Version:  2.0.40 2.2.26 2.4.37 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0

Linux/drivers/dma/ste_dma40.c

  1 /*
  2  * Copyright (C) Ericsson AB 2007-2008
  3  * Copyright (C) ST-Ericsson SA 2008-2010
  4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6  * License terms: GNU General Public License (GPL) version 2
  7  */
  8 
  9 #include <linux/dma-mapping.h>
 10 #include <linux/kernel.h>
 11 #include <linux/slab.h>
 12 #include <linux/export.h>
 13 #include <linux/dmaengine.h>
 14 #include <linux/platform_device.h>
 15 #include <linux/clk.h>
 16 #include <linux/delay.h>
 17 #include <linux/log2.h>
 18 #include <linux/pm.h>
 19 #include <linux/pm_runtime.h>
 20 #include <linux/err.h>
 21 #include <linux/of.h>
 22 #include <linux/of_dma.h>
 23 #include <linux/amba/bus.h>
 24 #include <linux/regulator/consumer.h>
 25 #include <linux/platform_data/dma-ste-dma40.h>
 26 
 27 #include "dmaengine.h"
 28 #include "ste_dma40_ll.h"
 29 
 30 #define D40_NAME "dma40"
 31 
 32 #define D40_PHY_CHAN -1
 33 
 34 /* For masking out/in 2 bit channel positions */
 35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
 36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
 37 
 38 /* Maximum iterations taken before giving up suspending a channel */
 39 #define D40_SUSPEND_MAX_IT 500
 40 
 41 /* Milliseconds */
 42 #define DMA40_AUTOSUSPEND_DELAY 100
 43 
 44 /* Hardware requirement on LCLA alignment */
 45 #define LCLA_ALIGNMENT 0x40000
 46 
 47 /* Max number of links per event group */
 48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
 49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
 50 
 51 /* Max number of logical channels per physical channel */
 52 #define D40_MAX_LOG_CHAN_PER_PHY 32
 53 
 54 /* Attempts before giving up to trying to get pages that are aligned */
 55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
 56 
 57 /* Bit markings for allocation map */
 58 #define D40_ALLOC_FREE          BIT(31)
 59 #define D40_ALLOC_PHY           BIT(30)
 60 #define D40_ALLOC_LOG_FREE      0
 61 
 62 #define D40_MEMCPY_MAX_CHANS    8
 63 
 64 /* Reserved event lines for memcpy only. */
 65 #define DB8500_DMA_MEMCPY_EV_0  51
 66 #define DB8500_DMA_MEMCPY_EV_1  56
 67 #define DB8500_DMA_MEMCPY_EV_2  57
 68 #define DB8500_DMA_MEMCPY_EV_3  58
 69 #define DB8500_DMA_MEMCPY_EV_4  59
 70 #define DB8500_DMA_MEMCPY_EV_5  60
 71 
 72 static int dma40_memcpy_channels[] = {
 73         DB8500_DMA_MEMCPY_EV_0,
 74         DB8500_DMA_MEMCPY_EV_1,
 75         DB8500_DMA_MEMCPY_EV_2,
 76         DB8500_DMA_MEMCPY_EV_3,
 77         DB8500_DMA_MEMCPY_EV_4,
 78         DB8500_DMA_MEMCPY_EV_5,
 79 };
 80 
 81 /* Default configuration for physcial memcpy */
 82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
 83         .mode = STEDMA40_MODE_PHYSICAL,
 84         .dir = DMA_MEM_TO_MEM,
 85 
 86         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 87         .src_info.psize = STEDMA40_PSIZE_PHY_1,
 88         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 89 
 90         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 91         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
 92         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
 93 };
 94 
 95 /* Default configuration for logical memcpy */
 96 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
 97         .mode = STEDMA40_MODE_LOGICAL,
 98         .dir = DMA_MEM_TO_MEM,
 99 
100         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101         .src_info.psize = STEDMA40_PSIZE_LOG_1,
102         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103 
104         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108 
109 /**
110  * enum 40_command - The different commands and/or statuses.
111  *
112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116  */
117 enum d40_command {
118         D40_DMA_STOP            = 0,
119         D40_DMA_RUN             = 1,
120         D40_DMA_SUSPEND_REQ     = 2,
121         D40_DMA_SUSPENDED       = 3
122 };
123 
124 /*
125  * enum d40_events - The different Event Enables for the event lines.
126  *
127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130  * @D40_ROUND_EVENTLINE: Status check for event line.
131  */
132 
133 enum d40_events {
134         D40_DEACTIVATE_EVENTLINE        = 0,
135         D40_ACTIVATE_EVENTLINE          = 1,
136         D40_SUSPEND_REQ_EVENTLINE       = 2,
137         D40_ROUND_EVENTLINE             = 3
138 };
139 
140 /*
141  * These are the registers that has to be saved and later restored
142  * when the DMA hw is powered off.
143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144  */
145 static u32 d40_backup_regs[] = {
146         D40_DREG_LCPA,
147         D40_DREG_LCLA,
148         D40_DREG_PRMSE,
149         D40_DREG_PRMSO,
150         D40_DREG_PRMOE,
151         D40_DREG_PRMOO,
152 };
153 
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155 
156 /*
157  * since 9540 and 8540 has the same HW revision
158  * use v4a for 9540 or ealier
159  * use v4b for 8540 or later
160  * HW revision:
161  * DB8500ed has revision 0
162  * DB8500v1 has revision 2
163  * DB8500v2 has revision 3
164  * AP9540v1 has revision 4
165  * DB8540v1 has revision 4
166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167  */
168 static u32 d40_backup_regs_v4a[] = {
169         D40_DREG_PSEG1,
170         D40_DREG_PSEG2,
171         D40_DREG_PSEG3,
172         D40_DREG_PSEG4,
173         D40_DREG_PCEG1,
174         D40_DREG_PCEG2,
175         D40_DREG_PCEG3,
176         D40_DREG_PCEG4,
177         D40_DREG_RSEG1,
178         D40_DREG_RSEG2,
179         D40_DREG_RSEG3,
180         D40_DREG_RSEG4,
181         D40_DREG_RCEG1,
182         D40_DREG_RCEG2,
183         D40_DREG_RCEG3,
184         D40_DREG_RCEG4,
185 };
186 
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188 
189 static u32 d40_backup_regs_v4b[] = {
190         D40_DREG_CPSEG1,
191         D40_DREG_CPSEG2,
192         D40_DREG_CPSEG3,
193         D40_DREG_CPSEG4,
194         D40_DREG_CPSEG5,
195         D40_DREG_CPCEG1,
196         D40_DREG_CPCEG2,
197         D40_DREG_CPCEG3,
198         D40_DREG_CPCEG4,
199         D40_DREG_CPCEG5,
200         D40_DREG_CRSEG1,
201         D40_DREG_CRSEG2,
202         D40_DREG_CRSEG3,
203         D40_DREG_CRSEG4,
204         D40_DREG_CRSEG5,
205         D40_DREG_CRCEG1,
206         D40_DREG_CRCEG2,
207         D40_DREG_CRCEG3,
208         D40_DREG_CRCEG4,
209         D40_DREG_CRCEG5,
210 };
211 
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213 
214 static u32 d40_backup_regs_chan[] = {
215         D40_CHAN_REG_SSCFG,
216         D40_CHAN_REG_SSELT,
217         D40_CHAN_REG_SSPTR,
218         D40_CHAN_REG_SSLNK,
219         D40_CHAN_REG_SDCFG,
220         D40_CHAN_REG_SDELT,
221         D40_CHAN_REG_SDPTR,
222         D40_CHAN_REG_SDLNK,
223 };
224 
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227 
228 /**
229  * struct d40_interrupt_lookup - lookup table for interrupt handler
230  *
231  * @src: Interrupt mask register.
232  * @clr: Interrupt clear register.
233  * @is_error: true if this is an error interrupt.
234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236  */
237 struct d40_interrupt_lookup {
238         u32 src;
239         u32 clr;
240         bool is_error;
241         int offset;
242 };
243 
244 
245 static struct d40_interrupt_lookup il_v4a[] = {
246         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256 };
257 
258 static struct d40_interrupt_lookup il_v4b[] = {
259         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271 };
272 
273 /**
274  * struct d40_reg_val - simple lookup struct
275  *
276  * @reg: The register.
277  * @val: The value that belongs to the register in reg.
278  */
279 struct d40_reg_val {
280         unsigned int reg;
281         unsigned int val;
282 };
283 
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285         /* Clock every part of the DMA block from start */
286         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287 
288         /* Interrupts on all logical channels */
289         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303         /* Clock every part of the DMA block from start */
304         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305 
306         /* Interrupts on all logical channels */
307         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323 
324 /**
325  * struct d40_lli_pool - Structure for keeping LLIs in memory
326  *
327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329  * pre_alloc_lli is used.
330  * @dma_addr: DMA address, if mapped
331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333  * one buffer to one buffer.
334  */
335 struct d40_lli_pool {
336         void    *base;
337         int      size;
338         dma_addr_t      dma_addr;
339         /* Space for dst and src, plus an extra for padding */
340         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342 
343 /**
344  * struct d40_desc - A descriptor is one DMA job.
345  *
346  * @lli_phy: LLI settings for physical channel. Both src and dst=
347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348  * lli_len equals one.
349  * @lli_log: Same as above but for logical channels.
350  * @lli_pool: The pool with two entries pre-allocated.
351  * @lli_len: Number of llis of current descriptor.
352  * @lli_current: Number of transferred llis.
353  * @lcla_alloc: Number of LCLA entries allocated.
354  * @txd: DMA engine struct. Used for among other things for communication
355  * during a transfer.
356  * @node: List entry.
357  * @is_in_client_list: true if the client owns this descriptor.
358  * @cyclic: true if this is a cyclic job
359  *
360  * This descriptor is used for both logical and physical transfers.
361  */
362 struct d40_desc {
363         /* LLI physical */
364         struct d40_phy_lli_bidir         lli_phy;
365         /* LLI logical */
366         struct d40_log_lli_bidir         lli_log;
367 
368         struct d40_lli_pool              lli_pool;
369         int                              lli_len;
370         int                              lli_current;
371         int                              lcla_alloc;
372 
373         struct dma_async_tx_descriptor   txd;
374         struct list_head                 node;
375 
376         bool                             is_in_client_list;
377         bool                             cyclic;
378 };
379 
380 /**
381  * struct d40_lcla_pool - LCLA pool settings and data.
382  *
383  * @base: The virtual address of LCLA. 18 bit aligned.
384  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385  * This pointer is only there for clean-up on error.
386  * @pages: The number of pages needed for all physical channels.
387  * Only used later for clean-up on error
388  * @lock: Lock to protect the content in this struct.
389  * @alloc_map: big map over which LCLA entry is own by which job.
390  */
391 struct d40_lcla_pool {
392         void            *base;
393         dma_addr_t      dma_addr;
394         void            *base_unaligned;
395         int              pages;
396         spinlock_t       lock;
397         struct d40_desc **alloc_map;
398 };
399 
400 /**
401  * struct d40_phy_res - struct for handling eventlines mapped to physical
402  * channels.
403  *
404  * @lock: A lock protection this entity.
405  * @reserved: True if used by secure world or otherwise.
406  * @num: The physical channel number of this entity.
407  * @allocated_src: Bit mapped to show which src event line's are mapped to
408  * this physical channel. Can also be free or physically allocated.
409  * @allocated_dst: Same as for src but is dst.
410  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411  * event line number.
412  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413  */
414 struct d40_phy_res {
415         spinlock_t lock;
416         bool       reserved;
417         int        num;
418         u32        allocated_src;
419         u32        allocated_dst;
420         bool       use_soft_lli;
421 };
422 
423 struct d40_base;
424 
425 /**
426  * struct d40_chan - Struct that describes a channel.
427  *
428  * @lock: A spinlock to protect this struct.
429  * @log_num: The logical number, if any of this channel.
430  * @pending_tx: The number of pending transfers. Used between interrupt handler
431  * and tasklet.
432  * @busy: Set to true when transfer is ongoing on this channel.
433  * @phy_chan: Pointer to physical channel which this instance runs on. If this
434  * point is NULL, then the channel is not allocated.
435  * @chan: DMA engine handle.
436  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437  * transfer and call client callback.
438  * @client: Cliented owned descriptor list.
439  * @pending_queue: Submitted jobs, to be issued by issue_pending()
440  * @active: Active descriptor.
441  * @done: Completed jobs
442  * @queue: Queued jobs.
443  * @prepare_queue: Prepared jobs.
444  * @dma_cfg: The client configuration of this dma channel.
445  * @configured: whether the dma_cfg configuration is valid
446  * @base: Pointer to the device instance struct.
447  * @src_def_cfg: Default cfg register setting for src.
448  * @dst_def_cfg: Default cfg register setting for dst.
449  * @log_def: Default logical channel settings.
450  * @lcpa: Pointer to dst and src lcpa settings.
451  * @runtime_addr: runtime configured address.
452  * @runtime_direction: runtime configured direction.
453  *
454  * This struct can either "be" a logical or a physical channel.
455  */
456 struct d40_chan {
457         spinlock_t                       lock;
458         int                              log_num;
459         int                              pending_tx;
460         bool                             busy;
461         struct d40_phy_res              *phy_chan;
462         struct dma_chan                  chan;
463         struct tasklet_struct            tasklet;
464         struct list_head                 client;
465         struct list_head                 pending_queue;
466         struct list_head                 active;
467         struct list_head                 done;
468         struct list_head                 queue;
469         struct list_head                 prepare_queue;
470         struct stedma40_chan_cfg         dma_cfg;
471         bool                             configured;
472         struct d40_base                 *base;
473         /* Default register configurations */
474         u32                              src_def_cfg;
475         u32                              dst_def_cfg;
476         struct d40_def_lcsp              log_def;
477         struct d40_log_lli_full         *lcpa;
478         /* Runtime reconfiguration */
479         dma_addr_t                      runtime_addr;
480         enum dma_transfer_direction     runtime_direction;
481 };
482 
483 /**
484  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485  * controller
486  *
487  * @backup: the pointer to the registers address array for backup
488  * @backup_size: the size of the registers address array for backup
489  * @realtime_en: the realtime enable register
490  * @realtime_clear: the realtime clear register
491  * @high_prio_en: the high priority enable register
492  * @high_prio_clear: the high priority clear register
493  * @interrupt_en: the interrupt enable register
494  * @interrupt_clear: the interrupt clear register
495  * @il: the pointer to struct d40_interrupt_lookup
496  * @il_size: the size of d40_interrupt_lookup array
497  * @init_reg: the pointer to the struct d40_reg_val
498  * @init_reg_size: the size of d40_reg_val array
499  */
500 struct d40_gen_dmac {
501         u32                             *backup;
502         u32                              backup_size;
503         u32                              realtime_en;
504         u32                              realtime_clear;
505         u32                              high_prio_en;
506         u32                              high_prio_clear;
507         u32                              interrupt_en;
508         u32                              interrupt_clear;
509         struct d40_interrupt_lookup     *il;
510         u32                              il_size;
511         struct d40_reg_val              *init_reg;
512         u32                              init_reg_size;
513 };
514 
515 /**
516  * struct d40_base - The big global struct, one for each probe'd instance.
517  *
518  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519  * @execmd_lock: Lock for execute command usage since several channels share
520  * the same physical register.
521  * @dev: The device structure.
522  * @virtbase: The virtual base address of the DMA's register.
523  * @rev: silicon revision detected.
524  * @clk: Pointer to the DMA clock structure.
525  * @phy_start: Physical memory start of the DMA registers.
526  * @phy_size: Size of the DMA register map.
527  * @irq: The IRQ number.
528  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529  * transfers).
530  * @num_phy_chans: The number of physical channels. Read from HW. This
531  * is the number of available channels for this driver, not counting "Secure
532  * mode" allocated physical channels.
533  * @num_log_chans: The number of logical channels. Calculated from
534  * num_phy_chans.
535  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536  * @dma_slave: dma_device channels that can do only do slave transfers.
537  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538  * @phy_chans: Room for all possible physical channels in system.
539  * @log_chans: Room for all possible logical channels in system.
540  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541  * to log_chans entries.
542  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543  * to phy_chans entries.
544  * @plat_data: Pointer to provided platform_data which is the driver
545  * configuration.
546  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547  * @phy_res: Vector containing all physical channels.
548  * @lcla_pool: lcla pool settings and data.
549  * @lcpa_base: The virtual mapped address of LCPA.
550  * @phy_lcpa: The physical address of the LCPA.
551  * @lcpa_size: The size of the LCPA area.
552  * @desc_slab: cache for descriptors.
553  * @reg_val_backup: Here the values of some hardware registers are stored
554  * before the DMA is powered off. They are restored when the power is back on.
555  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556  * later
557  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559  * @gen_dmac: the struct for generic registers values to represent u8500/8540
560  * DMA controller
561  */
562 struct d40_base {
563         spinlock_t                       interrupt_lock;
564         spinlock_t                       execmd_lock;
565         struct device                    *dev;
566         void __iomem                     *virtbase;
567         u8                                rev:4;
568         struct clk                       *clk;
569         phys_addr_t                       phy_start;
570         resource_size_t                   phy_size;
571         int                               irq;
572         int                               num_memcpy_chans;
573         int                               num_phy_chans;
574         int                               num_log_chans;
575         struct device_dma_parameters      dma_parms;
576         struct dma_device                 dma_both;
577         struct dma_device                 dma_slave;
578         struct dma_device                 dma_memcpy;
579         struct d40_chan                  *phy_chans;
580         struct d40_chan                  *log_chans;
581         struct d40_chan                 **lookup_log_chans;
582         struct d40_chan                 **lookup_phy_chans;
583         struct stedma40_platform_data    *plat_data;
584         struct regulator                 *lcpa_regulator;
585         /* Physical half channels */
586         struct d40_phy_res               *phy_res;
587         struct d40_lcla_pool              lcla_pool;
588         void                             *lcpa_base;
589         dma_addr_t                        phy_lcpa;
590         resource_size_t                   lcpa_size;
591         struct kmem_cache                *desc_slab;
592         u32                               reg_val_backup[BACKUP_REGS_SZ];
593         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594         u32                              *reg_val_backup_chan;
595         u16                               gcc_pwr_off_mask;
596         struct d40_gen_dmac               gen_dmac;
597 };
598 
599 static struct device *chan2dev(struct d40_chan *d40c)
600 {
601         return &d40c->chan.dev->device;
602 }
603 
604 static bool chan_is_physical(struct d40_chan *chan)
605 {
606         return chan->log_num == D40_PHY_CHAN;
607 }
608 
609 static bool chan_is_logical(struct d40_chan *chan)
610 {
611         return !chan_is_physical(chan);
612 }
613 
614 static void __iomem *chan_base(struct d40_chan *chan)
615 {
616         return chan->base->virtbase + D40_DREG_PCBASE +
617                chan->phy_chan->num * D40_DREG_PCDELTA;
618 }
619 
620 #define d40_err(dev, format, arg...)            \
621         dev_err(dev, "[%s] " format, __func__, ## arg)
622 
623 #define chan_err(d40c, format, arg...)          \
624         d40_err(chan2dev(d40c), format, ## arg)
625 
626 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627                               int lli_len)
628 {
629         bool is_log = chan_is_logical(d40c);
630         u32 align;
631         void *base;
632 
633         if (is_log)
634                 align = sizeof(struct d40_log_lli);
635         else
636                 align = sizeof(struct d40_phy_lli);
637 
638         if (lli_len == 1) {
639                 base = d40d->lli_pool.pre_alloc_lli;
640                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
641                 d40d->lli_pool.base = NULL;
642         } else {
643                 d40d->lli_pool.size = lli_len * 2 * align;
644 
645                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
646                 d40d->lli_pool.base = base;
647 
648                 if (d40d->lli_pool.base == NULL)
649                         return -ENOMEM;
650         }
651 
652         if (is_log) {
653                 d40d->lli_log.src = PTR_ALIGN(base, align);
654                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655 
656                 d40d->lli_pool.dma_addr = 0;
657         } else {
658                 d40d->lli_phy.src = PTR_ALIGN(base, align);
659                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660 
661                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
662                                                          d40d->lli_phy.src,
663                                                          d40d->lli_pool.size,
664                                                          DMA_TO_DEVICE);
665 
666                 if (dma_mapping_error(d40c->base->dev,
667                                       d40d->lli_pool.dma_addr)) {
668                         kfree(d40d->lli_pool.base);
669                         d40d->lli_pool.base = NULL;
670                         d40d->lli_pool.dma_addr = 0;
671                         return -ENOMEM;
672                 }
673         }
674 
675         return 0;
676 }
677 
678 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679 {
680         if (d40d->lli_pool.dma_addr)
681                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
682                                  d40d->lli_pool.size, DMA_TO_DEVICE);
683 
684         kfree(d40d->lli_pool.base);
685         d40d->lli_pool.base = NULL;
686         d40d->lli_pool.size = 0;
687         d40d->lli_log.src = NULL;
688         d40d->lli_log.dst = NULL;
689         d40d->lli_phy.src = NULL;
690         d40d->lli_phy.dst = NULL;
691 }
692 
693 static int d40_lcla_alloc_one(struct d40_chan *d40c,
694                               struct d40_desc *d40d)
695 {
696         unsigned long flags;
697         int i;
698         int ret = -EINVAL;
699 
700         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
701 
702         /*
703          * Allocate both src and dst at the same time, therefore the half
704          * start on 1 since 0 can't be used since zero is used as end marker.
705          */
706         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
708 
709                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
710                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
711                         d40d->lcla_alloc++;
712                         ret = i;
713                         break;
714                 }
715         }
716 
717         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
718 
719         return ret;
720 }
721 
722 static int d40_lcla_free_all(struct d40_chan *d40c,
723                              struct d40_desc *d40d)
724 {
725         unsigned long flags;
726         int i;
727         int ret = -EINVAL;
728 
729         if (chan_is_physical(d40c))
730                 return 0;
731 
732         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
733 
734         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
736 
737                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
738                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
739                         d40d->lcla_alloc--;
740                         if (d40d->lcla_alloc == 0) {
741                                 ret = 0;
742                                 break;
743                         }
744                 }
745         }
746 
747         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
748 
749         return ret;
750 
751 }
752 
753 static void d40_desc_remove(struct d40_desc *d40d)
754 {
755         list_del(&d40d->node);
756 }
757 
758 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
759 {
760         struct d40_desc *desc = NULL;
761 
762         if (!list_empty(&d40c->client)) {
763                 struct d40_desc *d;
764                 struct d40_desc *_d;
765 
766                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
767                         if (async_tx_test_ack(&d->txd)) {
768                                 d40_desc_remove(d);
769                                 desc = d;
770                                 memset(desc, 0, sizeof(*desc));
771                                 break;
772                         }
773                 }
774         }
775 
776         if (!desc)
777                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
778 
779         if (desc)
780                 INIT_LIST_HEAD(&desc->node);
781 
782         return desc;
783 }
784 
785 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
786 {
787 
788         d40_pool_lli_free(d40c, d40d);
789         d40_lcla_free_all(d40c, d40d);
790         kmem_cache_free(d40c->base->desc_slab, d40d);
791 }
792 
793 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
794 {
795         list_add_tail(&desc->node, &d40c->active);
796 }
797 
798 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
799 {
800         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
801         struct d40_phy_lli *lli_src = desc->lli_phy.src;
802         void __iomem *base = chan_base(chan);
803 
804         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
805         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
806         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
807         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
808 
809         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
810         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
811         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
812         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
813 }
814 
815 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
816 {
817         list_add_tail(&desc->node, &d40c->done);
818 }
819 
820 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821 {
822         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
823         struct d40_log_lli_bidir *lli = &desc->lli_log;
824         int lli_current = desc->lli_current;
825         int lli_len = desc->lli_len;
826         bool cyclic = desc->cyclic;
827         int curr_lcla = -EINVAL;
828         int first_lcla = 0;
829         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
830         bool linkback;
831 
832         /*
833          * We may have partially running cyclic transfers, in case we did't get
834          * enough LCLA entries.
835          */
836         linkback = cyclic && lli_current == 0;
837 
838         /*
839          * For linkback, we need one LCLA even with only one link, because we
840          * can't link back to the one in LCPA space
841          */
842         if (linkback || (lli_len - lli_current > 1)) {
843                 /*
844                  * If the channel is expected to use only soft_lli don't
845                  * allocate a lcla. This is to avoid a HW issue that exists
846                  * in some controller during a peripheral to memory transfer
847                  * that uses linked lists.
848                  */
849                 if (!(chan->phy_chan->use_soft_lli &&
850                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851                         curr_lcla = d40_lcla_alloc_one(chan, desc);
852 
853                 first_lcla = curr_lcla;
854         }
855 
856         /*
857          * For linkback, we normally load the LCPA in the loop since we need to
858          * link it to the second LCLA and not the first.  However, if we
859          * couldn't even get a first LCLA, then we have to run in LCPA and
860          * reload manually.
861          */
862         if (!linkback || curr_lcla == -EINVAL) {
863                 unsigned int flags = 0;
864 
865                 if (curr_lcla == -EINVAL)
866                         flags |= LLI_TERM_INT;
867 
868                 d40_log_lli_lcpa_write(chan->lcpa,
869                                        &lli->dst[lli_current],
870                                        &lli->src[lli_current],
871                                        curr_lcla,
872                                        flags);
873                 lli_current++;
874         }
875 
876         if (curr_lcla < 0)
877                 goto out;
878 
879         for (; lli_current < lli_len; lli_current++) {
880                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
881                                            8 * curr_lcla * 2;
882                 struct d40_log_lli *lcla = pool->base + lcla_offset;
883                 unsigned int flags = 0;
884                 int next_lcla;
885 
886                 if (lli_current + 1 < lli_len)
887                         next_lcla = d40_lcla_alloc_one(chan, desc);
888                 else
889                         next_lcla = linkback ? first_lcla : -EINVAL;
890 
891                 if (cyclic || next_lcla == -EINVAL)
892                         flags |= LLI_TERM_INT;
893 
894                 if (linkback && curr_lcla == first_lcla) {
895                         /* First link goes in both LCPA and LCLA */
896                         d40_log_lli_lcpa_write(chan->lcpa,
897                                                &lli->dst[lli_current],
898                                                &lli->src[lli_current],
899                                                next_lcla, flags);
900                 }
901 
902                 /*
903                  * One unused LCLA in the cyclic case if the very first
904                  * next_lcla fails...
905                  */
906                 d40_log_lli_lcla_write(lcla,
907                                        &lli->dst[lli_current],
908                                        &lli->src[lli_current],
909                                        next_lcla, flags);
910 
911                 /*
912                  * Cache maintenance is not needed if lcla is
913                  * mapped in esram
914                  */
915                 if (!use_esram_lcla) {
916                         dma_sync_single_range_for_device(chan->base->dev,
917                                                 pool->dma_addr, lcla_offset,
918                                                 2 * sizeof(struct d40_log_lli),
919                                                 DMA_TO_DEVICE);
920                 }
921                 curr_lcla = next_lcla;
922 
923                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924                         lli_current++;
925                         break;
926                 }
927         }
928 
929 out:
930         desc->lli_current = lli_current;
931 }
932 
933 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
934 {
935         if (chan_is_physical(d40c)) {
936                 d40_phy_lli_load(d40c, d40d);
937                 d40d->lli_current = d40d->lli_len;
938         } else
939                 d40_log_lli_to_lcxa(d40c, d40d);
940 }
941 
942 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
943 {
944         struct d40_desc *d;
945 
946         if (list_empty(&d40c->active))
947                 return NULL;
948 
949         d = list_first_entry(&d40c->active,
950                              struct d40_desc,
951                              node);
952         return d;
953 }
954 
955 /* remove desc from current queue and add it to the pending_queue */
956 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
957 {
958         d40_desc_remove(desc);
959         desc->is_in_client_list = false;
960         list_add_tail(&desc->node, &d40c->pending_queue);
961 }
962 
963 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
964 {
965         struct d40_desc *d;
966 
967         if (list_empty(&d40c->pending_queue))
968                 return NULL;
969 
970         d = list_first_entry(&d40c->pending_queue,
971                              struct d40_desc,
972                              node);
973         return d;
974 }
975 
976 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
977 {
978         struct d40_desc *d;
979 
980         if (list_empty(&d40c->queue))
981                 return NULL;
982 
983         d = list_first_entry(&d40c->queue,
984                              struct d40_desc,
985                              node);
986         return d;
987 }
988 
989 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
990 {
991         if (list_empty(&d40c->done))
992                 return NULL;
993 
994         return list_first_entry(&d40c->done, struct d40_desc, node);
995 }
996 
997 static int d40_psize_2_burst_size(bool is_log, int psize)
998 {
999         if (is_log) {
1000                 if (psize == STEDMA40_PSIZE_LOG_1)
1001                         return 1;
1002         } else {
1003                 if (psize == STEDMA40_PSIZE_PHY_1)
1004                         return 1;
1005         }
1006 
1007         return 2 << psize;
1008 }
1009 
1010 /*
1011  * The dma only supports transmitting packages up to
1012  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1013  *
1014  * Calculate the total number of dma elements required to send the entire sg list.
1015  */
1016 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1017 {
1018         int dmalen;
1019         u32 max_w = max(data_width1, data_width2);
1020         u32 min_w = min(data_width1, data_width2);
1021         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1022 
1023         if (seg_max > STEDMA40_MAX_SEG_SIZE)
1024                 seg_max -= max_w;
1025 
1026         if (!IS_ALIGNED(size, max_w))
1027                 return -EINVAL;
1028 
1029         if (size <= seg_max)
1030                 dmalen = 1;
1031         else {
1032                 dmalen = size / seg_max;
1033                 if (dmalen * seg_max < size)
1034                         dmalen++;
1035         }
1036         return dmalen;
1037 }
1038 
1039 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1040                            u32 data_width1, u32 data_width2)
1041 {
1042         struct scatterlist *sg;
1043         int i;
1044         int len = 0;
1045         int ret;
1046 
1047         for_each_sg(sgl, sg, sg_len, i) {
1048                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1049                                         data_width1, data_width2);
1050                 if (ret < 0)
1051                         return ret;
1052                 len += ret;
1053         }
1054         return len;
1055 }
1056 
1057 static int __d40_execute_command_phy(struct d40_chan *d40c,
1058                                      enum d40_command command)
1059 {
1060         u32 status;
1061         int i;
1062         void __iomem *active_reg;
1063         int ret = 0;
1064         unsigned long flags;
1065         u32 wmask;
1066 
1067         if (command == D40_DMA_STOP) {
1068                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1069                 if (ret)
1070                         return ret;
1071         }
1072 
1073         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1074 
1075         if (d40c->phy_chan->num % 2 == 0)
1076                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1077         else
1078                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1079 
1080         if (command == D40_DMA_SUSPEND_REQ) {
1081                 status = (readl(active_reg) &
1082                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1083                         D40_CHAN_POS(d40c->phy_chan->num);
1084 
1085                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1086                         goto done;
1087         }
1088 
1089         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1090         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1091                active_reg);
1092 
1093         if (command == D40_DMA_SUSPEND_REQ) {
1094 
1095                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1096                         status = (readl(active_reg) &
1097                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1098                                 D40_CHAN_POS(d40c->phy_chan->num);
1099 
1100                         cpu_relax();
1101                         /*
1102                          * Reduce the number of bus accesses while
1103                          * waiting for the DMA to suspend.
1104                          */
1105                         udelay(3);
1106 
1107                         if (status == D40_DMA_STOP ||
1108                             status == D40_DMA_SUSPENDED)
1109                                 break;
1110                 }
1111 
1112                 if (i == D40_SUSPEND_MAX_IT) {
1113                         chan_err(d40c,
1114                                 "unable to suspend the chl %d (log: %d) status %x\n",
1115                                 d40c->phy_chan->num, d40c->log_num,
1116                                 status);
1117                         dump_stack();
1118                         ret = -EBUSY;
1119                 }
1120 
1121         }
1122 done:
1123         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1124         return ret;
1125 }
1126 
1127 static void d40_term_all(struct d40_chan *d40c)
1128 {
1129         struct d40_desc *d40d;
1130         struct d40_desc *_d;
1131 
1132         /* Release completed descriptors */
1133         while ((d40d = d40_first_done(d40c))) {
1134                 d40_desc_remove(d40d);
1135                 d40_desc_free(d40c, d40d);
1136         }
1137 
1138         /* Release active descriptors */
1139         while ((d40d = d40_first_active_get(d40c))) {
1140                 d40_desc_remove(d40d);
1141                 d40_desc_free(d40c, d40d);
1142         }
1143 
1144         /* Release queued descriptors waiting for transfer */
1145         while ((d40d = d40_first_queued(d40c))) {
1146                 d40_desc_remove(d40d);
1147                 d40_desc_free(d40c, d40d);
1148         }
1149 
1150         /* Release pending descriptors */
1151         while ((d40d = d40_first_pending(d40c))) {
1152                 d40_desc_remove(d40d);
1153                 d40_desc_free(d40c, d40d);
1154         }
1155 
1156         /* Release client owned descriptors */
1157         if (!list_empty(&d40c->client))
1158                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1159                         d40_desc_remove(d40d);
1160                         d40_desc_free(d40c, d40d);
1161                 }
1162 
1163         /* Release descriptors in prepare queue */
1164         if (!list_empty(&d40c->prepare_queue))
1165                 list_for_each_entry_safe(d40d, _d,
1166                                          &d40c->prepare_queue, node) {
1167                         d40_desc_remove(d40d);
1168                         d40_desc_free(d40c, d40d);
1169                 }
1170 
1171         d40c->pending_tx = 0;
1172 }
1173 
1174 static void __d40_config_set_event(struct d40_chan *d40c,
1175                                    enum d40_events event_type, u32 event,
1176                                    int reg)
1177 {
1178         void __iomem *addr = chan_base(d40c) + reg;
1179         int tries;
1180         u32 status;
1181 
1182         switch (event_type) {
1183 
1184         case D40_DEACTIVATE_EVENTLINE:
1185 
1186                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1187                        | ~D40_EVENTLINE_MASK(event), addr);
1188                 break;
1189 
1190         case D40_SUSPEND_REQ_EVENTLINE:
1191                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1192                           D40_EVENTLINE_POS(event);
1193 
1194                 if (status == D40_DEACTIVATE_EVENTLINE ||
1195                     status == D40_SUSPEND_REQ_EVENTLINE)
1196                         break;
1197 
1198                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1199                        | ~D40_EVENTLINE_MASK(event), addr);
1200 
1201                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1202 
1203                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1204                                   D40_EVENTLINE_POS(event);
1205 
1206                         cpu_relax();
1207                         /*
1208                          * Reduce the number of bus accesses while
1209                          * waiting for the DMA to suspend.
1210                          */
1211                         udelay(3);
1212 
1213                         if (status == D40_DEACTIVATE_EVENTLINE)
1214                                 break;
1215                 }
1216 
1217                 if (tries == D40_SUSPEND_MAX_IT) {
1218                         chan_err(d40c,
1219                                 "unable to stop the event_line chl %d (log: %d)"
1220                                 "status %x\n", d40c->phy_chan->num,
1221                                  d40c->log_num, status);
1222                 }
1223                 break;
1224 
1225         case D40_ACTIVATE_EVENTLINE:
1226         /*
1227          * The hardware sometimes doesn't register the enable when src and dst
1228          * event lines are active on the same logical channel.  Retry to ensure
1229          * it does.  Usually only one retry is sufficient.
1230          */
1231                 tries = 100;
1232                 while (--tries) {
1233                         writel((D40_ACTIVATE_EVENTLINE <<
1234                                 D40_EVENTLINE_POS(event)) |
1235                                 ~D40_EVENTLINE_MASK(event), addr);
1236 
1237                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1238                                 break;
1239                 }
1240 
1241                 if (tries != 99)
1242                         dev_dbg(chan2dev(d40c),
1243                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1244                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1245                                 100 - tries);
1246 
1247                 WARN_ON(!tries);
1248                 break;
1249 
1250         case D40_ROUND_EVENTLINE:
1251                 BUG();
1252                 break;
1253 
1254         }
1255 }
1256 
1257 static void d40_config_set_event(struct d40_chan *d40c,
1258                                  enum d40_events event_type)
1259 {
1260         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1261 
1262         /* Enable event line connected to device (or memcpy) */
1263         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1264             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1265                 __d40_config_set_event(d40c, event_type, event,
1266                                        D40_CHAN_REG_SSLNK);
1267 
1268         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1269                 __d40_config_set_event(d40c, event_type, event,
1270                                        D40_CHAN_REG_SDLNK);
1271 }
1272 
1273 static u32 d40_chan_has_events(struct d40_chan *d40c)
1274 {
1275         void __iomem *chanbase = chan_base(d40c);
1276         u32 val;
1277 
1278         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1279         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1280 
1281         return val;
1282 }
1283 
1284 static int
1285 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1286 {
1287         unsigned long flags;
1288         int ret = 0;
1289         u32 active_status;
1290         void __iomem *active_reg;
1291 
1292         if (d40c->phy_chan->num % 2 == 0)
1293                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1294         else
1295                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1296 
1297 
1298         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1299 
1300         switch (command) {
1301         case D40_DMA_STOP:
1302         case D40_DMA_SUSPEND_REQ:
1303 
1304                 active_status = (readl(active_reg) &
1305                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1306                                  D40_CHAN_POS(d40c->phy_chan->num);
1307 
1308                 if (active_status == D40_DMA_RUN)
1309                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1310                 else
1311                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1312 
1313                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1314                         ret = __d40_execute_command_phy(d40c, command);
1315 
1316                 break;
1317 
1318         case D40_DMA_RUN:
1319 
1320                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1321                 ret = __d40_execute_command_phy(d40c, command);
1322                 break;
1323 
1324         case D40_DMA_SUSPENDED:
1325                 BUG();
1326                 break;
1327         }
1328 
1329         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1330         return ret;
1331 }
1332 
1333 static int d40_channel_execute_command(struct d40_chan *d40c,
1334                                        enum d40_command command)
1335 {
1336         if (chan_is_logical(d40c))
1337                 return __d40_execute_command_log(d40c, command);
1338         else
1339                 return __d40_execute_command_phy(d40c, command);
1340 }
1341 
1342 static u32 d40_get_prmo(struct d40_chan *d40c)
1343 {
1344         static const unsigned int phy_map[] = {
1345                 [STEDMA40_PCHAN_BASIC_MODE]
1346                         = D40_DREG_PRMO_PCHAN_BASIC,
1347                 [STEDMA40_PCHAN_MODULO_MODE]
1348                         = D40_DREG_PRMO_PCHAN_MODULO,
1349                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1350                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1351         };
1352         static const unsigned int log_map[] = {
1353                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1354                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1355                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1356                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1357                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1358                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1359         };
1360 
1361         if (chan_is_physical(d40c))
1362                 return phy_map[d40c->dma_cfg.mode_opt];
1363         else
1364                 return log_map[d40c->dma_cfg.mode_opt];
1365 }
1366 
1367 static void d40_config_write(struct d40_chan *d40c)
1368 {
1369         u32 addr_base;
1370         u32 var;
1371 
1372         /* Odd addresses are even addresses + 4 */
1373         addr_base = (d40c->phy_chan->num % 2) * 4;
1374         /* Setup channel mode to logical or physical */
1375         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1376                 D40_CHAN_POS(d40c->phy_chan->num);
1377         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1378 
1379         /* Setup operational mode option register */
1380         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1381 
1382         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1383 
1384         if (chan_is_logical(d40c)) {
1385                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1386                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1387                 void __iomem *chanbase = chan_base(d40c);
1388 
1389                 /* Set default config for CFG reg */
1390                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1391                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1392 
1393                 /* Set LIDX for lcla */
1394                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1395                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1396 
1397                 /* Clear LNK which will be used by d40_chan_has_events() */
1398                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1399                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1400         }
1401 }
1402 
1403 static u32 d40_residue(struct d40_chan *d40c)
1404 {
1405         u32 num_elt;
1406 
1407         if (chan_is_logical(d40c))
1408                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1409                         >> D40_MEM_LCSP2_ECNT_POS;
1410         else {
1411                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1412                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1413                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1414         }
1415 
1416         return num_elt * d40c->dma_cfg.dst_info.data_width;
1417 }
1418 
1419 static bool d40_tx_is_linked(struct d40_chan *d40c)
1420 {
1421         bool is_link;
1422 
1423         if (chan_is_logical(d40c))
1424                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1425         else
1426                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1427                           & D40_SREG_LNK_PHYS_LNK_MASK;
1428 
1429         return is_link;
1430 }
1431 
1432 static int d40_pause(struct dma_chan *chan)
1433 {
1434         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1435         int res = 0;
1436         unsigned long flags;
1437 
1438         if (d40c->phy_chan == NULL) {
1439                 chan_err(d40c, "Channel is not allocated!\n");
1440                 return -EINVAL;
1441         }
1442 
1443         if (!d40c->busy)
1444                 return 0;
1445 
1446         spin_lock_irqsave(&d40c->lock, flags);
1447         pm_runtime_get_sync(d40c->base->dev);
1448 
1449         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1450 
1451         pm_runtime_mark_last_busy(d40c->base->dev);
1452         pm_runtime_put_autosuspend(d40c->base->dev);
1453         spin_unlock_irqrestore(&d40c->lock, flags);
1454         return res;
1455 }
1456 
1457 static int d40_resume(struct dma_chan *chan)
1458 {
1459         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1460         int res = 0;
1461         unsigned long flags;
1462 
1463         if (d40c->phy_chan == NULL) {
1464                 chan_err(d40c, "Channel is not allocated!\n");
1465                 return -EINVAL;
1466         }
1467 
1468         if (!d40c->busy)
1469                 return 0;
1470 
1471         spin_lock_irqsave(&d40c->lock, flags);
1472         pm_runtime_get_sync(d40c->base->dev);
1473 
1474         /* If bytes left to transfer or linked tx resume job */
1475         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1476                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1477 
1478         pm_runtime_mark_last_busy(d40c->base->dev);
1479         pm_runtime_put_autosuspend(d40c->base->dev);
1480         spin_unlock_irqrestore(&d40c->lock, flags);
1481         return res;
1482 }
1483 
1484 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1485 {
1486         struct d40_chan *d40c = container_of(tx->chan,
1487                                              struct d40_chan,
1488                                              chan);
1489         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1490         unsigned long flags;
1491         dma_cookie_t cookie;
1492 
1493         spin_lock_irqsave(&d40c->lock, flags);
1494         cookie = dma_cookie_assign(tx);
1495         d40_desc_queue(d40c, d40d);
1496         spin_unlock_irqrestore(&d40c->lock, flags);
1497 
1498         return cookie;
1499 }
1500 
1501 static int d40_start(struct d40_chan *d40c)
1502 {
1503         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1504 }
1505 
1506 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1507 {
1508         struct d40_desc *d40d;
1509         int err;
1510 
1511         /* Start queued jobs, if any */
1512         d40d = d40_first_queued(d40c);
1513 
1514         if (d40d != NULL) {
1515                 if (!d40c->busy) {
1516                         d40c->busy = true;
1517                         pm_runtime_get_sync(d40c->base->dev);
1518                 }
1519 
1520                 /* Remove from queue */
1521                 d40_desc_remove(d40d);
1522 
1523                 /* Add to active queue */
1524                 d40_desc_submit(d40c, d40d);
1525 
1526                 /* Initiate DMA job */
1527                 d40_desc_load(d40c, d40d);
1528 
1529                 /* Start dma job */
1530                 err = d40_start(d40c);
1531 
1532                 if (err)
1533                         return NULL;
1534         }
1535 
1536         return d40d;
1537 }
1538 
1539 /* called from interrupt context */
1540 static void dma_tc_handle(struct d40_chan *d40c)
1541 {
1542         struct d40_desc *d40d;
1543 
1544         /* Get first active entry from list */
1545         d40d = d40_first_active_get(d40c);
1546 
1547         if (d40d == NULL)
1548                 return;
1549 
1550         if (d40d->cyclic) {
1551                 /*
1552                  * If this was a paritially loaded list, we need to reloaded
1553                  * it, and only when the list is completed.  We need to check
1554                  * for done because the interrupt will hit for every link, and
1555                  * not just the last one.
1556                  */
1557                 if (d40d->lli_current < d40d->lli_len
1558                     && !d40_tx_is_linked(d40c)
1559                     && !d40_residue(d40c)) {
1560                         d40_lcla_free_all(d40c, d40d);
1561                         d40_desc_load(d40c, d40d);
1562                         (void) d40_start(d40c);
1563 
1564                         if (d40d->lli_current == d40d->lli_len)
1565                                 d40d->lli_current = 0;
1566                 }
1567         } else {
1568                 d40_lcla_free_all(d40c, d40d);
1569 
1570                 if (d40d->lli_current < d40d->lli_len) {
1571                         d40_desc_load(d40c, d40d);
1572                         /* Start dma job */
1573                         (void) d40_start(d40c);
1574                         return;
1575                 }
1576 
1577                 if (d40_queue_start(d40c) == NULL) {
1578                         d40c->busy = false;
1579 
1580                         pm_runtime_mark_last_busy(d40c->base->dev);
1581                         pm_runtime_put_autosuspend(d40c->base->dev);
1582                 }
1583 
1584                 d40_desc_remove(d40d);
1585                 d40_desc_done(d40c, d40d);
1586         }
1587 
1588         d40c->pending_tx++;
1589         tasklet_schedule(&d40c->tasklet);
1590 
1591 }
1592 
1593 static void dma_tasklet(unsigned long data)
1594 {
1595         struct d40_chan *d40c = (struct d40_chan *) data;
1596         struct d40_desc *d40d;
1597         unsigned long flags;
1598         bool callback_active;
1599         dma_async_tx_callback callback;
1600         void *callback_param;
1601 
1602         spin_lock_irqsave(&d40c->lock, flags);
1603 
1604         /* Get first entry from the done list */
1605         d40d = d40_first_done(d40c);
1606         if (d40d == NULL) {
1607                 /* Check if we have reached here for cyclic job */
1608                 d40d = d40_first_active_get(d40c);
1609                 if (d40d == NULL || !d40d->cyclic)
1610                         goto err;
1611         }
1612 
1613         if (!d40d->cyclic)
1614                 dma_cookie_complete(&d40d->txd);
1615 
1616         /*
1617          * If terminating a channel pending_tx is set to zero.
1618          * This prevents any finished active jobs to return to the client.
1619          */
1620         if (d40c->pending_tx == 0) {
1621                 spin_unlock_irqrestore(&d40c->lock, flags);
1622                 return;
1623         }
1624 
1625         /* Callback to client */
1626         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1627         callback = d40d->txd.callback;
1628         callback_param = d40d->txd.callback_param;
1629 
1630         if (!d40d->cyclic) {
1631                 if (async_tx_test_ack(&d40d->txd)) {
1632                         d40_desc_remove(d40d);
1633                         d40_desc_free(d40c, d40d);
1634                 } else if (!d40d->is_in_client_list) {
1635                         d40_desc_remove(d40d);
1636                         d40_lcla_free_all(d40c, d40d);
1637                         list_add_tail(&d40d->node, &d40c->client);
1638                         d40d->is_in_client_list = true;
1639                 }
1640         }
1641 
1642         d40c->pending_tx--;
1643 
1644         if (d40c->pending_tx)
1645                 tasklet_schedule(&d40c->tasklet);
1646 
1647         spin_unlock_irqrestore(&d40c->lock, flags);
1648 
1649         if (callback_active && callback)
1650                 callback(callback_param);
1651 
1652         return;
1653 
1654 err:
1655         /* Rescue manouver if receiving double interrupts */
1656         if (d40c->pending_tx > 0)
1657                 d40c->pending_tx--;
1658         spin_unlock_irqrestore(&d40c->lock, flags);
1659 }
1660 
1661 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1662 {
1663         int i;
1664         u32 idx;
1665         u32 row;
1666         long chan = -1;
1667         struct d40_chan *d40c;
1668         unsigned long flags;
1669         struct d40_base *base = data;
1670         u32 regs[base->gen_dmac.il_size];
1671         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1672         u32 il_size = base->gen_dmac.il_size;
1673 
1674         spin_lock_irqsave(&base->interrupt_lock, flags);
1675 
1676         /* Read interrupt status of both logical and physical channels */
1677         for (i = 0; i < il_size; i++)
1678                 regs[i] = readl(base->virtbase + il[i].src);
1679 
1680         for (;;) {
1681 
1682                 chan = find_next_bit((unsigned long *)regs,
1683                                      BITS_PER_LONG * il_size, chan + 1);
1684 
1685                 /* No more set bits found? */
1686                 if (chan == BITS_PER_LONG * il_size)
1687                         break;
1688 
1689                 row = chan / BITS_PER_LONG;
1690                 idx = chan & (BITS_PER_LONG - 1);
1691 
1692                 if (il[row].offset == D40_PHY_CHAN)
1693                         d40c = base->lookup_phy_chans[idx];
1694                 else
1695                         d40c = base->lookup_log_chans[il[row].offset + idx];
1696 
1697                 if (!d40c) {
1698                         /*
1699                          * No error because this can happen if something else
1700                          * in the system is using the channel.
1701                          */
1702                         continue;
1703                 }
1704 
1705                 /* ACK interrupt */
1706                 writel(BIT(idx), base->virtbase + il[row].clr);
1707 
1708                 spin_lock(&d40c->lock);
1709 
1710                 if (!il[row].is_error)
1711                         dma_tc_handle(d40c);
1712                 else
1713                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1714                                 chan, il[row].offset, idx);
1715 
1716                 spin_unlock(&d40c->lock);
1717         }
1718 
1719         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1720 
1721         return IRQ_HANDLED;
1722 }
1723 
1724 static int d40_validate_conf(struct d40_chan *d40c,
1725                              struct stedma40_chan_cfg *conf)
1726 {
1727         int res = 0;
1728         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729 
1730         if (!conf->dir) {
1731                 chan_err(d40c, "Invalid direction.\n");
1732                 res = -EINVAL;
1733         }
1734 
1735         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1736             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1737             (conf->dev_type < 0)) {
1738                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739                 res = -EINVAL;
1740         }
1741 
1742         if (conf->dir == DMA_DEV_TO_DEV) {
1743                 /*
1744                  * DMAC HW supports it. Will be added to this driver,
1745                  * in case any dma client requires it.
1746                  */
1747                 chan_err(d40c, "periph to periph not supported\n");
1748                 res = -EINVAL;
1749         }
1750 
1751         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752             conf->src_info.data_width !=
1753             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754             conf->dst_info.data_width) {
1755                 /*
1756                  * The DMAC hardware only supports
1757                  * src (burst x width) == dst (burst x width)
1758                  */
1759 
1760                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761                 res = -EINVAL;
1762         }
1763 
1764         return res;
1765 }
1766 
1767 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1768                                bool is_src, int log_event_line, bool is_log,
1769                                bool *first_user)
1770 {
1771         unsigned long flags;
1772         spin_lock_irqsave(&phy->lock, flags);
1773 
1774         *first_user = ((phy->allocated_src | phy->allocated_dst)
1775                         == D40_ALLOC_FREE);
1776 
1777         if (!is_log) {
1778                 /* Physical interrupts are masked per physical full channel */
1779                 if (phy->allocated_src == D40_ALLOC_FREE &&
1780                     phy->allocated_dst == D40_ALLOC_FREE) {
1781                         phy->allocated_dst = D40_ALLOC_PHY;
1782                         phy->allocated_src = D40_ALLOC_PHY;
1783                         goto found;
1784                 } else
1785                         goto not_found;
1786         }
1787 
1788         /* Logical channel */
1789         if (is_src) {
1790                 if (phy->allocated_src == D40_ALLOC_PHY)
1791                         goto not_found;
1792 
1793                 if (phy->allocated_src == D40_ALLOC_FREE)
1794                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1795 
1796                 if (!(phy->allocated_src & BIT(log_event_line))) {
1797                         phy->allocated_src |= BIT(log_event_line);
1798                         goto found;
1799                 } else
1800                         goto not_found;
1801         } else {
1802                 if (phy->allocated_dst == D40_ALLOC_PHY)
1803                         goto not_found;
1804 
1805                 if (phy->allocated_dst == D40_ALLOC_FREE)
1806                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1807 
1808                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1809                         phy->allocated_dst |= BIT(log_event_line);
1810                         goto found;
1811                 } else
1812                         goto not_found;
1813         }
1814 
1815 not_found:
1816         spin_unlock_irqrestore(&phy->lock, flags);
1817         return false;
1818 found:
1819         spin_unlock_irqrestore(&phy->lock, flags);
1820         return true;
1821 }
1822 
1823 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1824                                int log_event_line)
1825 {
1826         unsigned long flags;
1827         bool is_free = false;
1828 
1829         spin_lock_irqsave(&phy->lock, flags);
1830         if (!log_event_line) {
1831                 phy->allocated_dst = D40_ALLOC_FREE;
1832                 phy->allocated_src = D40_ALLOC_FREE;
1833                 is_free = true;
1834                 goto out;
1835         }
1836 
1837         /* Logical channel */
1838         if (is_src) {
1839                 phy->allocated_src &= ~BIT(log_event_line);
1840                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1841                         phy->allocated_src = D40_ALLOC_FREE;
1842         } else {
1843                 phy->allocated_dst &= ~BIT(log_event_line);
1844                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1845                         phy->allocated_dst = D40_ALLOC_FREE;
1846         }
1847 
1848         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1849                    D40_ALLOC_FREE);
1850 
1851 out:
1852         spin_unlock_irqrestore(&phy->lock, flags);
1853 
1854         return is_free;
1855 }
1856 
1857 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1858 {
1859         int dev_type = d40c->dma_cfg.dev_type;
1860         int event_group;
1861         int event_line;
1862         struct d40_phy_res *phys;
1863         int i;
1864         int j;
1865         int log_num;
1866         int num_phy_chans;
1867         bool is_src;
1868         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1869 
1870         phys = d40c->base->phy_res;
1871         num_phy_chans = d40c->base->num_phy_chans;
1872 
1873         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1874                 log_num = 2 * dev_type;
1875                 is_src = true;
1876         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1877                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1878                 /* dst event lines are used for logical memcpy */
1879                 log_num = 2 * dev_type + 1;
1880                 is_src = false;
1881         } else
1882                 return -EINVAL;
1883 
1884         event_group = D40_TYPE_TO_GROUP(dev_type);
1885         event_line = D40_TYPE_TO_EVENT(dev_type);
1886 
1887         if (!is_log) {
1888                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1889                         /* Find physical half channel */
1890                         if (d40c->dma_cfg.use_fixed_channel) {
1891                                 i = d40c->dma_cfg.phy_channel;
1892                                 if (d40_alloc_mask_set(&phys[i], is_src,
1893                                                        0, is_log,
1894                                                        first_phy_user))
1895                                         goto found_phy;
1896                         } else {
1897                                 for (i = 0; i < num_phy_chans; i++) {
1898                                         if (d40_alloc_mask_set(&phys[i], is_src,
1899                                                        0, is_log,
1900                                                        first_phy_user))
1901                                                 goto found_phy;
1902                                 }
1903                         }
1904                 } else
1905                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1906                                 int phy_num = j  + event_group * 2;
1907                                 for (i = phy_num; i < phy_num + 2; i++) {
1908                                         if (d40_alloc_mask_set(&phys[i],
1909                                                                is_src,
1910                                                                0,
1911                                                                is_log,
1912                                                                first_phy_user))
1913                                                 goto found_phy;
1914                                 }
1915                         }
1916                 return -EINVAL;
1917 found_phy:
1918                 d40c->phy_chan = &phys[i];
1919                 d40c->log_num = D40_PHY_CHAN;
1920                 goto out;
1921         }
1922         if (dev_type == -1)
1923                 return -EINVAL;
1924 
1925         /* Find logical channel */
1926         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1927                 int phy_num = j + event_group * 2;
1928 
1929                 if (d40c->dma_cfg.use_fixed_channel) {
1930                         i = d40c->dma_cfg.phy_channel;
1931 
1932                         if ((i != phy_num) && (i != phy_num + 1)) {
1933                                 dev_err(chan2dev(d40c),
1934                                         "invalid fixed phy channel %d\n", i);
1935                                 return -EINVAL;
1936                         }
1937 
1938                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1939                                                is_log, first_phy_user))
1940                                 goto found_log;
1941 
1942                         dev_err(chan2dev(d40c),
1943                                 "could not allocate fixed phy channel %d\n", i);
1944                         return -EINVAL;
1945                 }
1946 
1947                 /*
1948                  * Spread logical channels across all available physical rather
1949                  * than pack every logical channel at the first available phy
1950                  * channels.
1951                  */
1952                 if (is_src) {
1953                         for (i = phy_num; i < phy_num + 2; i++) {
1954                                 if (d40_alloc_mask_set(&phys[i], is_src,
1955                                                        event_line, is_log,
1956                                                        first_phy_user))
1957                                         goto found_log;
1958                         }
1959                 } else {
1960                         for (i = phy_num + 1; i >= phy_num; i--) {
1961                                 if (d40_alloc_mask_set(&phys[i], is_src,
1962                                                        event_line, is_log,
1963                                                        first_phy_user))
1964                                         goto found_log;
1965                         }
1966                 }
1967         }
1968         return -EINVAL;
1969 
1970 found_log:
1971         d40c->phy_chan = &phys[i];
1972         d40c->log_num = log_num;
1973 out:
1974 
1975         if (is_log)
1976                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1977         else
1978                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1979 
1980         return 0;
1981 
1982 }
1983 
1984 static int d40_config_memcpy(struct d40_chan *d40c)
1985 {
1986         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1987 
1988         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1989                 d40c->dma_cfg = dma40_memcpy_conf_log;
1990                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1991 
1992                 d40_log_cfg(&d40c->dma_cfg,
1993                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1994 
1995         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1996                    dma_has_cap(DMA_SLAVE, cap)) {
1997                 d40c->dma_cfg = dma40_memcpy_conf_phy;
1998 
1999                 /* Generate interrrupt at end of transfer or relink. */
2000                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2001 
2002                 /* Generate interrupt on error. */
2003                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2004                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2005 
2006         } else {
2007                 chan_err(d40c, "No memcpy\n");
2008                 return -EINVAL;
2009         }
2010 
2011         return 0;
2012 }
2013 
2014 static int d40_free_dma(struct d40_chan *d40c)
2015 {
2016 
2017         int res = 0;
2018         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2019         struct d40_phy_res *phy = d40c->phy_chan;
2020         bool is_src;
2021 
2022         /* Terminate all queued and active transfers */
2023         d40_term_all(d40c);
2024 
2025         if (phy == NULL) {
2026                 chan_err(d40c, "phy == null\n");
2027                 return -EINVAL;
2028         }
2029 
2030         if (phy->allocated_src == D40_ALLOC_FREE &&
2031             phy->allocated_dst == D40_ALLOC_FREE) {
2032                 chan_err(d40c, "channel already free\n");
2033                 return -EINVAL;
2034         }
2035 
2036         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2037             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2038                 is_src = false;
2039         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2040                 is_src = true;
2041         else {
2042                 chan_err(d40c, "Unknown direction\n");
2043                 return -EINVAL;
2044         }
2045 
2046         pm_runtime_get_sync(d40c->base->dev);
2047         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2048         if (res) {
2049                 chan_err(d40c, "stop failed\n");
2050                 goto out;
2051         }
2052 
2053         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2054 
2055         if (chan_is_logical(d40c))
2056                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2057         else
2058                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2059 
2060         if (d40c->busy) {
2061                 pm_runtime_mark_last_busy(d40c->base->dev);
2062                 pm_runtime_put_autosuspend(d40c->base->dev);
2063         }
2064 
2065         d40c->busy = false;
2066         d40c->phy_chan = NULL;
2067         d40c->configured = false;
2068 out:
2069 
2070         pm_runtime_mark_last_busy(d40c->base->dev);
2071         pm_runtime_put_autosuspend(d40c->base->dev);
2072         return res;
2073 }
2074 
2075 static bool d40_is_paused(struct d40_chan *d40c)
2076 {
2077         void __iomem *chanbase = chan_base(d40c);
2078         bool is_paused = false;
2079         unsigned long flags;
2080         void __iomem *active_reg;
2081         u32 status;
2082         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2083 
2084         spin_lock_irqsave(&d40c->lock, flags);
2085 
2086         if (chan_is_physical(d40c)) {
2087                 if (d40c->phy_chan->num % 2 == 0)
2088                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2089                 else
2090                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2091 
2092                 status = (readl(active_reg) &
2093                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2094                         D40_CHAN_POS(d40c->phy_chan->num);
2095                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2096                         is_paused = true;
2097 
2098                 goto _exit;
2099         }
2100 
2101         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2102             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2103                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2104         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2105                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2106         } else {
2107                 chan_err(d40c, "Unknown direction\n");
2108                 goto _exit;
2109         }
2110 
2111         status = (status & D40_EVENTLINE_MASK(event)) >>
2112                 D40_EVENTLINE_POS(event);
2113 
2114         if (status != D40_DMA_RUN)
2115                 is_paused = true;
2116 _exit:
2117         spin_unlock_irqrestore(&d40c->lock, flags);
2118         return is_paused;
2119 
2120 }
2121 
2122 static u32 stedma40_residue(struct dma_chan *chan)
2123 {
2124         struct d40_chan *d40c =
2125                 container_of(chan, struct d40_chan, chan);
2126         u32 bytes_left;
2127         unsigned long flags;
2128 
2129         spin_lock_irqsave(&d40c->lock, flags);
2130         bytes_left = d40_residue(d40c);
2131         spin_unlock_irqrestore(&d40c->lock, flags);
2132 
2133         return bytes_left;
2134 }
2135 
2136 static int
2137 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2138                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2139                 unsigned int sg_len, dma_addr_t src_dev_addr,
2140                 dma_addr_t dst_dev_addr)
2141 {
2142         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2143         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2144         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145         int ret;
2146 
2147         ret = d40_log_sg_to_lli(sg_src, sg_len,
2148                                 src_dev_addr,
2149                                 desc->lli_log.src,
2150                                 chan->log_def.lcsp1,
2151                                 src_info->data_width,
2152                                 dst_info->data_width);
2153 
2154         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2155                                 dst_dev_addr,
2156                                 desc->lli_log.dst,
2157                                 chan->log_def.lcsp3,
2158                                 dst_info->data_width,
2159                                 src_info->data_width);
2160 
2161         return ret < 0 ? ret : 0;
2162 }
2163 
2164 static int
2165 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2166                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2167                 unsigned int sg_len, dma_addr_t src_dev_addr,
2168                 dma_addr_t dst_dev_addr)
2169 {
2170         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2171         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2172         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2173         unsigned long flags = 0;
2174         int ret;
2175 
2176         if (desc->cyclic)
2177                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2178 
2179         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2180                                 desc->lli_phy.src,
2181                                 virt_to_phys(desc->lli_phy.src),
2182                                 chan->src_def_cfg,
2183                                 src_info, dst_info, flags);
2184 
2185         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2186                                 desc->lli_phy.dst,
2187                                 virt_to_phys(desc->lli_phy.dst),
2188                                 chan->dst_def_cfg,
2189                                 dst_info, src_info, flags);
2190 
2191         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2192                                    desc->lli_pool.size, DMA_TO_DEVICE);
2193 
2194         return ret < 0 ? ret : 0;
2195 }
2196 
2197 static struct d40_desc *
2198 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2199               unsigned int sg_len, unsigned long dma_flags)
2200 {
2201         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2202         struct d40_desc *desc;
2203         int ret;
2204 
2205         desc = d40_desc_get(chan);
2206         if (!desc)
2207                 return NULL;
2208 
2209         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2210                                         cfg->dst_info.data_width);
2211         if (desc->lli_len < 0) {
2212                 chan_err(chan, "Unaligned size\n");
2213                 goto err;
2214         }
2215 
2216         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2217         if (ret < 0) {
2218                 chan_err(chan, "Could not allocate lli\n");
2219                 goto err;
2220         }
2221 
2222         desc->lli_current = 0;
2223         desc->txd.flags = dma_flags;
2224         desc->txd.tx_submit = d40_tx_submit;
2225 
2226         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2227 
2228         return desc;
2229 
2230 err:
2231         d40_desc_free(chan, desc);
2232         return NULL;
2233 }
2234 
2235 static struct dma_async_tx_descriptor *
2236 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2237             struct scatterlist *sg_dst, unsigned int sg_len,
2238             enum dma_transfer_direction direction, unsigned long dma_flags)
2239 {
2240         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2241         dma_addr_t src_dev_addr = 0;
2242         dma_addr_t dst_dev_addr = 0;
2243         struct d40_desc *desc;
2244         unsigned long flags;
2245         int ret;
2246 
2247         if (!chan->phy_chan) {
2248                 chan_err(chan, "Cannot prepare unallocated channel\n");
2249                 return NULL;
2250         }
2251 
2252         spin_lock_irqsave(&chan->lock, flags);
2253 
2254         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2255         if (desc == NULL)
2256                 goto err;
2257 
2258         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2259                 desc->cyclic = true;
2260 
2261         if (direction == DMA_DEV_TO_MEM)
2262                 src_dev_addr = chan->runtime_addr;
2263         else if (direction == DMA_MEM_TO_DEV)
2264                 dst_dev_addr = chan->runtime_addr;
2265 
2266         if (chan_is_logical(chan))
2267                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2268                                       sg_len, src_dev_addr, dst_dev_addr);
2269         else
2270                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2271                                       sg_len, src_dev_addr, dst_dev_addr);
2272 
2273         if (ret) {
2274                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2275                          chan_is_logical(chan) ? "log" : "phy", ret);
2276                 goto err;
2277         }
2278 
2279         /*
2280          * add descriptor to the prepare queue in order to be able
2281          * to free them later in terminate_all
2282          */
2283         list_add_tail(&desc->node, &chan->prepare_queue);
2284 
2285         spin_unlock_irqrestore(&chan->lock, flags);
2286 
2287         return &desc->txd;
2288 
2289 err:
2290         if (desc)
2291                 d40_desc_free(chan, desc);
2292         spin_unlock_irqrestore(&chan->lock, flags);
2293         return NULL;
2294 }
2295 
2296 bool stedma40_filter(struct dma_chan *chan, void *data)
2297 {
2298         struct stedma40_chan_cfg *info = data;
2299         struct d40_chan *d40c =
2300                 container_of(chan, struct d40_chan, chan);
2301         int err;
2302 
2303         if (data) {
2304                 err = d40_validate_conf(d40c, info);
2305                 if (!err)
2306                         d40c->dma_cfg = *info;
2307         } else
2308                 err = d40_config_memcpy(d40c);
2309 
2310         if (!err)
2311                 d40c->configured = true;
2312 
2313         return err == 0;
2314 }
2315 EXPORT_SYMBOL(stedma40_filter);
2316 
2317 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2318 {
2319         bool realtime = d40c->dma_cfg.realtime;
2320         bool highprio = d40c->dma_cfg.high_priority;
2321         u32 rtreg;
2322         u32 event = D40_TYPE_TO_EVENT(dev_type);
2323         u32 group = D40_TYPE_TO_GROUP(dev_type);
2324         u32 bit = BIT(event);
2325         u32 prioreg;
2326         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2327 
2328         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2329         /*
2330          * Due to a hardware bug, in some cases a logical channel triggered by
2331          * a high priority destination event line can generate extra packet
2332          * transactions.
2333          *
2334          * The workaround is to not set the high priority level for the
2335          * destination event lines that trigger logical channels.
2336          */
2337         if (!src && chan_is_logical(d40c))
2338                 highprio = false;
2339 
2340         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2341 
2342         /* Destination event lines are stored in the upper halfword */
2343         if (!src)
2344                 bit <<= 16;
2345 
2346         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2347         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2348 }
2349 
2350 static void d40_set_prio_realtime(struct d40_chan *d40c)
2351 {
2352         if (d40c->base->rev < 3)
2353                 return;
2354 
2355         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2356             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2357                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2358 
2359         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2360             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2361                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2362 }
2363 
2364 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2365 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2366 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2367 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2368 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2369 
2370 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2371                                   struct of_dma *ofdma)
2372 {
2373         struct stedma40_chan_cfg cfg;
2374         dma_cap_mask_t cap;
2375         u32 flags;
2376 
2377         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2378 
2379         dma_cap_zero(cap);
2380         dma_cap_set(DMA_SLAVE, cap);
2381 
2382         cfg.dev_type = dma_spec->args[0];
2383         flags = dma_spec->args[2];
2384 
2385         switch (D40_DT_FLAGS_MODE(flags)) {
2386         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2387         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2388         }
2389 
2390         switch (D40_DT_FLAGS_DIR(flags)) {
2391         case 0:
2392                 cfg.dir = DMA_MEM_TO_DEV;
2393                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2394                 break;
2395         case 1:
2396                 cfg.dir = DMA_DEV_TO_MEM;
2397                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2398                 break;
2399         }
2400 
2401         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2402                 cfg.phy_channel = dma_spec->args[1];
2403                 cfg.use_fixed_channel = true;
2404         }
2405 
2406         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2407                 cfg.high_priority = true;
2408 
2409         return dma_request_channel(cap, stedma40_filter, &cfg);
2410 }
2411 
2412 /* DMA ENGINE functions */
2413 static int d40_alloc_chan_resources(struct dma_chan *chan)
2414 {
2415         int err;
2416         unsigned long flags;
2417         struct d40_chan *d40c =
2418                 container_of(chan, struct d40_chan, chan);
2419         bool is_free_phy;
2420         spin_lock_irqsave(&d40c->lock, flags);
2421 
2422         dma_cookie_init(chan);
2423 
2424         /* If no dma configuration is set use default configuration (memcpy) */
2425         if (!d40c->configured) {
2426                 err = d40_config_memcpy(d40c);
2427                 if (err) {
2428                         chan_err(d40c, "Failed to configure memcpy channel\n");
2429                         goto fail;
2430                 }
2431         }
2432 
2433         err = d40_allocate_channel(d40c, &is_free_phy);
2434         if (err) {
2435                 chan_err(d40c, "Failed to allocate channel\n");
2436                 d40c->configured = false;
2437                 goto fail;
2438         }
2439 
2440         pm_runtime_get_sync(d40c->base->dev);
2441 
2442         d40_set_prio_realtime(d40c);
2443 
2444         if (chan_is_logical(d40c)) {
2445                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2446                         d40c->lcpa = d40c->base->lcpa_base +
2447                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2448                 else
2449                         d40c->lcpa = d40c->base->lcpa_base +
2450                                 d40c->dma_cfg.dev_type *
2451                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2452 
2453                 /* Unmask the Global Interrupt Mask. */
2454                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2455                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2456         }
2457 
2458         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2459                  chan_is_logical(d40c) ? "logical" : "physical",
2460                  d40c->phy_chan->num,
2461                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2462 
2463 
2464         /*
2465          * Only write channel configuration to the DMA if the physical
2466          * resource is free. In case of multiple logical channels
2467          * on the same physical resource, only the first write is necessary.
2468          */
2469         if (is_free_phy)
2470                 d40_config_write(d40c);
2471 fail:
2472         pm_runtime_mark_last_busy(d40c->base->dev);
2473         pm_runtime_put_autosuspend(d40c->base->dev);
2474         spin_unlock_irqrestore(&d40c->lock, flags);
2475         return err;
2476 }
2477 
2478 static void d40_free_chan_resources(struct dma_chan *chan)
2479 {
2480         struct d40_chan *d40c =
2481                 container_of(chan, struct d40_chan, chan);
2482         int err;
2483         unsigned long flags;
2484 
2485         if (d40c->phy_chan == NULL) {
2486                 chan_err(d40c, "Cannot free unallocated channel\n");
2487                 return;
2488         }
2489 
2490         spin_lock_irqsave(&d40c->lock, flags);
2491 
2492         err = d40_free_dma(d40c);
2493 
2494         if (err)
2495                 chan_err(d40c, "Failed to free channel\n");
2496         spin_unlock_irqrestore(&d40c->lock, flags);
2497 }
2498 
2499 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2500                                                        dma_addr_t dst,
2501                                                        dma_addr_t src,
2502                                                        size_t size,
2503                                                        unsigned long dma_flags)
2504 {
2505         struct scatterlist dst_sg;
2506         struct scatterlist src_sg;
2507 
2508         sg_init_table(&dst_sg, 1);
2509         sg_init_table(&src_sg, 1);
2510 
2511         sg_dma_address(&dst_sg) = dst;
2512         sg_dma_address(&src_sg) = src;
2513 
2514         sg_dma_len(&dst_sg) = size;
2515         sg_dma_len(&src_sg) = size;
2516 
2517         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2518 }
2519 
2520 static struct dma_async_tx_descriptor *
2521 d40_prep_memcpy_sg(struct dma_chan *chan,
2522                    struct scatterlist *dst_sg, unsigned int dst_nents,
2523                    struct scatterlist *src_sg, unsigned int src_nents,
2524                    unsigned long dma_flags)
2525 {
2526         if (dst_nents != src_nents)
2527                 return NULL;
2528 
2529         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2530 }
2531 
2532 static struct dma_async_tx_descriptor *
2533 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2534                   unsigned int sg_len, enum dma_transfer_direction direction,
2535                   unsigned long dma_flags, void *context)
2536 {
2537         if (!is_slave_direction(direction))
2538                 return NULL;
2539 
2540         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2541 }
2542 
2543 static struct dma_async_tx_descriptor *
2544 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2545                      size_t buf_len, size_t period_len,
2546                      enum dma_transfer_direction direction, unsigned long flags)
2547 {
2548         unsigned int periods = buf_len / period_len;
2549         struct dma_async_tx_descriptor *txd;
2550         struct scatterlist *sg;
2551         int i;
2552 
2553         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2554         if (!sg)
2555                 return NULL;
2556 
2557         for (i = 0; i < periods; i++) {
2558                 sg_dma_address(&sg[i]) = dma_addr;
2559                 sg_dma_len(&sg[i]) = period_len;
2560                 dma_addr += period_len;
2561         }
2562 
2563         sg[periods].offset = 0;
2564         sg_dma_len(&sg[periods]) = 0;
2565         sg[periods].page_link =
2566                 ((unsigned long)sg | 0x01) & ~0x02;
2567 
2568         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2569                           DMA_PREP_INTERRUPT);
2570 
2571         kfree(sg);
2572 
2573         return txd;
2574 }
2575 
2576 static enum dma_status d40_tx_status(struct dma_chan *chan,
2577                                      dma_cookie_t cookie,
2578                                      struct dma_tx_state *txstate)
2579 {
2580         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2581         enum dma_status ret;
2582 
2583         if (d40c->phy_chan == NULL) {
2584                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2585                 return -EINVAL;
2586         }
2587 
2588         ret = dma_cookie_status(chan, cookie, txstate);
2589         if (ret != DMA_COMPLETE)
2590                 dma_set_residue(txstate, stedma40_residue(chan));
2591 
2592         if (d40_is_paused(d40c))
2593                 ret = DMA_PAUSED;
2594 
2595         return ret;
2596 }
2597 
2598 static void d40_issue_pending(struct dma_chan *chan)
2599 {
2600         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2601         unsigned long flags;
2602 
2603         if (d40c->phy_chan == NULL) {
2604                 chan_err(d40c, "Channel is not allocated!\n");
2605                 return;
2606         }
2607 
2608         spin_lock_irqsave(&d40c->lock, flags);
2609 
2610         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2611 
2612         /* Busy means that queued jobs are already being processed */
2613         if (!d40c->busy)
2614                 (void) d40_queue_start(d40c);
2615 
2616         spin_unlock_irqrestore(&d40c->lock, flags);
2617 }
2618 
2619 static int d40_terminate_all(struct dma_chan *chan)
2620 {
2621         unsigned long flags;
2622         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2623         int ret;
2624 
2625         if (d40c->phy_chan == NULL) {
2626                 chan_err(d40c, "Channel is not allocated!\n");
2627                 return -EINVAL;
2628         }
2629 
2630         spin_lock_irqsave(&d40c->lock, flags);
2631 
2632         pm_runtime_get_sync(d40c->base->dev);
2633         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2634         if (ret)
2635                 chan_err(d40c, "Failed to stop channel\n");
2636 
2637         d40_term_all(d40c);
2638         pm_runtime_mark_last_busy(d40c->base->dev);
2639         pm_runtime_put_autosuspend(d40c->base->dev);
2640         if (d40c->busy) {
2641                 pm_runtime_mark_last_busy(d40c->base->dev);
2642                 pm_runtime_put_autosuspend(d40c->base->dev);
2643         }
2644         d40c->busy = false;
2645 
2646         spin_unlock_irqrestore(&d40c->lock, flags);
2647         return 0;
2648 }
2649 
2650 static int
2651 dma40_config_to_halfchannel(struct d40_chan *d40c,
2652                             struct stedma40_half_channel_info *info,
2653                             u32 maxburst)
2654 {
2655         int psize;
2656 
2657         if (chan_is_logical(d40c)) {
2658                 if (maxburst >= 16)
2659                         psize = STEDMA40_PSIZE_LOG_16;
2660                 else if (maxburst >= 8)
2661                         psize = STEDMA40_PSIZE_LOG_8;
2662                 else if (maxburst >= 4)
2663                         psize = STEDMA40_PSIZE_LOG_4;
2664                 else
2665                         psize = STEDMA40_PSIZE_LOG_1;
2666         } else {
2667                 if (maxburst >= 16)
2668                         psize = STEDMA40_PSIZE_PHY_16;
2669                 else if (maxburst >= 8)
2670                         psize = STEDMA40_PSIZE_PHY_8;
2671                 else if (maxburst >= 4)
2672                         psize = STEDMA40_PSIZE_PHY_4;
2673                 else
2674                         psize = STEDMA40_PSIZE_PHY_1;
2675         }
2676 
2677         info->psize = psize;
2678         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2679 
2680         return 0;
2681 }
2682 
2683 /* Runtime reconfiguration extension */
2684 static int d40_set_runtime_config(struct dma_chan *chan,
2685                                   struct dma_slave_config *config)
2686 {
2687         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2688         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2689         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2690         dma_addr_t config_addr;
2691         u32 src_maxburst, dst_maxburst;
2692         int ret;
2693 
2694         if (d40c->phy_chan == NULL) {
2695                 chan_err(d40c, "Channel is not allocated!\n");
2696                 return -EINVAL;
2697         }
2698 
2699         src_addr_width = config->src_addr_width;
2700         src_maxburst = config->src_maxburst;
2701         dst_addr_width = config->dst_addr_width;
2702         dst_maxburst = config->dst_maxburst;
2703 
2704         if (config->direction == DMA_DEV_TO_MEM) {
2705                 config_addr = config->src_addr;
2706 
2707                 if (cfg->dir != DMA_DEV_TO_MEM)
2708                         dev_dbg(d40c->base->dev,
2709                                 "channel was not configured for peripheral "
2710                                 "to memory transfer (%d) overriding\n",
2711                                 cfg->dir);
2712                 cfg->dir = DMA_DEV_TO_MEM;
2713 
2714                 /* Configure the memory side */
2715                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2716                         dst_addr_width = src_addr_width;
2717                 if (dst_maxburst == 0)
2718                         dst_maxburst = src_maxburst;
2719 
2720         } else if (config->direction == DMA_MEM_TO_DEV) {
2721                 config_addr = config->dst_addr;
2722 
2723                 if (cfg->dir != DMA_MEM_TO_DEV)
2724                         dev_dbg(d40c->base->dev,
2725                                 "channel was not configured for memory "
2726                                 "to peripheral transfer (%d) overriding\n",
2727                                 cfg->dir);
2728                 cfg->dir = DMA_MEM_TO_DEV;
2729 
2730                 /* Configure the memory side */
2731                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2732                         src_addr_width = dst_addr_width;
2733                 if (src_maxburst == 0)
2734                         src_maxburst = dst_maxburst;
2735         } else {
2736                 dev_err(d40c->base->dev,
2737                         "unrecognized channel direction %d\n",
2738                         config->direction);
2739                 return -EINVAL;
2740         }
2741 
2742         if (config_addr <= 0) {
2743                 dev_err(d40c->base->dev, "no address supplied\n");
2744                 return -EINVAL;
2745         }
2746 
2747         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2748                 dev_err(d40c->base->dev,
2749                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2750                         src_maxburst,
2751                         src_addr_width,
2752                         dst_maxburst,
2753                         dst_addr_width);
2754                 return -EINVAL;
2755         }
2756 
2757         if (src_maxburst > 16) {
2758                 src_maxburst = 16;
2759                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2760         } else if (dst_maxburst > 16) {
2761                 dst_maxburst = 16;
2762                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2763         }
2764 
2765         /* Only valid widths are; 1, 2, 4 and 8. */
2766         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2767             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2768             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2769             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2770             !is_power_of_2(src_addr_width) ||
2771             !is_power_of_2(dst_addr_width))
2772                 return -EINVAL;
2773 
2774         cfg->src_info.data_width = src_addr_width;
2775         cfg->dst_info.data_width = dst_addr_width;
2776 
2777         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2778                                           src_maxburst);
2779         if (ret)
2780                 return ret;
2781 
2782         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2783                                           dst_maxburst);
2784         if (ret)
2785                 return ret;
2786 
2787         /* Fill in register values */
2788         if (chan_is_logical(d40c))
2789                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2790         else
2791                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2792 
2793         /* These settings will take precedence later */
2794         d40c->runtime_addr = config_addr;
2795         d40c->runtime_direction = config->direction;
2796         dev_dbg(d40c->base->dev,
2797                 "configured channel %s for %s, data width %d/%d, "
2798                 "maxburst %d/%d elements, LE, no flow control\n",
2799                 dma_chan_name(chan),
2800                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2801                 src_addr_width, dst_addr_width,
2802                 src_maxburst, dst_maxburst);
2803 
2804         return 0;
2805 }
2806 
2807 /* Initialization functions */
2808 
2809 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2810                                  struct d40_chan *chans, int offset,
2811                                  int num_chans)
2812 {
2813         int i = 0;
2814         struct d40_chan *d40c;
2815 
2816         INIT_LIST_HEAD(&dma->channels);
2817 
2818         for (i = offset; i < offset + num_chans; i++) {
2819                 d40c = &chans[i];
2820                 d40c->base = base;
2821                 d40c->chan.device = dma;
2822 
2823                 spin_lock_init(&d40c->lock);
2824 
2825                 d40c->log_num = D40_PHY_CHAN;
2826 
2827                 INIT_LIST_HEAD(&d40c->done);
2828                 INIT_LIST_HEAD(&d40c->active);
2829                 INIT_LIST_HEAD(&d40c->queue);
2830                 INIT_LIST_HEAD(&d40c->pending_queue);
2831                 INIT_LIST_HEAD(&d40c->client);
2832                 INIT_LIST_HEAD(&d40c->prepare_queue);
2833 
2834                 tasklet_init(&d40c->tasklet, dma_tasklet,
2835                              (unsigned long) d40c);
2836 
2837                 list_add_tail(&d40c->chan.device_node,
2838                               &dma->channels);
2839         }
2840 }
2841 
2842 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2843 {
2844         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2845                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2846 
2847         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2848                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2849 
2850                 /*
2851                  * This controller can only access address at even
2852                  * 32bit boundaries, i.e. 2^2
2853                  */
2854                 dev->copy_align = 2;
2855         }
2856 
2857         if (dma_has_cap(DMA_SG, dev->cap_mask))
2858                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2859 
2860         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2861                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2862 
2863         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2864         dev->device_free_chan_resources = d40_free_chan_resources;
2865         dev->device_issue_pending = d40_issue_pending;
2866         dev->device_tx_status = d40_tx_status;
2867         dev->device_config = d40_set_runtime_config;
2868         dev->device_pause = d40_pause;
2869         dev->device_resume = d40_resume;
2870         dev->device_terminate_all = d40_terminate_all;
2871         dev->dev = base->dev;
2872 }
2873 
2874 static int __init d40_dmaengine_init(struct d40_base *base,
2875                                      int num_reserved_chans)
2876 {
2877         int err ;
2878 
2879         d40_chan_init(base, &base->dma_slave, base->log_chans,
2880                       0, base->num_log_chans);
2881 
2882         dma_cap_zero(base->dma_slave.cap_mask);
2883         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2884         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2885 
2886         d40_ops_init(base, &base->dma_slave);
2887 
2888         err = dma_async_device_register(&base->dma_slave);
2889 
2890         if (err) {
2891                 d40_err(base->dev, "Failed to register slave channels\n");
2892                 goto failure1;
2893         }
2894 
2895         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2896                       base->num_log_chans, base->num_memcpy_chans);
2897 
2898         dma_cap_zero(base->dma_memcpy.cap_mask);
2899         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2900         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2901 
2902         d40_ops_init(base, &base->dma_memcpy);
2903 
2904         err = dma_async_device_register(&base->dma_memcpy);
2905 
2906         if (err) {
2907                 d40_err(base->dev,
2908                         "Failed to regsiter memcpy only channels\n");
2909                 goto failure2;
2910         }
2911 
2912         d40_chan_init(base, &base->dma_both, base->phy_chans,
2913                       0, num_reserved_chans);
2914 
2915         dma_cap_zero(base->dma_both.cap_mask);
2916         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2917         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2918         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2919         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2920 
2921         d40_ops_init(base, &base->dma_both);
2922         err = dma_async_device_register(&base->dma_both);
2923 
2924         if (err) {
2925                 d40_err(base->dev,
2926                         "Failed to register logical and physical capable channels\n");
2927                 goto failure3;
2928         }
2929         return 0;
2930 failure3:
2931         dma_async_device_unregister(&base->dma_memcpy);
2932 failure2:
2933         dma_async_device_unregister(&base->dma_slave);
2934 failure1:
2935         return err;
2936 }
2937 
2938 /* Suspend resume functionality */
2939 #ifdef CONFIG_PM_SLEEP
2940 static int dma40_suspend(struct device *dev)
2941 {
2942         struct platform_device *pdev = to_platform_device(dev);
2943         struct d40_base *base = platform_get_drvdata(pdev);
2944         int ret;
2945 
2946         ret = pm_runtime_force_suspend(dev);
2947         if (ret)
2948                 return ret;
2949 
2950         if (base->lcpa_regulator)
2951                 ret = regulator_disable(base->lcpa_regulator);
2952         return ret;
2953 }
2954 
2955 static int dma40_resume(struct device *dev)
2956 {
2957         struct platform_device *pdev = to_platform_device(dev);
2958         struct d40_base *base = platform_get_drvdata(pdev);
2959         int ret = 0;
2960 
2961         if (base->lcpa_regulator) {
2962                 ret = regulator_enable(base->lcpa_regulator);
2963                 if (ret)
2964                         return ret;
2965         }
2966 
2967         return pm_runtime_force_resume(dev);
2968 }
2969 #endif
2970 
2971 #ifdef CONFIG_PM
2972 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2973                          u32 *regaddr, int num, bool save)
2974 {
2975         int i;
2976 
2977         for (i = 0; i < num; i++) {
2978                 void __iomem *addr = baseaddr + regaddr[i];
2979 
2980                 if (save)
2981                         backup[i] = readl_relaxed(addr);
2982                 else
2983                         writel_relaxed(backup[i], addr);
2984         }
2985 }
2986 
2987 static void d40_save_restore_registers(struct d40_base *base, bool save)
2988 {
2989         int i;
2990 
2991         /* Save/Restore channel specific registers */
2992         for (i = 0; i < base->num_phy_chans; i++) {
2993                 void __iomem *addr;
2994                 int idx;
2995 
2996                 if (base->phy_res[i].reserved)
2997                         continue;
2998 
2999                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
3000                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
3001 
3002                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
3003                              d40_backup_regs_chan,
3004                              ARRAY_SIZE(d40_backup_regs_chan),
3005                              save);
3006         }
3007 
3008         /* Save/Restore global registers */
3009         dma40_backup(base->virtbase, base->reg_val_backup,
3010                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
3011                      save);
3012 
3013         /* Save/Restore registers only existing on dma40 v3 and later */
3014         if (base->gen_dmac.backup)
3015                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
3016                              base->gen_dmac.backup,
3017                         base->gen_dmac.backup_size,
3018                         save);
3019 }
3020 
3021 static int dma40_runtime_suspend(struct device *dev)
3022 {
3023         struct platform_device *pdev = to_platform_device(dev);
3024         struct d40_base *base = platform_get_drvdata(pdev);
3025 
3026         d40_save_restore_registers(base, true);
3027 
3028         /* Don't disable/enable clocks for v1 due to HW bugs */
3029         if (base->rev != 1)
3030                 writel_relaxed(base->gcc_pwr_off_mask,
3031                                base->virtbase + D40_DREG_GCC);
3032 
3033         return 0;
3034 }
3035 
3036 static int dma40_runtime_resume(struct device *dev)
3037 {
3038         struct platform_device *pdev = to_platform_device(dev);
3039         struct d40_base *base = platform_get_drvdata(pdev);
3040 
3041         d40_save_restore_registers(base, false);
3042 
3043         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3044                        base->virtbase + D40_DREG_GCC);
3045         return 0;
3046 }
3047 #endif
3048 
3049 static const struct dev_pm_ops dma40_pm_ops = {
3050         SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3051         SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3052                                 dma40_runtime_resume,
3053                                 NULL)
3054 };
3055 
3056 /* Initialization functions. */
3057 
3058 static int __init d40_phy_res_init(struct d40_base *base)
3059 {
3060         int i;
3061         int num_phy_chans_avail = 0;
3062         u32 val[2];
3063         int odd_even_bit = -2;
3064         int gcc = D40_DREG_GCC_ENA;
3065 
3066         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3067         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3068 
3069         for (i = 0; i < base->num_phy_chans; i++) {
3070                 base->phy_res[i].num = i;
3071                 odd_even_bit += 2 * ((i % 2) == 0);
3072                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3073                         /* Mark security only channels as occupied */
3074                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3075                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3076                         base->phy_res[i].reserved = true;
3077                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3078                                                        D40_DREG_GCC_SRC);
3079                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3080                                                        D40_DREG_GCC_DST);
3081 
3082 
3083                 } else {
3084                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3085                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3086                         base->phy_res[i].reserved = false;
3087                         num_phy_chans_avail++;
3088                 }
3089                 spin_lock_init(&base->phy_res[i].lock);
3090         }
3091 
3092         /* Mark disabled channels as occupied */
3093         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3094                 int chan = base->plat_data->disabled_channels[i];
3095 
3096                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3097                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3098                 base->phy_res[chan].reserved = true;
3099                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3100                                                D40_DREG_GCC_SRC);
3101                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3102                                                D40_DREG_GCC_DST);
3103                 num_phy_chans_avail--;
3104         }
3105 
3106         /* Mark soft_lli channels */
3107         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3108                 int chan = base->plat_data->soft_lli_chans[i];
3109 
3110                 base->phy_res[chan].use_soft_lli = true;
3111         }
3112 
3113         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3114                  num_phy_chans_avail, base->num_phy_chans);
3115 
3116         /* Verify settings extended vs standard */
3117         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3118 
3119         for (i = 0; i < base->num_phy_chans; i++) {
3120 
3121                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3122                     (val[0] & 0x3) != 1)
3123                         dev_info(base->dev,
3124                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3125                                  __func__, i, val[0] & 0x3);
3126 
3127                 val[0] = val[0] >> 2;
3128         }
3129 
3130         /*
3131          * To keep things simple, Enable all clocks initially.
3132          * The clocks will get managed later post channel allocation.
3133          * The clocks for the event lines on which reserved channels exists
3134          * are not managed here.
3135          */
3136         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3137         base->gcc_pwr_off_mask = gcc;
3138 
3139         return num_phy_chans_avail;
3140 }
3141 
3142 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3143 {
3144         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3145         struct clk *clk = NULL;
3146         void __iomem *virtbase = NULL;
3147         struct resource *res = NULL;
3148         struct d40_base *base = NULL;
3149         int num_log_chans = 0;
3150         int num_phy_chans;
3151         int num_memcpy_chans;
3152         int clk_ret = -EINVAL;
3153         int i;
3154         u32 pid;
3155         u32 cid;
3156         u8 rev;
3157 
3158         clk = clk_get(&pdev->dev, NULL);
3159         if (IS_ERR(clk)) {
3160                 d40_err(&pdev->dev, "No matching clock found\n");
3161                 goto failure;
3162         }
3163 
3164         clk_ret = clk_prepare_enable(clk);
3165         if (clk_ret) {
3166                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3167                 goto failure;
3168         }
3169 
3170         /* Get IO for DMAC base address */
3171         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3172         if (!res)
3173                 goto failure;
3174 
3175         if (request_mem_region(res->start, resource_size(res),
3176                                D40_NAME " I/O base") == NULL)
3177                 goto failure;
3178 
3179         virtbase = ioremap(res->start, resource_size(res));
3180         if (!virtbase)
3181                 goto failure;
3182 
3183         /* This is just a regular AMBA PrimeCell ID actually */
3184         for (pid = 0, i = 0; i < 4; i++)
3185                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3186                         & 255) << (i * 8);
3187         for (cid = 0, i = 0; i < 4; i++)
3188                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3189                         & 255) << (i * 8);
3190 
3191         if (cid != AMBA_CID) {
3192                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3193                 goto failure;
3194         }
3195         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3196                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3197                         AMBA_MANF_BITS(pid),
3198                         AMBA_VENDOR_ST);
3199                 goto failure;
3200         }
3201         /*
3202          * HW revision:
3203          * DB8500ed has revision 0
3204          * ? has revision 1
3205          * DB8500v1 has revision 2
3206          * DB8500v2 has revision 3
3207          * AP9540v1 has revision 4
3208          * DB8540v1 has revision 4
3209          */
3210         rev = AMBA_REV_BITS(pid);
3211         if (rev < 2) {
3212                 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3213                 goto failure;
3214         }
3215 
3216         /* The number of physical channels on this HW */
3217         if (plat_data->num_of_phy_chans)
3218                 num_phy_chans = plat_data->num_of_phy_chans;
3219         else
3220                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3221 
3222         /* The number of channels used for memcpy */
3223         if (plat_data->num_of_memcpy_chans)
3224                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3225         else
3226                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3227 
3228         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3229 
3230         dev_info(&pdev->dev,
3231                  "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3232                  rev, &res->start, num_phy_chans, num_log_chans);
3233 
3234         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3235                        (num_phy_chans + num_log_chans + num_memcpy_chans) *
3236                        sizeof(struct d40_chan), GFP_KERNEL);
3237 
3238         if (base == NULL) {
3239                 d40_err(&pdev->dev, "Out of memory\n");
3240                 goto failure;
3241         }
3242 
3243         base->rev = rev;
3244         base->clk = clk;
3245         base->num_memcpy_chans = num_memcpy_chans;
3246         base->num_phy_chans = num_phy_chans;
3247         base->num_log_chans = num_log_chans;
3248         base->phy_start = res->start;
3249         base->phy_size = resource_size(res);
3250         base->virtbase = virtbase;
3251         base->plat_data = plat_data;
3252         base->dev = &pdev->dev;
3253         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3254         base->log_chans = &base->phy_chans[num_phy_chans];
3255 
3256         if (base->plat_data->num_of_phy_chans == 14) {
3257                 base->gen_dmac.backup = d40_backup_regs_v4b;
3258                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3259                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3260                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3261                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3262                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3263                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3264                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3265                 base->gen_dmac.il = il_v4b;
3266                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3267                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3268                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3269         } else {
3270                 if (base->rev >= 3) {
3271                         base->gen_dmac.backup = d40_backup_regs_v4a;
3272                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3273                 }
3274                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3275                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3276                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3277                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3278                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3279                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3280                 base->gen_dmac.il = il_v4a;
3281                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3282                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3283                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3284         }
3285 
3286         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3287                                 GFP_KERNEL);
3288         if (!base->phy_res)
3289                 goto failure;
3290 
3291         base->lookup_phy_chans = kzalloc(num_phy_chans *
3292                                          sizeof(struct d40_chan *),
3293                                          GFP_KERNEL);
3294         if (!base->lookup_phy_chans)
3295                 goto failure;
3296 
3297         base->lookup_log_chans = kzalloc(num_log_chans *
3298                                          sizeof(struct d40_chan *),
3299                                          GFP_KERNEL);
3300         if (!base->lookup_log_chans)
3301                 goto failure;
3302 
3303         base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3304                                             sizeof(d40_backup_regs_chan),
3305                                             GFP_KERNEL);
3306         if (!base->reg_val_backup_chan)
3307                 goto failure;
3308 
3309         base->lcla_pool.alloc_map =
3310                 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3311                         * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3312         if (!base->lcla_pool.alloc_map)
3313                 goto failure;
3314 
3315         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3316                                             0, SLAB_HWCACHE_ALIGN,
3317                                             NULL);
3318         if (base->desc_slab == NULL)
3319                 goto failure;
3320 
3321         return base;
3322 
3323 failure:
3324         if (!clk_ret)
3325                 clk_disable_unprepare(clk);
3326         if (!IS_ERR(clk))
3327                 clk_put(clk);
3328         if (virtbase)
3329                 iounmap(virtbase);
3330         if (res)
3331                 release_mem_region(res->start,
3332                                    resource_size(res));
3333         if (virtbase)
3334                 iounmap(virtbase);
3335 
3336         if (base) {
3337                 kfree(base->lcla_pool.alloc_map);
3338                 kfree(base->reg_val_backup_chan);
3339                 kfree(base->lookup_log_chans);
3340                 kfree(base->lookup_phy_chans);
3341                 kfree(base->phy_res);
3342                 kfree(base);
3343         }
3344 
3345         return NULL;
3346 }
3347 
3348 static void __init d40_hw_init(struct d40_base *base)
3349 {
3350 
3351         int i;
3352         u32 prmseo[2] = {0, 0};
3353         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3354         u32 pcmis = 0;
3355         u32 pcicr = 0;
3356         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3357         u32 reg_size = base->gen_dmac.init_reg_size;
3358 
3359         for (i = 0; i < reg_size; i++)
3360                 writel(dma_init_reg[i].val,
3361                        base->virtbase + dma_init_reg[i].reg);
3362 
3363         /* Configure all our dma channels to default settings */
3364         for (i = 0; i < base->num_phy_chans; i++) {
3365 
3366                 activeo[i % 2] = activeo[i % 2] << 2;
3367 
3368                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3369                     == D40_ALLOC_PHY) {
3370                         activeo[i % 2] |= 3;
3371                         continue;
3372                 }
3373 
3374                 /* Enable interrupt # */
3375                 pcmis = (pcmis << 1) | 1;
3376 
3377                 /* Clear interrupt # */
3378                 pcicr = (pcicr << 1) | 1;
3379 
3380                 /* Set channel to physical mode */
3381                 prmseo[i % 2] = prmseo[i % 2] << 2;
3382                 prmseo[i % 2] |= 1;
3383 
3384         }
3385 
3386         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3387         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3388         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3389         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3390 
3391         /* Write which interrupt to enable */
3392         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3393 
3394         /* Write which interrupt to clear */
3395         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3396 
3397         /* These are __initdata and cannot be accessed after init */
3398         base->gen_dmac.init_reg = NULL;
3399         base->gen_dmac.init_reg_size = 0;
3400 }
3401 
3402 static int __init d40_lcla_allocate(struct d40_base *base)
3403 {
3404         struct d40_lcla_pool *pool = &base->lcla_pool;
3405         unsigned long *page_list;
3406         int i, j;
3407         int ret = 0;
3408 
3409         /*
3410          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3411          * To full fill this hardware requirement without wasting 256 kb
3412          * we allocate pages until we get an aligned one.
3413          */
3414         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3415                             GFP_KERNEL);
3416 
3417         if (!page_list) {
3418                 ret = -ENOMEM;
3419                 goto failure;
3420         }
3421 
3422         /* Calculating how many pages that are required */
3423         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3424 
3425         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3426                 page_list[i] = __get_free_pages(GFP_KERNEL,
3427                                                 base->lcla_pool.pages);
3428                 if (!page_list[i]) {
3429 
3430                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3431                                 base->lcla_pool.pages);
3432                         ret = -ENOMEM;
3433 
3434                         for (j = 0; j < i; j++)
3435                                 free_pages(page_list[j], base->lcla_pool.pages);
3436                         goto failure;
3437                 }
3438 
3439                 if ((virt_to_phys((void *)page_list[i]) &
3440                      (LCLA_ALIGNMENT - 1)) == 0)
3441                         break;
3442         }
3443 
3444         for (j = 0; j < i; j++)
3445                 free_pages(page_list[j], base->lcla_pool.pages);
3446 
3447         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3448                 base->lcla_pool.base = (void *)page_list[i];
3449         } else {
3450                 /*
3451                  * After many attempts and no succees with finding the correct
3452                  * alignment, try with allocating a big buffer.
3453                  */
3454                 dev_warn(base->dev,
3455                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3456                          __func__, base->lcla_pool.pages);
3457                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3458                                                          base->num_phy_chans +
3459                                                          LCLA_ALIGNMENT,
3460                                                          GFP_KERNEL);
3461                 if (!base->lcla_pool.base_unaligned) {
3462                         ret = -ENOMEM;
3463                         goto failure;
3464                 }
3465 
3466                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3467                                                  LCLA_ALIGNMENT);
3468         }
3469 
3470         pool->dma_addr = dma_map_single(base->dev, pool->base,
3471                                         SZ_1K * base->num_phy_chans,
3472                                         DMA_TO_DEVICE);
3473         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3474                 pool->dma_addr = 0;
3475                 ret = -ENOMEM;
3476                 goto failure;
3477         }
3478 
3479         writel(virt_to_phys(base->lcla_pool.base),
3480                base->virtbase + D40_DREG_LCLA);
3481 failure:
3482         kfree(page_list);
3483         return ret;
3484 }
3485 
3486 static int __init d40_of_probe(struct platform_device *pdev,
3487                                struct device_node *np)
3488 {
3489         struct stedma40_platform_data *pdata;
3490         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3491         const __be32 *list;
3492 
3493         pdata = devm_kzalloc(&pdev->dev,
3494                              sizeof(struct stedma40_platform_data),
3495                              GFP_KERNEL);
3496         if (!pdata)
3497                 return -ENOMEM;
3498 
3499         /* If absent this value will be obtained from h/w. */
3500         of_property_read_u32(np, "dma-channels", &num_phy);
3501         if (num_phy > 0)
3502                 pdata->num_of_phy_chans = num_phy;
3503 
3504         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3505         num_memcpy /= sizeof(*list);
3506 
3507         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3508                 d40_err(&pdev->dev,
3509                         "Invalid number of memcpy channels specified (%d)\n",
3510                         num_memcpy);
3511                 return -EINVAL;
3512         }
3513         pdata->num_of_memcpy_chans = num_memcpy;
3514 
3515         of_property_read_u32_array(np, "memcpy-channels",
3516                                    dma40_memcpy_channels,
3517                                    num_memcpy);
3518 
3519         list = of_get_property(np, "disabled-channels", &num_disabled);
3520         num_disabled /= sizeof(*list);
3521 
3522         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3523                 d40_err(&pdev->dev,
3524                         "Invalid number of disabled channels specified (%d)\n",
3525                         num_disabled);
3526                 return -EINVAL;
3527         }
3528 
3529         of_property_read_u32_array(np, "disabled-channels",
3530                                    pdata->disabled_channels,
3531                                    num_disabled);
3532         pdata->disabled_channels[num_disabled] = -1;
3533 
3534         pdev->dev.platform_data = pdata;
3535 
3536         return 0;
3537 }
3538 
3539 static int __init d40_probe(struct platform_device *pdev)
3540 {
3541         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3542         struct device_node *np = pdev->dev.of_node;
3543         int ret = -ENOENT;
3544         struct d40_base *base = NULL;
3545         struct resource *res = NULL;
3546         int num_reserved_chans;
3547         u32 val;
3548 
3549         if (!plat_data) {
3550                 if (np) {
3551                         if(d40_of_probe(pdev, np)) {
3552                                 ret = -ENOMEM;
3553                                 goto failure;
3554                         }
3555                 } else {
3556                         d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3557                         goto failure;
3558                 }
3559         }
3560 
3561         base = d40_hw_detect_init(pdev);
3562         if (!base)
3563                 goto failure;
3564 
3565         num_reserved_chans = d40_phy_res_init(base);
3566 
3567         platform_set_drvdata(pdev, base);
3568 
3569         spin_lock_init(&base->interrupt_lock);
3570         spin_lock_init(&base->execmd_lock);
3571 
3572         /* Get IO for logical channel parameter address */
3573         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3574         if (!res) {
3575                 ret = -ENOENT;
3576                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3577                 goto failure;
3578         }
3579         base->lcpa_size = resource_size(res);
3580         base->phy_lcpa = res->start;
3581 
3582         if (request_mem_region(res->start, resource_size(res),
3583                                D40_NAME " I/O lcpa") == NULL) {
3584                 ret = -EBUSY;
3585                 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3586                 goto failure;
3587         }
3588 
3589         /* We make use of ESRAM memory for this. */
3590         val = readl(base->virtbase + D40_DREG_LCPA);
3591         if (res->start != val && val != 0) {
3592                 dev_warn(&pdev->dev,
3593                          "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3594                          __func__, val, &res->start);
3595         } else
3596                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3597 
3598         base->lcpa_base = ioremap(res->start, resource_size(res));
3599         if (!base->lcpa_base) {
3600                 ret = -ENOMEM;
3601                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3602                 goto failure;
3603         }
3604         /* If lcla has to be located in ESRAM we don't need to allocate */
3605         if (base->plat_data->use_esram_lcla) {
3606                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3607                                                         "lcla_esram");
3608                 if (!res) {
3609                         ret = -ENOENT;
3610                         d40_err(&pdev->dev,
3611                                 "No \"lcla_esram\" memory resource\n");
3612                         goto failure;
3613                 }
3614                 base->lcla_pool.base = ioremap(res->start,
3615                                                 resource_size(res));
3616                 if (!base->lcla_pool.base) {
3617                         ret = -ENOMEM;
3618                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3619                         goto failure;
3620                 }
3621                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3622 
3623         } else {
3624                 ret = d40_lcla_allocate(base);
3625                 if (ret) {
3626                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3627                         goto failure;
3628                 }
3629         }
3630 
3631         spin_lock_init(&base->lcla_pool.lock);
3632 
3633         base->irq = platform_get_irq(pdev, 0);
3634 
3635         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3636         if (ret) {
3637                 d40_err(&pdev->dev, "No IRQ defined\n");
3638                 goto failure;
3639         }
3640 
3641         if (base->plat_data->use_esram_lcla) {
3642 
3643                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3644                 if (IS_ERR(base->lcpa_regulator)) {
3645                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3646                         ret = PTR_ERR(base->lcpa_regulator);
3647                         base->lcpa_regulator = NULL;
3648                         goto failure;
3649                 }
3650 
3651                 ret = regulator_enable(base->lcpa_regulator);
3652                 if (ret) {
3653                         d40_err(&pdev->dev,
3654                                 "Failed to enable lcpa_regulator\n");
3655                         regulator_put(base->lcpa_regulator);
3656                         base->lcpa_regulator = NULL;
3657                         goto failure;
3658                 }
3659         }
3660 
3661         writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3662 
3663         pm_runtime_irq_safe(base->dev);
3664         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3665         pm_runtime_use_autosuspend(base->dev);
3666         pm_runtime_mark_last_busy(base->dev);
3667         pm_runtime_set_active(base->dev);
3668         pm_runtime_enable(base->dev);
3669 
3670         ret = d40_dmaengine_init(base, num_reserved_chans);
3671         if (ret)
3672                 goto failure;
3673 
3674         base->dev->dma_parms = &base->dma_parms;
3675         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3676         if (ret) {
3677                 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3678                 goto failure;
3679         }
3680 
3681         d40_hw_init(base);
3682 
3683         if (np) {
3684                 ret = of_dma_controller_register(np, d40_xlate, NULL);
3685                 if (ret)
3686                         dev_err(&pdev->dev,
3687                                 "could not register of_dma_controller\n");
3688         }
3689 
3690         dev_info(base->dev, "initialized\n");
3691         return 0;
3692 
3693 failure:
3694         if (base) {
3695                 if (base->desc_slab)
3696                         kmem_cache_destroy(base->desc_slab);
3697                 if (base->virtbase)
3698                         iounmap(base->virtbase);
3699 
3700                 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3701                         iounmap(base->lcla_pool.base);
3702                         base->lcla_pool.base = NULL;
3703                 }
3704 
3705                 if (base->lcla_pool.dma_addr)
3706                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3707                                          SZ_1K * base->num_phy_chans,
3708                                          DMA_TO_DEVICE);
3709 
3710                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3711                         free_pages((unsigned long)base->lcla_pool.base,
3712                                    base->lcla_pool.pages);
3713 
3714                 kfree(base->lcla_pool.base_unaligned);
3715 
3716                 if (base->phy_lcpa)
3717                         release_mem_region(base->phy_lcpa,
3718                                            base->lcpa_size);
3719                 if (base->phy_start)
3720                         release_mem_region(base->phy_start,
3721                                            base->phy_size);
3722                 if (base->clk) {
3723                         clk_disable_unprepare(base->clk);
3724                         clk_put(base->clk);
3725                 }
3726 
3727                 if (base->lcpa_regulator) {
3728                         regulator_disable(base->lcpa_regulator);
3729                         regulator_put(base->lcpa_regulator);
3730                 }
3731 
3732                 kfree(base->lcla_pool.alloc_map);
3733                 kfree(base->lookup_log_chans);
3734                 kfree(base->lookup_phy_chans);
3735                 kfree(base->phy_res);
3736                 kfree(base);
3737         }
3738 
3739         d40_err(&pdev->dev, "probe failed\n");
3740         return ret;
3741 }
3742 
3743 static const struct of_device_id d40_match[] = {
3744         { .compatible = "stericsson,dma40", },
3745         {}
3746 };
3747 
3748 static struct platform_driver d40_driver = {
3749         .driver = {
3750                 .name  = D40_NAME,
3751                 .pm = &dma40_pm_ops,
3752                 .of_match_table = d40_match,
3753         },
3754 };
3755 
3756 static int __init stedma40_init(void)
3757 {
3758         return platform_driver_probe(&d40_driver, d40_probe);
3759 }
3760 subsys_initcall(stedma40_init);
3761 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us