Version:  2.0.40 2.2.26 2.4.37 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18

Linux/drivers/clocksource/arm_arch_timer.c

  1 /*
  2  *  linux/drivers/clocksource/arm_arch_timer.c
  3  *
  4  *  Copyright (C) 2011 ARM Ltd.
  5  *  All Rights Reserved
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  */
 11 #include <linux/init.h>
 12 #include <linux/kernel.h>
 13 #include <linux/device.h>
 14 #include <linux/smp.h>
 15 #include <linux/cpu.h>
 16 #include <linux/cpu_pm.h>
 17 #include <linux/clockchips.h>
 18 #include <linux/interrupt.h>
 19 #include <linux/of_irq.h>
 20 #include <linux/of_address.h>
 21 #include <linux/io.h>
 22 #include <linux/slab.h>
 23 #include <linux/sched_clock.h>
 24 
 25 #include <asm/arch_timer.h>
 26 #include <asm/virt.h>
 27 
 28 #include <clocksource/arm_arch_timer.h>
 29 
 30 #define CNTTIDR         0x08
 31 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
 32 
 33 #define CNTVCT_LO       0x08
 34 #define CNTVCT_HI       0x0c
 35 #define CNTFRQ          0x10
 36 #define CNTP_TVAL       0x28
 37 #define CNTP_CTL        0x2c
 38 #define CNTV_TVAL       0x38
 39 #define CNTV_CTL        0x3c
 40 
 41 #define ARCH_CP15_TIMER BIT(0)
 42 #define ARCH_MEM_TIMER  BIT(1)
 43 static unsigned arch_timers_present __initdata;
 44 
 45 static void __iomem *arch_counter_base;
 46 
 47 struct arch_timer {
 48         void __iomem *base;
 49         struct clock_event_device evt;
 50 };
 51 
 52 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
 53 
 54 static u32 arch_timer_rate;
 55 
 56 enum ppi_nr {
 57         PHYS_SECURE_PPI,
 58         PHYS_NONSECURE_PPI,
 59         VIRT_PPI,
 60         HYP_PPI,
 61         MAX_TIMER_PPI
 62 };
 63 
 64 static int arch_timer_ppi[MAX_TIMER_PPI];
 65 
 66 static struct clock_event_device __percpu *arch_timer_evt;
 67 
 68 static bool arch_timer_use_virtual = true;
 69 static bool arch_timer_c3stop;
 70 static bool arch_timer_mem_use_virtual;
 71 
 72 /*
 73  * Architected system timer support.
 74  */
 75 
 76 static __always_inline
 77 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
 78                           struct clock_event_device *clk)
 79 {
 80         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 81                 struct arch_timer *timer = to_arch_timer(clk);
 82                 switch (reg) {
 83                 case ARCH_TIMER_REG_CTRL:
 84                         writel_relaxed(val, timer->base + CNTP_CTL);
 85                         break;
 86                 case ARCH_TIMER_REG_TVAL:
 87                         writel_relaxed(val, timer->base + CNTP_TVAL);
 88                         break;
 89                 }
 90         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 91                 struct arch_timer *timer = to_arch_timer(clk);
 92                 switch (reg) {
 93                 case ARCH_TIMER_REG_CTRL:
 94                         writel_relaxed(val, timer->base + CNTV_CTL);
 95                         break;
 96                 case ARCH_TIMER_REG_TVAL:
 97                         writel_relaxed(val, timer->base + CNTV_TVAL);
 98                         break;
 99                 }
100         } else {
101                 arch_timer_reg_write_cp15(access, reg, val);
102         }
103 }
104 
105 static __always_inline
106 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
107                         struct clock_event_device *clk)
108 {
109         u32 val;
110 
111         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
112                 struct arch_timer *timer = to_arch_timer(clk);
113                 switch (reg) {
114                 case ARCH_TIMER_REG_CTRL:
115                         val = readl_relaxed(timer->base + CNTP_CTL);
116                         break;
117                 case ARCH_TIMER_REG_TVAL:
118                         val = readl_relaxed(timer->base + CNTP_TVAL);
119                         break;
120                 }
121         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
122                 struct arch_timer *timer = to_arch_timer(clk);
123                 switch (reg) {
124                 case ARCH_TIMER_REG_CTRL:
125                         val = readl_relaxed(timer->base + CNTV_CTL);
126                         break;
127                 case ARCH_TIMER_REG_TVAL:
128                         val = readl_relaxed(timer->base + CNTV_TVAL);
129                         break;
130                 }
131         } else {
132                 val = arch_timer_reg_read_cp15(access, reg);
133         }
134 
135         return val;
136 }
137 
138 static __always_inline irqreturn_t timer_handler(const int access,
139                                         struct clock_event_device *evt)
140 {
141         unsigned long ctrl;
142 
143         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
144         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
145                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
146                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
147                 evt->event_handler(evt);
148                 return IRQ_HANDLED;
149         }
150 
151         return IRQ_NONE;
152 }
153 
154 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
155 {
156         struct clock_event_device *evt = dev_id;
157 
158         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
159 }
160 
161 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
162 {
163         struct clock_event_device *evt = dev_id;
164 
165         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
166 }
167 
168 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
169 {
170         struct clock_event_device *evt = dev_id;
171 
172         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
173 }
174 
175 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
176 {
177         struct clock_event_device *evt = dev_id;
178 
179         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
180 }
181 
182 static __always_inline void timer_set_mode(const int access, int mode,
183                                   struct clock_event_device *clk)
184 {
185         unsigned long ctrl;
186         switch (mode) {
187         case CLOCK_EVT_MODE_UNUSED:
188         case CLOCK_EVT_MODE_SHUTDOWN:
189                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192                 break;
193         default:
194                 break;
195         }
196 }
197 
198 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
199                                      struct clock_event_device *clk)
200 {
201         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
202 }
203 
204 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
205                                      struct clock_event_device *clk)
206 {
207         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
208 }
209 
210 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
211                                          struct clock_event_device *clk)
212 {
213         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
214 }
215 
216 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
217                                          struct clock_event_device *clk)
218 {
219         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
220 }
221 
222 static __always_inline void set_next_event(const int access, unsigned long evt,
223                                            struct clock_event_device *clk)
224 {
225         unsigned long ctrl;
226         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
227         ctrl |= ARCH_TIMER_CTRL_ENABLE;
228         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
229         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
230         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
231 }
232 
233 static int arch_timer_set_next_event_virt(unsigned long evt,
234                                           struct clock_event_device *clk)
235 {
236         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
237         return 0;
238 }
239 
240 static int arch_timer_set_next_event_phys(unsigned long evt,
241                                           struct clock_event_device *clk)
242 {
243         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
244         return 0;
245 }
246 
247 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
248                                               struct clock_event_device *clk)
249 {
250         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
251         return 0;
252 }
253 
254 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
255                                               struct clock_event_device *clk)
256 {
257         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
258         return 0;
259 }
260 
261 static void __arch_timer_setup(unsigned type,
262                                struct clock_event_device *clk)
263 {
264         clk->features = CLOCK_EVT_FEAT_ONESHOT;
265 
266         if (type == ARCH_CP15_TIMER) {
267                 if (arch_timer_c3stop)
268                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
269                 clk->name = "arch_sys_timer";
270                 clk->rating = 450;
271                 clk->cpumask = cpumask_of(smp_processor_id());
272                 if (arch_timer_use_virtual) {
273                         clk->irq = arch_timer_ppi[VIRT_PPI];
274                         clk->set_mode = arch_timer_set_mode_virt;
275                         clk->set_next_event = arch_timer_set_next_event_virt;
276                 } else {
277                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
278                         clk->set_mode = arch_timer_set_mode_phys;
279                         clk->set_next_event = arch_timer_set_next_event_phys;
280                 }
281         } else {
282                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
283                 clk->name = "arch_mem_timer";
284                 clk->rating = 400;
285                 clk->cpumask = cpu_all_mask;
286                 if (arch_timer_mem_use_virtual) {
287                         clk->set_mode = arch_timer_set_mode_virt_mem;
288                         clk->set_next_event =
289                                 arch_timer_set_next_event_virt_mem;
290                 } else {
291                         clk->set_mode = arch_timer_set_mode_phys_mem;
292                         clk->set_next_event =
293                                 arch_timer_set_next_event_phys_mem;
294                 }
295         }
296 
297         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
298 
299         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
300 }
301 
302 static void arch_timer_evtstrm_enable(int divider)
303 {
304         u32 cntkctl = arch_timer_get_cntkctl();
305 
306         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
307         /* Set the divider and enable virtual event stream */
308         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
309                         | ARCH_TIMER_VIRT_EVT_EN;
310         arch_timer_set_cntkctl(cntkctl);
311         elf_hwcap |= HWCAP_EVTSTRM;
312 #ifdef CONFIG_COMPAT
313         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
314 #endif
315 }
316 
317 static void arch_timer_configure_evtstream(void)
318 {
319         int evt_stream_div, pos;
320 
321         /* Find the closest power of two to the divisor */
322         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
323         pos = fls(evt_stream_div);
324         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
325                 pos--;
326         /* enable event stream */
327         arch_timer_evtstrm_enable(min(pos, 15));
328 }
329 
330 static void arch_counter_set_user_access(void)
331 {
332         u32 cntkctl = arch_timer_get_cntkctl();
333 
334         /* Disable user access to the timers and the physical counter */
335         /* Also disable virtual event stream */
336         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
337                         | ARCH_TIMER_USR_VT_ACCESS_EN
338                         | ARCH_TIMER_VIRT_EVT_EN
339                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
340 
341         /* Enable user access to the virtual counter */
342         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
343 
344         arch_timer_set_cntkctl(cntkctl);
345 }
346 
347 static int arch_timer_setup(struct clock_event_device *clk)
348 {
349         __arch_timer_setup(ARCH_CP15_TIMER, clk);
350 
351         if (arch_timer_use_virtual)
352                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
353         else {
354                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
355                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
356                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
357         }
358 
359         arch_counter_set_user_access();
360         if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
361                 arch_timer_configure_evtstream();
362 
363         return 0;
364 }
365 
366 static void
367 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
368 {
369         /* Who has more than one independent system counter? */
370         if (arch_timer_rate)
371                 return;
372 
373         /* Try to determine the frequency from the device tree or CNTFRQ */
374         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
375                 if (cntbase)
376                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
377                 else
378                         arch_timer_rate = arch_timer_get_cntfrq();
379         }
380 
381         /* Check the timer frequency. */
382         if (arch_timer_rate == 0)
383                 pr_warn("Architected timer frequency not available\n");
384 }
385 
386 static void arch_timer_banner(unsigned type)
387 {
388         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
389                      type & ARCH_CP15_TIMER ? "cp15" : "",
390                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
391                      type & ARCH_MEM_TIMER ? "mmio" : "",
392                      (unsigned long)arch_timer_rate / 1000000,
393                      (unsigned long)(arch_timer_rate / 10000) % 100,
394                      type & ARCH_CP15_TIMER ?
395                         arch_timer_use_virtual ? "virt" : "phys" :
396                         "",
397                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
398                      type & ARCH_MEM_TIMER ?
399                         arch_timer_mem_use_virtual ? "virt" : "phys" :
400                         "");
401 }
402 
403 u32 arch_timer_get_rate(void)
404 {
405         return arch_timer_rate;
406 }
407 
408 static u64 arch_counter_get_cntvct_mem(void)
409 {
410         u32 vct_lo, vct_hi, tmp_hi;
411 
412         do {
413                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
414                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
415                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
416         } while (vct_hi != tmp_hi);
417 
418         return ((u64) vct_hi << 32) | vct_lo;
419 }
420 
421 /*
422  * Default to cp15 based access because arm64 uses this function for
423  * sched_clock() before DT is probed and the cp15 method is guaranteed
424  * to exist on arm64. arm doesn't use this before DT is probed so even
425  * if we don't have the cp15 accessors we won't have a problem.
426  */
427 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
428 
429 static cycle_t arch_counter_read(struct clocksource *cs)
430 {
431         return arch_timer_read_counter();
432 }
433 
434 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
435 {
436         return arch_timer_read_counter();
437 }
438 
439 static struct clocksource clocksource_counter = {
440         .name   = "arch_sys_counter",
441         .rating = 400,
442         .read   = arch_counter_read,
443         .mask   = CLOCKSOURCE_MASK(56),
444         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
445 };
446 
447 static struct cyclecounter cyclecounter = {
448         .read   = arch_counter_read_cc,
449         .mask   = CLOCKSOURCE_MASK(56),
450 };
451 
452 static struct timecounter timecounter;
453 
454 struct timecounter *arch_timer_get_timecounter(void)
455 {
456         return &timecounter;
457 }
458 
459 static void __init arch_counter_register(unsigned type)
460 {
461         u64 start_count;
462 
463         /* Register the CP15 based counter if we have one */
464         if (type & ARCH_CP15_TIMER) {
465                 arch_timer_read_counter = arch_counter_get_cntvct;
466         } else {
467                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
468 
469                 /* If the clocksource name is "arch_sys_counter" the
470                  * VDSO will attempt to read the CP15-based counter.
471                  * Ensure this does not happen when CP15-based
472                  * counter is not available.
473                  */
474                 clocksource_counter.name = "arch_mem_counter";
475         }
476 
477         start_count = arch_timer_read_counter();
478         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
479         cyclecounter.mult = clocksource_counter.mult;
480         cyclecounter.shift = clocksource_counter.shift;
481         timecounter_init(&timecounter, &cyclecounter, start_count);
482 
483         /* 56 bits minimum, so we assume worst case rollover */
484         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
485 }
486 
487 static void arch_timer_stop(struct clock_event_device *clk)
488 {
489         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
490                  clk->irq, smp_processor_id());
491 
492         if (arch_timer_use_virtual)
493                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
494         else {
495                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
496                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
497                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
498         }
499 
500         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
501 }
502 
503 static int arch_timer_cpu_notify(struct notifier_block *self,
504                                            unsigned long action, void *hcpu)
505 {
506         /*
507          * Grab cpu pointer in each case to avoid spurious
508          * preemptible warnings
509          */
510         switch (action & ~CPU_TASKS_FROZEN) {
511         case CPU_STARTING:
512                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
513                 break;
514         case CPU_DYING:
515                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
516                 break;
517         }
518 
519         return NOTIFY_OK;
520 }
521 
522 static struct notifier_block arch_timer_cpu_nb = {
523         .notifier_call = arch_timer_cpu_notify,
524 };
525 
526 #ifdef CONFIG_CPU_PM
527 static unsigned int saved_cntkctl;
528 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
529                                     unsigned long action, void *hcpu)
530 {
531         if (action == CPU_PM_ENTER)
532                 saved_cntkctl = arch_timer_get_cntkctl();
533         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
534                 arch_timer_set_cntkctl(saved_cntkctl);
535         return NOTIFY_OK;
536 }
537 
538 static struct notifier_block arch_timer_cpu_pm_notifier = {
539         .notifier_call = arch_timer_cpu_pm_notify,
540 };
541 
542 static int __init arch_timer_cpu_pm_init(void)
543 {
544         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
545 }
546 #else
547 static int __init arch_timer_cpu_pm_init(void)
548 {
549         return 0;
550 }
551 #endif
552 
553 static int __init arch_timer_register(void)
554 {
555         int err;
556         int ppi;
557 
558         arch_timer_evt = alloc_percpu(struct clock_event_device);
559         if (!arch_timer_evt) {
560                 err = -ENOMEM;
561                 goto out;
562         }
563 
564         if (arch_timer_use_virtual) {
565                 ppi = arch_timer_ppi[VIRT_PPI];
566                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
567                                          "arch_timer", arch_timer_evt);
568         } else {
569                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
570                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
571                                          "arch_timer", arch_timer_evt);
572                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
573                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
574                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
575                                                  "arch_timer", arch_timer_evt);
576                         if (err)
577                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
578                                                 arch_timer_evt);
579                 }
580         }
581 
582         if (err) {
583                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
584                        ppi, err);
585                 goto out_free;
586         }
587 
588         err = register_cpu_notifier(&arch_timer_cpu_nb);
589         if (err)
590                 goto out_free_irq;
591 
592         err = arch_timer_cpu_pm_init();
593         if (err)
594                 goto out_unreg_notify;
595 
596         /* Immediately configure the timer on the boot CPU */
597         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
598 
599         return 0;
600 
601 out_unreg_notify:
602         unregister_cpu_notifier(&arch_timer_cpu_nb);
603 out_free_irq:
604         if (arch_timer_use_virtual)
605                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
606         else {
607                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
608                                 arch_timer_evt);
609                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
610                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
611                                         arch_timer_evt);
612         }
613 
614 out_free:
615         free_percpu(arch_timer_evt);
616 out:
617         return err;
618 }
619 
620 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
621 {
622         int ret;
623         irq_handler_t func;
624         struct arch_timer *t;
625 
626         t = kzalloc(sizeof(*t), GFP_KERNEL);
627         if (!t)
628                 return -ENOMEM;
629 
630         t->base = base;
631         t->evt.irq = irq;
632         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
633 
634         if (arch_timer_mem_use_virtual)
635                 func = arch_timer_handler_virt_mem;
636         else
637                 func = arch_timer_handler_phys_mem;
638 
639         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
640         if (ret) {
641                 pr_err("arch_timer: Failed to request mem timer irq\n");
642                 kfree(t);
643         }
644 
645         return ret;
646 }
647 
648 static const struct of_device_id arch_timer_of_match[] __initconst = {
649         { .compatible   = "arm,armv7-timer",    },
650         { .compatible   = "arm,armv8-timer",    },
651         {},
652 };
653 
654 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
655         { .compatible   = "arm,armv7-timer-mem", },
656         {},
657 };
658 
659 static bool __init
660 arch_timer_probed(int type, const struct of_device_id *matches)
661 {
662         struct device_node *dn;
663         bool probed = true;
664 
665         dn = of_find_matching_node(NULL, matches);
666         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
667                 probed = false;
668         of_node_put(dn);
669 
670         return probed;
671 }
672 
673 static void __init arch_timer_common_init(void)
674 {
675         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
676 
677         /* Wait until both nodes are probed if we have two timers */
678         if ((arch_timers_present & mask) != mask) {
679                 if (!arch_timer_probed(ARCH_MEM_TIMER, arch_timer_mem_of_match))
680                         return;
681                 if (!arch_timer_probed(ARCH_CP15_TIMER, arch_timer_of_match))
682                         return;
683         }
684 
685         arch_timer_banner(arch_timers_present);
686         arch_counter_register(arch_timers_present);
687         arch_timer_arch_init();
688 }
689 
690 static void __init arch_timer_init(struct device_node *np)
691 {
692         int i;
693 
694         if (arch_timers_present & ARCH_CP15_TIMER) {
695                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
696                 return;
697         }
698 
699         arch_timers_present |= ARCH_CP15_TIMER;
700         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
701                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
702         arch_timer_detect_rate(NULL, np);
703 
704         /*
705          * If HYP mode is available, we know that the physical timer
706          * has been configured to be accessible from PL1. Use it, so
707          * that a guest can use the virtual timer instead.
708          *
709          * If no interrupt provided for virtual timer, we'll have to
710          * stick to the physical timer. It'd better be accessible...
711          */
712         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
713                 arch_timer_use_virtual = false;
714 
715                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
716                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
717                         pr_warn("arch_timer: No interrupt available, giving up\n");
718                         return;
719                 }
720         }
721 
722         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
723 
724         arch_timer_register();
725         arch_timer_common_init();
726 }
727 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
728 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
729 
730 static void __init arch_timer_mem_init(struct device_node *np)
731 {
732         struct device_node *frame, *best_frame = NULL;
733         void __iomem *cntctlbase, *base;
734         unsigned int irq;
735         u32 cnttidr;
736 
737         arch_timers_present |= ARCH_MEM_TIMER;
738         cntctlbase = of_iomap(np, 0);
739         if (!cntctlbase) {
740                 pr_err("arch_timer: Can't find CNTCTLBase\n");
741                 return;
742         }
743 
744         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
745         iounmap(cntctlbase);
746 
747         /*
748          * Try to find a virtual capable frame. Otherwise fall back to a
749          * physical capable frame.
750          */
751         for_each_available_child_of_node(np, frame) {
752                 int n;
753 
754                 if (of_property_read_u32(frame, "frame-number", &n)) {
755                         pr_err("arch_timer: Missing frame-number\n");
756                         of_node_put(best_frame);
757                         of_node_put(frame);
758                         return;
759                 }
760 
761                 if (cnttidr & CNTTIDR_VIRT(n)) {
762                         of_node_put(best_frame);
763                         best_frame = frame;
764                         arch_timer_mem_use_virtual = true;
765                         break;
766                 }
767                 of_node_put(best_frame);
768                 best_frame = of_node_get(frame);
769         }
770 
771         base = arch_counter_base = of_iomap(best_frame, 0);
772         if (!base) {
773                 pr_err("arch_timer: Can't map frame's registers\n");
774                 of_node_put(best_frame);
775                 return;
776         }
777 
778         if (arch_timer_mem_use_virtual)
779                 irq = irq_of_parse_and_map(best_frame, 1);
780         else
781                 irq = irq_of_parse_and_map(best_frame, 0);
782         of_node_put(best_frame);
783         if (!irq) {
784                 pr_err("arch_timer: Frame missing %s irq",
785                        arch_timer_mem_use_virtual ? "virt" : "phys");
786                 return;
787         }
788 
789         arch_timer_detect_rate(base, np);
790         arch_timer_mem_register(base, irq);
791         arch_timer_common_init();
792 }
793 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
794                        arch_timer_mem_init);
795 

This page was automatically generated by LXR 0.3.1 (source).  •  Linux is a registered trademark of Linus Torvalds  •  Contact us