Version:  2.0.40 2.2.26 2.4.37 2.6.39 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15

Linux/drivers/dma/cppi41.c

  1 #include <linux/dmaengine.h>
  2 #include <linux/dma-mapping.h>
  3 #include <linux/platform_device.h>
  4 #include <linux/module.h>
  5 #include <linux/of.h>
  6 #include <linux/slab.h>
  7 #include <linux/of_dma.h>
  8 #include <linux/of_irq.h>
  9 #include <linux/dmapool.h>
 10 #include <linux/interrupt.h>
 11 #include <linux/of_address.h>
 12 #include <linux/pm_runtime.h>
 13 #include "dmaengine.h"
 14 
 15 #define DESC_TYPE       27
 16 #define DESC_TYPE_HOST  0x10
 17 #define DESC_TYPE_TEARD 0x13
 18 
 19 #define TD_DESC_IS_RX   (1 << 16)
 20 #define TD_DESC_DMA_NUM 10
 21 
 22 #define DESC_LENGTH_BITS_NUM    21
 23 
 24 #define DESC_TYPE_USB   (5 << 26)
 25 #define DESC_PD_COMPLETE        (1 << 31)
 26 
 27 /* DMA engine */
 28 #define DMA_TDFDQ       4
 29 #define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
 30 #define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
 31 #define RXHPCRA0                4
 32 
 33 #define GCR_CHAN_ENABLE         (1 << 31)
 34 #define GCR_TEARDOWN            (1 << 30)
 35 #define GCR_STARV_RETRY         (1 << 24)
 36 #define GCR_DESC_TYPE_HOST      (1 << 14)
 37 
 38 /* DMA scheduler */
 39 #define DMA_SCHED_CTRL          0
 40 #define DMA_SCHED_CTRL_EN       (1 << 31)
 41 #define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
 42 
 43 #define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
 44 #define SCHED_ENTRY0_IS_RX      (1 << 7)
 45 
 46 #define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
 47 #define SCHED_ENTRY1_IS_RX      (1 << 15)
 48 
 49 #define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
 50 #define SCHED_ENTRY2_IS_RX      (1 << 23)
 51 
 52 #define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
 53 #define SCHED_ENTRY3_IS_RX      (1 << 31)
 54 
 55 /* Queue manager */
 56 /* 4 KiB of memory for descriptors, 2 for each endpoint */
 57 #define ALLOC_DECS_NUM          128
 58 #define DESCS_AREAS             1
 59 #define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
 60 #define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
 61 
 62 #define QMGR_LRAM0_BASE         0x80
 63 #define QMGR_LRAM_SIZE          0x84
 64 #define QMGR_LRAM1_BASE         0x88
 65 #define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
 66 #define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
 67 #define QMGR_MEMCTRL_IDX_SH     16
 68 #define QMGR_MEMCTRL_DESC_SH    8
 69 
 70 #define QMGR_NUM_PEND   5
 71 #define QMGR_PEND(x)    (0x90 + (x) * 4)
 72 
 73 #define QMGR_PENDING_SLOT_Q(x)  (x / 32)
 74 #define QMGR_PENDING_BIT_Q(x)   (x % 32)
 75 
 76 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
 77 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
 78 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
 79 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
 80 
 81 /* Glue layer specific */
 82 /* USBSS  / USB AM335x */
 83 #define USBSS_IRQ_STATUS        0x28
 84 #define USBSS_IRQ_ENABLER       0x2c
 85 #define USBSS_IRQ_CLEARR        0x30
 86 
 87 #define USBSS_IRQ_PD_COMP       (1 <<  2)
 88 
 89 struct cppi41_channel {
 90         struct dma_chan chan;
 91         struct dma_async_tx_descriptor txd;
 92         struct cppi41_dd *cdd;
 93         struct cppi41_desc *desc;
 94         dma_addr_t desc_phys;
 95         void __iomem *gcr_reg;
 96         int is_tx;
 97         u32 residue;
 98 
 99         unsigned int q_num;
100         unsigned int q_comp_num;
101         unsigned int port_num;
102 
103         unsigned td_retry;
104         unsigned td_queued:1;
105         unsigned td_seen:1;
106         unsigned td_desc_seen:1;
107 };
108 
109 struct cppi41_desc {
110         u32 pd0;
111         u32 pd1;
112         u32 pd2;
113         u32 pd3;
114         u32 pd4;
115         u32 pd5;
116         u32 pd6;
117         u32 pd7;
118 } __aligned(32);
119 
120 struct chan_queues {
121         u16 submit;
122         u16 complete;
123 };
124 
125 struct cppi41_dd {
126         struct dma_device ddev;
127 
128         void *qmgr_scratch;
129         dma_addr_t scratch_phys;
130 
131         struct cppi41_desc *cd;
132         dma_addr_t descs_phys;
133         u32 first_td_desc;
134         struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
135 
136         void __iomem *usbss_mem;
137         void __iomem *ctrl_mem;
138         void __iomem *sched_mem;
139         void __iomem *qmgr_mem;
140         unsigned int irq;
141         const struct chan_queues *queues_rx;
142         const struct chan_queues *queues_tx;
143         struct chan_queues td_queue;
144 
145         /* context for suspend/resume */
146         unsigned int dma_tdfdq;
147 };
148 
149 #define FIST_COMPLETION_QUEUE   93
150 static struct chan_queues usb_queues_tx[] = {
151         /* USB0 ENDP 1 */
152         [ 0] = { .submit = 32, .complete =  93},
153         [ 1] = { .submit = 34, .complete =  94},
154         [ 2] = { .submit = 36, .complete =  95},
155         [ 3] = { .submit = 38, .complete =  96},
156         [ 4] = { .submit = 40, .complete =  97},
157         [ 5] = { .submit = 42, .complete =  98},
158         [ 6] = { .submit = 44, .complete =  99},
159         [ 7] = { .submit = 46, .complete = 100},
160         [ 8] = { .submit = 48, .complete = 101},
161         [ 9] = { .submit = 50, .complete = 102},
162         [10] = { .submit = 52, .complete = 103},
163         [11] = { .submit = 54, .complete = 104},
164         [12] = { .submit = 56, .complete = 105},
165         [13] = { .submit = 58, .complete = 106},
166         [14] = { .submit = 60, .complete = 107},
167 
168         /* USB1 ENDP1 */
169         [15] = { .submit = 62, .complete = 125},
170         [16] = { .submit = 64, .complete = 126},
171         [17] = { .submit = 66, .complete = 127},
172         [18] = { .submit = 68, .complete = 128},
173         [19] = { .submit = 70, .complete = 129},
174         [20] = { .submit = 72, .complete = 130},
175         [21] = { .submit = 74, .complete = 131},
176         [22] = { .submit = 76, .complete = 132},
177         [23] = { .submit = 78, .complete = 133},
178         [24] = { .submit = 80, .complete = 134},
179         [25] = { .submit = 82, .complete = 135},
180         [26] = { .submit = 84, .complete = 136},
181         [27] = { .submit = 86, .complete = 137},
182         [28] = { .submit = 88, .complete = 138},
183         [29] = { .submit = 90, .complete = 139},
184 };
185 
186 static const struct chan_queues usb_queues_rx[] = {
187         /* USB0 ENDP 1 */
188         [ 0] = { .submit =  1, .complete = 109},
189         [ 1] = { .submit =  2, .complete = 110},
190         [ 2] = { .submit =  3, .complete = 111},
191         [ 3] = { .submit =  4, .complete = 112},
192         [ 4] = { .submit =  5, .complete = 113},
193         [ 5] = { .submit =  6, .complete = 114},
194         [ 6] = { .submit =  7, .complete = 115},
195         [ 7] = { .submit =  8, .complete = 116},
196         [ 8] = { .submit =  9, .complete = 117},
197         [ 9] = { .submit = 10, .complete = 118},
198         [10] = { .submit = 11, .complete = 119},
199         [11] = { .submit = 12, .complete = 120},
200         [12] = { .submit = 13, .complete = 121},
201         [13] = { .submit = 14, .complete = 122},
202         [14] = { .submit = 15, .complete = 123},
203 
204         /* USB1 ENDP 1 */
205         [15] = { .submit = 16, .complete = 141},
206         [16] = { .submit = 17, .complete = 142},
207         [17] = { .submit = 18, .complete = 143},
208         [18] = { .submit = 19, .complete = 144},
209         [19] = { .submit = 20, .complete = 145},
210         [20] = { .submit = 21, .complete = 146},
211         [21] = { .submit = 22, .complete = 147},
212         [22] = { .submit = 23, .complete = 148},
213         [23] = { .submit = 24, .complete = 149},
214         [24] = { .submit = 25, .complete = 150},
215         [25] = { .submit = 26, .complete = 151},
216         [26] = { .submit = 27, .complete = 152},
217         [27] = { .submit = 28, .complete = 153},
218         [28] = { .submit = 29, .complete = 154},
219         [29] = { .submit = 30, .complete = 155},
220 };
221 
222 struct cppi_glue_infos {
223         irqreturn_t (*isr)(int irq, void *data);
224         const struct chan_queues *queues_rx;
225         const struct chan_queues *queues_tx;
226         struct chan_queues td_queue;
227 };
228 
229 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
230 {
231         return container_of(c, struct cppi41_channel, chan);
232 }
233 
234 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
235 {
236         struct cppi41_channel *c;
237         u32 descs_size;
238         u32 desc_num;
239 
240         descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
241 
242         if (!((desc >= cdd->descs_phys) &&
243                         (desc < (cdd->descs_phys + descs_size)))) {
244                 return NULL;
245         }
246 
247         desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
248         BUG_ON(desc_num >= ALLOC_DECS_NUM);
249         c = cdd->chan_busy[desc_num];
250         cdd->chan_busy[desc_num] = NULL;
251         return c;
252 }
253 
254 static void cppi_writel(u32 val, void *__iomem *mem)
255 {
256         __raw_writel(val, mem);
257 }
258 
259 static u32 cppi_readl(void *__iomem *mem)
260 {
261         return __raw_readl(mem);
262 }
263 
264 static u32 pd_trans_len(u32 val)
265 {
266         return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
267 }
268 
269 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
270 {
271         u32 desc;
272 
273         desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
274         desc &= ~0x1f;
275         return desc;
276 }
277 
278 static irqreturn_t cppi41_irq(int irq, void *data)
279 {
280         struct cppi41_dd *cdd = data;
281         struct cppi41_channel *c;
282         u32 status;
283         int i;
284 
285         status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
286         if (!(status & USBSS_IRQ_PD_COMP))
287                 return IRQ_NONE;
288         cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
289 
290         for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
291                         i++) {
292                 u32 val;
293                 u32 q_num;
294 
295                 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
296                 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
297                         u32 mask;
298                         /* set corresponding bit for completetion Q 93 */
299                         mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
300                         /* not set all bits for queues less than Q 93 */
301                         mask--;
302                         /* now invert and keep only Q 93+ set */
303                         val &= ~mask;
304                 }
305 
306                 if (val)
307                         __iormb();
308 
309                 while (val) {
310                         u32 desc;
311 
312                         q_num = __fls(val);
313                         val &= ~(1 << q_num);
314                         q_num += 32 * i;
315                         desc = cppi41_pop_desc(cdd, q_num);
316                         c = desc_to_chan(cdd, desc);
317                         if (WARN_ON(!c)) {
318                                 pr_err("%s() q %d desc %08x\n", __func__,
319                                                 q_num, desc);
320                                 continue;
321                         }
322                         c->residue = pd_trans_len(c->desc->pd6) -
323                                 pd_trans_len(c->desc->pd0);
324 
325                         dma_cookie_complete(&c->txd);
326                         c->txd.callback(c->txd.callback_param);
327                 }
328         }
329         return IRQ_HANDLED;
330 }
331 
332 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
333 {
334         dma_cookie_t cookie;
335 
336         cookie = dma_cookie_assign(tx);
337 
338         return cookie;
339 }
340 
341 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
342 {
343         struct cppi41_channel *c = to_cpp41_chan(chan);
344 
345         dma_cookie_init(chan);
346         dma_async_tx_descriptor_init(&c->txd, chan);
347         c->txd.tx_submit = cppi41_tx_submit;
348 
349         if (!c->is_tx)
350                 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
351 
352         return 0;
353 }
354 
355 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
356 {
357 }
358 
359 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
360         dma_cookie_t cookie, struct dma_tx_state *txstate)
361 {
362         struct cppi41_channel *c = to_cpp41_chan(chan);
363         enum dma_status ret;
364 
365         /* lock */
366         ret = dma_cookie_status(chan, cookie, txstate);
367         if (txstate && ret == DMA_COMPLETE)
368                 txstate->residue = c->residue;
369         /* unlock */
370 
371         return ret;
372 }
373 
374 static void push_desc_queue(struct cppi41_channel *c)
375 {
376         struct cppi41_dd *cdd = c->cdd;
377         u32 desc_num;
378         u32 desc_phys;
379         u32 reg;
380 
381         desc_phys = lower_32_bits(c->desc_phys);
382         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
383         WARN_ON(cdd->chan_busy[desc_num]);
384         cdd->chan_busy[desc_num] = c;
385 
386         reg = (sizeof(struct cppi41_desc) - 24) / 4;
387         reg |= desc_phys;
388         cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
389 }
390 
391 static void cppi41_dma_issue_pending(struct dma_chan *chan)
392 {
393         struct cppi41_channel *c = to_cpp41_chan(chan);
394         u32 reg;
395 
396         c->residue = 0;
397 
398         reg = GCR_CHAN_ENABLE;
399         if (!c->is_tx) {
400                 reg |= GCR_STARV_RETRY;
401                 reg |= GCR_DESC_TYPE_HOST;
402                 reg |= c->q_comp_num;
403         }
404 
405         cppi_writel(reg, c->gcr_reg);
406 
407         /*
408          * We don't use writel() but __raw_writel() so we have to make sure
409          * that the DMA descriptor in coherent memory made to the main memory
410          * before starting the dma engine.
411          */
412         __iowmb();
413         push_desc_queue(c);
414 }
415 
416 static u32 get_host_pd0(u32 length)
417 {
418         u32 reg;
419 
420         reg = DESC_TYPE_HOST << DESC_TYPE;
421         reg |= length;
422 
423         return reg;
424 }
425 
426 static u32 get_host_pd1(struct cppi41_channel *c)
427 {
428         u32 reg;
429 
430         reg = 0;
431 
432         return reg;
433 }
434 
435 static u32 get_host_pd2(struct cppi41_channel *c)
436 {
437         u32 reg;
438 
439         reg = DESC_TYPE_USB;
440         reg |= c->q_comp_num;
441 
442         return reg;
443 }
444 
445 static u32 get_host_pd3(u32 length)
446 {
447         u32 reg;
448 
449         /* PD3 = packet size */
450         reg = length;
451 
452         return reg;
453 }
454 
455 static u32 get_host_pd6(u32 length)
456 {
457         u32 reg;
458 
459         /* PD6 buffer size */
460         reg = DESC_PD_COMPLETE;
461         reg |= length;
462 
463         return reg;
464 }
465 
466 static u32 get_host_pd4_or_7(u32 addr)
467 {
468         u32 reg;
469 
470         reg = addr;
471 
472         return reg;
473 }
474 
475 static u32 get_host_pd5(void)
476 {
477         u32 reg;
478 
479         reg = 0;
480 
481         return reg;
482 }
483 
484 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
485         struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
486         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
487 {
488         struct cppi41_channel *c = to_cpp41_chan(chan);
489         struct cppi41_desc *d;
490         struct scatterlist *sg;
491         unsigned int i;
492         unsigned int num;
493 
494         num = 0;
495         d = c->desc;
496         for_each_sg(sgl, sg, sg_len, i) {
497                 u32 addr;
498                 u32 len;
499 
500                 /* We need to use more than one desc once musb supports sg */
501                 BUG_ON(num > 0);
502                 addr = lower_32_bits(sg_dma_address(sg));
503                 len = sg_dma_len(sg);
504 
505                 d->pd0 = get_host_pd0(len);
506                 d->pd1 = get_host_pd1(c);
507                 d->pd2 = get_host_pd2(c);
508                 d->pd3 = get_host_pd3(len);
509                 d->pd4 = get_host_pd4_or_7(addr);
510                 d->pd5 = get_host_pd5();
511                 d->pd6 = get_host_pd6(len);
512                 d->pd7 = get_host_pd4_or_7(addr);
513 
514                 d++;
515         }
516 
517         return &c->txd;
518 }
519 
520 static int cpp41_cfg_chan(struct cppi41_channel *c,
521                 struct dma_slave_config *cfg)
522 {
523         return 0;
524 }
525 
526 static void cppi41_compute_td_desc(struct cppi41_desc *d)
527 {
528         d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
529 }
530 
531 static int cppi41_tear_down_chan(struct cppi41_channel *c)
532 {
533         struct cppi41_dd *cdd = c->cdd;
534         struct cppi41_desc *td;
535         u32 reg;
536         u32 desc_phys;
537         u32 td_desc_phys;
538 
539         td = cdd->cd;
540         td += cdd->first_td_desc;
541 
542         td_desc_phys = cdd->descs_phys;
543         td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
544 
545         if (!c->td_queued) {
546                 cppi41_compute_td_desc(td);
547                 __iowmb();
548 
549                 reg = (sizeof(struct cppi41_desc) - 24) / 4;
550                 reg |= td_desc_phys;
551                 cppi_writel(reg, cdd->qmgr_mem +
552                                 QMGR_QUEUE_D(cdd->td_queue.submit));
553 
554                 reg = GCR_CHAN_ENABLE;
555                 if (!c->is_tx) {
556                         reg |= GCR_STARV_RETRY;
557                         reg |= GCR_DESC_TYPE_HOST;
558                         reg |= c->q_comp_num;
559                 }
560                 reg |= GCR_TEARDOWN;
561                 cppi_writel(reg, c->gcr_reg);
562                 c->td_queued = 1;
563                 c->td_retry = 100;
564         }
565 
566         if (!c->td_seen || !c->td_desc_seen) {
567 
568                 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
569                 if (!desc_phys)
570                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
571 
572                 if (desc_phys == c->desc_phys) {
573                         c->td_desc_seen = 1;
574 
575                 } else if (desc_phys == td_desc_phys) {
576                         u32 pd0;
577 
578                         __iormb();
579                         pd0 = td->pd0;
580                         WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
581                         WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
582                         WARN_ON((pd0 & 0x1f) != c->port_num);
583                         c->td_seen = 1;
584                 } else if (desc_phys) {
585                         WARN_ON_ONCE(1);
586                 }
587         }
588         c->td_retry--;
589         /*
590          * If the TX descriptor / channel is in use, the caller needs to poke
591          * his TD bit multiple times. After that he hardware releases the
592          * transfer descriptor followed by TD descriptor. Waiting seems not to
593          * cause any difference.
594          * RX seems to be thrown out right away. However once the TearDown
595          * descriptor gets through we are done. If we have seens the transfer
596          * descriptor before the TD we fetch it from enqueue, it has to be
597          * there waiting for us.
598          */
599         if (!c->td_seen && c->td_retry)
600                 return -EAGAIN;
601 
602         WARN_ON(!c->td_retry);
603         if (!c->td_desc_seen) {
604                 desc_phys = cppi41_pop_desc(cdd, c->q_num);
605                 WARN_ON(!desc_phys);
606         }
607 
608         c->td_queued = 0;
609         c->td_seen = 0;
610         c->td_desc_seen = 0;
611         cppi_writel(0, c->gcr_reg);
612         return 0;
613 }
614 
615 static int cppi41_stop_chan(struct dma_chan *chan)
616 {
617         struct cppi41_channel *c = to_cpp41_chan(chan);
618         struct cppi41_dd *cdd = c->cdd;
619         u32 desc_num;
620         u32 desc_phys;
621         int ret;
622 
623         desc_phys = lower_32_bits(c->desc_phys);
624         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
625         if (!cdd->chan_busy[desc_num])
626                 return 0;
627 
628         ret = cppi41_tear_down_chan(c);
629         if (ret)
630                 return ret;
631 
632         WARN_ON(!cdd->chan_busy[desc_num]);
633         cdd->chan_busy[desc_num] = NULL;
634 
635         return 0;
636 }
637 
638 static int cppi41_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
639         unsigned long arg)
640 {
641         struct cppi41_channel *c = to_cpp41_chan(chan);
642         int ret;
643 
644         switch (cmd) {
645         case DMA_SLAVE_CONFIG:
646                 ret = cpp41_cfg_chan(c, (struct dma_slave_config *) arg);
647                 break;
648 
649         case DMA_TERMINATE_ALL:
650                 ret = cppi41_stop_chan(chan);
651                 break;
652 
653         default:
654                 ret = -ENXIO;
655                 break;
656         }
657         return ret;
658 }
659 
660 static void cleanup_chans(struct cppi41_dd *cdd)
661 {
662         while (!list_empty(&cdd->ddev.channels)) {
663                 struct cppi41_channel *cchan;
664 
665                 cchan = list_first_entry(&cdd->ddev.channels,
666                                 struct cppi41_channel, chan.device_node);
667                 list_del(&cchan->chan.device_node);
668                 kfree(cchan);
669         }
670 }
671 
672 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
673 {
674         struct cppi41_channel *cchan;
675         int i;
676         int ret;
677         u32 n_chans;
678 
679         ret = of_property_read_u32(dev->of_node, "#dma-channels",
680                         &n_chans);
681         if (ret)
682                 return ret;
683         /*
684          * The channels can only be used as TX or as RX. So we add twice
685          * that much dma channels because USB can only do RX or TX.
686          */
687         n_chans *= 2;
688 
689         for (i = 0; i < n_chans; i++) {
690                 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
691                 if (!cchan)
692                         goto err;
693 
694                 cchan->cdd = cdd;
695                 if (i & 1) {
696                         cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
697                         cchan->is_tx = 1;
698                 } else {
699                         cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
700                         cchan->is_tx = 0;
701                 }
702                 cchan->port_num = i >> 1;
703                 cchan->desc = &cdd->cd[i];
704                 cchan->desc_phys = cdd->descs_phys;
705                 cchan->desc_phys += i * sizeof(struct cppi41_desc);
706                 cchan->chan.device = &cdd->ddev;
707                 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
708         }
709         cdd->first_td_desc = n_chans;
710 
711         return 0;
712 err:
713         cleanup_chans(cdd);
714         return -ENOMEM;
715 }
716 
717 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
718 {
719         unsigned int mem_decs;
720         int i;
721 
722         mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
723 
724         for (i = 0; i < DESCS_AREAS; i++) {
725 
726                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
727                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
728 
729                 dma_free_coherent(dev, mem_decs, cdd->cd,
730                                 cdd->descs_phys);
731         }
732 }
733 
734 static void disable_sched(struct cppi41_dd *cdd)
735 {
736         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
737 }
738 
739 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
740 {
741         disable_sched(cdd);
742 
743         purge_descs(dev, cdd);
744 
745         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
746         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
747         dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
748                         cdd->scratch_phys);
749 }
750 
751 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
752 {
753         unsigned int desc_size;
754         unsigned int mem_decs;
755         int i;
756         u32 reg;
757         u32 idx;
758 
759         BUILD_BUG_ON(sizeof(struct cppi41_desc) &
760                         (sizeof(struct cppi41_desc) - 1));
761         BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
762         BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
763 
764         desc_size = sizeof(struct cppi41_desc);
765         mem_decs = ALLOC_DECS_NUM * desc_size;
766 
767         idx = 0;
768         for (i = 0; i < DESCS_AREAS; i++) {
769 
770                 reg = idx << QMGR_MEMCTRL_IDX_SH;
771                 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
772                 reg |= ilog2(ALLOC_DECS_NUM) - 5;
773 
774                 BUILD_BUG_ON(DESCS_AREAS != 1);
775                 cdd->cd = dma_alloc_coherent(dev, mem_decs,
776                                 &cdd->descs_phys, GFP_KERNEL);
777                 if (!cdd->cd)
778                         return -ENOMEM;
779 
780                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
781                 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
782 
783                 idx += ALLOC_DECS_NUM;
784         }
785         return 0;
786 }
787 
788 static void init_sched(struct cppi41_dd *cdd)
789 {
790         unsigned ch;
791         unsigned word;
792         u32 reg;
793 
794         word = 0;
795         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
796         for (ch = 0; ch < 15 * 2; ch += 2) {
797 
798                 reg = SCHED_ENTRY0_CHAN(ch);
799                 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
800 
801                 reg |= SCHED_ENTRY2_CHAN(ch + 1);
802                 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
803                 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
804                 word++;
805         }
806         reg = 15 * 2 * 2 - 1;
807         reg |= DMA_SCHED_CTRL_EN;
808         cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
809 }
810 
811 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
812 {
813         int ret;
814 
815         BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
816         cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
817                         &cdd->scratch_phys, GFP_KERNEL);
818         if (!cdd->qmgr_scratch)
819                 return -ENOMEM;
820 
821         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
822         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
823         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
824 
825         ret = init_descs(dev, cdd);
826         if (ret)
827                 goto err_td;
828 
829         cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
830         init_sched(cdd);
831         return 0;
832 err_td:
833         deinit_cppi41(dev, cdd);
834         return ret;
835 }
836 
837 static struct platform_driver cpp41_dma_driver;
838 /*
839  * The param format is:
840  * X Y
841  * X: Port
842  * Y: 0 = RX else TX
843  */
844 #define INFO_PORT       0
845 #define INFO_IS_TX      1
846 
847 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
848 {
849         struct cppi41_channel *cchan;
850         struct cppi41_dd *cdd;
851         const struct chan_queues *queues;
852         u32 *num = param;
853 
854         if (chan->device->dev->driver != &cpp41_dma_driver.driver)
855                 return false;
856 
857         cchan = to_cpp41_chan(chan);
858 
859         if (cchan->port_num != num[INFO_PORT])
860                 return false;
861 
862         if (cchan->is_tx && !num[INFO_IS_TX])
863                 return false;
864         cdd = cchan->cdd;
865         if (cchan->is_tx)
866                 queues = cdd->queues_tx;
867         else
868                 queues = cdd->queues_rx;
869 
870         BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
871         if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
872                 return false;
873 
874         cchan->q_num = queues[cchan->port_num].submit;
875         cchan->q_comp_num = queues[cchan->port_num].complete;
876         return true;
877 }
878 
879 static struct of_dma_filter_info cpp41_dma_info = {
880         .filter_fn = cpp41_dma_filter_fn,
881 };
882 
883 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
884                 struct of_dma *ofdma)
885 {
886         int count = dma_spec->args_count;
887         struct of_dma_filter_info *info = ofdma->of_dma_data;
888 
889         if (!info || !info->filter_fn)
890                 return NULL;
891 
892         if (count != 2)
893                 return NULL;
894 
895         return dma_request_channel(info->dma_cap, info->filter_fn,
896                         &dma_spec->args[0]);
897 }
898 
899 static const struct cppi_glue_infos usb_infos = {
900         .isr = cppi41_irq,
901         .queues_rx = usb_queues_rx,
902         .queues_tx = usb_queues_tx,
903         .td_queue = { .submit = 31, .complete = 0 },
904 };
905 
906 static const struct of_device_id cppi41_dma_ids[] = {
907         { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
908         {},
909 };
910 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
911 
912 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
913 {
914         const struct of_device_id *of_id;
915 
916         of_id = of_match_node(cppi41_dma_ids, dev->of_node);
917         if (!of_id)
918                 return NULL;
919         return of_id->data;
920 }
921 
922 static int cppi41_dma_probe(struct platform_device *pdev)
923 {
924         struct cppi41_dd *cdd;
925         struct device *dev = &pdev->dev;
926         const struct cppi_glue_infos *glue_info;
927         int irq;
928         int ret;
929 
930         glue_info = get_glue_info(dev);
931         if (!glue_info)
932                 return -EINVAL;
933 
934         cdd = kzalloc(sizeof(*cdd), GFP_KERNEL);
935         if (!cdd)
936                 return -ENOMEM;
937 
938         dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
939         cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
940         cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
941         cdd->ddev.device_tx_status = cppi41_dma_tx_status;
942         cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
943         cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
944         cdd->ddev.device_control = cppi41_dma_control;
945         cdd->ddev.dev = dev;
946         INIT_LIST_HEAD(&cdd->ddev.channels);
947         cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
948 
949         cdd->usbss_mem = of_iomap(dev->of_node, 0);
950         cdd->ctrl_mem = of_iomap(dev->of_node, 1);
951         cdd->sched_mem = of_iomap(dev->of_node, 2);
952         cdd->qmgr_mem = of_iomap(dev->of_node, 3);
953 
954         if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
955                         !cdd->qmgr_mem) {
956                 ret = -ENXIO;
957                 goto err_remap;
958         }
959 
960         pm_runtime_enable(dev);
961         ret = pm_runtime_get_sync(dev);
962         if (ret < 0)
963                 goto err_get_sync;
964 
965         cdd->queues_rx = glue_info->queues_rx;
966         cdd->queues_tx = glue_info->queues_tx;
967         cdd->td_queue = glue_info->td_queue;
968 
969         ret = init_cppi41(dev, cdd);
970         if (ret)
971                 goto err_init_cppi;
972 
973         ret = cppi41_add_chans(dev, cdd);
974         if (ret)
975                 goto err_chans;
976 
977         irq = irq_of_parse_and_map(dev->of_node, 0);
978         if (!irq) {
979                 ret = -EINVAL;
980                 goto err_irq;
981         }
982 
983         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
984 
985         ret = request_irq(irq, glue_info->isr, IRQF_SHARED,
986                         dev_name(dev), cdd);
987         if (ret)
988                 goto err_irq;
989         cdd->irq = irq;
990 
991         ret = dma_async_device_register(&cdd->ddev);
992         if (ret)
993                 goto err_dma_reg;
994 
995         ret = of_dma_controller_register(dev->of_node,
996                         cppi41_dma_xlate, &cpp41_dma_info);
997         if (ret)
998                 goto err_of;
999 
1000         platform_set_drvdata(pdev, cdd);
1001         return 0;
1002 err_of:
1003         dma_async_device_unregister(&cdd->ddev);
1004 err_dma_reg:
1005         free_irq(irq, cdd);
1006 err_irq:
1007         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1008         cleanup_chans(cdd);
1009 err_chans:
1010         deinit_cppi41(dev, cdd);
1011 err_init_cppi:
1012         pm_runtime_put(dev);
1013 err_get_sync:
1014         pm_runtime_disable(dev);
1015         iounmap(cdd->usbss_mem);
1016         iounmap(cdd->ctrl_mem);
1017         iounmap(cdd->sched_mem);
1018         iounmap(cdd->qmgr_mem);
1019 err_remap:
1020         kfree(cdd);
1021         return ret;
1022 }
1023 
1024 static int cppi41_dma_remove(struct platform_device *pdev)
1025 {
1026         struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1027 
1028         of_dma_controller_free(pdev->dev.of_node);
1029         dma_async_device_unregister(&cdd->ddev);
1030 
1031         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1032         free_irq(cdd->irq, cdd);
1033         cleanup_chans(cdd);
1034         deinit_cppi41(&pdev->dev, cdd);
1035         iounmap(cdd->usbss_mem);
1036         iounmap(cdd->ctrl_mem);
1037         iounmap(cdd->sched_mem);
1038         iounmap(cdd->qmgr_mem);
1039         pm_runtime_put(&pdev->dev);
1040         pm_runtime_disable(&pdev->dev);
1041         kfree(cdd);
1042         return 0;
1043 }
1044 
1045 #ifdef CONFIG_PM_SLEEP
1046 static int cppi41_suspend(struct device *dev)
1047 {
1048         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1049 
1050         cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1051         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1052         disable_sched(cdd);
1053 
1054         return 0;
1055 }
1056 
1057 static int cppi41_resume(struct device *dev)
1058 {
1059         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1060         struct cppi41_channel *c;
1061         int i;
1062 
1063         for (i = 0; i < DESCS_AREAS; i++)
1064                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1065 
1066         list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1067                 if (!c->is_tx)
1068                         cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1069 
1070         init_sched(cdd);
1071 
1072         cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1073         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1074         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1075         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1076 
1077         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1078 
1079         return 0;
1080 }
1081 #endif
1082 
1083 static SIMPLE_DEV_PM_OPS(cppi41_pm_ops, cppi41_suspend, cppi41_resume);
1084 
1085 static struct platform_driver cpp41_dma_driver = {
1086         .probe  = cppi41_dma_probe,
1087         .remove = cppi41_dma_remove,
1088         .driver = {
1089                 .name = "cppi41-dma-engine",
1090                 .owner = THIS_MODULE,
1091                 .pm = &cppi41_pm_ops,
1092                 .of_match_table = of_match_ptr(cppi41_dma_ids),
1093         },
1094 };
1095 
1096 module_platform_driver(cpp41_dma_driver);
1097 MODULE_LICENSE("GPL");
1098 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
1099 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us