Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/firewire/net.c

  1 /*
  2  * IPv4 over IEEE 1394, per RFC 2734
  3  * IPv6 over IEEE 1394, per RFC 3146
  4  *
  5  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
  6  *
  7  * based on eth1394 by Ben Collins et al
  8  */
  9 
 10 #include <linux/bug.h>
 11 #include <linux/compiler.h>
 12 #include <linux/delay.h>
 13 #include <linux/device.h>
 14 #include <linux/ethtool.h>
 15 #include <linux/firewire.h>
 16 #include <linux/firewire-constants.h>
 17 #include <linux/highmem.h>
 18 #include <linux/in.h>
 19 #include <linux/ip.h>
 20 #include <linux/jiffies.h>
 21 #include <linux/mod_devicetable.h>
 22 #include <linux/module.h>
 23 #include <linux/moduleparam.h>
 24 #include <linux/mutex.h>
 25 #include <linux/netdevice.h>
 26 #include <linux/skbuff.h>
 27 #include <linux/slab.h>
 28 #include <linux/spinlock.h>
 29 
 30 #include <asm/unaligned.h>
 31 #include <net/arp.h>
 32 #include <net/firewire.h>
 33 
 34 /* rx limits */
 35 #define FWNET_MAX_FRAGMENTS             30 /* arbitrary, > TX queue depth */
 36 #define FWNET_ISO_PAGE_COUNT            (PAGE_SIZE < 16*1024 ? 4 : 2)
 37 
 38 /* tx limits */
 39 #define FWNET_MAX_QUEUED_DATAGRAMS      20 /* < 64 = number of tlabels */
 40 #define FWNET_MIN_QUEUED_DATAGRAMS      10 /* should keep AT DMA busy enough */
 41 #define FWNET_TX_QUEUE_LEN              FWNET_MAX_QUEUED_DATAGRAMS /* ? */
 42 
 43 #define IEEE1394_BROADCAST_CHANNEL      31
 44 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
 45 #define IEEE1394_MAX_PAYLOAD_S100       512
 46 #define FWNET_NO_FIFO_ADDR              (~0ULL)
 47 
 48 #define IANA_SPECIFIER_ID               0x00005eU
 49 #define RFC2734_SW_VERSION              0x000001U
 50 #define RFC3146_SW_VERSION              0x000002U
 51 
 52 #define IEEE1394_GASP_HDR_SIZE  8
 53 
 54 #define RFC2374_UNFRAG_HDR_SIZE 4
 55 #define RFC2374_FRAG_HDR_SIZE   8
 56 #define RFC2374_FRAG_OVERHEAD   4
 57 
 58 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
 59 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
 60 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
 61 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
 62 
 63 static bool fwnet_hwaddr_is_multicast(u8 *ha)
 64 {
 65         return !!(*ha & 1);
 66 }
 67 
 68 /* IPv4 and IPv6 encapsulation header */
 69 struct rfc2734_header {
 70         u32 w0;
 71         u32 w1;
 72 };
 73 
 74 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
 75 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
 76 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
 77 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
 78 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
 79 
 80 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
 81 #define fwnet_set_hdr_ether_type(et)    (et)
 82 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
 83 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
 84 
 85 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
 86 
 87 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
 88                 unsigned ether_type)
 89 {
 90         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
 91                   | fwnet_set_hdr_ether_type(ether_type);
 92 }
 93 
 94 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
 95                 unsigned ether_type, unsigned dg_size, unsigned dgl)
 96 {
 97         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
 98                   | fwnet_set_hdr_dg_size(dg_size)
 99                   | fwnet_set_hdr_ether_type(ether_type);
100         hdr->w1 = fwnet_set_hdr_dgl(dgl);
101 }
102 
103 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
104                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
105 {
106         hdr->w0 = fwnet_set_hdr_lf(lf)
107                   | fwnet_set_hdr_dg_size(dg_size)
108                   | fwnet_set_hdr_fg_off(fg_off);
109         hdr->w1 = fwnet_set_hdr_dgl(dgl);
110 }
111 
112 /* This list keeps track of what parts of the datagram have been filled in */
113 struct fwnet_fragment_info {
114         struct list_head fi_link;
115         u16 offset;
116         u16 len;
117 };
118 
119 struct fwnet_partial_datagram {
120         struct list_head pd_link;
121         struct list_head fi_list;
122         struct sk_buff *skb;
123         /* FIXME Why not use skb->data? */
124         char *pbuf;
125         u16 datagram_label;
126         u16 ether_type;
127         u16 datagram_size;
128 };
129 
130 static DEFINE_MUTEX(fwnet_device_mutex);
131 static LIST_HEAD(fwnet_device_list);
132 
133 struct fwnet_device {
134         struct list_head dev_link;
135         spinlock_t lock;
136         enum {
137                 FWNET_BROADCAST_ERROR,
138                 FWNET_BROADCAST_RUNNING,
139                 FWNET_BROADCAST_STOPPED,
140         } broadcast_state;
141         struct fw_iso_context *broadcast_rcv_context;
142         struct fw_iso_buffer broadcast_rcv_buffer;
143         void **broadcast_rcv_buffer_ptrs;
144         unsigned broadcast_rcv_next_ptr;
145         unsigned num_broadcast_rcv_ptrs;
146         unsigned rcv_buffer_size;
147         /*
148          * This value is the maximum unfragmented datagram size that can be
149          * sent by the hardware.  It already has the GASP overhead and the
150          * unfragmented datagram header overhead calculated into it.
151          */
152         unsigned broadcast_xmt_max_payload;
153         u16 broadcast_xmt_datagramlabel;
154 
155         /*
156          * The CSR address that remote nodes must send datagrams to for us to
157          * receive them.
158          */
159         struct fw_address_handler handler;
160         u64 local_fifo;
161 
162         /* Number of tx datagrams that have been queued but not yet acked */
163         int queued_datagrams;
164 
165         int peer_count;
166         struct list_head peer_list;
167         struct fw_card *card;
168         struct net_device *netdev;
169 };
170 
171 struct fwnet_peer {
172         struct list_head peer_link;
173         struct fwnet_device *dev;
174         u64 guid;
175 
176         /* guarded by dev->lock */
177         struct list_head pd_list; /* received partial datagrams */
178         unsigned pdg_size;        /* pd_list size */
179 
180         u16 datagram_label;       /* outgoing datagram label */
181         u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
182         int node_id;
183         int generation;
184         unsigned speed;
185 };
186 
187 /* This is our task struct. It's used for the packet complete callback.  */
188 struct fwnet_packet_task {
189         struct fw_transaction transaction;
190         struct rfc2734_header hdr;
191         struct sk_buff *skb;
192         struct fwnet_device *dev;
193 
194         int outstanding_pkts;
195         u64 fifo_addr;
196         u16 dest_node;
197         u16 max_payload;
198         u8 generation;
199         u8 speed;
200         u8 enqueued;
201 };
202 
203 /*
204  * Get fifo address embedded in hwaddr
205  */
206 static __u64 fwnet_hwaddr_fifo(union fwnet_hwaddr *ha)
207 {
208         return (u64)get_unaligned_be16(&ha->uc.fifo_hi) << 32
209                | get_unaligned_be32(&ha->uc.fifo_lo);
210 }
211 
212 /*
213  * saddr == NULL means use device source address.
214  * daddr == NULL means leave destination address (eg unresolved arp).
215  */
216 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
217                         unsigned short type, const void *daddr,
218                         const void *saddr, unsigned len)
219 {
220         struct fwnet_header *h;
221 
222         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
223         put_unaligned_be16(type, &h->h_proto);
224 
225         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
226                 memset(h->h_dest, 0, net->addr_len);
227 
228                 return net->hard_header_len;
229         }
230 
231         if (daddr) {
232                 memcpy(h->h_dest, daddr, net->addr_len);
233 
234                 return net->hard_header_len;
235         }
236 
237         return -net->hard_header_len;
238 }
239 
240 static int fwnet_header_rebuild(struct sk_buff *skb)
241 {
242         struct fwnet_header *h = (struct fwnet_header *)skb->data;
243 
244         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
245                 return arp_find((unsigned char *)&h->h_dest, skb);
246 
247         dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
248                    be16_to_cpu(h->h_proto));
249         return 0;
250 }
251 
252 static int fwnet_header_cache(const struct neighbour *neigh,
253                               struct hh_cache *hh, __be16 type)
254 {
255         struct net_device *net;
256         struct fwnet_header *h;
257 
258         if (type == cpu_to_be16(ETH_P_802_3))
259                 return -1;
260         net = neigh->dev;
261         h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
262         h->h_proto = type;
263         memcpy(h->h_dest, neigh->ha, net->addr_len);
264         hh->hh_len = FWNET_HLEN;
265 
266         return 0;
267 }
268 
269 /* Called by Address Resolution module to notify changes in address. */
270 static void fwnet_header_cache_update(struct hh_cache *hh,
271                 const struct net_device *net, const unsigned char *haddr)
272 {
273         memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
274 }
275 
276 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
277 {
278         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
279 
280         return FWNET_ALEN;
281 }
282 
283 static const struct header_ops fwnet_header_ops = {
284         .create         = fwnet_header_create,
285         .rebuild        = fwnet_header_rebuild,
286         .cache          = fwnet_header_cache,
287         .cache_update   = fwnet_header_cache_update,
288         .parse          = fwnet_header_parse,
289 };
290 
291 /* FIXME: is this correct for all cases? */
292 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
293                                unsigned offset, unsigned len)
294 {
295         struct fwnet_fragment_info *fi;
296         unsigned end = offset + len;
297 
298         list_for_each_entry(fi, &pd->fi_list, fi_link)
299                 if (offset < fi->offset + fi->len && end > fi->offset)
300                         return true;
301 
302         return false;
303 }
304 
305 /* Assumes that new fragment does not overlap any existing fragments */
306 static struct fwnet_fragment_info *fwnet_frag_new(
307         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
308 {
309         struct fwnet_fragment_info *fi, *fi2, *new;
310         struct list_head *list;
311 
312         list = &pd->fi_list;
313         list_for_each_entry(fi, &pd->fi_list, fi_link) {
314                 if (fi->offset + fi->len == offset) {
315                         /* The new fragment can be tacked on to the end */
316                         /* Did the new fragment plug a hole? */
317                         fi2 = list_entry(fi->fi_link.next,
318                                          struct fwnet_fragment_info, fi_link);
319                         if (fi->offset + fi->len == fi2->offset) {
320                                 /* glue fragments together */
321                                 fi->len += len + fi2->len;
322                                 list_del(&fi2->fi_link);
323                                 kfree(fi2);
324                         } else {
325                                 fi->len += len;
326                         }
327 
328                         return fi;
329                 }
330                 if (offset + len == fi->offset) {
331                         /* The new fragment can be tacked on to the beginning */
332                         /* Did the new fragment plug a hole? */
333                         fi2 = list_entry(fi->fi_link.prev,
334                                          struct fwnet_fragment_info, fi_link);
335                         if (fi2->offset + fi2->len == fi->offset) {
336                                 /* glue fragments together */
337                                 fi2->len += fi->len + len;
338                                 list_del(&fi->fi_link);
339                                 kfree(fi);
340 
341                                 return fi2;
342                         }
343                         fi->offset = offset;
344                         fi->len += len;
345 
346                         return fi;
347                 }
348                 if (offset > fi->offset + fi->len) {
349                         list = &fi->fi_link;
350                         break;
351                 }
352                 if (offset + len < fi->offset) {
353                         list = fi->fi_link.prev;
354                         break;
355                 }
356         }
357 
358         new = kmalloc(sizeof(*new), GFP_ATOMIC);
359         if (!new)
360                 return NULL;
361 
362         new->offset = offset;
363         new->len = len;
364         list_add(&new->fi_link, list);
365 
366         return new;
367 }
368 
369 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
370                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
371                 void *frag_buf, unsigned frag_off, unsigned frag_len)
372 {
373         struct fwnet_partial_datagram *new;
374         struct fwnet_fragment_info *fi;
375 
376         new = kmalloc(sizeof(*new), GFP_ATOMIC);
377         if (!new)
378                 goto fail;
379 
380         INIT_LIST_HEAD(&new->fi_list);
381         fi = fwnet_frag_new(new, frag_off, frag_len);
382         if (fi == NULL)
383                 goto fail_w_new;
384 
385         new->datagram_label = datagram_label;
386         new->datagram_size = dg_size;
387         new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
388         if (new->skb == NULL)
389                 goto fail_w_fi;
390 
391         skb_reserve(new->skb, LL_RESERVED_SPACE(net));
392         new->pbuf = skb_put(new->skb, dg_size);
393         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
394         list_add_tail(&new->pd_link, &peer->pd_list);
395 
396         return new;
397 
398 fail_w_fi:
399         kfree(fi);
400 fail_w_new:
401         kfree(new);
402 fail:
403         return NULL;
404 }
405 
406 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
407                                                     u16 datagram_label)
408 {
409         struct fwnet_partial_datagram *pd;
410 
411         list_for_each_entry(pd, &peer->pd_list, pd_link)
412                 if (pd->datagram_label == datagram_label)
413                         return pd;
414 
415         return NULL;
416 }
417 
418 
419 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
420 {
421         struct fwnet_fragment_info *fi, *n;
422 
423         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
424                 kfree(fi);
425 
426         list_del(&old->pd_link);
427         dev_kfree_skb_any(old->skb);
428         kfree(old);
429 }
430 
431 static bool fwnet_pd_update(struct fwnet_peer *peer,
432                 struct fwnet_partial_datagram *pd, void *frag_buf,
433                 unsigned frag_off, unsigned frag_len)
434 {
435         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
436                 return false;
437 
438         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
439 
440         /*
441          * Move list entry to beginning of list so that oldest partial
442          * datagrams percolate to the end of the list
443          */
444         list_move_tail(&pd->pd_link, &peer->pd_list);
445 
446         return true;
447 }
448 
449 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
450 {
451         struct fwnet_fragment_info *fi;
452 
453         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
454 
455         return fi->len == pd->datagram_size;
456 }
457 
458 /* caller must hold dev->lock */
459 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
460                                                   u64 guid)
461 {
462         struct fwnet_peer *peer;
463 
464         list_for_each_entry(peer, &dev->peer_list, peer_link)
465                 if (peer->guid == guid)
466                         return peer;
467 
468         return NULL;
469 }
470 
471 /* caller must hold dev->lock */
472 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
473                                                 int node_id, int generation)
474 {
475         struct fwnet_peer *peer;
476 
477         list_for_each_entry(peer, &dev->peer_list, peer_link)
478                 if (peer->node_id    == node_id &&
479                     peer->generation == generation)
480                         return peer;
481 
482         return NULL;
483 }
484 
485 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
486 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
487 {
488         max_rec = min(max_rec, speed + 8);
489         max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
490 
491         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
492 }
493 
494 
495 static int fwnet_finish_incoming_packet(struct net_device *net,
496                                         struct sk_buff *skb, u16 source_node_id,
497                                         bool is_broadcast, u16 ether_type)
498 {
499         struct fwnet_device *dev;
500         int status;
501         __be64 guid;
502 
503         switch (ether_type) {
504         case ETH_P_ARP:
505         case ETH_P_IP:
506 #if IS_ENABLED(CONFIG_IPV6)
507         case ETH_P_IPV6:
508 #endif
509                 break;
510         default:
511                 goto err;
512         }
513 
514         dev = netdev_priv(net);
515         /* Write metadata, and then pass to the receive level */
516         skb->dev = net;
517         skb->ip_summed = CHECKSUM_NONE;
518 
519         /*
520          * Parse the encapsulation header. This actually does the job of
521          * converting to an ethernet-like pseudo frame header.
522          */
523         guid = cpu_to_be64(dev->card->guid);
524         if (dev_hard_header(skb, net, ether_type,
525                            is_broadcast ? net->broadcast : net->dev_addr,
526                            NULL, skb->len) >= 0) {
527                 struct fwnet_header *eth;
528                 u16 *rawp;
529                 __be16 protocol;
530 
531                 skb_reset_mac_header(skb);
532                 skb_pull(skb, sizeof(*eth));
533                 eth = (struct fwnet_header *)skb_mac_header(skb);
534                 if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
535                         if (memcmp(eth->h_dest, net->broadcast,
536                                    net->addr_len) == 0)
537                                 skb->pkt_type = PACKET_BROADCAST;
538 #if 0
539                         else
540                                 skb->pkt_type = PACKET_MULTICAST;
541 #endif
542                 } else {
543                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
544                                 skb->pkt_type = PACKET_OTHERHOST;
545                 }
546                 if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
547                         protocol = eth->h_proto;
548                 } else {
549                         rawp = (u16 *)skb->data;
550                         if (*rawp == 0xffff)
551                                 protocol = htons(ETH_P_802_3);
552                         else
553                                 protocol = htons(ETH_P_802_2);
554                 }
555                 skb->protocol = protocol;
556         }
557         status = netif_rx(skb);
558         if (status == NET_RX_DROP) {
559                 net->stats.rx_errors++;
560                 net->stats.rx_dropped++;
561         } else {
562                 net->stats.rx_packets++;
563                 net->stats.rx_bytes += skb->len;
564         }
565 
566         return 0;
567 
568  err:
569         net->stats.rx_errors++;
570         net->stats.rx_dropped++;
571 
572         dev_kfree_skb_any(skb);
573 
574         return -ENOENT;
575 }
576 
577 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
578                                  int source_node_id, int generation,
579                                  bool is_broadcast)
580 {
581         struct sk_buff *skb;
582         struct net_device *net = dev->netdev;
583         struct rfc2734_header hdr;
584         unsigned lf;
585         unsigned long flags;
586         struct fwnet_peer *peer;
587         struct fwnet_partial_datagram *pd;
588         int fg_off;
589         int dg_size;
590         u16 datagram_label;
591         int retval;
592         u16 ether_type;
593 
594         hdr.w0 = be32_to_cpu(buf[0]);
595         lf = fwnet_get_hdr_lf(&hdr);
596         if (lf == RFC2374_HDR_UNFRAG) {
597                 /*
598                  * An unfragmented datagram has been received by the ieee1394
599                  * bus. Build an skbuff around it so we can pass it to the
600                  * high level network layer.
601                  */
602                 ether_type = fwnet_get_hdr_ether_type(&hdr);
603                 buf++;
604                 len -= RFC2374_UNFRAG_HDR_SIZE;
605 
606                 skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
607                 if (unlikely(!skb)) {
608                         net->stats.rx_dropped++;
609 
610                         return -ENOMEM;
611                 }
612                 skb_reserve(skb, LL_RESERVED_SPACE(net));
613                 memcpy(skb_put(skb, len), buf, len);
614 
615                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
616                                                     is_broadcast, ether_type);
617         }
618         /* A datagram fragment has been received, now the fun begins. */
619         hdr.w1 = ntohl(buf[1]);
620         buf += 2;
621         len -= RFC2374_FRAG_HDR_SIZE;
622         if (lf == RFC2374_HDR_FIRSTFRAG) {
623                 ether_type = fwnet_get_hdr_ether_type(&hdr);
624                 fg_off = 0;
625         } else {
626                 ether_type = 0;
627                 fg_off = fwnet_get_hdr_fg_off(&hdr);
628         }
629         datagram_label = fwnet_get_hdr_dgl(&hdr);
630         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
631 
632         spin_lock_irqsave(&dev->lock, flags);
633 
634         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
635         if (!peer) {
636                 retval = -ENOENT;
637                 goto fail;
638         }
639 
640         pd = fwnet_pd_find(peer, datagram_label);
641         if (pd == NULL) {
642                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
643                         /* remove the oldest */
644                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
645                                 struct fwnet_partial_datagram, pd_link));
646                         peer->pdg_size--;
647                 }
648                 pd = fwnet_pd_new(net, peer, datagram_label,
649                                   dg_size, buf, fg_off, len);
650                 if (pd == NULL) {
651                         retval = -ENOMEM;
652                         goto fail;
653                 }
654                 peer->pdg_size++;
655         } else {
656                 if (fwnet_frag_overlap(pd, fg_off, len) ||
657                     pd->datagram_size != dg_size) {
658                         /*
659                          * Differing datagram sizes or overlapping fragments,
660                          * discard old datagram and start a new one.
661                          */
662                         fwnet_pd_delete(pd);
663                         pd = fwnet_pd_new(net, peer, datagram_label,
664                                           dg_size, buf, fg_off, len);
665                         if (pd == NULL) {
666                                 peer->pdg_size--;
667                                 retval = -ENOMEM;
668                                 goto fail;
669                         }
670                 } else {
671                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
672                                 /*
673                                  * Couldn't save off fragment anyway
674                                  * so might as well obliterate the
675                                  * datagram now.
676                                  */
677                                 fwnet_pd_delete(pd);
678                                 peer->pdg_size--;
679                                 retval = -ENOMEM;
680                                 goto fail;
681                         }
682                 }
683         } /* new datagram or add to existing one */
684 
685         if (lf == RFC2374_HDR_FIRSTFRAG)
686                 pd->ether_type = ether_type;
687 
688         if (fwnet_pd_is_complete(pd)) {
689                 ether_type = pd->ether_type;
690                 peer->pdg_size--;
691                 skb = skb_get(pd->skb);
692                 fwnet_pd_delete(pd);
693 
694                 spin_unlock_irqrestore(&dev->lock, flags);
695 
696                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
697                                                     false, ether_type);
698         }
699         /*
700          * Datagram is not complete, we're done for the
701          * moment.
702          */
703         retval = 0;
704  fail:
705         spin_unlock_irqrestore(&dev->lock, flags);
706 
707         return retval;
708 }
709 
710 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
711                 int tcode, int destination, int source, int generation,
712                 unsigned long long offset, void *payload, size_t length,
713                 void *callback_data)
714 {
715         struct fwnet_device *dev = callback_data;
716         int rcode;
717 
718         if (destination == IEEE1394_ALL_NODES) {
719                 kfree(r);
720 
721                 return;
722         }
723 
724         if (offset != dev->handler.offset)
725                 rcode = RCODE_ADDRESS_ERROR;
726         else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
727                 rcode = RCODE_TYPE_ERROR;
728         else if (fwnet_incoming_packet(dev, payload, length,
729                                        source, generation, false) != 0) {
730                 dev_err(&dev->netdev->dev, "incoming packet failure\n");
731                 rcode = RCODE_CONFLICT_ERROR;
732         } else
733                 rcode = RCODE_COMPLETE;
734 
735         fw_send_response(card, r, rcode);
736 }
737 
738 static void fwnet_receive_broadcast(struct fw_iso_context *context,
739                 u32 cycle, size_t header_length, void *header, void *data)
740 {
741         struct fwnet_device *dev;
742         struct fw_iso_packet packet;
743         __be16 *hdr_ptr;
744         __be32 *buf_ptr;
745         int retval;
746         u32 length;
747         u16 source_node_id;
748         u32 specifier_id;
749         u32 ver;
750         unsigned long offset;
751         unsigned long flags;
752 
753         dev = data;
754         hdr_ptr = header;
755         length = be16_to_cpup(hdr_ptr);
756 
757         spin_lock_irqsave(&dev->lock, flags);
758 
759         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
760         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
761         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
762                 dev->broadcast_rcv_next_ptr = 0;
763 
764         spin_unlock_irqrestore(&dev->lock, flags);
765 
766         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
767                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
768         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
769         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
770 
771         if (specifier_id == IANA_SPECIFIER_ID &&
772             (ver == RFC2734_SW_VERSION
773 #if IS_ENABLED(CONFIG_IPV6)
774              || ver == RFC3146_SW_VERSION
775 #endif
776             )) {
777                 buf_ptr += 2;
778                 length -= IEEE1394_GASP_HDR_SIZE;
779                 fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
780                                       context->card->generation, true);
781         }
782 
783         packet.payload_length = dev->rcv_buffer_size;
784         packet.interrupt = 1;
785         packet.skip = 0;
786         packet.tag = 3;
787         packet.sy = 0;
788         packet.header_length = IEEE1394_GASP_HDR_SIZE;
789 
790         spin_lock_irqsave(&dev->lock, flags);
791 
792         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
793                                       &dev->broadcast_rcv_buffer, offset);
794 
795         spin_unlock_irqrestore(&dev->lock, flags);
796 
797         if (retval >= 0)
798                 fw_iso_context_queue_flush(dev->broadcast_rcv_context);
799         else
800                 dev_err(&dev->netdev->dev, "requeue failed\n");
801 }
802 
803 static struct kmem_cache *fwnet_packet_task_cache;
804 
805 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
806 {
807         dev_kfree_skb_any(ptask->skb);
808         kmem_cache_free(fwnet_packet_task_cache, ptask);
809 }
810 
811 /* Caller must hold dev->lock. */
812 static void dec_queued_datagrams(struct fwnet_device *dev)
813 {
814         if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
815                 netif_wake_queue(dev->netdev);
816 }
817 
818 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
819 
820 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
821 {
822         struct fwnet_device *dev = ptask->dev;
823         struct sk_buff *skb = ptask->skb;
824         unsigned long flags;
825         bool free;
826 
827         spin_lock_irqsave(&dev->lock, flags);
828 
829         ptask->outstanding_pkts--;
830 
831         /* Check whether we or the networking TX soft-IRQ is last user. */
832         free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
833         if (free)
834                 dec_queued_datagrams(dev);
835 
836         if (ptask->outstanding_pkts == 0) {
837                 dev->netdev->stats.tx_packets++;
838                 dev->netdev->stats.tx_bytes += skb->len;
839         }
840 
841         spin_unlock_irqrestore(&dev->lock, flags);
842 
843         if (ptask->outstanding_pkts > 0) {
844                 u16 dg_size;
845                 u16 fg_off;
846                 u16 datagram_label;
847                 u16 lf;
848 
849                 /* Update the ptask to point to the next fragment and send it */
850                 lf = fwnet_get_hdr_lf(&ptask->hdr);
851                 switch (lf) {
852                 case RFC2374_HDR_LASTFRAG:
853                 case RFC2374_HDR_UNFRAG:
854                 default:
855                         dev_err(&dev->netdev->dev,
856                                 "outstanding packet %x lf %x, header %x,%x\n",
857                                 ptask->outstanding_pkts, lf, ptask->hdr.w0,
858                                 ptask->hdr.w1);
859                         BUG();
860 
861                 case RFC2374_HDR_FIRSTFRAG:
862                         /* Set frag type here for future interior fragments */
863                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
864                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
865                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
866                         break;
867 
868                 case RFC2374_HDR_INTFRAG:
869                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
870                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
871                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
872                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
873                         break;
874                 }
875 
876                 if (ptask->dest_node == IEEE1394_ALL_NODES) {
877                         skb_pull(skb,
878                                  ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
879                 } else {
880                         skb_pull(skb, ptask->max_payload);
881                 }
882                 if (ptask->outstanding_pkts > 1) {
883                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
884                                           dg_size, fg_off, datagram_label);
885                 } else {
886                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
887                                           dg_size, fg_off, datagram_label);
888                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
889                 }
890                 fwnet_send_packet(ptask);
891         }
892 
893         if (free)
894                 fwnet_free_ptask(ptask);
895 }
896 
897 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
898 {
899         struct fwnet_device *dev = ptask->dev;
900         unsigned long flags;
901         bool free;
902 
903         spin_lock_irqsave(&dev->lock, flags);
904 
905         /* One fragment failed; don't try to send remaining fragments. */
906         ptask->outstanding_pkts = 0;
907 
908         /* Check whether we or the networking TX soft-IRQ is last user. */
909         free = ptask->enqueued;
910         if (free)
911                 dec_queued_datagrams(dev);
912 
913         dev->netdev->stats.tx_dropped++;
914         dev->netdev->stats.tx_errors++;
915 
916         spin_unlock_irqrestore(&dev->lock, flags);
917 
918         if (free)
919                 fwnet_free_ptask(ptask);
920 }
921 
922 static void fwnet_write_complete(struct fw_card *card, int rcode,
923                                  void *payload, size_t length, void *data)
924 {
925         struct fwnet_packet_task *ptask = data;
926         static unsigned long j;
927         static int last_rcode, errors_skipped;
928 
929         if (rcode == RCODE_COMPLETE) {
930                 fwnet_transmit_packet_done(ptask);
931         } else {
932                 if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
933                         dev_err(&ptask->dev->netdev->dev,
934                                 "fwnet_write_complete failed: %x (skipped %d)\n",
935                                 rcode, errors_skipped);
936 
937                         errors_skipped = 0;
938                         last_rcode = rcode;
939                 } else {
940                         errors_skipped++;
941                 }
942                 fwnet_transmit_packet_failed(ptask);
943         }
944 }
945 
946 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
947 {
948         struct fwnet_device *dev;
949         unsigned tx_len;
950         struct rfc2734_header *bufhdr;
951         unsigned long flags;
952         bool free;
953 
954         dev = ptask->dev;
955         tx_len = ptask->max_payload;
956         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
957         case RFC2374_HDR_UNFRAG:
958                 bufhdr = (struct rfc2734_header *)
959                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
960                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
961                 break;
962 
963         case RFC2374_HDR_FIRSTFRAG:
964         case RFC2374_HDR_INTFRAG:
965         case RFC2374_HDR_LASTFRAG:
966                 bufhdr = (struct rfc2734_header *)
967                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
968                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
969                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
970                 break;
971 
972         default:
973                 BUG();
974         }
975         if (ptask->dest_node == IEEE1394_ALL_NODES) {
976                 u8 *p;
977                 int generation;
978                 int node_id;
979                 unsigned int sw_version;
980 
981                 /* ptask->generation may not have been set yet */
982                 generation = dev->card->generation;
983                 smp_rmb();
984                 node_id = dev->card->node_id;
985 
986                 switch (ptask->skb->protocol) {
987                 default:
988                         sw_version = RFC2734_SW_VERSION;
989                         break;
990 #if IS_ENABLED(CONFIG_IPV6)
991                 case htons(ETH_P_IPV6):
992                         sw_version = RFC3146_SW_VERSION;
993 #endif
994                 }
995 
996                 p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
997                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
998                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
999                                                 | sw_version, &p[4]);
1000 
1001                 /* We should not transmit if broadcast_channel.valid == 0. */
1002                 fw_send_request(dev->card, &ptask->transaction,
1003                                 TCODE_STREAM_DATA,
1004                                 fw_stream_packet_destination_id(3,
1005                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1006                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1007                                 tx_len + 8, fwnet_write_complete, ptask);
1008 
1009                 spin_lock_irqsave(&dev->lock, flags);
1010 
1011                 /* If the AT tasklet already ran, we may be last user. */
1012                 free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1013                 if (!free)
1014                         ptask->enqueued = true;
1015                 else
1016                         dec_queued_datagrams(dev);
1017 
1018                 spin_unlock_irqrestore(&dev->lock, flags);
1019 
1020                 goto out;
1021         }
1022 
1023         fw_send_request(dev->card, &ptask->transaction,
1024                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1025                         ptask->generation, ptask->speed, ptask->fifo_addr,
1026                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1027 
1028         spin_lock_irqsave(&dev->lock, flags);
1029 
1030         /* If the AT tasklet already ran, we may be last user. */
1031         free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1032         if (!free)
1033                 ptask->enqueued = true;
1034         else
1035                 dec_queued_datagrams(dev);
1036 
1037         spin_unlock_irqrestore(&dev->lock, flags);
1038 
1039         dev->netdev->trans_start = jiffies;
1040  out:
1041         if (free)
1042                 fwnet_free_ptask(ptask);
1043 
1044         return 0;
1045 }
1046 
1047 static void fwnet_fifo_stop(struct fwnet_device *dev)
1048 {
1049         if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1050                 return;
1051 
1052         fw_core_remove_address_handler(&dev->handler);
1053         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1054 }
1055 
1056 static int fwnet_fifo_start(struct fwnet_device *dev)
1057 {
1058         int retval;
1059 
1060         if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1061                 return 0;
1062 
1063         dev->handler.length = 4096;
1064         dev->handler.address_callback = fwnet_receive_packet;
1065         dev->handler.callback_data = dev;
1066 
1067         retval = fw_core_add_address_handler(&dev->handler,
1068                                              &fw_high_memory_region);
1069         if (retval < 0)
1070                 return retval;
1071 
1072         dev->local_fifo = dev->handler.offset;
1073 
1074         return 0;
1075 }
1076 
1077 static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1078 {
1079         unsigned u;
1080 
1081         if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1082                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1083                         kunmap(dev->broadcast_rcv_buffer.pages[u]);
1084                 fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1085         }
1086         if (dev->broadcast_rcv_context) {
1087                 fw_iso_context_destroy(dev->broadcast_rcv_context);
1088                 dev->broadcast_rcv_context = NULL;
1089         }
1090         kfree(dev->broadcast_rcv_buffer_ptrs);
1091         dev->broadcast_rcv_buffer_ptrs = NULL;
1092         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1093 }
1094 
1095 static void fwnet_broadcast_stop(struct fwnet_device *dev)
1096 {
1097         if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1098                 return;
1099         fw_iso_context_stop(dev->broadcast_rcv_context);
1100         __fwnet_broadcast_stop(dev);
1101 }
1102 
1103 static int fwnet_broadcast_start(struct fwnet_device *dev)
1104 {
1105         struct fw_iso_context *context;
1106         int retval;
1107         unsigned num_packets;
1108         unsigned max_receive;
1109         struct fw_iso_packet packet;
1110         unsigned long offset;
1111         void **ptrptr;
1112         unsigned u;
1113 
1114         if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1115                 return 0;
1116 
1117         max_receive = 1U << (dev->card->max_receive + 1);
1118         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1119 
1120         ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1121         if (!ptrptr) {
1122                 retval = -ENOMEM;
1123                 goto failed;
1124         }
1125         dev->broadcast_rcv_buffer_ptrs = ptrptr;
1126 
1127         context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1128                                         IEEE1394_BROADCAST_CHANNEL,
1129                                         dev->card->link_speed, 8,
1130                                         fwnet_receive_broadcast, dev);
1131         if (IS_ERR(context)) {
1132                 retval = PTR_ERR(context);
1133                 goto failed;
1134         }
1135 
1136         retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1137                                     FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1138         if (retval < 0)
1139                 goto failed;
1140 
1141         dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1142 
1143         for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1144                 void *ptr;
1145                 unsigned v;
1146 
1147                 ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1148                 for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1149                         *ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1150         }
1151         dev->broadcast_rcv_context = context;
1152 
1153         packet.payload_length = max_receive;
1154         packet.interrupt = 1;
1155         packet.skip = 0;
1156         packet.tag = 3;
1157         packet.sy = 0;
1158         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1159         offset = 0;
1160 
1161         for (u = 0; u < num_packets; u++) {
1162                 retval = fw_iso_context_queue(context, &packet,
1163                                 &dev->broadcast_rcv_buffer, offset);
1164                 if (retval < 0)
1165                         goto failed;
1166 
1167                 offset += max_receive;
1168         }
1169         dev->num_broadcast_rcv_ptrs = num_packets;
1170         dev->rcv_buffer_size = max_receive;
1171         dev->broadcast_rcv_next_ptr = 0U;
1172         retval = fw_iso_context_start(context, -1, 0,
1173                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1174         if (retval < 0)
1175                 goto failed;
1176 
1177         /* FIXME: adjust it according to the min. speed of all known peers? */
1178         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1179                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1180         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1181 
1182         return 0;
1183 
1184  failed:
1185         __fwnet_broadcast_stop(dev);
1186         return retval;
1187 }
1188 
1189 static void set_carrier_state(struct fwnet_device *dev)
1190 {
1191         if (dev->peer_count > 1)
1192                 netif_carrier_on(dev->netdev);
1193         else
1194                 netif_carrier_off(dev->netdev);
1195 }
1196 
1197 /* ifup */
1198 static int fwnet_open(struct net_device *net)
1199 {
1200         struct fwnet_device *dev = netdev_priv(net);
1201         int ret;
1202 
1203         ret = fwnet_broadcast_start(dev);
1204         if (ret)
1205                 return ret;
1206 
1207         netif_start_queue(net);
1208 
1209         spin_lock_irq(&dev->lock);
1210         set_carrier_state(dev);
1211         spin_unlock_irq(&dev->lock);
1212 
1213         return 0;
1214 }
1215 
1216 /* ifdown */
1217 static int fwnet_stop(struct net_device *net)
1218 {
1219         struct fwnet_device *dev = netdev_priv(net);
1220 
1221         netif_stop_queue(net);
1222         fwnet_broadcast_stop(dev);
1223 
1224         return 0;
1225 }
1226 
1227 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1228 {
1229         struct fwnet_header hdr_buf;
1230         struct fwnet_device *dev = netdev_priv(net);
1231         __be16 proto;
1232         u16 dest_node;
1233         unsigned max_payload;
1234         u16 dg_size;
1235         u16 *datagram_label_ptr;
1236         struct fwnet_packet_task *ptask;
1237         struct fwnet_peer *peer;
1238         unsigned long flags;
1239 
1240         spin_lock_irqsave(&dev->lock, flags);
1241 
1242         /* Can this happen? */
1243         if (netif_queue_stopped(dev->netdev)) {
1244                 spin_unlock_irqrestore(&dev->lock, flags);
1245 
1246                 return NETDEV_TX_BUSY;
1247         }
1248 
1249         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1250         if (ptask == NULL)
1251                 goto fail;
1252 
1253         skb = skb_share_check(skb, GFP_ATOMIC);
1254         if (!skb)
1255                 goto fail;
1256 
1257         /*
1258          * Make a copy of the driver-specific header.
1259          * We might need to rebuild the header on tx failure.
1260          */
1261         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1262         proto = hdr_buf.h_proto;
1263 
1264         switch (proto) {
1265         case htons(ETH_P_ARP):
1266         case htons(ETH_P_IP):
1267 #if IS_ENABLED(CONFIG_IPV6)
1268         case htons(ETH_P_IPV6):
1269 #endif
1270                 break;
1271         default:
1272                 goto fail;
1273         }
1274 
1275         skb_pull(skb, sizeof(hdr_buf));
1276         dg_size = skb->len;
1277 
1278         /*
1279          * Set the transmission type for the packet.  ARP packets and IP
1280          * broadcast packets are sent via GASP.
1281          */
1282         if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1283                 max_payload        = dev->broadcast_xmt_max_payload;
1284                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1285 
1286                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1287                 ptask->generation  = 0;
1288                 ptask->dest_node   = IEEE1394_ALL_NODES;
1289                 ptask->speed       = SCODE_100;
1290         } else {
1291                 union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1292                 __be64 guid = get_unaligned(&ha->uc.uniq_id);
1293                 u8 generation;
1294 
1295                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1296                 if (!peer)
1297                         goto fail;
1298 
1299                 generation         = peer->generation;
1300                 dest_node          = peer->node_id;
1301                 max_payload        = peer->max_payload;
1302                 datagram_label_ptr = &peer->datagram_label;
1303 
1304                 ptask->fifo_addr   = fwnet_hwaddr_fifo(ha);
1305                 ptask->generation  = generation;
1306                 ptask->dest_node   = dest_node;
1307                 ptask->speed       = peer->speed;
1308         }
1309 
1310         ptask->hdr.w0 = 0;
1311         ptask->hdr.w1 = 0;
1312         ptask->skb = skb;
1313         ptask->dev = dev;
1314 
1315         /* Does it all fit in one packet? */
1316         if (dg_size <= max_payload) {
1317                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1318                 ptask->outstanding_pkts = 1;
1319                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1320         } else {
1321                 u16 datagram_label;
1322 
1323                 max_payload -= RFC2374_FRAG_OVERHEAD;
1324                 datagram_label = (*datagram_label_ptr)++;
1325                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1326                                   datagram_label);
1327                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1328                 max_payload += RFC2374_FRAG_HDR_SIZE;
1329         }
1330 
1331         if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1332                 netif_stop_queue(dev->netdev);
1333 
1334         spin_unlock_irqrestore(&dev->lock, flags);
1335 
1336         ptask->max_payload = max_payload;
1337         ptask->enqueued    = 0;
1338 
1339         fwnet_send_packet(ptask);
1340 
1341         return NETDEV_TX_OK;
1342 
1343  fail:
1344         spin_unlock_irqrestore(&dev->lock, flags);
1345 
1346         if (ptask)
1347                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1348 
1349         if (skb != NULL)
1350                 dev_kfree_skb(skb);
1351 
1352         net->stats.tx_dropped++;
1353         net->stats.tx_errors++;
1354 
1355         /*
1356          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1357          * causes serious problems" here, allegedly.  Before that patch,
1358          * -ERRNO was returned which is not appropriate under Linux 2.6.
1359          * Perhaps more needs to be done?  Stop the queue in serious
1360          * conditions and restart it elsewhere?
1361          */
1362         return NETDEV_TX_OK;
1363 }
1364 
1365 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1366 {
1367         if (new_mtu < 68)
1368                 return -EINVAL;
1369 
1370         net->mtu = new_mtu;
1371         return 0;
1372 }
1373 
1374 static const struct ethtool_ops fwnet_ethtool_ops = {
1375         .get_link       = ethtool_op_get_link,
1376 };
1377 
1378 static const struct net_device_ops fwnet_netdev_ops = {
1379         .ndo_open       = fwnet_open,
1380         .ndo_stop       = fwnet_stop,
1381         .ndo_start_xmit = fwnet_tx,
1382         .ndo_change_mtu = fwnet_change_mtu,
1383 };
1384 
1385 static void fwnet_init_dev(struct net_device *net)
1386 {
1387         net->header_ops         = &fwnet_header_ops;
1388         net->netdev_ops         = &fwnet_netdev_ops;
1389         net->watchdog_timeo     = 2 * HZ;
1390         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1391         net->features           = NETIF_F_HIGHDMA;
1392         net->addr_len           = FWNET_ALEN;
1393         net->hard_header_len    = FWNET_HLEN;
1394         net->type               = ARPHRD_IEEE1394;
1395         net->tx_queue_len       = FWNET_TX_QUEUE_LEN;
1396         net->ethtool_ops        = &fwnet_ethtool_ops;
1397 }
1398 
1399 /* caller must hold fwnet_device_mutex */
1400 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1401 {
1402         struct fwnet_device *dev;
1403 
1404         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1405                 if (dev->card == card)
1406                         return dev;
1407 
1408         return NULL;
1409 }
1410 
1411 static int fwnet_add_peer(struct fwnet_device *dev,
1412                           struct fw_unit *unit, struct fw_device *device)
1413 {
1414         struct fwnet_peer *peer;
1415 
1416         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1417         if (!peer)
1418                 return -ENOMEM;
1419 
1420         dev_set_drvdata(&unit->device, peer);
1421 
1422         peer->dev = dev;
1423         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1424         INIT_LIST_HEAD(&peer->pd_list);
1425         peer->pdg_size = 0;
1426         peer->datagram_label = 0;
1427         peer->speed = device->max_speed;
1428         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1429 
1430         peer->generation = device->generation;
1431         smp_rmb();
1432         peer->node_id = device->node_id;
1433 
1434         spin_lock_irq(&dev->lock);
1435         list_add_tail(&peer->peer_link, &dev->peer_list);
1436         dev->peer_count++;
1437         set_carrier_state(dev);
1438         spin_unlock_irq(&dev->lock);
1439 
1440         return 0;
1441 }
1442 
1443 static int fwnet_probe(struct fw_unit *unit,
1444                        const struct ieee1394_device_id *id)
1445 {
1446         struct fw_device *device = fw_parent_device(unit);
1447         struct fw_card *card = device->card;
1448         struct net_device *net;
1449         bool allocated_netdev = false;
1450         struct fwnet_device *dev;
1451         unsigned max_mtu;
1452         int ret;
1453         union fwnet_hwaddr *ha;
1454 
1455         mutex_lock(&fwnet_device_mutex);
1456 
1457         dev = fwnet_dev_find(card);
1458         if (dev) {
1459                 net = dev->netdev;
1460                 goto have_dev;
1461         }
1462 
1463         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1464         if (net == NULL) {
1465                 ret = -ENOMEM;
1466                 goto out;
1467         }
1468 
1469         allocated_netdev = true;
1470         SET_NETDEV_DEV(net, card->device);
1471         dev = netdev_priv(net);
1472 
1473         spin_lock_init(&dev->lock);
1474         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1475         dev->broadcast_rcv_context = NULL;
1476         dev->broadcast_xmt_max_payload = 0;
1477         dev->broadcast_xmt_datagramlabel = 0;
1478         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1479         dev->queued_datagrams = 0;
1480         INIT_LIST_HEAD(&dev->peer_list);
1481         dev->card = card;
1482         dev->netdev = net;
1483 
1484         ret = fwnet_fifo_start(dev);
1485         if (ret < 0)
1486                 goto out;
1487         dev->local_fifo = dev->handler.offset;
1488 
1489         /*
1490          * Use the RFC 2734 default 1500 octets or the maximum payload
1491          * as initial MTU
1492          */
1493         max_mtu = (1 << (card->max_receive + 1))
1494                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1495         net->mtu = min(1500U, max_mtu);
1496 
1497         /* Set our hardware address while we're at it */
1498         ha = (union fwnet_hwaddr *)net->dev_addr;
1499         put_unaligned_be64(card->guid, &ha->uc.uniq_id);
1500         ha->uc.max_rec = dev->card->max_receive;
1501         ha->uc.sspd = dev->card->link_speed;
1502         put_unaligned_be16(dev->local_fifo >> 32, &ha->uc.fifo_hi);
1503         put_unaligned_be32(dev->local_fifo & 0xffffffff, &ha->uc.fifo_lo);
1504 
1505         memset(net->broadcast, -1, net->addr_len);
1506 
1507         ret = register_netdev(net);
1508         if (ret)
1509                 goto out;
1510 
1511         list_add_tail(&dev->dev_link, &fwnet_device_list);
1512         dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1513                    dev_name(card->device));
1514  have_dev:
1515         ret = fwnet_add_peer(dev, unit, device);
1516         if (ret && allocated_netdev) {
1517                 unregister_netdev(net);
1518                 list_del(&dev->dev_link);
1519  out:
1520                 fwnet_fifo_stop(dev);
1521                 free_netdev(net);
1522         }
1523 
1524         mutex_unlock(&fwnet_device_mutex);
1525 
1526         return ret;
1527 }
1528 
1529 /*
1530  * FIXME abort partially sent fragmented datagrams,
1531  * discard partially received fragmented datagrams
1532  */
1533 static void fwnet_update(struct fw_unit *unit)
1534 {
1535         struct fw_device *device = fw_parent_device(unit);
1536         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1537         int generation;
1538 
1539         generation = device->generation;
1540 
1541         spin_lock_irq(&peer->dev->lock);
1542         peer->node_id    = device->node_id;
1543         peer->generation = generation;
1544         spin_unlock_irq(&peer->dev->lock);
1545 }
1546 
1547 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1548 {
1549         struct fwnet_partial_datagram *pd, *pd_next;
1550 
1551         spin_lock_irq(&dev->lock);
1552         list_del(&peer->peer_link);
1553         dev->peer_count--;
1554         set_carrier_state(dev);
1555         spin_unlock_irq(&dev->lock);
1556 
1557         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1558                 fwnet_pd_delete(pd);
1559 
1560         kfree(peer);
1561 }
1562 
1563 static void fwnet_remove(struct fw_unit *unit)
1564 {
1565         struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1566         struct fwnet_device *dev = peer->dev;
1567         struct net_device *net;
1568         int i;
1569 
1570         mutex_lock(&fwnet_device_mutex);
1571 
1572         net = dev->netdev;
1573 
1574         fwnet_remove_peer(peer, dev);
1575 
1576         if (list_empty(&dev->peer_list)) {
1577                 unregister_netdev(net);
1578 
1579                 fwnet_fifo_stop(dev);
1580 
1581                 for (i = 0; dev->queued_datagrams && i < 5; i++)
1582                         ssleep(1);
1583                 WARN_ON(dev->queued_datagrams);
1584                 list_del(&dev->dev_link);
1585 
1586                 free_netdev(net);
1587         }
1588 
1589         mutex_unlock(&fwnet_device_mutex);
1590 }
1591 
1592 static const struct ieee1394_device_id fwnet_id_table[] = {
1593         {
1594                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1595                                 IEEE1394_MATCH_VERSION,
1596                 .specifier_id = IANA_SPECIFIER_ID,
1597                 .version      = RFC2734_SW_VERSION,
1598         },
1599 #if IS_ENABLED(CONFIG_IPV6)
1600         {
1601                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1602                                 IEEE1394_MATCH_VERSION,
1603                 .specifier_id = IANA_SPECIFIER_ID,
1604                 .version      = RFC3146_SW_VERSION,
1605         },
1606 #endif
1607         { }
1608 };
1609 
1610 static struct fw_driver fwnet_driver = {
1611         .driver = {
1612                 .owner  = THIS_MODULE,
1613                 .name   = KBUILD_MODNAME,
1614                 .bus    = &fw_bus_type,
1615         },
1616         .probe    = fwnet_probe,
1617         .update   = fwnet_update,
1618         .remove   = fwnet_remove,
1619         .id_table = fwnet_id_table,
1620 };
1621 
1622 static const u32 rfc2374_unit_directory_data[] = {
1623         0x00040000,     /* directory_length             */
1624         0x1200005e,     /* unit_specifier_id: IANA      */
1625         0x81000003,     /* textual descriptor offset    */
1626         0x13000001,     /* unit_sw_version: RFC 2734    */
1627         0x81000005,     /* textual descriptor offset    */
1628         0x00030000,     /* descriptor_length            */
1629         0x00000000,     /* text                         */
1630         0x00000000,     /* minimal ASCII, en            */
1631         0x49414e41,     /* I A N A                      */
1632         0x00030000,     /* descriptor_length            */
1633         0x00000000,     /* text                         */
1634         0x00000000,     /* minimal ASCII, en            */
1635         0x49507634,     /* I P v 4                      */
1636 };
1637 
1638 static struct fw_descriptor rfc2374_unit_directory = {
1639         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1640         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1641         .data   = rfc2374_unit_directory_data
1642 };
1643 
1644 #if IS_ENABLED(CONFIG_IPV6)
1645 static const u32 rfc3146_unit_directory_data[] = {
1646         0x00040000,     /* directory_length             */
1647         0x1200005e,     /* unit_specifier_id: IANA      */
1648         0x81000003,     /* textual descriptor offset    */
1649         0x13000002,     /* unit_sw_version: RFC 3146    */
1650         0x81000005,     /* textual descriptor offset    */
1651         0x00030000,     /* descriptor_length            */
1652         0x00000000,     /* text                         */
1653         0x00000000,     /* minimal ASCII, en            */
1654         0x49414e41,     /* I A N A                      */
1655         0x00030000,     /* descriptor_length            */
1656         0x00000000,     /* text                         */
1657         0x00000000,     /* minimal ASCII, en            */
1658         0x49507636,     /* I P v 6                      */
1659 };
1660 
1661 static struct fw_descriptor rfc3146_unit_directory = {
1662         .length = ARRAY_SIZE(rfc3146_unit_directory_data),
1663         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1664         .data   = rfc3146_unit_directory_data
1665 };
1666 #endif
1667 
1668 static int __init fwnet_init(void)
1669 {
1670         int err;
1671 
1672         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1673         if (err)
1674                 return err;
1675 
1676 #if IS_ENABLED(CONFIG_IPV6)
1677         err = fw_core_add_descriptor(&rfc3146_unit_directory);
1678         if (err)
1679                 goto out;
1680 #endif
1681 
1682         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1683                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1684         if (!fwnet_packet_task_cache) {
1685                 err = -ENOMEM;
1686                 goto out2;
1687         }
1688 
1689         err = driver_register(&fwnet_driver.driver);
1690         if (!err)
1691                 return 0;
1692 
1693         kmem_cache_destroy(fwnet_packet_task_cache);
1694 out2:
1695 #if IS_ENABLED(CONFIG_IPV6)
1696         fw_core_remove_descriptor(&rfc3146_unit_directory);
1697 out:
1698 #endif
1699         fw_core_remove_descriptor(&rfc2374_unit_directory);
1700 
1701         return err;
1702 }
1703 module_init(fwnet_init);
1704 
1705 static void __exit fwnet_cleanup(void)
1706 {
1707         driver_unregister(&fwnet_driver.driver);
1708         kmem_cache_destroy(fwnet_packet_task_cache);
1709 #if IS_ENABLED(CONFIG_IPV6)
1710         fw_core_remove_descriptor(&rfc3146_unit_directory);
1711 #endif
1712         fw_core_remove_descriptor(&rfc2374_unit_directory);
1713 }
1714 module_exit(fwnet_cleanup);
1715 
1716 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1717 MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1718 MODULE_LICENSE("GPL");
1719 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1720 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us