Version:  2.0.40 2.2.26 2.4.37 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0

Linux/drivers/gpu/drm/tegra/dc.c

  1 /*
  2  * Copyright (C) 2012 Avionic Design GmbH
  3  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
  4  *
  5  * This program is free software; you can redistribute it and/or modify
  6  * it under the terms of the GNU General Public License version 2 as
  7  * published by the Free Software Foundation.
  8  */
  9 
 10 #include <linux/clk.h>
 11 #include <linux/debugfs.h>
 12 #include <linux/iommu.h>
 13 #include <linux/reset.h>
 14 
 15 #include <soc/tegra/pmc.h>
 16 
 17 #include "dc.h"
 18 #include "drm.h"
 19 #include "gem.h"
 20 
 21 #include <drm/drm_atomic.h>
 22 #include <drm/drm_atomic_helper.h>
 23 #include <drm/drm_plane_helper.h>
 24 
 25 struct tegra_dc_soc_info {
 26         bool supports_border_color;
 27         bool supports_interlacing;
 28         bool supports_cursor;
 29         bool supports_block_linear;
 30         unsigned int pitch_align;
 31         bool has_powergate;
 32 };
 33 
 34 struct tegra_plane {
 35         struct drm_plane base;
 36         unsigned int index;
 37 };
 38 
 39 static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
 40 {
 41         return container_of(plane, struct tegra_plane, base);
 42 }
 43 
 44 struct tegra_dc_state {
 45         struct drm_crtc_state base;
 46 
 47         struct clk *clk;
 48         unsigned long pclk;
 49         unsigned int div;
 50 
 51         u32 planes;
 52 };
 53 
 54 static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
 55 {
 56         if (state)
 57                 return container_of(state, struct tegra_dc_state, base);
 58 
 59         return NULL;
 60 }
 61 
 62 struct tegra_plane_state {
 63         struct drm_plane_state base;
 64 
 65         struct tegra_bo_tiling tiling;
 66         u32 format;
 67         u32 swap;
 68 };
 69 
 70 static inline struct tegra_plane_state *
 71 to_tegra_plane_state(struct drm_plane_state *state)
 72 {
 73         if (state)
 74                 return container_of(state, struct tegra_plane_state, base);
 75 
 76         return NULL;
 77 }
 78 
 79 /*
 80  * Reads the active copy of a register. This takes the dc->lock spinlock to
 81  * prevent races with the VBLANK processing which also needs access to the
 82  * active copy of some registers.
 83  */
 84 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
 85 {
 86         unsigned long flags;
 87         u32 value;
 88 
 89         spin_lock_irqsave(&dc->lock, flags);
 90 
 91         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 92         value = tegra_dc_readl(dc, offset);
 93         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 94 
 95         spin_unlock_irqrestore(&dc->lock, flags);
 96         return value;
 97 }
 98 
 99 /*
100  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
101  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
102  * Latching happens mmediately if the display controller is in STOP mode or
103  * on the next frame boundary otherwise.
104  *
105  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
106  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
107  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
108  * into the ACTIVE copy, either immediately if the display controller is in
109  * STOP mode, or at the next frame boundary otherwise.
110  */
111 void tegra_dc_commit(struct tegra_dc *dc)
112 {
113         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
114         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
115 }
116 
117 static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
118 {
119         /* assume no swapping of fetched data */
120         if (swap)
121                 *swap = BYTE_SWAP_NOSWAP;
122 
123         switch (fourcc) {
124         case DRM_FORMAT_XBGR8888:
125                 *format = WIN_COLOR_DEPTH_R8G8B8A8;
126                 break;
127 
128         case DRM_FORMAT_XRGB8888:
129                 *format = WIN_COLOR_DEPTH_B8G8R8A8;
130                 break;
131 
132         case DRM_FORMAT_RGB565:
133                 *format = WIN_COLOR_DEPTH_B5G6R5;
134                 break;
135 
136         case DRM_FORMAT_UYVY:
137                 *format = WIN_COLOR_DEPTH_YCbCr422;
138                 break;
139 
140         case DRM_FORMAT_YUYV:
141                 if (swap)
142                         *swap = BYTE_SWAP_SWAP2;
143 
144                 *format = WIN_COLOR_DEPTH_YCbCr422;
145                 break;
146 
147         case DRM_FORMAT_YUV420:
148                 *format = WIN_COLOR_DEPTH_YCbCr420P;
149                 break;
150 
151         case DRM_FORMAT_YUV422:
152                 *format = WIN_COLOR_DEPTH_YCbCr422P;
153                 break;
154 
155         default:
156                 return -EINVAL;
157         }
158 
159         return 0;
160 }
161 
162 static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
163 {
164         switch (format) {
165         case WIN_COLOR_DEPTH_YCbCr422:
166         case WIN_COLOR_DEPTH_YUV422:
167                 if (planar)
168                         *planar = false;
169 
170                 return true;
171 
172         case WIN_COLOR_DEPTH_YCbCr420P:
173         case WIN_COLOR_DEPTH_YUV420P:
174         case WIN_COLOR_DEPTH_YCbCr422P:
175         case WIN_COLOR_DEPTH_YUV422P:
176         case WIN_COLOR_DEPTH_YCbCr422R:
177         case WIN_COLOR_DEPTH_YUV422R:
178         case WIN_COLOR_DEPTH_YCbCr422RA:
179         case WIN_COLOR_DEPTH_YUV422RA:
180                 if (planar)
181                         *planar = true;
182 
183                 return true;
184         }
185 
186         if (planar)
187                 *planar = false;
188 
189         return false;
190 }
191 
192 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
193                                   unsigned int bpp)
194 {
195         fixed20_12 outf = dfixed_init(out);
196         fixed20_12 inf = dfixed_init(in);
197         u32 dda_inc;
198         int max;
199 
200         if (v)
201                 max = 15;
202         else {
203                 switch (bpp) {
204                 case 2:
205                         max = 8;
206                         break;
207 
208                 default:
209                         WARN_ON_ONCE(1);
210                         /* fallthrough */
211                 case 4:
212                         max = 4;
213                         break;
214                 }
215         }
216 
217         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
218         inf.full -= dfixed_const(1);
219 
220         dda_inc = dfixed_div(inf, outf);
221         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
222 
223         return dda_inc;
224 }
225 
226 static inline u32 compute_initial_dda(unsigned int in)
227 {
228         fixed20_12 inf = dfixed_init(in);
229         return dfixed_frac(inf);
230 }
231 
232 static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
233                                   const struct tegra_dc_window *window)
234 {
235         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
236         unsigned long value, flags;
237         bool yuv, planar;
238 
239         /*
240          * For YUV planar modes, the number of bytes per pixel takes into
241          * account only the luma component and therefore is 1.
242          */
243         yuv = tegra_dc_format_is_yuv(window->format, &planar);
244         if (!yuv)
245                 bpp = window->bits_per_pixel / 8;
246         else
247                 bpp = planar ? 1 : 2;
248 
249         spin_lock_irqsave(&dc->lock, flags);
250 
251         value = WINDOW_A_SELECT << index;
252         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
253 
254         tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
255         tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
256 
257         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
258         tegra_dc_writel(dc, value, DC_WIN_POSITION);
259 
260         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
261         tegra_dc_writel(dc, value, DC_WIN_SIZE);
262 
263         h_offset = window->src.x * bpp;
264         v_offset = window->src.y;
265         h_size = window->src.w * bpp;
266         v_size = window->src.h;
267 
268         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
269         tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
270 
271         /*
272          * For DDA computations the number of bytes per pixel for YUV planar
273          * modes needs to take into account all Y, U and V components.
274          */
275         if (yuv && planar)
276                 bpp = 2;
277 
278         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
279         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
280 
281         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
282         tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
283 
284         h_dda = compute_initial_dda(window->src.x);
285         v_dda = compute_initial_dda(window->src.y);
286 
287         tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
288         tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
289 
290         tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
291         tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
292 
293         tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
294 
295         if (yuv && planar) {
296                 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
297                 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
298                 value = window->stride[1] << 16 | window->stride[0];
299                 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
300         } else {
301                 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
302         }
303 
304         if (window->bottom_up)
305                 v_offset += window->src.h - 1;
306 
307         tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
308         tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
309 
310         if (dc->soc->supports_block_linear) {
311                 unsigned long height = window->tiling.value;
312 
313                 switch (window->tiling.mode) {
314                 case TEGRA_BO_TILING_MODE_PITCH:
315                         value = DC_WINBUF_SURFACE_KIND_PITCH;
316                         break;
317 
318                 case TEGRA_BO_TILING_MODE_TILED:
319                         value = DC_WINBUF_SURFACE_KIND_TILED;
320                         break;
321 
322                 case TEGRA_BO_TILING_MODE_BLOCK:
323                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
324                                 DC_WINBUF_SURFACE_KIND_BLOCK;
325                         break;
326                 }
327 
328                 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
329         } else {
330                 switch (window->tiling.mode) {
331                 case TEGRA_BO_TILING_MODE_PITCH:
332                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
333                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
334                         break;
335 
336                 case TEGRA_BO_TILING_MODE_TILED:
337                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
338                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
339                         break;
340 
341                 case TEGRA_BO_TILING_MODE_BLOCK:
342                         /*
343                          * No need to handle this here because ->atomic_check
344                          * will already have filtered it out.
345                          */
346                         break;
347                 }
348 
349                 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
350         }
351 
352         value = WIN_ENABLE;
353 
354         if (yuv) {
355                 /* setup default colorspace conversion coefficients */
356                 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
357                 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
358                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
359                 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
360                 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
361                 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
362                 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
363                 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
364 
365                 value |= CSC_ENABLE;
366         } else if (window->bits_per_pixel < 24) {
367                 value |= COLOR_EXPAND;
368         }
369 
370         if (window->bottom_up)
371                 value |= V_DIRECTION;
372 
373         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
374 
375         /*
376          * Disable blending and assume Window A is the bottom-most window,
377          * Window C is the top-most window and Window B is in the middle.
378          */
379         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
380         tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
381 
382         switch (index) {
383         case 0:
384                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
385                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
386                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
387                 break;
388 
389         case 1:
390                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
391                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
392                 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
393                 break;
394 
395         case 2:
396                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
397                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
398                 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
399                 break;
400         }
401 
402         spin_unlock_irqrestore(&dc->lock, flags);
403 }
404 
405 static void tegra_plane_destroy(struct drm_plane *plane)
406 {
407         struct tegra_plane *p = to_tegra_plane(plane);
408 
409         drm_plane_cleanup(plane);
410         kfree(p);
411 }
412 
413 static const u32 tegra_primary_plane_formats[] = {
414         DRM_FORMAT_XBGR8888,
415         DRM_FORMAT_XRGB8888,
416         DRM_FORMAT_RGB565,
417 };
418 
419 static void tegra_primary_plane_destroy(struct drm_plane *plane)
420 {
421         tegra_plane_destroy(plane);
422 }
423 
424 static void tegra_plane_reset(struct drm_plane *plane)
425 {
426         struct tegra_plane_state *state;
427 
428         if (plane->state && plane->state->fb)
429                 drm_framebuffer_unreference(plane->state->fb);
430 
431         kfree(plane->state);
432         plane->state = NULL;
433 
434         state = kzalloc(sizeof(*state), GFP_KERNEL);
435         if (state) {
436                 plane->state = &state->base;
437                 plane->state->plane = plane;
438         }
439 }
440 
441 static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
442 {
443         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
444         struct tegra_plane_state *copy;
445 
446         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
447         if (!copy)
448                 return NULL;
449 
450         if (copy->base.fb)
451                 drm_framebuffer_reference(copy->base.fb);
452 
453         return &copy->base;
454 }
455 
456 static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
457                                              struct drm_plane_state *state)
458 {
459         if (state->fb)
460                 drm_framebuffer_unreference(state->fb);
461 
462         kfree(state);
463 }
464 
465 static const struct drm_plane_funcs tegra_primary_plane_funcs = {
466         .update_plane = drm_atomic_helper_update_plane,
467         .disable_plane = drm_atomic_helper_disable_plane,
468         .destroy = tegra_primary_plane_destroy,
469         .reset = tegra_plane_reset,
470         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
471         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
472 };
473 
474 static int tegra_plane_prepare_fb(struct drm_plane *plane,
475                                   struct drm_framebuffer *fb)
476 {
477         return 0;
478 }
479 
480 static void tegra_plane_cleanup_fb(struct drm_plane *plane,
481                                    struct drm_framebuffer *fb)
482 {
483 }
484 
485 static int tegra_plane_state_add(struct tegra_plane *plane,
486                                  struct drm_plane_state *state)
487 {
488         struct drm_crtc_state *crtc_state;
489         struct tegra_dc_state *tegra;
490 
491         /* Propagate errors from allocation or locking failures. */
492         crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
493         if (IS_ERR(crtc_state))
494                 return PTR_ERR(crtc_state);
495 
496         tegra = to_dc_state(crtc_state);
497 
498         tegra->planes |= WIN_A_ACT_REQ << plane->index;
499 
500         return 0;
501 }
502 
503 static int tegra_plane_atomic_check(struct drm_plane *plane,
504                                     struct drm_plane_state *state)
505 {
506         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
507         struct tegra_bo_tiling *tiling = &plane_state->tiling;
508         struct tegra_plane *tegra = to_tegra_plane(plane);
509         struct tegra_dc *dc = to_tegra_dc(state->crtc);
510         int err;
511 
512         /* no need for further checks if the plane is being disabled */
513         if (!state->crtc)
514                 return 0;
515 
516         err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
517                               &plane_state->swap);
518         if (err < 0)
519                 return err;
520 
521         err = tegra_fb_get_tiling(state->fb, tiling);
522         if (err < 0)
523                 return err;
524 
525         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
526             !dc->soc->supports_block_linear) {
527                 DRM_ERROR("hardware doesn't support block linear mode\n");
528                 return -EINVAL;
529         }
530 
531         /*
532          * Tegra doesn't support different strides for U and V planes so we
533          * error out if the user tries to display a framebuffer with such a
534          * configuration.
535          */
536         if (drm_format_num_planes(state->fb->pixel_format) > 2) {
537                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
538                         DRM_ERROR("unsupported UV-plane configuration\n");
539                         return -EINVAL;
540                 }
541         }
542 
543         err = tegra_plane_state_add(tegra, state);
544         if (err < 0)
545                 return err;
546 
547         return 0;
548 }
549 
550 static void tegra_plane_atomic_update(struct drm_plane *plane,
551                                       struct drm_plane_state *old_state)
552 {
553         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
554         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
555         struct drm_framebuffer *fb = plane->state->fb;
556         struct tegra_plane *p = to_tegra_plane(plane);
557         struct tegra_dc_window window;
558         unsigned int i;
559 
560         /* rien ne va plus */
561         if (!plane->state->crtc || !plane->state->fb)
562                 return;
563 
564         memset(&window, 0, sizeof(window));
565         window.src.x = plane->state->src_x >> 16;
566         window.src.y = plane->state->src_y >> 16;
567         window.src.w = plane->state->src_w >> 16;
568         window.src.h = plane->state->src_h >> 16;
569         window.dst.x = plane->state->crtc_x;
570         window.dst.y = plane->state->crtc_y;
571         window.dst.w = plane->state->crtc_w;
572         window.dst.h = plane->state->crtc_h;
573         window.bits_per_pixel = fb->bits_per_pixel;
574         window.bottom_up = tegra_fb_is_bottom_up(fb);
575 
576         /* copy from state */
577         window.tiling = state->tiling;
578         window.format = state->format;
579         window.swap = state->swap;
580 
581         for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
582                 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
583 
584                 window.base[i] = bo->paddr + fb->offsets[i];
585                 window.stride[i] = fb->pitches[i];
586         }
587 
588         tegra_dc_setup_window(dc, p->index, &window);
589 }
590 
591 static void tegra_plane_atomic_disable(struct drm_plane *plane,
592                                        struct drm_plane_state *old_state)
593 {
594         struct tegra_plane *p = to_tegra_plane(plane);
595         struct tegra_dc *dc;
596         unsigned long flags;
597         u32 value;
598 
599         /* rien ne va plus */
600         if (!old_state || !old_state->crtc)
601                 return;
602 
603         dc = to_tegra_dc(old_state->crtc);
604 
605         spin_lock_irqsave(&dc->lock, flags);
606 
607         value = WINDOW_A_SELECT << p->index;
608         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
609 
610         value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
611         value &= ~WIN_ENABLE;
612         tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
613 
614         spin_unlock_irqrestore(&dc->lock, flags);
615 }
616 
617 static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
618         .prepare_fb = tegra_plane_prepare_fb,
619         .cleanup_fb = tegra_plane_cleanup_fb,
620         .atomic_check = tegra_plane_atomic_check,
621         .atomic_update = tegra_plane_atomic_update,
622         .atomic_disable = tegra_plane_atomic_disable,
623 };
624 
625 static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
626                                                        struct tegra_dc *dc)
627 {
628         /*
629          * Ideally this would use drm_crtc_mask(), but that would require the
630          * CRTC to already be in the mode_config's list of CRTCs. However, it
631          * will only be added to that list in the drm_crtc_init_with_planes()
632          * (in tegra_dc_init()), which in turn requires registration of these
633          * planes. So we have ourselves a nice little chicken and egg problem
634          * here.
635          *
636          * We work around this by manually creating the mask from the number
637          * of CRTCs that have been registered, and should therefore always be
638          * the same as drm_crtc_index() after registration.
639          */
640         unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
641         struct tegra_plane *plane;
642         unsigned int num_formats;
643         const u32 *formats;
644         int err;
645 
646         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
647         if (!plane)
648                 return ERR_PTR(-ENOMEM);
649 
650         num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
651         formats = tegra_primary_plane_formats;
652 
653         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
654                                        &tegra_primary_plane_funcs, formats,
655                                        num_formats, DRM_PLANE_TYPE_PRIMARY);
656         if (err < 0) {
657                 kfree(plane);
658                 return ERR_PTR(err);
659         }
660 
661         drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
662 
663         return &plane->base;
664 }
665 
666 static const u32 tegra_cursor_plane_formats[] = {
667         DRM_FORMAT_RGBA8888,
668 };
669 
670 static int tegra_cursor_atomic_check(struct drm_plane *plane,
671                                      struct drm_plane_state *state)
672 {
673         struct tegra_plane *tegra = to_tegra_plane(plane);
674         int err;
675 
676         /* no need for further checks if the plane is being disabled */
677         if (!state->crtc)
678                 return 0;
679 
680         /* scaling not supported for cursor */
681         if ((state->src_w >> 16 != state->crtc_w) ||
682             (state->src_h >> 16 != state->crtc_h))
683                 return -EINVAL;
684 
685         /* only square cursors supported */
686         if (state->src_w != state->src_h)
687                 return -EINVAL;
688 
689         if (state->crtc_w != 32 && state->crtc_w != 64 &&
690             state->crtc_w != 128 && state->crtc_w != 256)
691                 return -EINVAL;
692 
693         err = tegra_plane_state_add(tegra, state);
694         if (err < 0)
695                 return err;
696 
697         return 0;
698 }
699 
700 static void tegra_cursor_atomic_update(struct drm_plane *plane,
701                                        struct drm_plane_state *old_state)
702 {
703         struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
704         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
705         struct drm_plane_state *state = plane->state;
706         u32 value = CURSOR_CLIP_DISPLAY;
707 
708         /* rien ne va plus */
709         if (!plane->state->crtc || !plane->state->fb)
710                 return;
711 
712         switch (state->crtc_w) {
713         case 32:
714                 value |= CURSOR_SIZE_32x32;
715                 break;
716 
717         case 64:
718                 value |= CURSOR_SIZE_64x64;
719                 break;
720 
721         case 128:
722                 value |= CURSOR_SIZE_128x128;
723                 break;
724 
725         case 256:
726                 value |= CURSOR_SIZE_256x256;
727                 break;
728 
729         default:
730                 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
731                      state->crtc_h);
732                 return;
733         }
734 
735         value |= (bo->paddr >> 10) & 0x3fffff;
736         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
737 
738 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
739         value = (bo->paddr >> 32) & 0x3;
740         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
741 #endif
742 
743         /* enable cursor and set blend mode */
744         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
745         value |= CURSOR_ENABLE;
746         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
747 
748         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
749         value &= ~CURSOR_DST_BLEND_MASK;
750         value &= ~CURSOR_SRC_BLEND_MASK;
751         value |= CURSOR_MODE_NORMAL;
752         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
753         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
754         value |= CURSOR_ALPHA;
755         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
756 
757         /* position the cursor */
758         value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
759         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
760 
761 }
762 
763 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
764                                         struct drm_plane_state *old_state)
765 {
766         struct tegra_dc *dc;
767         u32 value;
768 
769         /* rien ne va plus */
770         if (!old_state || !old_state->crtc)
771                 return;
772 
773         dc = to_tegra_dc(old_state->crtc);
774 
775         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
776         value &= ~CURSOR_ENABLE;
777         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
778 }
779 
780 static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
781         .update_plane = drm_atomic_helper_update_plane,
782         .disable_plane = drm_atomic_helper_disable_plane,
783         .destroy = tegra_plane_destroy,
784         .reset = tegra_plane_reset,
785         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
786         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
787 };
788 
789 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
790         .prepare_fb = tegra_plane_prepare_fb,
791         .cleanup_fb = tegra_plane_cleanup_fb,
792         .atomic_check = tegra_cursor_atomic_check,
793         .atomic_update = tegra_cursor_atomic_update,
794         .atomic_disable = tegra_cursor_atomic_disable,
795 };
796 
797 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
798                                                       struct tegra_dc *dc)
799 {
800         struct tegra_plane *plane;
801         unsigned int num_formats;
802         const u32 *formats;
803         int err;
804 
805         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
806         if (!plane)
807                 return ERR_PTR(-ENOMEM);
808 
809         /*
810          * We'll treat the cursor as an overlay plane with index 6 here so
811          * that the update and activation request bits in DC_CMD_STATE_CONTROL
812          * match up.
813          */
814         plane->index = 6;
815 
816         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
817         formats = tegra_cursor_plane_formats;
818 
819         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
820                                        &tegra_cursor_plane_funcs, formats,
821                                        num_formats, DRM_PLANE_TYPE_CURSOR);
822         if (err < 0) {
823                 kfree(plane);
824                 return ERR_PTR(err);
825         }
826 
827         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
828 
829         return &plane->base;
830 }
831 
832 static void tegra_overlay_plane_destroy(struct drm_plane *plane)
833 {
834         tegra_plane_destroy(plane);
835 }
836 
837 static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
838         .update_plane = drm_atomic_helper_update_plane,
839         .disable_plane = drm_atomic_helper_disable_plane,
840         .destroy = tegra_overlay_plane_destroy,
841         .reset = tegra_plane_reset,
842         .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
843         .atomic_destroy_state = tegra_plane_atomic_destroy_state,
844 };
845 
846 static const uint32_t tegra_overlay_plane_formats[] = {
847         DRM_FORMAT_XBGR8888,
848         DRM_FORMAT_XRGB8888,
849         DRM_FORMAT_RGB565,
850         DRM_FORMAT_UYVY,
851         DRM_FORMAT_YUYV,
852         DRM_FORMAT_YUV420,
853         DRM_FORMAT_YUV422,
854 };
855 
856 static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
857         .prepare_fb = tegra_plane_prepare_fb,
858         .cleanup_fb = tegra_plane_cleanup_fb,
859         .atomic_check = tegra_plane_atomic_check,
860         .atomic_update = tegra_plane_atomic_update,
861         .atomic_disable = tegra_plane_atomic_disable,
862 };
863 
864 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
865                                                        struct tegra_dc *dc,
866                                                        unsigned int index)
867 {
868         struct tegra_plane *plane;
869         unsigned int num_formats;
870         const u32 *formats;
871         int err;
872 
873         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
874         if (!plane)
875                 return ERR_PTR(-ENOMEM);
876 
877         plane->index = index;
878 
879         num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
880         formats = tegra_overlay_plane_formats;
881 
882         err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
883                                        &tegra_overlay_plane_funcs, formats,
884                                        num_formats, DRM_PLANE_TYPE_OVERLAY);
885         if (err < 0) {
886                 kfree(plane);
887                 return ERR_PTR(err);
888         }
889 
890         drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
891 
892         return &plane->base;
893 }
894 
895 static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
896 {
897         struct drm_plane *plane;
898         unsigned int i;
899 
900         for (i = 0; i < 2; i++) {
901                 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
902                 if (IS_ERR(plane))
903                         return PTR_ERR(plane);
904         }
905 
906         return 0;
907 }
908 
909 void tegra_dc_enable_vblank(struct tegra_dc *dc)
910 {
911         unsigned long value, flags;
912 
913         spin_lock_irqsave(&dc->lock, flags);
914 
915         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
916         value |= VBLANK_INT;
917         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
918 
919         spin_unlock_irqrestore(&dc->lock, flags);
920 }
921 
922 void tegra_dc_disable_vblank(struct tegra_dc *dc)
923 {
924         unsigned long value, flags;
925 
926         spin_lock_irqsave(&dc->lock, flags);
927 
928         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
929         value &= ~VBLANK_INT;
930         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
931 
932         spin_unlock_irqrestore(&dc->lock, flags);
933 }
934 
935 static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
936 {
937         struct drm_device *drm = dc->base.dev;
938         struct drm_crtc *crtc = &dc->base;
939         unsigned long flags, base;
940         struct tegra_bo *bo;
941 
942         spin_lock_irqsave(&drm->event_lock, flags);
943 
944         if (!dc->event) {
945                 spin_unlock_irqrestore(&drm->event_lock, flags);
946                 return;
947         }
948 
949         bo = tegra_fb_get_plane(crtc->primary->fb, 0);
950 
951         spin_lock(&dc->lock);
952 
953         /* check if new start address has been latched */
954         tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
955         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
956         base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
957         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
958 
959         spin_unlock(&dc->lock);
960 
961         if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
962                 drm_crtc_send_vblank_event(crtc, dc->event);
963                 drm_crtc_vblank_put(crtc);
964                 dc->event = NULL;
965         }
966 
967         spin_unlock_irqrestore(&drm->event_lock, flags);
968 }
969 
970 void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
971 {
972         struct tegra_dc *dc = to_tegra_dc(crtc);
973         struct drm_device *drm = crtc->dev;
974         unsigned long flags;
975 
976         spin_lock_irqsave(&drm->event_lock, flags);
977 
978         if (dc->event && dc->event->base.file_priv == file) {
979                 dc->event->base.destroy(&dc->event->base);
980                 drm_crtc_vblank_put(crtc);
981                 dc->event = NULL;
982         }
983 
984         spin_unlock_irqrestore(&drm->event_lock, flags);
985 }
986 
987 static void tegra_dc_destroy(struct drm_crtc *crtc)
988 {
989         drm_crtc_cleanup(crtc);
990 }
991 
992 static void tegra_crtc_reset(struct drm_crtc *crtc)
993 {
994         struct tegra_dc_state *state;
995 
996         kfree(crtc->state);
997         crtc->state = NULL;
998 
999         state = kzalloc(sizeof(*state), GFP_KERNEL);
1000         if (state) {
1001                 crtc->state = &state->base;
1002                 crtc->state->crtc = crtc;
1003         }
1004 }
1005 
1006 static struct drm_crtc_state *
1007 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1008 {
1009         struct tegra_dc_state *state = to_dc_state(crtc->state);
1010         struct tegra_dc_state *copy;
1011 
1012         copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
1013         if (!copy)
1014                 return NULL;
1015 
1016         copy->base.mode_changed = false;
1017         copy->base.active_changed = false;
1018         copy->base.planes_changed = false;
1019         copy->base.event = NULL;
1020 
1021         return &copy->base;
1022 }
1023 
1024 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1025                                             struct drm_crtc_state *state)
1026 {
1027         kfree(state);
1028 }
1029 
1030 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1031         .page_flip = drm_atomic_helper_page_flip,
1032         .set_config = drm_atomic_helper_set_config,
1033         .destroy = tegra_dc_destroy,
1034         .reset = tegra_crtc_reset,
1035         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1036         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1037 };
1038 
1039 static void tegra_dc_stop(struct tegra_dc *dc)
1040 {
1041         u32 value;
1042 
1043         /* stop the display controller */
1044         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1045         value &= ~DISP_CTRL_MODE_MASK;
1046         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1047 
1048         tegra_dc_commit(dc);
1049 }
1050 
1051 static bool tegra_dc_idle(struct tegra_dc *dc)
1052 {
1053         u32 value;
1054 
1055         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1056 
1057         return (value & DISP_CTRL_MODE_MASK) == 0;
1058 }
1059 
1060 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1061 {
1062         timeout = jiffies + msecs_to_jiffies(timeout);
1063 
1064         while (time_before(jiffies, timeout)) {
1065                 if (tegra_dc_idle(dc))
1066                         return 0;
1067 
1068                 usleep_range(1000, 2000);
1069         }
1070 
1071         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1072         return -ETIMEDOUT;
1073 }
1074 
1075 static void tegra_crtc_disable(struct drm_crtc *crtc)
1076 {
1077         struct tegra_dc *dc = to_tegra_dc(crtc);
1078         u32 value;
1079 
1080         if (!tegra_dc_idle(dc)) {
1081                 tegra_dc_stop(dc);
1082 
1083                 /*
1084                  * Ignore the return value, there isn't anything useful to do
1085                  * in case this fails.
1086                  */
1087                 tegra_dc_wait_idle(dc, 100);
1088         }
1089 
1090         /*
1091          * This should really be part of the RGB encoder driver, but clearing
1092          * these bits has the side-effect of stopping the display controller.
1093          * When that happens no VBLANK interrupts will be raised. At the same
1094          * time the encoder is disabled before the display controller, so the
1095          * above code is always going to timeout waiting for the controller
1096          * to go idle.
1097          *
1098          * Given the close coupling between the RGB encoder and the display
1099          * controller doing it here is still kind of okay. None of the other
1100          * encoder drivers require these bits to be cleared.
1101          *
1102          * XXX: Perhaps given that the display controller is switched off at
1103          * this point anyway maybe clearing these bits isn't even useful for
1104          * the RGB encoder?
1105          */
1106         if (dc->rgb) {
1107                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1108                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1109                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1110                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1111         }
1112 
1113         drm_crtc_vblank_off(crtc);
1114 }
1115 
1116 static bool tegra_crtc_mode_fixup(struct drm_crtc *crtc,
1117                                   const struct drm_display_mode *mode,
1118                                   struct drm_display_mode *adjusted)
1119 {
1120         return true;
1121 }
1122 
1123 static int tegra_dc_set_timings(struct tegra_dc *dc,
1124                                 struct drm_display_mode *mode)
1125 {
1126         unsigned int h_ref_to_sync = 1;
1127         unsigned int v_ref_to_sync = 1;
1128         unsigned long value;
1129 
1130         tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1131 
1132         value = (v_ref_to_sync << 16) | h_ref_to_sync;
1133         tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1134 
1135         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1136                 ((mode->hsync_end - mode->hsync_start) <<  0);
1137         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1138 
1139         value = ((mode->vtotal - mode->vsync_end) << 16) |
1140                 ((mode->htotal - mode->hsync_end) <<  0);
1141         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1142 
1143         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1144                 ((mode->hsync_start - mode->hdisplay) <<  0);
1145         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1146 
1147         value = (mode->vdisplay << 16) | mode->hdisplay;
1148         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1149 
1150         return 0;
1151 }
1152 
1153 int tegra_dc_setup_clock(struct tegra_dc *dc, struct clk *parent,
1154                          unsigned long pclk, unsigned int div)
1155 {
1156         u32 value;
1157         int err;
1158 
1159         err = clk_set_parent(dc->clk, parent);
1160         if (err < 0) {
1161                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1162                 return err;
1163         }
1164 
1165         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk), div);
1166 
1167         value = SHIFT_CLK_DIVIDER(div) | PIXEL_CLK_DIVIDER_PCD1;
1168         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1169 
1170         return 0;
1171 }
1172 
1173 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1174                                struct drm_crtc_state *crtc_state,
1175                                struct clk *clk, unsigned long pclk,
1176                                unsigned int div)
1177 {
1178         struct tegra_dc_state *state = to_dc_state(crtc_state);
1179 
1180         state->clk = clk;
1181         state->pclk = pclk;
1182         state->div = div;
1183 
1184         return 0;
1185 }
1186 
1187 static void tegra_dc_commit_state(struct tegra_dc *dc,
1188                                   struct tegra_dc_state *state)
1189 {
1190         u32 value;
1191         int err;
1192 
1193         err = clk_set_parent(dc->clk, state->clk);
1194         if (err < 0)
1195                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1196 
1197         /*
1198          * Outputs may not want to change the parent clock rate. This is only
1199          * relevant to Tegra20 where only a single display PLL is available.
1200          * Since that PLL would typically be used for HDMI, an internal LVDS
1201          * panel would need to be driven by some other clock such as PLL_P
1202          * which is shared with other peripherals. Changing the clock rate
1203          * should therefore be avoided.
1204          */
1205         if (state->pclk > 0) {
1206                 err = clk_set_rate(state->clk, state->pclk);
1207                 if (err < 0)
1208                         dev_err(dc->dev,
1209                                 "failed to set clock rate to %lu Hz\n",
1210                                 state->pclk);
1211         }
1212 
1213         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1214                       state->div);
1215         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1216 
1217         value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1218         tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1219 }
1220 
1221 static void tegra_crtc_mode_set_nofb(struct drm_crtc *crtc)
1222 {
1223         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224         struct tegra_dc_state *state = to_dc_state(crtc->state);
1225         struct tegra_dc *dc = to_tegra_dc(crtc);
1226         u32 value;
1227 
1228         tegra_dc_commit_state(dc, state);
1229 
1230         /* program display mode */
1231         tegra_dc_set_timings(dc, mode);
1232 
1233         /* interlacing isn't supported yet, so disable it */
1234         if (dc->soc->supports_interlacing) {
1235                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236                 value &= ~INTERLACE_ENABLE;
1237                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238         }
1239 
1240         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241         value &= ~DISP_CTRL_MODE_MASK;
1242         value |= DISP_CTRL_MODE_C_DISPLAY;
1243         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244 
1245         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246         value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247                  PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1249 
1250         tegra_dc_commit(dc);
1251 }
1252 
1253 static void tegra_crtc_prepare(struct drm_crtc *crtc)
1254 {
1255         drm_crtc_vblank_off(crtc);
1256 }
1257 
1258 static void tegra_crtc_commit(struct drm_crtc *crtc)
1259 {
1260         drm_crtc_vblank_on(crtc);
1261 }
1262 
1263 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1264                                    struct drm_crtc_state *state)
1265 {
1266         return 0;
1267 }
1268 
1269 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc)
1270 {
1271         struct tegra_dc *dc = to_tegra_dc(crtc);
1272 
1273         if (crtc->state->event) {
1274                 crtc->state->event->pipe = drm_crtc_index(crtc);
1275 
1276                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1277 
1278                 dc->event = crtc->state->event;
1279                 crtc->state->event = NULL;
1280         }
1281 }
1282 
1283 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc)
1284 {
1285         struct tegra_dc_state *state = to_dc_state(crtc->state);
1286         struct tegra_dc *dc = to_tegra_dc(crtc);
1287 
1288         tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1289         tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1290 }
1291 
1292 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1293         .disable = tegra_crtc_disable,
1294         .mode_fixup = tegra_crtc_mode_fixup,
1295         .mode_set = drm_helper_crtc_mode_set,
1296         .mode_set_nofb = tegra_crtc_mode_set_nofb,
1297         .mode_set_base = drm_helper_crtc_mode_set_base,
1298         .prepare = tegra_crtc_prepare,
1299         .commit = tegra_crtc_commit,
1300         .atomic_check = tegra_crtc_atomic_check,
1301         .atomic_begin = tegra_crtc_atomic_begin,
1302         .atomic_flush = tegra_crtc_atomic_flush,
1303 };
1304 
1305 static irqreturn_t tegra_dc_irq(int irq, void *data)
1306 {
1307         struct tegra_dc *dc = data;
1308         unsigned long status;
1309 
1310         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1311         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1312 
1313         if (status & FRAME_END_INT) {
1314                 /*
1315                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1316                 */
1317         }
1318 
1319         if (status & VBLANK_INT) {
1320                 /*
1321                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1322                 */
1323                 drm_crtc_handle_vblank(&dc->base);
1324                 tegra_dc_finish_page_flip(dc);
1325         }
1326 
1327         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1328                 /*
1329                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1330                 */
1331         }
1332 
1333         return IRQ_HANDLED;
1334 }
1335 
1336 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1337 {
1338         struct drm_info_node *node = s->private;
1339         struct tegra_dc *dc = node->info_ent->data;
1340 
1341 #define DUMP_REG(name)                                          \
1342         seq_printf(s, "%-40s %#05x %08x\n", #name, name,        \
1343                    tegra_dc_readl(dc, name))
1344 
1345         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1346         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1347         DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1348         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1349         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1350         DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1351         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1352         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1353         DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1354         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1355         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1356         DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1357         DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1358         DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1359         DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1360         DUMP_REG(DC_CMD_SIGNAL_RAISE);
1361         DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1362         DUMP_REG(DC_CMD_INT_STATUS);
1363         DUMP_REG(DC_CMD_INT_MASK);
1364         DUMP_REG(DC_CMD_INT_ENABLE);
1365         DUMP_REG(DC_CMD_INT_TYPE);
1366         DUMP_REG(DC_CMD_INT_POLARITY);
1367         DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1368         DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1369         DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1370         DUMP_REG(DC_CMD_STATE_ACCESS);
1371         DUMP_REG(DC_CMD_STATE_CONTROL);
1372         DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1373         DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1374         DUMP_REG(DC_COM_CRC_CONTROL);
1375         DUMP_REG(DC_COM_CRC_CHECKSUM);
1376         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1377         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1378         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1379         DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1380         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1381         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1382         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1383         DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1384         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1385         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1386         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1387         DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1388         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1389         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1390         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1391         DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1392         DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1393         DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1394         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1395         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1396         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1397         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1398         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1399         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1400         DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1401         DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1402         DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1403         DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1404         DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1405         DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1406         DUMP_REG(DC_COM_SPI_CONTROL);
1407         DUMP_REG(DC_COM_SPI_START_BYTE);
1408         DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1409         DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1410         DUMP_REG(DC_COM_HSPI_CS_DC);
1411         DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1412         DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1413         DUMP_REG(DC_COM_GPIO_CTRL);
1414         DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1415         DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1416         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1417         DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1418         DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1419         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1420         DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1421         DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1422         DUMP_REG(DC_DISP_REF_TO_SYNC);
1423         DUMP_REG(DC_DISP_SYNC_WIDTH);
1424         DUMP_REG(DC_DISP_BACK_PORCH);
1425         DUMP_REG(DC_DISP_ACTIVE);
1426         DUMP_REG(DC_DISP_FRONT_PORCH);
1427         DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1428         DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1429         DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1430         DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1431         DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1432         DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1433         DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1434         DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1435         DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1436         DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1437         DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1438         DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1439         DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1440         DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1441         DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1442         DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1443         DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1444         DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1445         DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1446         DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1447         DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1448         DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1449         DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1450         DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1451         DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1452         DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1453         DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1454         DUMP_REG(DC_DISP_M0_CONTROL);
1455         DUMP_REG(DC_DISP_M1_CONTROL);
1456         DUMP_REG(DC_DISP_DI_CONTROL);
1457         DUMP_REG(DC_DISP_PP_CONTROL);
1458         DUMP_REG(DC_DISP_PP_SELECT_A);
1459         DUMP_REG(DC_DISP_PP_SELECT_B);
1460         DUMP_REG(DC_DISP_PP_SELECT_C);
1461         DUMP_REG(DC_DISP_PP_SELECT_D);
1462         DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1463         DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1464         DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1465         DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1466         DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1467         DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1468         DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1469         DUMP_REG(DC_DISP_BORDER_COLOR);
1470         DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1471         DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1472         DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1473         DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1474         DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1475         DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1476         DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1477         DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1478         DUMP_REG(DC_DISP_CURSOR_POSITION);
1479         DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1480         DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1481         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1482         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1483         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1484         DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1485         DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1486         DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1487         DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1488         DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1489         DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1490         DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1491         DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1492         DUMP_REG(DC_DISP_SD_CONTROL);
1493         DUMP_REG(DC_DISP_SD_CSC_COEFF);
1494         DUMP_REG(DC_DISP_SD_LUT(0));
1495         DUMP_REG(DC_DISP_SD_LUT(1));
1496         DUMP_REG(DC_DISP_SD_LUT(2));
1497         DUMP_REG(DC_DISP_SD_LUT(3));
1498         DUMP_REG(DC_DISP_SD_LUT(4));
1499         DUMP_REG(DC_DISP_SD_LUT(5));
1500         DUMP_REG(DC_DISP_SD_LUT(6));
1501         DUMP_REG(DC_DISP_SD_LUT(7));
1502         DUMP_REG(DC_DISP_SD_LUT(8));
1503         DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1504         DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1505         DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1506         DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1507         DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1508         DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1509         DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1510         DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1511         DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1512         DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1513         DUMP_REG(DC_DISP_SD_BL_TF(0));
1514         DUMP_REG(DC_DISP_SD_BL_TF(1));
1515         DUMP_REG(DC_DISP_SD_BL_TF(2));
1516         DUMP_REG(DC_DISP_SD_BL_TF(3));
1517         DUMP_REG(DC_DISP_SD_BL_CONTROL);
1518         DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1519         DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1520         DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1521         DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1522         DUMP_REG(DC_WIN_WIN_OPTIONS);
1523         DUMP_REG(DC_WIN_BYTE_SWAP);
1524         DUMP_REG(DC_WIN_BUFFER_CONTROL);
1525         DUMP_REG(DC_WIN_COLOR_DEPTH);
1526         DUMP_REG(DC_WIN_POSITION);
1527         DUMP_REG(DC_WIN_SIZE);
1528         DUMP_REG(DC_WIN_PRESCALED_SIZE);
1529         DUMP_REG(DC_WIN_H_INITIAL_DDA);
1530         DUMP_REG(DC_WIN_V_INITIAL_DDA);
1531         DUMP_REG(DC_WIN_DDA_INC);
1532         DUMP_REG(DC_WIN_LINE_STRIDE);
1533         DUMP_REG(DC_WIN_BUF_STRIDE);
1534         DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1535         DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1536         DUMP_REG(DC_WIN_DV_CONTROL);
1537         DUMP_REG(DC_WIN_BLEND_NOKEY);
1538         DUMP_REG(DC_WIN_BLEND_1WIN);
1539         DUMP_REG(DC_WIN_BLEND_2WIN_X);
1540         DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1541         DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1542         DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1543         DUMP_REG(DC_WINBUF_START_ADDR);
1544         DUMP_REG(DC_WINBUF_START_ADDR_NS);
1545         DUMP_REG(DC_WINBUF_START_ADDR_U);
1546         DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1547         DUMP_REG(DC_WINBUF_START_ADDR_V);
1548         DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1549         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1550         DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1551         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1552         DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1553         DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1554         DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1555         DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1556         DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1557 
1558 #undef DUMP_REG
1559 
1560         return 0;
1561 }
1562 
1563 static struct drm_info_list debugfs_files[] = {
1564         { "regs", tegra_dc_show_regs, 0, NULL },
1565 };
1566 
1567 static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1568 {
1569         unsigned int i;
1570         char *name;
1571         int err;
1572 
1573         name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1574         dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1575         kfree(name);
1576 
1577         if (!dc->debugfs)
1578                 return -ENOMEM;
1579 
1580         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1581                                     GFP_KERNEL);
1582         if (!dc->debugfs_files) {
1583                 err = -ENOMEM;
1584                 goto remove;
1585         }
1586 
1587         for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1588                 dc->debugfs_files[i].data = dc;
1589 
1590         err = drm_debugfs_create_files(dc->debugfs_files,
1591                                        ARRAY_SIZE(debugfs_files),
1592                                        dc->debugfs, minor);
1593         if (err < 0)
1594                 goto free;
1595 
1596         dc->minor = minor;
1597 
1598         return 0;
1599 
1600 free:
1601         kfree(dc->debugfs_files);
1602         dc->debugfs_files = NULL;
1603 remove:
1604         debugfs_remove(dc->debugfs);
1605         dc->debugfs = NULL;
1606 
1607         return err;
1608 }
1609 
1610 static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1611 {
1612         drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1613                                  dc->minor);
1614         dc->minor = NULL;
1615 
1616         kfree(dc->debugfs_files);
1617         dc->debugfs_files = NULL;
1618 
1619         debugfs_remove(dc->debugfs);
1620         dc->debugfs = NULL;
1621 
1622         return 0;
1623 }
1624 
1625 static int tegra_dc_init(struct host1x_client *client)
1626 {
1627         struct drm_device *drm = dev_get_drvdata(client->parent);
1628         struct tegra_dc *dc = host1x_client_to_dc(client);
1629         struct tegra_drm *tegra = drm->dev_private;
1630         struct drm_plane *primary = NULL;
1631         struct drm_plane *cursor = NULL;
1632         unsigned int syncpt;
1633         u32 value;
1634         int err;
1635 
1636         if (tegra->domain) {
1637                 err = iommu_attach_device(tegra->domain, dc->dev);
1638                 if (err < 0) {
1639                         dev_err(dc->dev, "failed to attach to domain: %d\n",
1640                                 err);
1641                         return err;
1642                 }
1643 
1644                 dc->domain = tegra->domain;
1645         }
1646 
1647         primary = tegra_dc_primary_plane_create(drm, dc);
1648         if (IS_ERR(primary)) {
1649                 err = PTR_ERR(primary);
1650                 goto cleanup;
1651         }
1652 
1653         if (dc->soc->supports_cursor) {
1654                 cursor = tegra_dc_cursor_plane_create(drm, dc);
1655                 if (IS_ERR(cursor)) {
1656                         err = PTR_ERR(cursor);
1657                         goto cleanup;
1658                 }
1659         }
1660 
1661         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1662                                         &tegra_crtc_funcs);
1663         if (err < 0)
1664                 goto cleanup;
1665 
1666         drm_mode_crtc_set_gamma_size(&dc->base, 256);
1667         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1668 
1669         /*
1670          * Keep track of the minimum pitch alignment across all display
1671          * controllers.
1672          */
1673         if (dc->soc->pitch_align > tegra->pitch_align)
1674                 tegra->pitch_align = dc->soc->pitch_align;
1675 
1676         err = tegra_dc_rgb_init(drm, dc);
1677         if (err < 0 && err != -ENODEV) {
1678                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1679                 goto cleanup;
1680         }
1681 
1682         err = tegra_dc_add_planes(drm, dc);
1683         if (err < 0)
1684                 goto cleanup;
1685 
1686         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1687                 err = tegra_dc_debugfs_init(dc, drm->primary);
1688                 if (err < 0)
1689                         dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1690         }
1691 
1692         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1693                                dev_name(dc->dev), dc);
1694         if (err < 0) {
1695                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1696                         err);
1697                 goto cleanup;
1698         }
1699 
1700         /* initialize display controller */
1701         if (dc->pipe)
1702                 syncpt = SYNCPT_VBLANK1;
1703         else
1704                 syncpt = SYNCPT_VBLANK0;
1705 
1706         tegra_dc_writel(dc, 0x00000100, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1707         tegra_dc_writel(dc, 0x100 | syncpt, DC_CMD_CONT_SYNCPT_VSYNC);
1708 
1709         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT | WIN_A_OF_INT;
1710         tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1711 
1712         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1713                 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1714         tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1715 
1716         /* initialize timer */
1717         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1718                 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1719         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1720 
1721         value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1722                 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1723         tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1724 
1725         value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1726         tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1727 
1728         value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT;
1729         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1730 
1731         if (dc->soc->supports_border_color)
1732                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1733 
1734         return 0;
1735 
1736 cleanup:
1737         if (cursor)
1738                 drm_plane_cleanup(cursor);
1739 
1740         if (primary)
1741                 drm_plane_cleanup(primary);
1742 
1743         if (tegra->domain) {
1744                 iommu_detach_device(tegra->domain, dc->dev);
1745                 dc->domain = NULL;
1746         }
1747 
1748         return err;
1749 }
1750 
1751 static int tegra_dc_exit(struct host1x_client *client)
1752 {
1753         struct tegra_dc *dc = host1x_client_to_dc(client);
1754         int err;
1755 
1756         devm_free_irq(dc->dev, dc->irq, dc);
1757 
1758         if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1759                 err = tegra_dc_debugfs_exit(dc);
1760                 if (err < 0)
1761                         dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1762         }
1763 
1764         err = tegra_dc_rgb_exit(dc);
1765         if (err) {
1766                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1767                 return err;
1768         }
1769 
1770         if (dc->domain) {
1771                 iommu_detach_device(dc->domain, dc->dev);
1772                 dc->domain = NULL;
1773         }
1774 
1775         return 0;
1776 }
1777 
1778 static const struct host1x_client_ops dc_client_ops = {
1779         .init = tegra_dc_init,
1780         .exit = tegra_dc_exit,
1781 };
1782 
1783 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1784         .supports_border_color = true,
1785         .supports_interlacing = false,
1786         .supports_cursor = false,
1787         .supports_block_linear = false,
1788         .pitch_align = 8,
1789         .has_powergate = false,
1790 };
1791 
1792 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1793         .supports_border_color = true,
1794         .supports_interlacing = false,
1795         .supports_cursor = false,
1796         .supports_block_linear = false,
1797         .pitch_align = 8,
1798         .has_powergate = false,
1799 };
1800 
1801 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1802         .supports_border_color = true,
1803         .supports_interlacing = false,
1804         .supports_cursor = false,
1805         .supports_block_linear = false,
1806         .pitch_align = 64,
1807         .has_powergate = true,
1808 };
1809 
1810 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1811         .supports_border_color = false,
1812         .supports_interlacing = true,
1813         .supports_cursor = true,
1814         .supports_block_linear = true,
1815         .pitch_align = 64,
1816         .has_powergate = true,
1817 };
1818 
1819 static const struct of_device_id tegra_dc_of_match[] = {
1820         {
1821                 .compatible = "nvidia,tegra124-dc",
1822                 .data = &tegra124_dc_soc_info,
1823         }, {
1824                 .compatible = "nvidia,tegra114-dc",
1825                 .data = &tegra114_dc_soc_info,
1826         }, {
1827                 .compatible = "nvidia,tegra30-dc",
1828                 .data = &tegra30_dc_soc_info,
1829         }, {
1830                 .compatible = "nvidia,tegra20-dc",
1831                 .data = &tegra20_dc_soc_info,
1832         }, {
1833                 /* sentinel */
1834         }
1835 };
1836 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1837 
1838 static int tegra_dc_parse_dt(struct tegra_dc *dc)
1839 {
1840         struct device_node *np;
1841         u32 value = 0;
1842         int err;
1843 
1844         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1845         if (err < 0) {
1846                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1847 
1848                 /*
1849                  * If the nvidia,head property isn't present, try to find the
1850                  * correct head number by looking up the position of this
1851                  * display controller's node within the device tree. Assuming
1852                  * that the nodes are ordered properly in the DTS file and
1853                  * that the translation into a flattened device tree blob
1854                  * preserves that ordering this will actually yield the right
1855                  * head number.
1856                  *
1857                  * If those assumptions don't hold, this will still work for
1858                  * cases where only a single display controller is used.
1859                  */
1860                 for_each_matching_node(np, tegra_dc_of_match) {
1861                         if (np == dc->dev->of_node)
1862                                 break;
1863 
1864                         value++;
1865                 }
1866         }
1867 
1868         dc->pipe = value;
1869 
1870         return 0;
1871 }
1872 
1873 static int tegra_dc_probe(struct platform_device *pdev)
1874 {
1875         const struct of_device_id *id;
1876         struct resource *regs;
1877         struct tegra_dc *dc;
1878         int err;
1879 
1880         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1881         if (!dc)
1882                 return -ENOMEM;
1883 
1884         id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1885         if (!id)
1886                 return -ENODEV;
1887 
1888         spin_lock_init(&dc->lock);
1889         INIT_LIST_HEAD(&dc->list);
1890         dc->dev = &pdev->dev;
1891         dc->soc = id->data;
1892 
1893         err = tegra_dc_parse_dt(dc);
1894         if (err < 0)
1895                 return err;
1896 
1897         dc->clk = devm_clk_get(&pdev->dev, NULL);
1898         if (IS_ERR(dc->clk)) {
1899                 dev_err(&pdev->dev, "failed to get clock\n");
1900                 return PTR_ERR(dc->clk);
1901         }
1902 
1903         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1904         if (IS_ERR(dc->rst)) {
1905                 dev_err(&pdev->dev, "failed to get reset\n");
1906                 return PTR_ERR(dc->rst);
1907         }
1908 
1909         if (dc->soc->has_powergate) {
1910                 if (dc->pipe == 0)
1911                         dc->powergate = TEGRA_POWERGATE_DIS;
1912                 else
1913                         dc->powergate = TEGRA_POWERGATE_DISB;
1914 
1915                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1916                                                         dc->rst);
1917                 if (err < 0) {
1918                         dev_err(&pdev->dev, "failed to power partition: %d\n",
1919                                 err);
1920                         return err;
1921                 }
1922         } else {
1923                 err = clk_prepare_enable(dc->clk);
1924                 if (err < 0) {
1925                         dev_err(&pdev->dev, "failed to enable clock: %d\n",
1926                                 err);
1927                         return err;
1928                 }
1929 
1930                 err = reset_control_deassert(dc->rst);
1931                 if (err < 0) {
1932                         dev_err(&pdev->dev, "failed to deassert reset: %d\n",
1933                                 err);
1934                         return err;
1935                 }
1936         }
1937 
1938         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1939         dc->regs = devm_ioremap_resource(&pdev->dev, regs);
1940         if (IS_ERR(dc->regs))
1941                 return PTR_ERR(dc->regs);
1942 
1943         dc->irq = platform_get_irq(pdev, 0);
1944         if (dc->irq < 0) {
1945                 dev_err(&pdev->dev, "failed to get IRQ\n");
1946                 return -ENXIO;
1947         }
1948 
1949         INIT_LIST_HEAD(&dc->client.list);
1950         dc->client.ops = &dc_client_ops;
1951         dc->client.dev = &pdev->dev;
1952 
1953         err = tegra_dc_rgb_probe(dc);
1954         if (err < 0 && err != -ENODEV) {
1955                 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
1956                 return err;
1957         }
1958 
1959         err = host1x_client_register(&dc->client);
1960         if (err < 0) {
1961                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
1962                         err);
1963                 return err;
1964         }
1965 
1966         platform_set_drvdata(pdev, dc);
1967 
1968         return 0;
1969 }
1970 
1971 static int tegra_dc_remove(struct platform_device *pdev)
1972 {
1973         struct tegra_dc *dc = platform_get_drvdata(pdev);
1974         int err;
1975 
1976         err = host1x_client_unregister(&dc->client);
1977         if (err < 0) {
1978                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
1979                         err);
1980                 return err;
1981         }
1982 
1983         err = tegra_dc_rgb_remove(dc);
1984         if (err < 0) {
1985                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
1986                 return err;
1987         }
1988 
1989         reset_control_assert(dc->rst);
1990 
1991         if (dc->soc->has_powergate)
1992                 tegra_powergate_power_off(dc->powergate);
1993 
1994         clk_disable_unprepare(dc->clk);
1995 
1996         return 0;
1997 }
1998 
1999 struct platform_driver tegra_dc_driver = {
2000         .driver = {
2001                 .name = "tegra-dc",
2002                 .owner = THIS_MODULE,
2003                 .of_match_table = tegra_dc_of_match,
2004         },
2005         .probe = tegra_dc_probe,
2006         .remove = tegra_dc_remove,
2007 };
2008 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us