Version:  2.0.40 2.2.26 2.4.37 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2

Linux/drivers/dma/s3c24xx-dma.c

  1 /*
  2  * S3C24XX DMA handling
  3  *
  4  * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
  5  *
  6  * based on amba-pl08x.c
  7  *
  8  * Copyright (c) 2006 ARM Ltd.
  9  * Copyright (c) 2010 ST-Ericsson SA
 10  *
 11  * Author: Peter Pearse <peter.pearse@arm.com>
 12  * Author: Linus Walleij <linus.walleij@stericsson.com>
 13  *
 14  * This program is free software; you can redistribute it and/or modify it
 15  * under the terms of the GNU General Public License as published by the Free
 16  * Software Foundation; either version 2 of the License, or (at your option)
 17  * any later version.
 18  *
 19  * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
 20  * that can be routed to any of the 4 to 8 hardware-channels.
 21  *
 22  * Therefore on these DMA controllers the number of channels
 23  * and the number of incoming DMA signals are two totally different things.
 24  * It is usually not possible to theoretically handle all physical signals,
 25  * so a multiplexing scheme with possible denial of use is necessary.
 26  *
 27  * Open items:
 28  * - bursts
 29  */
 30 
 31 #include <linux/platform_device.h>
 32 #include <linux/types.h>
 33 #include <linux/dmaengine.h>
 34 #include <linux/dma-mapping.h>
 35 #include <linux/interrupt.h>
 36 #include <linux/clk.h>
 37 #include <linux/module.h>
 38 #include <linux/slab.h>
 39 #include <linux/platform_data/dma-s3c24xx.h>
 40 
 41 #include "dmaengine.h"
 42 #include "virt-dma.h"
 43 
 44 #define MAX_DMA_CHANNELS        8
 45 
 46 #define S3C24XX_DISRC                   0x00
 47 #define S3C24XX_DISRCC                  0x04
 48 #define S3C24XX_DISRCC_INC_INCREMENT    0
 49 #define S3C24XX_DISRCC_INC_FIXED        BIT(0)
 50 #define S3C24XX_DISRCC_LOC_AHB          0
 51 #define S3C24XX_DISRCC_LOC_APB          BIT(1)
 52 
 53 #define S3C24XX_DIDST                   0x08
 54 #define S3C24XX_DIDSTC                  0x0c
 55 #define S3C24XX_DIDSTC_INC_INCREMENT    0
 56 #define S3C24XX_DIDSTC_INC_FIXED        BIT(0)
 57 #define S3C24XX_DIDSTC_LOC_AHB          0
 58 #define S3C24XX_DIDSTC_LOC_APB          BIT(1)
 59 #define S3C24XX_DIDSTC_INT_TC0          0
 60 #define S3C24XX_DIDSTC_INT_RELOAD       BIT(2)
 61 
 62 #define S3C24XX_DCON                    0x10
 63 
 64 #define S3C24XX_DCON_TC_MASK            0xfffff
 65 #define S3C24XX_DCON_DSZ_BYTE           (0 << 20)
 66 #define S3C24XX_DCON_DSZ_HALFWORD       (1 << 20)
 67 #define S3C24XX_DCON_DSZ_WORD           (2 << 20)
 68 #define S3C24XX_DCON_DSZ_MASK           (3 << 20)
 69 #define S3C24XX_DCON_DSZ_SHIFT          20
 70 #define S3C24XX_DCON_AUTORELOAD         0
 71 #define S3C24XX_DCON_NORELOAD           BIT(22)
 72 #define S3C24XX_DCON_HWTRIG             BIT(23)
 73 #define S3C24XX_DCON_HWSRC_SHIFT        24
 74 #define S3C24XX_DCON_SERV_SINGLE        0
 75 #define S3C24XX_DCON_SERV_WHOLE         BIT(27)
 76 #define S3C24XX_DCON_TSZ_UNIT           0
 77 #define S3C24XX_DCON_TSZ_BURST4         BIT(28)
 78 #define S3C24XX_DCON_INT                BIT(29)
 79 #define S3C24XX_DCON_SYNC_PCLK          0
 80 #define S3C24XX_DCON_SYNC_HCLK          BIT(30)
 81 #define S3C24XX_DCON_DEMAND             0
 82 #define S3C24XX_DCON_HANDSHAKE          BIT(31)
 83 
 84 #define S3C24XX_DSTAT                   0x14
 85 #define S3C24XX_DSTAT_STAT_BUSY         BIT(20)
 86 #define S3C24XX_DSTAT_CURRTC_MASK       0xfffff
 87 
 88 #define S3C24XX_DMASKTRIG               0x20
 89 #define S3C24XX_DMASKTRIG_SWTRIG        BIT(0)
 90 #define S3C24XX_DMASKTRIG_ON            BIT(1)
 91 #define S3C24XX_DMASKTRIG_STOP          BIT(2)
 92 
 93 #define S3C24XX_DMAREQSEL               0x24
 94 #define S3C24XX_DMAREQSEL_HW            BIT(0)
 95 
 96 /*
 97  * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
 98  * for a DMA source. Instead only specific channels are valid.
 99  * All of these SoCs have 4 physical channels and the number of request
100  * source bits is 3. Additionally we also need 1 bit to mark the channel
101  * as valid.
102  * Therefore we separate the chansel element of the channel data into 4
103  * parts of 4 bits each, to hold the information if the channel is valid
104  * and the hw request source to use.
105  *
106  * Example:
107  * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108  * For it the chansel field would look like
109  *
110  * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111  * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112  * ((BIT(3) | 2) << 0 * 4)   // channel 0, with request source 2
113  */
114 #define S3C24XX_CHANSEL_WIDTH           4
115 #define S3C24XX_CHANSEL_VALID           BIT(3)
116 #define S3C24XX_CHANSEL_REQ_MASK        7
117 
118 /*
119  * struct soc_data - vendor-specific config parameters for individual SoCs
120  * @stride: spacing between the registers of each channel
121  * @has_reqsel: does the controller use the newer requestselection mechanism
122  * @has_clocks: are controllable dma-clocks present
123  */
124 struct soc_data {
125         int stride;
126         bool has_reqsel;
127         bool has_clocks;
128 };
129 
130 /*
131  * enum s3c24xx_dma_chan_state - holds the virtual channel states
132  * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133  * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134  * channel and is running a transfer on it
135  * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136  * channel to become available (only pertains to memcpy channels)
137  */
138 enum s3c24xx_dma_chan_state {
139         S3C24XX_DMA_CHAN_IDLE,
140         S3C24XX_DMA_CHAN_RUNNING,
141         S3C24XX_DMA_CHAN_WAITING,
142 };
143 
144 /*
145  * struct s3c24xx_sg - structure containing data per sg
146  * @src_addr: src address of sg
147  * @dst_addr: dst address of sg
148  * @len: transfer len in bytes
149  * @node: node for txd's dsg_list
150  */
151 struct s3c24xx_sg {
152         dma_addr_t src_addr;
153         dma_addr_t dst_addr;
154         size_t len;
155         struct list_head node;
156 };
157 
158 /*
159  * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160  * @vd: virtual DMA descriptor
161  * @dsg_list: list of children sg's
162  * @at: sg currently being transfered
163  * @width: transfer width
164  * @disrcc: value for source control register
165  * @didstc: value for destination control register
166  * @dcon: base value for dcon register
167  * @cyclic: indicate cyclic transfer
168  */
169 struct s3c24xx_txd {
170         struct virt_dma_desc vd;
171         struct list_head dsg_list;
172         struct list_head *at;
173         u8 width;
174         u32 disrcc;
175         u32 didstc;
176         u32 dcon;
177         bool cyclic;
178 };
179 
180 struct s3c24xx_dma_chan;
181 
182 /*
183  * struct s3c24xx_dma_phy - holder for the physical channels
184  * @id: physical index to this channel
185  * @valid: does the channel have all required elements
186  * @base: virtual memory base (remapped) for the this channel
187  * @irq: interrupt for this channel
188  * @clk: clock for this channel
189  * @lock: a lock to use when altering an instance of this struct
190  * @serving: virtual channel currently being served by this physicalchannel
191  * @host: a pointer to the host (internal use)
192  */
193 struct s3c24xx_dma_phy {
194         unsigned int                    id;
195         bool                            valid;
196         void __iomem                    *base;
197         int                             irq;
198         struct clk                      *clk;
199         spinlock_t                      lock;
200         struct s3c24xx_dma_chan         *serving;
201         struct s3c24xx_dma_engine       *host;
202 };
203 
204 /*
205  * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
206  * @id: the id of the channel
207  * @name: name of the channel
208  * @vc: wrappped virtual channel
209  * @phy: the physical channel utilized by this channel, if there is one
210  * @runtime_addr: address for RX/TX according to the runtime config
211  * @at: active transaction on this channel
212  * @lock: a lock for this channel data
213  * @host: a pointer to the host (internal use)
214  * @state: whether the channel is idle, running etc
215  * @slave: whether this channel is a device (slave) or for memcpy
216  */
217 struct s3c24xx_dma_chan {
218         int id;
219         const char *name;
220         struct virt_dma_chan vc;
221         struct s3c24xx_dma_phy *phy;
222         struct dma_slave_config cfg;
223         struct s3c24xx_txd *at;
224         struct s3c24xx_dma_engine *host;
225         enum s3c24xx_dma_chan_state state;
226         bool slave;
227 };
228 
229 /*
230  * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
231  * @pdev: the corresponding platform device
232  * @pdata: platform data passed in from the platform/machine
233  * @base: virtual memory base (remapped)
234  * @slave: slave engine for this instance
235  * @memcpy: memcpy engine for this instance
236  * @phy_chans: array of data for the physical channels
237  */
238 struct s3c24xx_dma_engine {
239         struct platform_device                  *pdev;
240         const struct s3c24xx_dma_platdata       *pdata;
241         struct soc_data                         *sdata;
242         void __iomem                            *base;
243         struct dma_device                       slave;
244         struct dma_device                       memcpy;
245         struct s3c24xx_dma_phy                  *phy_chans;
246 };
247 
248 /*
249  * Physical channel handling
250  */
251 
252 /*
253  * Check whether a certain channel is busy or not.
254  */
255 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
256 {
257         unsigned int val = readl(phy->base + S3C24XX_DSTAT);
258         return val & S3C24XX_DSTAT_STAT_BUSY;
259 }
260 
261 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
262                                   struct s3c24xx_dma_phy *phy)
263 {
264         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
265         const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
266         struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
267         int phyvalid;
268 
269         /* every phy is valid for memcopy channels */
270         if (!s3cchan->slave)
271                 return true;
272 
273         /* On newer variants all phys can be used for all virtual channels */
274         if (s3cdma->sdata->has_reqsel)
275                 return true;
276 
277         phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
278         return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
279 }
280 
281 /*
282  * Allocate a physical channel for a virtual channel
283  *
284  * Try to locate a physical channel to be used for this transfer. If all
285  * are taken return NULL and the requester will have to cope by using
286  * some fallback PIO mode or retrying later.
287  */
288 static
289 struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
290 {
291         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
292         const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
293         struct s3c24xx_dma_channel *cdata;
294         struct s3c24xx_dma_phy *phy = NULL;
295         unsigned long flags;
296         int i;
297         int ret;
298 
299         if (s3cchan->slave)
300                 cdata = &pdata->channels[s3cchan->id];
301 
302         for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
303                 phy = &s3cdma->phy_chans[i];
304 
305                 if (!phy->valid)
306                         continue;
307 
308                 if (!s3c24xx_dma_phy_valid(s3cchan, phy))
309                         continue;
310 
311                 spin_lock_irqsave(&phy->lock, flags);
312 
313                 if (!phy->serving) {
314                         phy->serving = s3cchan;
315                         spin_unlock_irqrestore(&phy->lock, flags);
316                         break;
317                 }
318 
319                 spin_unlock_irqrestore(&phy->lock, flags);
320         }
321 
322         /* No physical channel available, cope with it */
323         if (i == s3cdma->pdata->num_phy_channels) {
324                 dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
325                 return NULL;
326         }
327 
328         /* start the phy clock */
329         if (s3cdma->sdata->has_clocks) {
330                 ret = clk_enable(phy->clk);
331                 if (ret) {
332                         dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
333                                 phy->id, ret);
334                         phy->serving = NULL;
335                         return NULL;
336                 }
337         }
338 
339         return phy;
340 }
341 
342 /*
343  * Mark the physical channel as free.
344  *
345  * This drops the link between the physical and virtual channel.
346  */
347 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
348 {
349         struct s3c24xx_dma_engine *s3cdma = phy->host;
350 
351         if (s3cdma->sdata->has_clocks)
352                 clk_disable(phy->clk);
353 
354         phy->serving = NULL;
355 }
356 
357 /*
358  * Stops the channel by writing the stop bit.
359  * This should not be used for an on-going transfer, but as a method of
360  * shutting down a channel (eg, when it's no longer used) or terminating a
361  * transfer.
362  */
363 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
364 {
365         writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
366 }
367 
368 /*
369  * Virtual channel handling
370  */
371 
372 static inline
373 struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
374 {
375         return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
376 }
377 
378 static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
379 {
380         struct s3c24xx_dma_phy *phy = s3cchan->phy;
381         struct s3c24xx_txd *txd = s3cchan->at;
382         u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
383 
384         return tc * txd->width;
385 }
386 
387 static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
388                                   struct dma_slave_config *config)
389 {
390         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
391         unsigned long flags;
392         int ret = 0;
393 
394         /* Reject definitely invalid configurations */
395         if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
396             config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
397                 return -EINVAL;
398 
399         spin_lock_irqsave(&s3cchan->vc.lock, flags);
400 
401         if (!s3cchan->slave) {
402                 ret = -EINVAL;
403                 goto out;
404         }
405 
406         s3cchan->cfg = *config;
407 
408 out:
409         spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
410         return ret;
411 }
412 
413 /*
414  * Transfer handling
415  */
416 
417 static inline
418 struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
419 {
420         return container_of(tx, struct s3c24xx_txd, vd.tx);
421 }
422 
423 static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
424 {
425         struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
426 
427         if (txd) {
428                 INIT_LIST_HEAD(&txd->dsg_list);
429                 txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
430         }
431 
432         return txd;
433 }
434 
435 static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
436 {
437         struct s3c24xx_sg *dsg, *_dsg;
438 
439         list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
440                 list_del(&dsg->node);
441                 kfree(dsg);
442         }
443 
444         kfree(txd);
445 }
446 
447 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
448                                        struct s3c24xx_txd *txd)
449 {
450         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
451         struct s3c24xx_dma_phy *phy = s3cchan->phy;
452         const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
453         struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
454         u32 dcon = txd->dcon;
455         u32 val;
456 
457         /* transfer-size and -count from len and width */
458         switch (txd->width) {
459         case 1:
460                 dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
461                 break;
462         case 2:
463                 dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
464                 break;
465         case 4:
466                 dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
467                 break;
468         }
469 
470         if (s3cchan->slave) {
471                 struct s3c24xx_dma_channel *cdata =
472                                         &pdata->channels[s3cchan->id];
473 
474                 if (s3cdma->sdata->has_reqsel) {
475                         writel_relaxed((cdata->chansel << 1) |
476                                                         S3C24XX_DMAREQSEL_HW,
477                                         phy->base + S3C24XX_DMAREQSEL);
478                 } else {
479                         int csel = cdata->chansel >> (phy->id *
480                                                         S3C24XX_CHANSEL_WIDTH);
481 
482                         csel &= S3C24XX_CHANSEL_REQ_MASK;
483                         dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
484                         dcon |= S3C24XX_DCON_HWTRIG;
485                 }
486         } else {
487                 if (s3cdma->sdata->has_reqsel)
488                         writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
489         }
490 
491         writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
492         writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
493         writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
494         writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
495         writel_relaxed(dcon, phy->base + S3C24XX_DCON);
496 
497         val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
498         val &= ~S3C24XX_DMASKTRIG_STOP;
499         val |= S3C24XX_DMASKTRIG_ON;
500 
501         /* trigger the dma operation for memcpy transfers */
502         if (!s3cchan->slave)
503                 val |= S3C24XX_DMASKTRIG_SWTRIG;
504 
505         writel(val, phy->base + S3C24XX_DMASKTRIG);
506 }
507 
508 /*
509  * Set the initial DMA register values and start first sg.
510  */
511 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
512 {
513         struct s3c24xx_dma_phy *phy = s3cchan->phy;
514         struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
515         struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
516 
517         list_del(&txd->vd.node);
518 
519         s3cchan->at = txd;
520 
521         /* Wait for channel inactive */
522         while (s3c24xx_dma_phy_busy(phy))
523                 cpu_relax();
524 
525         /* point to the first element of the sg list */
526         txd->at = txd->dsg_list.next;
527         s3c24xx_dma_start_next_sg(s3cchan, txd);
528 }
529 
530 static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
531                                 struct s3c24xx_dma_chan *s3cchan)
532 {
533         LIST_HEAD(head);
534 
535         vchan_get_all_descriptors(&s3cchan->vc, &head);
536         vchan_dma_desc_free_list(&s3cchan->vc, &head);
537 }
538 
539 /*
540  * Try to allocate a physical channel.  When successful, assign it to
541  * this virtual channel, and initiate the next descriptor.  The
542  * virtual channel lock must be held at this point.
543  */
544 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
545 {
546         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
547         struct s3c24xx_dma_phy *phy;
548 
549         phy = s3c24xx_dma_get_phy(s3cchan);
550         if (!phy) {
551                 dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
552                         s3cchan->name);
553                 s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
554                 return;
555         }
556 
557         dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
558                 phy->id, s3cchan->name);
559 
560         s3cchan->phy = phy;
561         s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
562 
563         s3c24xx_dma_start_next_txd(s3cchan);
564 }
565 
566 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
567         struct s3c24xx_dma_chan *s3cchan)
568 {
569         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
570 
571         dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
572                 phy->id, s3cchan->name);
573 
574         /*
575          * We do this without taking the lock; we're really only concerned
576          * about whether this pointer is NULL or not, and we're guaranteed
577          * that this will only be called when it _already_ is non-NULL.
578          */
579         phy->serving = s3cchan;
580         s3cchan->phy = phy;
581         s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
582         s3c24xx_dma_start_next_txd(s3cchan);
583 }
584 
585 /*
586  * Free a physical DMA channel, potentially reallocating it to another
587  * virtual channel if we have any pending.
588  */
589 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
590 {
591         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
592         struct s3c24xx_dma_chan *p, *next;
593 
594 retry:
595         next = NULL;
596 
597         /* Find a waiting virtual channel for the next transfer. */
598         list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
599                 if (p->state == S3C24XX_DMA_CHAN_WAITING) {
600                         next = p;
601                         break;
602                 }
603 
604         if (!next) {
605                 list_for_each_entry(p, &s3cdma->slave.channels,
606                                     vc.chan.device_node)
607                         if (p->state == S3C24XX_DMA_CHAN_WAITING &&
608                                       s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
609                                 next = p;
610                                 break;
611                         }
612         }
613 
614         /* Ensure that the physical channel is stopped */
615         s3c24xx_dma_terminate_phy(s3cchan->phy);
616 
617         if (next) {
618                 bool success;
619 
620                 /*
621                  * Eww.  We know this isn't going to deadlock
622                  * but lockdep probably doesn't.
623                  */
624                 spin_lock(&next->vc.lock);
625                 /* Re-check the state now that we have the lock */
626                 success = next->state == S3C24XX_DMA_CHAN_WAITING;
627                 if (success)
628                         s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
629                 spin_unlock(&next->vc.lock);
630 
631                 /* If the state changed, try to find another channel */
632                 if (!success)
633                         goto retry;
634         } else {
635                 /* No more jobs, so free up the physical channel */
636                 s3c24xx_dma_put_phy(s3cchan->phy);
637         }
638 
639         s3cchan->phy = NULL;
640         s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
641 }
642 
643 static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
644 {
645         struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
646         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
647 
648         if (!s3cchan->slave)
649                 dma_descriptor_unmap(&vd->tx);
650 
651         s3c24xx_dma_free_txd(txd);
652 }
653 
654 static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
655 {
656         struct s3c24xx_dma_phy *phy = data;
657         struct s3c24xx_dma_chan *s3cchan = phy->serving;
658         struct s3c24xx_txd *txd;
659 
660         dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
661 
662         /*
663          * Interrupts happen to notify the completion of a transfer and the
664          * channel should have moved into its stop state already on its own.
665          * Therefore interrupts on channels not bound to a virtual channel
666          * should never happen. Nevertheless send a terminate command to the
667          * channel if the unlikely case happens.
668          */
669         if (unlikely(!s3cchan)) {
670                 dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
671                         phy->id);
672 
673                 s3c24xx_dma_terminate_phy(phy);
674 
675                 return IRQ_HANDLED;
676         }
677 
678         spin_lock(&s3cchan->vc.lock);
679         txd = s3cchan->at;
680         if (txd) {
681                 /* when more sg's are in this txd, start the next one */
682                 if (!list_is_last(txd->at, &txd->dsg_list)) {
683                         txd->at = txd->at->next;
684                         if (txd->cyclic)
685                                 vchan_cyclic_callback(&txd->vd);
686                         s3c24xx_dma_start_next_sg(s3cchan, txd);
687                 } else if (!txd->cyclic) {
688                         s3cchan->at = NULL;
689                         vchan_cookie_complete(&txd->vd);
690 
691                         /*
692                          * And start the next descriptor (if any),
693                          * otherwise free this channel.
694                          */
695                         if (vchan_next_desc(&s3cchan->vc))
696                                 s3c24xx_dma_start_next_txd(s3cchan);
697                         else
698                                 s3c24xx_dma_phy_free(s3cchan);
699                 } else {
700                         vchan_cyclic_callback(&txd->vd);
701 
702                         /* Cyclic: reset at beginning */
703                         txd->at = txd->dsg_list.next;
704                         s3c24xx_dma_start_next_sg(s3cchan, txd);
705                 }
706         }
707         spin_unlock(&s3cchan->vc.lock);
708 
709         return IRQ_HANDLED;
710 }
711 
712 /*
713  * The DMA ENGINE API
714  */
715 
716 static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
717 {
718         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
719         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
720         unsigned long flags;
721         int ret = 0;
722 
723         spin_lock_irqsave(&s3cchan->vc.lock, flags);
724 
725         if (!s3cchan->phy && !s3cchan->at) {
726                 dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
727                         s3cchan->id);
728                 ret = -EINVAL;
729                 goto unlock;
730         }
731 
732         s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
733 
734         /* Mark physical channel as free */
735         if (s3cchan->phy)
736                 s3c24xx_dma_phy_free(s3cchan);
737 
738         /* Dequeue current job */
739         if (s3cchan->at) {
740                 s3c24xx_dma_desc_free(&s3cchan->at->vd);
741                 s3cchan->at = NULL;
742         }
743 
744         /* Dequeue jobs not yet fired as well */
745         s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
746 unlock:
747         spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
748 
749         return ret;
750 }
751 
752 static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
753 {
754         /* Ensure all queued descriptors are freed */
755         vchan_free_chan_resources(to_virt_chan(chan));
756 }
757 
758 static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
759                 dma_cookie_t cookie, struct dma_tx_state *txstate)
760 {
761         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
762         struct s3c24xx_txd *txd;
763         struct s3c24xx_sg *dsg;
764         struct virt_dma_desc *vd;
765         unsigned long flags;
766         enum dma_status ret;
767         size_t bytes = 0;
768 
769         spin_lock_irqsave(&s3cchan->vc.lock, flags);
770         ret = dma_cookie_status(chan, cookie, txstate);
771         if (ret == DMA_COMPLETE) {
772                 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
773                 return ret;
774         }
775 
776         /*
777          * There's no point calculating the residue if there's
778          * no txstate to store the value.
779          */
780         if (!txstate) {
781                 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
782                 return ret;
783         }
784 
785         vd = vchan_find_desc(&s3cchan->vc, cookie);
786         if (vd) {
787                 /* On the issued list, so hasn't been processed yet */
788                 txd = to_s3c24xx_txd(&vd->tx);
789 
790                 list_for_each_entry(dsg, &txd->dsg_list, node)
791                         bytes += dsg->len;
792         } else {
793                 /*
794                  * Currently running, so sum over the pending sg's and
795                  * the currently active one.
796                  */
797                 txd = s3cchan->at;
798 
799                 dsg = list_entry(txd->at, struct s3c24xx_sg, node);
800                 list_for_each_entry_from(dsg, &txd->dsg_list, node)
801                         bytes += dsg->len;
802 
803                 bytes += s3c24xx_dma_getbytes_chan(s3cchan);
804         }
805         spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
806 
807         /*
808          * This cookie not complete yet
809          * Get number of bytes left in the active transactions and queue
810          */
811         dma_set_residue(txstate, bytes);
812 
813         /* Whether waiting or running, we're in progress */
814         return ret;
815 }
816 
817 /*
818  * Initialize a descriptor to be used by memcpy submit
819  */
820 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
821                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
822                 size_t len, unsigned long flags)
823 {
824         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
825         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
826         struct s3c24xx_txd *txd;
827         struct s3c24xx_sg *dsg;
828         int src_mod, dest_mod;
829 
830         dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %d bytes from %s\n",
831                         len, s3cchan->name);
832 
833         if ((len & S3C24XX_DCON_TC_MASK) != len) {
834                 dev_err(&s3cdma->pdev->dev, "memcpy size %d to large\n", len);
835                 return NULL;
836         }
837 
838         txd = s3c24xx_dma_get_txd();
839         if (!txd)
840                 return NULL;
841 
842         dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
843         if (!dsg) {
844                 s3c24xx_dma_free_txd(txd);
845                 return NULL;
846         }
847         list_add_tail(&dsg->node, &txd->dsg_list);
848 
849         dsg->src_addr = src;
850         dsg->dst_addr = dest;
851         dsg->len = len;
852 
853         /*
854          * Determine a suitable transfer width.
855          * The DMA controller cannot fetch/store information which is not
856          * naturally aligned on the bus, i.e., a 4 byte fetch must start at
857          * an address divisible by 4 - more generally addr % width must be 0.
858          */
859         src_mod = src % 4;
860         dest_mod = dest % 4;
861         switch (len % 4) {
862         case 0:
863                 txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
864                 break;
865         case 2:
866                 txd->width = ((src_mod == 2 || src_mod == 0) &&
867                               (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
868                 break;
869         default:
870                 txd->width = 1;
871                 break;
872         }
873 
874         txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
875         txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
876         txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
877                      S3C24XX_DCON_SERV_WHOLE;
878 
879         return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
880 }
881 
882 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
883         struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
884         enum dma_transfer_direction direction, unsigned long flags)
885 {
886         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
887         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
888         const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
889         struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
890         struct s3c24xx_txd *txd;
891         struct s3c24xx_sg *dsg;
892         unsigned sg_len;
893         dma_addr_t slave_addr;
894         u32 hwcfg = 0;
895         int i;
896 
897         dev_dbg(&s3cdma->pdev->dev,
898                 "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
899                 size, period, s3cchan->name);
900 
901         if (!is_slave_direction(direction)) {
902                 dev_err(&s3cdma->pdev->dev,
903                         "direction %d unsupported\n", direction);
904                 return NULL;
905         }
906 
907         txd = s3c24xx_dma_get_txd();
908         if (!txd)
909                 return NULL;
910 
911         txd->cyclic = 1;
912 
913         if (cdata->handshake)
914                 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
915 
916         switch (cdata->bus) {
917         case S3C24XX_DMA_APB:
918                 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
919                 hwcfg |= S3C24XX_DISRCC_LOC_APB;
920                 break;
921         case S3C24XX_DMA_AHB:
922                 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
923                 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
924                 break;
925         }
926 
927         /*
928          * Always assume our peripheral desintation is a fixed
929          * address in memory.
930          */
931         hwcfg |= S3C24XX_DISRCC_INC_FIXED;
932 
933         /*
934          * Individual dma operations are requested by the slave,
935          * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
936          */
937         txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
938 
939         if (direction == DMA_MEM_TO_DEV) {
940                 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
941                               S3C24XX_DISRCC_INC_INCREMENT;
942                 txd->didstc = hwcfg;
943                 slave_addr = s3cchan->cfg.dst_addr;
944                 txd->width = s3cchan->cfg.dst_addr_width;
945         } else {
946                 txd->disrcc = hwcfg;
947                 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
948                               S3C24XX_DIDSTC_INC_INCREMENT;
949                 slave_addr = s3cchan->cfg.src_addr;
950                 txd->width = s3cchan->cfg.src_addr_width;
951         }
952 
953         sg_len = size / period;
954 
955         for (i = 0; i < sg_len; i++) {
956                 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
957                 if (!dsg) {
958                         s3c24xx_dma_free_txd(txd);
959                         return NULL;
960                 }
961                 list_add_tail(&dsg->node, &txd->dsg_list);
962 
963                 dsg->len = period;
964                 /* Check last period length */
965                 if (i == sg_len - 1)
966                         dsg->len = size - period * i;
967                 if (direction == DMA_MEM_TO_DEV) {
968                         dsg->src_addr = addr + period * i;
969                         dsg->dst_addr = slave_addr;
970                 } else { /* DMA_DEV_TO_MEM */
971                         dsg->src_addr = slave_addr;
972                         dsg->dst_addr = addr + period * i;
973                 }
974         }
975 
976         return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
977 }
978 
979 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
980                 struct dma_chan *chan, struct scatterlist *sgl,
981                 unsigned int sg_len, enum dma_transfer_direction direction,
982                 unsigned long flags, void *context)
983 {
984         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
985         struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
986         const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
987         struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
988         struct s3c24xx_txd *txd;
989         struct s3c24xx_sg *dsg;
990         struct scatterlist *sg;
991         dma_addr_t slave_addr;
992         u32 hwcfg = 0;
993         int tmp;
994 
995         dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
996                         sg_dma_len(sgl), s3cchan->name);
997 
998         txd = s3c24xx_dma_get_txd();
999         if (!txd)
1000                 return NULL;
1001 
1002         if (cdata->handshake)
1003                 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
1004 
1005         switch (cdata->bus) {
1006         case S3C24XX_DMA_APB:
1007                 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1008                 hwcfg |= S3C24XX_DISRCC_LOC_APB;
1009                 break;
1010         case S3C24XX_DMA_AHB:
1011                 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1012                 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1013                 break;
1014         }
1015 
1016         /*
1017          * Always assume our peripheral desintation is a fixed
1018          * address in memory.
1019          */
1020         hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1021 
1022         /*
1023          * Individual dma operations are requested by the slave,
1024          * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1025          */
1026         txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1027 
1028         if (direction == DMA_MEM_TO_DEV) {
1029                 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1030                               S3C24XX_DISRCC_INC_INCREMENT;
1031                 txd->didstc = hwcfg;
1032                 slave_addr = s3cchan->cfg.dst_addr;
1033                 txd->width = s3cchan->cfg.dst_addr_width;
1034         } else if (direction == DMA_DEV_TO_MEM) {
1035                 txd->disrcc = hwcfg;
1036                 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1037                               S3C24XX_DIDSTC_INC_INCREMENT;
1038                 slave_addr = s3cchan->cfg.src_addr;
1039                 txd->width = s3cchan->cfg.src_addr_width;
1040         } else {
1041                 s3c24xx_dma_free_txd(txd);
1042                 dev_err(&s3cdma->pdev->dev,
1043                         "direction %d unsupported\n", direction);
1044                 return NULL;
1045         }
1046 
1047         for_each_sg(sgl, sg, sg_len, tmp) {
1048                 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1049                 if (!dsg) {
1050                         s3c24xx_dma_free_txd(txd);
1051                         return NULL;
1052                 }
1053                 list_add_tail(&dsg->node, &txd->dsg_list);
1054 
1055                 dsg->len = sg_dma_len(sg);
1056                 if (direction == DMA_MEM_TO_DEV) {
1057                         dsg->src_addr = sg_dma_address(sg);
1058                         dsg->dst_addr = slave_addr;
1059                 } else { /* DMA_DEV_TO_MEM */
1060                         dsg->src_addr = slave_addr;
1061                         dsg->dst_addr = sg_dma_address(sg);
1062                 }
1063         }
1064 
1065         return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1066 }
1067 
1068 /*
1069  * Slave transactions callback to the slave device to allow
1070  * synchronization of slave DMA signals with the DMAC enable
1071  */
1072 static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1073 {
1074         struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1075         unsigned long flags;
1076 
1077         spin_lock_irqsave(&s3cchan->vc.lock, flags);
1078         if (vchan_issue_pending(&s3cchan->vc)) {
1079                 if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1080                         s3c24xx_dma_phy_alloc_and_start(s3cchan);
1081         }
1082         spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1083 }
1084 
1085 /*
1086  * Bringup and teardown
1087  */
1088 
1089 /*
1090  * Initialise the DMAC memcpy/slave channels.
1091  * Make a local wrapper to hold required data
1092  */
1093 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1094                 struct dma_device *dmadev, unsigned int channels, bool slave)
1095 {
1096         struct s3c24xx_dma_chan *chan;
1097         int i;
1098 
1099         INIT_LIST_HEAD(&dmadev->channels);
1100 
1101         /*
1102          * Register as many many memcpy as we have physical channels,
1103          * we won't always be able to use all but the code will have
1104          * to cope with that situation.
1105          */
1106         for (i = 0; i < channels; i++) {
1107                 chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1108                 if (!chan) {
1109                         dev_err(dmadev->dev,
1110                                 "%s no memory for channel\n", __func__);
1111                         return -ENOMEM;
1112                 }
1113 
1114                 chan->id = i;
1115                 chan->host = s3cdma;
1116                 chan->state = S3C24XX_DMA_CHAN_IDLE;
1117 
1118                 if (slave) {
1119                         chan->slave = true;
1120                         chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1121                         if (!chan->name)
1122                                 return -ENOMEM;
1123                 } else {
1124                         chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1125                         if (!chan->name)
1126                                 return -ENOMEM;
1127                 }
1128                 dev_dbg(dmadev->dev,
1129                          "initialize virtual channel \"%s\"\n",
1130                          chan->name);
1131 
1132                 chan->vc.desc_free = s3c24xx_dma_desc_free;
1133                 vchan_init(&chan->vc, dmadev);
1134         }
1135         dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1136                  i, slave ? "slave" : "memcpy");
1137         return i;
1138 }
1139 
1140 static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1141 {
1142         struct s3c24xx_dma_chan *chan = NULL;
1143         struct s3c24xx_dma_chan *next;
1144 
1145         list_for_each_entry_safe(chan,
1146                                  next, &dmadev->channels, vc.chan.device_node)
1147                 list_del(&chan->vc.chan.device_node);
1148 }
1149 
1150 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1151 static struct soc_data soc_s3c2410 = {
1152         .stride = 0x40,
1153         .has_reqsel = false,
1154         .has_clocks = false,
1155 };
1156 
1157 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1158 static struct soc_data soc_s3c2412 = {
1159         .stride = 0x40,
1160         .has_reqsel = true,
1161         .has_clocks = true,
1162 };
1163 
1164 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1165 static struct soc_data soc_s3c2443 = {
1166         .stride = 0x100,
1167         .has_reqsel = true,
1168         .has_clocks = true,
1169 };
1170 
1171 static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
1172         {
1173                 .name           = "s3c2410-dma",
1174                 .driver_data    = (kernel_ulong_t)&soc_s3c2410,
1175         }, {
1176                 .name           = "s3c2412-dma",
1177                 .driver_data    = (kernel_ulong_t)&soc_s3c2412,
1178         }, {
1179                 .name           = "s3c2443-dma",
1180                 .driver_data    = (kernel_ulong_t)&soc_s3c2443,
1181         },
1182         { },
1183 };
1184 
1185 static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1186 {
1187         return (struct soc_data *)
1188                          platform_get_device_id(pdev)->driver_data;
1189 }
1190 
1191 static int s3c24xx_dma_probe(struct platform_device *pdev)
1192 {
1193         const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1194         struct s3c24xx_dma_engine *s3cdma;
1195         struct soc_data *sdata;
1196         struct resource *res;
1197         int ret;
1198         int i;
1199 
1200         if (!pdata) {
1201                 dev_err(&pdev->dev, "platform data missing\n");
1202                 return -ENODEV;
1203         }
1204 
1205         /* Basic sanity check */
1206         if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1207                 dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
1208                         pdata->num_phy_channels, MAX_DMA_CHANNELS);
1209                 return -EINVAL;
1210         }
1211 
1212         sdata = s3c24xx_dma_get_soc_data(pdev);
1213         if (!sdata)
1214                 return -EINVAL;
1215 
1216         s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1217         if (!s3cdma)
1218                 return -ENOMEM;
1219 
1220         s3cdma->pdev = pdev;
1221         s3cdma->pdata = pdata;
1222         s3cdma->sdata = sdata;
1223 
1224         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1225         s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1226         if (IS_ERR(s3cdma->base))
1227                 return PTR_ERR(s3cdma->base);
1228 
1229         s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
1230                                               sizeof(struct s3c24xx_dma_phy) *
1231                                                         pdata->num_phy_channels,
1232                                               GFP_KERNEL);
1233         if (!s3cdma->phy_chans)
1234                 return -ENOMEM;
1235 
1236         /* acquire irqs and clocks for all physical channels */
1237         for (i = 0; i < pdata->num_phy_channels; i++) {
1238                 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1239                 char clk_name[6];
1240 
1241                 phy->id = i;
1242                 phy->base = s3cdma->base + (i * sdata->stride);
1243                 phy->host = s3cdma;
1244 
1245                 phy->irq = platform_get_irq(pdev, i);
1246                 if (phy->irq < 0) {
1247                         dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
1248                                 i, phy->irq);
1249                         continue;
1250                 }
1251 
1252                 ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1253                                        0, pdev->name, phy);
1254                 if (ret) {
1255                         dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1256                                 i, ret);
1257                         continue;
1258                 }
1259 
1260                 if (sdata->has_clocks) {
1261                         sprintf(clk_name, "dma.%d", i);
1262                         phy->clk = devm_clk_get(&pdev->dev, clk_name);
1263                         if (IS_ERR(phy->clk) && sdata->has_clocks) {
1264                                 dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1265                                         i, PTR_ERR(phy->clk));
1266                                 continue;
1267                         }
1268 
1269                         ret = clk_prepare(phy->clk);
1270                         if (ret) {
1271                                 dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1272                                         i, ret);
1273                                 continue;
1274                         }
1275                 }
1276 
1277                 spin_lock_init(&phy->lock);
1278                 phy->valid = true;
1279 
1280                 dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1281                         i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1282         }
1283 
1284         /* Initialize memcpy engine */
1285         dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1286         dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1287         s3cdma->memcpy.dev = &pdev->dev;
1288         s3cdma->memcpy.device_free_chan_resources =
1289                                         s3c24xx_dma_free_chan_resources;
1290         s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1291         s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1292         s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1293         s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1294         s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1295 
1296         /* Initialize slave engine for SoC internal dedicated peripherals */
1297         dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1298         dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1299         dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1300         s3cdma->slave.dev = &pdev->dev;
1301         s3cdma->slave.device_free_chan_resources =
1302                                         s3c24xx_dma_free_chan_resources;
1303         s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1304         s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1305         s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1306         s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1307         s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1308         s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1309 
1310         /* Register as many memcpy channels as there are physical channels */
1311         ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1312                                                 pdata->num_phy_channels, false);
1313         if (ret <= 0) {
1314                 dev_warn(&pdev->dev,
1315                          "%s failed to enumerate memcpy channels - %d\n",
1316                          __func__, ret);
1317                 goto err_memcpy;
1318         }
1319 
1320         /* Register slave channels */
1321         ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1322                                 pdata->num_channels, true);
1323         if (ret <= 0) {
1324                 dev_warn(&pdev->dev,
1325                         "%s failed to enumerate slave channels - %d\n",
1326                                 __func__, ret);
1327                 goto err_slave;
1328         }
1329 
1330         ret = dma_async_device_register(&s3cdma->memcpy);
1331         if (ret) {
1332                 dev_warn(&pdev->dev,
1333                         "%s failed to register memcpy as an async device - %d\n",
1334                         __func__, ret);
1335                 goto err_memcpy_reg;
1336         }
1337 
1338         ret = dma_async_device_register(&s3cdma->slave);
1339         if (ret) {
1340                 dev_warn(&pdev->dev,
1341                         "%s failed to register slave as an async device - %d\n",
1342                         __func__, ret);
1343                 goto err_slave_reg;
1344         }
1345 
1346         platform_set_drvdata(pdev, s3cdma);
1347         dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1348                  pdata->num_phy_channels);
1349 
1350         return 0;
1351 
1352 err_slave_reg:
1353         dma_async_device_unregister(&s3cdma->memcpy);
1354 err_memcpy_reg:
1355         s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1356 err_slave:
1357         s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1358 err_memcpy:
1359         if (sdata->has_clocks)
1360                 for (i = 0; i < pdata->num_phy_channels; i++) {
1361                         struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1362                         if (phy->valid)
1363                                 clk_unprepare(phy->clk);
1364                 }
1365 
1366         return ret;
1367 }
1368 
1369 static int s3c24xx_dma_remove(struct platform_device *pdev)
1370 {
1371         const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1372         struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1373         struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1374         int i;
1375 
1376         dma_async_device_unregister(&s3cdma->slave);
1377         dma_async_device_unregister(&s3cdma->memcpy);
1378 
1379         s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1380         s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1381 
1382         if (sdata->has_clocks)
1383                 for (i = 0; i < pdata->num_phy_channels; i++) {
1384                         struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1385                         if (phy->valid)
1386                                 clk_unprepare(phy->clk);
1387                 }
1388 
1389         return 0;
1390 }
1391 
1392 static struct platform_driver s3c24xx_dma_driver = {
1393         .driver         = {
1394                 .name   = "s3c24xx-dma",
1395         },
1396         .id_table       = s3c24xx_dma_driver_ids,
1397         .probe          = s3c24xx_dma_probe,
1398         .remove         = s3c24xx_dma_remove,
1399 };
1400 
1401 module_platform_driver(s3c24xx_dma_driver);
1402 
1403 bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1404 {
1405         struct s3c24xx_dma_chan *s3cchan;
1406 
1407         if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1408                 return false;
1409 
1410         s3cchan = to_s3c24xx_dma_chan(chan);
1411 
1412         return s3cchan->id == (int)param;
1413 }
1414 EXPORT_SYMBOL(s3c24xx_dma_filter);
1415 
1416 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1417 MODULE_AUTHOR("Heiko Stuebner");
1418 MODULE_LICENSE("GPL v2");
1419 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us