662          * What the page table walker can address actually depends on which
1663          * descriptor format is in use, but since a) we don't know that yet,
1664          * and b) it can vary per context bank, this will have to do...
1665          */
1666         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1667                 dev_warn(smmu->dev,
1668                          "failed to set DMA mask for table walker\n");
1669 
1670         if (smmu->version == ARM_SMMU_V1) {
1671                 smmu->va_size = smmu->ipa_size;
1672                 size = SZ_4K | SZ_2M | SZ_1G;
1673         } else {
1674                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1675                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1676 #ifndef CONFIG_64BIT
1677                 smmu->va_size = min(32UL, smmu->va_size);
1678 #endif
1679                 size = 0;
1680                 if (id & ID2_PTFS_4K)
1681                         size |= SZ_4K | SZ_2M | SZ_1G;
1682                 if (id & ID2_PTFS_16K)
1683                         size |= SZ_16K | SZ_32M;
1684                 if (id & ID2_PTFS_64K)
1685                         size |= SZ_64K | SZ_512M;
1686         }
1687 
1688         arm_smmu_ops.pgsize_bitmap &= size;
1689         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1690 
1691         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1692                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1693                            smmu->va_size, smmu->ipa_size);
1694 
1695         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1696                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1697                            smmu->ipa_size, smmu->pa_size);
1698 
1699         return 0;
1700 }
1701 
1702 static const struct of_device_id arm_smmu_of_match[] = {
1703         { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1704         { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1705         { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1706         { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1707         { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1708         { },
1709 };
1710 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1711 
1712 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1713 {
1714         const struct of_device_id *of_id;
1715         struct resource *res;
1716         struct arm_smmu_device *smmu;
1717         struct device *dev = &pdev->dev;
1718         struct rb_node *node;
1719         struct of_phandle_args masterspec;
1720         int num_irqs, i, err;
1721 
1722         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1723         if (!smmu) {
1724                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1725                 return -ENOMEM;
1726         }
1727         smmu->dev = dev;
1728 
1729         of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1730         smmu->version = (enum arm_smmu_arch_version)of_id->data;
1731 
1732         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1733         smmu->base = devm_ioremap_resource(dev, res);
1734         if (IS_ERR(smmu->base))
1735                 return PTR_ERR(smmu->base);
1736         smmu->size = resource_size(res);
1737 
1738         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1739                                  &smmu->num_global_irqs)) {
1740                 dev_err(dev, "missing #global-interrupts property\n");
1741                 return -ENODEV;
1742         }
1743 
1744         num_irqs = 0;
1745         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1746                 num_irqs++;
1747                 if (num_irqs > smmu->num_global_irqs)
1748                         smmu->num_context_irqs++;
1749         }
1750 
1751         if (!smmu->num_context_irqs) {
1752                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1753                         num_irqs, smmu->num_global_irqs + 1);
1754                 return -ENODEV;
1755         }
1756 
1757         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1758                                   GFP_KERNEL);
1759         if (!smmu->irqs) {
1760                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1761                 return -ENOMEM;
1762         }
1763 
1764         for (i = 0; i < num_irqs; ++i) {
1765                 int irq = platform_get_irq(pdev, i);
1766 
1767                 if (irq < 0) {
1768                         dev_err(dev, "failed to get irq index %d\n", i);
1769                         return -ENODEV;
1770                 }
1771                 smmu->irqs[i] = irq;
1772         }
1773 
1774         err = arm_smmu_device_cfg_probe(smmu);
1775         if (err)
1776                 return err;
1777 
1778         i = 0;
1779         smmu->masters = RB_ROOT;
1780         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1781                                            "#stream-id-cells", i,
1782                                            &masterspec)) {
1783                 err = register_smmu_master(smmu, dev, &masterspec);
1784                 if (err) {
1785                         dev_err(dev, "failed to add master %s\n",
1786                                 masterspec.np->name);
1787                         goto out_put_masters;
1788                 }
1789 
1790                 i++;
1791         }
1792         dev_notice(dev, "registered %d master devices\n", i);
1793 
1794         parse_driver_options(smmu);
1795 
1796         if (smmu->version > ARM_SMMU_V1 &&
1797             smmu->num_context_banks != smmu->num_context_irqs) {
1798                 dev_err(dev,
1799                         "found only %d context interrupt(s) but %d required\n",
1800                         smmu->num_context_irqs, smmu->num_context_banks);
1801                 err = -ENODEV;
1802                 goto out_put_masters;
1803         }
1804 
1805         for (i = 0; i < smmu->num_global_irqs; ++i) {
1806                 err = request_irq(smmu->irqs[i],
1807                                   arm_smmu_global_fault,
1808                                   IRQF_SHARED,
1809                                   "arm-smmu global fault",
1810                                   smmu);
1811                 if (err) {
1812                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1813                                 i, smmu->irqs[i]);
1814                         goto out_free_irqs;
1815                 }
1816         }
1817 
1818         INIT_LIST_HEAD(&smmu->list);
1819         spin_lock(&arm_smmu_devices_lock);
1820         list_add(&smmu->list, &arm_smmu_devices);
1821         spin_unlock(&arm_smmu_devices_lock);
1822 
1823         arm_smmu_device_reset(smmu);
1824         return 0;
1825 
1826 out_free_irqs:
1827         while (i--)
1828                 free_irq(smmu->irqs[i], smmu);
1829 
1830 out_put_masters:
1831         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1832                 struct arm_smmu_master *master
1833                         = container_of(node, struct arm_smmu_master, node);
1834                 of_node_put(master->of_node);
1835         }
1836 
1837         return err;
1838 }
1839 
1840 static int arm_smmu_device_remove(struct platform_device *pdev)
1841 {
1842         int i;
1843         struct device *dev = &pdev->dev;
1844         struct arm_smmu_device *curr, *smmu = NULL;
1845         struct rb_node *node;
1846 
1847         spin_lock(&arm_smmu_devices_lock);
1848         list_for_each_entry(curr, &arm_smmu_devices, list) {
1849                 if (curr->dev == dev) {
1850                         smmu = curr;
1851                         list_del(&smmu->list);
1852                         break;
1853                 }
1854         }
1855         spin_unlock(&arm_smmu_devices_lock);
1856 
1857         if (!smmu)
1858                 return -ENODEV;
1859 
1860         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1861                 struct arm_smmu_master *master
1862                         = container_of(node, struct arm_smmu_master, node);
1863                 of_node_put(master->of_node);
1864         }
1865 
1866         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1867                 dev_err(dev, "removing device with active domains!\n");
1868 
1869         for (i = 0; i < smmu->num_global_irqs; ++i)
1870                 free_irq(smmu->irqs[i], smmu);
1871 
1872         /* Turn the thing off */
1873         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1874         return 0;
1875 }
1876 
1877 static struct platform_driver arm_smmu_driver = {
1878         .driver = {
1879                 .name           = "arm-smmu",
1880                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1881         },
1882         .probe  = arm_smmu_device_dt_probe,
1883         .remove = arm_smmu_device_remove,
1884 };
1885 
1886 static int __init arm_smmu_init(void)
1887 {
1888         struct device_node *np;
1889         int ret;
1890 
1891         /*
1892          * Play nice with systems that don't have an ARM SMMU by checking that
1893          * an ARM SMMU exists in the system before proceeding with the driver
1894          * and IOMMU bus operation registration.
1895          */
1896         np = of_find_matching_node(NULL, arm_smmu_of_match);
1897         if (!np)
1898                 return 0;
1899 
1900         of_node_put(np);
1901 
1902         ret = platform_driver_register(&arm_smmu_driver);
1903         if (ret)
1904                 return ret;
1905 
1906         /* Oh, for a proper bus abstraction */
1907         if (!iommu_present(&platform_bus_type))
1908                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1909 
1910 #ifdef CONFIG_ARM_AMBA
1911         if (!iommu_present(&amba_bustype))
1912                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1913 #endif
1914 
1915 #ifdef CONFIG_PCI
1916         if (!iommu_present(&pci_bus_type))
1917                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1918 #endif
1919 
1920         return 0;
1921 }
1922 
1923 static void __exit arm_smmu_exit(void)
1924 {
1925         return platform_driver_unregister(&arm_smmu_driver);
1926 }
1927 
1928 subsys_initcall(arm_smmu_init);
1929 module_exit(arm_smmu_exit);
1930 
1931 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1932 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1933 MODULE_LICENSE("GPL v2");
1934 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us