Version:  2.0.40 2.2.26 2.4.37 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 4.0 4.1 4.2 4.3 4.4 4.5

Linux/drivers/crypto/atmel-sha.c

  1 /*
  2  * Cryptographic API.
  3  *
  4  * Support for ATMEL SHA1/SHA256 HW acceleration.
  5  *
  6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7  * Author: Nicolas Royer <nicolas@eukrea.com>
  8  *
  9  * This program is free software; you can redistribute it and/or modify
 10  * it under the terms of the GNU General Public License version 2 as published
 11  * by the Free Software Foundation.
 12  *
 13  * Some ideas are from omap-sham.c drivers.
 14  */
 15 
 16 
 17 #include <linux/kernel.h>
 18 #include <linux/module.h>
 19 #include <linux/slab.h>
 20 #include <linux/err.h>
 21 #include <linux/clk.h>
 22 #include <linux/io.h>
 23 #include <linux/hw_random.h>
 24 #include <linux/platform_device.h>
 25 
 26 #include <linux/device.h>
 27 #include <linux/init.h>
 28 #include <linux/errno.h>
 29 #include <linux/interrupt.h>
 30 #include <linux/irq.h>
 31 #include <linux/scatterlist.h>
 32 #include <linux/dma-mapping.h>
 33 #include <linux/of_device.h>
 34 #include <linux/delay.h>
 35 #include <linux/crypto.h>
 36 #include <linux/cryptohash.h>
 37 #include <crypto/scatterwalk.h>
 38 #include <crypto/algapi.h>
 39 #include <crypto/sha.h>
 40 #include <crypto/hash.h>
 41 #include <crypto/internal/hash.h>
 42 #include <linux/platform_data/crypto-atmel.h>
 43 #include "atmel-sha-regs.h"
 44 
 45 /* SHA flags */
 46 #define SHA_FLAGS_BUSY                  BIT(0)
 47 #define SHA_FLAGS_FINAL                 BIT(1)
 48 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
 49 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
 50 #define SHA_FLAGS_INIT                  BIT(4)
 51 #define SHA_FLAGS_CPU                   BIT(5)
 52 #define SHA_FLAGS_DMA_READY             BIT(6)
 53 
 54 #define SHA_FLAGS_FINUP         BIT(16)
 55 #define SHA_FLAGS_SG            BIT(17)
 56 #define SHA_FLAGS_SHA1          BIT(18)
 57 #define SHA_FLAGS_SHA224        BIT(19)
 58 #define SHA_FLAGS_SHA256        BIT(20)
 59 #define SHA_FLAGS_SHA384        BIT(21)
 60 #define SHA_FLAGS_SHA512        BIT(22)
 61 #define SHA_FLAGS_ERROR         BIT(23)
 62 #define SHA_FLAGS_PAD           BIT(24)
 63 
 64 #define SHA_OP_UPDATE   1
 65 #define SHA_OP_FINAL    2
 66 
 67 #define SHA_BUFFER_LEN          PAGE_SIZE
 68 
 69 #define ATMEL_SHA_DMA_THRESHOLD         56
 70 
 71 struct atmel_sha_caps {
 72         bool    has_dma;
 73         bool    has_dualbuff;
 74         bool    has_sha224;
 75         bool    has_sha_384_512;
 76 };
 77 
 78 struct atmel_sha_dev;
 79 
 80 struct atmel_sha_reqctx {
 81         struct atmel_sha_dev    *dd;
 82         unsigned long   flags;
 83         unsigned long   op;
 84 
 85         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
 86         u64     digcnt[2];
 87         size_t  bufcnt;
 88         size_t  buflen;
 89         dma_addr_t      dma_addr;
 90 
 91         /* walk state */
 92         struct scatterlist      *sg;
 93         unsigned int    offset; /* offset in current sg */
 94         unsigned int    total;  /* total request */
 95 
 96         size_t block_size;
 97 
 98         u8      buffer[0] __aligned(sizeof(u32));
 99 };
100 
101 struct atmel_sha_ctx {
102         struct atmel_sha_dev    *dd;
103 
104         unsigned long           flags;
105 };
106 
107 #define ATMEL_SHA_QUEUE_LENGTH  50
108 
109 struct atmel_sha_dma {
110         struct dma_chan                 *chan;
111         struct dma_slave_config dma_conf;
112 };
113 
114 struct atmel_sha_dev {
115         struct list_head        list;
116         unsigned long           phys_base;
117         struct device           *dev;
118         struct clk                      *iclk;
119         int                                     irq;
120         void __iomem            *io_base;
121 
122         spinlock_t              lock;
123         int                     err;
124         struct tasklet_struct   done_task;
125 
126         unsigned long           flags;
127         struct crypto_queue     queue;
128         struct ahash_request    *req;
129 
130         struct atmel_sha_dma    dma_lch_in;
131 
132         struct atmel_sha_caps   caps;
133 
134         u32     hw_version;
135 };
136 
137 struct atmel_sha_drv {
138         struct list_head        dev_list;
139         spinlock_t              lock;
140 };
141 
142 static struct atmel_sha_drv atmel_sha = {
143         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
144         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
145 };
146 
147 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
148 {
149         return readl_relaxed(dd->io_base + offset);
150 }
151 
152 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
153                                         u32 offset, u32 value)
154 {
155         writel_relaxed(value, dd->io_base + offset);
156 }
157 
158 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
159 {
160         size_t count;
161 
162         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
163                 count = min(ctx->sg->length - ctx->offset, ctx->total);
164                 count = min(count, ctx->buflen - ctx->bufcnt);
165 
166                 if (count <= 0) {
167                         /*
168                         * Check if count <= 0 because the buffer is full or
169                         * because the sg length is 0. In the latest case,
170                         * check if there is another sg in the list, a 0 length
171                         * sg doesn't necessarily mean the end of the sg list.
172                         */
173                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
174                                 ctx->sg = sg_next(ctx->sg);
175                                 continue;
176                         } else {
177                                 break;
178                         }
179                 }
180 
181                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
182                         ctx->offset, count, 0);
183 
184                 ctx->bufcnt += count;
185                 ctx->offset += count;
186                 ctx->total -= count;
187 
188                 if (ctx->offset == ctx->sg->length) {
189                         ctx->sg = sg_next(ctx->sg);
190                         if (ctx->sg)
191                                 ctx->offset = 0;
192                         else
193                                 ctx->total = 0;
194                 }
195         }
196 
197         return 0;
198 }
199 
200 /*
201  * The purpose of this padding is to ensure that the padded message is a
202  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
203  * The bit "1" is appended at the end of the message followed by
204  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
205  * 128 bits block (SHA384/SHA512) equals to the message length in bits
206  * is appended.
207  *
208  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
209  *  - if message length < 56 bytes then padlen = 56 - message length
210  *  - else padlen = 64 + 56 - message length
211  *
212  * For SHA384/SHA512, padlen is calculated as followed:
213  *  - if message length < 112 bytes then padlen = 112 - message length
214  *  - else padlen = 128 + 112 - message length
215  */
216 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
217 {
218         unsigned int index, padlen;
219         u64 bits[2];
220         u64 size[2];
221 
222         size[0] = ctx->digcnt[0];
223         size[1] = ctx->digcnt[1];
224 
225         size[0] += ctx->bufcnt;
226         if (size[0] < ctx->bufcnt)
227                 size[1]++;
228 
229         size[0] += length;
230         if (size[0]  < length)
231                 size[1]++;
232 
233         bits[1] = cpu_to_be64(size[0] << 3);
234         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
235 
236         if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
237                 index = ctx->bufcnt & 0x7f;
238                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
239                 *(ctx->buffer + ctx->bufcnt) = 0x80;
240                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
241                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
242                 ctx->bufcnt += padlen + 16;
243                 ctx->flags |= SHA_FLAGS_PAD;
244         } else {
245                 index = ctx->bufcnt & 0x3f;
246                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
247                 *(ctx->buffer + ctx->bufcnt) = 0x80;
248                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
249                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
250                 ctx->bufcnt += padlen + 8;
251                 ctx->flags |= SHA_FLAGS_PAD;
252         }
253 }
254 
255 static int atmel_sha_init(struct ahash_request *req)
256 {
257         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
258         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
259         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
260         struct atmel_sha_dev *dd = NULL;
261         struct atmel_sha_dev *tmp;
262 
263         spin_lock_bh(&atmel_sha.lock);
264         if (!tctx->dd) {
265                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
266                         dd = tmp;
267                         break;
268                 }
269                 tctx->dd = dd;
270         } else {
271                 dd = tctx->dd;
272         }
273 
274         spin_unlock_bh(&atmel_sha.lock);
275 
276         ctx->dd = dd;
277 
278         ctx->flags = 0;
279 
280         dev_dbg(dd->dev, "init: digest size: %d\n",
281                 crypto_ahash_digestsize(tfm));
282 
283         switch (crypto_ahash_digestsize(tfm)) {
284         case SHA1_DIGEST_SIZE:
285                 ctx->flags |= SHA_FLAGS_SHA1;
286                 ctx->block_size = SHA1_BLOCK_SIZE;
287                 break;
288         case SHA224_DIGEST_SIZE:
289                 ctx->flags |= SHA_FLAGS_SHA224;
290                 ctx->block_size = SHA224_BLOCK_SIZE;
291                 break;
292         case SHA256_DIGEST_SIZE:
293                 ctx->flags |= SHA_FLAGS_SHA256;
294                 ctx->block_size = SHA256_BLOCK_SIZE;
295                 break;
296         case SHA384_DIGEST_SIZE:
297                 ctx->flags |= SHA_FLAGS_SHA384;
298                 ctx->block_size = SHA384_BLOCK_SIZE;
299                 break;
300         case SHA512_DIGEST_SIZE:
301                 ctx->flags |= SHA_FLAGS_SHA512;
302                 ctx->block_size = SHA512_BLOCK_SIZE;
303                 break;
304         default:
305                 return -EINVAL;
306                 break;
307         }
308 
309         ctx->bufcnt = 0;
310         ctx->digcnt[0] = 0;
311         ctx->digcnt[1] = 0;
312         ctx->buflen = SHA_BUFFER_LEN;
313 
314         return 0;
315 }
316 
317 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
318 {
319         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
320         u32 valcr = 0, valmr = SHA_MR_MODE_AUTO;
321 
322         if (likely(dma)) {
323                 if (!dd->caps.has_dma)
324                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
325                 valmr = SHA_MR_MODE_PDC;
326                 if (dd->caps.has_dualbuff)
327                         valmr |= SHA_MR_DUALBUFF;
328         } else {
329                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
330         }
331 
332         if (ctx->flags & SHA_FLAGS_SHA1)
333                 valmr |= SHA_MR_ALGO_SHA1;
334         else if (ctx->flags & SHA_FLAGS_SHA224)
335                 valmr |= SHA_MR_ALGO_SHA224;
336         else if (ctx->flags & SHA_FLAGS_SHA256)
337                 valmr |= SHA_MR_ALGO_SHA256;
338         else if (ctx->flags & SHA_FLAGS_SHA384)
339                 valmr |= SHA_MR_ALGO_SHA384;
340         else if (ctx->flags & SHA_FLAGS_SHA512)
341                 valmr |= SHA_MR_ALGO_SHA512;
342 
343         /* Setting CR_FIRST only for the first iteration */
344         if (!(ctx->digcnt[0] || ctx->digcnt[1]))
345                 valcr = SHA_CR_FIRST;
346 
347         atmel_sha_write(dd, SHA_CR, valcr);
348         atmel_sha_write(dd, SHA_MR, valmr);
349 }
350 
351 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
352                               size_t length, int final)
353 {
354         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
355         int count, len32;
356         const u32 *buffer = (const u32 *)buf;
357 
358         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
359                 ctx->digcnt[1], ctx->digcnt[0], length, final);
360 
361         atmel_sha_write_ctrl(dd, 0);
362 
363         /* should be non-zero before next lines to disable clocks later */
364         ctx->digcnt[0] += length;
365         if (ctx->digcnt[0] < length)
366                 ctx->digcnt[1]++;
367 
368         if (final)
369                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
370 
371         len32 = DIV_ROUND_UP(length, sizeof(u32));
372 
373         dd->flags |= SHA_FLAGS_CPU;
374 
375         for (count = 0; count < len32; count++)
376                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
377 
378         return -EINPROGRESS;
379 }
380 
381 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
382                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
383 {
384         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
385         int len32;
386 
387         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
388                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
389 
390         len32 = DIV_ROUND_UP(length1, sizeof(u32));
391         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
392         atmel_sha_write(dd, SHA_TPR, dma_addr1);
393         atmel_sha_write(dd, SHA_TCR, len32);
394 
395         len32 = DIV_ROUND_UP(length2, sizeof(u32));
396         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
397         atmel_sha_write(dd, SHA_TNCR, len32);
398 
399         atmel_sha_write_ctrl(dd, 1);
400 
401         /* should be non-zero before next lines to disable clocks later */
402         ctx->digcnt[0] += length1;
403         if (ctx->digcnt[0] < length1)
404                 ctx->digcnt[1]++;
405 
406         if (final)
407                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
408 
409         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
410 
411         /* Start DMA transfer */
412         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
413 
414         return -EINPROGRESS;
415 }
416 
417 static void atmel_sha_dma_callback(void *data)
418 {
419         struct atmel_sha_dev *dd = data;
420 
421         /* dma_lch_in - completed - wait DATRDY */
422         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
423 }
424 
425 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
426                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
427 {
428         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
429         struct dma_async_tx_descriptor  *in_desc;
430         struct scatterlist sg[2];
431 
432         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
433                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
434 
435         dd->dma_lch_in.dma_conf.src_maxburst = 16;
436         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
437 
438         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
439 
440         if (length2) {
441                 sg_init_table(sg, 2);
442                 sg_dma_address(&sg[0]) = dma_addr1;
443                 sg_dma_len(&sg[0]) = length1;
444                 sg_dma_address(&sg[1]) = dma_addr2;
445                 sg_dma_len(&sg[1]) = length2;
446                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
447                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
448         } else {
449                 sg_init_table(sg, 1);
450                 sg_dma_address(&sg[0]) = dma_addr1;
451                 sg_dma_len(&sg[0]) = length1;
452                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
453                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
454         }
455         if (!in_desc)
456                 return -EINVAL;
457 
458         in_desc->callback = atmel_sha_dma_callback;
459         in_desc->callback_param = dd;
460 
461         atmel_sha_write_ctrl(dd, 1);
462 
463         /* should be non-zero before next lines to disable clocks later */
464         ctx->digcnt[0] += length1;
465         if (ctx->digcnt[0] < length1)
466                 ctx->digcnt[1]++;
467 
468         if (final)
469                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
470 
471         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
472 
473         /* Start DMA transfer */
474         dmaengine_submit(in_desc);
475         dma_async_issue_pending(dd->dma_lch_in.chan);
476 
477         return -EINPROGRESS;
478 }
479 
480 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
481                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
482 {
483         if (dd->caps.has_dma)
484                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
485                                 dma_addr2, length2, final);
486         else
487                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
488                                 dma_addr2, length2, final);
489 }
490 
491 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
492 {
493         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
494         int bufcnt;
495 
496         atmel_sha_append_sg(ctx);
497         atmel_sha_fill_padding(ctx, 0);
498         bufcnt = ctx->bufcnt;
499         ctx->bufcnt = 0;
500 
501         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
502 }
503 
504 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
505                                         struct atmel_sha_reqctx *ctx,
506                                         size_t length, int final)
507 {
508         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
509                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
510         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
511                 dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
512                                 ctx->block_size);
513                 return -EINVAL;
514         }
515 
516         ctx->flags &= ~SHA_FLAGS_SG;
517 
518         /* next call does not fail... so no unmap in the case of error */
519         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
520 }
521 
522 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
523 {
524         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
525         unsigned int final;
526         size_t count;
527 
528         atmel_sha_append_sg(ctx);
529 
530         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
531 
532         dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
533                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
534 
535         if (final)
536                 atmel_sha_fill_padding(ctx, 0);
537 
538         if (final || (ctx->bufcnt == ctx->buflen)) {
539                 count = ctx->bufcnt;
540                 ctx->bufcnt = 0;
541                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
542         }
543 
544         return 0;
545 }
546 
547 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
548 {
549         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
550         unsigned int length, final, tail;
551         struct scatterlist *sg;
552         unsigned int count;
553 
554         if (!ctx->total)
555                 return 0;
556 
557         if (ctx->bufcnt || ctx->offset)
558                 return atmel_sha_update_dma_slow(dd);
559 
560         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
561                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
562 
563         sg = ctx->sg;
564 
565         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
566                 return atmel_sha_update_dma_slow(dd);
567 
568         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
569                 /* size is not ctx->block_size aligned */
570                 return atmel_sha_update_dma_slow(dd);
571 
572         length = min(ctx->total, sg->length);
573 
574         if (sg_is_last(sg)) {
575                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
576                         /* not last sg must be ctx->block_size aligned */
577                         tail = length & (ctx->block_size - 1);
578                         length -= tail;
579                 }
580         }
581 
582         ctx->total -= length;
583         ctx->offset = length; /* offset where to start slow */
584 
585         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
586 
587         /* Add padding */
588         if (final) {
589                 tail = length & (ctx->block_size - 1);
590                 length -= tail;
591                 ctx->total += tail;
592                 ctx->offset = length; /* offset where to start slow */
593 
594                 sg = ctx->sg;
595                 atmel_sha_append_sg(ctx);
596 
597                 atmel_sha_fill_padding(ctx, length);
598 
599                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
600                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
601                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
602                         dev_err(dd->dev, "dma %u bytes error\n",
603                                 ctx->buflen + ctx->block_size);
604                         return -EINVAL;
605                 }
606 
607                 if (length == 0) {
608                         ctx->flags &= ~SHA_FLAGS_SG;
609                         count = ctx->bufcnt;
610                         ctx->bufcnt = 0;
611                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
612                                         0, final);
613                 } else {
614                         ctx->sg = sg;
615                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
616                                 DMA_TO_DEVICE)) {
617                                         dev_err(dd->dev, "dma_map_sg  error\n");
618                                         return -EINVAL;
619                         }
620 
621                         ctx->flags |= SHA_FLAGS_SG;
622 
623                         count = ctx->bufcnt;
624                         ctx->bufcnt = 0;
625                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
626                                         length, ctx->dma_addr, count, final);
627                 }
628         }
629 
630         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
631                 dev_err(dd->dev, "dma_map_sg  error\n");
632                 return -EINVAL;
633         }
634 
635         ctx->flags |= SHA_FLAGS_SG;
636 
637         /* next call does not fail... so no unmap in the case of error */
638         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
639                                                                 0, final);
640 }
641 
642 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
643 {
644         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
645 
646         if (ctx->flags & SHA_FLAGS_SG) {
647                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
648                 if (ctx->sg->length == ctx->offset) {
649                         ctx->sg = sg_next(ctx->sg);
650                         if (ctx->sg)
651                                 ctx->offset = 0;
652                 }
653                 if (ctx->flags & SHA_FLAGS_PAD) {
654                         dma_unmap_single(dd->dev, ctx->dma_addr,
655                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
656                 }
657         } else {
658                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
659                                                 ctx->block_size, DMA_TO_DEVICE);
660         }
661 
662         return 0;
663 }
664 
665 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
666 {
667         struct ahash_request *req = dd->req;
668         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
669         int err;
670 
671         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
672                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
673 
674         if (ctx->flags & SHA_FLAGS_CPU)
675                 err = atmel_sha_update_cpu(dd);
676         else
677                 err = atmel_sha_update_dma_start(dd);
678 
679         /* wait for dma completion before can take more data */
680         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
681                         err, ctx->digcnt[1], ctx->digcnt[0]);
682 
683         return err;
684 }
685 
686 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
687 {
688         struct ahash_request *req = dd->req;
689         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
690         int err = 0;
691         int count;
692 
693         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
694                 atmel_sha_fill_padding(ctx, 0);
695                 count = ctx->bufcnt;
696                 ctx->bufcnt = 0;
697                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
698         }
699         /* faster to handle last block with cpu */
700         else {
701                 atmel_sha_fill_padding(ctx, 0);
702                 count = ctx->bufcnt;
703                 ctx->bufcnt = 0;
704                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
705         }
706 
707         dev_dbg(dd->dev, "final_req: err: %d\n", err);
708 
709         return err;
710 }
711 
712 static void atmel_sha_copy_hash(struct ahash_request *req)
713 {
714         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
715         u32 *hash = (u32 *)ctx->digest;
716         int i;
717 
718         if (ctx->flags & SHA_FLAGS_SHA1)
719                 for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++)
720                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
721         else if (ctx->flags & SHA_FLAGS_SHA224)
722                 for (i = 0; i < SHA224_DIGEST_SIZE / sizeof(u32); i++)
723                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
724         else if (ctx->flags & SHA_FLAGS_SHA256)
725                 for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(u32); i++)
726                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
727         else if (ctx->flags & SHA_FLAGS_SHA384)
728                 for (i = 0; i < SHA384_DIGEST_SIZE / sizeof(u32); i++)
729                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
730         else
731                 for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(u32); i++)
732                         hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
733 }
734 
735 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
736 {
737         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
738 
739         if (!req->result)
740                 return;
741 
742         if (ctx->flags & SHA_FLAGS_SHA1)
743                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
744         else if (ctx->flags & SHA_FLAGS_SHA224)
745                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
746         else if (ctx->flags & SHA_FLAGS_SHA256)
747                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
748         else if (ctx->flags & SHA_FLAGS_SHA384)
749                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
750         else
751                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
752 }
753 
754 static int atmel_sha_finish(struct ahash_request *req)
755 {
756         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
757         struct atmel_sha_dev *dd = ctx->dd;
758 
759         if (ctx->digcnt[0] || ctx->digcnt[1])
760                 atmel_sha_copy_ready_hash(req);
761 
762         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
763                 ctx->digcnt[0], ctx->bufcnt);
764 
765         return 0;
766 }
767 
768 static void atmel_sha_finish_req(struct ahash_request *req, int err)
769 {
770         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
771         struct atmel_sha_dev *dd = ctx->dd;
772 
773         if (!err) {
774                 atmel_sha_copy_hash(req);
775                 if (SHA_FLAGS_FINAL & dd->flags)
776                         err = atmel_sha_finish(req);
777         } else {
778                 ctx->flags |= SHA_FLAGS_ERROR;
779         }
780 
781         /* atomic operation is not needed here */
782         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
783                         SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
784 
785         clk_disable(dd->iclk);
786 
787         if (req->base.complete)
788                 req->base.complete(&req->base, err);
789 
790         /* handle new request */
791         tasklet_schedule(&dd->done_task);
792 }
793 
794 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
795 {
796         int err;
797 
798         err = clk_enable(dd->iclk);
799         if (err)
800                 return err;
801 
802         if (!(SHA_FLAGS_INIT & dd->flags)) {
803                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
804                 dd->flags |= SHA_FLAGS_INIT;
805                 dd->err = 0;
806         }
807 
808         return 0;
809 }
810 
811 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
812 {
813         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
814 }
815 
816 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
817 {
818         atmel_sha_hw_init(dd);
819 
820         dd->hw_version = atmel_sha_get_version(dd);
821 
822         dev_info(dd->dev,
823                         "version: 0x%x\n", dd->hw_version);
824 
825         clk_disable(dd->iclk);
826 }
827 
828 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
829                                   struct ahash_request *req)
830 {
831         struct crypto_async_request *async_req, *backlog;
832         struct atmel_sha_reqctx *ctx;
833         unsigned long flags;
834         int err = 0, ret = 0;
835 
836         spin_lock_irqsave(&dd->lock, flags);
837         if (req)
838                 ret = ahash_enqueue_request(&dd->queue, req);
839 
840         if (SHA_FLAGS_BUSY & dd->flags) {
841                 spin_unlock_irqrestore(&dd->lock, flags);
842                 return ret;
843         }
844 
845         backlog = crypto_get_backlog(&dd->queue);
846         async_req = crypto_dequeue_request(&dd->queue);
847         if (async_req)
848                 dd->flags |= SHA_FLAGS_BUSY;
849 
850         spin_unlock_irqrestore(&dd->lock, flags);
851 
852         if (!async_req)
853                 return ret;
854 
855         if (backlog)
856                 backlog->complete(backlog, -EINPROGRESS);
857 
858         req = ahash_request_cast(async_req);
859         dd->req = req;
860         ctx = ahash_request_ctx(req);
861 
862         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
863                                                 ctx->op, req->nbytes);
864 
865         err = atmel_sha_hw_init(dd);
866 
867         if (err)
868                 goto err1;
869 
870         if (ctx->op == SHA_OP_UPDATE) {
871                 err = atmel_sha_update_req(dd);
872                 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
873                         /* no final() after finup() */
874                         err = atmel_sha_final_req(dd);
875         } else if (ctx->op == SHA_OP_FINAL) {
876                 err = atmel_sha_final_req(dd);
877         }
878 
879 err1:
880         if (err != -EINPROGRESS)
881                 /* done_task will not finish it, so do it here */
882                 atmel_sha_finish_req(req, err);
883 
884         dev_dbg(dd->dev, "exit, err: %d\n", err);
885 
886         return ret;
887 }
888 
889 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
890 {
891         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
892         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
893         struct atmel_sha_dev *dd = tctx->dd;
894 
895         ctx->op = op;
896 
897         return atmel_sha_handle_queue(dd, req);
898 }
899 
900 static int atmel_sha_update(struct ahash_request *req)
901 {
902         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
903 
904         if (!req->nbytes)
905                 return 0;
906 
907         ctx->total = req->nbytes;
908         ctx->sg = req->src;
909         ctx->offset = 0;
910 
911         if (ctx->flags & SHA_FLAGS_FINUP) {
912                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
913                         /* faster to use CPU for short transfers */
914                         ctx->flags |= SHA_FLAGS_CPU;
915         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
916                 atmel_sha_append_sg(ctx);
917                 return 0;
918         }
919         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
920 }
921 
922 static int atmel_sha_final(struct ahash_request *req)
923 {
924         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
925         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
926         struct atmel_sha_dev *dd = tctx->dd;
927 
928         int err = 0;
929 
930         ctx->flags |= SHA_FLAGS_FINUP;
931 
932         if (ctx->flags & SHA_FLAGS_ERROR)
933                 return 0; /* uncompleted hash is not needed */
934 
935         if (ctx->bufcnt) {
936                 return atmel_sha_enqueue(req, SHA_OP_FINAL);
937         } else if (!(ctx->flags & SHA_FLAGS_PAD)) { /* add padding */
938                 err = atmel_sha_hw_init(dd);
939                 if (err)
940                         goto err1;
941 
942                 dd->flags |= SHA_FLAGS_BUSY;
943                 err = atmel_sha_final_req(dd);
944         } else {
945                 /* copy ready hash (+ finalize hmac) */
946                 return atmel_sha_finish(req);
947         }
948 
949 err1:
950         if (err != -EINPROGRESS)
951                 /* done_task will not finish it, so do it here */
952                 atmel_sha_finish_req(req, err);
953 
954         return err;
955 }
956 
957 static int atmel_sha_finup(struct ahash_request *req)
958 {
959         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
960         int err1, err2;
961 
962         ctx->flags |= SHA_FLAGS_FINUP;
963 
964         err1 = atmel_sha_update(req);
965         if (err1 == -EINPROGRESS || err1 == -EBUSY)
966                 return err1;
967 
968         /*
969          * final() has to be always called to cleanup resources
970          * even if udpate() failed, except EINPROGRESS
971          */
972         err2 = atmel_sha_final(req);
973 
974         return err1 ?: err2;
975 }
976 
977 static int atmel_sha_digest(struct ahash_request *req)
978 {
979         return atmel_sha_init(req) ?: atmel_sha_finup(req);
980 }
981 
982 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
983 {
984         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
985                                  sizeof(struct atmel_sha_reqctx) +
986                                  SHA_BUFFER_LEN + SHA512_BLOCK_SIZE);
987 
988         return 0;
989 }
990 
991 static struct ahash_alg sha_1_256_algs[] = {
992 {
993         .init           = atmel_sha_init,
994         .update         = atmel_sha_update,
995         .final          = atmel_sha_final,
996         .finup          = atmel_sha_finup,
997         .digest         = atmel_sha_digest,
998         .halg = {
999                 .digestsize     = SHA1_DIGEST_SIZE,
1000                 .base   = {
1001                         .cra_name               = "sha1",
1002                         .cra_driver_name        = "atmel-sha1",
1003                         .cra_priority           = 100,
1004                         .cra_flags              = CRYPTO_ALG_ASYNC,
1005                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1006                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1007                         .cra_alignmask          = 0,
1008                         .cra_module             = THIS_MODULE,
1009                         .cra_init               = atmel_sha_cra_init,
1010                 }
1011         }
1012 },
1013 {
1014         .init           = atmel_sha_init,
1015         .update         = atmel_sha_update,
1016         .final          = atmel_sha_final,
1017         .finup          = atmel_sha_finup,
1018         .digest         = atmel_sha_digest,
1019         .halg = {
1020                 .digestsize     = SHA256_DIGEST_SIZE,
1021                 .base   = {
1022                         .cra_name               = "sha256",
1023                         .cra_driver_name        = "atmel-sha256",
1024                         .cra_priority           = 100,
1025                         .cra_flags              = CRYPTO_ALG_ASYNC,
1026                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1027                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1028                         .cra_alignmask          = 0,
1029                         .cra_module             = THIS_MODULE,
1030                         .cra_init               = atmel_sha_cra_init,
1031                 }
1032         }
1033 },
1034 };
1035 
1036 static struct ahash_alg sha_224_alg = {
1037         .init           = atmel_sha_init,
1038         .update         = atmel_sha_update,
1039         .final          = atmel_sha_final,
1040         .finup          = atmel_sha_finup,
1041         .digest         = atmel_sha_digest,
1042         .halg = {
1043                 .digestsize     = SHA224_DIGEST_SIZE,
1044                 .base   = {
1045                         .cra_name               = "sha224",
1046                         .cra_driver_name        = "atmel-sha224",
1047                         .cra_priority           = 100,
1048                         .cra_flags              = CRYPTO_ALG_ASYNC,
1049                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1050                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1051                         .cra_alignmask          = 0,
1052                         .cra_module             = THIS_MODULE,
1053                         .cra_init               = atmel_sha_cra_init,
1054                 }
1055         }
1056 };
1057 
1058 static struct ahash_alg sha_384_512_algs[] = {
1059 {
1060         .init           = atmel_sha_init,
1061         .update         = atmel_sha_update,
1062         .final          = atmel_sha_final,
1063         .finup          = atmel_sha_finup,
1064         .digest         = atmel_sha_digest,
1065         .halg = {
1066                 .digestsize     = SHA384_DIGEST_SIZE,
1067                 .base   = {
1068                         .cra_name               = "sha384",
1069                         .cra_driver_name        = "atmel-sha384",
1070                         .cra_priority           = 100,
1071                         .cra_flags              = CRYPTO_ALG_ASYNC,
1072                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1073                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1074                         .cra_alignmask          = 0x3,
1075                         .cra_module             = THIS_MODULE,
1076                         .cra_init               = atmel_sha_cra_init,
1077                 }
1078         }
1079 },
1080 {
1081         .init           = atmel_sha_init,
1082         .update         = atmel_sha_update,
1083         .final          = atmel_sha_final,
1084         .finup          = atmel_sha_finup,
1085         .digest         = atmel_sha_digest,
1086         .halg = {
1087                 .digestsize     = SHA512_DIGEST_SIZE,
1088                 .base   = {
1089                         .cra_name               = "sha512",
1090                         .cra_driver_name        = "atmel-sha512",
1091                         .cra_priority           = 100,
1092                         .cra_flags              = CRYPTO_ALG_ASYNC,
1093                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1094                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1095                         .cra_alignmask          = 0x3,
1096                         .cra_module             = THIS_MODULE,
1097                         .cra_init               = atmel_sha_cra_init,
1098                 }
1099         }
1100 },
1101 };
1102 
1103 static void atmel_sha_done_task(unsigned long data)
1104 {
1105         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1106         int err = 0;
1107 
1108         if (!(SHA_FLAGS_BUSY & dd->flags)) {
1109                 atmel_sha_handle_queue(dd, NULL);
1110                 return;
1111         }
1112 
1113         if (SHA_FLAGS_CPU & dd->flags) {
1114                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1115                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1116                         goto finish;
1117                 }
1118         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1119                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1120                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1121                         atmel_sha_update_dma_stop(dd);
1122                         if (dd->err) {
1123                                 err = dd->err;
1124                                 goto finish;
1125                         }
1126                 }
1127                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1128                         /* hash or semi-hash ready */
1129                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1130                                                 SHA_FLAGS_OUTPUT_READY);
1131                         err = atmel_sha_update_dma_start(dd);
1132                         if (err != -EINPROGRESS)
1133                                 goto finish;
1134                 }
1135         }
1136         return;
1137 
1138 finish:
1139         /* finish curent request */
1140         atmel_sha_finish_req(dd->req, err);
1141 }
1142 
1143 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1144 {
1145         struct atmel_sha_dev *sha_dd = dev_id;
1146         u32 reg;
1147 
1148         reg = atmel_sha_read(sha_dd, SHA_ISR);
1149         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1150                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1151                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1152                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1153                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1154                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1155                         tasklet_schedule(&sha_dd->done_task);
1156                 } else {
1157                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1158                 }
1159                 return IRQ_HANDLED;
1160         }
1161 
1162         return IRQ_NONE;
1163 }
1164 
1165 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
1166 {
1167         int i;
1168 
1169         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
1170                 crypto_unregister_ahash(&sha_1_256_algs[i]);
1171 
1172         if (dd->caps.has_sha224)
1173                 crypto_unregister_ahash(&sha_224_alg);
1174 
1175         if (dd->caps.has_sha_384_512) {
1176                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
1177                         crypto_unregister_ahash(&sha_384_512_algs[i]);
1178         }
1179 }
1180 
1181 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
1182 {
1183         int err, i, j;
1184 
1185         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
1186                 err = crypto_register_ahash(&sha_1_256_algs[i]);
1187                 if (err)
1188                         goto err_sha_1_256_algs;
1189         }
1190 
1191         if (dd->caps.has_sha224) {
1192                 err = crypto_register_ahash(&sha_224_alg);
1193                 if (err)
1194                         goto err_sha_224_algs;
1195         }
1196 
1197         if (dd->caps.has_sha_384_512) {
1198                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
1199                         err = crypto_register_ahash(&sha_384_512_algs[i]);
1200                         if (err)
1201                                 goto err_sha_384_512_algs;
1202                 }
1203         }
1204 
1205         return 0;
1206 
1207 err_sha_384_512_algs:
1208         for (j = 0; j < i; j++)
1209                 crypto_unregister_ahash(&sha_384_512_algs[j]);
1210         crypto_unregister_ahash(&sha_224_alg);
1211 err_sha_224_algs:
1212         i = ARRAY_SIZE(sha_1_256_algs);
1213 err_sha_1_256_algs:
1214         for (j = 0; j < i; j++)
1215                 crypto_unregister_ahash(&sha_1_256_algs[j]);
1216 
1217         return err;
1218 }
1219 
1220 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
1221 {
1222         struct at_dma_slave     *sl = slave;
1223 
1224         if (sl && sl->dma_dev == chan->device->dev) {
1225                 chan->private = sl;
1226                 return true;
1227         } else {
1228                 return false;
1229         }
1230 }
1231 
1232 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
1233                                 struct crypto_platform_data *pdata)
1234 {
1235         int err = -ENOMEM;
1236         dma_cap_mask_t mask_in;
1237 
1238         /* Try to grab DMA channel */
1239         dma_cap_zero(mask_in);
1240         dma_cap_set(DMA_SLAVE, mask_in);
1241 
1242         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
1243                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
1244         if (!dd->dma_lch_in.chan) {
1245                 dev_warn(dd->dev, "no DMA channel available\n");
1246                 return err;
1247         }
1248 
1249         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
1250         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
1251                 SHA_REG_DIN(0);
1252         dd->dma_lch_in.dma_conf.src_maxburst = 1;
1253         dd->dma_lch_in.dma_conf.src_addr_width =
1254                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1255         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
1256         dd->dma_lch_in.dma_conf.dst_addr_width =
1257                 DMA_SLAVE_BUSWIDTH_4_BYTES;
1258         dd->dma_lch_in.dma_conf.device_fc = false;
1259 
1260         return 0;
1261 }
1262 
1263 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
1264 {
1265         dma_release_channel(dd->dma_lch_in.chan);
1266 }
1267 
1268 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
1269 {
1270 
1271         dd->caps.has_dma = 0;
1272         dd->caps.has_dualbuff = 0;
1273         dd->caps.has_sha224 = 0;
1274         dd->caps.has_sha_384_512 = 0;
1275 
1276         /* keep only major version number */
1277         switch (dd->hw_version & 0xff0) {
1278         case 0x420:
1279                 dd->caps.has_dma = 1;
1280                 dd->caps.has_dualbuff = 1;
1281                 dd->caps.has_sha224 = 1;
1282                 dd->caps.has_sha_384_512 = 1;
1283                 break;
1284         case 0x410:
1285                 dd->caps.has_dma = 1;
1286                 dd->caps.has_dualbuff = 1;
1287                 dd->caps.has_sha224 = 1;
1288                 dd->caps.has_sha_384_512 = 1;
1289                 break;
1290         case 0x400:
1291                 dd->caps.has_dma = 1;
1292                 dd->caps.has_dualbuff = 1;
1293                 dd->caps.has_sha224 = 1;
1294                 break;
1295         case 0x320:
1296                 break;
1297         default:
1298                 dev_warn(dd->dev,
1299                                 "Unmanaged sha version, set minimum capabilities\n");
1300                 break;
1301         }
1302 }
1303 
1304 #if defined(CONFIG_OF)
1305 static const struct of_device_id atmel_sha_dt_ids[] = {
1306         { .compatible = "atmel,at91sam9g46-sha" },
1307         { /* sentinel */ }
1308 };
1309 
1310 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
1311 
1312 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
1313 {
1314         struct device_node *np = pdev->dev.of_node;
1315         struct crypto_platform_data *pdata;
1316 
1317         if (!np) {
1318                 dev_err(&pdev->dev, "device node not found\n");
1319                 return ERR_PTR(-EINVAL);
1320         }
1321 
1322         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1323         if (!pdata) {
1324                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1325                 return ERR_PTR(-ENOMEM);
1326         }
1327 
1328         pdata->dma_slave = devm_kzalloc(&pdev->dev,
1329                                         sizeof(*(pdata->dma_slave)),
1330                                         GFP_KERNEL);
1331         if (!pdata->dma_slave) {
1332                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1333                 return ERR_PTR(-ENOMEM);
1334         }
1335 
1336         return pdata;
1337 }
1338 #else /* CONFIG_OF */
1339 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
1340 {
1341         return ERR_PTR(-EINVAL);
1342 }
1343 #endif
1344 
1345 static int atmel_sha_probe(struct platform_device *pdev)
1346 {
1347         struct atmel_sha_dev *sha_dd;
1348         struct crypto_platform_data     *pdata;
1349         struct device *dev = &pdev->dev;
1350         struct resource *sha_res;
1351         int err;
1352 
1353         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
1354         if (sha_dd == NULL) {
1355                 dev_err(dev, "unable to alloc data struct.\n");
1356                 err = -ENOMEM;
1357                 goto sha_dd_err;
1358         }
1359 
1360         sha_dd->dev = dev;
1361 
1362         platform_set_drvdata(pdev, sha_dd);
1363 
1364         INIT_LIST_HEAD(&sha_dd->list);
1365         spin_lock_init(&sha_dd->lock);
1366 
1367         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
1368                                         (unsigned long)sha_dd);
1369 
1370         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
1371 
1372         sha_dd->irq = -1;
1373 
1374         /* Get the base address */
1375         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1376         if (!sha_res) {
1377                 dev_err(dev, "no MEM resource info\n");
1378                 err = -ENODEV;
1379                 goto res_err;
1380         }
1381         sha_dd->phys_base = sha_res->start;
1382 
1383         /* Get the IRQ */
1384         sha_dd->irq = platform_get_irq(pdev,  0);
1385         if (sha_dd->irq < 0) {
1386                 dev_err(dev, "no IRQ resource info\n");
1387                 err = sha_dd->irq;
1388                 goto res_err;
1389         }
1390 
1391         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
1392                                IRQF_SHARED, "atmel-sha", sha_dd);
1393         if (err) {
1394                 dev_err(dev, "unable to request sha irq.\n");
1395                 goto res_err;
1396         }
1397 
1398         /* Initializing the clock */
1399         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
1400         if (IS_ERR(sha_dd->iclk)) {
1401                 dev_err(dev, "clock initialization failed.\n");
1402                 err = PTR_ERR(sha_dd->iclk);
1403                 goto res_err;
1404         }
1405 
1406         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
1407         if (!sha_dd->io_base) {
1408                 dev_err(dev, "can't ioremap\n");
1409                 err = -ENOMEM;
1410                 goto res_err;
1411         }
1412 
1413         err = clk_prepare(sha_dd->iclk);
1414         if (err)
1415                 goto res_err;
1416 
1417         atmel_sha_hw_version_init(sha_dd);
1418 
1419         atmel_sha_get_cap(sha_dd);
1420 
1421         if (sha_dd->caps.has_dma) {
1422                 pdata = pdev->dev.platform_data;
1423                 if (!pdata) {
1424                         pdata = atmel_sha_of_init(pdev);
1425                         if (IS_ERR(pdata)) {
1426                                 dev_err(&pdev->dev, "platform data not available\n");
1427                                 err = PTR_ERR(pdata);
1428                                 goto iclk_unprepare;
1429                         }
1430                 }
1431                 if (!pdata->dma_slave) {
1432                         err = -ENXIO;
1433                         goto iclk_unprepare;
1434                 }
1435                 err = atmel_sha_dma_init(sha_dd, pdata);
1436                 if (err)
1437                         goto err_sha_dma;
1438 
1439                 dev_info(dev, "using %s for DMA transfers\n",
1440                                 dma_chan_name(sha_dd->dma_lch_in.chan));
1441         }
1442 
1443         spin_lock(&atmel_sha.lock);
1444         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
1445         spin_unlock(&atmel_sha.lock);
1446 
1447         err = atmel_sha_register_algs(sha_dd);
1448         if (err)
1449                 goto err_algs;
1450 
1451         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
1452                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
1453                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
1454 
1455         return 0;
1456 
1457 err_algs:
1458         spin_lock(&atmel_sha.lock);
1459         list_del(&sha_dd->list);
1460         spin_unlock(&atmel_sha.lock);
1461         if (sha_dd->caps.has_dma)
1462                 atmel_sha_dma_cleanup(sha_dd);
1463 err_sha_dma:
1464 iclk_unprepare:
1465         clk_unprepare(sha_dd->iclk);
1466 res_err:
1467         tasklet_kill(&sha_dd->done_task);
1468 sha_dd_err:
1469         dev_err(dev, "initialization failed.\n");
1470 
1471         return err;
1472 }
1473 
1474 static int atmel_sha_remove(struct platform_device *pdev)
1475 {
1476         static struct atmel_sha_dev *sha_dd;
1477 
1478         sha_dd = platform_get_drvdata(pdev);
1479         if (!sha_dd)
1480                 return -ENODEV;
1481         spin_lock(&atmel_sha.lock);
1482         list_del(&sha_dd->list);
1483         spin_unlock(&atmel_sha.lock);
1484 
1485         atmel_sha_unregister_algs(sha_dd);
1486 
1487         tasklet_kill(&sha_dd->done_task);
1488 
1489         if (sha_dd->caps.has_dma)
1490                 atmel_sha_dma_cleanup(sha_dd);
1491 
1492         clk_unprepare(sha_dd->iclk);
1493 
1494         return 0;
1495 }
1496 
1497 static struct platform_driver atmel_sha_driver = {
1498         .probe          = atmel_sha_probe,
1499         .remove         = atmel_sha_remove,
1500         .driver         = {
1501                 .name   = "atmel_sha",
1502                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
1503         },
1504 };
1505 
1506 module_platform_driver(atmel_sha_driver);
1507 
1508 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
1509 MODULE_LICENSE("GPL v2");
1510 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
1511 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us