Version:  2.0.40 2.2.26 2.4.37 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

Linux/drivers/dma/ste_dma40.c

  1 /*
  2  * Copyright (C) Ericsson AB 2007-2008
  3  * Copyright (C) ST-Ericsson SA 2008-2010
  4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6  * License terms: GNU General Public License (GPL) version 2
  7  */
  8 
  9 #include <linux/dma-mapping.h>
 10 #include <linux/kernel.h>
 11 #include <linux/slab.h>
 12 #include <linux/export.h>
 13 #include <linux/dmaengine.h>
 14 #include <linux/platform_device.h>
 15 #include <linux/clk.h>
 16 #include <linux/delay.h>
 17 #include <linux/log2.h>
 18 #include <linux/pm.h>
 19 #include <linux/pm_runtime.h>
 20 #include <linux/err.h>
 21 #include <linux/of.h>
 22 #include <linux/of_dma.h>
 23 #include <linux/amba/bus.h>
 24 #include <linux/regulator/consumer.h>
 25 #include <linux/platform_data/dma-ste-dma40.h>
 26 
 27 #include "dmaengine.h"
 28 #include "ste_dma40_ll.h"
 29 
 30 #define D40_NAME "dma40"
 31 
 32 #define D40_PHY_CHAN -1
 33 
 34 /* For masking out/in 2 bit channel positions */
 35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
 36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
 37 
 38 /* Maximum iterations taken before giving up suspending a channel */
 39 #define D40_SUSPEND_MAX_IT 500
 40 
 41 /* Milliseconds */
 42 #define DMA40_AUTOSUSPEND_DELAY 100
 43 
 44 /* Hardware requirement on LCLA alignment */
 45 #define LCLA_ALIGNMENT 0x40000
 46 
 47 /* Max number of links per event group */
 48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
 49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
 50 
 51 /* Max number of logical channels per physical channel */
 52 #define D40_MAX_LOG_CHAN_PER_PHY 32
 53 
 54 /* Attempts before giving up to trying to get pages that are aligned */
 55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
 56 
 57 /* Bit markings for allocation map */
 58 #define D40_ALLOC_FREE          BIT(31)
 59 #define D40_ALLOC_PHY           BIT(30)
 60 #define D40_ALLOC_LOG_FREE      0
 61 
 62 #define D40_MEMCPY_MAX_CHANS    8
 63 
 64 /* Reserved event lines for memcpy only. */
 65 #define DB8500_DMA_MEMCPY_EV_0  51
 66 #define DB8500_DMA_MEMCPY_EV_1  56
 67 #define DB8500_DMA_MEMCPY_EV_2  57
 68 #define DB8500_DMA_MEMCPY_EV_3  58
 69 #define DB8500_DMA_MEMCPY_EV_4  59
 70 #define DB8500_DMA_MEMCPY_EV_5  60
 71 
 72 static int dma40_memcpy_channels[] = {
 73         DB8500_DMA_MEMCPY_EV_0,
 74         DB8500_DMA_MEMCPY_EV_1,
 75         DB8500_DMA_MEMCPY_EV_2,
 76         DB8500_DMA_MEMCPY_EV_3,
 77         DB8500_DMA_MEMCPY_EV_4,
 78         DB8500_DMA_MEMCPY_EV_5,
 79 };
 80 
 81 /* Default configuration for physcial memcpy */
 82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
 83         .mode = STEDMA40_MODE_PHYSICAL,
 84         .dir = DMA_MEM_TO_MEM,
 85 
 86         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 87         .src_info.psize = STEDMA40_PSIZE_PHY_1,
 88         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 89 
 90         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 91         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
 92         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 93 };
 94 
 95 /* Default configuration for logical memcpy */
 96 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
 97         .mode = STEDMA40_MODE_LOGICAL,
 98         .dir = DMA_MEM_TO_MEM,
 99 
100         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101         .src_info.psize = STEDMA40_PSIZE_LOG_1,
102         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103 
104         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108 
109 /**
110  * enum 40_command - The different commands and/or statuses.
111  *
112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116  */
117 enum d40_command {
118         D40_DMA_STOP            = 0,
119         D40_DMA_RUN             = 1,
120         D40_DMA_SUSPEND_REQ     = 2,
121         D40_DMA_SUSPENDED       = 3
122 };
123 
124 /*
125  * enum d40_events - The different Event Enables for the event lines.
126  *
127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130  * @D40_ROUND_EVENTLINE: Status check for event line.
131  */
132 
133 enum d40_events {
134         D40_DEACTIVATE_EVENTLINE        = 0,
135         D40_ACTIVATE_EVENTLINE          = 1,
136         D40_SUSPEND_REQ_EVENTLINE       = 2,
137         D40_ROUND_EVENTLINE             = 3
138 };
139 
140 /*
141  * These are the registers that has to be saved and later restored
142  * when the DMA hw is powered off.
143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144  */
145 static u32 d40_backup_regs[] = {
146         D40_DREG_LCPA,
147         D40_DREG_LCLA,
148         D40_DREG_PRMSE,
149         D40_DREG_PRMSO,
150         D40_DREG_PRMOE,
151         D40_DREG_PRMOO,
152 };
153 
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155 
156 /*
157  * since 9540 and 8540 has the same HW revision
158  * use v4a for 9540 or ealier
159  * use v4b for 8540 or later
160  * HW revision:
161  * DB8500ed has revision 0
162  * DB8500v1 has revision 2
163  * DB8500v2 has revision 3
164  * AP9540v1 has revision 4
165  * DB8540v1 has revision 4
166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167  */
168 static u32 d40_backup_regs_v4a[] = {
169         D40_DREG_PSEG1,
170         D40_DREG_PSEG2,
171         D40_DREG_PSEG3,
172         D40_DREG_PSEG4,
173         D40_DREG_PCEG1,
174         D40_DREG_PCEG2,
175         D40_DREG_PCEG3,
176         D40_DREG_PCEG4,
177         D40_DREG_RSEG1,
178         D40_DREG_RSEG2,
179         D40_DREG_RSEG3,
180         D40_DREG_RSEG4,
181         D40_DREG_RCEG1,
182         D40_DREG_RCEG2,
183         D40_DREG_RCEG3,
184         D40_DREG_RCEG4,
185 };
186 
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188 
189 static u32 d40_backup_regs_v4b[] = {
190         D40_DREG_CPSEG1,
191         D40_DREG_CPSEG2,
192         D40_DREG_CPSEG3,
193         D40_DREG_CPSEG4,
194         D40_DREG_CPSEG5,
195         D40_DREG_CPCEG1,
196         D40_DREG_CPCEG2,
197         D40_DREG_CPCEG3,
198         D40_DREG_CPCEG4,
199         D40_DREG_CPCEG5,
200         D40_DREG_CRSEG1,
201         D40_DREG_CRSEG2,
202         D40_DREG_CRSEG3,
203         D40_DREG_CRSEG4,
204         D40_DREG_CRSEG5,
205         D40_DREG_CRCEG1,
206         D40_DREG_CRCEG2,
207         D40_DREG_CRCEG3,
208         D40_DREG_CRCEG4,
209         D40_DREG_CRCEG5,
210 };
211 
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 
214 static u32 d40_backup_regs_chan[] = {
215         D40_CHAN_REG_SSCFG,
216         D40_CHAN_REG_SSELT,
217         D40_CHAN_REG_SSPTR,
218         D40_CHAN_REG_SSLNK,
219         D40_CHAN_REG_SDCFG,
220         D40_CHAN_REG_SDELT,
221         D40_CHAN_REG_SDPTR,
222         D40_CHAN_REG_SDLNK,
223 };
224 
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227 
228 /**
229  * struct d40_interrupt_lookup - lookup table for interrupt handler
230  *
231  * @src: Interrupt mask register.
232  * @clr: Interrupt clear register.
233  * @is_error: true if this is an error interrupt.
234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236  */
237 struct d40_interrupt_lookup {
238         u32 src;
239         u32 clr;
240         bool is_error;
241         int offset;
242 };
243 
244 
245 static struct d40_interrupt_lookup il_v4a[] = {
246         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256 };
257 
258 static struct d40_interrupt_lookup il_v4b[] = {
259         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271 };
272 
273 /**
274  * struct d40_reg_val - simple lookup struct
275  *
276  * @reg: The register.
277  * @val: The value that belongs to the register in reg.
278  */
279 struct d40_reg_val {
280         unsigned int reg;
281         unsigned int val;
282 };
283 
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285         /* Clock every part of the DMA block from start */
286         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287 
288         /* Interrupts on all logical channels */
289         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303         /* Clock every part of the DMA block from start */
304         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305 
306         /* Interrupts on all logical channels */
307         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323 
324 /**
325  * struct d40_lli_pool - Structure for keeping LLIs in memory
326  *
327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329  * pre_alloc_lli is used.
330  * @dma_addr: DMA address, if mapped
331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333  * one buffer to one buffer.
334  */
335 struct d40_lli_pool {
336         void    *base;
337         int      size;
338         dma_addr_t      dma_addr;
339         /* Space for dst and src, plus an extra for padding */
340         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342 
343 /**
344  * struct d40_desc - A descriptor is one DMA job.
345  *
346  * @lli_phy: LLI settings for physical channel. Both src and dst=
347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348  * lli_len equals one.
349  * @lli_log: Same as above but for logical channels.
350  * @lli_pool: The pool with two entries pre-allocated.
351  * @lli_len: Number of llis of current descriptor.
352  * @lli_current: Number of transferred llis.
353  * @lcla_alloc: Number of LCLA entries allocated.
354  * @txd: DMA engine struct. Used for among other things for communication
355  * during a transfer.
356  * @node: List entry.
357  * @is_in_client_list: true if the client owns this descriptor.
358  * @cyclic: true if this is a cyclic job
359  *
360  * This descriptor is used for both logical and physical transfers.
361  */
362 struct d40_desc {
363         /* LLI physical */
364         struct d40_phy_lli_bidir         lli_phy;
365         /* LLI logical */
366         struct d40_log_lli_bidir         lli_log;
367 
368         struct d40_lli_pool              lli_pool;
369         int                              lli_len;
370         int                              lli_current;
371         int                              lcla_alloc;
372 
373         struct dma_async_tx_descriptor   txd;
374         struct list_head                 node;
375 
376         bool                             is_in_client_list;
377         bool                             cyclic;
378 };
379 
380 /**
381  * struct d40_lcla_pool - LCLA pool settings and data.
382  *
383  * @base: The virtual address of LCLA. 18 bit aligned.
384  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385  * This pointer is only there for clean-up on error.
386  * @pages: The number of pages needed for all physical channels.
387  * Only used later for clean-up on error
388  * @lock: Lock to protect the content in this struct.
389  * @alloc_map: big map over which LCLA entry is own by which job.
390  */
391 struct d40_lcla_pool {
392         void            *base;
393         dma_addr_t      dma_addr;
394         void            *base_unaligned;
395         int              pages;
396         spinlock_t       lock;
397         struct d40_desc **alloc_map;
398 };
399 
400 /**
401  * struct d40_phy_res - struct for handling eventlines mapped to physical
402  * channels.
403  *
404  * @lock: A lock protection this entity.
405  * @reserved: True if used by secure world or otherwise.
406  * @num: The physical channel number of this entity.
407  * @allocated_src: Bit mapped to show which src event line's are mapped to
408  * this physical channel. Can also be free or physically allocated.
409  * @allocated_dst: Same as for src but is dst.
410  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411  * event line number.
412  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413  */
414 struct d40_phy_res {
415         spinlock_t lock;
416         bool       reserved;
417         int        num;
418         u32        allocated_src;
419         u32        allocated_dst;
420         bool       use_soft_lli;
421 };
422 
423 struct d40_base;
424 
425 /**
426  * struct d40_chan - Struct that describes a channel.
427  *
428  * @lock: A spinlock to protect this struct.
429  * @log_num: The logical number, if any of this channel.
430  * @pending_tx: The number of pending transfers. Used between interrupt handler
431  * and tasklet.
432  * @busy: Set to true when transfer is ongoing on this channel.
433  * @phy_chan: Pointer to physical channel which this instance runs on. If this
434  * point is NULL, then the channel is not allocated.
435  * @chan: DMA engine handle.
436  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437  * transfer and call client callback.
438  * @client: Cliented owned descriptor list.
439  * @pending_queue: Submitted jobs, to be issued by issue_pending()
440  * @active: Active descriptor.
441  * @done: Completed jobs
442  * @queue: Queued jobs.
443  * @prepare_queue: Prepared jobs.
444  * @dma_cfg: The client configuration of this dma channel.
445  * @configured: whether the dma_cfg configuration is valid
446  * @base: Pointer to the device instance struct.
447  * @src_def_cfg: Default cfg register setting for src.
448  * @dst_def_cfg: Default cfg register setting for dst.
449  * @log_def: Default logical channel settings.
450  * @lcpa: Pointer to dst and src lcpa settings.
451  * @runtime_addr: runtime configured address.
452  * @runtime_direction: runtime configured direction.
453  *
454  * This struct can either "be" a logical or a physical channel.
455  */
456 struct d40_chan {
457         spinlock_t                       lock;
458         int                              log_num;
459         int                              pending_tx;
460         bool                             busy;
461         struct d40_phy_res              *phy_chan;
462         struct dma_chan                  chan;
463         struct tasklet_struct            tasklet;
464         struct list_head                 client;
465         struct list_head                 pending_queue;
466         struct list_head                 active;
467         struct list_head                 done;
468         struct list_head                 queue;
469         struct list_head                 prepare_queue;
470         struct stedma40_chan_cfg         dma_cfg;
471         bool                             configured;
472         struct d40_base                 *base;
473         /* Default register configurations */
474         u32                              src_def_cfg;
475         u32                              dst_def_cfg;
476         struct d40_def_lcsp              log_def;
477         struct d40_log_lli_full         *lcpa;
478         /* Runtime reconfiguration */
479         dma_addr_t                      runtime_addr;
480         enum dma_transfer_direction     runtime_direction;
481 };
482 
483 /**
484  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485  * controller
486  *
487  * @backup: the pointer to the registers address array for backup
488  * @backup_size: the size of the registers address array for backup
489  * @realtime_en: the realtime enable register
490  * @realtime_clear: the realtime clear register
491  * @high_prio_en: the high priority enable register
492  * @high_prio_clear: the high priority clear register
493  * @interrupt_en: the interrupt enable register
494  * @interrupt_clear: the interrupt clear register
495  * @il: the pointer to struct d40_interrupt_lookup
496  * @il_size: the size of d40_interrupt_lookup array
497  * @init_reg: the pointer to the struct d40_reg_val
498  * @init_reg_size: the size of d40_reg_val array
499  */
500 struct d40_gen_dmac {
501         u32                             *backup;
502         u32                              backup_size;
503         u32                              realtime_en;
504         u32                              realtime_clear;
505         u32                              high_prio_en;
506         u32                              high_prio_clear;
507         u32                              interrupt_en;
508         u32                              interrupt_clear;
509         struct d40_interrupt_lookup     *il;
510         u32                              il_size;
511         struct d40_reg_val              *init_reg;
512         u32                              init_reg_size;
513 };
514 
515 /**
516  * struct d40_base - The big global struct, one for each probe'd instance.
517  *
518  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519  * @execmd_lock: Lock for execute command usage since several channels share
520  * the same physical register.
521  * @dev: The device structure.
522  * @virtbase: The virtual base address of the DMA's register.
523  * @rev: silicon revision detected.
524  * @clk: Pointer to the DMA clock structure.
525  * @phy_start: Physical memory start of the DMA registers.
526  * @phy_size: Size of the DMA register map.
527  * @irq: The IRQ number.
528  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529  * transfers).
530  * @num_phy_chans: The number of physical channels. Read from HW. This
531  * is the number of available channels for this driver, not counting "Secure
532  * mode" allocated physical channels.
533  * @num_log_chans: The number of logical channels. Calculated from
534  * num_phy_chans.
535  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536  * @dma_slave: dma_device channels that can do only do slave transfers.
537  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538  * @phy_chans: Room for all possible physical channels in system.
539  * @log_chans: Room for all possible logical channels in system.
540  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541  * to log_chans entries.
542  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543  * to phy_chans entries.
544  * @plat_data: Pointer to provided platform_data which is the driver
545  * configuration.
546  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547  * @phy_res: Vector containing all physical channels.
548  * @lcla_pool: lcla pool settings and data.
549  * @lcpa_base: The virtual mapped address of LCPA.
550  * @phy_lcpa: The physical address of the LCPA.
551  * @lcpa_size: The size of the LCPA area.
552  * @desc_slab: cache for descriptors.
553  * @reg_val_backup: Here the values of some hardware registers are stored
554  * before the DMA is powered off. They are restored when the power is back on.
555  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556  * later
557  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559  * @gen_dmac: the struct for generic registers values to represent u8500/8540
560  * DMA controller
561  */
562 struct d40_base {
563         spinlock_t                       interrupt_lock;
564         spinlock_t                       execmd_lock;
565         struct device                    *dev;
566         void __iomem                     *virtbase;
567         u8                                rev:4;
568         struct clk                       *clk;
569         phys_addr_t                       phy_start;
570         resource_size_t                   phy_size;
571         int                               irq;
572         int                               num_memcpy_chans;
573         int                               num_phy_chans;
574         int                               num_log_chans;
575         struct device_dma_parameters      dma_parms;
576         struct dma_device                 dma_both;
577         struct dma_device                 dma_slave;
578         struct dma_device                 dma_memcpy;
579         struct d40_chan                  *phy_chans;
580         struct d40_chan                  *log_chans;
581         struct d40_chan                 **lookup_log_chans;
582         struct d40_chan                 **lookup_phy_chans;
583         struct stedma40_platform_data    *plat_data;
584         struct regulator                 *lcpa_regulator;
585         /* Physical half channels */
586         struct d40_phy_res               *phy_res;
587         struct d40_lcla_pool              lcla_pool;
588         void                             *lcpa_base;
589         dma_addr_t                        phy_lcpa;
590         resource_size_t                   lcpa_size;
591         struct kmem_cache                *desc_slab;
592         u32                               reg_val_backup[BACKUP_REGS_SZ];
593         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594         u32                              *reg_val_backup_chan;
595         u16                               gcc_pwr_off_mask;
596         struct d40_gen_dmac               gen_dmac;
597 };
598 
599 static struct device *chan2dev(struct d40_chan *d40c)
600 {
601         return &d40c->chan.dev->device;
602 }
603 
604 static bool chan_is_physical(struct d40_chan *chan)
605 {
606         return chan->log_num == D40_PHY_CHAN;
607 }
608 
609 static bool chan_is_logical(struct d40_chan *chan)
610 {
611         return !chan_is_physical(chan);
612 }
613 
614 static void __iomem *chan_base(struct d40_chan *chan)
615 {
616         return chan->base->virtbase + D40_DREG_PCBASE +
617                chan->phy_chan->num * D40_DREG_PCDELTA;
618 }
619 
620 #define d40_err(dev, format, arg...)            \
621         dev_err(dev, "[%s] " format, __func__, ## arg)
622 
623 #define chan_err(d40c, format, arg...)          \
624         d40_err(chan2dev(d40c), format, ## arg)
625 
626 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627                               int lli_len)
628 {
629         bool is_log = chan_is_logical(d40c);
630         u32 align;
631         void *base;
632 
633         if (is_log)
634                 align = sizeof(struct d40_log_lli);
635         else
636                 align = sizeof(struct d40_phy_lli);
637 
638         if (lli_len == 1) {
639                 base = d40d->lli_pool.pre_alloc_lli;
640                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
641                 d40d->lli_pool.base = NULL;
642         } else {
643                 d40d->lli_pool.size = lli_len * 2 * align;
644 
645                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
646                 d40d->lli_pool.base = base;
647 
648                 if (d40d->lli_pool.base == NULL)
649                         return -ENOMEM;
650         }
651 
652         if (is_log) {
653                 d40d->lli_log.src = PTR_ALIGN(base, align);
654                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655 
656                 d40d->lli_pool.dma_addr = 0;
657         } else {
658                 d40d->lli_phy.src = PTR_ALIGN(base, align);
659                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660 
661                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
662                                                          d40d->lli_phy.src,
663                                                          d40d->lli_pool.size,
664                                                          DMA_TO_DEVICE);
665 
666                 if (dma_mapping_error(d40c->base->dev,
667                                       d40d->lli_pool.dma_addr)) {
668                         kfree(d40d->lli_pool.base);
669                         d40d->lli_pool.base = NULL;
670                         d40d->lli_pool.dma_addr = 0;
671                         return -ENOMEM;
672                 }
673         }
674 
675         return 0;
676 }
677 
678 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679 {
680         if (d40d->lli_pool.dma_addr)
681                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
682                                  d40d->lli_pool.size, DMA_TO_DEVICE);
683 
684         kfree(d40d->lli_pool.base);
685         d40d->lli_pool.base = NULL;
686         d40d->lli_pool.size = 0;
687         d40d->lli_log.src = NULL;
688         d40d->lli_log.dst = NULL;
689         d40d->lli_phy.src = NULL;
690         d40d->lli_phy.dst = NULL;
691 }
692 
693 static int d40_lcla_alloc_one(struct d40_chan *d40c,
694                               struct d40_desc *d40d)
695 {
696         unsigned long flags;
697         int i;
698         int ret = -EINVAL;
699 
700         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
701 
702         /*
703          * Allocate both src and dst at the same time, therefore the half
704          * start on 1 since 0 can't be used since zero is used as end marker.
705          */
706         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
708 
709                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
710                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
711                         d40d->lcla_alloc++;
712                         ret = i;
713                         break;
714                 }
715         }
716 
717         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
718 
719         return ret;
720 }
721 
722 static int d40_lcla_free_all(struct d40_chan *d40c,
723                              struct d40_desc *d40d)
724 {
725         unsigned long flags;
726         int i;
727         int ret = -EINVAL;
728 
729         if (chan_is_physical(d40c))
730                 return 0;
731 
732         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
733 
734         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
736 
737                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
738                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
739                         d40d->lcla_alloc--;
740                         if (d40d->lcla_alloc == 0) {
741                                 ret = 0;
742                                 break;
743                         }
744                 }
745         }
746 
747         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
748 
749         return ret;
750 
751 }
752 
753 static void d40_desc_remove(struct d40_desc *d40d)
754 {
755         list_del(&d40d->node);
756 }
757 
758 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
759 {
760         struct d40_desc *desc = NULL;
761 
762         if (!list_empty(&d40c->client)) {
763                 struct d40_desc *d;
764                 struct d40_desc *_d;
765 
766                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
767                         if (async_tx_test_ack(&d->txd)) {
768                                 d40_desc_remove(d);
769                                 desc = d;
770                                 memset(desc, 0, sizeof(*desc));
771                                 break;
772                         }
773                 }
774         }
775 
776         if (!desc)
777                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
778 
779         if (desc)
780                 INIT_LIST_HEAD(&desc->node);
781 
782         return desc;
783 }
784 
785 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
786 {
787 
788         d40_pool_lli_free(d40c, d40d);
789         d40_lcla_free_all(d40c, d40d);
790         kmem_cache_free(d40c->base->desc_slab, d40d);
791 }
792 
793 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
794 {
795         list_add_tail(&desc->node, &d40c->active);
796 }
797 
798 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
799 {
800         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
801         struct d40_phy_lli *lli_src = desc->lli_phy.src;
802         void __iomem *base = chan_base(chan);
803 
804         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
805         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
806         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
807         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
808 
809         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
810         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
811         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
812         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
813 }
814 
815 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
816 {
817         list_add_tail(&desc->node, &d40c->done);
818 }
819 
820 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821 {
822         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
823         struct d40_log_lli_bidir *lli = &desc->lli_log;
824         int lli_current = desc->lli_current;
825         int lli_len = desc->lli_len;
826         bool cyclic = desc->cyclic;
827         int curr_lcla = -EINVAL;
828         int first_lcla = 0;
829         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
830         bool linkback;
831 
832         /*
833          * We may have partially running cyclic transfers, in case we did't get
834          * enough LCLA entries.
835          */
836         linkback = cyclic && lli_current == 0;
837 
838         /*
839          * For linkback, we need one LCLA even with only one link, because we
840          * can't link back to the one in LCPA space
841          */
842         if (linkback || (lli_len - lli_current > 1)) {
843                 /*
844                  * If the channel is expected to use only soft_lli don't
845                  * allocate a lcla. This is to avoid a HW issue that exists
846                  * in some controller during a peripheral to memory transfer
847                  * that uses linked lists.
848                  */
849                 if (!(chan->phy_chan->use_soft_lli &&
850                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851                         curr_lcla = d40_lcla_alloc_one(chan, desc);
852 
853                 first_lcla = curr_lcla;
854         }
855 
856         /*
857          * For linkback, we normally load the LCPA in the loop since we need to
858          * link it to the second LCLA and not the first.  However, if we
859          * couldn't even get a first LCLA, then we have to run in LCPA and
860          * reload manually.
861          */
862         if (!linkback || curr_lcla == -EINVAL) {
863                 unsigned int flags = 0;
864 
865                 if (curr_lcla == -EINVAL)
866                         flags |= LLI_TERM_INT;
867 
868                 d40_log_lli_lcpa_write(chan->lcpa,
869                                        &lli->dst[lli_current],
870                                        &lli->src[lli_current],
871                                        curr_lcla,
872                                        flags);
873                 lli_current++;
874         }
875 
876         if (curr_lcla < 0)
877                 goto set_current;
878 
879         for (; lli_current < lli_len; lli_current++) {
880                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
881                                            8 * curr_lcla * 2;
882                 struct d40_log_lli *lcla = pool->base + lcla_offset;
883                 unsigned int flags = 0;
884                 int next_lcla;
885 
886                 if (lli_current + 1 < lli_len)
887                         next_lcla = d40_lcla_alloc_one(chan, desc);
888                 else
889                         next_lcla = linkback ? first_lcla : -EINVAL;
890 
891                 if (cyclic || next_lcla == -EINVAL)
892                         flags |= LLI_TERM_INT;
893 
894                 if (linkback && curr_lcla == first_lcla) {
895                         /* First link goes in both LCPA and LCLA */
896                         d40_log_lli_lcpa_write(chan->lcpa,
897                                                &lli->dst[lli_current],
898                                                &lli->src[lli_current],
899                                                next_lcla, flags);
900                 }
901 
902                 /*
903                  * One unused LCLA in the cyclic case if the very first
904                  * next_lcla fails...
905                  */
906                 d40_log_lli_lcla_write(lcla,
907                                        &lli->dst[lli_current],
908                                        &lli->src[lli_current],
909                                        next_lcla, flags);
910 
911                 /*
912                  * Cache maintenance is not needed if lcla is
913                  * mapped in esram
914                  */
915                 if (!use_esram_lcla) {
916                         dma_sync_single_range_for_device(chan->base->dev,
917                                                 pool->dma_addr, lcla_offset,
918                                                 2 * sizeof(struct d40_log_lli),
919                                                 DMA_TO_DEVICE);
920                 }
921                 curr_lcla = next_lcla;
922 
923                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924                         lli_current++;
925                         break;
926                 }
927         }
928  set_current:
929         desc->lli_current = lli_current;
930 }
931 
932 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
933 {
934         if (chan_is_physical(d40c)) {
935                 d40_phy_lli_load(d40c, d40d);
936                 d40d->lli_current = d40d->lli_len;
937         } else
938                 d40_log_lli_to_lcxa(d40c, d40d);
939 }
940 
941 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
942 {
943         return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
944 }
945 
946 /* remove desc from current queue and add it to the pending_queue */
947 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
948 {
949         d40_desc_remove(desc);
950         desc->is_in_client_list = false;
951         list_add_tail(&desc->node, &d40c->pending_queue);
952 }
953 
954 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
955 {
956         return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
957                                         node);
958 }
959 
960 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
961 {
962         return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
963 }
964 
965 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
966 {
967         return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
968 }
969 
970 static int d40_psize_2_burst_size(bool is_log, int psize)
971 {
972         if (is_log) {
973                 if (psize == STEDMA40_PSIZE_LOG_1)
974                         return 1;
975         } else {
976                 if (psize == STEDMA40_PSIZE_PHY_1)
977                         return 1;
978         }
979 
980         return 2 << psize;
981 }
982 
983 /*
984  * The dma only supports transmitting packages up to
985  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
986  *
987  * Calculate the total number of dma elements required to send the entire sg list.
988  */
989 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
990 {
991         int dmalen;
992         u32 max_w = max(data_width1, data_width2);
993         u32 min_w = min(data_width1, data_width2);
994         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
995 
996         if (seg_max > STEDMA40_MAX_SEG_SIZE)
997                 seg_max -= max_w;
998 
999         if (!IS_ALIGNED(size, max_w))
1000                 return -EINVAL;
1001 
1002         if (size <= seg_max)
1003                 dmalen = 1;
1004         else {
1005                 dmalen = size / seg_max;
1006                 if (dmalen * seg_max < size)
1007                         dmalen++;
1008         }
1009         return dmalen;
1010 }
1011 
1012 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1013                            u32 data_width1, u32 data_width2)
1014 {
1015         struct scatterlist *sg;
1016         int i;
1017         int len = 0;
1018         int ret;
1019 
1020         for_each_sg(sgl, sg, sg_len, i) {
1021                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1022                                         data_width1, data_width2);
1023                 if (ret < 0)
1024                         return ret;
1025                 len += ret;
1026         }
1027         return len;
1028 }
1029 
1030 static int __d40_execute_command_phy(struct d40_chan *d40c,
1031                                      enum d40_command command)
1032 {
1033         u32 status;
1034         int i;
1035         void __iomem *active_reg;
1036         int ret = 0;
1037         unsigned long flags;
1038         u32 wmask;
1039 
1040         if (command == D40_DMA_STOP) {
1041                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1042                 if (ret)
1043                         return ret;
1044         }
1045 
1046         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1047 
1048         if (d40c->phy_chan->num % 2 == 0)
1049                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1050         else
1051                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1052 
1053         if (command == D40_DMA_SUSPEND_REQ) {
1054                 status = (readl(active_reg) &
1055                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1056                         D40_CHAN_POS(d40c->phy_chan->num);
1057 
1058                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1059                         goto unlock;
1060         }
1061 
1062         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1063         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1064                active_reg);
1065 
1066         if (command == D40_DMA_SUSPEND_REQ) {
1067 
1068                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1069                         status = (readl(active_reg) &
1070                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1071                                 D40_CHAN_POS(d40c->phy_chan->num);
1072 
1073                         cpu_relax();
1074                         /*
1075                          * Reduce the number of bus accesses while
1076                          * waiting for the DMA to suspend.
1077                          */
1078                         udelay(3);
1079 
1080                         if (status == D40_DMA_STOP ||
1081                             status == D40_DMA_SUSPENDED)
1082                                 break;
1083                 }
1084 
1085                 if (i == D40_SUSPEND_MAX_IT) {
1086                         chan_err(d40c,
1087                                 "unable to suspend the chl %d (log: %d) status %x\n",
1088                                 d40c->phy_chan->num, d40c->log_num,
1089                                 status);
1090                         dump_stack();
1091                         ret = -EBUSY;
1092                 }
1093 
1094         }
1095  unlock:
1096         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1097         return ret;
1098 }
1099 
1100 static void d40_term_all(struct d40_chan *d40c)
1101 {
1102         struct d40_desc *d40d;
1103         struct d40_desc *_d;
1104 
1105         /* Release completed descriptors */
1106         while ((d40d = d40_first_done(d40c))) {
1107                 d40_desc_remove(d40d);
1108                 d40_desc_free(d40c, d40d);
1109         }
1110 
1111         /* Release active descriptors */
1112         while ((d40d = d40_first_active_get(d40c))) {
1113                 d40_desc_remove(d40d);
1114                 d40_desc_free(d40c, d40d);
1115         }
1116 
1117         /* Release queued descriptors waiting for transfer */
1118         while ((d40d = d40_first_queued(d40c))) {
1119                 d40_desc_remove(d40d);
1120                 d40_desc_free(d40c, d40d);
1121         }
1122 
1123         /* Release pending descriptors */
1124         while ((d40d = d40_first_pending(d40c))) {
1125                 d40_desc_remove(d40d);
1126                 d40_desc_free(d40c, d40d);
1127         }
1128 
1129         /* Release client owned descriptors */
1130         if (!list_empty(&d40c->client))
1131                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1132                         d40_desc_remove(d40d);
1133                         d40_desc_free(d40c, d40d);
1134                 }
1135 
1136         /* Release descriptors in prepare queue */
1137         if (!list_empty(&d40c->prepare_queue))
1138                 list_for_each_entry_safe(d40d, _d,
1139                                          &d40c->prepare_queue, node) {
1140                         d40_desc_remove(d40d);
1141                         d40_desc_free(d40c, d40d);
1142                 }
1143 
1144         d40c->pending_tx = 0;
1145 }
1146 
1147 static void __d40_config_set_event(struct d40_chan *d40c,
1148                                    enum d40_events event_type, u32 event,
1149                                    int reg)
1150 {
1151         void __iomem *addr = chan_base(d40c) + reg;
1152         int tries;
1153         u32 status;
1154 
1155         switch (event_type) {
1156 
1157         case D40_DEACTIVATE_EVENTLINE:
1158 
1159                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1160                        | ~D40_EVENTLINE_MASK(event), addr);
1161                 break;
1162 
1163         case D40_SUSPEND_REQ_EVENTLINE:
1164                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1165                           D40_EVENTLINE_POS(event);
1166 
1167                 if (status == D40_DEACTIVATE_EVENTLINE ||
1168                     status == D40_SUSPEND_REQ_EVENTLINE)
1169                         break;
1170 
1171                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1172                        | ~D40_EVENTLINE_MASK(event), addr);
1173 
1174                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1175 
1176                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1177                                   D40_EVENTLINE_POS(event);
1178 
1179                         cpu_relax();
1180                         /*
1181                          * Reduce the number of bus accesses while
1182                          * waiting for the DMA to suspend.
1183                          */
1184                         udelay(3);
1185 
1186                         if (status == D40_DEACTIVATE_EVENTLINE)
1187                                 break;
1188                 }
1189 
1190                 if (tries == D40_SUSPEND_MAX_IT) {
1191                         chan_err(d40c,
1192                                 "unable to stop the event_line chl %d (log: %d)"
1193                                 "status %x\n", d40c->phy_chan->num,
1194                                  d40c->log_num, status);
1195                 }
1196                 break;
1197 
1198         case D40_ACTIVATE_EVENTLINE:
1199         /*
1200          * The hardware sometimes doesn't register the enable when src and dst
1201          * event lines are active on the same logical channel.  Retry to ensure
1202          * it does.  Usually only one retry is sufficient.
1203          */
1204                 tries = 100;
1205                 while (--tries) {
1206                         writel((D40_ACTIVATE_EVENTLINE <<
1207                                 D40_EVENTLINE_POS(event)) |
1208                                 ~D40_EVENTLINE_MASK(event), addr);
1209 
1210                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1211                                 break;
1212                 }
1213 
1214                 if (tries != 99)
1215                         dev_dbg(chan2dev(d40c),
1216                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1217                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1218                                 100 - tries);
1219 
1220                 WARN_ON(!tries);
1221                 break;
1222 
1223         case D40_ROUND_EVENTLINE:
1224                 BUG();
1225                 break;
1226 
1227         }
1228 }
1229 
1230 static void d40_config_set_event(struct d40_chan *d40c,
1231                                  enum d40_events event_type)
1232 {
1233         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1234 
1235         /* Enable event line connected to device (or memcpy) */
1236         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1237             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1238                 __d40_config_set_event(d40c, event_type, event,
1239                                        D40_CHAN_REG_SSLNK);
1240 
1241         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1242                 __d40_config_set_event(d40c, event_type, event,
1243                                        D40_CHAN_REG_SDLNK);
1244 }
1245 
1246 static u32 d40_chan_has_events(struct d40_chan *d40c)
1247 {
1248         void __iomem *chanbase = chan_base(d40c);
1249         u32 val;
1250 
1251         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1252         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1253 
1254         return val;
1255 }
1256 
1257 static int
1258 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1259 {
1260         unsigned long flags;
1261         int ret = 0;
1262         u32 active_status;
1263         void __iomem *active_reg;
1264 
1265         if (d40c->phy_chan->num % 2 == 0)
1266                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1267         else
1268                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1269 
1270 
1271         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1272 
1273         switch (command) {
1274         case D40_DMA_STOP:
1275         case D40_DMA_SUSPEND_REQ:
1276 
1277                 active_status = (readl(active_reg) &
1278                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1279                                  D40_CHAN_POS(d40c->phy_chan->num);
1280 
1281                 if (active_status == D40_DMA_RUN)
1282                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1283                 else
1284                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1285 
1286                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1287                         ret = __d40_execute_command_phy(d40c, command);
1288 
1289                 break;
1290 
1291         case D40_DMA_RUN:
1292 
1293                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1294                 ret = __d40_execute_command_phy(d40c, command);
1295                 break;
1296 
1297         case D40_DMA_SUSPENDED:
1298                 BUG();
1299                 break;
1300         }
1301 
1302         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1303         return ret;
1304 }
1305 
1306 static int d40_channel_execute_command(struct d40_chan *d40c,
1307                                        enum d40_command command)
1308 {
1309         if (chan_is_logical(d40c))
1310                 return __d40_execute_command_log(d40c, command);
1311         else
1312                 return __d40_execute_command_phy(d40c, command);
1313 }
1314 
1315 static u32 d40_get_prmo(struct d40_chan *d40c)
1316 {
1317         static const unsigned int phy_map[] = {
1318                 [STEDMA40_PCHAN_BASIC_MODE]
1319                         = D40_DREG_PRMO_PCHAN_BASIC,
1320                 [STEDMA40_PCHAN_MODULO_MODE]
1321                         = D40_DREG_PRMO_PCHAN_MODULO,
1322                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1323                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1324         };
1325         static const unsigned int log_map[] = {
1326                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1327                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1328                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1329                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1330                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1331                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1332         };
1333 
1334         if (chan_is_physical(d40c))
1335                 return phy_map[d40c->dma_cfg.mode_opt];
1336         else
1337                 return log_map[d40c->dma_cfg.mode_opt];
1338 }
1339 
1340 static void d40_config_write(struct d40_chan *d40c)
1341 {
1342         u32 addr_base;
1343         u32 var;
1344 
1345         /* Odd addresses are even addresses + 4 */
1346         addr_base = (d40c->phy_chan->num % 2) * 4;
1347         /* Setup channel mode to logical or physical */
1348         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1349                 D40_CHAN_POS(d40c->phy_chan->num);
1350         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1351 
1352         /* Setup operational mode option register */
1353         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1354 
1355         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1356 
1357         if (chan_is_logical(d40c)) {
1358                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1359                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1360                 void __iomem *chanbase = chan_base(d40c);
1361 
1362                 /* Set default config for CFG reg */
1363                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1364                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1365 
1366                 /* Set LIDX for lcla */
1367                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1368                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1369 
1370                 /* Clear LNK which will be used by d40_chan_has_events() */
1371                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1372                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1373         }
1374 }
1375 
1376 static u32 d40_residue(struct d40_chan *d40c)
1377 {
1378         u32 num_elt;
1379 
1380         if (chan_is_logical(d40c))
1381                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1382                         >> D40_MEM_LCSP2_ECNT_POS;
1383         else {
1384                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1385                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1386                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1387         }
1388 
1389         return num_elt * d40c->dma_cfg.dst_info.data_width;
1390 }
1391 
1392 static bool d40_tx_is_linked(struct d40_chan *d40c)
1393 {
1394         bool is_link;
1395 
1396         if (chan_is_logical(d40c))
1397                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1398         else
1399                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1400                           & D40_SREG_LNK_PHYS_LNK_MASK;
1401 
1402         return is_link;
1403 }
1404 
1405 static int d40_pause(struct dma_chan *chan)
1406 {
1407         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1408         int res = 0;
1409         unsigned long flags;
1410 
1411         if (d40c->phy_chan == NULL) {
1412                 chan_err(d40c, "Channel is not allocated!\n");
1413                 return -EINVAL;
1414         }
1415 
1416         if (!d40c->busy)
1417                 return 0;
1418 
1419         spin_lock_irqsave(&d40c->lock, flags);
1420         pm_runtime_get_sync(d40c->base->dev);
1421 
1422         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1423 
1424         pm_runtime_mark_last_busy(d40c->base->dev);
1425         pm_runtime_put_autosuspend(d40c->base->dev);
1426         spin_unlock_irqrestore(&d40c->lock, flags);
1427         return res;
1428 }
1429 
1430 static int d40_resume(struct dma_chan *chan)
1431 {
1432         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1433         int res = 0;
1434         unsigned long flags;
1435 
1436         if (d40c->phy_chan == NULL) {
1437                 chan_err(d40c, "Channel is not allocated!\n");
1438                 return -EINVAL;
1439         }
1440 
1441         if (!d40c->busy)
1442                 return 0;
1443 
1444         spin_lock_irqsave(&d40c->lock, flags);
1445         pm_runtime_get_sync(d40c->base->dev);
1446 
1447         /* If bytes left to transfer or linked tx resume job */
1448         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1449                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1450 
1451         pm_runtime_mark_last_busy(d40c->base->dev);
1452         pm_runtime_put_autosuspend(d40c->base->dev);
1453         spin_unlock_irqrestore(&d40c->lock, flags);
1454         return res;
1455 }
1456 
1457 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1458 {
1459         struct d40_chan *d40c = container_of(tx->chan,
1460                                              struct d40_chan,
1461                                              chan);
1462         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1463         unsigned long flags;
1464         dma_cookie_t cookie;
1465 
1466         spin_lock_irqsave(&d40c->lock, flags);
1467         cookie = dma_cookie_assign(tx);
1468         d40_desc_queue(d40c, d40d);
1469         spin_unlock_irqrestore(&d40c->lock, flags);
1470 
1471         return cookie;
1472 }
1473 
1474 static int d40_start(struct d40_chan *d40c)
1475 {
1476         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1477 }
1478 
1479 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1480 {
1481         struct d40_desc *d40d;
1482         int err;
1483 
1484         /* Start queued jobs, if any */
1485         d40d = d40_first_queued(d40c);
1486 
1487         if (d40d != NULL) {
1488                 if (!d40c->busy) {
1489                         d40c->busy = true;
1490                         pm_runtime_get_sync(d40c->base->dev);
1491                 }
1492 
1493                 /* Remove from queue */
1494                 d40_desc_remove(d40d);
1495 
1496                 /* Add to active queue */
1497                 d40_desc_submit(d40c, d40d);
1498 
1499                 /* Initiate DMA job */
1500                 d40_desc_load(d40c, d40d);
1501 
1502                 /* Start dma job */
1503                 err = d40_start(d40c);
1504 
1505                 if (err)
1506                         return NULL;
1507         }
1508 
1509         return d40d;
1510 }
1511 
1512 /* called from interrupt context */
1513 static void dma_tc_handle(struct d40_chan *d40c)
1514 {
1515         struct d40_desc *d40d;
1516 
1517         /* Get first active entry from list */
1518         d40d = d40_first_active_get(d40c);
1519 
1520         if (d40d == NULL)
1521                 return;
1522 
1523         if (d40d->cyclic) {
1524                 /*
1525                  * If this was a paritially loaded list, we need to reloaded
1526                  * it, and only when the list is completed.  We need to check
1527                  * for done because the interrupt will hit for every link, and
1528                  * not just the last one.
1529                  */
1530                 if (d40d->lli_current < d40d->lli_len
1531                     && !d40_tx_is_linked(d40c)
1532                     && !d40_residue(d40c)) {
1533                         d40_lcla_free_all(d40c, d40d);
1534                         d40_desc_load(d40c, d40d);
1535                         (void) d40_start(d40c);
1536 
1537                         if (d40d->lli_current == d40d->lli_len)
1538                                 d40d->lli_current = 0;
1539                 }
1540         } else {
1541                 d40_lcla_free_all(d40c, d40d);
1542 
1543                 if (d40d->lli_current < d40d->lli_len) {
1544                         d40_desc_load(d40c, d40d);
1545                         /* Start dma job */
1546                         (void) d40_start(d40c);
1547                         return;
1548                 }
1549 
1550                 if (d40_queue_start(d40c) == NULL) {
1551                         d40c->busy = false;
1552 
1553                         pm_runtime_mark_last_busy(d40c->base->dev);
1554                         pm_runtime_put_autosuspend(d40c->base->dev);
1555                 }
1556 
1557                 d40_desc_remove(d40d);
1558                 d40_desc_done(d40c, d40d);
1559         }
1560 
1561         d40c->pending_tx++;
1562         tasklet_schedule(&d40c->tasklet);
1563 
1564 }
1565 
1566 static void dma_tasklet(unsigned long data)
1567 {
1568         struct d40_chan *d40c = (struct d40_chan *) data;
1569         struct d40_desc *d40d;
1570         unsigned long flags;
1571         bool callback_active;
1572         struct dmaengine_desc_callback cb;
1573 
1574         spin_lock_irqsave(&d40c->lock, flags);
1575 
1576         /* Get first entry from the done list */
1577         d40d = d40_first_done(d40c);
1578         if (d40d == NULL) {
1579                 /* Check if we have reached here for cyclic job */
1580                 d40d = d40_first_active_get(d40c);
1581                 if (d40d == NULL || !d40d->cyclic)
1582                         goto check_pending_tx;
1583         }
1584 
1585         if (!d40d->cyclic)
1586                 dma_cookie_complete(&d40d->txd);
1587 
1588         /*
1589          * If terminating a channel pending_tx is set to zero.
1590          * This prevents any finished active jobs to return to the client.
1591          */
1592         if (d40c->pending_tx == 0) {
1593                 spin_unlock_irqrestore(&d40c->lock, flags);
1594                 return;
1595         }
1596 
1597         /* Callback to client */
1598         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1599         dmaengine_desc_get_callback(&d40d->txd, &cb);
1600 
1601         if (!d40d->cyclic) {
1602                 if (async_tx_test_ack(&d40d->txd)) {
1603                         d40_desc_remove(d40d);
1604                         d40_desc_free(d40c, d40d);
1605                 } else if (!d40d->is_in_client_list) {
1606                         d40_desc_remove(d40d);
1607                         d40_lcla_free_all(d40c, d40d);
1608                         list_add_tail(&d40d->node, &d40c->client);
1609                         d40d->is_in_client_list = true;
1610                 }
1611         }
1612 
1613         d40c->pending_tx--;
1614 
1615         if (d40c->pending_tx)
1616                 tasklet_schedule(&d40c->tasklet);
1617 
1618         spin_unlock_irqrestore(&d40c->lock, flags);
1619 
1620         if (callback_active)
1621                 dmaengine_desc_callback_invoke(&cb, NULL);
1622 
1623         return;
1624  check_pending_tx:
1625         /* Rescue manouver if receiving double interrupts */
1626         if (d40c->pending_tx > 0)
1627                 d40c->pending_tx--;
1628         spin_unlock_irqrestore(&d40c->lock, flags);
1629 }
1630 
1631 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1632 {
1633         int i;
1634         u32 idx;
1635         u32 row;
1636         long chan = -1;
1637         struct d40_chan *d40c;
1638         unsigned long flags;
1639         struct d40_base *base = data;
1640         u32 regs[base->gen_dmac.il_size];
1641         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1642         u32 il_size = base->gen_dmac.il_size;
1643 
1644         spin_lock_irqsave(&base->interrupt_lock, flags);
1645 
1646         /* Read interrupt status of both logical and physical channels */
1647         for (i = 0; i < il_size; i++)
1648                 regs[i] = readl(base->virtbase + il[i].src);
1649 
1650         for (;;) {
1651 
1652                 chan = find_next_bit((unsigned long *)regs,
1653                                      BITS_PER_LONG * il_size, chan + 1);
1654 
1655                 /* No more set bits found? */
1656                 if (chan == BITS_PER_LONG * il_size)
1657                         break;
1658 
1659                 row = chan / BITS_PER_LONG;
1660                 idx = chan & (BITS_PER_LONG - 1);
1661 
1662                 if (il[row].offset == D40_PHY_CHAN)
1663                         d40c = base->lookup_phy_chans[idx];
1664                 else
1665                         d40c = base->lookup_log_chans[il[row].offset + idx];
1666 
1667                 if (!d40c) {
1668                         /*
1669                          * No error because this can happen if something else
1670                          * in the system is using the channel.
1671                          */
1672                         continue;
1673                 }
1674 
1675                 /* ACK interrupt */
1676                 writel(BIT(idx), base->virtbase + il[row].clr);
1677 
1678                 spin_lock(&d40c->lock);
1679 
1680                 if (!il[row].is_error)
1681                         dma_tc_handle(d40c);
1682                 else
1683                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1684                                 chan, il[row].offset, idx);
1685 
1686                 spin_unlock(&d40c->lock);
1687         }
1688 
1689         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1690 
1691         return IRQ_HANDLED;
1692 }
1693 
1694 static int d40_validate_conf(struct d40_chan *d40c,
1695                              struct stedma40_chan_cfg *conf)
1696 {
1697         int res = 0;
1698         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1699 
1700         if (!conf->dir) {
1701                 chan_err(d40c, "Invalid direction.\n");
1702                 res = -EINVAL;
1703         }
1704 
1705         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1706             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1707             (conf->dev_type < 0)) {
1708                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1709                 res = -EINVAL;
1710         }
1711 
1712         if (conf->dir == DMA_DEV_TO_DEV) {
1713                 /*
1714                  * DMAC HW supports it. Will be added to this driver,
1715                  * in case any dma client requires it.
1716                  */
1717                 chan_err(d40c, "periph to periph not supported\n");
1718                 res = -EINVAL;
1719         }
1720 
1721         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1722             conf->src_info.data_width !=
1723             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1724             conf->dst_info.data_width) {
1725                 /*
1726                  * The DMAC hardware only supports
1727                  * src (burst x width) == dst (burst x width)
1728                  */
1729 
1730                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1731                 res = -EINVAL;
1732         }
1733 
1734         return res;
1735 }
1736 
1737 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1738                                bool is_src, int log_event_line, bool is_log,
1739                                bool *first_user)
1740 {
1741         unsigned long flags;
1742         spin_lock_irqsave(&phy->lock, flags);
1743 
1744         *first_user = ((phy->allocated_src | phy->allocated_dst)
1745                         == D40_ALLOC_FREE);
1746 
1747         if (!is_log) {
1748                 /* Physical interrupts are masked per physical full channel */
1749                 if (phy->allocated_src == D40_ALLOC_FREE &&
1750                     phy->allocated_dst == D40_ALLOC_FREE) {
1751                         phy->allocated_dst = D40_ALLOC_PHY;
1752                         phy->allocated_src = D40_ALLOC_PHY;
1753                         goto found_unlock;
1754                 } else
1755                         goto not_found_unlock;
1756         }
1757 
1758         /* Logical channel */
1759         if (is_src) {
1760                 if (phy->allocated_src == D40_ALLOC_PHY)
1761                         goto not_found_unlock;
1762 
1763                 if (phy->allocated_src == D40_ALLOC_FREE)
1764                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1765 
1766                 if (!(phy->allocated_src & BIT(log_event_line))) {
1767                         phy->allocated_src |= BIT(log_event_line);
1768                         goto found_unlock;
1769                 } else
1770                         goto not_found_unlock;
1771         } else {
1772                 if (phy->allocated_dst == D40_ALLOC_PHY)
1773                         goto not_found_unlock;
1774 
1775                 if (phy->allocated_dst == D40_ALLOC_FREE)
1776                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1777 
1778                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1779                         phy->allocated_dst |= BIT(log_event_line);
1780                         goto found_unlock;
1781                 }
1782         }
1783  not_found_unlock:
1784         spin_unlock_irqrestore(&phy->lock, flags);
1785         return false;
1786  found_unlock:
1787         spin_unlock_irqrestore(&phy->lock, flags);
1788         return true;
1789 }
1790 
1791 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1792                                int log_event_line)
1793 {
1794         unsigned long flags;
1795         bool is_free = false;
1796 
1797         spin_lock_irqsave(&phy->lock, flags);
1798         if (!log_event_line) {
1799                 phy->allocated_dst = D40_ALLOC_FREE;
1800                 phy->allocated_src = D40_ALLOC_FREE;
1801                 is_free = true;
1802                 goto unlock;
1803         }
1804 
1805         /* Logical channel */
1806         if (is_src) {
1807                 phy->allocated_src &= ~BIT(log_event_line);
1808                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1809                         phy->allocated_src = D40_ALLOC_FREE;
1810         } else {
1811                 phy->allocated_dst &= ~BIT(log_event_line);
1812                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1813                         phy->allocated_dst = D40_ALLOC_FREE;
1814         }
1815 
1816         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1817                    D40_ALLOC_FREE);
1818  unlock:
1819         spin_unlock_irqrestore(&phy->lock, flags);
1820 
1821         return is_free;
1822 }
1823 
1824 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1825 {
1826         int dev_type = d40c->dma_cfg.dev_type;
1827         int event_group;
1828         int event_line;
1829         struct d40_phy_res *phys;
1830         int i;
1831         int j;
1832         int log_num;
1833         int num_phy_chans;
1834         bool is_src;
1835         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1836 
1837         phys = d40c->base->phy_res;
1838         num_phy_chans = d40c->base->num_phy_chans;
1839 
1840         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1841                 log_num = 2 * dev_type;
1842                 is_src = true;
1843         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1844                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1845                 /* dst event lines are used for logical memcpy */
1846                 log_num = 2 * dev_type + 1;
1847                 is_src = false;
1848         } else
1849                 return -EINVAL;
1850 
1851         event_group = D40_TYPE_TO_GROUP(dev_type);
1852         event_line = D40_TYPE_TO_EVENT(dev_type);
1853 
1854         if (!is_log) {
1855                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1856                         /* Find physical half channel */
1857                         if (d40c->dma_cfg.use_fixed_channel) {
1858                                 i = d40c->dma_cfg.phy_channel;
1859                                 if (d40_alloc_mask_set(&phys[i], is_src,
1860                                                        0, is_log,
1861                                                        first_phy_user))
1862                                         goto found_phy;
1863                         } else {
1864                                 for (i = 0; i < num_phy_chans; i++) {
1865                                         if (d40_alloc_mask_set(&phys[i], is_src,
1866                                                        0, is_log,
1867                                                        first_phy_user))
1868                                                 goto found_phy;
1869                                 }
1870                         }
1871                 } else
1872                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1873                                 int phy_num = j  + event_group * 2;
1874                                 for (i = phy_num; i < phy_num + 2; i++) {
1875                                         if (d40_alloc_mask_set(&phys[i],
1876                                                                is_src,
1877                                                                0,
1878                                                                is_log,
1879                                                                first_phy_user))
1880                                                 goto found_phy;
1881                                 }
1882                         }
1883                 return -EINVAL;
1884 found_phy:
1885                 d40c->phy_chan = &phys[i];
1886                 d40c->log_num = D40_PHY_CHAN;
1887                 goto out;
1888         }
1889         if (dev_type == -1)
1890                 return -EINVAL;
1891 
1892         /* Find logical channel */
1893         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1894                 int phy_num = j + event_group * 2;
1895 
1896                 if (d40c->dma_cfg.use_fixed_channel) {
1897                         i = d40c->dma_cfg.phy_channel;
1898 
1899                         if ((i != phy_num) && (i != phy_num + 1)) {
1900                                 dev_err(chan2dev(d40c),
1901                                         "invalid fixed phy channel %d\n", i);
1902                                 return -EINVAL;
1903                         }
1904 
1905                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1906                                                is_log, first_phy_user))
1907                                 goto found_log;
1908 
1909                         dev_err(chan2dev(d40c),
1910                                 "could not allocate fixed phy channel %d\n", i);
1911                         return -EINVAL;
1912                 }
1913 
1914                 /*
1915                  * Spread logical channels across all available physical rather
1916                  * than pack every logical channel at the first available phy
1917                  * channels.
1918                  */
1919                 if (is_src) {
1920                         for (i = phy_num; i < phy_num + 2; i++) {
1921                                 if (d40_alloc_mask_set(&phys[i], is_src,
1922                                                        event_line, is_log,
1923                                                        first_phy_user))
1924                                         goto found_log;
1925                         }
1926                 } else {
1927                         for (i = phy_num + 1; i >= phy_num; i--) {
1928                                 if (d40_alloc_mask_set(&phys[i], is_src,
1929                                                        event_line, is_log,
1930                                                        first_phy_user))
1931                                         goto found_log;
1932                         }
1933                 }
1934         }
1935         return -EINVAL;
1936 
1937 found_log:
1938         d40c->phy_chan = &phys[i];
1939         d40c->log_num = log_num;
1940 out:
1941 
1942         if (is_log)
1943                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1944         else
1945                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1946 
1947         return 0;
1948 
1949 }
1950 
1951 static int d40_config_memcpy(struct d40_chan *d40c)
1952 {
1953         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1954 
1955         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1956                 d40c->dma_cfg = dma40_memcpy_conf_log;
1957                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1958 
1959                 d40_log_cfg(&d40c->dma_cfg,
1960                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1961 
1962         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1963                    dma_has_cap(DMA_SLAVE, cap)) {
1964                 d40c->dma_cfg = dma40_memcpy_conf_phy;
1965 
1966                 /* Generate interrrupt at end of transfer or relink. */
1967                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1968 
1969                 /* Generate interrupt on error. */
1970                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1971                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1972 
1973         } else {
1974                 chan_err(d40c, "No memcpy\n");
1975                 return -EINVAL;
1976         }
1977 
1978         return 0;
1979 }
1980 
1981 static int d40_free_dma(struct d40_chan *d40c)
1982 {
1983 
1984         int res = 0;
1985         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1986         struct d40_phy_res *phy = d40c->phy_chan;
1987         bool is_src;
1988 
1989         /* Terminate all queued and active transfers */
1990         d40_term_all(d40c);
1991 
1992         if (phy == NULL) {
1993                 chan_err(d40c, "phy == null\n");
1994                 return -EINVAL;
1995         }
1996 
1997         if (phy->allocated_src == D40_ALLOC_FREE &&
1998             phy->allocated_dst == D40_ALLOC_FREE) {
1999                 chan_err(d40c, "channel already free\n");
2000                 return -EINVAL;
2001         }
2002 
2003         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2004             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2005                 is_src = false;
2006         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2007                 is_src = true;
2008         else {
2009                 chan_err(d40c, "Unknown direction\n");
2010                 return -EINVAL;
2011         }
2012 
2013         pm_runtime_get_sync(d40c->base->dev);
2014         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2015         if (res) {
2016                 chan_err(d40c, "stop failed\n");
2017                 goto mark_last_busy;
2018         }
2019 
2020         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2021 
2022         if (chan_is_logical(d40c))
2023                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2024         else
2025                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2026 
2027         if (d40c->busy) {
2028                 pm_runtime_mark_last_busy(d40c->base->dev);
2029                 pm_runtime_put_autosuspend(d40c->base->dev);
2030         }
2031 
2032         d40c->busy = false;
2033         d40c->phy_chan = NULL;
2034         d40c->configured = false;
2035  mark_last_busy:
2036         pm_runtime_mark_last_busy(d40c->base->dev);
2037         pm_runtime_put_autosuspend(d40c->base->dev);
2038         return res;
2039 }
2040 
2041 static bool d40_is_paused(struct d40_chan *d40c)
2042 {
2043         void __iomem *chanbase = chan_base(d40c);
2044         bool is_paused = false;
2045         unsigned long flags;
2046         void __iomem *active_reg;
2047         u32 status;
2048         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2049 
2050         spin_lock_irqsave(&d40c->lock, flags);
2051 
2052         if (chan_is_physical(d40c)) {
2053                 if (d40c->phy_chan->num % 2 == 0)
2054                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2055                 else
2056                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2057 
2058                 status = (readl(active_reg) &
2059                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2060                         D40_CHAN_POS(d40c->phy_chan->num);
2061                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2062                         is_paused = true;
2063                 goto unlock;
2064         }
2065 
2066         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2067             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2068                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2069         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2070                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2071         } else {
2072                 chan_err(d40c, "Unknown direction\n");
2073                 goto unlock;
2074         }
2075 
2076         status = (status & D40_EVENTLINE_MASK(event)) >>
2077                 D40_EVENTLINE_POS(event);
2078 
2079         if (status != D40_DMA_RUN)
2080                 is_paused = true;
2081  unlock:
2082         spin_unlock_irqrestore(&d40c->lock, flags);
2083         return is_paused;
2084 
2085 }
2086 
2087 static u32 stedma40_residue(struct dma_chan *chan)
2088 {
2089         struct d40_chan *d40c =
2090                 container_of(chan, struct d40_chan, chan);
2091         u32 bytes_left;
2092         unsigned long flags;
2093 
2094         spin_lock_irqsave(&d40c->lock, flags);
2095         bytes_left = d40_residue(d40c);
2096         spin_unlock_irqrestore(&d40c->lock, flags);
2097 
2098         return bytes_left;
2099 }
2100 
2101 static int
2102 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2103                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2104                 unsigned int sg_len, dma_addr_t src_dev_addr,
2105                 dma_addr_t dst_dev_addr)
2106 {
2107         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2108         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2109         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2110         int ret;
2111 
2112         ret = d40_log_sg_to_lli(sg_src, sg_len,
2113                                 src_dev_addr,
2114                                 desc->lli_log.src,
2115                                 chan->log_def.lcsp1,
2116                                 src_info->data_width,
2117                                 dst_info->data_width);
2118 
2119         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2120                                 dst_dev_addr,
2121                                 desc->lli_log.dst,
2122                                 chan->log_def.lcsp3,
2123                                 dst_info->data_width,
2124                                 src_info->data_width);
2125 
2126         return ret < 0 ? ret : 0;
2127 }
2128 
2129 static int
2130 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2131                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2132                 unsigned int sg_len, dma_addr_t src_dev_addr,
2133                 dma_addr_t dst_dev_addr)
2134 {
2135         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2136         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2137         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2138         unsigned long flags = 0;
2139         int ret;
2140 
2141         if (desc->cyclic)
2142                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2143 
2144         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2145                                 desc->lli_phy.src,
2146                                 virt_to_phys(desc->lli_phy.src),
2147                                 chan->src_def_cfg,
2148                                 src_info, dst_info, flags);
2149 
2150         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2151                                 desc->lli_phy.dst,
2152                                 virt_to_phys(desc->lli_phy.dst),
2153                                 chan->dst_def_cfg,
2154                                 dst_info, src_info, flags);
2155 
2156         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2157                                    desc->lli_pool.size, DMA_TO_DEVICE);
2158 
2159         return ret < 0 ? ret : 0;
2160 }
2161 
2162 static struct d40_desc *
2163 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2164               unsigned int sg_len, unsigned long dma_flags)
2165 {
2166         struct stedma40_chan_cfg *cfg;
2167         struct d40_desc *desc;
2168         int ret;
2169 
2170         desc = d40_desc_get(chan);
2171         if (!desc)
2172                 return NULL;
2173 
2174         cfg = &chan->dma_cfg;
2175         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2176                                         cfg->dst_info.data_width);
2177         if (desc->lli_len < 0) {
2178                 chan_err(chan, "Unaligned size\n");
2179                 goto free_desc;
2180         }
2181 
2182         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2183         if (ret < 0) {
2184                 chan_err(chan, "Could not allocate lli\n");
2185                 goto free_desc;
2186         }
2187 
2188         desc->lli_current = 0;
2189         desc->txd.flags = dma_flags;
2190         desc->txd.tx_submit = d40_tx_submit;
2191 
2192         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2193 
2194         return desc;
2195  free_desc:
2196         d40_desc_free(chan, desc);
2197         return NULL;
2198 }
2199 
2200 static struct dma_async_tx_descriptor *
2201 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2202             struct scatterlist *sg_dst, unsigned int sg_len,
2203             enum dma_transfer_direction direction, unsigned long dma_flags)
2204 {
2205         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2206         dma_addr_t src_dev_addr;
2207         dma_addr_t dst_dev_addr;
2208         struct d40_desc *desc;
2209         unsigned long flags;
2210         int ret;
2211 
2212         if (!chan->phy_chan) {
2213                 chan_err(chan, "Cannot prepare unallocated channel\n");
2214                 return NULL;
2215         }
2216 
2217         spin_lock_irqsave(&chan->lock, flags);
2218 
2219         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2220         if (desc == NULL)
2221                 goto unlock;
2222 
2223         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2224                 desc->cyclic = true;
2225 
2226         src_dev_addr = 0;
2227         dst_dev_addr = 0;
2228         if (direction == DMA_DEV_TO_MEM)
2229                 src_dev_addr = chan->runtime_addr;
2230         else if (direction == DMA_MEM_TO_DEV)
2231                 dst_dev_addr = chan->runtime_addr;
2232 
2233         if (chan_is_logical(chan))
2234                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2235                                       sg_len, src_dev_addr, dst_dev_addr);
2236         else
2237                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2238                                       sg_len, src_dev_addr, dst_dev_addr);
2239 
2240         if (ret) {
2241                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2242                          chan_is_logical(chan) ? "log" : "phy", ret);
2243                 goto free_desc;
2244         }
2245 
2246         /*
2247          * add descriptor to the prepare queue in order to be able
2248          * to free them later in terminate_all
2249          */
2250         list_add_tail(&desc->node, &chan->prepare_queue);
2251 
2252         spin_unlock_irqrestore(&chan->lock, flags);
2253 
2254         return &desc->txd;
2255  free_desc:
2256         d40_desc_free(chan, desc);
2257  unlock:
2258         spin_unlock_irqrestore(&chan->lock, flags);
2259         return NULL;
2260 }
2261 
2262 bool stedma40_filter(struct dma_chan *chan, void *data)
2263 {
2264         struct stedma40_chan_cfg *info = data;
2265         struct d40_chan *d40c =
2266                 container_of(chan, struct d40_chan, chan);
2267         int err;
2268 
2269         if (data) {
2270                 err = d40_validate_conf(d40c, info);
2271                 if (!err)
2272                         d40c->dma_cfg = *info;
2273         } else
2274                 err = d40_config_memcpy(d40c);
2275 
2276         if (!err)
2277                 d40c->configured = true;
2278 
2279         return err == 0;
2280 }
2281 EXPORT_SYMBOL(stedma40_filter);
2282 
2283 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2284 {
2285         bool realtime = d40c->dma_cfg.realtime;
2286         bool highprio = d40c->dma_cfg.high_priority;
2287         u32 rtreg;
2288         u32 event = D40_TYPE_TO_EVENT(dev_type);
2289         u32 group = D40_TYPE_TO_GROUP(dev_type);
2290         u32 bit = BIT(event);
2291         u32 prioreg;
2292         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2293 
2294         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2295         /*
2296          * Due to a hardware bug, in some cases a logical channel triggered by
2297          * a high priority destination event line can generate extra packet
2298          * transactions.
2299          *
2300          * The workaround is to not set the high priority level for the
2301          * destination event lines that trigger logical channels.
2302          */
2303         if (!src && chan_is_logical(d40c))
2304                 highprio = false;
2305 
2306         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2307 
2308         /* Destination event lines are stored in the upper halfword */
2309         if (!src)
2310                 bit <<= 16;
2311 
2312         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2313         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2314 }
2315 
2316 static void d40_set_prio_realtime(struct d40_chan *d40c)
2317 {
2318         if (d40c->base->rev < 3)
2319                 return;
2320 
2321         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2322             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2323                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2324 
2325         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2326             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2327                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2328 }
2329 
2330 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2331 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2332 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2333 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2334 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2335 
2336 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2337                                   struct of_dma *ofdma)
2338 {
2339         struct stedma40_chan_cfg cfg;
2340         dma_cap_mask_t cap;
2341         u32 flags;
2342 
2343         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2344 
2345         dma_cap_zero(cap);
2346         dma_cap_set(DMA_SLAVE, cap);
2347 
2348         cfg.dev_type = dma_spec->args[0];
2349         flags = dma_spec->args[2];
2350 
2351         switch (D40_DT_FLAGS_MODE(flags)) {
2352         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2353         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2354         }
2355 
2356         switch (D40_DT_FLAGS_DIR(flags)) {
2357         case 0:
2358                 cfg.dir = DMA_MEM_TO_DEV;
2359                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2360                 break;
2361         case 1:
2362                 cfg.dir = DMA_DEV_TO_MEM;
2363                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2364                 break;
2365         }
2366 
2367         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2368                 cfg.phy_channel = dma_spec->args[1];
2369                 cfg.use_fixed_channel = true;
2370         }
2371 
2372         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2373                 cfg.high_priority = true;
2374 
2375         return dma_request_channel(cap, stedma40_filter, &cfg);
2376 }
2377 
2378 /* DMA ENGINE functions */
2379 static int d40_alloc_chan_resources(struct dma_chan *chan)
2380 {
2381         int err;
2382         unsigned long flags;
2383         struct d40_chan *d40c =
2384                 container_of(chan, struct d40_chan, chan);
2385         bool is_free_phy;
2386         spin_lock_irqsave(&d40c->lock, flags);
2387 
2388         dma_cookie_init(chan);
2389 
2390         /* If no dma configuration is set use default configuration (memcpy) */
2391         if (!d40c->configured) {
2392                 err = d40_config_memcpy(d40c);
2393                 if (err) {
2394                         chan_err(d40c, "Failed to configure memcpy channel\n");
2395                         goto mark_last_busy;
2396                 }
2397         }
2398 
2399         err = d40_allocate_channel(d40c, &is_free_phy);
2400         if (err) {
2401                 chan_err(d40c, "Failed to allocate channel\n");
2402                 d40c->configured = false;
2403                 goto mark_last_busy;
2404         }
2405 
2406         pm_runtime_get_sync(d40c->base->dev);
2407 
2408         d40_set_prio_realtime(d40c);
2409 
2410         if (chan_is_logical(d40c)) {
2411                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2412                         d40c->lcpa = d40c->base->lcpa_base +
2413                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2414                 else
2415                         d40c->lcpa = d40c->base->lcpa_base +
2416                                 d40c->dma_cfg.dev_type *
2417                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2418 
2419                 /* Unmask the Global Interrupt Mask. */
2420                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2421                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2422         }
2423 
2424         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2425                  chan_is_logical(d40c) ? "logical" : "physical",
2426                  d40c->phy_chan->num,
2427                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2428 
2429 
2430         /*
2431          * Only write channel configuration to the DMA if the physical
2432          * resource is free. In case of multiple logical channels
2433          * on the same physical resource, only the first write is necessary.
2434          */
2435         if (is_free_phy)
2436                 d40_config_write(d40c);
2437  mark_last_busy:
2438         pm_runtime_mark_last_busy(d40c->base->dev);
2439         pm_runtime_put_autosuspend(d40c->base->dev);
2440         spin_unlock_irqrestore(&d40c->lock, flags);
2441         return err;
2442 }
2443 
2444 static void d40_free_chan_resources(struct dma_chan *chan)
2445 {
2446         struct d40_chan *d40c =
2447                 container_of(chan, struct d40_chan, chan);
2448         int err;
2449         unsigned long flags;
2450 
2451         if (d40c->phy_chan == NULL) {
2452                 chan_err(d40c, "Cannot free unallocated channel\n");
2453                 return;
2454         }
2455 
2456         spin_lock_irqsave(&d40c->lock, flags);
2457 
2458         err = d40_free_dma(d40c);
2459 
2460         if (err)
2461                 chan_err(d40c, "Failed to free channel\n");
2462         spin_unlock_irqrestore(&d40c->lock, flags);
2463 }
2464 
2465 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2466                                                        dma_addr_t dst,
2467                                                        dma_addr_t src,
2468                                                        size_t size,
2469                                                        unsigned long dma_flags)
2470 {
2471         struct scatterlist dst_sg;
2472         struct scatterlist src_sg;
2473 
2474         sg_init_table(&dst_sg, 1);
2475         sg_init_table(&src_sg, 1);
2476 
2477         sg_dma_address(&dst_sg) = dst;
2478         sg_dma_address(&src_sg) = src;
2479 
2480         sg_dma_len(&dst_sg) = size;
2481         sg_dma_len(&src_sg) = size;
2482 
2483         return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2484                            DMA_MEM_TO_MEM, dma_flags);
2485 }
2486 
2487 static struct dma_async_tx_descriptor *
2488 d40_prep_memcpy_sg(struct dma_chan *chan,
2489                    struct scatterlist *dst_sg, unsigned int dst_nents,
2490                    struct scatterlist *src_sg, unsigned int src_nents,
2491                    unsigned long dma_flags)
2492 {
2493         if (dst_nents != src_nents)
2494                 return NULL;
2495 
2496         return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
2497                            DMA_MEM_TO_MEM, dma_flags);
2498 }
2499 
2500 static struct dma_async_tx_descriptor *
2501 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2502                   unsigned int sg_len, enum dma_transfer_direction direction,
2503                   unsigned long dma_flags, void *context)
2504 {
2505         if (!is_slave_direction(direction))
2506                 return NULL;
2507 
2508         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2509 }
2510 
2511 static struct dma_async_tx_descriptor *
2512 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2513                      size_t buf_len, size_t period_len,
2514                      enum dma_transfer_direction direction, unsigned long flags)
2515 {
2516         unsigned int periods = buf_len / period_len;
2517         struct dma_async_tx_descriptor *txd;
2518         struct scatterlist *sg;
2519         int i;
2520 
2521         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2522         if (!sg)
2523                 return NULL;
2524 
2525         for (i = 0; i < periods; i++) {
2526                 sg_dma_address(&sg[i]) = dma_addr;
2527                 sg_dma_len(&sg[i]) = period_len;
2528                 dma_addr += period_len;
2529         }
2530 
2531         sg[periods].offset = 0;
2532         sg_dma_len(&sg[periods]) = 0;
2533         sg[periods].page_link =
2534                 ((unsigned long)sg | 0x01) & ~0x02;
2535 
2536         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2537                           DMA_PREP_INTERRUPT);
2538 
2539         kfree(sg);
2540 
2541         return txd;
2542 }
2543 
2544 static enum dma_status d40_tx_status(struct dma_chan *chan,
2545                                      dma_cookie_t cookie,
2546                                      struct dma_tx_state *txstate)
2547 {
2548         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2549         enum dma_status ret;
2550 
2551         if (d40c->phy_chan == NULL) {
2552                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2553                 return -EINVAL;
2554         }
2555 
2556         ret = dma_cookie_status(chan, cookie, txstate);
2557         if (ret != DMA_COMPLETE && txstate)
2558                 dma_set_residue(txstate, stedma40_residue(chan));
2559 
2560         if (d40_is_paused(d40c))
2561                 ret = DMA_PAUSED;
2562 
2563         return ret;
2564 }
2565 
2566 static void d40_issue_pending(struct dma_chan *chan)
2567 {
2568         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2569         unsigned long flags;
2570 
2571         if (d40c->phy_chan == NULL) {
2572                 chan_err(d40c, "Channel is not allocated!\n");
2573                 return;
2574         }
2575 
2576         spin_lock_irqsave(&d40c->lock, flags);
2577 
2578         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2579 
2580         /* Busy means that queued jobs are already being processed */
2581         if (!d40c->busy)
2582                 (void) d40_queue_start(d40c);
2583 
2584         spin_unlock_irqrestore(&d40c->lock, flags);
2585 }
2586 
2587 static int d40_terminate_all(struct dma_chan *chan)
2588 {
2589         unsigned long flags;
2590         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2591         int ret;
2592 
2593         if (d40c->phy_chan == NULL) {
2594                 chan_err(d40c, "Channel is not allocated!\n");
2595                 return -EINVAL;
2596         }
2597 
2598         spin_lock_irqsave(&d40c->lock, flags);
2599 
2600         pm_runtime_get_sync(d40c->base->dev);
2601         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2602         if (ret)
2603                 chan_err(d40c, "Failed to stop channel\n");
2604 
2605         d40_term_all(d40c);
2606         pm_runtime_mark_last_busy(d40c->base->dev);
2607         pm_runtime_put_autosuspend(d40c->base->dev);
2608         if (d40c->busy) {
2609                 pm_runtime_mark_last_busy(d40c->base->dev);
2610                 pm_runtime_put_autosuspend(d40c->base->dev);
2611         }
2612         d40c->busy = false;
2613 
2614         spin_unlock_irqrestore(&d40c->lock, flags);
2615         return 0;
2616 }
2617 
2618 static int
2619 dma40_config_to_halfchannel(struct d40_chan *d40c,
2620                             struct stedma40_half_channel_info *info,
2621                             u32 maxburst)
2622 {
2623         int psize;
2624 
2625         if (chan_is_logical(d40c)) {
2626                 if (maxburst >= 16)
2627                         psize = STEDMA40_PSIZE_LOG_16;
2628                 else if (maxburst >= 8)
2629                         psize = STEDMA40_PSIZE_LOG_8;
2630                 else if (maxburst >= 4)
2631                         psize = STEDMA40_PSIZE_LOG_4;
2632                 else
2633                         psize = STEDMA40_PSIZE_LOG_1;
2634         } else {
2635                 if (maxburst >= 16)
2636                         psize = STEDMA40_PSIZE_PHY_16;
2637                 else if (maxburst >= 8)
2638                         psize = STEDMA40_PSIZE_PHY_8;
2639                 else if (maxburst >= 4)
2640                         psize = STEDMA40_PSIZE_PHY_4;
2641                 else
2642                         psize = STEDMA40_PSIZE_PHY_1;
2643         }
2644 
2645         info->psize = psize;
2646         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2647 
2648         return 0;
2649 }
2650 
2651 /* Runtime reconfiguration extension */
2652 static int d40_set_runtime_config(struct dma_chan *chan,
2653                                   struct dma_slave_config *config)
2654 {
2655         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2656         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2657         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2658         dma_addr_t config_addr;
2659         u32 src_maxburst, dst_maxburst;
2660         int ret;
2661 
2662         if (d40c->phy_chan == NULL) {
2663                 chan_err(d40c, "Channel is not allocated!\n");
2664                 return -EINVAL;
2665         }
2666 
2667         src_addr_width = config->src_addr_width;
2668         src_maxburst = config->src_maxburst;
2669         dst_addr_width = config->dst_addr_width;
2670         dst_maxburst = config->dst_maxburst;
2671 
2672         if (config->direction == DMA_DEV_TO_MEM) {
2673                 config_addr = config->src_addr;
2674 
2675                 if (cfg->dir != DMA_DEV_TO_MEM)
2676                         dev_dbg(d40c->base->dev,
2677                                 "channel was not configured for peripheral "
2678                                 "to memory transfer (%d) overriding\n",
2679                                 cfg->dir);
2680                 cfg->dir = DMA_DEV_TO_MEM;
2681 
2682                 /* Configure the memory side */
2683                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2684                         dst_addr_width = src_addr_width;
2685                 if (dst_maxburst == 0)
2686                         dst_maxburst = src_maxburst;
2687 
2688         } else if (config->direction == DMA_MEM_TO_DEV) {
2689                 config_addr = config->dst_addr;
2690 
2691                 if (cfg->dir != DMA_MEM_TO_DEV)
2692                         dev_dbg(d40c->base->dev,
2693                                 "channel was not configured for memory "
2694                                 "to peripheral transfer (%d) overriding\n",
2695                                 cfg->dir);
2696                 cfg->dir = DMA_MEM_TO_DEV;
2697 
2698                 /* Configure the memory side */
2699                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2700                         src_addr_width = dst_addr_width;
2701                 if (src_maxburst == 0)
2702                         src_maxburst = dst_maxburst;
2703         } else {
2704                 dev_err(d40c->base->dev,
2705                         "unrecognized channel direction %d\n",
2706                         config->direction);
2707                 return -EINVAL;
2708         }
2709 
2710         if (config_addr <= 0) {
2711                 dev_err(d40c->base->dev, "no address supplied\n");
2712                 return -EINVAL;
2713         }
2714 
2715         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2716                 dev_err(d40c->base->dev,
2717                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2718                         src_maxburst,
2719                         src_addr_width,
2720                         dst_maxburst,
2721                         dst_addr_width);
2722                 return -EINVAL;
2723         }
2724 
2725         if (src_maxburst > 16) {
2726                 src_maxburst = 16;
2727                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2728         } else if (dst_maxburst > 16) {
2729                 dst_maxburst = 16;
2730                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2731         }
2732 
2733         /* Only valid widths are; 1, 2, 4 and 8. */
2734         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2735             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2736             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2737             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2738             !is_power_of_2(src_addr_width) ||
2739             !is_power_of_2(dst_addr_width))
2740                 return -EINVAL;
2741 
2742         cfg->src_info.data_width = src_addr_width;
2743         cfg->dst_info.data_width = dst_addr_width;
2744 
2745         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2746                                           src_maxburst);
2747         if (ret)
2748                 return ret;
2749 
2750         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2751                                           dst_maxburst);
2752         if (ret)
2753                 return ret;
2754 
2755         /* Fill in register values */
2756         if (chan_is_logical(d40c))
2757                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2758         else
2759                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2760 
2761         /* These settings will take precedence later */
2762         d40c->runtime_addr = config_addr;
2763         d40c->runtime_direction = config->direction;
2764         dev_dbg(d40c->base->dev,
2765                 "configured channel %s for %s, data width %d/%d, "
2766                 "maxburst %d/%d elements, LE, no flow control\n",
2767                 dma_chan_name(chan),
2768                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2769                 src_addr_width, dst_addr_width,
2770                 src_maxburst, dst_maxburst);
2771 
2772         return 0;
2773 }
2774 
2775 /* Initialization functions */
2776 
2777 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2778                                  struct d40_chan *chans, int offset,
2779                                  int num_chans)
2780 {
2781         int i = 0;
2782         struct d40_chan *d40c;
2783 
2784         INIT_LIST_HEAD(&dma->channels);
2785 
2786         for (i = offset; i < offset + num_chans; i++) {
2787                 d40c = &chans[i];
2788                 d40c->base = base;
2789                 d40c->chan.device = dma;
2790 
2791                 spin_lock_init(&d40c->lock);
2792 
2793                 d40c->log_num = D40_PHY_CHAN;
2794 
2795                 INIT_LIST_HEAD(&d40c->done);
2796                 INIT_LIST_HEAD(&d40c->active);
2797                 INIT_LIST_HEAD(&d40c->queue);
2798                 INIT_LIST_HEAD(&d40c->pending_queue);
2799                 INIT_LIST_HEAD(&d40c->client);
2800                 INIT_LIST_HEAD(&d40c->prepare_queue);
2801 
2802                 tasklet_init(&d40c->tasklet, dma_tasklet,
2803                              (unsigned long) d40c);
2804 
2805                 list_add_tail(&d40c->chan.device_node,
2806                               &dma->channels);
2807         }
2808 }
2809 
2810 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2811 {
2812         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2813                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2814 
2815         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2816                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2817 
2818                 /*
2819                  * This controller can only access address at even
2820                  * 32bit boundaries, i.e. 2^2
2821                  */
2822                 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2823         }
2824 
2825         if (dma_has_cap(DMA_SG, dev->cap_mask))
2826                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2827 
2828         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2829                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2830 
2831         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2832         dev->device_free_chan_resources = d40_free_chan_resources;
2833         dev->device_issue_pending = d40_issue_pending;
2834         dev->device_tx_status = d40_tx_status;
2835         dev->device_config = d40_set_runtime_config;
2836         dev->device_pause = d40_pause;
2837         dev->device_resume = d40_resume;
2838         dev->device_terminate_all = d40_terminate_all;
2839         dev->dev = base->dev;
2840 }
2841 
2842 static int __init d40_dmaengine_init(struct d40_base *base,
2843                                      int num_reserved_chans)
2844 {
2845         int err ;
2846 
2847         d40_chan_init(base, &base->dma_slave, base->log_chans,
2848                       0, base->num_log_chans);
2849 
2850         dma_cap_zero(base->dma_slave.cap_mask);
2851         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2852         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2853 
2854         d40_ops_init(base, &base->dma_slave);
2855 
2856         err = dma_async_device_register(&base->dma_slave);
2857 
2858         if (err) {
2859                 d40_err(base->dev, "Failed to register slave channels\n");
2860                 goto exit;
2861         }
2862 
2863         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2864                       base->num_log_chans, base->num_memcpy_chans);
2865 
2866         dma_cap_zero(base->dma_memcpy.cap_mask);
2867         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2868         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2869 
2870         d40_ops_init(base, &base->dma_memcpy);
2871 
2872         err = dma_async_device_register(&base->dma_memcpy);
2873 
2874         if (err) {
2875                 d40_err(base->dev,
2876                         "Failed to register memcpy only channels\n");
2877                 goto unregister_slave;
2878         }
2879 
2880         d40_chan_init(base, &base->dma_both, base->phy_chans,
2881                       0, num_reserved_chans);
2882 
2883         dma_cap_zero(base->dma_both.cap_mask);
2884         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2885         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2886         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2887         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888 
2889         d40_ops_init(base, &base->dma_both);
2890         err = dma_async_device_register(&base->dma_both);
2891 
2892         if (err) {
2893                 d40_err(base->dev,
2894                         "Failed to register logical and physical capable channels\n");
2895                 goto unregister_memcpy;
2896         }
2897         return 0;
2898  unregister_memcpy:
2899         dma_async_device_unregister(&base->dma_memcpy);
2900  unregister_slave:
2901         dma_async_device_unregister(&base->dma_slave);
2902  exit:
2903         return err;
2904 }
2905 
2906 /* Suspend resume functionality */
2907 #ifdef CONFIG_PM_SLEEP
2908 static int dma40_suspend(struct device *dev)
2909 {
2910         struct platform_device *pdev = to_platform_device(dev);
2911         struct d40_base *base = platform_get_drvdata(pdev);
2912         int ret;
2913 
2914         ret = pm_runtime_force_suspend(dev);
2915         if (ret)
2916                 return ret;
2917 
2918         if (base->lcpa_regulator)
2919                 ret = regulator_disable(base->lcpa_regulator);
2920         return ret;
2921 }
2922 
2923 static int dma40_resume(struct device *dev)
2924 {
2925         struct platform_device *pdev = to_platform_device(dev);
2926         struct d40_base *base = platform_get_drvdata(pdev);
2927         int ret = 0;
2928 
2929         if (base->lcpa_regulator) {
2930                 ret = regulator_enable(base->lcpa_regulator);
2931                 if (ret)
2932                         return ret;
2933         }
2934 
2935         return pm_runtime_force_resume(dev);
2936 }
2937 #endif
2938 
2939 #ifdef CONFIG_PM
2940 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2941                          u32 *regaddr, int num, bool save)
2942 {
2943         int i;
2944 
2945         for (i = 0; i < num; i++) {
2946                 void __iomem *addr = baseaddr + regaddr[i];
2947 
2948                 if (save)
2949                         backup[i] = readl_relaxed(addr);
2950                 else
2951                         writel_relaxed(backup[i], addr);
2952         }
2953 }
2954 
2955 static void d40_save_restore_registers(struct d40_base *base, bool save)
2956 {
2957         int i;
2958 
2959         /* Save/Restore channel specific registers */
2960         for (i = 0; i < base->num_phy_chans; i++) {
2961                 void __iomem *addr;
2962                 int idx;
2963 
2964                 if (base->phy_res[i].reserved)
2965                         continue;
2966 
2967                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2968                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2969 
2970                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2971                              d40_backup_regs_chan,
2972                              ARRAY_SIZE(d40_backup_regs_chan),
2973                              save);
2974         }
2975 
2976         /* Save/Restore global registers */
2977         dma40_backup(base->virtbase, base->reg_val_backup,
2978                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2979                      save);
2980 
2981         /* Save/Restore registers only existing on dma40 v3 and later */
2982         if (base->gen_dmac.backup)
2983                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2984                              base->gen_dmac.backup,
2985                         base->gen_dmac.backup_size,
2986                         save);
2987 }
2988 
2989 static int dma40_runtime_suspend(struct device *dev)
2990 {
2991         struct platform_device *pdev = to_platform_device(dev);
2992         struct d40_base *base = platform_get_drvdata(pdev);
2993 
2994         d40_save_restore_registers(base, true);
2995 
2996         /* Don't disable/enable clocks for v1 due to HW bugs */
2997         if (base->rev != 1)
2998                 writel_relaxed(base->gcc_pwr_off_mask,
2999                                base->virtbase + D40_DREG_GCC);
3000 
3001         return 0;
3002 }
3003 
3004 static int dma40_runtime_resume(struct device *dev)
3005 {
3006         struct platform_device *pdev = to_platform_device(dev);
3007         struct d40_base *base = platform_get_drvdata(pdev);
3008 
3009         d40_save_restore_registers(base, false);
3010 
3011         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3012                        base->virtbase + D40_DREG_GCC);
3013         return 0;
3014 }
3015 #endif
3016 
3017 static const struct dev_pm_ops dma40_pm_ops = {
3018         SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3019         SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3020                                 dma40_runtime_resume,
3021                                 NULL)
3022 };
3023 
3024 /* Initialization functions. */
3025 
3026 static int __init d40_phy_res_init(struct d40_base *base)
3027 {
3028         int i;
3029         int num_phy_chans_avail = 0;
3030         u32 val[2];
3031         int odd_even_bit = -2;
3032         int gcc = D40_DREG_GCC_ENA;
3033 
3034         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3035         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3036 
3037         for (i = 0; i < base->num_phy_chans; i++) {
3038                 base->phy_res[i].num = i;
3039                 odd_even_bit += 2 * ((i % 2) == 0);
3040                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3041                         /* Mark security only channels as occupied */
3042                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3043                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3044                         base->phy_res[i].reserved = true;
3045                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3046                                                        D40_DREG_GCC_SRC);
3047                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3048                                                        D40_DREG_GCC_DST);
3049 
3050 
3051                 } else {
3052                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3053                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3054                         base->phy_res[i].reserved = false;
3055                         num_phy_chans_avail++;
3056                 }
3057                 spin_lock_init(&base->phy_res[i].lock);
3058         }
3059 
3060         /* Mark disabled channels as occupied */
3061         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3062                 int chan = base->plat_data->disabled_channels[i];
3063 
3064                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3065                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3066                 base->phy_res[chan].reserved = true;
3067                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3068                                                D40_DREG_GCC_SRC);
3069                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3070                                                D40_DREG_GCC_DST);
3071                 num_phy_chans_avail--;
3072         }
3073 
3074         /* Mark soft_lli channels */
3075         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3076                 int chan = base->plat_data->soft_lli_chans[i];
3077 
3078                 base->phy_res[chan].use_soft_lli = true;
3079         }
3080 
3081         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3082                  num_phy_chans_avail, base->num_phy_chans);
3083 
3084         /* Verify settings extended vs standard */
3085         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3086 
3087         for (i = 0; i < base->num_phy_chans; i++) {
3088 
3089                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3090                     (val[0] & 0x3) != 1)
3091                         dev_info(base->dev,
3092                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3093                                  __func__, i, val[0] & 0x3);
3094 
3095                 val[0] = val[0] >> 2;
3096         }
3097 
3098         /*
3099          * To keep things simple, Enable all clocks initially.
3100          * The clocks will get managed later post channel allocation.
3101          * The clocks for the event lines on which reserved channels exists
3102          * are not managed here.
3103          */
3104         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3105         base->gcc_pwr_off_mask = gcc;
3106 
3107         return num_phy_chans_avail;
3108 }
3109 
3110 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3111 {
3112         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3113         struct clk *clk;
3114         void __iomem *virtbase;
3115         struct resource *res;
3116         struct d40_base *base;
3117         int num_log_chans;
3118         int num_phy_chans;
3119         int num_memcpy_chans;
3120         int clk_ret = -EINVAL;
3121         int i;
3122         u32 pid;
3123         u32 cid;
3124         u8 rev;
3125 
3126         clk = clk_get(&pdev->dev, NULL);
3127         if (IS_ERR(clk)) {
3128                 d40_err(&pdev->dev, "No matching clock found\n");
3129                 goto check_prepare_enabled;
3130         }
3131 
3132         clk_ret = clk_prepare_enable(clk);
3133         if (clk_ret) {
3134                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3135                 goto disable_unprepare;
3136         }
3137 
3138         /* Get IO for DMAC base address */
3139         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3140         if (!res)
3141                 goto disable_unprepare;
3142 
3143         if (request_mem_region(res->start, resource_size(res),
3144                                D40_NAME " I/O base") == NULL)
3145                 goto release_region;
3146 
3147         virtbase = ioremap(res->start, resource_size(res));
3148         if (!virtbase)
3149                 goto release_region;
3150 
3151         /* This is just a regular AMBA PrimeCell ID actually */
3152         for (pid = 0, i = 0; i < 4; i++)
3153                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3154                         & 255) << (i * 8);
3155         for (cid = 0, i = 0; i < 4; i++)
3156                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3157                         & 255) << (i * 8);
3158 
3159         if (cid != AMBA_CID) {
3160                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3161                 goto unmap_io;
3162         }
3163         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3164                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3165                         AMBA_MANF_BITS(pid),
3166                         AMBA_VENDOR_ST);
3167                 goto unmap_io;
3168         }
3169         /*
3170          * HW revision:
3171          * DB8500ed has revision 0
3172          * ? has revision 1
3173          * DB8500v1 has revision 2
3174          * DB8500v2 has revision 3
3175          * AP9540v1 has revision 4
3176          * DB8540v1 has revision 4
3177          */
3178         rev = AMBA_REV_BITS(pid);
3179         if (rev < 2) {
3180                 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3181                 goto unmap_io;
3182         }
3183 
3184         /* The number of physical channels on this HW */
3185         if (plat_data->num_of_phy_chans)
3186                 num_phy_chans = plat_data->num_of_phy_chans;
3187         else
3188                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3189 
3190         /* The number of channels used for memcpy */
3191         if (plat_data->num_of_memcpy_chans)
3192                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3193         else
3194                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3195 
3196         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3197 
3198         dev_info(&pdev->dev,
3199                  "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3200                  rev, &res->start, num_phy_chans, num_log_chans);
3201 
3202         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3203                        (num_phy_chans + num_log_chans + num_memcpy_chans) *
3204                        sizeof(struct d40_chan), GFP_KERNEL);
3205 
3206         if (base == NULL)
3207                 goto unmap_io;
3208 
3209         base->rev = rev;
3210         base->clk = clk;
3211         base->num_memcpy_chans = num_memcpy_chans;
3212         base->num_phy_chans = num_phy_chans;
3213         base->num_log_chans = num_log_chans;
3214         base->phy_start = res->start;
3215         base->phy_size = resource_size(res);
3216         base->virtbase = virtbase;
3217         base->plat_data = plat_data;
3218         base->dev = &pdev->dev;
3219         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3220         base->log_chans = &base->phy_chans[num_phy_chans];
3221 
3222         if (base->plat_data->num_of_phy_chans == 14) {
3223                 base->gen_dmac.backup = d40_backup_regs_v4b;
3224                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3225                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3226                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3227                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3228                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3229                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3230                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3231                 base->gen_dmac.il = il_v4b;
3232                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3233                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3234                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3235         } else {
3236                 if (base->rev >= 3) {
3237                         base->gen_dmac.backup = d40_backup_regs_v4a;
3238                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3239                 }
3240                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3241                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3242                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3243                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3244                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3245                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3246                 base->gen_dmac.il = il_v4a;
3247                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3248                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3249                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3250         }
3251 
3252         base->phy_res = kcalloc(num_phy_chans,
3253                                 sizeof(*base->phy_res),
3254                                 GFP_KERNEL);
3255         if (!base->phy_res)
3256                 goto free_base;
3257 
3258         base->lookup_phy_chans = kcalloc(num_phy_chans,
3259                                          sizeof(*base->lookup_phy_chans),
3260                                          GFP_KERNEL);
3261         if (!base->lookup_phy_chans)
3262                 goto free_phy_res;
3263 
3264         base->lookup_log_chans = kcalloc(num_log_chans,
3265                                          sizeof(*base->lookup_log_chans),
3266                                          GFP_KERNEL);
3267         if (!base->lookup_log_chans)
3268                 goto free_phy_chans;
3269 
3270         base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3271                                                   sizeof(d40_backup_regs_chan),
3272                                                   GFP_KERNEL);
3273         if (!base->reg_val_backup_chan)
3274                 goto free_log_chans;
3275 
3276         base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3277                                             * D40_LCLA_LINK_PER_EVENT_GRP,
3278                                             sizeof(*base->lcla_pool.alloc_map),
3279                                             GFP_KERNEL);
3280         if (!base->lcla_pool.alloc_map)
3281                 goto free_backup_chan;
3282 
3283         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3284                                             0, SLAB_HWCACHE_ALIGN,
3285                                             NULL);
3286         if (base->desc_slab == NULL)
3287                 goto free_map;
3288 
3289         return base;
3290  free_map:
3291         kfree(base->lcla_pool.alloc_map);
3292  free_backup_chan:
3293         kfree(base->reg_val_backup_chan);
3294  free_log_chans:
3295         kfree(base->lookup_log_chans);
3296  free_phy_chans:
3297         kfree(base->lookup_phy_chans);
3298  free_phy_res:
3299         kfree(base->phy_res);
3300  free_base:
3301         kfree(base);
3302  unmap_io:
3303         iounmap(virtbase);
3304  release_region:
3305         release_mem_region(res->start, resource_size(res));
3306  check_prepare_enabled:
3307         if (!clk_ret)
3308  disable_unprepare:
3309                 clk_disable_unprepare(clk);
3310         if (!IS_ERR(clk))
3311                 clk_put(clk);
3312         return NULL;
3313 }
3314 
3315 static void __init d40_hw_init(struct d40_base *base)
3316 {
3317 
3318         int i;
3319         u32 prmseo[2] = {0, 0};
3320         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3321         u32 pcmis = 0;
3322         u32 pcicr = 0;
3323         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3324         u32 reg_size = base->gen_dmac.init_reg_size;
3325 
3326         for (i = 0; i < reg_size; i++)
3327                 writel(dma_init_reg[i].val,
3328                        base->virtbase + dma_init_reg[i].reg);
3329 
3330         /* Configure all our dma channels to default settings */
3331         for (i = 0; i < base->num_phy_chans; i++) {
3332 
3333                 activeo[i % 2] = activeo[i % 2] << 2;
3334 
3335                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3336                     == D40_ALLOC_PHY) {
3337                         activeo[i % 2] |= 3;
3338                         continue;
3339                 }
3340 
3341                 /* Enable interrupt # */
3342                 pcmis = (pcmis << 1) | 1;
3343 
3344                 /* Clear interrupt # */
3345                 pcicr = (pcicr << 1) | 1;
3346 
3347                 /* Set channel to physical mode */
3348                 prmseo[i % 2] = prmseo[i % 2] << 2;
3349                 prmseo[i % 2] |= 1;
3350 
3351         }
3352 
3353         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3354         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3355         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3356         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3357 
3358         /* Write which interrupt to enable */
3359         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3360 
3361         /* Write which interrupt to clear */
3362         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3363 
3364         /* These are __initdata and cannot be accessed after init */
3365         base->gen_dmac.init_reg = NULL;
3366         base->gen_dmac.init_reg_size = 0;
3367 }
3368 
3369 static int __init d40_lcla_allocate(struct d40_base *base)
3370 {
3371         struct d40_lcla_pool *pool = &base->lcla_pool;
3372         unsigned long *page_list;
3373         int i, j;
3374         int ret;
3375 
3376         /*
3377          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3378          * To full fill this hardware requirement without wasting 256 kb
3379          * we allocate pages until we get an aligned one.
3380          */
3381         page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3382                                   sizeof(*page_list),
3383                                   GFP_KERNEL);
3384         if (!page_list)
3385                 return -ENOMEM;
3386 
3387         /* Calculating how many pages that are required */
3388         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3389 
3390         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3391                 page_list[i] = __get_free_pages(GFP_KERNEL,
3392                                                 base->lcla_pool.pages);
3393                 if (!page_list[i]) {
3394 
3395                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3396                                 base->lcla_pool.pages);
3397                         ret = -ENOMEM;
3398 
3399                         for (j = 0; j < i; j++)
3400                                 free_pages(page_list[j], base->lcla_pool.pages);
3401                         goto free_page_list;
3402                 }
3403 
3404                 if ((virt_to_phys((void *)page_list[i]) &
3405                      (LCLA_ALIGNMENT - 1)) == 0)
3406                         break;
3407         }
3408 
3409         for (j = 0; j < i; j++)
3410                 free_pages(page_list[j], base->lcla_pool.pages);
3411 
3412         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3413                 base->lcla_pool.base = (void *)page_list[i];
3414         } else {
3415                 /*
3416                  * After many attempts and no succees with finding the correct
3417                  * alignment, try with allocating a big buffer.
3418                  */
3419                 dev_warn(base->dev,
3420                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3421                          __func__, base->lcla_pool.pages);
3422                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3423                                                          base->num_phy_chans +
3424                                                          LCLA_ALIGNMENT,
3425                                                          GFP_KERNEL);
3426                 if (!base->lcla_pool.base_unaligned) {
3427                         ret = -ENOMEM;
3428                         goto free_page_list;
3429                 }
3430 
3431                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3432                                                  LCLA_ALIGNMENT);
3433         }
3434 
3435         pool->dma_addr = dma_map_single(base->dev, pool->base,
3436                                         SZ_1K * base->num_phy_chans,
3437                                         DMA_TO_DEVICE);
3438         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3439                 pool->dma_addr = 0;
3440                 ret = -ENOMEM;
3441                 goto free_page_list;
3442         }
3443 
3444         writel(virt_to_phys(base->lcla_pool.base),
3445                base->virtbase + D40_DREG_LCLA);
3446         ret = 0;
3447  free_page_list:
3448         kfree(page_list);
3449         return ret;
3450 }
3451 
3452 static int __init d40_of_probe(struct platform_device *pdev,
3453                                struct device_node *np)
3454 {
3455         struct stedma40_platform_data *pdata;
3456         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3457         const __be32 *list;
3458 
3459         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3460         if (!pdata)
3461                 return -ENOMEM;
3462 
3463         /* If absent this value will be obtained from h/w. */
3464         of_property_read_u32(np, "dma-channels", &num_phy);
3465         if (num_phy > 0)
3466                 pdata->num_of_phy_chans = num_phy;
3467 
3468         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3469         num_memcpy /= sizeof(*list);
3470 
3471         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3472                 d40_err(&pdev->dev,
3473                         "Invalid number of memcpy channels specified (%d)\n",
3474                         num_memcpy);
3475                 return -EINVAL;
3476         }
3477         pdata->num_of_memcpy_chans = num_memcpy;
3478 
3479         of_property_read_u32_array(np, "memcpy-channels",
3480                                    dma40_memcpy_channels,
3481                                    num_memcpy);
3482 
3483         list = of_get_property(np, "disabled-channels", &num_disabled);
3484         num_disabled /= sizeof(*list);
3485 
3486         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3487                 d40_err(&pdev->dev,
3488                         "Invalid number of disabled channels specified (%d)\n",
3489                         num_disabled);
3490                 return -EINVAL;
3491         }
3492 
3493         of_property_read_u32_array(np, "disabled-channels",
3494                                    pdata->disabled_channels,
3495                                    num_disabled);
3496         pdata->disabled_channels[num_disabled] = -1;
3497 
3498         pdev->dev.platform_data = pdata;
3499 
3500         return 0;
3501 }
3502 
3503 static int __init d40_probe(struct platform_device *pdev)
3504 {
3505         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3506         struct device_node *np = pdev->dev.of_node;
3507         int ret = -ENOENT;
3508         struct d40_base *base;
3509         struct resource *res;
3510         int num_reserved_chans;
3511         u32 val;
3512 
3513         if (!plat_data) {
3514                 if (np) {
3515                         if (d40_of_probe(pdev, np)) {
3516                                 ret = -ENOMEM;
3517                                 goto report_failure;
3518                         }
3519                 } else {
3520                         d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3521                         goto report_failure;
3522                 }
3523         }
3524 
3525         base = d40_hw_detect_init(pdev);
3526         if (!base)
3527                 goto report_failure;
3528 
3529         num_reserved_chans = d40_phy_res_init(base);
3530 
3531         platform_set_drvdata(pdev, base);
3532 
3533         spin_lock_init(&base->interrupt_lock);
3534         spin_lock_init(&base->execmd_lock);
3535 
3536         /* Get IO for logical channel parameter address */
3537         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3538         if (!res) {
3539                 ret = -ENOENT;
3540                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3541                 goto destroy_cache;
3542         }
3543         base->lcpa_size = resource_size(res);
3544         base->phy_lcpa = res->start;
3545 
3546         if (request_mem_region(res->start, resource_size(res),
3547                                D40_NAME " I/O lcpa") == NULL) {
3548                 ret = -EBUSY;
3549                 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3550                 goto destroy_cache;
3551         }
3552 
3553         /* We make use of ESRAM memory for this. */
3554         val = readl(base->virtbase + D40_DREG_LCPA);
3555         if (res->start != val && val != 0) {
3556                 dev_warn(&pdev->dev,
3557                          "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3558                          __func__, val, &res->start);
3559         } else
3560                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3561 
3562         base->lcpa_base = ioremap(res->start, resource_size(res));
3563         if (!base->lcpa_base) {
3564                 ret = -ENOMEM;
3565                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3566                 goto destroy_cache;
3567         }
3568         /* If lcla has to be located in ESRAM we don't need to allocate */
3569         if (base->plat_data->use_esram_lcla) {
3570                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3571                                                         "lcla_esram");
3572                 if (!res) {
3573                         ret = -ENOENT;
3574                         d40_err(&pdev->dev,
3575                                 "No \"lcla_esram\" memory resource\n");
3576                         goto destroy_cache;
3577                 }
3578                 base->lcla_pool.base = ioremap(res->start,
3579                                                 resource_size(res));
3580                 if (!base->lcla_pool.base) {
3581                         ret = -ENOMEM;
3582                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3583                         goto destroy_cache;
3584                 }
3585                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3586 
3587         } else {
3588                 ret = d40_lcla_allocate(base);
3589                 if (ret) {
3590                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3591                         goto destroy_cache;
3592                 }
3593         }
3594 
3595         spin_lock_init(&base->lcla_pool.lock);
3596 
3597         base->irq = platform_get_irq(pdev, 0);
3598 
3599         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3600         if (ret) {
3601                 d40_err(&pdev->dev, "No IRQ defined\n");
3602                 goto destroy_cache;
3603         }
3604 
3605         if (base->plat_data->use_esram_lcla) {
3606 
3607                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3608                 if (IS_ERR(base->lcpa_regulator)) {
3609                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3610                         ret = PTR_ERR(base->lcpa_regulator);
3611                         base->lcpa_regulator = NULL;
3612                         goto destroy_cache;
3613                 }
3614 
3615                 ret = regulator_enable(base->lcpa_regulator);
3616                 if (ret) {
3617                         d40_err(&pdev->dev,
3618                                 "Failed to enable lcpa_regulator\n");
3619                         regulator_put(base->lcpa_regulator);
3620                         base->lcpa_regulator = NULL;
3621                         goto destroy_cache;
3622                 }
3623         }
3624 
3625         writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3626 
3627         pm_runtime_irq_safe(base->dev);
3628         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3629         pm_runtime_use_autosuspend(base->dev);
3630         pm_runtime_mark_last_busy(base->dev);
3631         pm_runtime_set_active(base->dev);
3632         pm_runtime_enable(base->dev);
3633 
3634         ret = d40_dmaengine_init(base, num_reserved_chans);
3635         if (ret)
3636                 goto destroy_cache;
3637 
3638         base->dev->dma_parms = &base->dma_parms;
3639         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3640         if (ret) {
3641                 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3642                 goto destroy_cache;
3643         }
3644 
3645         d40_hw_init(base);
3646 
3647         if (np) {
3648                 ret = of_dma_controller_register(np, d40_xlate, NULL);
3649                 if (ret)
3650                         dev_err(&pdev->dev,
3651                                 "could not register of_dma_controller\n");
3652         }
3653 
3654         dev_info(base->dev, "initialized\n");
3655         return 0;
3656  destroy_cache:
3657         kmem_cache_destroy(base->desc_slab);
3658         if (base->virtbase)
3659                 iounmap(base->virtbase);
3660 
3661         if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3662                 iounmap(base->lcla_pool.base);
3663                 base->lcla_pool.base = NULL;
3664         }
3665 
3666         if (base->lcla_pool.dma_addr)
3667                 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3668                                  SZ_1K * base->num_phy_chans,
3669                                  DMA_TO_DEVICE);
3670 
3671         if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3672                 free_pages((unsigned long)base->lcla_pool.base,
3673                            base->lcla_pool.pages);
3674 
3675         kfree(base->lcla_pool.base_unaligned);
3676 
3677         if (base->phy_lcpa)
3678                 release_mem_region(base->phy_lcpa,
3679                                    base->lcpa_size);
3680         if (base->phy_start)
3681                 release_mem_region(base->phy_start,
3682                                    base->phy_size);
3683         if (base->clk) {
3684                 clk_disable_unprepare(base->clk);
3685                 clk_put(base->clk);
3686         }
3687 
3688         if (base->lcpa_regulator) {
3689                 regulator_disable(base->lcpa_regulator);
3690                 regulator_put(base->lcpa_regulator);
3691         }
3692 
3693         kfree(base->lcla_pool.alloc_map);
3694         kfree(base->lookup_log_chans);
3695         kfree(base->lookup_phy_chans);
3696         kfree(base->phy_res);
3697         kfree(base);
3698  report_failure:
3699         d40_err(&pdev->dev, "probe failed\n");
3700         return ret;
3701 }
3702 
3703 static const struct of_device_id d40_match[] = {
3704         { .compatible = "stericsson,dma40", },
3705         {}
3706 };
3707 
3708 static struct platform_driver d40_driver = {
3709         .driver = {
3710                 .name  = D40_NAME,
3711                 .pm = &dma40_pm_ops,
3712                 .of_match_table = d40_match,
3713         },
3714 };
3715 
3716 static int __init stedma40_init(void)
3717 {
3718         return platform_driver_probe(&d40_driver, d40_probe);
3719 }
3720 subsys_initcall(stedma40_init);
3721 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us