Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/hwmon/abituguru.c

  1 /*
  2  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
  3  *
  4  * This program is free software; you can redistribute it and/or modify
  5  * it under the terms of the GNU General Public License as published by
  6  * the Free Software Foundation; either version 2 of the License, or
  7  * (at your option) any later version.
  8  *
  9  * This program is distributed in the hope that it will be useful,
 10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12  * GNU General Public License for more details.
 13  *
 14  * You should have received a copy of the GNU General Public License
 15  * along with this program; if not, write to the Free Software
 16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 17  */
 18 /*
 19  * This driver supports the sensor part of the first and second revision of
 20  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
 21  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
 22  */
 23 
 24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 25 
 26 #include <linux/module.h>
 27 #include <linux/sched.h>
 28 #include <linux/init.h>
 29 #include <linux/slab.h>
 30 #include <linux/jiffies.h>
 31 #include <linux/mutex.h>
 32 #include <linux/err.h>
 33 #include <linux/delay.h>
 34 #include <linux/platform_device.h>
 35 #include <linux/hwmon.h>
 36 #include <linux/hwmon-sysfs.h>
 37 #include <linux/dmi.h>
 38 #include <linux/io.h>
 39 
 40 /* Banks */
 41 #define ABIT_UGURU_ALARM_BANK                   0x20 /* 1x 3 bytes */
 42 #define ABIT_UGURU_SENSOR_BANK1                 0x21 /* 16x volt and temp */
 43 #define ABIT_UGURU_FAN_PWM                      0x24 /* 3x 5 bytes */
 44 #define ABIT_UGURU_SENSOR_BANK2                 0x26 /* fans */
 45 /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
 46 #define ABIT_UGURU_MAX_BANK1_SENSORS            16
 47 /*
 48  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
 49  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
 50  */
 51 /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
 52 #define ABIT_UGURU_MAX_BANK2_SENSORS            6
 53 /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
 54 #define ABIT_UGURU_MAX_PWMS                     5
 55 /* uGuru sensor bank 1 flags */                      /* Alarm if: */
 56 #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE       0x01 /*  temp over warn */
 57 #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE       0x02 /*  volt over max */
 58 #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE        0x04 /*  volt under min */
 59 #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG         0x10 /* temp is over warn */
 60 #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG         0x20 /* volt is over max */
 61 #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG          0x40 /* volt is under min */
 62 /* uGuru sensor bank 2 flags */                      /* Alarm if: */
 63 #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE         0x01 /*   fan under min */
 64 /* uGuru sensor bank common flags */
 65 #define ABIT_UGURU_BEEP_ENABLE                  0x08 /* beep if alarm */
 66 #define ABIT_UGURU_SHUTDOWN_ENABLE              0x80 /* shutdown if alarm */
 67 /* uGuru fan PWM (speed control) flags */
 68 #define ABIT_UGURU_FAN_PWM_ENABLE               0x80 /* enable speed control */
 69 /* Values used for conversion */
 70 #define ABIT_UGURU_FAN_MAX                      15300 /* RPM */
 71 /* Bank1 sensor types */
 72 #define ABIT_UGURU_IN_SENSOR                    0
 73 #define ABIT_UGURU_TEMP_SENSOR                  1
 74 #define ABIT_UGURU_NC                           2
 75 /*
 76  * In many cases we need to wait for the uGuru to reach a certain status, most
 77  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
 78  * can best busy wait. This define gives the total amount of reads to try.
 79  */
 80 #define ABIT_UGURU_WAIT_TIMEOUT                 125
 81 /*
 82  * However sometimes older versions of the uGuru seem to be distracted and they
 83  * do not respond for a long time. To handle this we sleep before each of the
 84  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
 85  */
 86 #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP           5
 87 /*
 88  * Normally all expected status in abituguru_ready, are reported after the
 89  * first read, but sometimes not and we need to poll.
 90  */
 91 #define ABIT_UGURU_READY_TIMEOUT                5
 92 /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
 93 #define ABIT_UGURU_MAX_RETRIES                  3
 94 #define ABIT_UGURU_RETRY_DELAY                  (HZ/5)
 95 /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
 96 #define ABIT_UGURU_MAX_TIMEOUTS                 2
 97 /* utility macros */
 98 #define ABIT_UGURU_NAME                         "abituguru"
 99 #define ABIT_UGURU_DEBUG(level, format, arg...)         \
100         do {                                            \
101                 if (level <= verbose)                   \
102                         pr_debug(format , ## arg);      \
103         } while (0)
104 
105 /* Macros to help calculate the sysfs_names array length */
106 /*
107  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
108  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
109  */
110 #define ABITUGURU_IN_NAMES_LENGTH       (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
111 /*
112  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
113  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
114  */
115 #define ABITUGURU_TEMP_NAMES_LENGTH     (13 + 11 + 12 + 13 + 20 + 12 + 16)
116 /*
117  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
118  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
119  */
120 #define ABITUGURU_FAN_NAMES_LENGTH      (11 + 9 + 11 + 18 + 10 + 14)
121 /*
122  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
123  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
124  */
125 #define ABITUGURU_PWM_NAMES_LENGTH      (12 + 24 + 2 * 21 + 2 * 22)
126 /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
127 #define ABITUGURU_SYSFS_NAMES_LENGTH    ( \
128         ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
129         ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
130         ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
131 
132 /*
133  * All the macros below are named identical to the oguru and oguru2 programs
134  * reverse engineered by Olle Sandberg, hence the names might not be 100%
135  * logical. I could come up with better names, but I prefer keeping the names
136  * identical so that this driver can be compared with his work more easily.
137  */
138 /* Two i/o-ports are used by uGuru */
139 #define ABIT_UGURU_BASE                         0x00E0
140 /* Used to tell uGuru what to read and to read the actual data */
141 #define ABIT_UGURU_CMD                          0x00
142 /* Mostly used to check if uGuru is busy */
143 #define ABIT_UGURU_DATA                         0x04
144 #define ABIT_UGURU_REGION_LENGTH                5
145 /* uGuru status' */
146 #define ABIT_UGURU_STATUS_WRITE                 0x00 /* Ready to be written */
147 #define ABIT_UGURU_STATUS_READ                  0x01 /* Ready to be read */
148 #define ABIT_UGURU_STATUS_INPUT                 0x08 /* More input */
149 #define ABIT_UGURU_STATUS_READY                 0x09 /* Ready to be written */
150 
151 /* Constants */
152 /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
153 static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
154 /*
155  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
156  * correspond to 300-3000 RPM
157  */
158 static const u8 abituguru_bank2_min_threshold = 5;
159 static const u8 abituguru_bank2_max_threshold = 50;
160 /*
161  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
162  * are temperature trip points.
163  */
164 static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
165 /*
166  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
167  * special case the minimum allowed pwm% setting for this is 30% (77) on
168  * some MB's this special case is handled in the code!
169  */
170 static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
171 static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
172 
173 
174 /* Insmod parameters */
175 static bool force;
176 module_param(force, bool, 0);
177 MODULE_PARM_DESC(force, "Set to one to force detection.");
178 static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
179         -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
180 module_param_array(bank1_types, int, NULL, 0);
181 MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
182         "   -1 autodetect\n"
183         "    0 volt sensor\n"
184         "    1 temp sensor\n"
185         "    2 not connected");
186 static int fan_sensors;
187 module_param(fan_sensors, int, 0);
188 MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
189         "(0 = autodetect)");
190 static int pwms;
191 module_param(pwms, int, 0);
192 MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
193         "(0 = autodetect)");
194 
195 /* Default verbose is 2, since this driver is still in the testing phase */
196 static int verbose = 2;
197 module_param(verbose, int, 0644);
198 MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
199         "   0 normal output\n"
200         "   1 + verbose error reporting\n"
201         "   2 + sensors type probing info\n"
202         "   3 + retryable error reporting");
203 
204 
205 /*
206  * For the Abit uGuru, we need to keep some data in memory.
207  * The structure is dynamically allocated, at the same time when a new
208  * abituguru device is allocated.
209  */
210 struct abituguru_data {
211         struct device *hwmon_dev;       /* hwmon registered device */
212         struct mutex update_lock;       /* protect access to data and uGuru */
213         unsigned long last_updated;     /* In jiffies */
214         unsigned short addr;            /* uguru base address */
215         char uguru_ready;               /* is the uguru in ready state? */
216         unsigned char update_timeouts;  /*
217                                          * number of update timeouts since last
218                                          * successful update
219                                          */
220 
221         /*
222          * The sysfs attr and their names are generated automatically, for bank1
223          * we cannot use a predefined array because we don't know beforehand
224          * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
225          * easier todo things the same way.  For in sensors we have 9 (temp 7)
226          * sysfs entries per sensor, for bank2 and pwms 6.
227          */
228         struct sensor_device_attribute_2 sysfs_attr[
229                 ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
230                 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
231         /* Buffer to store the dynamically generated sysfs names */
232         char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
233 
234         /* Bank 1 data */
235         /* number of and addresses of [0] in, [1] temp sensors */
236         u8 bank1_sensors[2];
237         u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
238         u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
239         /*
240          * This array holds 3 entries per sensor for the bank 1 sensor settings
241          * (flags, min, max for voltage / flags, warn, shutdown for temp).
242          */
243         u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
244         /*
245          * Maximum value for each sensor used for scaling in mV/millidegrees
246          * Celsius.
247          */
248         int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
249 
250         /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
251         u8 bank2_sensors; /* actual number of bank2 sensors found */
252         u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
253         u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
254 
255         /* Alarms 2 bytes for bank1, 1 byte for bank2 */
256         u8 alarms[3];
257 
258         /* Fan PWM (speed control) 5 bytes per PWM */
259         u8 pwms; /* actual number of pwms found */
260         u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
261 };
262 
263 static const char *never_happen = "This should never happen.";
264 static const char *report_this =
265         "Please report this to the abituguru maintainer (see MAINTAINERS)";
266 
267 /* wait till the uguru is in the specified state */
268 static int abituguru_wait(struct abituguru_data *data, u8 state)
269 {
270         int timeout = ABIT_UGURU_WAIT_TIMEOUT;
271 
272         while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
273                 timeout--;
274                 if (timeout == 0)
275                         return -EBUSY;
276                 /*
277                  * sleep a bit before our last few tries, see the comment on
278                  * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
279                  */
280                 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
281                         msleep(0);
282         }
283         return 0;
284 }
285 
286 /* Put the uguru in ready for input state */
287 static int abituguru_ready(struct abituguru_data *data)
288 {
289         int timeout = ABIT_UGURU_READY_TIMEOUT;
290 
291         if (data->uguru_ready)
292                 return 0;
293 
294         /* Reset? / Prepare for next read/write cycle */
295         outb(0x00, data->addr + ABIT_UGURU_DATA);
296 
297         /* Wait till the uguru is ready */
298         if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
299                 ABIT_UGURU_DEBUG(1,
300                         "timeout exceeded waiting for ready state\n");
301                 return -EIO;
302         }
303 
304         /* Cmd port MUST be read now and should contain 0xAC */
305         while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
306                 timeout--;
307                 if (timeout == 0) {
308                         ABIT_UGURU_DEBUG(1,
309                            "CMD reg does not hold 0xAC after ready command\n");
310                         return -EIO;
311                 }
312                 msleep(0);
313         }
314 
315         /*
316          * After this the ABIT_UGURU_DATA port should contain
317          * ABIT_UGURU_STATUS_INPUT
318          */
319         timeout = ABIT_UGURU_READY_TIMEOUT;
320         while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
321                 timeout--;
322                 if (timeout == 0) {
323                         ABIT_UGURU_DEBUG(1,
324                                 "state != more input after ready command\n");
325                         return -EIO;
326                 }
327                 msleep(0);
328         }
329 
330         data->uguru_ready = 1;
331         return 0;
332 }
333 
334 /*
335  * Send the bank and then sensor address to the uGuru for the next read/write
336  * cycle. This function gets called as the first part of a read/write by
337  * abituguru_read and abituguru_write. This function should never be
338  * called by any other function.
339  */
340 static int abituguru_send_address(struct abituguru_data *data,
341         u8 bank_addr, u8 sensor_addr, int retries)
342 {
343         /*
344          * assume the caller does error handling itself if it has not requested
345          * any retries, and thus be quiet.
346          */
347         int report_errors = retries;
348 
349         for (;;) {
350                 /*
351                  * Make sure the uguru is ready and then send the bank address,
352                  * after this the uguru is no longer "ready".
353                  */
354                 if (abituguru_ready(data) != 0)
355                         return -EIO;
356                 outb(bank_addr, data->addr + ABIT_UGURU_DATA);
357                 data->uguru_ready = 0;
358 
359                 /*
360                  * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
361                  * and send the sensor addr
362                  */
363                 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
364                         if (retries) {
365                                 ABIT_UGURU_DEBUG(3, "timeout exceeded "
366                                         "waiting for more input state, %d "
367                                         "tries remaining\n", retries);
368                                 set_current_state(TASK_UNINTERRUPTIBLE);
369                                 schedule_timeout(ABIT_UGURU_RETRY_DELAY);
370                                 retries--;
371                                 continue;
372                         }
373                         if (report_errors)
374                                 ABIT_UGURU_DEBUG(1, "timeout exceeded "
375                                         "waiting for more input state "
376                                         "(bank: %d)\n", (int)bank_addr);
377                         return -EBUSY;
378                 }
379                 outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
380                 return 0;
381         }
382 }
383 
384 /*
385  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
386  * result in buf, retry the send address part of the read retries times.
387  */
388 static int abituguru_read(struct abituguru_data *data,
389         u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
390 {
391         int i;
392 
393         /* Send the address */
394         i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
395         if (i)
396                 return i;
397 
398         /* And read the data */
399         for (i = 0; i < count; i++) {
400                 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
401                         ABIT_UGURU_DEBUG(retries ? 1 : 3,
402                                 "timeout exceeded waiting for "
403                                 "read state (bank: %d, sensor: %d)\n",
404                                 (int)bank_addr, (int)sensor_addr);
405                         break;
406                 }
407                 buf[i] = inb(data->addr + ABIT_UGURU_CMD);
408         }
409 
410         /* Last put the chip back in ready state */
411         abituguru_ready(data);
412 
413         return i;
414 }
415 
416 /*
417  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
418  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
419  */
420 static int abituguru_write(struct abituguru_data *data,
421         u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
422 {
423         /*
424          * We use the ready timeout as we have to wait for 0xAC just like the
425          * ready function
426          */
427         int i, timeout = ABIT_UGURU_READY_TIMEOUT;
428 
429         /* Send the address */
430         i = abituguru_send_address(data, bank_addr, sensor_addr,
431                 ABIT_UGURU_MAX_RETRIES);
432         if (i)
433                 return i;
434 
435         /* And write the data */
436         for (i = 0; i < count; i++) {
437                 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
438                         ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
439                                 "write state (bank: %d, sensor: %d)\n",
440                                 (int)bank_addr, (int)sensor_addr);
441                         break;
442                 }
443                 outb(buf[i], data->addr + ABIT_UGURU_CMD);
444         }
445 
446         /*
447          * Now we need to wait till the chip is ready to be read again,
448          * so that we can read 0xAC as confirmation that our write has
449          * succeeded.
450          */
451         if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
452                 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
453                         "after write (bank: %d, sensor: %d)\n", (int)bank_addr,
454                         (int)sensor_addr);
455                 return -EIO;
456         }
457 
458         /* Cmd port MUST be read now and should contain 0xAC */
459         while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
460                 timeout--;
461                 if (timeout == 0) {
462                         ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
463                                 "write (bank: %d, sensor: %d)\n",
464                                 (int)bank_addr, (int)sensor_addr);
465                         return -EIO;
466                 }
467                 msleep(0);
468         }
469 
470         /* Last put the chip back in ready state */
471         abituguru_ready(data);
472 
473         return i;
474 }
475 
476 /*
477  * Detect sensor type. Temp and Volt sensors are enabled with
478  * different masks and will ignore enable masks not meant for them.
479  * This enables us to test what kind of sensor we're dealing with.
480  * By setting the alarm thresholds so that we will always get an
481  * alarm for sensor type X and then enabling the sensor as sensor type
482  * X, if we then get an alarm it is a sensor of type X.
483  */
484 static int
485 abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
486                                    u8 sensor_addr)
487 {
488         u8 val, test_flag, buf[3];
489         int i, ret = -ENODEV; /* error is the most common used retval :| */
490 
491         /* If overriden by the user return the user selected type */
492         if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
493                         bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
494                 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
495                         "%d because of \"bank1_types\" module param\n",
496                         bank1_types[sensor_addr], (int)sensor_addr);
497                 return bank1_types[sensor_addr];
498         }
499 
500         /* First read the sensor and the current settings */
501         if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
502                         1, ABIT_UGURU_MAX_RETRIES) != 1)
503                 return -ENODEV;
504 
505         /* Test val is sane / usable for sensor type detection. */
506         if ((val < 10u) || (val > 250u)) {
507                 pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
508                         "unable to determine sensor type, skipping sensor\n",
509                         (int)sensor_addr, (int)val);
510                 /*
511                  * assume no sensor is there for sensors for which we can't
512                  * determine the sensor type because their reading is too close
513                  * to their limits, this usually means no sensor is there.
514                  */
515                 return ABIT_UGURU_NC;
516         }
517 
518         ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
519         /*
520          * Volt sensor test, enable volt low alarm, set min value ridiculously
521          * high, or vica versa if the reading is very high. If its a volt
522          * sensor this should always give us an alarm.
523          */
524         if (val <= 240u) {
525                 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
526                 buf[1] = 245;
527                 buf[2] = 250;
528                 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
529         } else {
530                 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
531                 buf[1] = 5;
532                 buf[2] = 10;
533                 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
534         }
535 
536         if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
537                         buf, 3) != 3)
538                 goto abituguru_detect_bank1_sensor_type_exit;
539         /*
540          * Now we need 20 ms to give the uguru time to read the sensors
541          * and raise a voltage alarm
542          */
543         set_current_state(TASK_UNINTERRUPTIBLE);
544         schedule_timeout(HZ/50);
545         /* Check for alarm and check the alarm is a volt low alarm. */
546         if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
547                         ABIT_UGURU_MAX_RETRIES) != 3)
548                 goto abituguru_detect_bank1_sensor_type_exit;
549         if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
550                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
551                                 sensor_addr, buf, 3,
552                                 ABIT_UGURU_MAX_RETRIES) != 3)
553                         goto abituguru_detect_bank1_sensor_type_exit;
554                 if (buf[0] & test_flag) {
555                         ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
556                         ret = ABIT_UGURU_IN_SENSOR;
557                         goto abituguru_detect_bank1_sensor_type_exit;
558                 } else
559                         ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
560                                 "sensor test, but volt range flag not set\n");
561         } else
562                 ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
563                         "test\n");
564 
565         /*
566          * Temp sensor test, enable sensor as a temp sensor, set beep value
567          * ridiculously low (but not too low, otherwise uguru ignores it).
568          * If its a temp sensor this should always give us an alarm.
569          */
570         buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
571         buf[1] = 5;
572         buf[2] = 10;
573         if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
574                         buf, 3) != 3)
575                 goto abituguru_detect_bank1_sensor_type_exit;
576         /*
577          * Now we need 50 ms to give the uguru time to read the sensors
578          * and raise a temp alarm
579          */
580         set_current_state(TASK_UNINTERRUPTIBLE);
581         schedule_timeout(HZ/20);
582         /* Check for alarm and check the alarm is a temp high alarm. */
583         if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
584                         ABIT_UGURU_MAX_RETRIES) != 3)
585                 goto abituguru_detect_bank1_sensor_type_exit;
586         if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
587                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
588                                 sensor_addr, buf, 3,
589                                 ABIT_UGURU_MAX_RETRIES) != 3)
590                         goto abituguru_detect_bank1_sensor_type_exit;
591                 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
592                         ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
593                         ret = ABIT_UGURU_TEMP_SENSOR;
594                         goto abituguru_detect_bank1_sensor_type_exit;
595                 } else
596                         ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
597                                 "sensor test, but temp high flag not set\n");
598         } else
599                 ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
600                         "test\n");
601 
602         ret = ABIT_UGURU_NC;
603 abituguru_detect_bank1_sensor_type_exit:
604         /*
605          * Restore original settings, failing here is really BAD, it has been
606          * reported that some BIOS-es hang when entering the uGuru menu with
607          * invalid settings present in the uGuru, so we try this 3 times.
608          */
609         for (i = 0; i < 3; i++)
610                 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
611                                 sensor_addr, data->bank1_settings[sensor_addr],
612                                 3) == 3)
613                         break;
614         if (i == 3) {
615                 pr_err("Fatal error could not restore original settings. %s %s\n",
616                        never_happen, report_this);
617                 return -ENODEV;
618         }
619         return ret;
620 }
621 
622 /*
623  * These functions try to find out how many sensors there are in bank2 and how
624  * many pwms there are. The purpose of this is to make sure that we don't give
625  * the user the possibility to change settings for non-existent sensors / pwm.
626  * The uGuru will happily read / write whatever memory happens to be after the
627  * memory storing the PWM settings when reading/writing to a PWM which is not
628  * there. Notice even if we detect a PWM which doesn't exist we normally won't
629  * write to it, unless the user tries to change the settings.
630  *
631  * Although the uGuru allows reading (settings) from non existing bank2
632  * sensors, my version of the uGuru does seem to stop writing to them, the
633  * write function above aborts in this case with:
634  * "CMD reg does not hold 0xAC after write"
635  *
636  * Notice these 2 tests are non destructive iow read-only tests, otherwise
637  * they would defeat their purpose. Although for the bank2_sensors detection a
638  * read/write test would be feasible because of the reaction above, I've
639  * however opted to stay on the safe side.
640  */
641 static void
642 abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
643 {
644         int i;
645 
646         if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
647                 data->bank2_sensors = fan_sensors;
648                 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
649                         "\"fan_sensors\" module param\n",
650                         (int)data->bank2_sensors);
651                 return;
652         }
653 
654         ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
655         for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
656                 /*
657                  * 0x89 are the known used bits:
658                  * -0x80 enable shutdown
659                  * -0x08 enable beep
660                  * -0x01 enable alarm
661                  * All other bits should be 0, but on some motherboards
662                  * 0x40 (bit 6) is also high for some of the fans??
663                  */
664                 if (data->bank2_settings[i][0] & ~0xC9) {
665                         ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
666                                 "to be a fan sensor: settings[0] = %02X\n",
667                                 i, (unsigned int)data->bank2_settings[i][0]);
668                         break;
669                 }
670 
671                 /* check if the threshold is within the allowed range */
672                 if (data->bank2_settings[i][1] <
673                                 abituguru_bank2_min_threshold) {
674                         ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
675                                 "to be a fan sensor: the threshold (%d) is "
676                                 "below the minimum (%d)\n", i,
677                                 (int)data->bank2_settings[i][1],
678                                 (int)abituguru_bank2_min_threshold);
679                         break;
680                 }
681                 if (data->bank2_settings[i][1] >
682                                 abituguru_bank2_max_threshold) {
683                         ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
684                                 "to be a fan sensor: the threshold (%d) is "
685                                 "above the maximum (%d)\n", i,
686                                 (int)data->bank2_settings[i][1],
687                                 (int)abituguru_bank2_max_threshold);
688                         break;
689                 }
690         }
691 
692         data->bank2_sensors = i;
693         ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
694                 (int)data->bank2_sensors);
695 }
696 
697 static void
698 abituguru_detect_no_pwms(struct abituguru_data *data)
699 {
700         int i, j;
701 
702         if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
703                 data->pwms = pwms;
704                 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
705                         "\"pwms\" module param\n", (int)data->pwms);
706                 return;
707         }
708 
709         ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
710         for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
711                 /*
712                  * 0x80 is the enable bit and the low
713                  * nibble is which temp sensor to use,
714                  * the other bits should be 0
715                  */
716                 if (data->pwm_settings[i][0] & ~0x8F) {
717                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
718                                 "to be a pwm channel: settings[0] = %02X\n",
719                                 i, (unsigned int)data->pwm_settings[i][0]);
720                         break;
721                 }
722 
723                 /*
724                  * the low nibble must correspond to one of the temp sensors
725                  * we've found
726                  */
727                 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
728                                 j++) {
729                         if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
730                                         (data->pwm_settings[i][0] & 0x0F))
731                                 break;
732                 }
733                 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
734                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
735                                 "to be a pwm channel: %d is not a valid temp "
736                                 "sensor address\n", i,
737                                 data->pwm_settings[i][0] & 0x0F);
738                         break;
739                 }
740 
741                 /* check if all other settings are within the allowed range */
742                 for (j = 1; j < 5; j++) {
743                         u8 min;
744                         /* special case pwm1 min pwm% */
745                         if ((i == 0) && ((j == 1) || (j == 2)))
746                                 min = 77;
747                         else
748                                 min = abituguru_pwm_min[j];
749                         if (data->pwm_settings[i][j] < min) {
750                                 ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
751                                         "not seem to be a pwm channel: "
752                                         "setting %d (%d) is below the minimum "
753                                         "value (%d)\n", i, j,
754                                         (int)data->pwm_settings[i][j],
755                                         (int)min);
756                                 goto abituguru_detect_no_pwms_exit;
757                         }
758                         if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
759                                 ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
760                                         "not seem to be a pwm channel: "
761                                         "setting %d (%d) is above the maximum "
762                                         "value (%d)\n", i, j,
763                                         (int)data->pwm_settings[i][j],
764                                         (int)abituguru_pwm_max[j]);
765                                 goto abituguru_detect_no_pwms_exit;
766                         }
767                 }
768 
769                 /* check that min temp < max temp and min pwm < max pwm */
770                 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
771                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
772                                 "to be a pwm channel: min pwm (%d) >= "
773                                 "max pwm (%d)\n", i,
774                                 (int)data->pwm_settings[i][1],
775                                 (int)data->pwm_settings[i][2]);
776                         break;
777                 }
778                 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
779                         ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
780                                 "to be a pwm channel: min temp (%d) >= "
781                                 "max temp (%d)\n", i,
782                                 (int)data->pwm_settings[i][3],
783                                 (int)data->pwm_settings[i][4]);
784                         break;
785                 }
786         }
787 
788 abituguru_detect_no_pwms_exit:
789         data->pwms = i;
790         ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
791 }
792 
793 /*
794  * Following are the sysfs callback functions. These functions expect:
795  * sensor_device_attribute_2->index:   sensor address/offset in the bank
796  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
797  */
798 static struct abituguru_data *abituguru_update_device(struct device *dev);
799 
800 static ssize_t show_bank1_value(struct device *dev,
801         struct device_attribute *devattr, char *buf)
802 {
803         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
804         struct abituguru_data *data = abituguru_update_device(dev);
805         if (!data)
806                 return -EIO;
807         return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
808                 data->bank1_max_value[attr->index] + 128) / 255);
809 }
810 
811 static ssize_t show_bank1_setting(struct device *dev,
812         struct device_attribute *devattr, char *buf)
813 {
814         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
815         struct abituguru_data *data = dev_get_drvdata(dev);
816         return sprintf(buf, "%d\n",
817                 (data->bank1_settings[attr->index][attr->nr] *
818                 data->bank1_max_value[attr->index] + 128) / 255);
819 }
820 
821 static ssize_t show_bank2_value(struct device *dev,
822         struct device_attribute *devattr, char *buf)
823 {
824         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
825         struct abituguru_data *data = abituguru_update_device(dev);
826         if (!data)
827                 return -EIO;
828         return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
829                 ABIT_UGURU_FAN_MAX + 128) / 255);
830 }
831 
832 static ssize_t show_bank2_setting(struct device *dev,
833         struct device_attribute *devattr, char *buf)
834 {
835         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
836         struct abituguru_data *data = dev_get_drvdata(dev);
837         return sprintf(buf, "%d\n",
838                 (data->bank2_settings[attr->index][attr->nr] *
839                 ABIT_UGURU_FAN_MAX + 128) / 255);
840 }
841 
842 static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
843         *devattr, const char *buf, size_t count)
844 {
845         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
846         struct abituguru_data *data = dev_get_drvdata(dev);
847         unsigned long val;
848         ssize_t ret;
849 
850         ret = kstrtoul(buf, 10, &val);
851         if (ret)
852                 return ret;
853 
854         ret = count;
855         val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
856                 data->bank1_max_value[attr->index];
857         if (val > 255)
858                 return -EINVAL;
859 
860         mutex_lock(&data->update_lock);
861         if (data->bank1_settings[attr->index][attr->nr] != val) {
862                 u8 orig_val = data->bank1_settings[attr->index][attr->nr];
863                 data->bank1_settings[attr->index][attr->nr] = val;
864                 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
865                                 attr->index, data->bank1_settings[attr->index],
866                                 3) <= attr->nr) {
867                         data->bank1_settings[attr->index][attr->nr] = orig_val;
868                         ret = -EIO;
869                 }
870         }
871         mutex_unlock(&data->update_lock);
872         return ret;
873 }
874 
875 static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
876         *devattr, const char *buf, size_t count)
877 {
878         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
879         struct abituguru_data *data = dev_get_drvdata(dev);
880         unsigned long val;
881         ssize_t ret;
882 
883         ret = kstrtoul(buf, 10, &val);
884         if (ret)
885                 return ret;
886 
887         ret = count;
888         val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
889 
890         /* this check can be done before taking the lock */
891         if (val < abituguru_bank2_min_threshold ||
892                         val > abituguru_bank2_max_threshold)
893                 return -EINVAL;
894 
895         mutex_lock(&data->update_lock);
896         if (data->bank2_settings[attr->index][attr->nr] != val) {
897                 u8 orig_val = data->bank2_settings[attr->index][attr->nr];
898                 data->bank2_settings[attr->index][attr->nr] = val;
899                 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
900                                 attr->index, data->bank2_settings[attr->index],
901                                 2) <= attr->nr) {
902                         data->bank2_settings[attr->index][attr->nr] = orig_val;
903                         ret = -EIO;
904                 }
905         }
906         mutex_unlock(&data->update_lock);
907         return ret;
908 }
909 
910 static ssize_t show_bank1_alarm(struct device *dev,
911         struct device_attribute *devattr, char *buf)
912 {
913         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
914         struct abituguru_data *data = abituguru_update_device(dev);
915         if (!data)
916                 return -EIO;
917         /*
918          * See if the alarm bit for this sensor is set, and if the
919          * alarm matches the type of alarm we're looking for (for volt
920          * it can be either low or high). The type is stored in a few
921          * readonly bits in the settings part of the relevant sensor.
922          * The bitmask of the type is passed to us in attr->nr.
923          */
924         if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
925                         (data->bank1_settings[attr->index][0] & attr->nr))
926                 return sprintf(buf, "1\n");
927         else
928                 return sprintf(buf, "\n");
929 }
930 
931 static ssize_t show_bank2_alarm(struct device *dev,
932         struct device_attribute *devattr, char *buf)
933 {
934         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935         struct abituguru_data *data = abituguru_update_device(dev);
936         if (!data)
937                 return -EIO;
938         if (data->alarms[2] & (0x01 << attr->index))
939                 return sprintf(buf, "1\n");
940         else
941                 return sprintf(buf, "\n");
942 }
943 
944 static ssize_t show_bank1_mask(struct device *dev,
945         struct device_attribute *devattr, char *buf)
946 {
947         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
948         struct abituguru_data *data = dev_get_drvdata(dev);
949         if (data->bank1_settings[attr->index][0] & attr->nr)
950                 return sprintf(buf, "1\n");
951         else
952                 return sprintf(buf, "\n");
953 }
954 
955 static ssize_t show_bank2_mask(struct device *dev,
956         struct device_attribute *devattr, char *buf)
957 {
958         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
959         struct abituguru_data *data = dev_get_drvdata(dev);
960         if (data->bank2_settings[attr->index][0] & attr->nr)
961                 return sprintf(buf, "1\n");
962         else
963                 return sprintf(buf, "\n");
964 }
965 
966 static ssize_t store_bank1_mask(struct device *dev,
967         struct device_attribute *devattr, const char *buf, size_t count)
968 {
969         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
970         struct abituguru_data *data = dev_get_drvdata(dev);
971         ssize_t ret;
972         u8 orig_val;
973         unsigned long mask;
974 
975         ret = kstrtoul(buf, 10, &mask);
976         if (ret)
977                 return ret;
978 
979         ret = count;
980         mutex_lock(&data->update_lock);
981         orig_val = data->bank1_settings[attr->index][0];
982 
983         if (mask)
984                 data->bank1_settings[attr->index][0] |= attr->nr;
985         else
986                 data->bank1_settings[attr->index][0] &= ~attr->nr;
987 
988         if ((data->bank1_settings[attr->index][0] != orig_val) &&
989                         (abituguru_write(data,
990                         ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
991                         data->bank1_settings[attr->index], 3) < 1)) {
992                 data->bank1_settings[attr->index][0] = orig_val;
993                 ret = -EIO;
994         }
995         mutex_unlock(&data->update_lock);
996         return ret;
997 }
998 
999 static ssize_t store_bank2_mask(struct device *dev,
1000         struct device_attribute *devattr, const char *buf, size_t count)
1001 {
1002         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1003         struct abituguru_data *data = dev_get_drvdata(dev);
1004         ssize_t ret;
1005         u8 orig_val;
1006         unsigned long mask;
1007 
1008         ret = kstrtoul(buf, 10, &mask);
1009         if (ret)
1010                 return ret;
1011 
1012         ret = count;
1013         mutex_lock(&data->update_lock);
1014         orig_val = data->bank2_settings[attr->index][0];
1015 
1016         if (mask)
1017                 data->bank2_settings[attr->index][0] |= attr->nr;
1018         else
1019                 data->bank2_settings[attr->index][0] &= ~attr->nr;
1020 
1021         if ((data->bank2_settings[attr->index][0] != orig_val) &&
1022                         (abituguru_write(data,
1023                         ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1024                         data->bank2_settings[attr->index], 2) < 1)) {
1025                 data->bank2_settings[attr->index][0] = orig_val;
1026                 ret = -EIO;
1027         }
1028         mutex_unlock(&data->update_lock);
1029         return ret;
1030 }
1031 
1032 /* Fan PWM (speed control) */
1033 static ssize_t show_pwm_setting(struct device *dev,
1034         struct device_attribute *devattr, char *buf)
1035 {
1036         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1037         struct abituguru_data *data = dev_get_drvdata(dev);
1038         return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1039                 abituguru_pwm_settings_multiplier[attr->nr]);
1040 }
1041 
1042 static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1043         *devattr, const char *buf, size_t count)
1044 {
1045         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1046         struct abituguru_data *data = dev_get_drvdata(dev);
1047         u8 min;
1048         unsigned long val;
1049         ssize_t ret;
1050 
1051         ret = kstrtoul(buf, 10, &val);
1052         if (ret)
1053                 return ret;
1054 
1055         ret = count;
1056         val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1057                                 abituguru_pwm_settings_multiplier[attr->nr];
1058 
1059         /* special case pwm1 min pwm% */
1060         if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1061                 min = 77;
1062         else
1063                 min = abituguru_pwm_min[attr->nr];
1064 
1065         /* this check can be done before taking the lock */
1066         if (val < min || val > abituguru_pwm_max[attr->nr])
1067                 return -EINVAL;
1068 
1069         mutex_lock(&data->update_lock);
1070         /* this check needs to be done after taking the lock */
1071         if ((attr->nr & 1) &&
1072                         (val >= data->pwm_settings[attr->index][attr->nr + 1]))
1073                 ret = -EINVAL;
1074         else if (!(attr->nr & 1) &&
1075                         (val <= data->pwm_settings[attr->index][attr->nr - 1]))
1076                 ret = -EINVAL;
1077         else if (data->pwm_settings[attr->index][attr->nr] != val) {
1078                 u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1079                 data->pwm_settings[attr->index][attr->nr] = val;
1080                 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1081                                 attr->index, data->pwm_settings[attr->index],
1082                                 5) <= attr->nr) {
1083                         data->pwm_settings[attr->index][attr->nr] =
1084                                 orig_val;
1085                         ret = -EIO;
1086                 }
1087         }
1088         mutex_unlock(&data->update_lock);
1089         return ret;
1090 }
1091 
1092 static ssize_t show_pwm_sensor(struct device *dev,
1093         struct device_attribute *devattr, char *buf)
1094 {
1095         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1096         struct abituguru_data *data = dev_get_drvdata(dev);
1097         int i;
1098         /*
1099          * We need to walk to the temp sensor addresses to find what
1100          * the userspace id of the configured temp sensor is.
1101          */
1102         for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1103                 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1104                                 (data->pwm_settings[attr->index][0] & 0x0F))
1105                         return sprintf(buf, "%d\n", i+1);
1106 
1107         return -ENXIO;
1108 }
1109 
1110 static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1111         *devattr, const char *buf, size_t count)
1112 {
1113         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1114         struct abituguru_data *data = dev_get_drvdata(dev);
1115         ssize_t ret;
1116         unsigned long val;
1117         u8 orig_val;
1118         u8 address;
1119 
1120         ret = kstrtoul(buf, 10, &val);
1121         if (ret)
1122                 return ret;
1123 
1124         if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1125                 return -EINVAL;
1126 
1127         val -= 1;
1128         ret = count;
1129         mutex_lock(&data->update_lock);
1130         orig_val = data->pwm_settings[attr->index][0];
1131         address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1132         data->pwm_settings[attr->index][0] &= 0xF0;
1133         data->pwm_settings[attr->index][0] |= address;
1134         if (data->pwm_settings[attr->index][0] != orig_val) {
1135                 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1136                                     data->pwm_settings[attr->index], 5) < 1) {
1137                         data->pwm_settings[attr->index][0] = orig_val;
1138                         ret = -EIO;
1139                 }
1140         }
1141         mutex_unlock(&data->update_lock);
1142         return ret;
1143 }
1144 
1145 static ssize_t show_pwm_enable(struct device *dev,
1146         struct device_attribute *devattr, char *buf)
1147 {
1148         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1149         struct abituguru_data *data = dev_get_drvdata(dev);
1150         int res = 0;
1151         if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1152                 res = 2;
1153         return sprintf(buf, "%d\n", res);
1154 }
1155 
1156 static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1157         *devattr, const char *buf, size_t count)
1158 {
1159         struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1160         struct abituguru_data *data = dev_get_drvdata(dev);
1161         u8 orig_val;
1162         ssize_t ret;
1163         unsigned long user_val;
1164 
1165         ret = kstrtoul(buf, 10, &user_val);
1166         if (ret)
1167                 return ret;
1168 
1169         ret = count;
1170         mutex_lock(&data->update_lock);
1171         orig_val = data->pwm_settings[attr->index][0];
1172         switch (user_val) {
1173         case 0:
1174                 data->pwm_settings[attr->index][0] &=
1175                         ~ABIT_UGURU_FAN_PWM_ENABLE;
1176                 break;
1177         case 2:
1178                 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1179                 break;
1180         default:
1181                 ret = -EINVAL;
1182         }
1183         if ((data->pwm_settings[attr->index][0] != orig_val) &&
1184                         (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1185                         attr->index, data->pwm_settings[attr->index],
1186                         5) < 1)) {
1187                 data->pwm_settings[attr->index][0] = orig_val;
1188                 ret = -EIO;
1189         }
1190         mutex_unlock(&data->update_lock);
1191         return ret;
1192 }
1193 
1194 static ssize_t show_name(struct device *dev,
1195         struct device_attribute *devattr, char *buf)
1196 {
1197         return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1198 }
1199 
1200 /* Sysfs attr templates, the real entries are generated automatically. */
1201 static const
1202 struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1203         {
1204         SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1205         SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1206                 store_bank1_setting, 1, 0),
1207         SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1208                 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1209         SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1210                 store_bank1_setting, 2, 0),
1211         SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1212                 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1213         SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1214                 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1215         SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1216                 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1217         SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1218                 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1219         SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1220                 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1221         }, {
1222         SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1223         SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1224                 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1225         SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1226                 store_bank1_setting, 1, 0),
1227         SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1228                 store_bank1_setting, 2, 0),
1229         SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1230                 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1231         SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1232                 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1233         SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1234                 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1235         }
1236 };
1237 
1238 static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1239         SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1240         SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1241         SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1242                 store_bank2_setting, 1, 0),
1243         SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1244                 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1245         SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1246                 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1247         SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1248                 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1249 };
1250 
1251 static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1252         SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1253                 store_pwm_enable, 0, 0),
1254         SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1255                 store_pwm_sensor, 0, 0),
1256         SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1257                 store_pwm_setting, 1, 0),
1258         SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1259                 store_pwm_setting, 2, 0),
1260         SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1261                 store_pwm_setting, 3, 0),
1262         SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1263                 store_pwm_setting, 4, 0),
1264 };
1265 
1266 static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1267         SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1268 };
1269 
1270 static int abituguru_probe(struct platform_device *pdev)
1271 {
1272         struct abituguru_data *data;
1273         int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1274         char *sysfs_filename;
1275 
1276         /*
1277          * El weirdo probe order, to keep the sysfs order identical to the
1278          * BIOS and window-appliction listing order.
1279          */
1280         const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1281                 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1282                 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1283 
1284         data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1285                             GFP_KERNEL);
1286         if (!data)
1287                 return -ENOMEM;
1288 
1289         data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1290         mutex_init(&data->update_lock);
1291         platform_set_drvdata(pdev, data);
1292 
1293         /* See if the uGuru is ready */
1294         if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1295                 data->uguru_ready = 1;
1296 
1297         /*
1298          * Completely read the uGuru this has 2 purposes:
1299          * - testread / see if one really is there.
1300          * - make an in memory copy of all the uguru settings for future use.
1301          */
1302         if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1303                         data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1304                 goto abituguru_probe_error;
1305 
1306         for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1307                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1308                                 &data->bank1_value[i], 1,
1309                                 ABIT_UGURU_MAX_RETRIES) != 1)
1310                         goto abituguru_probe_error;
1311                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1312                                 data->bank1_settings[i], 3,
1313                                 ABIT_UGURU_MAX_RETRIES) != 3)
1314                         goto abituguru_probe_error;
1315         }
1316         /*
1317          * Note: We don't know how many bank2 sensors / pwms there really are,
1318          * but in order to "detect" this we need to read the maximum amount
1319          * anyways. If we read sensors/pwms not there we'll just read crap
1320          * this can't hurt. We need the detection because we don't want
1321          * unwanted writes, which will hurt!
1322          */
1323         for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1324                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1325                                 &data->bank2_value[i], 1,
1326                                 ABIT_UGURU_MAX_RETRIES) != 1)
1327                         goto abituguru_probe_error;
1328                 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1329                                 data->bank2_settings[i], 2,
1330                                 ABIT_UGURU_MAX_RETRIES) != 2)
1331                         goto abituguru_probe_error;
1332         }
1333         for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1334                 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1335                                 data->pwm_settings[i], 5,
1336                                 ABIT_UGURU_MAX_RETRIES) != 5)
1337                         goto abituguru_probe_error;
1338         }
1339         data->last_updated = jiffies;
1340 
1341         /* Detect sensor types and fill the sysfs attr for bank1 */
1342         sysfs_attr_i = 0;
1343         sysfs_filename = data->sysfs_names;
1344         sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1345         for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1346                 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1347                 if (res < 0)
1348                         goto abituguru_probe_error;
1349                 if (res == ABIT_UGURU_NC)
1350                         continue;
1351 
1352                 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1353                 for (j = 0; j < (res ? 7 : 9); j++) {
1354                         used = snprintf(sysfs_filename, sysfs_names_free,
1355                                 abituguru_sysfs_bank1_templ[res][j].dev_attr.
1356                                 attr.name, data->bank1_sensors[res] + res)
1357                                 + 1;
1358                         data->sysfs_attr[sysfs_attr_i] =
1359                                 abituguru_sysfs_bank1_templ[res][j];
1360                         data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1361                                 sysfs_filename;
1362                         data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1363                         sysfs_filename += used;
1364                         sysfs_names_free -= used;
1365                         sysfs_attr_i++;
1366                 }
1367                 data->bank1_max_value[probe_order[i]] =
1368                         abituguru_bank1_max_value[res];
1369                 data->bank1_address[res][data->bank1_sensors[res]] =
1370                         probe_order[i];
1371                 data->bank1_sensors[res]++;
1372         }
1373         /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1374         abituguru_detect_no_bank2_sensors(data);
1375         for (i = 0; i < data->bank2_sensors; i++) {
1376                 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1377                         used = snprintf(sysfs_filename, sysfs_names_free,
1378                                 abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1379                                 i + 1) + 1;
1380                         data->sysfs_attr[sysfs_attr_i] =
1381                                 abituguru_sysfs_fan_templ[j];
1382                         data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1383                                 sysfs_filename;
1384                         data->sysfs_attr[sysfs_attr_i].index = i;
1385                         sysfs_filename += used;
1386                         sysfs_names_free -= used;
1387                         sysfs_attr_i++;
1388                 }
1389         }
1390         /* Detect number of sensors and fill the sysfs attr for pwms */
1391         abituguru_detect_no_pwms(data);
1392         for (i = 0; i < data->pwms; i++) {
1393                 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1394                         used = snprintf(sysfs_filename, sysfs_names_free,
1395                                 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1396                                 i + 1) + 1;
1397                         data->sysfs_attr[sysfs_attr_i] =
1398                                 abituguru_sysfs_pwm_templ[j];
1399                         data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1400                                 sysfs_filename;
1401                         data->sysfs_attr[sysfs_attr_i].index = i;
1402                         sysfs_filename += used;
1403                         sysfs_names_free -= used;
1404                         sysfs_attr_i++;
1405                 }
1406         }
1407         /* Fail safe check, this should never happen! */
1408         if (sysfs_names_free < 0) {
1409                 pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1410                        never_happen, report_this);
1411                 res = -ENAMETOOLONG;
1412                 goto abituguru_probe_error;
1413         }
1414         pr_info("found Abit uGuru\n");
1415 
1416         /* Register sysfs hooks */
1417         for (i = 0; i < sysfs_attr_i; i++) {
1418                 res = device_create_file(&pdev->dev,
1419                                          &data->sysfs_attr[i].dev_attr);
1420                 if (res)
1421                         goto abituguru_probe_error;
1422         }
1423         for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1424                 res = device_create_file(&pdev->dev,
1425                                          &abituguru_sysfs_attr[i].dev_attr);
1426                 if (res)
1427                         goto abituguru_probe_error;
1428         }
1429 
1430         data->hwmon_dev = hwmon_device_register(&pdev->dev);
1431         if (!IS_ERR(data->hwmon_dev))
1432                 return 0; /* success */
1433 
1434         res = PTR_ERR(data->hwmon_dev);
1435 abituguru_probe_error:
1436         for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1437                 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1438         for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1439                 device_remove_file(&pdev->dev,
1440                         &abituguru_sysfs_attr[i].dev_attr);
1441         return res;
1442 }
1443 
1444 static int abituguru_remove(struct platform_device *pdev)
1445 {
1446         int i;
1447         struct abituguru_data *data = platform_get_drvdata(pdev);
1448 
1449         hwmon_device_unregister(data->hwmon_dev);
1450         for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1451                 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1452         for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1453                 device_remove_file(&pdev->dev,
1454                         &abituguru_sysfs_attr[i].dev_attr);
1455 
1456         return 0;
1457 }
1458 
1459 static struct abituguru_data *abituguru_update_device(struct device *dev)
1460 {
1461         int i, err;
1462         struct abituguru_data *data = dev_get_drvdata(dev);
1463         /* fake a complete successful read if no update necessary. */
1464         char success = 1;
1465 
1466         mutex_lock(&data->update_lock);
1467         if (time_after(jiffies, data->last_updated + HZ)) {
1468                 success = 0;
1469                 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1470                                      data->alarms, 3, 0);
1471                 if (err != 3)
1472                         goto LEAVE_UPDATE;
1473                 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1474                         err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1475                                              i, &data->bank1_value[i], 1, 0);
1476                         if (err != 1)
1477                                 goto LEAVE_UPDATE;
1478                         err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1479                                              i, data->bank1_settings[i], 3, 0);
1480                         if (err != 3)
1481                                 goto LEAVE_UPDATE;
1482                 }
1483                 for (i = 0; i < data->bank2_sensors; i++) {
1484                         err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1485                                              &data->bank2_value[i], 1, 0);
1486                         if (err != 1)
1487                                 goto LEAVE_UPDATE;
1488                 }
1489                 /* success! */
1490                 success = 1;
1491                 data->update_timeouts = 0;
1492 LEAVE_UPDATE:
1493                 /* handle timeout condition */
1494                 if (!success && (err == -EBUSY || err >= 0)) {
1495                         /* No overflow please */
1496                         if (data->update_timeouts < 255u)
1497                                 data->update_timeouts++;
1498                         if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1499                                 ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1500                                         "try again next update\n");
1501                                 /* Just a timeout, fake a successful read */
1502                                 success = 1;
1503                         } else
1504                                 ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1505                                         "times waiting for more input state\n",
1506                                         (int)data->update_timeouts);
1507                 }
1508                 /* On success set last_updated */
1509                 if (success)
1510                         data->last_updated = jiffies;
1511         }
1512         mutex_unlock(&data->update_lock);
1513 
1514         if (success)
1515                 return data;
1516         else
1517                 return NULL;
1518 }
1519 
1520 #ifdef CONFIG_PM_SLEEP
1521 static int abituguru_suspend(struct device *dev)
1522 {
1523         struct abituguru_data *data = dev_get_drvdata(dev);
1524         /*
1525          * make sure all communications with the uguru are done and no new
1526          * ones are started
1527          */
1528         mutex_lock(&data->update_lock);
1529         return 0;
1530 }
1531 
1532 static int abituguru_resume(struct device *dev)
1533 {
1534         struct abituguru_data *data = dev_get_drvdata(dev);
1535         /* See if the uGuru is still ready */
1536         if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1537                 data->uguru_ready = 0;
1538         mutex_unlock(&data->update_lock);
1539         return 0;
1540 }
1541 
1542 static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1543 #define ABIT_UGURU_PM   (&abituguru_pm)
1544 #else
1545 #define ABIT_UGURU_PM   NULL
1546 #endif /* CONFIG_PM */
1547 
1548 static struct platform_driver abituguru_driver = {
1549         .driver = {
1550                 .owner  = THIS_MODULE,
1551                 .name   = ABIT_UGURU_NAME,
1552                 .pm     = ABIT_UGURU_PM,
1553         },
1554         .probe          = abituguru_probe,
1555         .remove         = abituguru_remove,
1556 };
1557 
1558 static int __init abituguru_detect(void)
1559 {
1560         /*
1561          * See if there is an uguru there. After a reboot uGuru will hold 0x00
1562          * at DATA and 0xAC, when this driver has already been loaded once
1563          * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1564          * scenario but some will hold 0x00.
1565          * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1566          * after reading CMD first, so CMD must be read first!
1567          */
1568         u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1569         u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1570         if (((data_val == 0x00) || (data_val == 0x08)) &&
1571             ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1572                 return ABIT_UGURU_BASE;
1573 
1574         ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1575                 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1576 
1577         if (force) {
1578                 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1579                 return ABIT_UGURU_BASE;
1580         }
1581 
1582         /* No uGuru found */
1583         return -ENODEV;
1584 }
1585 
1586 static struct platform_device *abituguru_pdev;
1587 
1588 static int __init abituguru_init(void)
1589 {
1590         int address, err;
1591         struct resource res = { .flags = IORESOURCE_IO };
1592         const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1593 
1594         /* safety check, refuse to load on non Abit motherboards */
1595         if (!force && (!board_vendor ||
1596                         strcmp(board_vendor, "http://www.abit.com.tw/")))
1597                 return -ENODEV;
1598 
1599         address = abituguru_detect();
1600         if (address < 0)
1601                 return address;
1602 
1603         err = platform_driver_register(&abituguru_driver);
1604         if (err)
1605                 goto exit;
1606 
1607         abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1608         if (!abituguru_pdev) {
1609                 pr_err("Device allocation failed\n");
1610                 err = -ENOMEM;
1611                 goto exit_driver_unregister;
1612         }
1613 
1614         res.start = address;
1615         res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1616         res.name = ABIT_UGURU_NAME;
1617 
1618         err = platform_device_add_resources(abituguru_pdev, &res, 1);
1619         if (err) {
1620                 pr_err("Device resource addition failed (%d)\n", err);
1621                 goto exit_device_put;
1622         }
1623 
1624         err = platform_device_add(abituguru_pdev);
1625         if (err) {
1626                 pr_err("Device addition failed (%d)\n", err);
1627                 goto exit_device_put;
1628         }
1629 
1630         return 0;
1631 
1632 exit_device_put:
1633         platform_device_put(abituguru_pdev);
1634 exit_driver_unregister:
1635         platform_driver_unregister(&abituguru_driver);
1636 exit:
1637         return err;
1638 }
1639 
1640 static void __exit abituguru_exit(void)
1641 {
1642         platform_device_unregister(abituguru_pdev);
1643         platform_driver_unregister(&abituguru_driver);
1644 }
1645 
1646 MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1647 MODULE_DESCRIPTION("Abit uGuru Sensor device");
1648 MODULE_LICENSE("GPL");
1649 
1650 module_init(abituguru_init);
1651 module_exit(abituguru_exit);
1652 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us