Version:  2.0.40 2.2.26 2.4.37 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

Linux/drivers/dma/cppi41.c

  1 #include <linux/delay.h>
  2 #include <linux/dmaengine.h>
  3 #include <linux/dma-mapping.h>
  4 #include <linux/platform_device.h>
  5 #include <linux/module.h>
  6 #include <linux/of.h>
  7 #include <linux/slab.h>
  8 #include <linux/of_dma.h>
  9 #include <linux/of_irq.h>
 10 #include <linux/dmapool.h>
 11 #include <linux/interrupt.h>
 12 #include <linux/of_address.h>
 13 #include <linux/pm_runtime.h>
 14 #include "dmaengine.h"
 15 
 16 #define DESC_TYPE       27
 17 #define DESC_TYPE_HOST  0x10
 18 #define DESC_TYPE_TEARD 0x13
 19 
 20 #define TD_DESC_IS_RX   (1 << 16)
 21 #define TD_DESC_DMA_NUM 10
 22 
 23 #define DESC_LENGTH_BITS_NUM    21
 24 
 25 #define DESC_TYPE_USB   (5 << 26)
 26 #define DESC_PD_COMPLETE        (1 << 31)
 27 
 28 /* DMA engine */
 29 #define DMA_TDFDQ       4
 30 #define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
 31 #define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
 32 #define RXHPCRA0                4
 33 
 34 #define GCR_CHAN_ENABLE         (1 << 31)
 35 #define GCR_TEARDOWN            (1 << 30)
 36 #define GCR_STARV_RETRY         (1 << 24)
 37 #define GCR_DESC_TYPE_HOST      (1 << 14)
 38 
 39 /* DMA scheduler */
 40 #define DMA_SCHED_CTRL          0
 41 #define DMA_SCHED_CTRL_EN       (1 << 31)
 42 #define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
 43 
 44 #define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
 45 #define SCHED_ENTRY0_IS_RX      (1 << 7)
 46 
 47 #define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
 48 #define SCHED_ENTRY1_IS_RX      (1 << 15)
 49 
 50 #define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
 51 #define SCHED_ENTRY2_IS_RX      (1 << 23)
 52 
 53 #define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
 54 #define SCHED_ENTRY3_IS_RX      (1 << 31)
 55 
 56 /* Queue manager */
 57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
 58 #define ALLOC_DECS_NUM          128
 59 #define DESCS_AREAS             1
 60 #define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
 61 #define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
 62 
 63 #define QMGR_LRAM0_BASE         0x80
 64 #define QMGR_LRAM_SIZE          0x84
 65 #define QMGR_LRAM1_BASE         0x88
 66 #define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
 67 #define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
 68 #define QMGR_MEMCTRL_IDX_SH     16
 69 #define QMGR_MEMCTRL_DESC_SH    8
 70 
 71 #define QMGR_NUM_PEND   5
 72 #define QMGR_PEND(x)    (0x90 + (x) * 4)
 73 
 74 #define QMGR_PENDING_SLOT_Q(x)  (x / 32)
 75 #define QMGR_PENDING_BIT_Q(x)   (x % 32)
 76 
 77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
 78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
 79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
 80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
 81 
 82 /* Glue layer specific */
 83 /* USBSS  / USB AM335x */
 84 #define USBSS_IRQ_STATUS        0x28
 85 #define USBSS_IRQ_ENABLER       0x2c
 86 #define USBSS_IRQ_CLEARR        0x30
 87 
 88 #define USBSS_IRQ_PD_COMP       (1 <<  2)
 89 
 90 /* Packet Descriptor */
 91 #define PD2_ZERO_LENGTH         (1 << 19)
 92 
 93 struct cppi41_channel {
 94         struct dma_chan chan;
 95         struct dma_async_tx_descriptor txd;
 96         struct cppi41_dd *cdd;
 97         struct cppi41_desc *desc;
 98         dma_addr_t desc_phys;
 99         void __iomem *gcr_reg;
100         int is_tx;
101         u32 residue;
102 
103         unsigned int q_num;
104         unsigned int q_comp_num;
105         unsigned int port_num;
106 
107         unsigned td_retry;
108         unsigned td_queued:1;
109         unsigned td_seen:1;
110         unsigned td_desc_seen:1;
111 };
112 
113 struct cppi41_desc {
114         u32 pd0;
115         u32 pd1;
116         u32 pd2;
117         u32 pd3;
118         u32 pd4;
119         u32 pd5;
120         u32 pd6;
121         u32 pd7;
122 } __aligned(32);
123 
124 struct chan_queues {
125         u16 submit;
126         u16 complete;
127 };
128 
129 struct cppi41_dd {
130         struct dma_device ddev;
131 
132         void *qmgr_scratch;
133         dma_addr_t scratch_phys;
134 
135         struct cppi41_desc *cd;
136         dma_addr_t descs_phys;
137         u32 first_td_desc;
138         struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
139 
140         void __iomem *usbss_mem;
141         void __iomem *ctrl_mem;
142         void __iomem *sched_mem;
143         void __iomem *qmgr_mem;
144         unsigned int irq;
145         const struct chan_queues *queues_rx;
146         const struct chan_queues *queues_tx;
147         struct chan_queues td_queue;
148 
149         /* context for suspend/resume */
150         unsigned int dma_tdfdq;
151 };
152 
153 #define FIST_COMPLETION_QUEUE   93
154 static struct chan_queues usb_queues_tx[] = {
155         /* USB0 ENDP 1 */
156         [ 0] = { .submit = 32, .complete =  93},
157         [ 1] = { .submit = 34, .complete =  94},
158         [ 2] = { .submit = 36, .complete =  95},
159         [ 3] = { .submit = 38, .complete =  96},
160         [ 4] = { .submit = 40, .complete =  97},
161         [ 5] = { .submit = 42, .complete =  98},
162         [ 6] = { .submit = 44, .complete =  99},
163         [ 7] = { .submit = 46, .complete = 100},
164         [ 8] = { .submit = 48, .complete = 101},
165         [ 9] = { .submit = 50, .complete = 102},
166         [10] = { .submit = 52, .complete = 103},
167         [11] = { .submit = 54, .complete = 104},
168         [12] = { .submit = 56, .complete = 105},
169         [13] = { .submit = 58, .complete = 106},
170         [14] = { .submit = 60, .complete = 107},
171 
172         /* USB1 ENDP1 */
173         [15] = { .submit = 62, .complete = 125},
174         [16] = { .submit = 64, .complete = 126},
175         [17] = { .submit = 66, .complete = 127},
176         [18] = { .submit = 68, .complete = 128},
177         [19] = { .submit = 70, .complete = 129},
178         [20] = { .submit = 72, .complete = 130},
179         [21] = { .submit = 74, .complete = 131},
180         [22] = { .submit = 76, .complete = 132},
181         [23] = { .submit = 78, .complete = 133},
182         [24] = { .submit = 80, .complete = 134},
183         [25] = { .submit = 82, .complete = 135},
184         [26] = { .submit = 84, .complete = 136},
185         [27] = { .submit = 86, .complete = 137},
186         [28] = { .submit = 88, .complete = 138},
187         [29] = { .submit = 90, .complete = 139},
188 };
189 
190 static const struct chan_queues usb_queues_rx[] = {
191         /* USB0 ENDP 1 */
192         [ 0] = { .submit =  1, .complete = 109},
193         [ 1] = { .submit =  2, .complete = 110},
194         [ 2] = { .submit =  3, .complete = 111},
195         [ 3] = { .submit =  4, .complete = 112},
196         [ 4] = { .submit =  5, .complete = 113},
197         [ 5] = { .submit =  6, .complete = 114},
198         [ 6] = { .submit =  7, .complete = 115},
199         [ 7] = { .submit =  8, .complete = 116},
200         [ 8] = { .submit =  9, .complete = 117},
201         [ 9] = { .submit = 10, .complete = 118},
202         [10] = { .submit = 11, .complete = 119},
203         [11] = { .submit = 12, .complete = 120},
204         [12] = { .submit = 13, .complete = 121},
205         [13] = { .submit = 14, .complete = 122},
206         [14] = { .submit = 15, .complete = 123},
207 
208         /* USB1 ENDP 1 */
209         [15] = { .submit = 16, .complete = 141},
210         [16] = { .submit = 17, .complete = 142},
211         [17] = { .submit = 18, .complete = 143},
212         [18] = { .submit = 19, .complete = 144},
213         [19] = { .submit = 20, .complete = 145},
214         [20] = { .submit = 21, .complete = 146},
215         [21] = { .submit = 22, .complete = 147},
216         [22] = { .submit = 23, .complete = 148},
217         [23] = { .submit = 24, .complete = 149},
218         [24] = { .submit = 25, .complete = 150},
219         [25] = { .submit = 26, .complete = 151},
220         [26] = { .submit = 27, .complete = 152},
221         [27] = { .submit = 28, .complete = 153},
222         [28] = { .submit = 29, .complete = 154},
223         [29] = { .submit = 30, .complete = 155},
224 };
225 
226 struct cppi_glue_infos {
227         irqreturn_t (*isr)(int irq, void *data);
228         const struct chan_queues *queues_rx;
229         const struct chan_queues *queues_tx;
230         struct chan_queues td_queue;
231 };
232 
233 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
234 {
235         return container_of(c, struct cppi41_channel, chan);
236 }
237 
238 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
239 {
240         struct cppi41_channel *c;
241         u32 descs_size;
242         u32 desc_num;
243 
244         descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
245 
246         if (!((desc >= cdd->descs_phys) &&
247                         (desc < (cdd->descs_phys + descs_size)))) {
248                 return NULL;
249         }
250 
251         desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
252         BUG_ON(desc_num >= ALLOC_DECS_NUM);
253         c = cdd->chan_busy[desc_num];
254         cdd->chan_busy[desc_num] = NULL;
255         return c;
256 }
257 
258 static void cppi_writel(u32 val, void *__iomem *mem)
259 {
260         __raw_writel(val, mem);
261 }
262 
263 static u32 cppi_readl(void *__iomem *mem)
264 {
265         return __raw_readl(mem);
266 }
267 
268 static u32 pd_trans_len(u32 val)
269 {
270         return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
271 }
272 
273 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
274 {
275         u32 desc;
276 
277         desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
278         desc &= ~0x1f;
279         return desc;
280 }
281 
282 static irqreturn_t cppi41_irq(int irq, void *data)
283 {
284         struct cppi41_dd *cdd = data;
285         struct cppi41_channel *c;
286         u32 status;
287         int i;
288 
289         status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
290         if (!(status & USBSS_IRQ_PD_COMP))
291                 return IRQ_NONE;
292         cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
293 
294         for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
295                         i++) {
296                 u32 val;
297                 u32 q_num;
298 
299                 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
300                 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
301                         u32 mask;
302                         /* set corresponding bit for completetion Q 93 */
303                         mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
304                         /* not set all bits for queues less than Q 93 */
305                         mask--;
306                         /* now invert and keep only Q 93+ set */
307                         val &= ~mask;
308                 }
309 
310                 if (val)
311                         __iormb();
312 
313                 while (val) {
314                         u32 desc, len;
315 
316                         q_num = __fls(val);
317                         val &= ~(1 << q_num);
318                         q_num += 32 * i;
319                         desc = cppi41_pop_desc(cdd, q_num);
320                         c = desc_to_chan(cdd, desc);
321                         if (WARN_ON(!c)) {
322                                 pr_err("%s() q %d desc %08x\n", __func__,
323                                                 q_num, desc);
324                                 continue;
325                         }
326 
327                         if (c->desc->pd2 & PD2_ZERO_LENGTH)
328                                 len = 0;
329                         else
330                                 len = pd_trans_len(c->desc->pd0);
331 
332                         c->residue = pd_trans_len(c->desc->pd6) - len;
333                         dma_cookie_complete(&c->txd);
334                         c->txd.callback(c->txd.callback_param);
335                 }
336         }
337         return IRQ_HANDLED;
338 }
339 
340 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
341 {
342         dma_cookie_t cookie;
343 
344         cookie = dma_cookie_assign(tx);
345 
346         return cookie;
347 }
348 
349 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
350 {
351         struct cppi41_channel *c = to_cpp41_chan(chan);
352 
353         dma_cookie_init(chan);
354         dma_async_tx_descriptor_init(&c->txd, chan);
355         c->txd.tx_submit = cppi41_tx_submit;
356 
357         if (!c->is_tx)
358                 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
359 
360         return 0;
361 }
362 
363 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
364 {
365 }
366 
367 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
368         dma_cookie_t cookie, struct dma_tx_state *txstate)
369 {
370         struct cppi41_channel *c = to_cpp41_chan(chan);
371         enum dma_status ret;
372 
373         /* lock */
374         ret = dma_cookie_status(chan, cookie, txstate);
375         if (txstate && ret == DMA_COMPLETE)
376                 txstate->residue = c->residue;
377         /* unlock */
378 
379         return ret;
380 }
381 
382 static void push_desc_queue(struct cppi41_channel *c)
383 {
384         struct cppi41_dd *cdd = c->cdd;
385         u32 desc_num;
386         u32 desc_phys;
387         u32 reg;
388 
389         desc_phys = lower_32_bits(c->desc_phys);
390         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
391         WARN_ON(cdd->chan_busy[desc_num]);
392         cdd->chan_busy[desc_num] = c;
393 
394         reg = (sizeof(struct cppi41_desc) - 24) / 4;
395         reg |= desc_phys;
396         cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
397 }
398 
399 static void cppi41_dma_issue_pending(struct dma_chan *chan)
400 {
401         struct cppi41_channel *c = to_cpp41_chan(chan);
402         u32 reg;
403 
404         c->residue = 0;
405 
406         reg = GCR_CHAN_ENABLE;
407         if (!c->is_tx) {
408                 reg |= GCR_STARV_RETRY;
409                 reg |= GCR_DESC_TYPE_HOST;
410                 reg |= c->q_comp_num;
411         }
412 
413         cppi_writel(reg, c->gcr_reg);
414 
415         /*
416          * We don't use writel() but __raw_writel() so we have to make sure
417          * that the DMA descriptor in coherent memory made to the main memory
418          * before starting the dma engine.
419          */
420         __iowmb();
421         push_desc_queue(c);
422 }
423 
424 static u32 get_host_pd0(u32 length)
425 {
426         u32 reg;
427 
428         reg = DESC_TYPE_HOST << DESC_TYPE;
429         reg |= length;
430 
431         return reg;
432 }
433 
434 static u32 get_host_pd1(struct cppi41_channel *c)
435 {
436         u32 reg;
437 
438         reg = 0;
439 
440         return reg;
441 }
442 
443 static u32 get_host_pd2(struct cppi41_channel *c)
444 {
445         u32 reg;
446 
447         reg = DESC_TYPE_USB;
448         reg |= c->q_comp_num;
449 
450         return reg;
451 }
452 
453 static u32 get_host_pd3(u32 length)
454 {
455         u32 reg;
456 
457         /* PD3 = packet size */
458         reg = length;
459 
460         return reg;
461 }
462 
463 static u32 get_host_pd6(u32 length)
464 {
465         u32 reg;
466 
467         /* PD6 buffer size */
468         reg = DESC_PD_COMPLETE;
469         reg |= length;
470 
471         return reg;
472 }
473 
474 static u32 get_host_pd4_or_7(u32 addr)
475 {
476         u32 reg;
477 
478         reg = addr;
479 
480         return reg;
481 }
482 
483 static u32 get_host_pd5(void)
484 {
485         u32 reg;
486 
487         reg = 0;
488 
489         return reg;
490 }
491 
492 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
493         struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
494         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
495 {
496         struct cppi41_channel *c = to_cpp41_chan(chan);
497         struct cppi41_desc *d;
498         struct scatterlist *sg;
499         unsigned int i;
500 
501         d = c->desc;
502         for_each_sg(sgl, sg, sg_len, i) {
503                 u32 addr;
504                 u32 len;
505 
506                 /* We need to use more than one desc once musb supports sg */
507                 addr = lower_32_bits(sg_dma_address(sg));
508                 len = sg_dma_len(sg);
509 
510                 d->pd0 = get_host_pd0(len);
511                 d->pd1 = get_host_pd1(c);
512                 d->pd2 = get_host_pd2(c);
513                 d->pd3 = get_host_pd3(len);
514                 d->pd4 = get_host_pd4_or_7(addr);
515                 d->pd5 = get_host_pd5();
516                 d->pd6 = get_host_pd6(len);
517                 d->pd7 = get_host_pd4_or_7(addr);
518 
519                 d++;
520         }
521 
522         return &c->txd;
523 }
524 
525 static void cppi41_compute_td_desc(struct cppi41_desc *d)
526 {
527         d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
528 }
529 
530 static int cppi41_tear_down_chan(struct cppi41_channel *c)
531 {
532         struct cppi41_dd *cdd = c->cdd;
533         struct cppi41_desc *td;
534         u32 reg;
535         u32 desc_phys;
536         u32 td_desc_phys;
537 
538         td = cdd->cd;
539         td += cdd->first_td_desc;
540 
541         td_desc_phys = cdd->descs_phys;
542         td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
543 
544         if (!c->td_queued) {
545                 cppi41_compute_td_desc(td);
546                 __iowmb();
547 
548                 reg = (sizeof(struct cppi41_desc) - 24) / 4;
549                 reg |= td_desc_phys;
550                 cppi_writel(reg, cdd->qmgr_mem +
551                                 QMGR_QUEUE_D(cdd->td_queue.submit));
552 
553                 reg = GCR_CHAN_ENABLE;
554                 if (!c->is_tx) {
555                         reg |= GCR_STARV_RETRY;
556                         reg |= GCR_DESC_TYPE_HOST;
557                         reg |= c->q_comp_num;
558                 }
559                 reg |= GCR_TEARDOWN;
560                 cppi_writel(reg, c->gcr_reg);
561                 c->td_queued = 1;
562                 c->td_retry = 500;
563         }
564 
565         if (!c->td_seen || !c->td_desc_seen) {
566 
567                 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
568                 if (!desc_phys)
569                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
570 
571                 if (desc_phys == c->desc_phys) {
572                         c->td_desc_seen = 1;
573 
574                 } else if (desc_phys == td_desc_phys) {
575                         u32 pd0;
576 
577                         __iormb();
578                         pd0 = td->pd0;
579                         WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
580                         WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
581                         WARN_ON((pd0 & 0x1f) != c->port_num);
582                         c->td_seen = 1;
583                 } else if (desc_phys) {
584                         WARN_ON_ONCE(1);
585                 }
586         }
587         c->td_retry--;
588         /*
589          * If the TX descriptor / channel is in use, the caller needs to poke
590          * his TD bit multiple times. After that he hardware releases the
591          * transfer descriptor followed by TD descriptor. Waiting seems not to
592          * cause any difference.
593          * RX seems to be thrown out right away. However once the TearDown
594          * descriptor gets through we are done. If we have seens the transfer
595          * descriptor before the TD we fetch it from enqueue, it has to be
596          * there waiting for us.
597          */
598         if (!c->td_seen && c->td_retry) {
599                 udelay(1);
600                 return -EAGAIN;
601         }
602         WARN_ON(!c->td_retry);
603 
604         if (!c->td_desc_seen) {
605                 desc_phys = cppi41_pop_desc(cdd, c->q_num);
606                 if (!desc_phys)
607                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
608                 WARN_ON(!desc_phys);
609         }
610 
611         c->td_queued = 0;
612         c->td_seen = 0;
613         c->td_desc_seen = 0;
614         cppi_writel(0, c->gcr_reg);
615         return 0;
616 }
617 
618 static int cppi41_stop_chan(struct dma_chan *chan)
619 {
620         struct cppi41_channel *c = to_cpp41_chan(chan);
621         struct cppi41_dd *cdd = c->cdd;
622         u32 desc_num;
623         u32 desc_phys;
624         int ret;
625 
626         desc_phys = lower_32_bits(c->desc_phys);
627         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
628         if (!cdd->chan_busy[desc_num])
629                 return 0;
630 
631         ret = cppi41_tear_down_chan(c);
632         if (ret)
633                 return ret;
634 
635         WARN_ON(!cdd->chan_busy[desc_num]);
636         cdd->chan_busy[desc_num] = NULL;
637 
638         return 0;
639 }
640 
641 static void cleanup_chans(struct cppi41_dd *cdd)
642 {
643         while (!list_empty(&cdd->ddev.channels)) {
644                 struct cppi41_channel *cchan;
645 
646                 cchan = list_first_entry(&cdd->ddev.channels,
647                                 struct cppi41_channel, chan.device_node);
648                 list_del(&cchan->chan.device_node);
649                 kfree(cchan);
650         }
651 }
652 
653 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
654 {
655         struct cppi41_channel *cchan;
656         int i;
657         int ret;
658         u32 n_chans;
659 
660         ret = of_property_read_u32(dev->of_node, "#dma-channels",
661                         &n_chans);
662         if (ret)
663                 return ret;
664         /*
665          * The channels can only be used as TX or as RX. So we add twice
666          * that much dma channels because USB can only do RX or TX.
667          */
668         n_chans *= 2;
669 
670         for (i = 0; i < n_chans; i++) {
671                 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
672                 if (!cchan)
673                         goto err;
674 
675                 cchan->cdd = cdd;
676                 if (i & 1) {
677                         cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
678                         cchan->is_tx = 1;
679                 } else {
680                         cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
681                         cchan->is_tx = 0;
682                 }
683                 cchan->port_num = i >> 1;
684                 cchan->desc = &cdd->cd[i];
685                 cchan->desc_phys = cdd->descs_phys;
686                 cchan->desc_phys += i * sizeof(struct cppi41_desc);
687                 cchan->chan.device = &cdd->ddev;
688                 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
689         }
690         cdd->first_td_desc = n_chans;
691 
692         return 0;
693 err:
694         cleanup_chans(cdd);
695         return -ENOMEM;
696 }
697 
698 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
699 {
700         unsigned int mem_decs;
701         int i;
702 
703         mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
704 
705         for (i = 0; i < DESCS_AREAS; i++) {
706 
707                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
708                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
709 
710                 dma_free_coherent(dev, mem_decs, cdd->cd,
711                                 cdd->descs_phys);
712         }
713 }
714 
715 static void disable_sched(struct cppi41_dd *cdd)
716 {
717         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
718 }
719 
720 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
721 {
722         disable_sched(cdd);
723 
724         purge_descs(dev, cdd);
725 
726         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
727         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
728         dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
729                         cdd->scratch_phys);
730 }
731 
732 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
733 {
734         unsigned int desc_size;
735         unsigned int mem_decs;
736         int i;
737         u32 reg;
738         u32 idx;
739 
740         BUILD_BUG_ON(sizeof(struct cppi41_desc) &
741                         (sizeof(struct cppi41_desc) - 1));
742         BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
743         BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
744 
745         desc_size = sizeof(struct cppi41_desc);
746         mem_decs = ALLOC_DECS_NUM * desc_size;
747 
748         idx = 0;
749         for (i = 0; i < DESCS_AREAS; i++) {
750 
751                 reg = idx << QMGR_MEMCTRL_IDX_SH;
752                 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
753                 reg |= ilog2(ALLOC_DECS_NUM) - 5;
754 
755                 BUILD_BUG_ON(DESCS_AREAS != 1);
756                 cdd->cd = dma_alloc_coherent(dev, mem_decs,
757                                 &cdd->descs_phys, GFP_KERNEL);
758                 if (!cdd->cd)
759                         return -ENOMEM;
760 
761                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
762                 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
763 
764                 idx += ALLOC_DECS_NUM;
765         }
766         return 0;
767 }
768 
769 static void init_sched(struct cppi41_dd *cdd)
770 {
771         unsigned ch;
772         unsigned word;
773         u32 reg;
774 
775         word = 0;
776         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
777         for (ch = 0; ch < 15 * 2; ch += 2) {
778 
779                 reg = SCHED_ENTRY0_CHAN(ch);
780                 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
781 
782                 reg |= SCHED_ENTRY2_CHAN(ch + 1);
783                 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
784                 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
785                 word++;
786         }
787         reg = 15 * 2 * 2 - 1;
788         reg |= DMA_SCHED_CTRL_EN;
789         cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
790 }
791 
792 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
793 {
794         int ret;
795 
796         BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
797         cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
798                         &cdd->scratch_phys, GFP_KERNEL);
799         if (!cdd->qmgr_scratch)
800                 return -ENOMEM;
801 
802         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
803         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
804         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
805 
806         ret = init_descs(dev, cdd);
807         if (ret)
808                 goto err_td;
809 
810         cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
811         init_sched(cdd);
812         return 0;
813 err_td:
814         deinit_cppi41(dev, cdd);
815         return ret;
816 }
817 
818 static struct platform_driver cpp41_dma_driver;
819 /*
820  * The param format is:
821  * X Y
822  * X: Port
823  * Y: 0 = RX else TX
824  */
825 #define INFO_PORT       0
826 #define INFO_IS_TX      1
827 
828 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
829 {
830         struct cppi41_channel *cchan;
831         struct cppi41_dd *cdd;
832         const struct chan_queues *queues;
833         u32 *num = param;
834 
835         if (chan->device->dev->driver != &cpp41_dma_driver.driver)
836                 return false;
837 
838         cchan = to_cpp41_chan(chan);
839 
840         if (cchan->port_num != num[INFO_PORT])
841                 return false;
842 
843         if (cchan->is_tx && !num[INFO_IS_TX])
844                 return false;
845         cdd = cchan->cdd;
846         if (cchan->is_tx)
847                 queues = cdd->queues_tx;
848         else
849                 queues = cdd->queues_rx;
850 
851         BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
852         if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
853                 return false;
854 
855         cchan->q_num = queues[cchan->port_num].submit;
856         cchan->q_comp_num = queues[cchan->port_num].complete;
857         return true;
858 }
859 
860 static struct of_dma_filter_info cpp41_dma_info = {
861         .filter_fn = cpp41_dma_filter_fn,
862 };
863 
864 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
865                 struct of_dma *ofdma)
866 {
867         int count = dma_spec->args_count;
868         struct of_dma_filter_info *info = ofdma->of_dma_data;
869 
870         if (!info || !info->filter_fn)
871                 return NULL;
872 
873         if (count != 2)
874                 return NULL;
875 
876         return dma_request_channel(info->dma_cap, info->filter_fn,
877                         &dma_spec->args[0]);
878 }
879 
880 static const struct cppi_glue_infos usb_infos = {
881         .isr = cppi41_irq,
882         .queues_rx = usb_queues_rx,
883         .queues_tx = usb_queues_tx,
884         .td_queue = { .submit = 31, .complete = 0 },
885 };
886 
887 static const struct of_device_id cppi41_dma_ids[] = {
888         { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
889         {},
890 };
891 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
892 
893 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
894 {
895         const struct of_device_id *of_id;
896 
897         of_id = of_match_node(cppi41_dma_ids, dev->of_node);
898         if (!of_id)
899                 return NULL;
900         return of_id->data;
901 }
902 
903 #define CPPI41_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
904                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
905                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
906                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
907 
908 static int cppi41_dma_probe(struct platform_device *pdev)
909 {
910         struct cppi41_dd *cdd;
911         struct device *dev = &pdev->dev;
912         const struct cppi_glue_infos *glue_info;
913         int irq;
914         int ret;
915 
916         glue_info = get_glue_info(dev);
917         if (!glue_info)
918                 return -EINVAL;
919 
920         cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
921         if (!cdd)
922                 return -ENOMEM;
923 
924         dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
925         cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
926         cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
927         cdd->ddev.device_tx_status = cppi41_dma_tx_status;
928         cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
929         cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
930         cdd->ddev.device_terminate_all = cppi41_stop_chan;
931         cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
932         cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
933         cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
934         cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
935         cdd->ddev.dev = dev;
936         INIT_LIST_HEAD(&cdd->ddev.channels);
937         cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
938 
939         cdd->usbss_mem = of_iomap(dev->of_node, 0);
940         cdd->ctrl_mem = of_iomap(dev->of_node, 1);
941         cdd->sched_mem = of_iomap(dev->of_node, 2);
942         cdd->qmgr_mem = of_iomap(dev->of_node, 3);
943 
944         if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
945                         !cdd->qmgr_mem)
946                 return -ENXIO;
947 
948         pm_runtime_enable(dev);
949         ret = pm_runtime_get_sync(dev);
950         if (ret < 0)
951                 goto err_get_sync;
952 
953         cdd->queues_rx = glue_info->queues_rx;
954         cdd->queues_tx = glue_info->queues_tx;
955         cdd->td_queue = glue_info->td_queue;
956 
957         ret = init_cppi41(dev, cdd);
958         if (ret)
959                 goto err_init_cppi;
960 
961         ret = cppi41_add_chans(dev, cdd);
962         if (ret)
963                 goto err_chans;
964 
965         irq = irq_of_parse_and_map(dev->of_node, 0);
966         if (!irq) {
967                 ret = -EINVAL;
968                 goto err_irq;
969         }
970 
971         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
972 
973         ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
974                         dev_name(dev), cdd);
975         if (ret)
976                 goto err_irq;
977         cdd->irq = irq;
978 
979         ret = dma_async_device_register(&cdd->ddev);
980         if (ret)
981                 goto err_dma_reg;
982 
983         ret = of_dma_controller_register(dev->of_node,
984                         cppi41_dma_xlate, &cpp41_dma_info);
985         if (ret)
986                 goto err_of;
987 
988         platform_set_drvdata(pdev, cdd);
989         return 0;
990 err_of:
991         dma_async_device_unregister(&cdd->ddev);
992 err_dma_reg:
993 err_irq:
994         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
995         cleanup_chans(cdd);
996 err_chans:
997         deinit_cppi41(dev, cdd);
998 err_init_cppi:
999         pm_runtime_put(dev);
1000 err_get_sync:
1001         pm_runtime_disable(dev);
1002         iounmap(cdd->usbss_mem);
1003         iounmap(cdd->ctrl_mem);
1004         iounmap(cdd->sched_mem);
1005         iounmap(cdd->qmgr_mem);
1006         return ret;
1007 }
1008 
1009 static int cppi41_dma_remove(struct platform_device *pdev)
1010 {
1011         struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1012 
1013         of_dma_controller_free(pdev->dev.of_node);
1014         dma_async_device_unregister(&cdd->ddev);
1015 
1016         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1017         devm_free_irq(&pdev->dev, cdd->irq, cdd);
1018         cleanup_chans(cdd);
1019         deinit_cppi41(&pdev->dev, cdd);
1020         iounmap(cdd->usbss_mem);
1021         iounmap(cdd->ctrl_mem);
1022         iounmap(cdd->sched_mem);
1023         iounmap(cdd->qmgr_mem);
1024         pm_runtime_put(&pdev->dev);
1025         pm_runtime_disable(&pdev->dev);
1026         return 0;
1027 }
1028 
1029 #ifdef CONFIG_PM_SLEEP
1030 static int cppi41_suspend(struct device *dev)
1031 {
1032         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1033 
1034         cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1035         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1036         disable_sched(cdd);
1037 
1038         return 0;
1039 }
1040 
1041 static int cppi41_resume(struct device *dev)
1042 {
1043         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1044         struct cppi41_channel *c;
1045         int i;
1046 
1047         for (i = 0; i < DESCS_AREAS; i++)
1048                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1049 
1050         list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1051                 if (!c->is_tx)
1052                         cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1053 
1054         init_sched(cdd);
1055 
1056         cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1057         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1058         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1059         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1060 
1061         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1062 
1063         return 0;
1064 }
1065 #endif
1066 
1067 static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1068 
1069 static struct platform_driver cpp41_dma_driver = {
1070         .probe  = cppi41_dma_probe,
1071         .remove = cppi41_dma_remove,
1072         .driver = {
1073                 .name = "cppi41-dma-engine",
1074                 .pm = &cppi41_pm_ops,
1075                 .of_match_table = of_match_ptr(cppi41_dma_ids),
1076         },
1077 };
1078 
1079 module_platform_driver(cpp41_dma_driver);
1080 MODULE_LICENSE("GPL");
1081 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1082 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us