Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/input/misc/ims-pcu.c

  1 /*
  2  * Driver for IMS Passenger Control Unit Devices
  3  *
  4  * Copyright (C) 2013 The IMS Company
  5  *
  6  * This program is free software; you can redistribute it and/or modify
  7  * it under the terms of the GNU General Public License version 2
  8  * as published by the Free Software Foundation.
  9  */
 10 
 11 #include <linux/completion.h>
 12 #include <linux/device.h>
 13 #include <linux/firmware.h>
 14 #include <linux/ihex.h>
 15 #include <linux/input.h>
 16 #include <linux/kernel.h>
 17 #include <linux/leds.h>
 18 #include <linux/module.h>
 19 #include <linux/slab.h>
 20 #include <linux/types.h>
 21 #include <linux/usb/input.h>
 22 #include <linux/usb/cdc.h>
 23 #include <asm/unaligned.h>
 24 
 25 #define IMS_PCU_KEYMAP_LEN              32
 26 
 27 struct ims_pcu_buttons {
 28         struct input_dev *input;
 29         char name[32];
 30         char phys[32];
 31         unsigned short keymap[IMS_PCU_KEYMAP_LEN];
 32 };
 33 
 34 struct ims_pcu_gamepad {
 35         struct input_dev *input;
 36         char name[32];
 37         char phys[32];
 38 };
 39 
 40 struct ims_pcu_backlight {
 41         struct led_classdev cdev;
 42         struct work_struct work;
 43         enum led_brightness desired_brightness;
 44         char name[32];
 45 };
 46 
 47 #define IMS_PCU_PART_NUMBER_LEN         15
 48 #define IMS_PCU_SERIAL_NUMBER_LEN       8
 49 #define IMS_PCU_DOM_LEN                 8
 50 #define IMS_PCU_FW_VERSION_LEN          (9 + 1)
 51 #define IMS_PCU_BL_VERSION_LEN          (9 + 1)
 52 #define IMS_PCU_BL_RESET_REASON_LEN     (2 + 1)
 53 
 54 #define IMS_PCU_PCU_B_DEVICE_ID         5
 55 
 56 #define IMS_PCU_BUF_SIZE                128
 57 
 58 struct ims_pcu {
 59         struct usb_device *udev;
 60         struct device *dev; /* control interface's device, used for logging */
 61 
 62         unsigned int device_no;
 63 
 64         bool bootloader_mode;
 65 
 66         char part_number[IMS_PCU_PART_NUMBER_LEN];
 67         char serial_number[IMS_PCU_SERIAL_NUMBER_LEN];
 68         char date_of_manufacturing[IMS_PCU_DOM_LEN];
 69         char fw_version[IMS_PCU_FW_VERSION_LEN];
 70         char bl_version[IMS_PCU_BL_VERSION_LEN];
 71         char reset_reason[IMS_PCU_BL_RESET_REASON_LEN];
 72         int update_firmware_status;
 73         u8 device_id;
 74 
 75         u8 ofn_reg_addr;
 76 
 77         struct usb_interface *ctrl_intf;
 78 
 79         struct usb_endpoint_descriptor *ep_ctrl;
 80         struct urb *urb_ctrl;
 81         u8 *urb_ctrl_buf;
 82         dma_addr_t ctrl_dma;
 83         size_t max_ctrl_size;
 84 
 85         struct usb_interface *data_intf;
 86 
 87         struct usb_endpoint_descriptor *ep_in;
 88         struct urb *urb_in;
 89         u8 *urb_in_buf;
 90         dma_addr_t read_dma;
 91         size_t max_in_size;
 92 
 93         struct usb_endpoint_descriptor *ep_out;
 94         u8 *urb_out_buf;
 95         size_t max_out_size;
 96 
 97         u8 read_buf[IMS_PCU_BUF_SIZE];
 98         u8 read_pos;
 99         u8 check_sum;
100         bool have_stx;
101         bool have_dle;
102 
103         u8 cmd_buf[IMS_PCU_BUF_SIZE];
104         u8 ack_id;
105         u8 expected_response;
106         u8 cmd_buf_len;
107         struct completion cmd_done;
108         struct mutex cmd_mutex;
109 
110         u32 fw_start_addr;
111         u32 fw_end_addr;
112         struct completion async_firmware_done;
113 
114         struct ims_pcu_buttons buttons;
115         struct ims_pcu_gamepad *gamepad;
116         struct ims_pcu_backlight backlight;
117 
118         bool setup_complete; /* Input and LED devices have been created */
119 };
120 
121 
122 /*********************************************************************
123  *             Buttons Input device support                          *
124  *********************************************************************/
125 
126 static const unsigned short ims_pcu_keymap_1[] = {
127         [1] = KEY_ATTENDANT_OFF,
128         [2] = KEY_ATTENDANT_ON,
129         [3] = KEY_LIGHTS_TOGGLE,
130         [4] = KEY_VOLUMEUP,
131         [5] = KEY_VOLUMEDOWN,
132         [6] = KEY_INFO,
133 };
134 
135 static const unsigned short ims_pcu_keymap_2[] = {
136         [4] = KEY_VOLUMEUP,
137         [5] = KEY_VOLUMEDOWN,
138         [6] = KEY_INFO,
139 };
140 
141 static const unsigned short ims_pcu_keymap_3[] = {
142         [1] = KEY_HOMEPAGE,
143         [2] = KEY_ATTENDANT_TOGGLE,
144         [3] = KEY_LIGHTS_TOGGLE,
145         [4] = KEY_VOLUMEUP,
146         [5] = KEY_VOLUMEDOWN,
147         [6] = KEY_DISPLAYTOGGLE,
148         [18] = KEY_PLAYPAUSE,
149 };
150 
151 static const unsigned short ims_pcu_keymap_4[] = {
152         [1] = KEY_ATTENDANT_OFF,
153         [2] = KEY_ATTENDANT_ON,
154         [3] = KEY_LIGHTS_TOGGLE,
155         [4] = KEY_VOLUMEUP,
156         [5] = KEY_VOLUMEDOWN,
157         [6] = KEY_INFO,
158         [18] = KEY_PLAYPAUSE,
159 };
160 
161 static const unsigned short ims_pcu_keymap_5[] = {
162         [1] = KEY_ATTENDANT_OFF,
163         [2] = KEY_ATTENDANT_ON,
164         [3] = KEY_LIGHTS_TOGGLE,
165 };
166 
167 struct ims_pcu_device_info {
168         const unsigned short *keymap;
169         size_t keymap_len;
170         bool has_gamepad;
171 };
172 
173 #define IMS_PCU_DEVINFO(_n, _gamepad)                           \
174         [_n] = {                                                \
175                 .keymap = ims_pcu_keymap_##_n,                  \
176                 .keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n),  \
177                 .has_gamepad = _gamepad,                        \
178         }
179 
180 static const struct ims_pcu_device_info ims_pcu_device_info[] = {
181         IMS_PCU_DEVINFO(1, true),
182         IMS_PCU_DEVINFO(2, true),
183         IMS_PCU_DEVINFO(3, true),
184         IMS_PCU_DEVINFO(4, true),
185         IMS_PCU_DEVINFO(5, false),
186 };
187 
188 static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data)
189 {
190         struct ims_pcu_buttons *buttons = &pcu->buttons;
191         struct input_dev *input = buttons->input;
192         int i;
193 
194         for (i = 0; i < 32; i++) {
195                 unsigned short keycode = buttons->keymap[i];
196 
197                 if (keycode != KEY_RESERVED)
198                         input_report_key(input, keycode, data & (1UL << i));
199         }
200 
201         input_sync(input);
202 }
203 
204 static int ims_pcu_setup_buttons(struct ims_pcu *pcu,
205                                  const unsigned short *keymap,
206                                  size_t keymap_len)
207 {
208         struct ims_pcu_buttons *buttons = &pcu->buttons;
209         struct input_dev *input;
210         int i;
211         int error;
212 
213         input = input_allocate_device();
214         if (!input) {
215                 dev_err(pcu->dev,
216                         "Not enough memory for input input device\n");
217                 return -ENOMEM;
218         }
219 
220         snprintf(buttons->name, sizeof(buttons->name),
221                  "IMS PCU#%d Button Interface", pcu->device_no);
222 
223         usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys));
224         strlcat(buttons->phys, "/input0", sizeof(buttons->phys));
225 
226         memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len);
227 
228         input->name = buttons->name;
229         input->phys = buttons->phys;
230         usb_to_input_id(pcu->udev, &input->id);
231         input->dev.parent = &pcu->ctrl_intf->dev;
232 
233         input->keycode = buttons->keymap;
234         input->keycodemax = ARRAY_SIZE(buttons->keymap);
235         input->keycodesize = sizeof(buttons->keymap[0]);
236 
237         __set_bit(EV_KEY, input->evbit);
238         for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++)
239                 __set_bit(buttons->keymap[i], input->keybit);
240         __clear_bit(KEY_RESERVED, input->keybit);
241 
242         error = input_register_device(input);
243         if (error) {
244                 dev_err(pcu->dev,
245                         "Failed to register buttons input device: %d\n",
246                         error);
247                 input_free_device(input);
248                 return error;
249         }
250 
251         buttons->input = input;
252         return 0;
253 }
254 
255 static void ims_pcu_destroy_buttons(struct ims_pcu *pcu)
256 {
257         struct ims_pcu_buttons *buttons = &pcu->buttons;
258 
259         input_unregister_device(buttons->input);
260 }
261 
262 
263 /*********************************************************************
264  *             Gamepad Input device support                          *
265  *********************************************************************/
266 
267 static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data)
268 {
269         struct ims_pcu_gamepad *gamepad = pcu->gamepad;
270         struct input_dev *input = gamepad->input;
271         int x, y;
272 
273         x = !!(data & (1 << 14)) - !!(data & (1 << 13));
274         y = !!(data & (1 << 12)) - !!(data & (1 << 11));
275 
276         input_report_abs(input, ABS_X, x);
277         input_report_abs(input, ABS_Y, y);
278 
279         input_report_key(input, BTN_A, data & (1 << 7));
280         input_report_key(input, BTN_B, data & (1 << 8));
281         input_report_key(input, BTN_X, data & (1 << 9));
282         input_report_key(input, BTN_Y, data & (1 << 10));
283         input_report_key(input, BTN_START, data & (1 << 15));
284         input_report_key(input, BTN_SELECT, data & (1 << 16));
285 
286         input_sync(input);
287 }
288 
289 static int ims_pcu_setup_gamepad(struct ims_pcu *pcu)
290 {
291         struct ims_pcu_gamepad *gamepad;
292         struct input_dev *input;
293         int error;
294 
295         gamepad = kzalloc(sizeof(struct ims_pcu_gamepad), GFP_KERNEL);
296         input = input_allocate_device();
297         if (!gamepad || !input) {
298                 dev_err(pcu->dev,
299                         "Not enough memory for gamepad device\n");
300                 error = -ENOMEM;
301                 goto err_free_mem;
302         }
303 
304         gamepad->input = input;
305 
306         snprintf(gamepad->name, sizeof(gamepad->name),
307                  "IMS PCU#%d Gamepad Interface", pcu->device_no);
308 
309         usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys));
310         strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys));
311 
312         input->name = gamepad->name;
313         input->phys = gamepad->phys;
314         usb_to_input_id(pcu->udev, &input->id);
315         input->dev.parent = &pcu->ctrl_intf->dev;
316 
317         __set_bit(EV_KEY, input->evbit);
318         __set_bit(BTN_A, input->keybit);
319         __set_bit(BTN_B, input->keybit);
320         __set_bit(BTN_X, input->keybit);
321         __set_bit(BTN_Y, input->keybit);
322         __set_bit(BTN_START, input->keybit);
323         __set_bit(BTN_SELECT, input->keybit);
324 
325         __set_bit(EV_ABS, input->evbit);
326         input_set_abs_params(input, ABS_X, -1, 1, 0, 0);
327         input_set_abs_params(input, ABS_Y, -1, 1, 0, 0);
328 
329         error = input_register_device(input);
330         if (error) {
331                 dev_err(pcu->dev,
332                         "Failed to register gamepad input device: %d\n",
333                         error);
334                 goto err_free_mem;
335         }
336 
337         pcu->gamepad = gamepad;
338         return 0;
339 
340 err_free_mem:
341         input_free_device(input);
342         kfree(gamepad);
343         return -ENOMEM;
344 }
345 
346 static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu)
347 {
348         struct ims_pcu_gamepad *gamepad = pcu->gamepad;
349 
350         input_unregister_device(gamepad->input);
351         kfree(gamepad);
352 }
353 
354 
355 /*********************************************************************
356  *             PCU Communication protocol handling                   *
357  *********************************************************************/
358 
359 #define IMS_PCU_PROTOCOL_STX            0x02
360 #define IMS_PCU_PROTOCOL_ETX            0x03
361 #define IMS_PCU_PROTOCOL_DLE            0x10
362 
363 /* PCU commands */
364 #define IMS_PCU_CMD_STATUS              0xa0
365 #define IMS_PCU_CMD_PCU_RESET           0xa1
366 #define IMS_PCU_CMD_RESET_REASON        0xa2
367 #define IMS_PCU_CMD_SEND_BUTTONS        0xa3
368 #define IMS_PCU_CMD_JUMP_TO_BTLDR       0xa4
369 #define IMS_PCU_CMD_GET_INFO            0xa5
370 #define IMS_PCU_CMD_SET_BRIGHTNESS      0xa6
371 #define IMS_PCU_CMD_EEPROM              0xa7
372 #define IMS_PCU_CMD_GET_FW_VERSION      0xa8
373 #define IMS_PCU_CMD_GET_BL_VERSION      0xa9
374 #define IMS_PCU_CMD_SET_INFO            0xab
375 #define IMS_PCU_CMD_GET_BRIGHTNESS      0xac
376 #define IMS_PCU_CMD_GET_DEVICE_ID       0xae
377 #define IMS_PCU_CMD_SPECIAL_INFO        0xb0
378 #define IMS_PCU_CMD_BOOTLOADER          0xb1    /* Pass data to bootloader */
379 #define IMS_PCU_CMD_OFN_SET_CONFIG      0xb3
380 #define IMS_PCU_CMD_OFN_GET_CONFIG      0xb4
381 
382 /* PCU responses */
383 #define IMS_PCU_RSP_STATUS              0xc0
384 #define IMS_PCU_RSP_PCU_RESET           0       /* Originally 0xc1 */
385 #define IMS_PCU_RSP_RESET_REASON        0xc2
386 #define IMS_PCU_RSP_SEND_BUTTONS        0xc3
387 #define IMS_PCU_RSP_JUMP_TO_BTLDR       0       /* Originally 0xc4 */
388 #define IMS_PCU_RSP_GET_INFO            0xc5
389 #define IMS_PCU_RSP_SET_BRIGHTNESS      0xc6
390 #define IMS_PCU_RSP_EEPROM              0xc7
391 #define IMS_PCU_RSP_GET_FW_VERSION      0xc8
392 #define IMS_PCU_RSP_GET_BL_VERSION      0xc9
393 #define IMS_PCU_RSP_SET_INFO            0xcb
394 #define IMS_PCU_RSP_GET_BRIGHTNESS      0xcc
395 #define IMS_PCU_RSP_CMD_INVALID         0xcd
396 #define IMS_PCU_RSP_GET_DEVICE_ID       0xce
397 #define IMS_PCU_RSP_SPECIAL_INFO        0xd0
398 #define IMS_PCU_RSP_BOOTLOADER          0xd1    /* Bootloader response */
399 #define IMS_PCU_RSP_OFN_SET_CONFIG      0xd2
400 #define IMS_PCU_RSP_OFN_GET_CONFIG      0xd3
401 
402 
403 #define IMS_PCU_RSP_EVNT_BUTTONS        0xe0    /* Unsolicited, button state */
404 #define IMS_PCU_GAMEPAD_MASK            0x0001ff80UL    /* Bits 7 through 16 */
405 
406 
407 #define IMS_PCU_MIN_PACKET_LEN          3
408 #define IMS_PCU_DATA_OFFSET             2
409 
410 #define IMS_PCU_CMD_WRITE_TIMEOUT       100 /* msec */
411 #define IMS_PCU_CMD_RESPONSE_TIMEOUT    500 /* msec */
412 
413 static void ims_pcu_report_events(struct ims_pcu *pcu)
414 {
415         u32 data = get_unaligned_be32(&pcu->read_buf[3]);
416 
417         ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK);
418         if (pcu->gamepad)
419                 ims_pcu_gamepad_report(pcu, data);
420 }
421 
422 static void ims_pcu_handle_response(struct ims_pcu *pcu)
423 {
424         switch (pcu->read_buf[0]) {
425         case IMS_PCU_RSP_EVNT_BUTTONS:
426                 if (likely(pcu->setup_complete))
427                         ims_pcu_report_events(pcu);
428                 break;
429 
430         default:
431                 /*
432                  * See if we got command completion.
433                  * If both the sequence and response code match save
434                  * the data and signal completion.
435                  */
436                 if (pcu->read_buf[0] == pcu->expected_response &&
437                     pcu->read_buf[1] == pcu->ack_id - 1) {
438 
439                         memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos);
440                         pcu->cmd_buf_len = pcu->read_pos;
441                         complete(&pcu->cmd_done);
442                 }
443                 break;
444         }
445 }
446 
447 static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb)
448 {
449         int i;
450 
451         for (i = 0; i < urb->actual_length; i++) {
452                 u8 data = pcu->urb_in_buf[i];
453 
454                 /* Skip everything until we get Start Xmit */
455                 if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX)
456                         continue;
457 
458                 if (pcu->have_dle) {
459                         pcu->have_dle = false;
460                         pcu->read_buf[pcu->read_pos++] = data;
461                         pcu->check_sum += data;
462                         continue;
463                 }
464 
465                 switch (data) {
466                 case IMS_PCU_PROTOCOL_STX:
467                         if (pcu->have_stx)
468                                 dev_warn(pcu->dev,
469                                          "Unexpected STX at byte %d, discarding old data\n",
470                                          pcu->read_pos);
471                         pcu->have_stx = true;
472                         pcu->have_dle = false;
473                         pcu->read_pos = 0;
474                         pcu->check_sum = 0;
475                         break;
476 
477                 case IMS_PCU_PROTOCOL_DLE:
478                         pcu->have_dle = true;
479                         break;
480 
481                 case IMS_PCU_PROTOCOL_ETX:
482                         if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) {
483                                 dev_warn(pcu->dev,
484                                          "Short packet received (%d bytes), ignoring\n",
485                                          pcu->read_pos);
486                         } else if (pcu->check_sum != 0) {
487                                 dev_warn(pcu->dev,
488                                          "Invalid checksum in packet (%d bytes), ignoring\n",
489                                          pcu->read_pos);
490                         } else {
491                                 ims_pcu_handle_response(pcu);
492                         }
493 
494                         pcu->have_stx = false;
495                         pcu->have_dle = false;
496                         pcu->read_pos = 0;
497                         break;
498 
499                 default:
500                         pcu->read_buf[pcu->read_pos++] = data;
501                         pcu->check_sum += data;
502                         break;
503                 }
504         }
505 }
506 
507 static bool ims_pcu_byte_needs_escape(u8 byte)
508 {
509         return byte == IMS_PCU_PROTOCOL_STX ||
510                byte == IMS_PCU_PROTOCOL_ETX ||
511                byte == IMS_PCU_PROTOCOL_DLE;
512 }
513 
514 static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu,
515                                   u8 command, int chunk, int len)
516 {
517         int error;
518 
519         error = usb_bulk_msg(pcu->udev,
520                              usb_sndbulkpipe(pcu->udev,
521                                              pcu->ep_out->bEndpointAddress),
522                              pcu->urb_out_buf, len,
523                              NULL, IMS_PCU_CMD_WRITE_TIMEOUT);
524         if (error < 0) {
525                 dev_dbg(pcu->dev,
526                         "Sending 0x%02x command failed at chunk %d: %d\n",
527                         command, chunk, error);
528                 return error;
529         }
530 
531         return 0;
532 }
533 
534 static int ims_pcu_send_command(struct ims_pcu *pcu,
535                                 u8 command, const u8 *data, int len)
536 {
537         int count = 0;
538         int chunk = 0;
539         int delta;
540         int i;
541         int error;
542         u8 csum = 0;
543         u8 ack_id;
544 
545         pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX;
546 
547         /* We know the command need not be escaped */
548         pcu->urb_out_buf[count++] = command;
549         csum += command;
550 
551         ack_id = pcu->ack_id++;
552         if (ack_id == 0xff)
553                 ack_id = pcu->ack_id++;
554 
555         if (ims_pcu_byte_needs_escape(ack_id))
556                 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
557 
558         pcu->urb_out_buf[count++] = ack_id;
559         csum += ack_id;
560 
561         for (i = 0; i < len; i++) {
562 
563                 delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1;
564                 if (count + delta >= pcu->max_out_size) {
565                         error = ims_pcu_send_cmd_chunk(pcu, command,
566                                                        ++chunk, count);
567                         if (error)
568                                 return error;
569 
570                         count = 0;
571                 }
572 
573                 if (delta == 2)
574                         pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
575 
576                 pcu->urb_out_buf[count++] = data[i];
577                 csum += data[i];
578         }
579 
580         csum = 1 + ~csum;
581 
582         delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2;
583         if (count + delta >= pcu->max_out_size) {
584                 error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
585                 if (error)
586                         return error;
587 
588                 count = 0;
589         }
590 
591         if (delta == 3)
592                 pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE;
593 
594         pcu->urb_out_buf[count++] = csum;
595         pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX;
596 
597         return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count);
598 }
599 
600 static int __ims_pcu_execute_command(struct ims_pcu *pcu,
601                                      u8 command, const void *data, size_t len,
602                                      u8 expected_response, int response_time)
603 {
604         int error;
605 
606         pcu->expected_response = expected_response;
607         init_completion(&pcu->cmd_done);
608 
609         error = ims_pcu_send_command(pcu, command, data, len);
610         if (error)
611                 return error;
612 
613         if (expected_response &&
614             !wait_for_completion_timeout(&pcu->cmd_done,
615                                          msecs_to_jiffies(response_time))) {
616                 dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command);
617                 return -ETIMEDOUT;
618         }
619 
620         return 0;
621 }
622 
623 #define ims_pcu_execute_command(pcu, code, data, len)                   \
624         __ims_pcu_execute_command(pcu,                                  \
625                                   IMS_PCU_CMD_##code, data, len,        \
626                                   IMS_PCU_RSP_##code,                   \
627                                   IMS_PCU_CMD_RESPONSE_TIMEOUT)
628 
629 #define ims_pcu_execute_query(pcu, code)                                \
630         ims_pcu_execute_command(pcu, code, NULL, 0)
631 
632 /* Bootloader commands */
633 #define IMS_PCU_BL_CMD_QUERY_DEVICE     0xa1
634 #define IMS_PCU_BL_CMD_UNLOCK_CONFIG    0xa2
635 #define IMS_PCU_BL_CMD_ERASE_APP        0xa3
636 #define IMS_PCU_BL_CMD_PROGRAM_DEVICE   0xa4
637 #define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5
638 #define IMS_PCU_BL_CMD_READ_APP         0xa6
639 #define IMS_PCU_BL_CMD_RESET_DEVICE     0xa7
640 #define IMS_PCU_BL_CMD_LAUNCH_APP       0xa8
641 
642 /* Bootloader commands */
643 #define IMS_PCU_BL_RSP_QUERY_DEVICE     0xc1
644 #define IMS_PCU_BL_RSP_UNLOCK_CONFIG    0xc2
645 #define IMS_PCU_BL_RSP_ERASE_APP        0xc3
646 #define IMS_PCU_BL_RSP_PROGRAM_DEVICE   0xc4
647 #define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5
648 #define IMS_PCU_BL_RSP_READ_APP         0xc6
649 #define IMS_PCU_BL_RSP_RESET_DEVICE     0       /* originally 0xa7 */
650 #define IMS_PCU_BL_RSP_LAUNCH_APP       0       /* originally 0xa8 */
651 
652 #define IMS_PCU_BL_DATA_OFFSET          3
653 
654 static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu,
655                                         u8 command, const void *data, size_t len,
656                                         u8 expected_response, int response_time)
657 {
658         int error;
659 
660         pcu->cmd_buf[0] = command;
661         if (data)
662                 memcpy(&pcu->cmd_buf[1], data, len);
663 
664         error = __ims_pcu_execute_command(pcu,
665                                 IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1,
666                                 expected_response ? IMS_PCU_RSP_BOOTLOADER : 0,
667                                 response_time);
668         if (error) {
669                 dev_err(pcu->dev,
670                         "Failure when sending 0x%02x command to bootloader, error: %d\n",
671                         pcu->cmd_buf[0], error);
672                 return error;
673         }
674 
675         if (expected_response && pcu->cmd_buf[2] != expected_response) {
676                 dev_err(pcu->dev,
677                         "Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n",
678                         pcu->cmd_buf[2], expected_response);
679                 return -EINVAL;
680         }
681 
682         return 0;
683 }
684 
685 #define ims_pcu_execute_bl_command(pcu, code, data, len, timeout)       \
686         __ims_pcu_execute_bl_command(pcu,                               \
687                                      IMS_PCU_BL_CMD_##code, data, len,  \
688                                      IMS_PCU_BL_RSP_##code, timeout)    \
689 
690 #define IMS_PCU_INFO_PART_OFFSET        2
691 #define IMS_PCU_INFO_DOM_OFFSET         17
692 #define IMS_PCU_INFO_SERIAL_OFFSET      25
693 
694 #define IMS_PCU_SET_INFO_SIZE           31
695 
696 static int ims_pcu_get_info(struct ims_pcu *pcu)
697 {
698         int error;
699 
700         error = ims_pcu_execute_query(pcu, GET_INFO);
701         if (error) {
702                 dev_err(pcu->dev,
703                         "GET_INFO command failed, error: %d\n", error);
704                 return error;
705         }
706 
707         memcpy(pcu->part_number,
708                &pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
709                sizeof(pcu->part_number));
710         memcpy(pcu->date_of_manufacturing,
711                &pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
712                sizeof(pcu->date_of_manufacturing));
713         memcpy(pcu->serial_number,
714                &pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
715                sizeof(pcu->serial_number));
716 
717         return 0;
718 }
719 
720 static int ims_pcu_set_info(struct ims_pcu *pcu)
721 {
722         int error;
723 
724         memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET],
725                pcu->part_number, sizeof(pcu->part_number));
726         memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET],
727                pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing));
728         memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET],
729                pcu->serial_number, sizeof(pcu->serial_number));
730 
731         error = ims_pcu_execute_command(pcu, SET_INFO,
732                                         &pcu->cmd_buf[IMS_PCU_DATA_OFFSET],
733                                         IMS_PCU_SET_INFO_SIZE);
734         if (error) {
735                 dev_err(pcu->dev,
736                         "Failed to update device information, error: %d\n",
737                         error);
738                 return error;
739         }
740 
741         return 0;
742 }
743 
744 static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu)
745 {
746         int error;
747 
748         /* Execute jump to the bootoloader */
749         error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0);
750         if (error) {
751                 dev_err(pcu->dev,
752                         "Failure when sending JUMP TO BOOLTLOADER command, error: %d\n",
753                         error);
754                 return error;
755         }
756 
757         return 0;
758 }
759 
760 /*********************************************************************
761  *             Firmware Update handling                              *
762  *********************************************************************/
763 
764 #define IMS_PCU_FIRMWARE_NAME   "imspcu.fw"
765 
766 struct ims_pcu_flash_fmt {
767         __le32 addr;
768         u8 len;
769         u8 data[];
770 };
771 
772 static unsigned int ims_pcu_count_fw_records(const struct firmware *fw)
773 {
774         const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
775         unsigned int count = 0;
776 
777         while (rec) {
778                 count++;
779                 rec = ihex_next_binrec(rec);
780         }
781 
782         return count;
783 }
784 
785 static int ims_pcu_verify_block(struct ims_pcu *pcu,
786                                 u32 addr, u8 len, const u8 *data)
787 {
788         struct ims_pcu_flash_fmt *fragment;
789         int error;
790 
791         fragment = (void *)&pcu->cmd_buf[1];
792         put_unaligned_le32(addr, &fragment->addr);
793         fragment->len = len;
794 
795         error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5,
796                                         IMS_PCU_CMD_RESPONSE_TIMEOUT);
797         if (error) {
798                 dev_err(pcu->dev,
799                         "Failed to retrieve block at 0x%08x, len %d, error: %d\n",
800                         addr, len, error);
801                 return error;
802         }
803 
804         fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET];
805         if (get_unaligned_le32(&fragment->addr) != addr ||
806             fragment->len != len) {
807                 dev_err(pcu->dev,
808                         "Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n",
809                         addr, get_unaligned_le32(&fragment->addr),
810                         len, fragment->len);
811                 return -EINVAL;
812         }
813 
814         if (memcmp(fragment->data, data, len)) {
815                 dev_err(pcu->dev,
816                         "Mismatch in block at 0x%08x, len %d\n",
817                         addr, len);
818                 return -EINVAL;
819         }
820 
821         return 0;
822 }
823 
824 static int ims_pcu_flash_firmware(struct ims_pcu *pcu,
825                                   const struct firmware *fw,
826                                   unsigned int n_fw_records)
827 {
828         const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data;
829         struct ims_pcu_flash_fmt *fragment;
830         unsigned int count = 0;
831         u32 addr;
832         u8 len;
833         int error;
834 
835         error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000);
836         if (error) {
837                 dev_err(pcu->dev,
838                         "Failed to erase application image, error: %d\n",
839                         error);
840                 return error;
841         }
842 
843         while (rec) {
844                 /*
845                  * The firmware format is messed up for some reason.
846                  * The address twice that of what is needed for some
847                  * reason and we end up overwriting half of the data
848                  * with the next record.
849                  */
850                 addr = be32_to_cpu(rec->addr) / 2;
851                 len = be16_to_cpu(rec->len);
852 
853                 fragment = (void *)&pcu->cmd_buf[1];
854                 put_unaligned_le32(addr, &fragment->addr);
855                 fragment->len = len;
856                 memcpy(fragment->data, rec->data, len);
857 
858                 error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE,
859                                                 NULL, len + 5,
860                                                 IMS_PCU_CMD_RESPONSE_TIMEOUT);
861                 if (error) {
862                         dev_err(pcu->dev,
863                                 "Failed to write block at 0x%08x, len %d, error: %d\n",
864                                 addr, len, error);
865                         return error;
866                 }
867 
868                 if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) {
869                         error = ims_pcu_verify_block(pcu, addr, len, rec->data);
870                         if (error)
871                                 return error;
872                 }
873 
874                 count++;
875                 pcu->update_firmware_status = (count * 100) / n_fw_records;
876 
877                 rec = ihex_next_binrec(rec);
878         }
879 
880         error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE,
881                                             NULL, 0, 2000);
882         if (error)
883                 dev_err(pcu->dev,
884                         "Failed to send PROGRAM_COMPLETE, error: %d\n",
885                         error);
886 
887         return 0;
888 }
889 
890 static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu,
891                                           const struct firmware *fw)
892 {
893         unsigned int n_fw_records;
894         int retval;
895 
896         dev_info(pcu->dev, "Updating firmware %s, size: %zu\n",
897                  IMS_PCU_FIRMWARE_NAME, fw->size);
898 
899         n_fw_records = ims_pcu_count_fw_records(fw);
900 
901         retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records);
902         if (retval)
903                 goto out;
904 
905         retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0);
906         if (retval)
907                 dev_err(pcu->dev,
908                         "Failed to start application image, error: %d\n",
909                         retval);
910 
911 out:
912         pcu->update_firmware_status = retval;
913         sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status");
914         return retval;
915 }
916 
917 static void ims_pcu_process_async_firmware(const struct firmware *fw,
918                                            void *context)
919 {
920         struct ims_pcu *pcu = context;
921         int error;
922 
923         if (!fw) {
924                 dev_err(pcu->dev, "Failed to get firmware %s\n",
925                         IMS_PCU_FIRMWARE_NAME);
926                 goto out;
927         }
928 
929         error = ihex_validate_fw(fw);
930         if (error) {
931                 dev_err(pcu->dev, "Firmware %s is invalid\n",
932                         IMS_PCU_FIRMWARE_NAME);
933                 goto out;
934         }
935 
936         mutex_lock(&pcu->cmd_mutex);
937         ims_pcu_handle_firmware_update(pcu, fw);
938         mutex_unlock(&pcu->cmd_mutex);
939 
940         release_firmware(fw);
941 
942 out:
943         complete(&pcu->async_firmware_done);
944 }
945 
946 /*********************************************************************
947  *             Backlight LED device support                          *
948  *********************************************************************/
949 
950 #define IMS_PCU_MAX_BRIGHTNESS          31998
951 
952 static void ims_pcu_backlight_work(struct work_struct *work)
953 {
954         struct ims_pcu_backlight *backlight =
955                         container_of(work, struct ims_pcu_backlight, work);
956         struct ims_pcu *pcu =
957                         container_of(backlight, struct ims_pcu, backlight);
958         int desired_brightness = backlight->desired_brightness;
959         __le16 br_val = cpu_to_le16(desired_brightness);
960         int error;
961 
962         mutex_lock(&pcu->cmd_mutex);
963 
964         error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS,
965                                         &br_val, sizeof(br_val));
966         if (error && error != -ENODEV)
967                 dev_warn(pcu->dev,
968                          "Failed to set desired brightness %u, error: %d\n",
969                          desired_brightness, error);
970 
971         mutex_unlock(&pcu->cmd_mutex);
972 }
973 
974 static void ims_pcu_backlight_set_brightness(struct led_classdev *cdev,
975                                              enum led_brightness value)
976 {
977         struct ims_pcu_backlight *backlight =
978                         container_of(cdev, struct ims_pcu_backlight, cdev);
979 
980         backlight->desired_brightness = value;
981         schedule_work(&backlight->work);
982 }
983 
984 static enum led_brightness
985 ims_pcu_backlight_get_brightness(struct led_classdev *cdev)
986 {
987         struct ims_pcu_backlight *backlight =
988                         container_of(cdev, struct ims_pcu_backlight, cdev);
989         struct ims_pcu *pcu =
990                         container_of(backlight, struct ims_pcu, backlight);
991         int brightness;
992         int error;
993 
994         mutex_lock(&pcu->cmd_mutex);
995 
996         error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS);
997         if (error) {
998                 dev_warn(pcu->dev,
999                          "Failed to get current brightness, error: %d\n",
1000                          error);
1001                 /* Assume the LED is OFF */
1002                 brightness = LED_OFF;
1003         } else {
1004                 brightness =
1005                         get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
1006         }
1007 
1008         mutex_unlock(&pcu->cmd_mutex);
1009 
1010         return brightness;
1011 }
1012 
1013 static int ims_pcu_setup_backlight(struct ims_pcu *pcu)
1014 {
1015         struct ims_pcu_backlight *backlight = &pcu->backlight;
1016         int error;
1017 
1018         INIT_WORK(&backlight->work, ims_pcu_backlight_work);
1019         snprintf(backlight->name, sizeof(backlight->name),
1020                  "pcu%d::kbd_backlight", pcu->device_no);
1021 
1022         backlight->cdev.name = backlight->name;
1023         backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS;
1024         backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness;
1025         backlight->cdev.brightness_set = ims_pcu_backlight_set_brightness;
1026 
1027         error = led_classdev_register(pcu->dev, &backlight->cdev);
1028         if (error) {
1029                 dev_err(pcu->dev,
1030                         "Failed to register backlight LED device, error: %d\n",
1031                         error);
1032                 return error;
1033         }
1034 
1035         return 0;
1036 }
1037 
1038 static void ims_pcu_destroy_backlight(struct ims_pcu *pcu)
1039 {
1040         struct ims_pcu_backlight *backlight = &pcu->backlight;
1041 
1042         led_classdev_unregister(&backlight->cdev);
1043         cancel_work_sync(&backlight->work);
1044 }
1045 
1046 
1047 /*********************************************************************
1048  *             Sysfs attributes handling                             *
1049  *********************************************************************/
1050 
1051 struct ims_pcu_attribute {
1052         struct device_attribute dattr;
1053         size_t field_offset;
1054         int field_length;
1055 };
1056 
1057 static ssize_t ims_pcu_attribute_show(struct device *dev,
1058                                       struct device_attribute *dattr,
1059                                       char *buf)
1060 {
1061         struct usb_interface *intf = to_usb_interface(dev);
1062         struct ims_pcu *pcu = usb_get_intfdata(intf);
1063         struct ims_pcu_attribute *attr =
1064                         container_of(dattr, struct ims_pcu_attribute, dattr);
1065         char *field = (char *)pcu + attr->field_offset;
1066 
1067         return scnprintf(buf, PAGE_SIZE, "%.*s\n", attr->field_length, field);
1068 }
1069 
1070 static ssize_t ims_pcu_attribute_store(struct device *dev,
1071                                        struct device_attribute *dattr,
1072                                        const char *buf, size_t count)
1073 {
1074 
1075         struct usb_interface *intf = to_usb_interface(dev);
1076         struct ims_pcu *pcu = usb_get_intfdata(intf);
1077         struct ims_pcu_attribute *attr =
1078                         container_of(dattr, struct ims_pcu_attribute, dattr);
1079         char *field = (char *)pcu + attr->field_offset;
1080         size_t data_len;
1081         int error;
1082 
1083         if (count > attr->field_length)
1084                 return -EINVAL;
1085 
1086         data_len = strnlen(buf, attr->field_length);
1087         if (data_len > attr->field_length)
1088                 return -EINVAL;
1089 
1090         error = mutex_lock_interruptible(&pcu->cmd_mutex);
1091         if (error)
1092                 return error;
1093 
1094         memset(field, 0, attr->field_length);
1095         memcpy(field, buf, data_len);
1096 
1097         error = ims_pcu_set_info(pcu);
1098 
1099         /*
1100          * Even if update failed, let's fetch the info again as we just
1101          * clobbered one of the fields.
1102          */
1103         ims_pcu_get_info(pcu);
1104 
1105         mutex_unlock(&pcu->cmd_mutex);
1106 
1107         return error < 0 ? error : count;
1108 }
1109 
1110 #define IMS_PCU_ATTR(_field, _mode)                                     \
1111 struct ims_pcu_attribute ims_pcu_attr_##_field = {                      \
1112         .dattr = __ATTR(_field, _mode,                                  \
1113                         ims_pcu_attribute_show,                         \
1114                         ims_pcu_attribute_store),                       \
1115         .field_offset = offsetof(struct ims_pcu, _field),               \
1116         .field_length = sizeof(((struct ims_pcu *)NULL)->_field),       \
1117 }
1118 
1119 #define IMS_PCU_RO_ATTR(_field)                                         \
1120                 IMS_PCU_ATTR(_field, S_IRUGO)
1121 #define IMS_PCU_RW_ATTR(_field)                                         \
1122                 IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR)
1123 
1124 static IMS_PCU_RW_ATTR(part_number);
1125 static IMS_PCU_RW_ATTR(serial_number);
1126 static IMS_PCU_RW_ATTR(date_of_manufacturing);
1127 
1128 static IMS_PCU_RO_ATTR(fw_version);
1129 static IMS_PCU_RO_ATTR(bl_version);
1130 static IMS_PCU_RO_ATTR(reset_reason);
1131 
1132 static ssize_t ims_pcu_reset_device(struct device *dev,
1133                                     struct device_attribute *dattr,
1134                                     const char *buf, size_t count)
1135 {
1136         static const u8 reset_byte = 1;
1137         struct usb_interface *intf = to_usb_interface(dev);
1138         struct ims_pcu *pcu = usb_get_intfdata(intf);
1139         int value;
1140         int error;
1141 
1142         error = kstrtoint(buf, 0, &value);
1143         if (error)
1144                 return error;
1145 
1146         if (value != 1)
1147                 return -EINVAL;
1148 
1149         dev_info(pcu->dev, "Attempting to reset device\n");
1150 
1151         error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1);
1152         if (error) {
1153                 dev_info(pcu->dev,
1154                          "Failed to reset device, error: %d\n",
1155                          error);
1156                 return error;
1157         }
1158 
1159         return count;
1160 }
1161 
1162 static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device);
1163 
1164 static ssize_t ims_pcu_update_firmware_store(struct device *dev,
1165                                              struct device_attribute *dattr,
1166                                              const char *buf, size_t count)
1167 {
1168         struct usb_interface *intf = to_usb_interface(dev);
1169         struct ims_pcu *pcu = usb_get_intfdata(intf);
1170         const struct firmware *fw = NULL;
1171         int value;
1172         int error;
1173 
1174         error = kstrtoint(buf, 0, &value);
1175         if (error)
1176                 return error;
1177 
1178         if (value != 1)
1179                 return -EINVAL;
1180 
1181         error = mutex_lock_interruptible(&pcu->cmd_mutex);
1182         if (error)
1183                 return error;
1184 
1185         error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev);
1186         if (error) {
1187                 dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n",
1188                         IMS_PCU_FIRMWARE_NAME, error);
1189                 goto out;
1190         }
1191 
1192         /*
1193          * If we are already in bootloader mode we can proceed with
1194          * flashing the firmware.
1195          *
1196          * If we are in application mode, then we need to switch into
1197          * bootloader mode, which will cause the device to disconnect
1198          * and reconnect as different device.
1199          */
1200         if (pcu->bootloader_mode)
1201                 error = ims_pcu_handle_firmware_update(pcu, fw);
1202         else
1203                 error = ims_pcu_switch_to_bootloader(pcu);
1204 
1205         release_firmware(fw);
1206 
1207 out:
1208         mutex_unlock(&pcu->cmd_mutex);
1209         return error ?: count;
1210 }
1211 
1212 static DEVICE_ATTR(update_firmware, S_IWUSR,
1213                    NULL, ims_pcu_update_firmware_store);
1214 
1215 static ssize_t
1216 ims_pcu_update_firmware_status_show(struct device *dev,
1217                                     struct device_attribute *dattr,
1218                                     char *buf)
1219 {
1220         struct usb_interface *intf = to_usb_interface(dev);
1221         struct ims_pcu *pcu = usb_get_intfdata(intf);
1222 
1223         return scnprintf(buf, PAGE_SIZE, "%d\n", pcu->update_firmware_status);
1224 }
1225 
1226 static DEVICE_ATTR(update_firmware_status, S_IRUGO,
1227                    ims_pcu_update_firmware_status_show, NULL);
1228 
1229 static struct attribute *ims_pcu_attrs[] = {
1230         &ims_pcu_attr_part_number.dattr.attr,
1231         &ims_pcu_attr_serial_number.dattr.attr,
1232         &ims_pcu_attr_date_of_manufacturing.dattr.attr,
1233         &ims_pcu_attr_fw_version.dattr.attr,
1234         &ims_pcu_attr_bl_version.dattr.attr,
1235         &ims_pcu_attr_reset_reason.dattr.attr,
1236         &dev_attr_reset_device.attr,
1237         &dev_attr_update_firmware.attr,
1238         &dev_attr_update_firmware_status.attr,
1239         NULL
1240 };
1241 
1242 static umode_t ims_pcu_is_attr_visible(struct kobject *kobj,
1243                                        struct attribute *attr, int n)
1244 {
1245         struct device *dev = container_of(kobj, struct device, kobj);
1246         struct usb_interface *intf = to_usb_interface(dev);
1247         struct ims_pcu *pcu = usb_get_intfdata(intf);
1248         umode_t mode = attr->mode;
1249 
1250         if (pcu->bootloader_mode) {
1251                 if (attr != &dev_attr_update_firmware_status.attr &&
1252                     attr != &dev_attr_update_firmware.attr &&
1253                     attr != &dev_attr_reset_device.attr) {
1254                         mode = 0;
1255                 }
1256         } else {
1257                 if (attr == &dev_attr_update_firmware_status.attr)
1258                         mode = 0;
1259         }
1260 
1261         return mode;
1262 }
1263 
1264 static struct attribute_group ims_pcu_attr_group = {
1265         .is_visible     = ims_pcu_is_attr_visible,
1266         .attrs          = ims_pcu_attrs,
1267 };
1268 
1269 /* Support for a separate OFN attribute group */
1270 
1271 #define OFN_REG_RESULT_OFFSET   2
1272 
1273 static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data)
1274 {
1275         int error;
1276         s16 result;
1277 
1278         error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG,
1279                                         &addr, sizeof(addr));
1280         if (error)
1281                 return error;
1282 
1283         result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
1284         if (result < 0)
1285                 return -EIO;
1286 
1287         /* We only need LSB */
1288         *data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET];
1289         return 0;
1290 }
1291 
1292 static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data)
1293 {
1294         u8 buffer[] = { addr, data };
1295         int error;
1296         s16 result;
1297 
1298         error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG,
1299                                         &buffer, sizeof(buffer));
1300         if (error)
1301                 return error;
1302 
1303         result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET);
1304         if (result < 0)
1305                 return -EIO;
1306 
1307         return 0;
1308 }
1309 
1310 static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev,
1311                                          struct device_attribute *dattr,
1312                                          char *buf)
1313 {
1314         struct usb_interface *intf = to_usb_interface(dev);
1315         struct ims_pcu *pcu = usb_get_intfdata(intf);
1316         int error;
1317         u8 data;
1318 
1319         mutex_lock(&pcu->cmd_mutex);
1320         error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data);
1321         mutex_unlock(&pcu->cmd_mutex);
1322 
1323         if (error)
1324                 return error;
1325 
1326         return scnprintf(buf, PAGE_SIZE, "%x\n", data);
1327 }
1328 
1329 static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev,
1330                                           struct device_attribute *dattr,
1331                                           const char *buf, size_t count)
1332 {
1333         struct usb_interface *intf = to_usb_interface(dev);
1334         struct ims_pcu *pcu = usb_get_intfdata(intf);
1335         int error;
1336         u8 value;
1337 
1338         error = kstrtou8(buf, 0, &value);
1339         if (error)
1340                 return error;
1341 
1342         mutex_lock(&pcu->cmd_mutex);
1343         error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value);
1344         mutex_unlock(&pcu->cmd_mutex);
1345 
1346         return error ?: count;
1347 }
1348 
1349 static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR,
1350                    ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store);
1351 
1352 static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev,
1353                                          struct device_attribute *dattr,
1354                                          char *buf)
1355 {
1356         struct usb_interface *intf = to_usb_interface(dev);
1357         struct ims_pcu *pcu = usb_get_intfdata(intf);
1358         int error;
1359 
1360         mutex_lock(&pcu->cmd_mutex);
1361         error = scnprintf(buf, PAGE_SIZE, "%x\n", pcu->ofn_reg_addr);
1362         mutex_unlock(&pcu->cmd_mutex);
1363 
1364         return error;
1365 }
1366 
1367 static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev,
1368                                           struct device_attribute *dattr,
1369                                           const char *buf, size_t count)
1370 {
1371         struct usb_interface *intf = to_usb_interface(dev);
1372         struct ims_pcu *pcu = usb_get_intfdata(intf);
1373         int error;
1374         u8 value;
1375 
1376         error = kstrtou8(buf, 0, &value);
1377         if (error)
1378                 return error;
1379 
1380         mutex_lock(&pcu->cmd_mutex);
1381         pcu->ofn_reg_addr = value;
1382         mutex_unlock(&pcu->cmd_mutex);
1383 
1384         return error ?: count;
1385 }
1386 
1387 static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR,
1388                    ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store);
1389 
1390 struct ims_pcu_ofn_bit_attribute {
1391         struct device_attribute dattr;
1392         u8 addr;
1393         u8 nr;
1394 };
1395 
1396 static ssize_t ims_pcu_ofn_bit_show(struct device *dev,
1397                                     struct device_attribute *dattr,
1398                                     char *buf)
1399 {
1400         struct usb_interface *intf = to_usb_interface(dev);
1401         struct ims_pcu *pcu = usb_get_intfdata(intf);
1402         struct ims_pcu_ofn_bit_attribute *attr =
1403                 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
1404         int error;
1405         u8 data;
1406 
1407         mutex_lock(&pcu->cmd_mutex);
1408         error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
1409         mutex_unlock(&pcu->cmd_mutex);
1410 
1411         if (error)
1412                 return error;
1413 
1414         return scnprintf(buf, PAGE_SIZE, "%d\n", !!(data & (1 << attr->nr)));
1415 }
1416 
1417 static ssize_t ims_pcu_ofn_bit_store(struct device *dev,
1418                                      struct device_attribute *dattr,
1419                                      const char *buf, size_t count)
1420 {
1421         struct usb_interface *intf = to_usb_interface(dev);
1422         struct ims_pcu *pcu = usb_get_intfdata(intf);
1423         struct ims_pcu_ofn_bit_attribute *attr =
1424                 container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr);
1425         int error;
1426         int value;
1427         u8 data;
1428 
1429         error = kstrtoint(buf, 0, &value);
1430         if (error)
1431                 return error;
1432 
1433         if (value > 1)
1434                 return -EINVAL;
1435 
1436         mutex_lock(&pcu->cmd_mutex);
1437 
1438         error = ims_pcu_read_ofn_config(pcu, attr->addr, &data);
1439         if (!error) {
1440                 if (value)
1441                         data |= 1U << attr->nr;
1442                 else
1443                         data &= ~(1U << attr->nr);
1444 
1445                 error = ims_pcu_write_ofn_config(pcu, attr->addr, data);
1446         }
1447 
1448         mutex_unlock(&pcu->cmd_mutex);
1449 
1450         return error ?: count;
1451 }
1452 
1453 #define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr)                        \
1454 struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = {          \
1455         .dattr = __ATTR(_field, S_IWUSR | S_IRUGO,                      \
1456                         ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store),   \
1457         .addr = _addr,                                                  \
1458         .nr = _nr,                                                      \
1459 }
1460 
1461 static IMS_PCU_OFN_BIT_ATTR(engine_enable,   0x60, 7);
1462 static IMS_PCU_OFN_BIT_ATTR(speed_enable,    0x60, 6);
1463 static IMS_PCU_OFN_BIT_ATTR(assert_enable,   0x60, 5);
1464 static IMS_PCU_OFN_BIT_ATTR(xyquant_enable,  0x60, 4);
1465 static IMS_PCU_OFN_BIT_ATTR(xyscale_enable,  0x60, 1);
1466 
1467 static IMS_PCU_OFN_BIT_ATTR(scale_x2,        0x63, 6);
1468 static IMS_PCU_OFN_BIT_ATTR(scale_y2,        0x63, 7);
1469 
1470 static struct attribute *ims_pcu_ofn_attrs[] = {
1471         &dev_attr_reg_data.attr,
1472         &dev_attr_reg_addr.attr,
1473         &ims_pcu_ofn_attr_engine_enable.dattr.attr,
1474         &ims_pcu_ofn_attr_speed_enable.dattr.attr,
1475         &ims_pcu_ofn_attr_assert_enable.dattr.attr,
1476         &ims_pcu_ofn_attr_xyquant_enable.dattr.attr,
1477         &ims_pcu_ofn_attr_xyscale_enable.dattr.attr,
1478         &ims_pcu_ofn_attr_scale_x2.dattr.attr,
1479         &ims_pcu_ofn_attr_scale_y2.dattr.attr,
1480         NULL
1481 };
1482 
1483 static struct attribute_group ims_pcu_ofn_attr_group = {
1484         .name   = "ofn",
1485         .attrs  = ims_pcu_ofn_attrs,
1486 };
1487 
1488 static void ims_pcu_irq(struct urb *urb)
1489 {
1490         struct ims_pcu *pcu = urb->context;
1491         int retval, status;
1492 
1493         status = urb->status;
1494 
1495         switch (status) {
1496         case 0:
1497                 /* success */
1498                 break;
1499         case -ECONNRESET:
1500         case -ENOENT:
1501         case -ESHUTDOWN:
1502                 /* this urb is terminated, clean up */
1503                 dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n",
1504                         __func__, status);
1505                 return;
1506         default:
1507                 dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n",
1508                         __func__, status);
1509                 goto exit;
1510         }
1511 
1512         dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__,
1513                 urb->actual_length, urb->actual_length, pcu->urb_in_buf);
1514 
1515         if (urb == pcu->urb_in)
1516                 ims_pcu_process_data(pcu, urb);
1517 
1518 exit:
1519         retval = usb_submit_urb(urb, GFP_ATOMIC);
1520         if (retval && retval != -ENODEV)
1521                 dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n",
1522                         __func__, retval);
1523 }
1524 
1525 static int ims_pcu_buffers_alloc(struct ims_pcu *pcu)
1526 {
1527         int error;
1528 
1529         pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size,
1530                                              GFP_KERNEL, &pcu->read_dma);
1531         if (!pcu->urb_in_buf) {
1532                 dev_err(pcu->dev,
1533                         "Failed to allocate memory for read buffer\n");
1534                 return -ENOMEM;
1535         }
1536 
1537         pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL);
1538         if (!pcu->urb_in) {
1539                 dev_err(pcu->dev, "Failed to allocate input URB\n");
1540                 error = -ENOMEM;
1541                 goto err_free_urb_in_buf;
1542         }
1543 
1544         pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1545         pcu->urb_in->transfer_dma = pcu->read_dma;
1546 
1547         usb_fill_bulk_urb(pcu->urb_in, pcu->udev,
1548                           usb_rcvbulkpipe(pcu->udev,
1549                                           pcu->ep_in->bEndpointAddress),
1550                           pcu->urb_in_buf, pcu->max_in_size,
1551                           ims_pcu_irq, pcu);
1552 
1553         /*
1554          * We are using usb_bulk_msg() for sending so there is no point
1555          * in allocating memory with usb_alloc_coherent().
1556          */
1557         pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL);
1558         if (!pcu->urb_out_buf) {
1559                 dev_err(pcu->dev, "Failed to allocate memory for write buffer\n");
1560                 error = -ENOMEM;
1561                 goto err_free_in_urb;
1562         }
1563 
1564         pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size,
1565                                                GFP_KERNEL, &pcu->ctrl_dma);
1566         if (!pcu->urb_ctrl_buf) {
1567                 dev_err(pcu->dev,
1568                         "Failed to allocate memory for read buffer\n");
1569                 goto err_free_urb_out_buf;
1570         }
1571 
1572         pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL);
1573         if (!pcu->urb_ctrl) {
1574                 dev_err(pcu->dev, "Failed to allocate input URB\n");
1575                 error = -ENOMEM;
1576                 goto err_free_urb_ctrl_buf;
1577         }
1578 
1579         pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
1580         pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma;
1581 
1582         usb_fill_int_urb(pcu->urb_ctrl, pcu->udev,
1583                           usb_rcvintpipe(pcu->udev,
1584                                          pcu->ep_ctrl->bEndpointAddress),
1585                           pcu->urb_ctrl_buf, pcu->max_ctrl_size,
1586                           ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval);
1587 
1588         return 0;
1589 
1590 err_free_urb_ctrl_buf:
1591         usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
1592                           pcu->urb_ctrl_buf, pcu->ctrl_dma);
1593 err_free_urb_out_buf:
1594         kfree(pcu->urb_out_buf);
1595 err_free_in_urb:
1596         usb_free_urb(pcu->urb_in);
1597 err_free_urb_in_buf:
1598         usb_free_coherent(pcu->udev, pcu->max_in_size,
1599                           pcu->urb_in_buf, pcu->read_dma);
1600         return error;
1601 }
1602 
1603 static void ims_pcu_buffers_free(struct ims_pcu *pcu)
1604 {
1605         usb_kill_urb(pcu->urb_in);
1606         usb_free_urb(pcu->urb_in);
1607 
1608         usb_free_coherent(pcu->udev, pcu->max_out_size,
1609                           pcu->urb_in_buf, pcu->read_dma);
1610 
1611         kfree(pcu->urb_out_buf);
1612 
1613         usb_kill_urb(pcu->urb_ctrl);
1614         usb_free_urb(pcu->urb_ctrl);
1615 
1616         usb_free_coherent(pcu->udev, pcu->max_ctrl_size,
1617                           pcu->urb_ctrl_buf, pcu->ctrl_dma);
1618 }
1619 
1620 static const struct usb_cdc_union_desc *
1621 ims_pcu_get_cdc_union_desc(struct usb_interface *intf)
1622 {
1623         const void *buf = intf->altsetting->extra;
1624         size_t buflen = intf->altsetting->extralen;
1625         struct usb_cdc_union_desc *union_desc;
1626 
1627         if (!buf) {
1628                 dev_err(&intf->dev, "Missing descriptor data\n");
1629                 return NULL;
1630         }
1631 
1632         if (!buflen) {
1633                 dev_err(&intf->dev, "Zero length descriptor\n");
1634                 return NULL;
1635         }
1636 
1637         while (buflen > 0) {
1638                 union_desc = (struct usb_cdc_union_desc *)buf;
1639 
1640                 if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE &&
1641                     union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) {
1642                         dev_dbg(&intf->dev, "Found union header\n");
1643                         return union_desc;
1644                 }
1645 
1646                 buflen -= union_desc->bLength;
1647                 buf += union_desc->bLength;
1648         }
1649 
1650         dev_err(&intf->dev, "Missing CDC union descriptor\n");
1651         return NULL;
1652 }
1653 
1654 static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu)
1655 {
1656         const struct usb_cdc_union_desc *union_desc;
1657         struct usb_host_interface *alt;
1658 
1659         union_desc = ims_pcu_get_cdc_union_desc(intf);
1660         if (!union_desc)
1661                 return -EINVAL;
1662 
1663         pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev,
1664                                          union_desc->bMasterInterface0);
1665 
1666         alt = pcu->ctrl_intf->cur_altsetting;
1667         pcu->ep_ctrl = &alt->endpoint[0].desc;
1668         pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl);
1669 
1670         pcu->data_intf = usb_ifnum_to_if(pcu->udev,
1671                                          union_desc->bSlaveInterface0);
1672 
1673         alt = pcu->data_intf->cur_altsetting;
1674         if (alt->desc.bNumEndpoints != 2) {
1675                 dev_err(pcu->dev,
1676                         "Incorrect number of endpoints on data interface (%d)\n",
1677                         alt->desc.bNumEndpoints);
1678                 return -EINVAL;
1679         }
1680 
1681         pcu->ep_out = &alt->endpoint[0].desc;
1682         if (!usb_endpoint_is_bulk_out(pcu->ep_out)) {
1683                 dev_err(pcu->dev,
1684                         "First endpoint on data interface is not BULK OUT\n");
1685                 return -EINVAL;
1686         }
1687 
1688         pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out);
1689         if (pcu->max_out_size < 8) {
1690                 dev_err(pcu->dev,
1691                         "Max OUT packet size is too small (%zd)\n",
1692                         pcu->max_out_size);
1693                 return -EINVAL;
1694         }
1695 
1696         pcu->ep_in = &alt->endpoint[1].desc;
1697         if (!usb_endpoint_is_bulk_in(pcu->ep_in)) {
1698                 dev_err(pcu->dev,
1699                         "Second endpoint on data interface is not BULK IN\n");
1700                 return -EINVAL;
1701         }
1702 
1703         pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in);
1704         if (pcu->max_in_size < 8) {
1705                 dev_err(pcu->dev,
1706                         "Max IN packet size is too small (%zd)\n",
1707                         pcu->max_in_size);
1708                 return -EINVAL;
1709         }
1710 
1711         return 0;
1712 }
1713 
1714 static int ims_pcu_start_io(struct ims_pcu *pcu)
1715 {
1716         int error;
1717 
1718         error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL);
1719         if (error) {
1720                 dev_err(pcu->dev,
1721                         "Failed to start control IO - usb_submit_urb failed with result: %d\n",
1722                         error);
1723                 return -EIO;
1724         }
1725 
1726         error = usb_submit_urb(pcu->urb_in, GFP_KERNEL);
1727         if (error) {
1728                 dev_err(pcu->dev,
1729                         "Failed to start IO - usb_submit_urb failed with result: %d\n",
1730                         error);
1731                 usb_kill_urb(pcu->urb_ctrl);
1732                 return -EIO;
1733         }
1734 
1735         return 0;
1736 }
1737 
1738 static void ims_pcu_stop_io(struct ims_pcu *pcu)
1739 {
1740         usb_kill_urb(pcu->urb_in);
1741         usb_kill_urb(pcu->urb_ctrl);
1742 }
1743 
1744 static int ims_pcu_line_setup(struct ims_pcu *pcu)
1745 {
1746         struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting;
1747         struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf;
1748         int error;
1749 
1750         memset(line, 0, sizeof(*line));
1751         line->dwDTERate = cpu_to_le32(57600);
1752         line->bDataBits = 8;
1753 
1754         error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
1755                                 USB_CDC_REQ_SET_LINE_CODING,
1756                                 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1757                                 0, interface->desc.bInterfaceNumber,
1758                                 line, sizeof(struct usb_cdc_line_coding),
1759                                 5000);
1760         if (error < 0) {
1761                 dev_err(pcu->dev, "Failed to set line coding, error: %d\n",
1762                         error);
1763                 return error;
1764         }
1765 
1766         error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0),
1767                                 USB_CDC_REQ_SET_CONTROL_LINE_STATE,
1768                                 USB_TYPE_CLASS | USB_RECIP_INTERFACE,
1769                                 0x03, interface->desc.bInterfaceNumber,
1770                                 NULL, 0, 5000);
1771         if (error < 0) {
1772                 dev_err(pcu->dev, "Failed to set line state, error: %d\n",
1773                         error);
1774                 return error;
1775         }
1776 
1777         return 0;
1778 }
1779 
1780 static int ims_pcu_get_device_info(struct ims_pcu *pcu)
1781 {
1782         int error;
1783 
1784         error = ims_pcu_get_info(pcu);
1785         if (error)
1786                 return error;
1787 
1788         error = ims_pcu_execute_query(pcu, GET_FW_VERSION);
1789         if (error) {
1790                 dev_err(pcu->dev,
1791                         "GET_FW_VERSION command failed, error: %d\n", error);
1792                 return error;
1793         }
1794 
1795         snprintf(pcu->fw_version, sizeof(pcu->fw_version),
1796                  "%02d%02d%02d%02d.%c%c",
1797                  pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
1798                  pcu->cmd_buf[6], pcu->cmd_buf[7]);
1799 
1800         error = ims_pcu_execute_query(pcu, GET_BL_VERSION);
1801         if (error) {
1802                 dev_err(pcu->dev,
1803                         "GET_BL_VERSION command failed, error: %d\n", error);
1804                 return error;
1805         }
1806 
1807         snprintf(pcu->bl_version, sizeof(pcu->bl_version),
1808                  "%02d%02d%02d%02d.%c%c",
1809                  pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5],
1810                  pcu->cmd_buf[6], pcu->cmd_buf[7]);
1811 
1812         error = ims_pcu_execute_query(pcu, RESET_REASON);
1813         if (error) {
1814                 dev_err(pcu->dev,
1815                         "RESET_REASON command failed, error: %d\n", error);
1816                 return error;
1817         }
1818 
1819         snprintf(pcu->reset_reason, sizeof(pcu->reset_reason),
1820                  "%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]);
1821 
1822         dev_dbg(pcu->dev,
1823                 "P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n",
1824                 pcu->part_number,
1825                 pcu->date_of_manufacturing,
1826                 pcu->serial_number,
1827                 pcu->fw_version,
1828                 pcu->bl_version,
1829                 pcu->reset_reason);
1830 
1831         return 0;
1832 }
1833 
1834 static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id)
1835 {
1836         int error;
1837 
1838         error = ims_pcu_execute_query(pcu, GET_DEVICE_ID);
1839         if (error) {
1840                 dev_err(pcu->dev,
1841                         "GET_DEVICE_ID command failed, error: %d\n", error);
1842                 return error;
1843         }
1844 
1845         *device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET];
1846         dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id);
1847 
1848         return 0;
1849 }
1850 
1851 static int ims_pcu_init_application_mode(struct ims_pcu *pcu)
1852 {
1853         static atomic_t device_no = ATOMIC_INIT(0);
1854 
1855         const struct ims_pcu_device_info *info;
1856         int error;
1857 
1858         error = ims_pcu_get_device_info(pcu);
1859         if (error) {
1860                 /* Device does not respond to basic queries, hopeless */
1861                 return error;
1862         }
1863 
1864         error = ims_pcu_identify_type(pcu, &pcu->device_id);
1865         if (error) {
1866                 dev_err(pcu->dev,
1867                         "Failed to identify device, error: %d\n", error);
1868                 /*
1869                  * Do not signal error, but do not create input nor
1870                  * backlight devices either, let userspace figure this
1871                  * out (flash a new firmware?).
1872                  */
1873                 return 0;
1874         }
1875 
1876         if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) ||
1877             !ims_pcu_device_info[pcu->device_id].keymap) {
1878                 dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id);
1879                 /* Same as above, punt to userspace */
1880                 return 0;
1881         }
1882 
1883         /* Device appears to be operable, complete initialization */
1884         pcu->device_no = atomic_inc_return(&device_no) - 1;
1885 
1886         /*
1887          * PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor
1888          */
1889         if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) {
1890                 error = sysfs_create_group(&pcu->dev->kobj,
1891                                            &ims_pcu_ofn_attr_group);
1892                 if (error)
1893                         return error;
1894         }
1895 
1896         error = ims_pcu_setup_backlight(pcu);
1897         if (error)
1898                 return error;
1899 
1900         info = &ims_pcu_device_info[pcu->device_id];
1901         error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len);
1902         if (error)
1903                 goto err_destroy_backlight;
1904 
1905         if (info->has_gamepad) {
1906                 error = ims_pcu_setup_gamepad(pcu);
1907                 if (error)
1908                         goto err_destroy_buttons;
1909         }
1910 
1911         pcu->setup_complete = true;
1912 
1913         return 0;
1914 
1915 err_destroy_buttons:
1916         ims_pcu_destroy_buttons(pcu);
1917 err_destroy_backlight:
1918         ims_pcu_destroy_backlight(pcu);
1919         return error;
1920 }
1921 
1922 static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu)
1923 {
1924         if (pcu->setup_complete) {
1925                 pcu->setup_complete = false;
1926                 mb(); /* make sure flag setting is not reordered */
1927 
1928                 if (pcu->gamepad)
1929                         ims_pcu_destroy_gamepad(pcu);
1930                 ims_pcu_destroy_buttons(pcu);
1931                 ims_pcu_destroy_backlight(pcu);
1932 
1933                 if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID)
1934                         sysfs_remove_group(&pcu->dev->kobj,
1935                                            &ims_pcu_ofn_attr_group);
1936         }
1937 }
1938 
1939 static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu)
1940 {
1941         int error;
1942 
1943         error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0,
1944                                            IMS_PCU_CMD_RESPONSE_TIMEOUT);
1945         if (error) {
1946                 dev_err(pcu->dev, "Bootloader does not respond, aborting\n");
1947                 return error;
1948         }
1949 
1950         pcu->fw_start_addr =
1951                 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]);
1952         pcu->fw_end_addr =
1953                 get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]);
1954 
1955         dev_info(pcu->dev,
1956                  "Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n",
1957                  pcu->fw_start_addr, pcu->fw_end_addr);
1958 
1959         error = request_firmware_nowait(THIS_MODULE, true,
1960                                         IMS_PCU_FIRMWARE_NAME,
1961                                         pcu->dev, GFP_KERNEL, pcu,
1962                                         ims_pcu_process_async_firmware);
1963         if (error) {
1964                 /* This error is not fatal, let userspace have another chance */
1965                 complete(&pcu->async_firmware_done);
1966         }
1967 
1968         return 0;
1969 }
1970 
1971 static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu)
1972 {
1973         /* Make sure our initial firmware request has completed */
1974         wait_for_completion(&pcu->async_firmware_done);
1975 }
1976 
1977 #define IMS_PCU_APPLICATION_MODE        0
1978 #define IMS_PCU_BOOTLOADER_MODE         1
1979 
1980 static struct usb_driver ims_pcu_driver;
1981 
1982 static int ims_pcu_probe(struct usb_interface *intf,
1983                          const struct usb_device_id *id)
1984 {
1985         struct usb_device *udev = interface_to_usbdev(intf);
1986         struct ims_pcu *pcu;
1987         int error;
1988 
1989         pcu = kzalloc(sizeof(struct ims_pcu), GFP_KERNEL);
1990         if (!pcu)
1991                 return -ENOMEM;
1992 
1993         pcu->dev = &intf->dev;
1994         pcu->udev = udev;
1995         pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE;
1996         mutex_init(&pcu->cmd_mutex);
1997         init_completion(&pcu->cmd_done);
1998         init_completion(&pcu->async_firmware_done);
1999 
2000         error = ims_pcu_parse_cdc_data(intf, pcu);
2001         if (error)
2002                 goto err_free_mem;
2003 
2004         error = usb_driver_claim_interface(&ims_pcu_driver,
2005                                            pcu->data_intf, pcu);
2006         if (error) {
2007                 dev_err(&intf->dev,
2008                         "Unable to claim corresponding data interface: %d\n",
2009                         error);
2010                 goto err_free_mem;
2011         }
2012 
2013         usb_set_intfdata(pcu->ctrl_intf, pcu);
2014         usb_set_intfdata(pcu->data_intf, pcu);
2015 
2016         error = ims_pcu_buffers_alloc(pcu);
2017         if (error)
2018                 goto err_unclaim_intf;
2019 
2020         error = ims_pcu_start_io(pcu);
2021         if (error)
2022                 goto err_free_buffers;
2023 
2024         error = ims_pcu_line_setup(pcu);
2025         if (error)
2026                 goto err_stop_io;
2027 
2028         error = sysfs_create_group(&intf->dev.kobj, &ims_pcu_attr_group);
2029         if (error)
2030                 goto err_stop_io;
2031 
2032         error = pcu->bootloader_mode ?
2033                         ims_pcu_init_bootloader_mode(pcu) :
2034                         ims_pcu_init_application_mode(pcu);
2035         if (error)
2036                 goto err_remove_sysfs;
2037 
2038         return 0;
2039 
2040 err_remove_sysfs:
2041         sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group);
2042 err_stop_io:
2043         ims_pcu_stop_io(pcu);
2044 err_free_buffers:
2045         ims_pcu_buffers_free(pcu);
2046 err_unclaim_intf:
2047         usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf);
2048 err_free_mem:
2049         kfree(pcu);
2050         return error;
2051 }
2052 
2053 static void ims_pcu_disconnect(struct usb_interface *intf)
2054 {
2055         struct ims_pcu *pcu = usb_get_intfdata(intf);
2056         struct usb_host_interface *alt = intf->cur_altsetting;
2057 
2058         usb_set_intfdata(intf, NULL);
2059 
2060         /*
2061          * See if we are dealing with control or data interface. The cleanup
2062          * happens when we unbind primary (control) interface.
2063          */
2064         if (alt->desc.bInterfaceClass != USB_CLASS_COMM)
2065                 return;
2066 
2067         sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group);
2068 
2069         ims_pcu_stop_io(pcu);
2070 
2071         if (pcu->bootloader_mode)
2072                 ims_pcu_destroy_bootloader_mode(pcu);
2073         else
2074                 ims_pcu_destroy_application_mode(pcu);
2075 
2076         ims_pcu_buffers_free(pcu);
2077         kfree(pcu);
2078 }
2079 
2080 #ifdef CONFIG_PM
2081 static int ims_pcu_suspend(struct usb_interface *intf,
2082                            pm_message_t message)
2083 {
2084         struct ims_pcu *pcu = usb_get_intfdata(intf);
2085         struct usb_host_interface *alt = intf->cur_altsetting;
2086 
2087         if (alt->desc.bInterfaceClass == USB_CLASS_COMM)
2088                 ims_pcu_stop_io(pcu);
2089 
2090         return 0;
2091 }
2092 
2093 static int ims_pcu_resume(struct usb_interface *intf)
2094 {
2095         struct ims_pcu *pcu = usb_get_intfdata(intf);
2096         struct usb_host_interface *alt = intf->cur_altsetting;
2097         int retval = 0;
2098 
2099         if (alt->desc.bInterfaceClass == USB_CLASS_COMM) {
2100                 retval = ims_pcu_start_io(pcu);
2101                 if (retval == 0)
2102                         retval = ims_pcu_line_setup(pcu);
2103         }
2104 
2105         return retval;
2106 }
2107 #endif
2108 
2109 static const struct usb_device_id ims_pcu_id_table[] = {
2110         {
2111                 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082,
2112                                         USB_CLASS_COMM,
2113                                         USB_CDC_SUBCLASS_ACM,
2114                                         USB_CDC_ACM_PROTO_AT_V25TER),
2115                 .driver_info = IMS_PCU_APPLICATION_MODE,
2116         },
2117         {
2118                 USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083,
2119                                         USB_CLASS_COMM,
2120                                         USB_CDC_SUBCLASS_ACM,
2121                                         USB_CDC_ACM_PROTO_AT_V25TER),
2122                 .driver_info = IMS_PCU_BOOTLOADER_MODE,
2123         },
2124         { }
2125 };
2126 
2127 static struct usb_driver ims_pcu_driver = {
2128         .name                   = "ims_pcu",
2129         .id_table               = ims_pcu_id_table,
2130         .probe                  = ims_pcu_probe,
2131         .disconnect             = ims_pcu_disconnect,
2132 #ifdef CONFIG_PM
2133         .suspend                = ims_pcu_suspend,
2134         .resume                 = ims_pcu_resume,
2135         .reset_resume           = ims_pcu_resume,
2136 #endif
2137 };
2138 
2139 module_usb_driver(ims_pcu_driver);
2140 
2141 MODULE_DESCRIPTION("IMS Passenger Control Unit driver");
2142 MODULE_AUTHOR("Dmitry Torokhov <dmitry.torokhov@gmail.com>");
2143 MODULE_LICENSE("GPL");
2144 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us